]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/mips/mips.h
configure.in: Check whether assembler supports section merging.
[thirdparty/gcc.git] / gcc / config / mips / mips.h
CommitLineData
e75b25e7 1/* Definitions of target machine for GNU compiler. MIPS version.
214be03f 2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
cf011243 3 1999, 2000, 2001 Free Software Foundation, Inc.
ae3e1bb4
RK
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
e75b25e7
MM
8
9This file is part of GNU CC.
10
11GNU CC is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2, or (at your option)
14any later version.
15
16GNU CC is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with GNU CC; see the file COPYING. If not, write to
75fe0c5e
RK
23the Free Software Foundation, 59 Temple Place - Suite 330,
24Boston, MA 02111-1307, USA. */
e75b25e7
MM
25
26
e75b25e7
MM
27/* Standard GCC variables that we reference. */
28
0fb5ac6f
MM
29extern char *asm_file_name;
30extern char call_used_regs[];
0fb5ac6f 31extern int may_call_alloca;
0fb5ac6f
MM
32extern char **save_argv;
33extern int target_flags;
e75b25e7
MM
34
35/* MIPS external variables defined in mips.c. */
36
37/* comparison type */
38enum cmp_type {
876c09d3
JW
39 CMP_SI, /* compare four byte integers */
40 CMP_DI, /* compare eight byte integers */
e75b25e7
MM
41 CMP_SF, /* compare single precision floats */
42 CMP_DF, /* compare double precision floats */
43 CMP_MAX /* max comparison type */
44};
45
46/* types of delay slot */
47enum delay_type {
48 DELAY_NONE, /* no delay slot */
49 DELAY_LOAD, /* load from memory delay */
34b650b3
MM
50 DELAY_HILO, /* move from/to hi/lo registers */
51 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
e75b25e7
MM
52};
53
54/* Which processor to schedule for. Since there is no difference between
55 a R2000 and R3000 in terms of the scheduler, we collapse them into
4a392643
RS
56 just an R3000. The elements of the enumeration must match exactly
57 the cpu attribute in the mips.md machine description. */
e75b25e7
MM
58
59enum processor_type {
60 PROCESSOR_DEFAULT,
61 PROCESSOR_R3000,
e9a25f70 62 PROCESSOR_R3900,
e75b25e7 63 PROCESSOR_R6000,
876c09d3 64 PROCESSOR_R4000,
00b3e052
JW
65 PROCESSOR_R4100,
66 PROCESSOR_R4300,
516a2dfd 67 PROCESSOR_R4600,
053665d7 68 PROCESSOR_R4650,
b8eb88d0 69 PROCESSOR_R5000,
516a2dfd 70 PROCESSOR_R8000
e75b25e7
MM
71};
72
4a392643 73/* Recast the cpu class to be the cpu attribute. */
919b1aec 74#define mips_cpu_attr ((enum attr_cpu)mips_tune)
4a392643 75
04bd620d 76/* Which ABI to use. These are constants because abi64.h must check their
a53f72db
GRK
77 value at preprocessing time.
78
79 ABI_32 (original 32, or o32), ABI_N32 (n32), ABI_64 (n64) are all
80 defined by SGI. ABI_O64 is o32 extended to work on a 64 bit machine. */
b2d8cf33 81
04bd620d
JW
82#define ABI_32 0
83#define ABI_N32 1
84#define ABI_64 2
85#define ABI_EABI 3
a53f72db 86#define ABI_O64 4
b2d8cf33
JW
87
88#ifndef MIPS_ABI_DEFAULT
89/* We define this away so that there is no extra runtime cost if the target
90 doesn't support multiple ABIs. */
91#define mips_abi ABI_32
92#else
04bd620d 93extern int mips_abi;
b2d8cf33
JW
94#endif
95
45ceb85d
RS
96/* Whether to emit abicalls code sequences or not. */
97
98enum mips_abicalls_type {
99 MIPS_ABICALLS_NO,
100 MIPS_ABICALLS_YES
101};
102
103/* Recast the abicalls class to be the abicalls attribute. */
104#define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
105
b7d3fabe
RS
106/* Which type of block move to do (whether or not the last store is
107 split out so it can fill a branch delay slot). */
108
109enum block_move_type {
110 BLOCK_MOVE_NORMAL, /* generate complete block move */
111 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
112 BLOCK_MOVE_LAST /* generate just the last store */
113};
114
e75b25e7
MM
115extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
116extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
e2fe6aba 117extern const char *current_function_file; /* filename current function is in */
e75b25e7
MM
118extern int num_source_filenames; /* current .file # */
119extern int inside_function; /* != 0 if inside of a function */
120extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
121extern int file_in_function_warning; /* warning given about .file in func */
122extern int sdb_label_count; /* block start/end next label # */
a642a781 123extern int sdb_begin_function_line; /* Starting Line of current function */
e75b25e7
MM
124extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
125extern int g_switch_value; /* value of the -G xx switch */
126extern int g_switch_set; /* whether -G xx was passed. */
127extern int sym_lineno; /* sgi next label # for each stmt */
128extern int set_noreorder; /* # of nested .set noreorder's */
129extern int set_nomacro; /* # of nested .set nomacro's */
130extern int set_noat; /* # of nested .set noat's */
131extern int set_volatile; /* # of nested .set volatile's */
e75b25e7
MM
132extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
133extern int mips_dbx_regno[]; /* Map register # to debug register # */
e75b25e7
MM
134extern struct rtx_def *branch_cmp[2]; /* operands for compare */
135extern enum cmp_type branch_type; /* what type of branch to use */
7dac2f89
EC
136extern enum processor_type mips_arch; /* which cpu to codegen for */
137extern enum processor_type mips_tune; /* which cpu to schedule for */
45ceb85d 138extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
e75b25e7 139extern int mips_isa; /* architectural level */
2bcb2ab3
GK
140extern int mips16; /* whether generating mips16 code */
141extern int mips16_hard_float; /* mips16 without -msoft-float */
142extern int mips_entry; /* generate entry/exit for mips16 */
e2fe6aba 143extern const char *mips_cpu_string; /* for -mcpu=<xxx> */
7dac2f89
EC
144extern const char *mips_arch_string; /* for -march=<xxx> */
145extern const char *mips_tune_string; /* for -mtune=<xxx> */
e2fe6aba
KG
146extern const char *mips_isa_string; /* for -mips{1,2,3,4} */
147extern const char *mips_abi_string; /* for -mabi={32,n32,64} */
148extern const char *mips_entry_string; /* for -mentry */
149extern const char *mips_no_mips16_string;/* for -mno-mips16 */
3ce1ba83 150extern const char *mips_explicit_type_size_string;/* for -mexplicit-type-size */
ce57d6f4 151extern int mips_split_addresses; /* perform high/lo_sum support */
e75b25e7
MM
152extern int dslots_load_total; /* total # load related delay slots */
153extern int dslots_load_filled; /* # filled load delay slots */
154extern int dslots_jump_total; /* total # jump related delay slots */
155extern int dslots_jump_filled; /* # filled jump delay slots */
156extern int dslots_number_nops; /* # of nops needed by previous insn */
157extern int num_refs[3]; /* # 1/2/3 word references */
158extern struct rtx_def *mips_load_reg; /* register to check for load delay */
159extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
160extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
161extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
92544bdf 162extern struct rtx_def *embedded_pic_fnaddr_rtx; /* function address */
2bcb2ab3
GK
163extern int mips_string_length; /* length of strings for mips16 */
164extern struct rtx_def *mips16_gp_pseudo_rtx; /* psuedo reg holding $gp */
e75b25e7 165
0fb5ac6f 166/* Functions to change what output section we are using. */
bd9f1972
KG
167extern void rdata_section PARAMS ((void));
168extern void sdata_section PARAMS ((void));
cc8f5ec0 169extern void sbss_section PARAMS ((void));
e75b25e7 170
31c714e3
MM
171/* Stubs for half-pic support if not OSF/1 reference platform. */
172
173#ifndef HALF_PIC_P
174#define HALF_PIC_P() 0
4a392643
RS
175#define HALF_PIC_NUMBER_PTRS 0
176#define HALF_PIC_NUMBER_REFS 0
31c714e3 177#define HALF_PIC_ENCODE(DECL)
f3b39eba 178#define HALF_PIC_DECLARE(NAME)
31c714e3
MM
179#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
180#define HALF_PIC_ADDRESS_P(X) 0
d26e29e1
MM
181#define HALF_PIC_PTR(X) X
182#define HALF_PIC_FINISH(STREAM)
31c714e3
MM
183#endif
184
3a6ee9f4
MM
185/* Macros to silence warnings about numbers being signed in traditional
186 C and unsigned in ISO C when compiled on 32-bit hosts. */
187
188#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
189#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
190#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
191
149e4e00
MM
192\f
193/* Run-time compilation parameters selecting different hardware subsets. */
194
195/* Macros used in the machine description to test the flags. */
196
197 /* Bits for real switches */
6d81ba45
CD
198#define MASK_INT64 0x00000001 /* ints are 64 bits */
199#define MASK_LONG64 0x00000002 /* longs are 64 bits */
200#define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
201#define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
202#define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
203#define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
204#define MASK_STATS 0x00000040 /* print statistics to stderr */
205#define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
206#define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
207#define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
208#define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
209#define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
210#define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
211#define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
212#define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
365c6a0b 213#define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
6d81ba45
CD
214#define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
215#define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
216#define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
217#define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
7dac2f89 218#define MASK_MIPS16 0x00100000 /* Generate mips16 code */
6d81ba45 219#define MASK_NO_CHECK_ZERO_DIV \
7dac2f89 220 0x00200000 /* divide by zero checking */
6d81ba45 221#define MASK_CHECK_RANGE_DIV \
7dac2f89 222 0x00400000 /* divide result range checking */
6d81ba45 223#define MASK_UNINIT_CONST_IN_RODATA \
7dac2f89 224 0x00800000 /* Store uninitialized
6d81ba45 225 consts in rodata */
13fac94a
GK
226#define MASK_NO_FUSED_MADD 0x01000000 /* Don't generate floating point
227 multiply-add operations. */
149e4e00
MM
228
229 /* Debug switches, not documented */
6d81ba45
CD
230#define MASK_DEBUG 0 /* unused */
231#define MASK_DEBUG_A 0 /* don't allow <label>($reg) addrs */
232#define MASK_DEBUG_B 0 /* GO_IF_LEGITIMATE_ADDRESS debug */
233#define MASK_DEBUG_C 0 /* don't expand seq, etc. */
08c2951c 234#define MASK_DEBUG_D 0 /* don't do define_split's */
e4f5c5d6 235#define MASK_DEBUG_E 0 /* function_arg debug */
6d81ba45 236#define MASK_DEBUG_F 0 /* ??? */
2bcb2ab3 237#define MASK_DEBUG_G 0 /* don't support 64 bit arithmetic */
6d1350cd 238#define MASK_DEBUG_H 0 /* allow ints in FP registers */
e4f5c5d6 239#define MASK_DEBUG_I 0 /* unused */
149e4e00 240
6d81ba45
CD
241 /* Dummy switches used only in specs */
242#define MASK_MIPS_TFILE 0 /* flag for mips-tfile usage */
243
149e4e00
MM
244 /* r4000 64 bit sizes */
245#define TARGET_INT64 (target_flags & MASK_INT64)
246#define TARGET_LONG64 (target_flags & MASK_LONG64)
149e4e00 247#define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
876c09d3 248#define TARGET_64BIT (target_flags & MASK_64BIT)
149e4e00 249
5ef37cd3
JW
250 /* Mips vs. GNU linker */
251#define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
252
149e4e00
MM
253 /* Mips vs. GNU assembler */
254#define TARGET_GAS (target_flags & MASK_GAS)
6d81ba45 255#define TARGET_MIPS_AS (!TARGET_GAS)
149e4e00 256
6d81ba45 257 /* Debug Modes */
149e4e00
MM
258#define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
259#define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
260#define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
261#define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
262#define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
263#define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
264#define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
265#define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
266#define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
267#define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
149e4e00
MM
268
269 /* Reg. Naming in .s ($21 vs. $a0) */
270#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
271
272 /* Optimize for Sdata/Sbss */
273#define TARGET_GP_OPT (target_flags & MASK_GPOPT)
274
275 /* print program statistics */
276#define TARGET_STATS (target_flags & MASK_STATS)
277
278 /* call memcpy instead of inline code */
279#define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
280
281 /* .abicalls, etc from Pyramid V.4 */
282#define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
283
284 /* OSF pic references to externs */
285#define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
286
287 /* software floating point */
288#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
289#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
290
291 /* always call through a register */
292#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
293
e0bfcea5
ILT
294 /* generate embedded PIC code;
295 requires gas. */
296#define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
297
365c6a0b
JW
298 /* for embedded systems, optimize for
299 reduced RAM space instead of for
300 fastest code. */
301#define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
302
919509ce
DN
303 /* always store uninitialized const
304 variables in rodata, requires
305 TARGET_EMBEDDED_DATA. */
306#define TARGET_UNINIT_CONST_IN_RODATA (target_flags & MASK_UNINIT_CONST_IN_RODATA)
307
96abdcb1
ILT
308 /* generate big endian code. */
309#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
310
46299de9
ILT
311#define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
312#define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
313
314#define TARGET_MAD (target_flags & MASK_MAD)
315
13fac94a
GK
316#define TARGET_FUSED_MADD (! (target_flags & MASK_NO_FUSED_MADD))
317
00b3e052
JW
318#define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
319
08c2951c
SC
320#define TARGET_NO_CHECK_ZERO_DIV (target_flags & MASK_NO_CHECK_ZERO_DIV)
321#define TARGET_CHECK_RANGE_DIV (target_flags & MASK_CHECK_RANGE_DIV)
322
33b5e50b
JW
323/* This is true if we must enable the assembly language file switching
324 code. */
325
f99ffb60
RH
326#define TARGET_FILE_SWITCHING \
327 (TARGET_GP_OPT && ! TARGET_GAS && ! TARGET_MIPS16)
33b5e50b
JW
328
329/* We must disable the function end stabs when doing the file switching trick,
330 because the Lscope stabs end up in the wrong place, making it impossible
331 to debug the resulting code. */
332#define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
333
2bcb2ab3
GK
334 /* Generate mips16 code */
335#define TARGET_MIPS16 (target_flags & MASK_MIPS16)
336
7dac2f89
EC
337/* Architecture target defines. */
338#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
339#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
340#define TARGET_MIPS4100 (mips_arch == PROCESSOR_R4100)
341#define TARGET_MIPS4300 (mips_arch == PROCESSOR_R4300)
342
343/* Scheduling target defines. */
7a38df19
EC
344#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
345#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
346#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
347#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
348#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
7dac2f89 349
149e4e00
MM
350/* Macro to define tables used to set the flags.
351 This is a list in braces of pairs in braces,
352 each pair being { "NAME", VALUE }
353 where VALUE is the bits to set or minus the bits to clear.
354 An empty string NAME is used to identify the default VALUE. */
355
356#define TARGET_SWITCHES \
357{ \
c45fd7f9 358 {"no-crt0", 0, \
047142d3 359 N_("No default crt0.o") }, \
a127db75 360 {"int64", MASK_INT64 | MASK_LONG64, \
047142d3 361 N_("Use 64-bit int type")}, \
a127db75 362 {"long64", MASK_LONG64, \
047142d3 363 N_("Use 64-bit long type")}, \
a127db75 364 {"long32", -(MASK_LONG64 | MASK_INT64), \
047142d3 365 N_("Use 32-bit long type")}, \
a127db75 366 {"split-addresses", MASK_SPLIT_ADDR, \
047142d3 367 N_("Optimize lui/addiu address loads")}, \
a127db75 368 {"no-split-addresses", -MASK_SPLIT_ADDR, \
047142d3 369 N_("Don't optimize lui/addiu address loads")}, \
a127db75 370 {"mips-as", -MASK_GAS, \
047142d3 371 N_("Use MIPS as")}, \
a127db75 372 {"gas", MASK_GAS, \
047142d3 373 N_("Use GNU as")}, \
a127db75 374 {"rnames", MASK_NAME_REGS, \
047142d3 375 N_("Use symbolic register names")}, \
a127db75 376 {"no-rnames", -MASK_NAME_REGS, \
047142d3 377 N_("Don't use symbolic register names")}, \
a127db75 378 {"gpOPT", MASK_GPOPT, \
047142d3 379 N_("Use GP relative sdata/sbss sections")}, \
a127db75 380 {"gpopt", MASK_GPOPT, \
047142d3 381 N_("Use GP relative sdata/sbss sections")}, \
a127db75 382 {"no-gpOPT", -MASK_GPOPT, \
047142d3 383 N_("Don't use GP relative sdata/sbss sections")}, \
a127db75 384 {"no-gpopt", -MASK_GPOPT, \
047142d3 385 N_("Don't use GP relative sdata/sbss sections")}, \
a127db75 386 {"stats", MASK_STATS, \
047142d3 387 N_("Output compiler statistics")}, \
a127db75 388 {"no-stats", -MASK_STATS, \
047142d3 389 N_("Don't output compiler statistics")}, \
a127db75 390 {"memcpy", MASK_MEMCPY, \
047142d3 391 N_("Don't optimize block moves")}, \
a127db75 392 {"no-memcpy", -MASK_MEMCPY, \
047142d3 393 N_("Optimize block moves")}, \
a127db75 394 {"mips-tfile", MASK_MIPS_TFILE, \
047142d3 395 N_("Use mips-tfile asm postpass")}, \
a127db75 396 {"no-mips-tfile", -MASK_MIPS_TFILE, \
047142d3 397 N_("Don't use mips-tfile asm postpass")}, \
a127db75 398 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 399 N_("Use software floating point")}, \
a127db75 400 {"hard-float", -MASK_SOFT_FLOAT, \
047142d3 401 N_("Use hardware floating point")}, \
a127db75 402 {"fp64", MASK_FLOAT64, \
047142d3 403 N_("Use 64-bit FP registers")}, \
a127db75 404 {"fp32", -MASK_FLOAT64, \
047142d3 405 N_("Use 32-bit FP registers")}, \
a127db75 406 {"gp64", MASK_64BIT, \
047142d3 407 N_("Use 64-bit general registers")}, \
a127db75 408 {"gp32", -MASK_64BIT, \
047142d3 409 N_("Use 32-bit general registers")}, \
a127db75 410 {"abicalls", MASK_ABICALLS, \
047142d3 411 N_("Use Irix PIC")}, \
a127db75 412 {"no-abicalls", -MASK_ABICALLS, \
047142d3 413 N_("Don't use Irix PIC")}, \
a127db75 414 {"half-pic", MASK_HALF_PIC, \
047142d3 415 N_("Use OSF PIC")}, \
a127db75 416 {"no-half-pic", -MASK_HALF_PIC, \
047142d3 417 N_("Don't use OSF PIC")}, \
a127db75 418 {"long-calls", MASK_LONG_CALLS, \
047142d3 419 N_("Use indirect calls")}, \
a127db75 420 {"no-long-calls", -MASK_LONG_CALLS, \
047142d3 421 N_("Don't use indirect calls")}, \
a127db75 422 {"embedded-pic", MASK_EMBEDDED_PIC, \
047142d3 423 N_("Use embedded PIC")}, \
a127db75 424 {"no-embedded-pic", -MASK_EMBEDDED_PIC, \
047142d3 425 N_("Don't use embedded PIC")}, \
a127db75 426 {"embedded-data", MASK_EMBEDDED_DATA, \
047142d3 427 N_("Use ROM instead of RAM")}, \
a127db75 428 {"no-embedded-data", -MASK_EMBEDDED_DATA, \
047142d3 429 N_("Don't use ROM instead of RAM")}, \
919509ce 430 {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
047142d3 431 N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
919509ce 432 {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
047142d3 433 N_("Don't put uninitialized constants in ROM")}, \
a127db75 434 {"eb", MASK_BIG_ENDIAN, \
047142d3 435 N_("Use big-endian byte order")}, \
a127db75 436 {"el", -MASK_BIG_ENDIAN, \
047142d3 437 N_("Use little-endian byte order")}, \
a127db75 438 {"single-float", MASK_SINGLE_FLOAT, \
047142d3 439 N_("Use single (32-bit) FP only")}, \
a127db75 440 {"double-float", -MASK_SINGLE_FLOAT, \
047142d3 441 N_("Don't use single (32-bit) FP only")}, \
a127db75 442 {"mad", MASK_MAD, \
047142d3 443 N_("Use multiply accumulate")}, \
a127db75 444 {"no-mad", -MASK_MAD, \
047142d3 445 N_("Don't use multiply accumulate")}, \
13fac94a
GK
446 {"no-fused-madd", MASK_NO_FUSED_MADD, \
447 N_("Don't generate fused multiply/add instructions")}, \
448 {"fused-madd", -MASK_NO_FUSED_MADD, \
449 N_("Generate fused multiply/add instructions")}, \
a127db75 450 {"fix4300", MASK_4300_MUL_FIX, \
047142d3 451 N_("Work around early 4300 hardware bug")}, \
a127db75 452 {"no-fix4300", -MASK_4300_MUL_FIX, \
047142d3 453 N_("Don't work around early 4300 hardware bug")}, \
7dac2f89 454 {"3900", 0, \
047142d3 455 N_("Optimize for 3900")}, \
7dac2f89
EC
456 {"4650", 0, \
457 N_("Optimize for 4650")}, \
a127db75 458 {"check-zero-division",-MASK_NO_CHECK_ZERO_DIV, \
047142d3 459 N_("Trap on integer divide by zero")}, \
a127db75 460 {"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV, \
047142d3 461 N_("Don't trap on integer divide by zero")}, \
a127db75 462 {"check-range-division",MASK_CHECK_RANGE_DIV, \
047142d3 463 N_("Trap on integer divide overflow")}, \
a127db75 464 {"no-check-range-division",-MASK_CHECK_RANGE_DIV, \
047142d3 465 N_("Don't trap on integer divide overflow")}, \
a127db75
JW
466 {"debug", MASK_DEBUG, \
467 NULL}, \
468 {"debuga", MASK_DEBUG_A, \
469 NULL}, \
470 {"debugb", MASK_DEBUG_B, \
471 NULL}, \
472 {"debugc", MASK_DEBUG_C, \
473 NULL}, \
474 {"debugd", MASK_DEBUG_D, \
475 NULL}, \
476 {"debuge", MASK_DEBUG_E, \
477 NULL}, \
478 {"debugf", MASK_DEBUG_F, \
479 NULL}, \
480 {"debugg", MASK_DEBUG_G, \
481 NULL}, \
482 {"debugh", MASK_DEBUG_H, \
483 NULL}, \
484 {"debugi", MASK_DEBUG_I, \
485 NULL}, \
96abdcb1
ILT
486 {"", (TARGET_DEFAULT \
487 | TARGET_CPU_DEFAULT \
a127db75
JW
488 | TARGET_ENDIAN_DEFAULT), \
489 NULL}, \
7dac2f89 490}
149e4e00
MM
491
492/* Default target_flags if no switches are specified */
493
494#ifndef TARGET_DEFAULT
495#define TARGET_DEFAULT 0
496#endif
497
404f986e
MM
498#ifndef TARGET_CPU_DEFAULT
499#define TARGET_CPU_DEFAULT 0
500#endif
501
96abdcb1
ILT
502#ifndef TARGET_ENDIAN_DEFAULT
503#ifndef DECSTATION
504#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
505#else
506#define TARGET_ENDIAN_DEFAULT 0
507#endif
508#endif
509
ea09f032
GRK
510#ifndef MIPS_ISA_DEFAULT
511#define MIPS_ISA_DEFAULT 1
512#endif
513
996ed075
JJ
514#ifdef IN_LIBGCC2
515#undef TARGET_64BIT
516/* Make this compile time constant for libgcc2 */
517#ifdef __mips64
518#define TARGET_64BIT 1
519#else
520#define TARGET_64BIT 0
521#endif
440927ec 522#endif /* IN_LIBGCC2 */
996ed075 523
cbab8d02 524#ifndef MULTILIB_ENDIAN_DEFAULT
7f2e00db 525#if TARGET_ENDIAN_DEFAULT == 0
cbab8d02 526#define MULTILIB_ENDIAN_DEFAULT "EL"
7f2e00db 527#else
cbab8d02
GRK
528#define MULTILIB_ENDIAN_DEFAULT "EB"
529#endif
7f2e00db 530#endif
cbab8d02 531
ea09f032 532#ifndef MULTILIB_ISA_DEFAULT
7ce2fcb9
KG
533# if MIPS_ISA_DEFAULT == 1
534# define MULTILIB_ISA_DEFAULT "mips1"
535# else
536# if MIPS_ISA_DEFAULT == 2
537# define MULTILIB_ISA_DEFAULT "mips2"
538# else
539# if MIPS_ISA_DEFAULT == 3
540# define MULTILIB_ISA_DEFAULT "mips3"
541# else
542# if MIPS_ISA_DEFAULT == 4
543# define MULTILIB_ISA_DEFAULT "mips4"
544# else
545# define MULTILIB_ISA_DEFAULT "mips1"
546# endif
547# endif
548# endif
549# endif
ea09f032
GRK
550#endif
551
cbab8d02 552#ifndef MULTILIB_DEFAULTS
ea09f032 553#define MULTILIB_DEFAULTS { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT }
7f2e00db
RK
554#endif
555
34bcd7fd
JW
556/* We must pass -EL to the linker by default for little endian embedded
557 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
558 linker will default to using big-endian output files. The OUTPUT_FORMAT
559 line must be in the linker script, otherwise -EB/-EL will not work. */
560
120dc6cd 561#ifndef ENDIAN_SPEC
34bcd7fd 562#if TARGET_ENDIAN_DEFAULT == 0
120dc6cd 563#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EL} %{EB}"
34bcd7fd 564#else
120dc6cd 565#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EB} %{EL}"
34bcd7fd
JW
566#endif
567#endif
568
149e4e00
MM
569/* This macro is similar to `TARGET_SWITCHES' but defines names of
570 command options that have values. Its definition is an
571 initializer with a subgrouping for each command option.
572
573 Each subgrouping contains a string constant, that defines the
7dac2f89 574 fixed part of the option name, and the address of a variable.
149e4e00
MM
575 The variable, type `char *', is set to the variable part of the
576 given option if the fixed part matches. The actual option name
577 is made by appending `-m' to the specified name.
578
579 Here is an example which defines `-mshort-data-NUMBER'. If the
580 given option is `-mshort-data-512', the variable `m88k_short_data'
581 will be set to the string `"512"'.
582
583 extern char *m88k_short_data;
584 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
585
586#define TARGET_OPTIONS \
587{ \
b2d8cf33 588 SUBTARGET_TARGET_OPTIONS \
a127db75 589 { "cpu=", &mips_cpu_string, \
047142d3 590 N_("Specify CPU for scheduling purposes")}, \
7dac2f89
EC
591 { "tune=", &mips_tune_string, \
592 N_("Specify CPU for scheduling purposes")}, \
593 { "arch=", &mips_arch_string, \
594 N_("Specify CPU for code generation purposes")}, \
a127db75 595 { "ips", &mips_isa_string, \
7dac2f89 596 N_("Specify a Standard MIPS ISA")}, \
a127db75 597 { "entry", &mips_entry_string, \
047142d3 598 N_("Use mips16 entry/exit psuedo ops")}, \
a127db75 599 { "no-mips16", &mips_no_mips16_string, \
047142d3 600 N_("Don't use MIPS16 instructions")}, \
a127db75
JW
601 { "explicit-type-size", &mips_explicit_type_size_string, \
602 NULL}, \
149e4e00
MM
603}
604
b2d8cf33
JW
605/* This is meant to be redefined in the host dependent files. */
606#define SUBTARGET_TARGET_OPTIONS
607
7dac2f89 608#define GENERATE_BRANCHLIKELY (!TARGET_MIPS16 && ISA_HAS_BRANCHLIKELY)
e4f5c5d6
KR
609
610/* Generate three-operand multiply instructions for both SImode and DImode. */
2bcb2ab3 611#define GENERATE_MULT3 (TARGET_MIPS3900 \
60db002d 612 && !TARGET_MIPS16)
e9a25f70 613
149e4e00
MM
614/* Macros to decide whether certain features are available or not,
615 depending on the instruction set architecture level. */
616
e9a25f70 617#define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
1d5d552e
GRK
618#define HAVE_SQRT_P() (mips_isa != 1)
619
620/* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3). */
76ee8042
GRK
621#define ISA_HAS_64BIT_REGS (mips_isa == 3 || mips_isa == 4 \
622 )
1d5d552e 623
7dac2f89
EC
624/* ISA has branch likely instructions (eg. mips2). */
625/* Disable branchlikely for tx39 until compare rewrite. They haven't
626 been generated up to this point. */
627#define ISA_HAS_BRANCHLIKELY (mips_isa != 1 \
628 /* || TARGET_MIPS3900 */)
1d5d552e 629
76ee8042
GRK
630/* ISA has the conditional move instructions introduced in mips4. */
631#define ISA_HAS_CONDMOVE (mips_isa == 4 \
632 )
633
0025b7fa
GRK
634/* ISA has just the integer condition move instructions (movn,movz) */
635#define ISA_HAS_INT_CONDMOVE 0
636
637
638
76ee8042
GRK
639/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
640 branch on CC, and move (both FP and non-FP) on CC. */
641#define ISA_HAS_8CC (mips_isa == 4 \
642 )
643
644
645/* This is a catch all for the other new mips4 instructions: indexed load and
7dac2f89 646 indexed prefetch instructions, the FP madd,msub,nmadd, and nmsub instructions,
76ee8042
GRK
647 and the FP recip and recip sqrt instructions */
648#define ISA_HAS_FP4 (mips_isa == 4 \
649 )
650
a0b6cdee
GM
651/* ISA has conditional trap instructions. */
652#define ISA_HAS_COND_TRAP (mips_isa >= 2)
1d5d552e 653
1f28c666
AH
654/* ISA has nmadd and nmsub instructions. */
655#define ISA_HAS_NMADD_NMSUB (mips_isa == 4 \
656 )
149e4e00 657
516a2dfd
JW
658/* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
659 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
2370b831
JW
660 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
661 target_flags, and -mgp64 sets MASK_64BIT.
876c09d3 662
2370b831
JW
663 Setting MASK_64BIT in target_flags will cause gcc to assume that
664 registers are 64 bits wide. int, long and void * will be 32 bit;
665 this may be changed with -mint64 or -mlong64.
876c09d3 666
2370b831
JW
667 The gen* programs link code that refers to MASK_64BIT. They don't
668 actually use the information in target_flags; they just refer to
669 it. */
e75b25e7
MM
670\f
671/* Switch Recognition by gcc.c. Add -G xx support */
672
673#ifdef SWITCH_TAKES_ARG
674#undef SWITCH_TAKES_ARG
675#endif
676
677#define SWITCH_TAKES_ARG(CHAR) \
7d4ea832 678 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
e75b25e7
MM
679
680/* Sometimes certain combinations of command options do not make sense
681 on a particular target machine. You can define a macro
682 `OVERRIDE_OPTIONS' to take account of this. This macro, if
683 defined, is executed once just after all the command options have
684 been parsed.
685
686 On the MIPS, it is used to handle -G. We also use it to set up all
687 of the tables referenced in the other macros. */
688
689#define OVERRIDE_OPTIONS override_options ()
690
691/* Zero or more C statements that may conditionally modify two
692 variables `fixed_regs' and `call_used_regs' (both of type `char
693 []') after they have been initialized from the two preceding
694 macros.
695
696 This is necessary in case the fixed or call-clobbered registers
697 depend on target flags.
698
699 You need not define this macro if it has no work to do.
700
701 If the usage of an entire class of registers depends on the target
702 flags, you may indicate this to GCC by using this macro to modify
703 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
704 the classes which should not be used by GCC. Also define the macro
705 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
706 letter for a class that shouldn't be used.
707
708 (However, if this class is not included in `GENERAL_REGS' and all
709 of the insn patterns whose constraints permit this class are
710 controlled by target switches, then GCC will automatically avoid
711 using these registers when the target switches are opposed to
712 them.) */
713
714#define CONDITIONAL_REGISTER_USAGE \
715do \
716 { \
717 if (!TARGET_HARD_FLOAT) \
718 { \
719 int regno; \
720 \
721 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
722 fixed_regs[regno] = call_used_regs[regno] = 1; \
b8eb88d0
ILT
723 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
724 fixed_regs[regno] = call_used_regs[regno] = 1; \
725 } \
76ee8042 726 else if (! ISA_HAS_8CC) \
b8eb88d0
ILT
727 { \
728 int regno; \
729 \
730 /* We only have a single condition code register. We \
731 implement this by hiding all the condition code registers, \
732 and generating RTL that refers directly to ST_REG_FIRST. */ \
733 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
734 fixed_regs[regno] = call_used_regs[regno] = 1; \
e75b25e7 735 } \
2bcb2ab3
GK
736 /* In mips16 mode, we permit the $t temporary registers to be used \
737 for reload. We prohibit the unused $s registers, since they \
738 are caller saved, and saving them via a mips16 register would \
739 probably waste more time than just reloading the value. */ \
740 if (TARGET_MIPS16) \
741 { \
742 fixed_regs[18] = call_used_regs[18] = 1; \
743 fixed_regs[19] = call_used_regs[19] = 1; \
744 fixed_regs[20] = call_used_regs[20] = 1; \
745 fixed_regs[21] = call_used_regs[21] = 1; \
746 fixed_regs[22] = call_used_regs[22] = 1; \
747 fixed_regs[23] = call_used_regs[23] = 1; \
748 fixed_regs[26] = call_used_regs[26] = 1; \
749 fixed_regs[27] = call_used_regs[27] = 1; \
750 fixed_regs[30] = call_used_regs[30] = 1; \
751 } \
516a2dfd 752 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
e75b25e7
MM
753 } \
754while (0)
755
b2d8cf33 756/* This is meant to be redefined in the host dependent files. */
516a2dfd
JW
757#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
758
7be1e523
RK
759/* Show we can debug even without a frame pointer. */
760#define CAN_DEBUG_WITHOUT_FP
761\f
e75b25e7
MM
762/* Complain about missing specs and predefines that should be defined in each
763 of the target tm files to override the defaults. This is mostly a place-
764 holder until I can get each of the files updated [mm]. */
765
766#if defined(OSF_OS) \
767 || defined(DECSTATION) \
768 || defined(SGI_TARGET) \
769 || defined(MIPS_NEWS) \
770 || defined(MIPS_SYSV) \
59c94430 771 || defined(MIPS_SVR4) \
e75b25e7
MM
772 || defined(MIPS_BSD43)
773
774#ifndef CPP_PREDEFINES
775 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
776#endif
777
e75b25e7
MM
778#ifndef LIB_SPEC
779 #error "Define LIB_SPEC in the appropriate tm.h file"
780#endif
781
782#ifndef STARTFILE_SPEC
783 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
784#endif
785
786#ifndef MACHINE_TYPE
787 #error "Define MACHINE_TYPE in the appropriate tm.h file"
788#endif
789#endif
790
59c94430
MM
791/* Tell collect what flags to pass to nm. */
792#ifndef NM_FLAGS
2ce3c6c6 793#define NM_FLAGS "-Bn"
59c94430
MM
794#endif
795
e75b25e7
MM
796\f
797/* Names to predefine in the preprocessor for this target machine. */
798
799#ifndef CPP_PREDEFINES
d4099651 800#define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
65c42379 801-D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
2b57e919 802-Asystem=unix -Asystem=bsd -Acpu=mips -Amachine=mips"
e75b25e7
MM
803#endif
804
4e88bbcd
ILT
805/* Assembler specs. */
806
807/* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
808 than gas. */
809
810#define MIPS_AS_ASM_SPEC "\
811%{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
812%{pipe: %e-pipe is not supported.} \
813%{K} %(subtarget_mips_as_asm_spec)"
814
815/* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
816 rather than gas. It may be overridden by subtargets. */
817
818#ifndef SUBTARGET_MIPS_AS_ASM_SPEC
819#define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
820#endif
821
822/* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
823 assembler. */
824
7dac2f89 825#define GAS_ASM_SPEC "%{march=*} %{mtune=*} %{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v} %{mgp32} %{mgp64}"
4e88bbcd
ILT
826
827/* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
828 GAS_ASM_SPEC as the default, depending upon the value of
829 TARGET_DEFAULT. */
e75b25e7 830
bb98bc58
JW
831#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
832/* GAS */
bb98bc58 833
4e88bbcd
ILT
834#define TARGET_ASM_SPEC "\
835%{mmips-as: %(mips_as_asm_spec)} \
836%{!mmips-as: %(gas_asm_spec)}"
837
838#else /* not GAS */
839
840#define TARGET_ASM_SPEC "\
841%{!mgas: %(mips_as_asm_spec)} \
842%{mgas: %(gas_asm_spec)}"
843
844#endif /* not GAS */
845
846/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
847 to the assembler. It may be overridden by subtargets. */
848#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
849#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
bb98bc58 850%{noasmopt:-O0} \
4e88bbcd
ILT
851%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
852#endif
853
854/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
855 the assembler. It may be overridden by subtargets. */
856#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
857#define SUBTARGET_ASM_DEBUGGING_SPEC "\
bb98bc58
JW
858%{g} %{g0} %{g1} %{g2} %{g3} \
859%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
860%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
861%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
4e88bbcd
ILT
862%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
863#endif
bb98bc58 864
4e88bbcd
ILT
865/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
866 overridden by subtargets. */
867
868#ifndef SUBTARGET_ASM_SPEC
869#define SUBTARGET_ASM_SPEC ""
bb98bc58 870#endif
4e88bbcd
ILT
871
872/* ASM_SPEC is the set of arguments to pass to the assembler. */
873
b2bcb32d 874#undef ASM_SPEC
4e88bbcd 875#define ASM_SPEC "\
120dc6cd 876%{!membedded-pic:%{G*}} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
2bcb2ab3 877%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
4e88bbcd
ILT
878%(subtarget_asm_optimizing_spec) \
879%(subtarget_asm_debugging_spec) \
880%{membedded-pic} \
1e387156 881%{mfix7000} \
4e88bbcd
ILT
882%{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
883%(target_asm_spec) \
884%(subtarget_asm_spec)"
e75b25e7
MM
885
886/* Specify to run a post-processor, mips-tfile after the assembler
887 has run to stuff the mips debug information into the object file.
888 This is needed because the $#!%^ MIPS assembler provides no way
a813fadf
MM
889 of specifying such information in the assembly file. If we are
890 cross compiling, disable mips-tfile unless the user specifies
891 -mmips-tfile. */
e75b25e7
MM
892
893#ifndef ASM_FINAL_SPEC
bb98bc58
JW
894#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
895/* GAS */
31c714e3 896#define ASM_FINAL_SPEC "\
149e4e00 897%{mmips-as: %{!mno-mips-tfile: \
31c714e3
MM
898 \n mips-tfile %{v*: -v} \
899 %{K: -I %b.o~} \
900 %{!K: %{save-temps: -I %b.o~}} \
ab78d4a8 901 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
31c714e3 902 %{.s:%i} %{!.s:%g.s}}}"
a813fadf 903
bb98bc58
JW
904#else
905/* not GAS */
a813fadf 906#define ASM_FINAL_SPEC "\
149e4e00 907%{!mgas: %{!mno-mips-tfile: \
a813fadf
MM
908 \n mips-tfile %{v*: -v} \
909 %{K: -I %b.o~} \
910 %{!K: %{save-temps: -I %b.o~}} \
911 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
912 %{.s:%i} %{!.s:%g.s}}}"
913
bb98bc58 914#endif
a813fadf 915#endif /* ASM_FINAL_SPEC */
e75b25e7
MM
916
917/* Redefinition of libraries used. Mips doesn't support normal
918 UNIX style profiling via calling _mcount. It does offer
919 profiling that samples the PC, so do what we can... */
920
921#ifndef LIB_SPEC
922#define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
923#endif
924
31c714e3 925/* Extra switches sometimes passed to the linker. */
bb98bc58
JW
926/* ??? The bestGnum will never be passed to the linker, because the gcc driver
927 will interpret it as a -b option. */
e75b25e7
MM
928
929#ifndef LINK_SPEC
31c714e3 930#define LINK_SPEC "\
120dc6cd
MR
931%(endian_spec) \
932%{G*} %{mips1} %{mips2} %{mips3} %{mips4} \
933%{bestGnum} %{shared} %{non_shared}"
bb98bc58 934#endif /* LINK_SPEC defined */
e75b25e7
MM
935
936/* Specs for the compiler proper */
937
c9db96ce
JR
938/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
939 overridden by subtargets. */
940#ifndef SUBTARGET_CC1_SPEC
941#define SUBTARGET_CC1_SPEC ""
942#endif
943
7dac2f89
EC
944/* Deal with historic options. */
945#ifndef CC1_CPU_SPEC
946#define CC1_CPU_SPEC "\
947%{!mcpu*: \
948%{m3900:-march=r3900 -mips1 -mfp32 -mgp32 \
949%n`-m3900' is deprecated. Use `-march=r3900' instead.\n} \
950%{m4650:-march=r4650 -mmad -msingle-float \
951%n`-m4650' is deprecated. Use `-march=r4650' instead.\n}}"
952#endif
953
c9db96ce 954/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
75dcd8fe
MM
955/* Note, we will need to adjust the following if we ever find a MIPS variant
956 that has 32-bit GPRs and 64-bit FPRs as well as fix all of the reload bugs
957 that show up in this case. */
c9db96ce 958
e75b25e7 959#ifndef CC1_SPEC
31c714e3 960#define CC1_SPEC "\
31c714e3 961%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
7e99e494 962%{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
46299de9 963%{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
516a2dfd 964%{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
46299de9
ILT
965%{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
966%{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
3ce1ba83 967%{mint64|mlong64|mlong32:-mexplicit-type-size }\
75dcd8fe 968%{mgp32: %{mfp64:%emay not use both -mgp32 and -mfp64} %{!mfp32: -mfp32}} \
96abdcb1 969%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
31c714e3
MM
970%{pic-none: -mno-half-pic} \
971%{pic-lib: -mhalf-pic} \
972%{pic-extern: -mhalf-pic} \
973%{pic-calls: -mhalf-pic} \
c9db96ce 974%{save-temps: } \
7dac2f89
EC
975%(subtarget_cc1_spec) \
976%(cc1_cpu_spec)"
e75b25e7
MM
977#endif
978
4e88bbcd
ILT
979/* Preprocessor specs. */
980
981/* SUBTARGET_CPP_SIZE_SPEC defines SIZE_TYPE and PTRDIFF_TYPE. It may
982 be overridden by subtargets. */
983
984#ifndef SUBTARGET_CPP_SIZE_SPEC
985#define SUBTARGET_CPP_SIZE_SPEC "\
3ce1ba83 986%{mlong64:%{!mips1:%{!mips2:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int}}} \
4e88bbcd
ILT
987%{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}"
988#endif
989
990/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
991 overridden by subtargets. */
992#ifndef SUBTARGET_CPP_SPEC
993#define SUBTARGET_CPP_SPEC ""
994#endif
995
4eb66248
JL
996/* If we're using 64bit longs, then we have to define __LONG_MAX__
997 correctly. Similarly for 64bit ints and __INT_MAX__. */
998#ifndef LONG_MAX_SPEC
999#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_LONG64)
3ce1ba83 1000#define LONG_MAX_SPEC "%{!mlong32:-D__LONG_MAX__=9223372036854775807L}"
4eb66248
JL
1001#else
1002#define LONG_MAX_SPEC "%{mlong64:-D__LONG_MAX__=9223372036854775807L}"
1003#endif
1004#endif
1005
75dcd8fe
MM
1006/* Define appropriate macros for fpr register size. */
1007#ifndef CPP_FPR_SPEC
1008#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_FLOAT64)
1009#define CPP_FPR_SPEC "-D__mips_fpr=64"
1010#else
1011#define CPP_FPR_SPEC "-D__mips_fpr=32"
1012#endif
1013#endif
1014
64b172fe
RO
1015/* For C++ we need to ensure that _LANGUAGE_C_PLUS_PLUS is defined independent
1016 of the source file extension. */
b2bcb32d 1017#undef CPLUSPLUS_CPP_SPEC
64b172fe
RO
1018#define CPLUSPLUS_CPP_SPEC "\
1019-D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS \
1020%(cpp) \
1021"
4e88bbcd 1022/* CPP_SPEC is the set of arguments to pass to the preprocessor. */
e75b25e7
MM
1023
1024#ifndef CPP_SPEC
31c714e3 1025#define CPP_SPEC "\
0002d808 1026%{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
64b172fe
RO
1027%{.S|.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
1028%{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.cpp: %{!.cp: %{!.c++: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}}}}} \
4e88bbcd 1029%(subtarget_cpp_size_spec) \
192616a4
RK
1030%{mips3:-U__mips -D__mips=3 -D__mips64} \
1031%{mips4:-U__mips -D__mips=4 -D__mips64} \
1032%{mgp32:-U__mips64} %{mgp64:-D__mips64} \
75dcd8fe 1033%{mfp32:-D__mips_fpr=32} %{mfp64:-D__mips_fpr=64} %{!mfp32: %{!mfp64: %{mgp32:-D__mips_fpr=32} %{!mgp32: %(cpp_fpr_spec)}}} \
54efdaa4
JW
1034%{msingle-float:%{!msoft-float:-D__mips_single_float}} \
1035%{m4650:%{!msoft-float:-D__mips_single_float}} \
293a36eb
ILT
1036%{msoft-float:-D__mips_soft_float} \
1037%{mabi=eabi:-D__mips_eabi} \
2bcb2ab3 1038%{mips16:%{!mno-mips16:-D__mips16}} \
96abdcb1 1039%{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
4e88bbcd 1040%{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
4eb66248 1041%(long_max_spec) \
4e88bbcd
ILT
1042%(subtarget_cpp_spec) "
1043#endif
1044
1045/* This macro defines names of additional specifications to put in the specs
1046 that can be used in various specifications like CC1_SPEC. Its definition
1047 is an initializer with a subgrouping for each command option.
1048
1049 Each subgrouping contains a string constant, that defines the
1050 specification name, and a string constant that used by the GNU CC driver
1051 program.
1052
1053 Do not define this macro if it does not need to do anything. */
1054
1055#define EXTRA_SPECS \
829245be 1056 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
7a38df19 1057 { "cc1_cpu_spec", CC1_CPU_SPEC}, \
829245be
KG
1058 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1059 { "subtarget_cpp_size_spec", SUBTARGET_CPP_SIZE_SPEC }, \
1060 { "long_max_spec", LONG_MAX_SPEC }, \
75dcd8fe 1061 { "cpp_fpr_spec", CPP_FPR_SPEC }, \
829245be
KG
1062 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
1063 { "gas_asm_spec", GAS_ASM_SPEC }, \
1064 { "target_asm_spec", TARGET_ASM_SPEC }, \
1065 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
1066 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1067 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1068 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
120dc6cd 1069 { "endian_spec", ENDIAN_SPEC }, \
4e88bbcd
ILT
1070 SUBTARGET_EXTRA_SPECS
1071
1072#ifndef SUBTARGET_EXTRA_SPECS
1073#define SUBTARGET_EXTRA_SPECS
e75b25e7
MM
1074#endif
1075
1076/* If defined, this macro is an additional prefix to try after
1077 `STANDARD_EXEC_PREFIX'. */
1078
1079#ifndef MD_EXEC_PREFIX
31c714e3 1080#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
e75b25e7
MM
1081#endif
1082
59c94430
MM
1083#ifndef MD_STARTFILE_PREFIX
1084#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
1085#endif
1086
e75b25e7
MM
1087\f
1088/* Print subsidiary information on the compiler version in use. */
1089
42dee4c7 1090#define MIPS_VERSION "[AL 1.1, MM 40]"
e75b25e7
MM
1091
1092#ifndef MACHINE_TYPE
1093#define MACHINE_TYPE "BSD Mips"
1094#endif
1095
1096#ifndef TARGET_VERSION_INTERNAL
1097#define TARGET_VERSION_INTERNAL(STREAM) \
1098 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
1099#endif
1100
1101#ifndef TARGET_VERSION
1102#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
1103#endif
1104
1105\f
1106#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1107#define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
1108#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1109
1110#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 1111#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
e75b25e7
MM
1112#endif
1113
59c94430
MM
1114/* By default, turn on GDB extensions. */
1115#define DEFAULT_GDB_EXTENSIONS 1
1116
e75b25e7
MM
1117/* If we are passing smuggling stabs through the MIPS ECOFF object
1118 format, put a comment in front of the .stab<x> operation so
1119 that the MIPS assembler does not choke. The mips-tfile program
1120 will correctly put the stab into the object file. */
1121
78d057d8
HPN
1122#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1123#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1124#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
e75b25e7 1125
6ae1498b
JW
1126/* Local compiler-generated symbols must have a prefix that the assembler
1127 understands. By default, this is $, although some targets (e.g.,
1128 NetBSD-ELF) need to override this. */
1129
1130#ifndef LOCAL_LABEL_PREFIX
1131#define LOCAL_LABEL_PREFIX "$"
1132#endif
1133
1134/* By default on the mips, external symbols do not have an underscore
1135 prepended, but some targets (e.g., NetBSD) require this. */
1136
1137#ifndef USER_LABEL_PREFIX
1138#define USER_LABEL_PREFIX ""
1139#endif
1140
e75b25e7
MM
1141/* Forward references to tags are allowed. */
1142#define SDB_ALLOW_FORWARD_REFERENCES
1143
1144/* Unknown tags are also allowed. */
1145#define SDB_ALLOW_UNKNOWN_REFERENCES
1146
1147/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1148 since the length can run past this up to a continuation point. */
44404b8b 1149#undef DBX_CONTIN_LENGTH
e75b25e7
MM
1150#define DBX_CONTIN_LENGTH 1500
1151
e75b25e7
MM
1152/* How to renumber registers for dbx and gdb. */
1153#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
1154
c8cc5c4a 1155/* The mapping from gcc register number to DWARF 2 CFA column number.
0021b564
JM
1156 This mapping does not allow for tracking register 0, since SGI's broken
1157 dwarf reader thinks column 0 is used for the frame address, but since
1158 register 0 is fixed this is not a problem. */
469ac993 1159#define DWARF_FRAME_REGNUM(REG) \
0021b564 1160 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
c8cc5c4a
JM
1161
1162/* The DWARF 2 CFA column which tracks the return address. */
1163#define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
e75b25e7 1164
469ac993 1165/* Before the prologue, RA lives in r31. */
c5c76735 1166#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
469ac993 1167
9e800206
RH
1168/* Describe how we implement __builtin_eh_return. */
1169#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1170#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1171
7dac2f89 1172/* Offsets recorded in opcodes are a multiple of this alignment factor.
b3276c7a
GK
1173 The default for this in 64-bit mode is 8, which causes problems with
1174 SFmode register saves. */
1175#define DWARF_CIE_DATA_ALIGNMENT 4
1176
e75b25e7
MM
1177/* Overrides for the COFF debug format. */
1178#define PUT_SDB_SCL(a) \
1179do { \
1180 extern FILE *asm_out_text_file; \
1181 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
1182} while (0)
1183
1184#define PUT_SDB_INT_VAL(a) \
1185do { \
1186 extern FILE *asm_out_text_file; \
1187 fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
1188} while (0)
1189
1190#define PUT_SDB_VAL(a) \
1191do { \
1192 extern FILE *asm_out_text_file; \
1193 fputs ("\t.val\t", asm_out_text_file); \
1194 output_addr_const (asm_out_text_file, (a)); \
1195 fputc (';', asm_out_text_file); \
1196} while (0)
1197
1198#define PUT_SDB_DEF(a) \
1199do { \
1200 extern FILE *asm_out_text_file; \
b82b0773
MM
1201 fprintf (asm_out_text_file, "\t%s.def\t", \
1202 (TARGET_GAS) ? "" : "#"); \
e75b25e7
MM
1203 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1204 fputc (';', asm_out_text_file); \
1205} while (0)
1206
1207#define PUT_SDB_PLAIN_DEF(a) \
1208do { \
1209 extern FILE *asm_out_text_file; \
b82b0773
MM
1210 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1211 (TARGET_GAS) ? "" : "#", (a)); \
e75b25e7
MM
1212} while (0)
1213
1214#define PUT_SDB_ENDEF \
1215do { \
1216 extern FILE *asm_out_text_file; \
1217 fprintf (asm_out_text_file, "\t.endef\n"); \
1218} while (0)
1219
1220#define PUT_SDB_TYPE(a) \
1221do { \
1222 extern FILE *asm_out_text_file; \
1223 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1224} while (0)
1225
1226#define PUT_SDB_SIZE(a) \
1227do { \
1228 extern FILE *asm_out_text_file; \
1229 fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
1230} while (0)
1231
1232#define PUT_SDB_DIM(a) \
1233do { \
1234 extern FILE *asm_out_text_file; \
1235 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1236} while (0)
1237
1238#ifndef PUT_SDB_START_DIM
1239#define PUT_SDB_START_DIM \
1240do { \
1241 extern FILE *asm_out_text_file; \
1242 fprintf (asm_out_text_file, "\t.dim\t"); \
1243} while (0)
1244#endif
1245
1246#ifndef PUT_SDB_NEXT_DIM
1247#define PUT_SDB_NEXT_DIM(a) \
1248do { \
1249 extern FILE *asm_out_text_file; \
1250 fprintf (asm_out_text_file, "%d,", a); \
1251} while (0)
1252#endif
1253
1254#ifndef PUT_SDB_LAST_DIM
1255#define PUT_SDB_LAST_DIM(a) \
1256do { \
1257 extern FILE *asm_out_text_file; \
1258 fprintf (asm_out_text_file, "%d;", a); \
1259} while (0)
1260#endif
1261
1262#define PUT_SDB_TAG(a) \
1263do { \
1264 extern FILE *asm_out_text_file; \
1265 fprintf (asm_out_text_file, "\t.tag\t"); \
1266 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1267 fputc (';', asm_out_text_file); \
1268} while (0)
1269
1270/* For block start and end, we create labels, so that
1271 later we can figure out where the correct offset is.
1272 The normal .ent/.end serve well enough for functions,
1273 so those are just commented out. */
1274
1275#define PUT_SDB_BLOCK_START(LINE) \
1276do { \
1277 extern FILE *asm_out_text_file; \
1278 fprintf (asm_out_text_file, \
6ae1498b
JW
1279 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1280 LOCAL_LABEL_PREFIX, \
e75b25e7 1281 sdb_label_count, \
b82b0773 1282 (TARGET_GAS) ? "" : "#", \
6ae1498b 1283 LOCAL_LABEL_PREFIX, \
e75b25e7
MM
1284 sdb_label_count, \
1285 (LINE)); \
1286 sdb_label_count++; \
1287} while (0)
1288
1289#define PUT_SDB_BLOCK_END(LINE) \
1290do { \
1291 extern FILE *asm_out_text_file; \
1292 fprintf (asm_out_text_file, \
6ae1498b
JW
1293 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1294 LOCAL_LABEL_PREFIX, \
e75b25e7 1295 sdb_label_count, \
b82b0773 1296 (TARGET_GAS) ? "" : "#", \
6ae1498b 1297 LOCAL_LABEL_PREFIX, \
e75b25e7
MM
1298 sdb_label_count, \
1299 (LINE)); \
1300 sdb_label_count++; \
1301} while (0)
1302
1303#define PUT_SDB_FUNCTION_START(LINE)
1304
a642a781
RK
1305#define PUT_SDB_FUNCTION_END(LINE) \
1306do { \
1307 extern FILE *asm_out_text_file; \
1308 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1309} while (0)
e75b25e7
MM
1310
1311#define PUT_SDB_EPILOGUE_END(NAME)
1312
cc694a81
DE
1313#define PUT_SDB_SRC_FILE(FILENAME) \
1314do { \
1315 extern FILE *asm_out_text_file; \
1316 output_file_directive (asm_out_text_file, (FILENAME)); \
1317} while (0)
1318
e75b25e7
MM
1319#define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1320 sprintf ((BUFFER), ".%dfake", (NUMBER));
1321
ab78d4a8
MM
1322/* Correct the offset of automatic variables and arguments. Note that
1323 the MIPS debug format wants all automatic variables and arguments
1324 to be in terms of the virtual frame pointer (stack pointer before
1325 any adjustment in the function), while the MIPS 3.0 linker wants
1326 the frame pointer to be the stack pointer after the initial
1327 adjustment. */
e75b25e7 1328
f5963e61
JL
1329#define DEBUGGER_AUTO_OFFSET(X) \
1330 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1331#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1332 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
31c714e3
MM
1333
1334/* Tell collect that the object format is ECOFF */
1335#ifndef OBJECT_FORMAT_ROSE
1336#define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1337#define EXTENDED_COFF /* ECOFF, not normal coff */
1338#endif
e75b25e7
MM
1339\f
1340/* Target machine storage layout */
1341
96abdcb1
ILT
1342/* Define in order to support both big and little endian float formats
1343 in the same gcc binary. */
1344#define REAL_ARITHMETIC
1345
e75b25e7
MM
1346/* Define this if most significant bit is lowest numbered
1347 in instructions that operate on numbered bit-fields.
1348*/
4851a75c 1349#define BITS_BIG_ENDIAN 0
e75b25e7
MM
1350
1351/* Define this if most significant byte of a word is the lowest numbered. */
96abdcb1 1352#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7
MM
1353
1354/* Define this if most significant word of a multiword number is the lowest. */
96abdcb1 1355#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7 1356
96abdcb1
ILT
1357/* Define this to set the endianness to use in libgcc2.c, which can
1358 not depend on target_flags. */
1359#if !defined(MIPSEL) && !defined(__MIPSEL__)
1360#define LIBGCC2_WORDS_BIG_ENDIAN 1
e75b25e7 1361#else
96abdcb1 1362#define LIBGCC2_WORDS_BIG_ENDIAN 0
e75b25e7
MM
1363#endif
1364
31c714e3 1365/* Number of bits in an addressable storage unit */
e75b25e7
MM
1366#define BITS_PER_UNIT 8
1367
1368/* Width in bits of a "word", which is the contents of a machine register.
1369 Note that this is not necessarily the width of data type `int';
1370 if using 16-bit ints on a 68000, this would still be 32.
1371 But on a machine with 16-bit registers, this would be 16. */
456f6501 1372#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
876c09d3 1373#define MAX_BITS_PER_WORD 64
e75b25e7
MM
1374
1375/* Width of a word, in units (bytes). */
456f6501 1376#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
ef0e53ce 1377#define MIN_UNITS_PER_WORD 4
876c09d3
JW
1378
1379/* For MIPS, width of a floating point register. */
456f6501 1380#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
e75b25e7
MM
1381
1382/* A C expression for the size in bits of the type `int' on the
1383 target machine. If you don't define this, the default is one
1384 word. */
456f6501 1385#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
876c09d3
JW
1386#define MAX_INT_TYPE_SIZE 64
1387
1388/* Tell the preprocessor the maximum size of wchar_t. */
1389#ifndef MAX_WCHAR_TYPE_SIZE
1390#ifndef WCHAR_TYPE_SIZE
1391#define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
1392#endif
1393#endif
e75b25e7
MM
1394
1395/* A C expression for the size in bits of the type `short' on the
1396 target machine. If you don't define this, the default is half a
1397 word. (If this would be less than one storage unit, it is
1398 rounded up to one unit.) */
1399#define SHORT_TYPE_SIZE 16
1400
1401/* A C expression for the size in bits of the type `long' on the
1402 target machine. If you don't define this, the default is one
1403 word. */
456f6501 1404#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
876c09d3 1405#define MAX_LONG_TYPE_SIZE 64
e75b25e7
MM
1406
1407/* A C expression for the size in bits of the type `long long' on the
1408 target machine. If you don't define this, the default is two
1409 words. */
923d630e 1410#define LONG_LONG_TYPE_SIZE 64
e75b25e7
MM
1411
1412/* A C expression for the size in bits of the type `char' on the
1413 target machine. If you don't define this, the default is one
1414 quarter of a word. (If this would be less than one storage unit,
1415 it is rounded up to one unit.) */
1416#define CHAR_TYPE_SIZE BITS_PER_UNIT
1417
1418/* A C expression for the size in bits of the type `float' on the
1419 target machine. If you don't define this, the default is one
1420 word. */
1421#define FLOAT_TYPE_SIZE 32
1422
1423/* A C expression for the size in bits of the type `double' on the
1424 target machine. If you don't define this, the default is two
1425 words. */
1426#define DOUBLE_TYPE_SIZE 64
1427
1428/* A C expression for the size in bits of the type `long double' on
1429 the target machine. If you don't define this, the default is two
1430 words. */
1431#define LONG_DOUBLE_TYPE_SIZE 64
1432
1433/* Width in bits of a pointer.
1434 See also the macro `Pmode' defined below. */
1eeed24e 1435#ifndef POINTER_SIZE
456f6501 1436#define POINTER_SIZE (Pmode == DImode ? 64 : 32)
1eeed24e 1437#endif
e75b25e7
MM
1438
1439/* Allocation boundary (in *bits*) for storing pointers in memory. */
456f6501 1440#define POINTER_BOUNDARY (Pmode == DImode ? 64 : 32)
e75b25e7
MM
1441
1442/* Allocation boundary (in *bits*) for storing arguments in argument list. */
456f6501 1443#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
e75b25e7
MM
1444
1445/* Allocation boundary (in *bits*) for the code of a function. */
1446#define FUNCTION_BOUNDARY 32
1447
1448/* Alignment of field after `int : 0' in a structure. */
9e95597a 1449#define EMPTY_FIELD_BOUNDARY 32
e75b25e7
MM
1450
1451/* Every structure's size must be a multiple of this. */
1452/* 8 is observed right on a DECstation and on riscos 4.02. */
1453#define STRUCTURE_SIZE_BOUNDARY 8
1454
1455/* There is no point aligning anything to a rounder boundary than this. */
1456#define BIGGEST_ALIGNMENT 64
1457
31c714e3 1458/* Set this nonzero if move instructions will actually fail to work
e75b25e7 1459 when given unaligned data. */
31c714e3 1460#define STRICT_ALIGNMENT 1
e75b25e7
MM
1461
1462/* Define this if you wish to imitate the way many other C compilers
1463 handle alignment of bitfields and the structures that contain
1464 them.
1465
1466 The behavior is that the type written for a bitfield (`int',
1467 `short', or other integer type) imposes an alignment for the
1468 entire structure, as if the structure really did contain an
1469 ordinary field of that type. In addition, the bitfield is placed
1470 within the structure so that it would fit within such a field,
1471 not crossing a boundary for it.
1472
1473 Thus, on most machines, a bitfield whose type is written as `int'
1474 would not cross a four-byte boundary, and would force four-byte
1475 alignment for the whole structure. (The alignment used may not
1476 be four bytes; it is controlled by the other alignment
1477 parameters.)
1478
1479 If the macro is defined, its definition should be a C expression;
1480 a nonzero value for the expression enables this behavior. */
1481
1482#define PCC_BITFIELD_TYPE_MATTERS 1
1483
1484/* If defined, a C expression to compute the alignment given to a
1485 constant that is being placed in memory. CONSTANT is the constant
1486 and ALIGN is the alignment that the object would ordinarily have.
1487 The value of this macro is used instead of that alignment to align
1488 the object.
1489
1490 If this macro is not defined, then ALIGN is used.
1491
1492 The typical use of this macro is to increase alignment for string
1493 constants to be word aligned so that `strcpy' calls that copy
1494 constants can be done inline. */
1495
1496#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1497 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
75131237 1498 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
e75b25e7
MM
1499
1500/* If defined, a C expression to compute the alignment for a static
1501 variable. TYPE is the data type, and ALIGN is the alignment that
1502 the object would ordinarily have. The value of this macro is used
1503 instead of that alignment to align the object.
1504
1505 If this macro is not defined, then ALIGN is used.
1506
1507 One use of this macro is to increase alignment of medium-size
1508 data to make it all fit in fewer cache lines. Another is to
1509 cause character arrays to be word-aligned so that `strcpy' calls
1510 that copy constants to character arrays can be done inline. */
1511
1512#undef DATA_ALIGNMENT
1513#define DATA_ALIGNMENT(TYPE, ALIGN) \
1514 ((((ALIGN) < BITS_PER_WORD) \
1515 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1516 || TREE_CODE (TYPE) == UNION_TYPE \
1517 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1518
f5c8ac96
CP
1519
1520/* Force right-alignment for small varargs in 32 bit little_endian mode */
1521
1522#define PAD_VARARGS_DOWN (TARGET_64BIT ? BYTES_BIG_ENDIAN : !BYTES_BIG_ENDIAN)
1523
e75b25e7
MM
1524/* Define this macro if an argument declared as `char' or `short' in a
1525 prototype should actually be passed as an `int'. In addition to
1526 avoiding errors in certain cases of mismatch, it also makes for
1527 better code on certain machines. */
1528
cb560352 1529#define PROMOTE_PROTOTYPES 1
e75b25e7 1530
9a63901f
RK
1531/* Define if operations between registers always perform the operation
1532 on the full register even if a narrower mode is specified. */
1533#define WORD_REGISTER_OPERATIONS
1534
1535/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1536 will either zero-extend or sign-extend. The value of this macro should
1537 be the code that says which one of the two operations is implicitly
7dac2f89 1538 done, NIL if none.
a872728c
JL
1539
1540 When in 64 bit mode, mips_move_1word will sign extend SImode and CCmode
1541 moves. All other referces are zero extended. */
1542#define LOAD_EXTEND_OP(MODE) \
1543 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1544 ? SIGN_EXTEND : ZERO_EXTEND)
2bcb2ab3
GK
1545
1546/* Define this macro if it is advisable to hold scalars in registers
7dac2f89 1547 in a wider mode than that declared by the program. In such cases,
2bcb2ab3
GK
1548 the value is constrained to be within the bounds of the declared
1549 type, but kept valid in the wider mode. The signedness of the
1550 extension may differ from that of the type.
1551
1552 We promote any value smaller than SImode up to SImode. We don't
1553 want to promote to DImode when in 64 bit mode, because that would
1554 prevent us from using the faster SImode multiply and divide
1555 instructions. */
1556
1557#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1558 if (GET_MODE_CLASS (MODE) == MODE_INT \
1559 && GET_MODE_SIZE (MODE) < 4) \
1560 (MODE) = SImode;
1561
1562/* Define this if function arguments should also be promoted using the above
1563 procedure. */
1564
1565#define PROMOTE_FUNCTION_ARGS
1566
1567/* Likewise, if the function return value is promoted. */
1568
1569#define PROMOTE_FUNCTION_RETURN
e75b25e7
MM
1570\f
1571/* Standard register usage. */
1572
1573/* Number of actual hardware registers.
1574 The hardware registers are assigned numbers for the compiler
1575 from 0 to just below FIRST_PSEUDO_REGISTER.
1576 All registers that the compiler knows about must be given numbers,
1577 even those that are not normally considered general registers.
1578
225b8835 1579 On the Mips, we have 32 integer registers, 32 floating point
b8eb88d0
ILT
1580 registers, 8 condition code registers, and the special registers
1581 hi, lo, hilo, and rap. The 8 condition code registers are only
1582 used if mips_isa >= 4. The hilo register is only used in 64 bit
1583 mode. It represents a 64 bit value stored as two 32 bit values in
1584 the hi and lo registers; this is the result of the mult
1585 instruction. rap is a pointer to the stack where the return
1586 address reg ($31) was stored. This is needed for C++ exception
1587 handling. */
e75b25e7 1588
b8eb88d0 1589#define FIRST_PSEUDO_REGISTER 76
e75b25e7
MM
1590
1591/* 1 for registers that have pervasive standard uses
1592 and are not available for the register allocator.
1593
1594 On the MIPS, see conventions, page D-2 */
1595
1596#define FIXED_REGISTERS \
1597{ \
1598 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1599 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1600 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1601 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
b8eb88d0 1602 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 \
e75b25e7
MM
1603}
1604
1605
1606/* 1 for registers not available across function calls.
1607 These must include the FIXED_REGISTERS and also any
1608 registers that can be used without being saved.
1609 The latter must include the registers where values are returned
1610 and the register where structure-value addresses are passed.
1611 Aside from that, you can include as many other registers as you like. */
1612
1613#define CALL_USED_REGISTERS \
1614{ \
1615 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1616 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1617 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1618 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
b8eb88d0 1619 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
e75b25e7
MM
1620}
1621
1622
1623/* Internal macros to classify a register number as to whether it's a
1624 general purpose register, a floating point register, a
516a2dfd 1625 multiply/divide register, or a status register. */
e75b25e7
MM
1626
1627#define GP_REG_FIRST 0
1628#define GP_REG_LAST 31
1629#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1630#define GP_DBX_FIRST 0
1631
1632#define FP_REG_FIRST 32
1633#define FP_REG_LAST 63
1634#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1635#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1636
1637#define MD_REG_FIRST 64
225b8835 1638#define MD_REG_LAST 66
e75b25e7
MM
1639#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1640
225b8835 1641#define ST_REG_FIRST 67
b8eb88d0 1642#define ST_REG_LAST 74
e75b25e7
MM
1643#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1644
b8eb88d0 1645#define RAP_REG_NUM 75
39dffea3 1646
e75b25e7
MM
1647#define AT_REGNUM (GP_REG_FIRST + 1)
1648#define HI_REGNUM (MD_REG_FIRST + 0)
1649#define LO_REGNUM (MD_REG_FIRST + 1)
225b8835 1650#define HILO_REGNUM (MD_REG_FIRST + 2)
b8eb88d0
ILT
1651
1652/* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1653 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1654 should be used instead. */
e75b25e7
MM
1655#define FPSW_REGNUM ST_REG_FIRST
1656
75131237
RK
1657#define GP_REG_P(REGNO) \
1658 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
2bcb2ab3
GK
1659#define M16_REG_P(REGNO) \
1660 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
75131237
RK
1661#define FP_REG_P(REGNO) \
1662 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1663#define MD_REG_P(REGNO) \
1664 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1665#define ST_REG_P(REGNO) \
1666 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
e75b25e7 1667
e75b25e7
MM
1668/* Return number of consecutive hard regs needed starting at reg REGNO
1669 to hold something of mode MODE.
1670 This is ordinarily the length in words of a value of mode MODE
1671 but can be less for certain modes in special long registers.
1672
1673 On the MIPS, all general registers are one word long. Except on
1674 the R4000 with the FR bit set, the floating point uses register
956d6950 1675 pairs, with the second register not being allocable. */
e75b25e7
MM
1676
1677#define HARD_REGNO_NREGS(REGNO, MODE) \
1678 (! FP_REG_P (REGNO) \
1679 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
ef9e5f13 1680 : ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG))
e75b25e7
MM
1681
1682/* Value is 1 if hard register REGNO can hold a value of machine-mode
876c09d3
JW
1683 MODE. In 32 bit mode, require that DImode and DFmode be in even
1684 registers. For DImode, this makes some of the insns easier to
1685 write, since you don't have to worry about a DImode value in
1686 registers 3 & 4, producing a result in 4 & 5.
e75b25e7
MM
1687
1688 To make the code simpler HARD_REGNO_MODE_OK now just references an
1689 array built in override_options. Because machmodes.h is not yet
1690 included before this file is processed, the MODE bound can't be
1691 expressed here. */
1692
1693extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1694
1695#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1696 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1697
1698/* Value is 1 if it is a good idea to tie two pseudo registers
1699 when one has mode MODE1 and one has mode MODE2.
1700 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1701 for any hard reg, then this must be 0 for correct output. */
1702#define MODES_TIEABLE_P(MODE1, MODE2) \
1703 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1704 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1705 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1706 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1707
1708/* MIPS pc is not overloaded on a register. */
1709/* #define PC_REGNUM xx */
1710
1711/* Register to use for pushing function arguments. */
0fb5ac6f 1712#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
e75b25e7 1713
97116296
ILT
1714/* Offset from the stack pointer to the first available location. Use
1715 the default value zero. */
1716/* #define STACK_POINTER_OFFSET 0 */
e75b25e7 1717
2bcb2ab3
GK
1718/* Base register for access to local variables of the function. We
1719 pretend that the frame pointer is $1, and then eliminate it to
1720 HARD_FRAME_POINTER_REGNUM. We can get away with this because $1 is
1721 a fixed register, and will not be used for anything else. */
1722#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
1723
0ff83799
MM
1724/* Temporary scratch register for use by the assembler. */
1725#define ASSEMBLER_SCRATCH_REGNUM (GP_REG_FIRST + 1)
1726
2bcb2ab3
GK
1727/* $30 is not available on the mips16, so we use $17 as the frame
1728 pointer. */
1729#define HARD_FRAME_POINTER_REGNUM \
1730 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
e75b25e7
MM
1731
1732/* Value should be nonzero if functions must have frame pointers.
1733 Zero means the frame pointer need not be set up (and parms
1734 may be accessed via the stack pointer) in functions that seem suitable.
1735 This is computed in `reload', in reload1.c. */
1736#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1737
1738/* Base register for access to arguments of the function. */
ab78d4a8 1739#define ARG_POINTER_REGNUM GP_REG_FIRST
e75b25e7 1740
39dffea3
JW
1741/* Fake register that holds the address on the stack of the
1742 current function's return address. */
1743#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1744
e75b25e7 1745/* Register in which static-chain is passed to a function. */
0fb5ac6f 1746#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
e75b25e7 1747
1154b096
MM
1748/* If the structure value address is passed in a register, then
1749 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1750/* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1751
1752/* If the structure value address is not passed in a register, define
1753 `STRUCT_VALUE' as an expression returning an RTX for the place
1754 where the address is passed. If it returns 0, the address is
1755 passed as an "invisible" first argument. */
f58cfbfb 1756#define STRUCT_VALUE 0
e75b25e7
MM
1757
1758/* Mips registers used in prologue/epilogue code when the stack frame
1759 is larger than 32K bytes. These registers must come from the
1760 scratch register set, and not used for passing and returning
1761 arguments and any other information used in the calling sequence
516a2dfd
JW
1762 (such as pic). Must start at 12, since t0/t3 are parameter passing
1763 registers in the 64 bit ABI. */
7bea35e7 1764
516a2dfd
JW
1765#define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1766#define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
e75b25e7
MM
1767
1768/* Define this macro if it is as good or better to call a constant
1769 function address than to call an address kept in a register. */
1770#define NO_FUNCTION_CSE 1
1771
1772/* Define this macro if it is as good or better for a function to
1773 call itself with an explicit address than to call an address
1774 kept in a register. */
1775#define NO_RECURSIVE_FUNCTION_CSE 1
1776
1777/* The register number of the register used to address a table of
1778 static data addresses in memory. In some cases this register is
7dac2f89 1779 defined by a processor's "application binary interface" (ABI).
e75b25e7
MM
1780 When this macro is defined, RTL is generated for this register
1781 once, as with the stack pointer and frame pointer registers. If
1782 this macro is not defined, it is up to the machine-dependent
1783 files to allocate such a register (if necessary). */
0fb5ac6f 1784#define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
e75b25e7 1785
24e214e3
JW
1786#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1787
77b597df
JW
1788/* Initialize embedded_pic_fnaddr_rtx before RTL generation for
1789 each function. We used to do this in FINALIZE_PIC, but FINALIZE_PIC
1790 isn't always called for static inline functions. */
2bcb2ab3
GK
1791#define INIT_EXPANDERS \
1792do { \
1793 embedded_pic_fnaddr_rtx = NULL; \
1794 mips16_gp_pseudo_rtx = NULL; \
1795} while (0)
e75b25e7
MM
1796\f
1797/* Define the classes of registers for register constraints in the
1798 machine description. Also define ranges of constants.
1799
1800 One of the classes must always be named ALL_REGS and include all hard regs.
1801 If there is more than one class, another class must be named NO_REGS
1802 and contain no registers.
1803
1804 The name GENERAL_REGS must be the name of a class (or an alias for
1805 another name such as ALL_REGS). This is the class of registers
1806 that is allowed by "g" or "r" in a register constraint.
1807 Also, registers outside this class are allocated only when
1808 instructions express preferences for them.
1809
1810 The classes must be numbered in nondecreasing order; that is,
1811 a larger-numbered class must never be contained completely
1812 in a smaller-numbered class.
1813
1814 For any two classes, it is very desirable that there be another
1815 class that represents their union. */
1816
1817enum reg_class
1818{
1819 NO_REGS, /* no registers in set */
2bcb2ab3
GK
1820 M16_NA_REGS, /* mips16 regs not used to pass args */
1821 M16_REGS, /* mips16 directly accessible registers */
1822 T_REG, /* mips16 T register ($24) */
1823 M16_T_REGS, /* mips16 registers plus T register */
e75b25e7
MM
1824 GR_REGS, /* integer registers */
1825 FP_REGS, /* floating point registers */
1826 HI_REG, /* hi register */
1827 LO_REG, /* lo register */
225b8835 1828 HILO_REG, /* hilo register pair for 64 bit mode mult */
e75b25e7 1829 MD_REGS, /* multiply/divide registers (hi/lo) */
e4f5c5d6
KR
1830 HI_AND_GR_REGS, /* union classes */
1831 LO_AND_GR_REGS,
1832 HILO_AND_GR_REGS,
e75b25e7
MM
1833 ST_REGS, /* status registers (fp status) */
1834 ALL_REGS, /* all registers */
1835 LIM_REG_CLASSES /* max value + 1 */
1836};
1837
1838#define N_REG_CLASSES (int) LIM_REG_CLASSES
1839
1840#define GENERAL_REGS GR_REGS
1841
1842/* An initializer containing the names of the register classes as C
1843 string constants. These names are used in writing some of the
1844 debugging dumps. */
1845
1846#define REG_CLASS_NAMES \
1847{ \
1848 "NO_REGS", \
2bcb2ab3
GK
1849 "M16_NA_REGS", \
1850 "M16_REGS", \
1851 "T_REG", \
1852 "M16_T_REGS", \
e75b25e7
MM
1853 "GR_REGS", \
1854 "FP_REGS", \
1855 "HI_REG", \
1856 "LO_REG", \
225b8835 1857 "HILO_REG", \
e75b25e7 1858 "MD_REGS", \
e4f5c5d6
KR
1859 "HI_AND_GR_REGS", \
1860 "LO_AND_GR_REGS", \
1861 "HILO_AND_GR_REGS", \
e75b25e7
MM
1862 "ST_REGS", \
1863 "ALL_REGS" \
1864}
1865
1866/* An initializer containing the contents of the register classes,
1867 as integers which are bit masks. The Nth integer specifies the
1868 contents of class N. The way the integer MASK is interpreted is
1869 that register R is in the class if `MASK & (1 << R)' is 1.
1870
1871 When the machine has more than 32 registers, an integer does not
1872 suffice. Then the integers are replaced by sub-initializers,
1873 braced groupings containing several integers. Each
1874 sub-initializer must be suitable as an initializer for the type
1875 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1876
1877#define REG_CLASS_CONTENTS \
1878{ \
1879 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
2bcb2ab3
GK
1880 { 0x0003000c, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1881 { 0x000300fc, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1882 { 0x01000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1883 { 0x010300fc, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
e75b25e7
MM
1884 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1885 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
2e7bfcec
MM
1886 { 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
1887 { 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
225b8835 1888 { 0x00000000, 0x00000000, 0x00000004 }, /* hilo register */ \
e75b25e7 1889 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
e4f5c5d6
KR
1890 { 0xffffffff, 0x00000000, 0x00000001 }, /* union classes */ \
1891 { 0xffffffff, 0x00000000, 0x00000002 }, \
1892 { 0xffffffff, 0x00000000, 0x00000004 }, \
b8eb88d0
ILT
1893 { 0x00000000, 0x00000000, 0x000007f8 }, /* status registers */ \
1894 { 0xffffffff, 0xffffffff, 0x000007ff } /* all registers */ \
e75b25e7
MM
1895}
1896
1897
1898/* A C expression whose value is a register class containing hard
1899 register REGNO. In general there is more that one such class;
1900 choose a class which is "minimal", meaning that no smaller class
1901 also contains the register. */
1902
1903extern enum reg_class mips_regno_to_class[];
1904
1905#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1906
1907/* A macro whose definition is the name of the class to which a
1908 valid base register must belong. A base register is one used in
1909 an address which is the register value plus a displacement. */
1910
2bcb2ab3 1911#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
e75b25e7
MM
1912
1913/* A macro whose definition is the name of the class to which a
1914 valid index register must belong. An index register is one used
1915 in an address where its value is either multiplied by a scale
1916 factor or added to another register (as well as added to a
1917 displacement). */
1918
876c09d3 1919#define INDEX_REG_CLASS NO_REGS
e75b25e7 1920
2bcb2ab3
GK
1921/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1922 registers explicitly used in the rtl to be used as spill registers
1923 but prevents the compiler from extending the lifetime of these
1924 registers. */
1925
1926#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1927
1928/* This macro is used later on in the file. */
1929#define GR_REG_CLASS_P(CLASS) \
1930 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
1931 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)
1932
1933/* REG_ALLOC_ORDER is to order in which to allocate registers. This
1934 is the default value (allocate the registers in numeric order). We
1935 define it just so that we can override it for the mips16 target in
1936 ORDER_REGS_FOR_LOCAL_ALLOC. */
1937
1938#define REG_ALLOC_ORDER \
1939{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1940 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1941 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1942 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1943 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 \
1944}
1945
1946/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1947 to be rearranged based on a particular function. On the mips16, we
1948 want to allocate $24 (T_REG) before other registers for
1949 instructions for which it is possible. */
1950
1951#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
e75b25e7
MM
1952
1953/* REGISTER AND CONSTANT CLASSES */
1954
1955/* Get reg_class from a letter such as appears in the machine
1956 description.
1957
1958 DEFINED REGISTER CLASSES:
1959
1960 'd' General (aka integer) registers
2bcb2ab3
GK
1961 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
1962 'y' General registers (in both mips16 and non mips16 mode)
1963 'e' mips16 non argument registers (M16_NA_REGS)
1964 't' mips16 temporary register ($24)
e75b25e7
MM
1965 'f' Floating point registers
1966 'h' Hi register
1967 'l' Lo register
34b650b3 1968 'x' Multiply/divide registers
225b8835
ILT
1969 'a' HILO_REG
1970 'z' FP Status register
1971 'b' All registers */
e75b25e7
MM
1972
1973extern enum reg_class mips_char_to_class[];
1974
8f54374e 1975#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
e75b25e7
MM
1976
1977/* The letters I, J, K, L, M, N, O, and P in a register constraint
1978 string can be used to stand for particular ranges of immediate
1979 operands. This macro defines what the ranges are. C is the
1980 letter, and VALUE is a constant value. Return 1 if VALUE is
1981 in the range specified by C. */
1982
1983/* For MIPS:
1984
1985 `I' is used for the range of constants an arithmetic insn can
1986 actually contain (16 bits signed integers).
1987
1988 `J' is used for the range which is just zero (ie, $r0).
1989
1990 `K' is used for the range of constants a logical insn can actually
1991 contain (16 bit zero-extended integers).
1992
1993 `L' is used for the range of constants that be loaded with lui
1994 (ie, the bottom 16 bits are zero).
1995
1996 `M' is used for the range of constants that take two words to load
1997 (ie, not matched by `I', `K', and `L').
1998
2bcb2ab3 1999 `N' is used for negative 16 bit constants other than -65536.
e75b25e7 2000
2bcb2ab3 2001 `O' is a 15 bit signed integer.
e75b25e7
MM
2002
2003 `P' is used for positive 16 bit constants. */
2004
516a2dfd
JW
2005#define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
2006#define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
e75b25e7
MM
2007
2008#define CONST_OK_FOR_LETTER_P(VALUE, C) \
516a2dfd 2009 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
e75b25e7 2010 : (C) == 'J' ? ((VALUE) == 0) \
516a2dfd 2011 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
876c09d3
JW
2012 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
2013 && (((VALUE) & ~2147483647) == 0 \
2014 || ((VALUE) & ~2147483647) == ~2147483647)) \
99cbc4b0
MM
2015 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
2016 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
876c09d3
JW
2017 && (((VALUE) & 0x0000ffff) != 0 \
2018 || (((VALUE) & ~2147483647) != 0 \
2019 && ((VALUE) & ~2147483647) != ~2147483647))) \
2bcb2ab3
GK
2020 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
2021 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
99cbc4b0 2022 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
e75b25e7
MM
2023 : 0)
2024
2025/* Similar, but for floating constants, and defining letters G and H.
2026 Here VALUE is the CONST_DOUBLE rtx itself. */
2027
2028/* For Mips
2029
2030 'G' : Floating point 0 */
2031
2032#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2033 ((C) == 'G' \
876c09d3 2034 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
e75b25e7
MM
2035
2036/* Letters in the range `Q' through `U' may be defined in a
7dac2f89 2037 machine-dependent fashion to stand for arbitrary operand types.
e75b25e7
MM
2038 The machine description macro `EXTRA_CONSTRAINT' is passed the
2039 operand as its first argument and the constraint letter as its
2040 second operand.
2041
2bcb2ab3 2042 `Q' is for mips16 GP relative constants
31c714e3 2043 `R' is for memory references which take 1 word for the instruction.
2bcb2ab3
GK
2044 `S' is for references to extern items which are PIC for OSF/rose.
2045 `T' is for memory addresses that can be used to load two words. */
e75b25e7
MM
2046
2047#define EXTRA_CONSTRAINT(OP,CODE) \
2bcb2ab3
GK
2048 (((CODE) == 'T') ? double_memory_operand (OP, GET_MODE (OP)) \
2049 : ((CODE) == 'Q') ? (GET_CODE (OP) == CONST \
2050 && mips16_gp_offset_p (OP)) \
2051 : (GET_CODE (OP) != MEM) ? FALSE \
e75b25e7 2052 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
31c714e3
MM
2053 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
2054 && HALF_PIC_ADDRESS_P (OP)) \
e75b25e7
MM
2055 : FALSE)
2056
2057/* Given an rtx X being reloaded into a reg required to be
2058 in class CLASS, return the class of reg to actually use.
2059 In general this is just CLASS; but on some machines
2060 in some cases it is preferable to use a more restrictive class. */
2061
2062#define PREFERRED_RELOAD_CLASS(X,CLASS) \
876c09d3 2063 ((CLASS) != ALL_REGS \
2bcb2ab3
GK
2064 ? (! TARGET_MIPS16 \
2065 ? (CLASS) \
2066 : ((CLASS) != GR_REGS \
2067 ? (CLASS) \
2068 : M16_REGS)) \
876c09d3
JW
2069 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2070 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
2bcb2ab3
GK
2071 ? (TARGET_SOFT_FLOAT \
2072 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2073 : FP_REGS) \
876c09d3
JW
2074 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
2075 || GET_MODE (X) == VOIDmode) \
2bcb2ab3 2076 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
876c09d3 2077 : (CLASS))))
e75b25e7 2078
0fb5ac6f
MM
2079/* Certain machines have the property that some registers cannot be
2080 copied to some other registers without using memory. Define this
2081 macro on those machines to be a C expression that is non-zero if
2082 objects of mode MODE in registers of CLASS1 can only be copied to
2083 registers of class CLASS2 by storing a register of CLASS1 into
2084 memory and loading that memory location into a register of CLASS2.
2085
2086 Do not define this macro if its value would always be zero. */
2087
2088#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2370b831
JW
2089 ((!TARGET_DEBUG_H_MODE \
2090 && GET_MODE_CLASS (MODE) == MODE_INT \
2bcb2ab3
GK
2091 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
2092 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
2370b831 2093 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
2bcb2ab3
GK
2094 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
2095 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
0fb5ac6f 2096
46299de9 2097/* The HI and LO registers can only be reloaded via the general
b8eb88d0
ILT
2098 registers. Condition code registers can only be loaded to the
2099 general registers, and from the floating point registers. */
46299de9 2100
225b8835
ILT
2101#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2102 mips_secondary_reload_class (CLASS, MODE, X, 1)
2103#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2104 mips_secondary_reload_class (CLASS, MODE, X, 0)
46299de9 2105
e75b25e7
MM
2106/* Return the maximum number of consecutive registers
2107 needed to represent mode MODE in a register of class CLASS. */
2108
b206a757
JW
2109#define CLASS_UNITS(mode, size) \
2110 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
574c75a3 2111
e75b25e7 2112#define CLASS_MAX_NREGS(CLASS, MODE) \
b206a757
JW
2113 ((CLASS) == FP_REGS \
2114 ? (TARGET_FLOAT64 \
2115 ? CLASS_UNITS (MODE, 8) \
2116 : 2 * CLASS_UNITS (MODE, 8)) \
2117 : CLASS_UNITS (MODE, UNITS_PER_WORD))
e75b25e7 2118
87d9d860 2119/* If defined, gives a class of registers that cannot be used as the
02188693 2120 operand of a SUBREG that changes the mode of the object illegally. */
87d9d860 2121
02188693 2122#define CLASS_CANNOT_CHANGE_MODE \
87d9d860 2123 (TARGET_FLOAT64 && ! TARGET_64BIT ? FP_REGS : NO_REGS)
02188693
RH
2124
2125/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
2126
2127#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
2128 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
e75b25e7
MM
2129\f
2130/* Stack layout; function entry, exit and calling. */
2131
2132/* Define this if pushing a word on the stack
2133 makes the stack pointer a smaller address. */
2134#define STACK_GROWS_DOWNWARD
2135
2136/* Define this if the nominal address of the stack frame
2137 is at the high-address end of the local variables;
2138 that is, each additional local variable allocated
2139 goes at a more negative offset in the frame. */
ab78d4a8 2140/* #define FRAME_GROWS_DOWNWARD */
e75b25e7
MM
2141
2142/* Offset within stack frame to start allocating local variables at.
2143 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
2144 first local allocated. Otherwise, it is the offset to the BEGINNING
2145 of the first local allocated. */
24e214e3
JW
2146#define STARTING_FRAME_OFFSET \
2147 (current_function_outgoing_args_size \
2148 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
ab78d4a8
MM
2149
2150/* Offset from the stack pointer register to an item dynamically
2151 allocated on the stack, e.g., by `alloca'.
2152
2153 The default value for this macro is `STACK_POINTER_OFFSET' plus the
2154 length of the outgoing arguments. The default is correct for most
2155 machines. See `function.c' for details.
2156
51bdc4d3
MM
2157 The MIPS ABI states that functions which dynamically allocate the
2158 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
2159 we are trying to create a second frame pointer to the function, so
2160 allocate some stack space to make it happy.
ab78d4a8 2161
51bdc4d3
MM
2162 However, the linker currently complains about linking any code that
2163 dynamically allocates stack space, and there seems to be a bug in
2164 STACK_DYNAMIC_OFFSET, so don't define this right now. */
2165
2166#if 0
ab78d4a8
MM
2167#define STACK_DYNAMIC_OFFSET(FUNDECL) \
2168 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
2169 ? 4*UNITS_PER_WORD \
2170 : current_function_outgoing_args_size)
51bdc4d3 2171#endif
e75b25e7 2172
39dffea3
JW
2173/* The return address for the current frame is in r31 is this is a leaf
2174 function. Otherwise, it is on the stack. It is at a variable offset
2175 from sp/fp/ap, so we define a fake hard register rap which is a
2176 poiner to the return address on the stack. This always gets eliminated
2177 during reload to be either the frame pointer or the stack pointer plus
2178 an offset. */
2179
2180/* ??? This definition fails for leaf functions. There is currently no
2181 general solution for this problem. */
2182
2183/* ??? There appears to be no way to get the return address of any previous
2184 frame except by disassembling instructions in the prologue/epilogue.
2185 So currently we support only the current frame. */
2186
2187#define RETURN_ADDR_RTX(count, frame) \
2188 ((count == 0) \
c5c76735 2189 ? gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM))\
24ba333f 2190 : (rtx) 0)
39dffea3 2191
e75b25e7
MM
2192/* Structure to be filled in by compute_frame_size with register
2193 save masks, and offsets for the current function. */
2194
2195struct mips_frame_info
2196{
7bea35e7
MM
2197 long total_size; /* # bytes that the entire frame takes up */
2198 long var_size; /* # bytes that variables take up */
2199 long args_size; /* # bytes that outgoing arguments take up */
2200 long extra_size; /* # bytes of extra gunk */
2201 int gp_reg_size; /* # bytes needed to store gp regs */
2202 int fp_reg_size; /* # bytes needed to store fp regs */
2203 long mask; /* mask of saved gp registers */
2204 long fmask; /* mask of saved fp registers */
2205 long gp_save_offset; /* offset from vfp to store gp registers */
2206 long fp_save_offset; /* offset from vfp to store fp registers */
2207 long gp_sp_offset; /* offset from new sp to store gp registers */
2208 long fp_sp_offset; /* offset from new sp to store fp registers */
2209 int initialized; /* != 0 if frame size already calculated */
2210 int num_gp; /* number of gp registers saved */
2211 int num_fp; /* number of fp registers saved */
2bcb2ab3 2212 long insns_len; /* length of insns; mips16 only */
e75b25e7
MM
2213};
2214
2215extern struct mips_frame_info current_frame_info;
2216
ab78d4a8
MM
2217/* If defined, this macro specifies a table of register pairs used to
2218 eliminate unneeded registers that point into the stack frame. If
2219 it is not defined, the only elimination attempted by the compiler
2220 is to replace references to the frame pointer with references to
2221 the stack pointer.
2222
2223 The definition of this macro is a list of structure
2224 initializations, each of which specifies an original and
2225 replacement register.
2226
2227 On some machines, the position of the argument pointer is not
2228 known until the compilation is completed. In such a case, a
7dac2f89 2229 separate hard register must be used for the argument pointer.
ab78d4a8
MM
2230 This register can be eliminated by replacing it with either the
2231 frame pointer or the argument pointer, depending on whether or not
2232 the frame pointer has been eliminated.
2233
2234 In this case, you might specify:
2235 #define ELIMINABLE_REGS \
2236 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2237 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
2238 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
2239
2240 Note that the elimination of the argument pointer with the stack
2bcb2ab3
GK
2241 pointer is specified first since that is the preferred elimination.
2242
2243 The eliminations to $17 are only used on the mips16. See the
2244 definition of HARD_FRAME_POINTER_REGNUM. */
ab78d4a8
MM
2245
2246#define ELIMINABLE_REGS \
2247{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2248 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2249 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
39dffea3 2250 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2251 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2252 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17}, \
08c2951c 2253 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31}, \
2bcb2ab3
GK
2254 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2255 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2256 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
ab78d4a8 2257
ab78d4a8
MM
2258/* A C expression that returns non-zero if the compiler is allowed to
2259 try to replace register number FROM-REG with register number
2260 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
2261 defined, and will usually be the constant 1, since most of the
2262 cases preventing register elimination are things that the compiler
2bcb2ab3
GK
2263 already knows about.
2264
365ca18b
GK
2265 When not in mips16 and mips64, we can always eliminate to the
2266 frame pointer. We can eliminate to the stack pointer unless
2267 a frame pointer is needed. In mips16 mode, we need a frame
2268 pointer for a large frame; otherwise, reload may be unable
2269 to compute the address of a local variable, since there is
2270 no way to add a large constant to the stack pointer
2271 without using a temporary register.
2272
2273 In mips16, for some instructions (eg lwu), we can't eliminate the
2274 frame pointer for the stack pointer. These instructions are
2275 only generated in TARGET_64BIT mode.
2276 */
ab78d4a8
MM
2277
2278#define CAN_ELIMINATE(FROM, TO) \
08c2951c 2279 (((FROM) == RETURN_ADDRESS_POINTER_REGNUM && (! leaf_function_p () \
973838fd 2280 || (TO == GP_REG_FIRST + 31 && leaf_function_p))) \
08c2951c
SC
2281 || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
2282 && ((TO) == HARD_FRAME_POINTER_REGNUM \
2bcb2ab3 2283 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed \
365ca18b 2284 && ! (TARGET_MIPS16 && TARGET_64BIT) \
2bcb2ab3 2285 && (! TARGET_MIPS16 \
08c2951c 2286 || compute_frame_size (get_frame_size ()) < 32768)))))
ab78d4a8
MM
2287
2288/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
2289 specifies the initial difference between the specified pair of
2290 registers. This macro must be defined if `ELIMINABLE_REGS' is
2291 defined. */
2292
2293#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2294{ compute_frame_size (get_frame_size ()); \
2bcb2ab3
GK
2295 if (TARGET_MIPS16 && (FROM) == FRAME_POINTER_REGNUM \
2296 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2297 (OFFSET) = - current_function_outgoing_args_size; \
2298 else if ((FROM) == FRAME_POINTER_REGNUM) \
ab78d4a8 2299 (OFFSET) = 0; \
2bcb2ab3
GK
2300 else if (TARGET_MIPS16 && (FROM) == ARG_POINTER_REGNUM \
2301 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2302 (OFFSET) = (current_frame_info.total_size \
2303 - current_function_outgoing_args_size \
a53f72db
GRK
2304 - ((mips_abi != ABI_32 \
2305 && mips_abi != ABI_O64 \
2306 && mips_abi != ABI_EABI) \
2bcb2ab3
GK
2307 ? current_function_pretend_args_size \
2308 : 0)); \
2309 else if ((FROM) == ARG_POINTER_REGNUM) \
a2ef6e41 2310 (OFFSET) = (current_frame_info.total_size \
a53f72db
GRK
2311 - ((mips_abi != ABI_32 \
2312 && mips_abi != ABI_O64 \
2313 && mips_abi != ABI_EABI) \
a2ef6e41
RK
2314 ? current_function_pretend_args_size \
2315 : 0)); \
c9b4de06
JW
2316 /* Some ABIs store 64 bits to the stack, but Pmode is 32 bits, \
2317 so we must add 4 bytes to the offset to get the right value. */ \
2bcb2ab3 2318 else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM) \
973838fd 2319 { \
08c2951c
SC
2320 if (leaf_function_p ()) \
2321 (OFFSET) = 0; \
2322 else (OFFSET) = current_frame_info.gp_sp_offset \
c9b4de06
JW
2323 + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) \
2324 * (BYTES_BIG_ENDIAN != 0)); \
973838fd 2325 } \
a6ffcb2a
KG
2326 else \
2327 abort(); \
ab78d4a8
MM
2328}
2329
e75b25e7
MM
2330/* If we generate an insn to push BYTES bytes,
2331 this says how many the stack pointer really advances by.
8aeea6e6 2332 On the VAX, sp@- in a byte insn really pushes a word. */
e75b25e7
MM
2333
2334/* #define PUSH_ROUNDING(BYTES) 0 */
2335
2336/* If defined, the maximum amount of space required for outgoing
2337 arguments will be computed and placed into the variable
2338 `current_function_outgoing_args_size'. No space will be pushed
2339 onto the stack for each call; instead, the function prologue
2340 should increase the stack frame size by this amount.
2341
2342 It is not proper to define both `PUSH_ROUNDING' and
2343 `ACCUMULATE_OUTGOING_ARGS'. */
f73ad30e 2344#define ACCUMULATE_OUTGOING_ARGS 1
e75b25e7 2345
6cb6c3b3
MM
2346/* Offset from the argument pointer register to the first argument's
2347 address. On some machines it may depend on the data type of the
2348 function.
e75b25e7 2349
6cb6c3b3 2350 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
39282292
MM
2351 the first argument's address.
2352
2353 On the MIPS, we must skip the first argument position if we are
876c09d3 2354 returning a structure or a union, to account for its address being
305aa9e2
MM
2355 passed in $4. However, at the current time, this produces a compiler
2356 that can't bootstrap, so comment it out for now. */
e75b25e7 2357
305aa9e2 2358#if 0
6cb6c3b3
MM
2359#define FIRST_PARM_OFFSET(FNDECL) \
2360 (FNDECL != 0 \
2361 && TREE_TYPE (FNDECL) != 0 \
2362 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2363 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
39282292
MM
2364 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2365 ? UNITS_PER_WORD \
2366 : 0)
305aa9e2
MM
2367#else
2368#define FIRST_PARM_OFFSET(FNDECL) 0
2369#endif
e75b25e7
MM
2370
2371/* When a parameter is passed in a register, stack space is still
2372 allocated for it. For the MIPS, stack space must be allocated, cf
2373 Asm Lang Prog Guide page 7-8.
2374
2375 BEWARE that some space is also allocated for non existing arguments
2376 in register. In case an argument list is of form GF used registers
2377 are a0 (a2,a3), but we should push over a1... */
2378
516a2dfd
JW
2379#define REG_PARM_STACK_SPACE(FNDECL) \
2380 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
e75b25e7
MM
2381
2382/* Define this if it is the responsibility of the caller to
7dac2f89 2383 allocate the area reserved for arguments passed in registers.
e75b25e7 2384 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
7dac2f89 2385 of this macro is to determine whether the space is included in
e75b25e7
MM
2386 `current_function_outgoing_args_size'. */
2387#define OUTGOING_REG_PARM_STACK_SPACE
2388
2389/* Align stack frames on 64 bits (Double Word ). */
d1c17572 2390#ifndef STACK_BOUNDARY
e75b25e7 2391#define STACK_BOUNDARY 64
d1c17572 2392#endif
e75b25e7 2393
876c09d3 2394/* Make sure 4 words are always allocated on the stack. */
e75b25e7
MM
2395
2396#ifndef STACK_ARGS_ADJUST
2397#define STACK_ARGS_ADJUST(SIZE) \
2398{ \
876c09d3
JW
2399 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2400 SIZE.constant = 4 * UNITS_PER_WORD; \
e75b25e7
MM
2401}
2402#endif
2403
2404\f
2405/* A C expression that should indicate the number of bytes of its
38e01259 2406 own arguments that a function pops on returning, or 0
e75b25e7
MM
2407 if the function pops no arguments and the caller must therefore
2408 pop them all after the function returns.
2409
8b109b37
RK
2410 FUNDECL is the declaration node of the function (as a tree).
2411
e75b25e7
MM
2412 FUNTYPE is a C variable whose value is a tree node that
2413 describes the function in question. Normally it is a node of
2414 type `FUNCTION_TYPE' that describes the data type of the function.
2415 From this it is possible to obtain the data types of the value
2416 and arguments (if known).
2417
2418 When a call to a library function is being considered, FUNTYPE
2419 will contain an identifier node for the library function. Thus,
2420 if you need to distinguish among various library functions, you
2421 can do so by their names. Note that "library function" in this
2422 context means a function used to perform arithmetic, whose name
2423 is known specially in the compiler and was not mentioned in the
2424 C code being compiled.
2425
2426 STACK-SIZE is the number of bytes of arguments passed on the
2427 stack. If a variable number of bytes is passed, it is zero, and
2428 argument popping will always be the responsibility of the
2429 calling function. */
2430
8b109b37 2431#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
e75b25e7
MM
2432
2433
2434/* Symbolic macros for the registers used to return integer and floating
2435 point values. */
2436
2437#define GP_RETURN (GP_REG_FIRST + 2)
2438#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2439
2440/* Symbolic macros for the first/last argument registers. */
2441
2442#define GP_ARG_FIRST (GP_REG_FIRST + 4)
2443#define GP_ARG_LAST (GP_REG_FIRST + 7)
2444#define FP_ARG_FIRST (FP_REG_FIRST + 12)
2445#define FP_ARG_LAST (FP_REG_FIRST + 15)
2446
2447#define MAX_ARGS_IN_REGISTERS 4
2448
2449/* Define how to find the value returned by a library function
2bcb2ab3
GK
2450 assuming the value has mode MODE. Because we define
2451 PROMOTE_FUNCTION_RETURN, we must promote the mode just as
2452 PROMOTE_MODE does. */
e75b25e7
MM
2453
2454#define LIBCALL_VALUE(MODE) \
2bcb2ab3
GK
2455 gen_rtx (REG, \
2456 ((GET_MODE_CLASS (MODE) != MODE_INT \
2457 || GET_MODE_SIZE (MODE) >= 4) \
2458 ? (MODE) \
2459 : SImode), \
46299de9
ILT
2460 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
2461 && (! TARGET_SINGLE_FLOAT \
2462 || GET_MODE_SIZE (MODE) <= 4)) \
2463 ? FP_RETURN \
2464 : GP_RETURN))
e75b25e7
MM
2465
2466/* Define how to find the value returned by a function.
2467 VALTYPE is the data type of the value (as a tree).
2468 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2469 otherwise, FUNC is 0. */
2470
2471#define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
2472
2473
2474/* 1 if N is a possible register number for a function value.
2475 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2476 Currently, R2 and F0 are only implemented here (C has no complex type) */
2477
2478#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2479
46af8e31
JW
2480/* 1 if N is a possible register number for function argument passing.
2481 We have no FP argument registers when soft-float. When FP registers
2482 are 32 bits, we can't directly reference the odd numbered ones. */
2483
2484#define FUNCTION_ARG_REGNO_P(N) \
2485 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
6e92f4b6 2486 || ((! TARGET_SOFT_FLOAT \
46af8e31 2487 && ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST) \
2bcb2ab3 2488 && (TARGET_FLOAT64 || (0 == (N) % 2))) \
6e92f4b6 2489 && ! fixed_regs[N]))
e75b25e7
MM
2490
2491/* A C expression which can inhibit the returning of certain function
2492 values in registers, based on the type of value. A nonzero value says
2493 to return the function value in memory, just as large structures are
2494 always returned. Here TYPE will be a C expression of type
2495 `tree', representing the data type of the value.
2496
e14fa9c4
DE
2497 Note that values of mode `BLKmode' must be explicitly
2498 handled by this macro. Also, the option `-fpcc-struct-return'
e75b25e7
MM
2499 takes effect regardless of this macro. On most systems, it is
2500 possible to leave the macro undefined; this causes a default
e14fa9c4
DE
2501 definition to be used, whose value is the constant 1 for BLKmode
2502 values, and 0 otherwise.
e75b25e7
MM
2503
2504 GCC normally converts 1 byte structures into chars, 2 byte
2505 structs into shorts, and 4 byte structs into ints, and returns
2506 them this way. Defining the following macro overrides this,
2507 to give us MIPS cc compatibility. */
2508
2509#define RETURN_IN_MEMORY(TYPE) \
e419152d 2510 (TYPE_MODE (TYPE) == BLKmode)
e75b25e7
MM
2511\f
2512/* A code distinguishing the floating point format of the target
2513 machine. There are three defined values: IEEE_FLOAT_FORMAT,
2514 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
2515
2516#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2517
2518\f
2519/* Define a data type for recording info about an argument list
2520 during the scan of that argument list. This data type should
2521 hold all necessary information about the function itself
2522 and about the args processed so far, enough to enable macros
2523 such as FUNCTION_ARG to determine where the next arg should go.
2bcb2ab3
GK
2524
2525 On the mips16, we need to keep track of which floating point
2526 arguments were passed in general registers, but would have been
2527 passed in the FP regs if this were a 32 bit function, so that we
2528 can move them to the FP regs if we wind up calling a 32 bit
2529 function. We record this information in fp_code, encoded in base
2530 four. A zero digit means no floating point argument, a one digit
2531 means an SFmode argument, and a two digit means a DFmode argument,
2532 and a three digit is not used. The low order digit is the first
2533 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2534 an SFmode argument. ??? A more sophisticated approach will be
2535 needed if MIPS_ABI != ABI_32. */
e75b25e7
MM
2536
2537typedef struct mips_args {
3f1f8d8c 2538 int gp_reg_found; /* whether a gp register was found yet */
75131237
RK
2539 unsigned int arg_number; /* argument number */
2540 unsigned int arg_words; /* # total words the arguments take */
2541 unsigned int fp_arg_words; /* # words for FP args (MIPS_EABI only) */
293a36eb 2542 int last_arg_fp; /* nonzero if last arg was FP (EABI only) */
2bcb2ab3 2543 int fp_code; /* Mode of FP arguments (mips16) */
75131237 2544 unsigned int num_adjusts; /* number of adjustments made */
3f1f8d8c 2545 /* Adjustments made to args pass in regs. */
7dac2f89 2546 /* ??? The size is doubled to work around a
b796c573
RS
2547 bug in the code that sets the adjustments
2548 in function_arg. */
2549 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
e75b25e7
MM
2550} CUMULATIVE_ARGS;
2551
2552/* Initialize a variable CUM of type CUMULATIVE_ARGS
2553 for a call to a function whose data type is FNTYPE.
2554 For a library call, FNTYPE is 0.
2555
2556*/
2557
2c7ee1a6 2558#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
e75b25e7
MM
2559 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2560
2561/* Update the data in CUM to advance over an argument
2562 of mode MODE and data type TYPE.
2563 (TYPE is null for libcalls where that information may not be available.) */
2564
2565#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2566 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2567
2568/* Determine where to put an argument to a function.
2569 Value is zero to push the argument on the stack,
2570 or a hard register in which to store the argument.
2571
2572 MODE is the argument's machine mode.
2573 TYPE is the data type of the argument (as a tree).
2574 This is null for libcalls where that information may
2575 not be available.
2576 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2577 the preceding args and about the function being called.
2578 NAMED is nonzero if this argument is a named parameter
2579 (otherwise it is an extra parameter matching an ellipsis). */
2580
2581#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2582 function_arg( &CUM, MODE, TYPE, NAMED)
2583
2584/* For an arg passed partly in registers and partly in memory,
2585 this is the number of registers used.
2586 For args passed entirely in registers or entirely in memory, zero. */
2587
2588#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2589 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2590
2591/* If defined, a C expression that gives the alignment boundary, in
2592 bits, of an argument with the specified mode and type. If it is
2593 not defined, `PARM_BOUNDARY' is used for all arguments. */
2594
2595#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2596 (((TYPE) != 0) \
75131237 2597 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
e75b25e7
MM
2598 ? PARM_BOUNDARY \
2599 : TYPE_ALIGN(TYPE)) \
2600 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2601 ? PARM_BOUNDARY \
2602 : GET_MODE_ALIGNMENT(MODE)))
2603
2604\f
e75b25e7
MM
2605/* Tell prologue and epilogue if register REGNO should be saved / restored. */
2606
2607#define MUST_SAVE_REGISTER(regno) \
2bcb2ab3
GK
2608 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2609 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
ab78d4a8 2610 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
e75b25e7
MM
2611
2612/* ALIGN FRAMES on double word boundaries */
d1c17572
JL
2613#ifndef MIPS_STACK_ALIGN
2614#define MIPS_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
2615#endif
e75b25e7 2616
5d3f2bd5
RH
2617\f
2618/* Define the `__builtin_va_list' type for the ABI. */
2619#define BUILD_VA_LIST_TYPE(VALIST) \
2620 (VALIST) = mips_build_va_list ()
2621
2622/* Implement `va_start' for varargs and stdarg. */
2623#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2624 mips_va_start (stdarg, valist, nextarg)
2625
2626/* Implement `va_arg'. */
2627#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2628 mips_va_arg (valist, type)
e75b25e7
MM
2629\f
2630/* Output assembler code to FILE to increment profiler label # LABELNO
2631 for profiling a function entry. */
2632
2633#define FUNCTION_PROFILER(FILE, LABELNO) \
2634{ \
2bcb2ab3
GK
2635 if (TARGET_MIPS16) \
2636 sorry ("mips16 function profiling"); \
e75b25e7
MM
2637 fprintf (FILE, "\t.set\tnoreorder\n"); \
2638 fprintf (FILE, "\t.set\tnoat\n"); \
2639 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2640 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2641 fprintf (FILE, "\tjal\t_mcount\n"); \
876c09d3
JW
2642 fprintf (FILE, \
2643 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2644 TARGET_64BIT ? "dsubu" : "subu", \
e75b25e7 2645 reg_names[STACK_POINTER_REGNUM], \
876c09d3 2646 reg_names[STACK_POINTER_REGNUM], \
1eeed24e 2647 Pmode == DImode ? 16 : 8); \
e75b25e7
MM
2648 fprintf (FILE, "\t.set\treorder\n"); \
2649 fprintf (FILE, "\t.set\tat\n"); \
2650}
2651
d8d5b1e1
MM
2652/* Define this macro if the code for function profiling should come
2653 before the function prologue. Normally, the profiling code comes
2654 after. */
2655
2656/* #define PROFILE_BEFORE_PROLOGUE */
2657
e75b25e7
MM
2658/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2659 the stack pointer does not matter. The value is tested only in
2660 functions that have frame pointers.
2661 No definition is equivalent to always zero. */
2662
2663#define EXIT_IGNORE_STACK 1
2664
2665\f
2666/* A C statement to output, on the stream FILE, assembler code for a
7dac2f89 2667 block of data that contains the constant parts of a trampoline.
e75b25e7
MM
2668 This code should not include a label--the label is taken care of
2669 automatically. */
2670
2671#define TRAMPOLINE_TEMPLATE(STREAM) \
2672{ \
2673 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2674 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2675 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
1eeed24e 2676 if (Pmode == DImode) \
876c09d3
JW
2677 { \
2678 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2679 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2680 } \
2681 else \
2682 { \
0acefe54
JW
2683 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2684 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
876c09d3 2685 } \
0acefe54 2686 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
e75b25e7
MM
2687 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2688 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
1eeed24e 2689 if (Pmode == DImode) \
876c09d3 2690 { \
876c09d3
JW
2691 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2692 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2693 } \
2694 else \
2695 { \
2696 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2697 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2698 } \
e75b25e7
MM
2699}
2700
2701/* A C expression for the size in bytes of the trampoline, as an
2702 integer. */
2703
1eeed24e 2704#define TRAMPOLINE_SIZE (32 + (Pmode == DImode ? 16 : 8))
e75b25e7 2705
876c09d3 2706/* Alignment required for trampolines, in bits. */
e75b25e7 2707
1eeed24e 2708#define TRAMPOLINE_ALIGNMENT (Pmode == DImode ? 64 : 32)
e75b25e7 2709
c85f7c16
JL
2710/* INITIALIZE_TRAMPOLINE calls this library function to flush
2711 program and data caches. */
2712
2713#ifndef CACHE_FLUSH_FUNC
2714#define CACHE_FLUSH_FUNC "_flush_cache"
2715#endif
2716
7dac2f89 2717/* A C statement to initialize the variable parts of a trampoline.
e75b25e7
MM
2718 ADDR is an RTX for the address of the trampoline; FNADDR is an
2719 RTX for the address of the nested function; STATIC_CHAIN is an
2720 RTX for the static chain value that should be passed to the
2721 function when it is called. */
2722
2723#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2724{ \
2725 rtx addr = ADDR; \
1eeed24e 2726 if (Pmode == DImode) \
876c09d3 2727 { \
c5c76735
JL
2728 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
2729 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
876c09d3
JW
2730 } \
2731 else \
2732 { \
c5c76735
JL
2733 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
2734 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
876c09d3 2735 } \
e75b25e7 2736 \
22b54c57
RK
2737 /* Flush both caches. We need to flush the data cache in case \
2738 the system has a write-back cache. */ \
876c09d3 2739 /* ??? Should check the return value for errors. */ \
c5c76735 2740 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, CACHE_FLUSH_FUNC), \
876c09d3 2741 0, VOIDmode, 3, addr, Pmode, \
01d74729 2742 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
22b54c57 2743 GEN_INT (3), TYPE_MODE (integer_type_node)); \
e75b25e7 2744}
e75b25e7
MM
2745\f
2746/* Addressing modes, and classification of registers for them. */
2747
940da324
JL
2748/* #define HAVE_POST_INCREMENT 0 */
2749/* #define HAVE_POST_DECREMENT 0 */
e75b25e7 2750
940da324
JL
2751/* #define HAVE_PRE_DECREMENT 0 */
2752/* #define HAVE_PRE_INCREMENT 0 */
e75b25e7
MM
2753
2754/* These assume that REGNO is a hard or pseudo reg number.
2755 They give nonzero only if REGNO is a hard reg of the suitable class
2756 or a pseudo reg currently allocated to a suitable hard reg.
2757 These definitions are NOT overridden anywhere. */
2758
2bcb2ab3
GK
2759#define BASE_REG_P(regno, mode) \
2760 (TARGET_MIPS16 \
2761 ? (M16_REG_P (regno) \
2762 || (regno) == FRAME_POINTER_REGNUM \
2763 || (regno) == ARG_POINTER_REGNUM \
2764 || ((regno) == STACK_POINTER_REGNUM \
2765 && (GET_MODE_SIZE (mode) == 4 \
2766 || GET_MODE_SIZE (mode) == 8))) \
2767 : GP_REG_P (regno))
e75b25e7 2768
2bcb2ab3 2769#define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
c3d03e3a 2770 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? (int) regno : reg_renumber[regno], \
2bcb2ab3
GK
2771 (mode))
2772
2773#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
2774 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
e75b25e7 2775
876c09d3 2776#define REGNO_OK_FOR_INDEX_P(regno) 0
2bcb2ab3
GK
2777#define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
2778 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
e75b25e7
MM
2779
2780/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2781 and check its validity for a certain class.
2782 We have two alternate definitions for each of them.
2783 The usual definition accepts all pseudo regs; the other rejects them all.
2784 The symbol REG_OK_STRICT causes the latter definition to be used.
2785
2786 Most source files want to accept pseudo regs in the hope that
2787 they will get allocated to the class that the insn wants them to be in.
2788 Some source files that are used after register allocation
2789 need to be strict. */
2790
2791#ifndef REG_OK_STRICT
2bcb2ab3 2792#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
c94c9817 2793 mips_reg_mode_ok_for_base_p (X, MODE, 0)
e75b25e7 2794#else
2bcb2ab3 2795#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
c94c9817 2796 mips_reg_mode_ok_for_base_p (X, MODE, 1)
e75b25e7
MM
2797#endif
2798
c94c9817
MM
2799#define REG_OK_FOR_INDEX_P(X) 0
2800
e75b25e7
MM
2801\f
2802/* Maximum number of registers that can appear in a valid memory address. */
2803
2804#define MAX_REGS_PER_ADDRESS 1
2805
2806/* A C compound statement with a conditional `goto LABEL;' executed
2807 if X (an RTX) is a legitimate memory address on the target
2808 machine for a memory operand of mode MODE.
2809
2810 It usually pays to define several simpler macros to serve as
2811 subroutines for this one. Otherwise it may be too complicated
2812 to understand.
2813
2814 This macro must exist in two variants: a strict variant and a
7dac2f89 2815 non-strict one. The strict variant is used in the reload pass.
e75b25e7
MM
2816 It must be defined so that any pseudo-register that has not been
2817 allocated a hard register is considered a memory reference. In
2818 contexts where some kind of register is required, a
2819 pseudo-register with no hard register must be rejected.
2820
2821 The non-strict variant is used in other passes. It must be
2822 defined to accept all pseudo-registers in every context where
2823 some kind of register is required.
2824
2825 Compiler source files that want to use the strict variant of
2826 this macro define the macro `REG_OK_STRICT'. You should use an
2827 `#ifdef REG_OK_STRICT' conditional to define the strict variant
2828 in that case and the non-strict variant otherwise.
2829
2830 Typically among the subroutines used to define
2831 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
2832 acceptable registers for various purposes (one for base
2833 registers, one for index registers, and so on). Then only these
2834 subroutine macros need have two variants; the higher levels of
2835 macros may be the same whether strict or not.
2836
2837 Normally, constant addresses which are the sum of a `symbol_ref'
2838 and an integer are stored inside a `const' RTX to mark them as
2839 constant. Therefore, there is no need to recognize such sums
2840 specifically as legitimate addresses. Normally you would simply
2841 recognize any `const' as legitimate.
2842
2843 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
2844 constant sums that are not marked with `const'. It assumes
2845 that a naked `plus' indicates indexing. If so, then you *must*
2846 reject such naked constant sums as illegitimate addresses, so
2847 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
2848
2849 On some machines, whether a symbolic address is legitimate
2850 depends on the section that the address refers to. On these
2851 machines, define the macro `ENCODE_SECTION_INFO' to store the
7dac2f89 2852 information into the `symbol_ref', and then check for it here.
e75b25e7
MM
2853 When you see a `const', you will have to look inside it to find
2854 the `symbol_ref' in order to determine the section. */
2855
2856#if 1
bd9f1972
KG
2857#define GO_PRINTF(x) fprintf(stderr, (x))
2858#define GO_PRINTF2(x,y) fprintf(stderr, (x), (y))
e75b25e7
MM
2859#define GO_DEBUG_RTX(x) debug_rtx(x)
2860
2861#else
2862#define GO_PRINTF(x)
2863#define GO_PRINTF2(x,y)
2864#define GO_DEBUG_RTX(x)
2865#endif
2866
c94c9817
MM
2867#ifdef REG_OK_STRICT
2868#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2869{ \
2870 if (mips_legitimate_address_p (MODE, X, 1)) \
2871 goto ADDR; \
e75b25e7 2872}
c94c9817
MM
2873#else
2874#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2875{ \
2876 if (mips_legitimate_address_p (MODE, X, 0)) \
2877 goto ADDR; \
2878}
2879#endif
e75b25e7
MM
2880
2881/* A C expression that is 1 if the RTX X is a constant which is a
6eff269e
BK
2882 valid address. This is defined to be the same as `CONSTANT_P (X)',
2883 but rejecting CONST_DOUBLE. */
5de1e2ce
JW
2884/* When pic, we must reject addresses of the form symbol+large int.
2885 This is because an instruction `sw $4,s+70000' needs to be converted
2886 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2887 assembler would use $at as a temp to load in the large offset. In this
2888 case $at is already in use. We convert such problem addresses to
2889 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
516a2dfd 2890/* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
31c714e3 2891#define CONSTANT_ADDRESS_P(X) \
6eff269e 2892 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
5de1e2ce
JW
2893 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2894 || (GET_CODE (X) == CONST \
516a2dfd 2895 && ! (flag_pic && pic_address_needs_scratch (X)) \
a53f72db
GRK
2896 && (mips_abi == ABI_32 \
2897 || mips_abi == ABI_O64 \
2898 || mips_abi == ABI_EABI))) \
5de1e2ce 2899 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
e75b25e7 2900
5de1e2ce
JW
2901/* Define this, so that when PIC, reload won't try to reload invalid
2902 addresses which require two reload registers. */
2903
2904#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
e75b25e7
MM
2905
2906/* Nonzero if the constant value X is a legitimate general operand.
2907 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2908
2909 At present, GAS doesn't understand li.[sd], so don't allow it
2910 to be generated at present. Also, the MIPS assembler does not
2911 grok li.d Infinity. */
2912
7dac2f89 2913/* ??? SGI Irix 6 assembler fails for CONST address, so reject them.
8e466531
GRK
2914 Note that the Irix 6 assembler problem may already be fixed.
2915 Note also that the GET_CODE (X) == CONST test catches the mips16
2916 gp pseudo reg (see mips16_gp_pseudo_reg) deciding it is not
2917 a LEGITIMATE_CONSTANT. If we ever want mips16 and ABI_N32 or
2918 ABI_64 to work together, we'll need to fix this. */
e75b25e7 2919#define LEGITIMATE_CONSTANT_P(X) \
516a2dfd
JW
2920 ((GET_CODE (X) != CONST_DOUBLE \
2921 || mips_const_double_ok (X, GET_MODE (X))) \
8e466531
GRK
2922 && ! (GET_CODE (X) == CONST \
2923 && ! TARGET_GAS \
2924 && (mips_abi == ABI_N32 \
2925 || mips_abi == ABI_64)) \
2bcb2ab3 2926 && (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))
e75b25e7
MM
2927
2928/* A C compound statement that attempts to replace X with a valid
2929 memory address for an operand of mode MODE. WIN will be a C
2930 statement label elsewhere in the code; the macro definition may
2931 use
2932
2933 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2934
2935 to avoid further processing if the address has become legitimate.
2936
2937 X will always be the result of a call to `break_out_memory_refs',
2938 and OLDX will be the operand that was given to that function to
2939 produce X.
2940
2941 The code generated by this macro should not alter the
2942 substructure of X. If it transforms X into a more legitimate
2943 form, it should assign X (which will always be a C variable) a
2944 new value.
2945
2946 It is not necessary for this macro to come up with a legitimate
2947 address. The compiler has standard ways of doing so in all
2948 cases. In fact, it is safe for this macro to do nothing. But
2649b2ee 2949 often a machine-dependent strategy can generate better code.
e75b25e7 2950
2649b2ee
MM
2951 For the MIPS, transform:
2952
2953 memory(X + <large int>)
2954
2955 into:
2956
2957 Y = <large int> & ~0x7fff;
2958 Z = X + Y
2959 memory (Z + (<large int> & 0x7fff));
2960
5de1e2ce
JW
2961 This is for CSE to find several similar references, and only use one Z.
2962
2963 When PIC, convert addresses of the form memory (symbol+large int) to
2964 memory (reg+large int). */
7dac2f89 2965
2649b2ee
MM
2966
2967#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2968{ \
2969 register rtx xinsn = (X); \
2970 \
2971 if (TARGET_DEBUG_B_MODE) \
2972 { \
2973 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
2974 GO_DEBUG_RTX (xinsn); \
2975 } \
2976 \
ce57d6f4
JW
2977 if (mips_split_addresses && mips_check_split (X, MODE)) \
2978 { \
2979 /* ??? Is this ever executed? */ \
c5c76735
JL
2980 X = gen_rtx_LO_SUM (Pmode, \
2981 copy_to_mode_reg (Pmode, \
2982 gen_rtx (HIGH, Pmode, X)), \
2983 X); \
ce57d6f4
JW
2984 goto WIN; \
2985 } \
2986 \
516a2dfd
JW
2987 if (GET_CODE (xinsn) == CONST \
2988 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
2989 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
a53f72db
GRK
2990 || (mips_abi != ABI_32 \
2991 && mips_abi != ABI_O64 \
2992 && mips_abi != ABI_EABI))) \
516a2dfd
JW
2993 { \
2994 rtx ptr_reg = gen_reg_rtx (Pmode); \
2995 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
2996 \
2997 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
2998 \
c5c76735 2999 X = gen_rtx_PLUS (Pmode, ptr_reg, constant); \
516a2dfd
JW
3000 if (SMALL_INT (constant)) \
3001 goto WIN; \
3002 /* Otherwise we fall through so the code below will fix the \
3003 constant. */ \
3004 xinsn = X; \
3005 } \
3006 \
b3de0f1f 3007 if (GET_CODE (xinsn) == PLUS) \
2649b2ee
MM
3008 { \
3009 register rtx xplus0 = XEXP (xinsn, 0); \
3010 register rtx xplus1 = XEXP (xinsn, 1); \
3011 register enum rtx_code code0 = GET_CODE (xplus0); \
3012 register enum rtx_code code1 = GET_CODE (xplus1); \
3013 \
3014 if (code0 != REG && code1 == REG) \
3015 { \
3016 xplus0 = XEXP (xinsn, 1); \
3017 xplus1 = XEXP (xinsn, 0); \
3018 code0 = GET_CODE (xplus0); \
3019 code1 = GET_CODE (xplus1); \
3020 } \
3021 \
2bcb2ab3 3022 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
2649b2ee
MM
3023 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
3024 { \
3025 rtx int_reg = gen_reg_rtx (Pmode); \
3026 rtx ptr_reg = gen_reg_rtx (Pmode); \
3027 \
3028 emit_move_insn (int_reg, \
3029 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
3030 \
c5c76735
JL
3031 emit_insn (gen_rtx_SET (VOIDmode, \
3032 ptr_reg, \
3033 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
2649b2ee 3034 \
8da665d5 3035 X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
2649b2ee
MM
3036 goto WIN; \
3037 } \
3038 } \
3039 \
3040 if (TARGET_DEBUG_B_MODE) \
3041 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
3042}
e75b25e7
MM
3043
3044
3045/* A C statement or compound statement with a conditional `goto
3046 LABEL;' executed if memory address X (an RTX) can have different
3047 meanings depending on the machine mode of the memory reference it
3048 is used for.
3049
3050 Autoincrement and autodecrement addresses typically have
3051 mode-dependent effects because the amount of the increment or
3052 decrement is the size of the operand being addressed. Some
3053 machines have other mode-dependent addresses. Many RISC machines
3054 have no mode-dependent addresses.
3055
3056 You may assume that ADDR is a valid address for the machine. */
3057
3058#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
3059
3060
3061/* Define this macro if references to a symbol must be treated
3062 differently depending on something about the variable or
3063 function named by the symbol (such as what section it is in).
3064
3065 The macro definition, if any, is executed immediately after the
7dac2f89 3066 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
e75b25e7
MM
3067 The value of the rtl will be a `mem' whose address is a
3068 `symbol_ref'.
3069
3070 The usual thing for this macro to do is to a flag in the
3071 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
3072 name string in the `symbol_ref' (if one bit is not enough
3073 information).
3074
3075 The best way to modify the name string is by adding text to the
7dac2f89 3076 beginning, with suitable punctuation to prevent any ambiguity.
e75b25e7
MM
3077 Allocate the new name in `saveable_obstack'. You will have to
3078 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
3079 and output the name accordingly.
3080
3081 You can also check the information stored in the `symbol_ref' in
3082 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
2bcb2ab3
GK
3083 `PRINT_OPERAND_ADDRESS'.
3084
3085 When optimizing for the $gp pointer, SYMBOL_REF_FLAG is set for all
3086 small objects.
3087
3088 When generating embedded PIC code, SYMBOL_REF_FLAG is set for
3089 symbols which are not in the .text section.
3090
3091 When generating mips16 code, SYMBOL_REF_FLAG is set for string
3092 constants which are put in the .text section. We also record the
3093 total length of all such strings; this total is used to decide
3094 whether we need to split the constant table, and need not be
7dac2f89 3095 precisely correct.
a9e3e611
GRK
3096
3097 When not mips16 code nor embedded PIC, if a symbol is in a
3098 gp addresable section, SYMBOL_REF_FLAG is set prevent gcc from
3099 splitting the reference so that gas can generate a gp relative
3100 reference.
5f680ab6
DD
3101
3102 When TARGET_EMBEDDED_DATA is set, we assume that all const
3103 variables will be stored in ROM, which is too far from %gp to use
3104 %gprel addressing. Note that (1) we include "extern const"
3105 variables in this, which mips_select_section doesn't, and (2) we
3106 can't always tell if they're really const (they might be const C++
3107 objects with non-const constructors), so we err on the side of
3108 caution and won't use %gprel anyway (otherwise we'd have to defer
3109 this decision to the linker/loader). The handling of extern consts
3110 is why the DECL_INITIAL macros differ from mips_select_section.
3111
3112 If you are changing this macro, you should look at
3113 mips_select_section and see if it needs a similar change. */
e75b25e7
MM
3114
3115#define ENCODE_SECTION_INFO(DECL) \
3116do \
3117 { \
2bcb2ab3
GK
3118 if (TARGET_MIPS16) \
3119 { \
3120 if (TREE_CODE (DECL) == STRING_CST \
52ecdfda
JW
3121 && ! flag_writable_strings \
3122 /* If this string is from a function, and the function will \
3123 go in a gnu linkonce section, then we can't directly \
3124 access the string. This gets an assembler error \
3125 "unsupported PC relative reference to different section".\
3126 If we modify SELECT_SECTION to put it in function_section\
3127 instead of text_section, it still fails because \
3128 DECL_SECTION_NAME isn't set until assemble_start_function.\
3129 If we fix that, it still fails because strings are shared\
3130 among multiple functions, and we have cross section \
3131 references again. We force it to work by putting string \
3132 addresses in the constant pool and indirecting. */ \
3133 && (! current_function_decl \
7c262518 3134 || ! DECL_ONE_ONLY (current_function_decl))) \
2bcb2ab3
GK
3135 { \
3136 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
3137 mips_string_length += TREE_STRING_LENGTH (DECL); \
3138 } \
3139 } \
5f680ab6
DD
3140 \
3141 if (TARGET_EMBEDDED_DATA \
3142 && (TREE_CODE (DECL) == VAR_DECL \
3143 && TREE_READONLY (DECL) && !TREE_SIDE_EFFECTS (DECL)) \
3144 && (!DECL_INITIAL (DECL) \
3145 || TREE_CONSTANT (DECL_INITIAL (DECL)))) \
3146 { \
3147 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
3148 } \
3149 \
3150 else if (TARGET_EMBEDDED_PIC) \
92544bdf
ILT
3151 { \
3152 if (TREE_CODE (DECL) == VAR_DECL) \
3153 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3154 else if (TREE_CODE (DECL) == FUNCTION_DECL) \
3155 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
3156 else if (TREE_CODE (DECL) == STRING_CST \
3157 && ! flag_writable_strings) \
3158 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
3159 else \
3160 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
3161 } \
3162 \
a9e3e611
GRK
3163 else if (TREE_CODE (DECL) == VAR_DECL \
3164 && DECL_SECTION_NAME (DECL) != NULL_TREE \
3165 && (0 == strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (DECL)), \
3166 ".sdata") \
3167 || 0 == strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (DECL)),\
3168 ".sbss"))) \
3169 { \
3170 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3171 } \
3172 \
13b6b42c
JL
3173 /* We can not perform GP optimizations on variables which are in \
3174 specific sections, except for .sdata and .sbss which are \
3175 handled above. */ \
3176 else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL \
3177 && DECL_SECTION_NAME (DECL) == NULL_TREE) \
e75b25e7
MM
3178 { \
3179 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
3180 \
3181 if (size > 0 && size <= mips_section_threshold) \
3182 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3183 } \
3184 \
31c714e3 3185 else if (HALF_PIC_P ()) \
6e92f4b6
KG
3186 { \
3187 HALF_PIC_ENCODE (DECL); \
3188 } \
e75b25e7
MM
3189 } \
3190while (0)
3191
9c9e7632
GK
3192/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
3193 'the start of the function that this code is output in'. */
3194
3195#define ASM_OUTPUT_LABELREF(FILE,NAME) \
3196 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
3197 asm_fprintf ((FILE), "%U%s", \
3198 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
3199 else \
3200 asm_fprintf ((FILE), "%U%s", (NAME))
3201
2bcb2ab3
GK
3202/* The mips16 wants the constant pool to be after the function,
3203 because the PC relative load instructions use unsigned offsets. */
3204
3205#define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)
3206
3207#define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE) \
3208 mips_string_length = 0;
3209
3210#if 0
3211/* In mips16 mode, put most string constants after the function. */
3212#define CONSTANT_AFTER_FUNCTION_P(tree) \
3213 (TARGET_MIPS16 && mips16_constant_after_function_p (tree))
3214#endif
e75b25e7
MM
3215\f
3216/* Specify the machine mode that this machine uses
2bcb2ab3
GK
3217 for the index in the tablejump instruction.
3218 ??? Using HImode in mips16 mode can cause overflow. However, the
3219 overflow is no more likely than the overflow in a branch
3220 instruction. Large functions can currently break in both ways. */
3221#define CASE_VECTOR_MODE \
1eeed24e 3222 (TARGET_MIPS16 ? HImode : Pmode == DImode ? DImode : SImode)
2bcb2ab3
GK
3223
3224/* Define as C expression which evaluates to nonzero if the tablejump
3225 instruction expects the table to contain offsets from the address of the
3226 table.
3227 Do not define this if the table should contain absolute addresses. */
3228#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
e75b25e7
MM
3229
3230/* Specify the tree operation to be used to convert reals to integers. */
3231#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
3232
3233/* This is the kind of divide that is easiest to do in the general case. */
3234#define EASY_DIV_EXPR TRUNC_DIV_EXPR
3235
3236/* Define this as 1 if `char' should by default be signed; else as 0. */
6639753e 3237#ifndef DEFAULT_SIGNED_CHAR
e75b25e7 3238#define DEFAULT_SIGNED_CHAR 1
6639753e 3239#endif
e75b25e7
MM
3240
3241/* Max number of bytes we can move from memory to memory
3242 in one reasonably fast instruction. */
876c09d3
JW
3243#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
3244#define MAX_MOVE_MAX 8
e75b25e7
MM
3245
3246/* Define this macro as a C expression which is nonzero if
3247 accessing less than a word of memory (i.e. a `char' or a
3248 `short') is no faster than accessing a word of memory, i.e., if
3249 such access require more than one instruction or if there is no
3250 difference in cost between byte and (aligned) word loads.
3251
3252 On RISC machines, it tends to generate better code to define
3253 this as 1, since it avoids making a QI or HI mode register. */
3254#define SLOW_BYTE_ACCESS 1
3255
3256/* We assume that the store-condition-codes instructions store 0 for false
3257 and some other value for true. This is the value stored for true. */
3258
3259#define STORE_FLAG_VALUE 1
3260
3261/* Define this if zero-extension is slow (more than one real instruction). */
3262#define SLOW_ZERO_EXTEND
3263
d969caf8
RK
3264/* Define this to be nonzero if shift instructions ignore all but the low-order
3265 few bits. */
3266#define SHIFT_COUNT_TRUNCATED 1
e75b25e7
MM
3267
3268/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3269 is done just by pretending it is already truncated. */
876c09d3
JW
3270/* In 64 bit mode, 32 bit instructions require that register values be properly
3271 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
3272 converts a value >32 bits to a value <32 bits. */
3273/* ??? This results in inefficient code for 64 bit to 32 conversions.
3274 Something needs to be done about this. Perhaps not use any 32 bit
3275 instructions? Perhaps use PROMOTE_MODE? */
3276#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
3277 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
e75b25e7 3278
e75b25e7
MM
3279/* Specify the machine mode that pointers have.
3280 After generation of rtl, the compiler makes no further distinction
fb1bf66d
GRK
3281 between pointers and any other objects of this machine mode.
3282
3283 For MIPS we make pointers are the smaller of longs and gp-registers. */
876c09d3 3284
1eeed24e 3285#ifndef Pmode
8ca47902 3286#define Pmode ((TARGET_LONG64 && TARGET_64BIT) ? DImode : SImode)
1eeed24e 3287#endif
e75b25e7
MM
3288
3289/* A function address in a call instruction
3290 is a word address (for indexing purposes)
3291 so give the MEM rtx a words's mode. */
3292
1eeed24e 3293#define FUNCTION_MODE (Pmode == DImode ? DImode : SImode)
e75b25e7
MM
3294
3295/* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
3296 memset, instead of the BSD functions bcopy and bzero. */
3297
3298#if defined(MIPS_SYSV) || defined(OSF_OS)
3299#define TARGET_MEM_FUNCTIONS
3300#endif
3301
3302\f
3303/* A part of a C `switch' statement that describes the relative
3304 costs of constant RTL expressions. It must contain `case'
3305 labels for expression codes `const_int', `const', `symbol_ref',
3306 `label_ref' and `const_double'. Each case must ultimately reach
3307 a `return' statement to return the relative cost of the use of
3308 that kind of constant value in an expression. The cost may
3309 depend on the precise value of the constant, which is available
3310 for examination in X.
3311
3312 CODE is the expression code--redundant, since it can be obtained
3313 with `GET_CODE (X)'. */
3314
def9623c 3315#define CONST_COSTS(X,CODE,OUTER_CODE) \
e75b25e7 3316 case CONST_INT: \
2bcb2ab3
GK
3317 if (! TARGET_MIPS16) \
3318 { \
3319 /* Always return 0, since we don't have different sized \
3320 instructions, hence different costs according to Richard \
3321 Kenner */ \
3322 return 0; \
3323 } \
3324 if ((OUTER_CODE) == SET) \
3325 { \
3326 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3327 return 0; \
3328 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3329 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3330 return COSTS_N_INSNS (1); \
3331 else \
3332 return COSTS_N_INSNS (2); \
3333 } \
3334 /* A PLUS could be an address. We don't want to force an address \
3335 to use a register, so accept any signed 16 bit value without \
3336 complaint. */ \
3337 if ((OUTER_CODE) == PLUS \
3338 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3339 return 0; \
3340 /* A number between 1 and 8 inclusive is efficient for a shift. \
3341 Otherwise, we will need an extended instruction. */ \
3342 if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT \
3343 || (OUTER_CODE) == LSHIFTRT) \
3344 { \
3345 if (INTVAL (X) >= 1 && INTVAL (X) <= 8) \
3346 return 0; \
3347 return COSTS_N_INSNS (1); \
3348 } \
3349 /* We can use cmpi for an xor with an unsigned 16 bit value. */ \
3350 if ((OUTER_CODE) == XOR \
3351 && INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3352 return 0; \
3353 /* We may be able to use slt or sltu for a comparison with a \
3354 signed 16 bit value. (The boundary conditions aren't quite \
3355 right, but this is just a heuristic anyhow.) */ \
3356 if (((OUTER_CODE) == LT || (OUTER_CODE) == LE \
3357 || (OUTER_CODE) == GE || (OUTER_CODE) == GT \
3358 || (OUTER_CODE) == LTU || (OUTER_CODE) == LEU \
3359 || (OUTER_CODE) == GEU || (OUTER_CODE) == GTU) \
3360 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3361 return 0; \
3362 /* Equality comparisons with 0 are cheap. */ \
3363 if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE) \
3364 && INTVAL (X) == 0) \
3365 return 0; \
3366 \
3367 /* Otherwise, work out the cost to load the value into a \
3368 register. */ \
3369 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3370 return COSTS_N_INSNS (1); \
3371 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3372 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3373 return COSTS_N_INSNS (2); \
3374 else \
3375 return COSTS_N_INSNS (3); \
e75b25e7
MM
3376 \
3377 case LABEL_REF: \
3378 return COSTS_N_INSNS (2); \
3379 \
3380 case CONST: \
3381 { \
31c714e3 3382 rtx offset = const0_rtx; \
876c09d3 3383 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
e75b25e7 3384 \
2bcb2ab3
GK
3385 if (TARGET_MIPS16 && mips16_gp_offset_p (X)) \
3386 { \
3387 /* Treat this like a signed 16 bit CONST_INT. */ \
3388 if ((OUTER_CODE) == PLUS) \
3389 return 0; \
3390 else if ((OUTER_CODE) == SET) \
3391 return COSTS_N_INSNS (1); \
3392 else \
3393 return COSTS_N_INSNS (2); \
3394 } \
3395 \
e75b25e7
MM
3396 if (GET_CODE (symref) == LABEL_REF) \
3397 return COSTS_N_INSNS (2); \
3398 \
3399 if (GET_CODE (symref) != SYMBOL_REF) \
3400 return COSTS_N_INSNS (4); \
3401 \
3402 /* let's be paranoid.... */ \
31c714e3 3403 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
e75b25e7
MM
3404 return COSTS_N_INSNS (2); \
3405 \
3406 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
3407 } \
3408 \
3409 case SYMBOL_REF: \
3410 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
3411 \
3412 case CONST_DOUBLE: \
96abdcb1
ILT
3413 { \
3414 rtx high, low; \
2bcb2ab3
GK
3415 if (TARGET_MIPS16) \
3416 return COSTS_N_INSNS (4); \
96abdcb1
ILT
3417 split_double (X, &high, &low); \
3418 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
3419 || low == CONST0_RTX (GET_MODE (low))) \
3420 ? 2 : 4); \
3421 }
e75b25e7
MM
3422
3423/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
3424 This can be used, for example, to indicate how costly a multiply
3425 instruction is. In writing this macro, you can use the construct
3426 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
3427
3428 This macro is optional; do not define it if the default cost
3429 assumptions are adequate for the target machine.
3430
3431 If -mdebugd is used, change the multiply cost to 2, so multiply by
3432 a constant isn't converted to a series of shifts. This helps
3433 strength reduction, and also makes it easier to identify what the
3434 compiler is doing. */
3435
516a2dfd 3436/* ??? Fix this to be right for the R8000. */
def9623c 3437#define RTX_COSTS(X,CODE,OUTER_CODE) \
e75b25e7
MM
3438 case MEM: \
3439 { \
3440 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
3441 if (simple_memory_operand (X, GET_MODE (X))) \
3442 return COSTS_N_INSNS (num_words); \
3443 \
3444 return COSTS_N_INSNS (2*num_words); \
3445 } \
3446 \
3447 case FFS: \
3448 return COSTS_N_INSNS (6); \
3449 \
3450 case NOT: \
876c09d3 3451 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
e75b25e7
MM
3452 \
3453 case AND: \
3454 case IOR: \
3455 case XOR: \
876c09d3 3456 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
e75b25e7
MM
3457 return COSTS_N_INSNS (2); \
3458 \
2bcb2ab3 3459 break; \
e75b25e7
MM
3460 \
3461 case ASHIFT: \
3462 case ASHIFTRT: \
e75b25e7 3463 case LSHIFTRT: \
876c09d3
JW
3464 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3465 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
e75b25e7 3466 \
2bcb2ab3 3467 break; \
e75b25e7
MM
3468 \
3469 case ABS: \
3470 { \
3471 enum machine_mode xmode = GET_MODE (X); \
3472 if (xmode == SFmode || xmode == DFmode) \
3473 return COSTS_N_INSNS (1); \
3474 \
3475 return COSTS_N_INSNS (4); \
3476 } \
3477 \
3478 case PLUS: \
3479 case MINUS: \
3480 { \
3481 enum machine_mode xmode = GET_MODE (X); \
3482 if (xmode == SFmode || xmode == DFmode) \
9a863c83 3483 { \
7dac2f89
EC
3484 if (TUNE_MIPS3000 \
3485 || TUNE_MIPS3900) \
9a863c83 3486 return COSTS_N_INSNS (2); \
7dac2f89 3487 else if (TUNE_MIPS6000) \
9a863c83
JW
3488 return COSTS_N_INSNS (3); \
3489 else \
3490 return COSTS_N_INSNS (6); \
3491 } \
e75b25e7 3492 \
876c09d3 3493 if (xmode == DImode && !TARGET_64BIT) \
e75b25e7
MM
3494 return COSTS_N_INSNS (4); \
3495 \
2bcb2ab3 3496 break; \
e75b25e7
MM
3497 } \
3498 \
3499 case NEG: \
2bcb2ab3
GK
3500 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3501 return 4; \
3502 \
3503 break; \
e75b25e7
MM
3504 \
3505 case MULT: \
3506 { \
3507 enum machine_mode xmode = GET_MODE (X); \
3508 if (xmode == SFmode) \
9a863c83 3509 { \
7dac2f89
EC
3510 if (TUNE_MIPS3000 \
3511 || TUNE_MIPS3900 \
3512 || TUNE_MIPS5000) \
9a863c83 3513 return COSTS_N_INSNS (4); \
7dac2f89 3514 else if (TUNE_MIPS6000) \
9a863c83
JW
3515 return COSTS_N_INSNS (5); \
3516 else \
3517 return COSTS_N_INSNS (7); \
3518 } \
e75b25e7
MM
3519 \
3520 if (xmode == DFmode) \
9a863c83 3521 { \
7dac2f89
EC
3522 if (TUNE_MIPS3000 \
3523 || TUNE_MIPS3900 \
3524 || TUNE_MIPS5000) \
9a863c83 3525 return COSTS_N_INSNS (5); \
7dac2f89 3526 else if (TUNE_MIPS6000) \
9a863c83
JW
3527 return COSTS_N_INSNS (6); \
3528 else \
3529 return COSTS_N_INSNS (8); \
3530 } \
e75b25e7 3531 \
7dac2f89 3532 if (TUNE_MIPS3000) \
9a863c83 3533 return COSTS_N_INSNS (12); \
7dac2f89 3534 else if (TUNE_MIPS3900) \
e9a25f70 3535 return COSTS_N_INSNS (2); \
7dac2f89 3536 else if (TUNE_MIPS6000) \
9a863c83 3537 return COSTS_N_INSNS (17); \
7dac2f89 3538 else if (TUNE_MIPS5000) \
b8eb88d0 3539 return COSTS_N_INSNS (5); \
9a863c83
JW
3540 else \
3541 return COSTS_N_INSNS (10); \
e75b25e7
MM
3542 } \
3543 \
3544 case DIV: \
3545 case MOD: \
3546 { \
3547 enum machine_mode xmode = GET_MODE (X); \
3548 if (xmode == SFmode) \
9a863c83 3549 { \
7dac2f89
EC
3550 if (TUNE_MIPS3000 \
3551 || TUNE_MIPS3900) \
9a863c83 3552 return COSTS_N_INSNS (12); \
7dac2f89 3553 else if (TUNE_MIPS6000) \
9a863c83
JW
3554 return COSTS_N_INSNS (15); \
3555 else \
3556 return COSTS_N_INSNS (23); \
3557 } \
e75b25e7
MM
3558 \
3559 if (xmode == DFmode) \
9a863c83 3560 { \
7dac2f89
EC
3561 if (TUNE_MIPS3000 \
3562 || TUNE_MIPS3900) \
9a863c83 3563 return COSTS_N_INSNS (19); \
7dac2f89 3564 else if (TUNE_MIPS6000) \
9a863c83
JW
3565 return COSTS_N_INSNS (16); \
3566 else \
3567 return COSTS_N_INSNS (36); \
3568 } \
e75b25e7
MM
3569 } \
3570 /* fall through */ \
3571 \
3572 case UDIV: \
3573 case UMOD: \
7dac2f89
EC
3574 if (TUNE_MIPS3000 \
3575 || TUNE_MIPS3900) \
9a863c83 3576 return COSTS_N_INSNS (35); \
7dac2f89 3577 else if (TUNE_MIPS6000) \
9a863c83 3578 return COSTS_N_INSNS (38); \
7dac2f89 3579 else if (TUNE_MIPS5000) \
b8eb88d0 3580 return COSTS_N_INSNS (36); \
9a863c83 3581 else \
1a4fa807
ILT
3582 return COSTS_N_INSNS (69); \
3583 \
3584 case SIGN_EXTEND: \
3585 /* A sign extend from SImode to DImode in 64 bit mode is often \
3586 zero instructions, because the result can often be used \
3587 directly by another instruction; we'll call it one. */ \
3588 if (TARGET_64BIT && GET_MODE (X) == DImode \
3589 && GET_MODE (XEXP (X, 0)) == SImode) \
3590 return COSTS_N_INSNS (1); \
3591 else \
3592 return COSTS_N_INSNS (2); \
3593 \
3594 case ZERO_EXTEND: \
3595 if (TARGET_64BIT && GET_MODE (X) == DImode \
3596 && GET_MODE (XEXP (X, 0)) == SImode) \
3597 return COSTS_N_INSNS (2); \
3598 else \
3599 return COSTS_N_INSNS (1);
e75b25e7
MM
3600
3601/* An expression giving the cost of an addressing mode that
3602 contains ADDRESS. If not defined, the cost is computed from the
3603 form of the ADDRESS expression and the `CONST_COSTS' values.
3604
3605 For most CISC machines, the default cost is a good approximation
3606 of the true cost of the addressing mode. However, on RISC
3607 machines, all instructions normally have the same length and
3608 execution time. Hence all addresses will have equal costs.
3609
3610 In cases where more than one form of an address is known, the
3611 form with the lowest cost will be used. If multiple forms have
3612 the same, lowest, cost, the one that is the most complex will be
3613 used.
3614
3615 For example, suppose an address that is equal to the sum of a
7dac2f89 3616 register and a constant is used twice in the same basic block.
e75b25e7
MM
3617 When this macro is not defined, the address will be computed in
3618 a register and memory references will be indirect through that
3619 register. On machines where the cost of the addressing mode
3620 containing the sum is no higher than that of a simple indirect
3621 reference, this will produce an additional instruction and
3622 possibly require an additional register. Proper specification
3623 of this macro eliminates this overhead for such machines.
3624
3625 Similar use of this macro is made in strength reduction of loops.
3626
3627 ADDRESS need not be valid as an address. In such a case, the
3628 cost is not relevant and can be any value; invalid addresses
3629 need not be assigned a different cost.
3630
3631 On machines where an address involving more than one register is
3632 as cheap as an address computation involving only one register,
3633 defining `ADDRESS_COST' to reflect this can cause two registers
3634 to be live over a region of code where only one would have been
3635 if `ADDRESS_COST' were not defined in that manner. This effect
7dac2f89 3636 should be considered in the definition of this macro.
e75b25e7
MM
3637 Equivalent costs should probably only be given to addresses with
3638 different numbers of registers on machines with lots of registers.
3639
3640 This macro will normally either not be defined or be defined as
3641 a constant. */
3642
3643#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3644
3645/* A C expression for the cost of moving data from a register in
3646 class FROM to one in class TO. The classes are expressed using
3647 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3648 the default; other values are interpreted relative to that.
3649
3650 It is not required that the cost always equal 2 when FROM is the
3651 same as TO; on some machines it is expensive to move between
3652 registers if they are not general registers.
3653
3654 If reload sees an insn consisting of a single `set' between two
3655 hard registers, and if `REGISTER_MOVE_COST' applied to their
3656 classes returns a value of 2, reload does not check to ensure
3657 that the constraints of the insn are met. Setting a cost of
3658 other than 2 will allow reload to verify that the constraints are
3659 met. You should do this if the `movM' pattern's constraints do
56dc4d15
JW
3660 not allow such copying.
3661
3662 ??? We make make the cost of moving from HI/LO/HILO/MD into general
3663 registers the same as for one of moving general registers to
3664 HI/LO/HILO/MD for TARGET_MIPS16 in order to prevent allocating a
3665 pseudo to HI/LO/HILO/MD. This might hurt optimizations though, it
3666 isn't clear if it is wise. And it might not work in all cases. We
3667 could solve the DImode LO reg problem by using a multiply, just like
3668 reload_{in,out}si. We could solve the SImode/HImode HI reg problem
3669 by using divide instructions. divu puts the remainder in the HI
3670 reg, so doing a divide by -1 will move the value in the HI reg for
3671 all values except -1. We could handle that case by using a signed
3672 divide, e.g. -1 / 2 (or maybe 1 / -2?). We'd have to emit a
3673 compare/branch to test the input value to see which instruction we
3674 need to use. This gets pretty messy, but it is feasible. */
e75b25e7 3675
cf011243 3676#define REGISTER_MOVE_COST(MODE, FROM, TO) \
2bcb2ab3
GK
3677 ((FROM) == M16_REGS && GR_REG_CLASS_P (TO) ? 2 \
3678 : (FROM) == M16_NA_REGS && GR_REG_CLASS_P (TO) ? 2 \
3679 : GR_REG_CLASS_P (FROM) && (TO) == M16_REGS ? 2 \
3680 : GR_REG_CLASS_P (FROM) && (TO) == M16_NA_REGS ? 2 \
3681 : GR_REG_CLASS_P (FROM) && GR_REG_CLASS_P (TO) ? (TARGET_MIPS16 ? 4 : 2) \
9a863c83 3682 : (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
2bcb2ab3
GK
3683 : GR_REG_CLASS_P (FROM) && (TO) == FP_REGS ? 4 \
3684 : (FROM) == FP_REGS && GR_REG_CLASS_P (TO) ? 4 \
225b8835
ILT
3685 : (((FROM) == HI_REG || (FROM) == LO_REG \
3686 || (FROM) == MD_REGS || (FROM) == HILO_REG) \
56dc4d15 3687 && GR_REG_CLASS_P (TO)) ? (TARGET_MIPS16 ? 12 : 6) \
225b8835 3688 : (((TO) == HI_REG || (TO) == LO_REG \
2bcb2ab3
GK
3689 || (TO) == MD_REGS || (TO) == HILO_REG) \
3690 && GR_REG_CLASS_P (FROM)) ? (TARGET_MIPS16 ? 12 : 6) \
3691 : (FROM) == ST_REGS && GR_REG_CLASS_P (TO) ? 4 \
b8eb88d0 3692 : (FROM) == FP_REGS && (TO) == ST_REGS ? 8 \
46299de9 3693 : 12)
e75b25e7 3694
516a2dfd 3695/* ??? Fix this to be right for the R8000. */
cbd5b9a2 3696#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
7dac2f89 3697 (((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
cbd5b9a2 3698 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
876c09d3 3699
7506f491
DE
3700/* Define if copies to/from condition code registers should be avoided.
3701
3702 This is needed for the MIPS because reload_outcc is not complete;
3703 it needs to handle cases where the source is a general or another
3704 condition code register. */
3705#define AVOID_CCMODE_COPIES
3706
e75b25e7
MM
3707/* A C expression for the cost of a branch instruction. A value of
3708 1 is the default; other values are interpreted relative to that. */
3709
516a2dfd 3710/* ??? Fix this to be right for the R8000. */
2bcb2ab3
GK
3711#define BRANCH_COST \
3712 ((! TARGET_MIPS16 \
7dac2f89 3713 && (TUNE_MIPS4000 || TUNE_MIPS6000)) \
2bcb2ab3 3714 ? 2 : 1)
e75b25e7 3715
0ff83799
MM
3716/* If defined, modifies the length assigned to instruction INSN as a
3717 function of the context in which it is used. LENGTH is an lvalue
3718 that contains the initially computed length of the insn and should
3719 be updated with the correct length of the insn. */
3720#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
3721 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
3722
e75b25e7
MM
3723\f
3724/* Optionally define this if you have added predicates to
3725 `MACHINE.c'. This macro is called within an initializer of an
3726 array of structures. The first field in the structure is the
31c714e3 3727 name of a predicate and the second field is an array of rtl
e75b25e7
MM
3728 codes. For each predicate, list all rtl codes that can be in
3729 expressions matched by the predicate. The list should have a
3730 trailing comma. Here is an example of two entries in the list
3731 for a typical RISC machine:
3732
3733 #define PREDICATE_CODES \
3734 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3735 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3736
3737 Defining this macro does not affect the generated code (however,
3738 incorrect definitions that omit an rtl code that may be matched
7dac2f89 3739 by the predicate can cause the compiler to malfunction).
e75b25e7
MM
3740 Instead, it allows the table built by `genrecog' to be more
3741 compact and efficient, thus speeding up the compiler. The most
3742 important predicates to include in the list specified by this
3743 macro are thoses used in the most insn patterns. */
3744
3745#define PREDICATE_CODES \
3746 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3747 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3748 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
def72bd2
GRK
3749 {"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3750 {"true_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
e75b25e7
MM
3751 {"small_int", { CONST_INT }}, \
3752 {"large_int", { CONST_INT }}, \
e75b25e7 3753 {"mips_const_double_ok", { CONST_DOUBLE }}, \
b8eb88d0 3754 {"const_float_1_operand", { CONST_DOUBLE }}, \
e75b25e7 3755 {"simple_memory_operand", { MEM, SUBREG }}, \
e75b25e7
MM
3756 {"equality_op", { EQ, NE }}, \
3757 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3758 LTU, LEU }}, \
a0b6cdee 3759 {"trap_cmp_op", { EQ, NE, GE, GEU, LT, LTU }}, \
f8634644 3760 {"pc_or_label_operand", { PC, LABEL_REF }}, \
ce57d6f4
JW
3761 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3762 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3763 SYMBOL_REF, LABEL_REF, SUBREG, \
3764 REG, MEM}}, \
1908a152
ILT
3765 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3766 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3767 MEM, SIGN_EXTEND }}, \
3768 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
def72bd2 3769 {"se_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG, \
1908a152
ILT
3770 SIGN_EXTEND }}, \
3771 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3772 SIGN_EXTEND }}, \
3773 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3774 SIGN_EXTEND }}, \
3775 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3776 SYMBOL_REF, LABEL_REF, SUBREG, \
3777 REG, SIGN_EXTEND }}, \
2bcb2ab3
GK
3778 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }}, \
3779 {"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
cb923660
KR
3780 CONST_DOUBLE, CONST }}, \
3781 {"extend_operator", { SIGN_EXTEND, ZERO_EXTEND }}, \
3782 {"highpart_shift_operator", { ASHIFTRT, LSHIFTRT, ROTATERT, ROTATE }},
3783
0e7e9155
RH
3784/* A list of predicates that do special things with modes, and so
3785 should not elicit warnings for VOIDmode match_operand. */
3786
3787#define SPECIAL_MODE_PREDICATES \
3788 "pc_or_label_operand",
e75b25e7
MM
3789
3790\f
3791/* If defined, a C statement to be executed just prior to the
3792 output of assembler code for INSN, to modify the extracted
3793 operands so they will be output differently.
3794
3795 Here the argument OPVEC is the vector containing the operands
3796 extracted from INSN, and NOPERANDS is the number of elements of
3797 the vector which contain meaningful data for this insn. The
3798 contents of this vector are what will be used to convert the
3799 insn template into assembler code, so you can change the
3800 assembler output by changing the contents of the vector.
3801
3802 We use it to check if the current insn needs a nop in front of it
3803 because of load delays, and also to update the delay slot
3804 statistics. */
3805
3806#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
65437fe8 3807 final_prescan_insn (INSN, OPVEC, NOPERANDS)
e75b25e7 3808
e75b25e7
MM
3809\f
3810/* Control the assembler format that we output. */
3811
3812/* Output at beginning of assembler file.
3813 If we are optimizing to use the global pointer, create a temporary
3814 file to hold all of the text stuff, and write it out to the end.
3815 This is needed because the MIPS assembler is evidently one pass,
3816 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3817 declaration when the code is processed, it generates a two
3818 instruction sequence. */
3819
44404b8b 3820#undef ASM_FILE_START
e75b25e7
MM
3821#define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3822
3823/* Output to assembler file text saying following lines
3824 may contain character constants, extra white space, comments, etc. */
3825
b2bcb32d 3826#ifndef ASM_APP_ON
e75b25e7 3827#define ASM_APP_ON " #APP\n"
b2bcb32d 3828#endif
e75b25e7
MM
3829
3830/* Output to assembler file text saying following lines
3831 no longer contain unusual constructs. */
3832
b2bcb32d 3833#ifndef ASM_APP_OFF
e75b25e7 3834#define ASM_APP_OFF " #NO_APP\n"
b2bcb32d 3835#endif
e75b25e7
MM
3836
3837/* How to refer to registers in assembler output.
3838 This sequence is indexed by compiler's hard-register-number (see above).
3839
3840 In order to support the two different conventions for register names,
3841 we use the name of a table set up in mips.c, which is overwritten
3842 if -mrnames is used. */
3843
3844#define REGISTER_NAMES \
3845{ \
3846 &mips_reg_names[ 0][0], \
3847 &mips_reg_names[ 1][0], \
3848 &mips_reg_names[ 2][0], \
3849 &mips_reg_names[ 3][0], \
3850 &mips_reg_names[ 4][0], \
3851 &mips_reg_names[ 5][0], \
3852 &mips_reg_names[ 6][0], \
3853 &mips_reg_names[ 7][0], \
3854 &mips_reg_names[ 8][0], \
3855 &mips_reg_names[ 9][0], \
3856 &mips_reg_names[10][0], \
3857 &mips_reg_names[11][0], \
3858 &mips_reg_names[12][0], \
3859 &mips_reg_names[13][0], \
3860 &mips_reg_names[14][0], \
3861 &mips_reg_names[15][0], \
3862 &mips_reg_names[16][0], \
3863 &mips_reg_names[17][0], \
3864 &mips_reg_names[18][0], \
3865 &mips_reg_names[19][0], \
3866 &mips_reg_names[20][0], \
3867 &mips_reg_names[21][0], \
3868 &mips_reg_names[22][0], \
3869 &mips_reg_names[23][0], \
3870 &mips_reg_names[24][0], \
3871 &mips_reg_names[25][0], \
3872 &mips_reg_names[26][0], \
3873 &mips_reg_names[27][0], \
3874 &mips_reg_names[28][0], \
3875 &mips_reg_names[29][0], \
3876 &mips_reg_names[30][0], \
3877 &mips_reg_names[31][0], \
3878 &mips_reg_names[32][0], \
3879 &mips_reg_names[33][0], \
3880 &mips_reg_names[34][0], \
3881 &mips_reg_names[35][0], \
3882 &mips_reg_names[36][0], \
3883 &mips_reg_names[37][0], \
3884 &mips_reg_names[38][0], \
3885 &mips_reg_names[39][0], \
3886 &mips_reg_names[40][0], \
3887 &mips_reg_names[41][0], \
3888 &mips_reg_names[42][0], \
3889 &mips_reg_names[43][0], \
3890 &mips_reg_names[44][0], \
3891 &mips_reg_names[45][0], \
3892 &mips_reg_names[46][0], \
3893 &mips_reg_names[47][0], \
3894 &mips_reg_names[48][0], \
3895 &mips_reg_names[49][0], \
3896 &mips_reg_names[50][0], \
3897 &mips_reg_names[51][0], \
3898 &mips_reg_names[52][0], \
3899 &mips_reg_names[53][0], \
3900 &mips_reg_names[54][0], \
3901 &mips_reg_names[55][0], \
3902 &mips_reg_names[56][0], \
3903 &mips_reg_names[57][0], \
3904 &mips_reg_names[58][0], \
3905 &mips_reg_names[59][0], \
3906 &mips_reg_names[60][0], \
3907 &mips_reg_names[61][0], \
3908 &mips_reg_names[62][0], \
3909 &mips_reg_names[63][0], \
3910 &mips_reg_names[64][0], \
3911 &mips_reg_names[65][0], \
3912 &mips_reg_names[66][0], \
225b8835 3913 &mips_reg_names[67][0], \
39dffea3 3914 &mips_reg_names[68][0], \
b8eb88d0
ILT
3915 &mips_reg_names[69][0], \
3916 &mips_reg_names[70][0], \
3917 &mips_reg_names[71][0], \
3918 &mips_reg_names[72][0], \
3919 &mips_reg_names[73][0], \
3920 &mips_reg_names[74][0], \
3921 &mips_reg_names[75][0], \
e75b25e7
MM
3922}
3923
46cca58c
RS
3924/* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
3925 So define this for it. */
3926#define DEBUG_REGISTER_NAMES \
3927{ \
3928 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
3929 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
3930 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
3931 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
3932 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
3933 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
3934 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
3935 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
b8eb88d0
ILT
3936 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
3937 "$fcc5","$fcc6","$fcc7","$rap" \
46cca58c
RS
3938}
3939
e75b25e7
MM
3940/* If defined, a C initializer for an array of structures
3941 containing a name and a register number. This macro defines
3942 additional names for hard registers, thus allowing the `asm'
3943 option in declarations to refer to registers using alternate
3944 names.
3945
3946 We define both names for the integer registers here. */
3947
3948#define ADDITIONAL_REGISTER_NAMES \
3949{ \
3950 { "$0", 0 + GP_REG_FIRST }, \
3951 { "$1", 1 + GP_REG_FIRST }, \
3952 { "$2", 2 + GP_REG_FIRST }, \
3953 { "$3", 3 + GP_REG_FIRST }, \
3954 { "$4", 4 + GP_REG_FIRST }, \
3955 { "$5", 5 + GP_REG_FIRST }, \
3956 { "$6", 6 + GP_REG_FIRST }, \
3957 { "$7", 7 + GP_REG_FIRST }, \
3958 { "$8", 8 + GP_REG_FIRST }, \
3959 { "$9", 9 + GP_REG_FIRST }, \
3960 { "$10", 10 + GP_REG_FIRST }, \
3961 { "$11", 11 + GP_REG_FIRST }, \
3962 { "$12", 12 + GP_REG_FIRST }, \
3963 { "$13", 13 + GP_REG_FIRST }, \
3964 { "$14", 14 + GP_REG_FIRST }, \
3965 { "$15", 15 + GP_REG_FIRST }, \
3966 { "$16", 16 + GP_REG_FIRST }, \
3967 { "$17", 17 + GP_REG_FIRST }, \
3968 { "$18", 18 + GP_REG_FIRST }, \
3969 { "$19", 19 + GP_REG_FIRST }, \
3970 { "$20", 20 + GP_REG_FIRST }, \
3971 { "$21", 21 + GP_REG_FIRST }, \
3972 { "$22", 22 + GP_REG_FIRST }, \
3973 { "$23", 23 + GP_REG_FIRST }, \
3974 { "$24", 24 + GP_REG_FIRST }, \
3975 { "$25", 25 + GP_REG_FIRST }, \
3976 { "$26", 26 + GP_REG_FIRST }, \
3977 { "$27", 27 + GP_REG_FIRST }, \
3978 { "$28", 28 + GP_REG_FIRST }, \
3979 { "$29", 29 + GP_REG_FIRST }, \
3980 { "$30", 30 + GP_REG_FIRST }, \
3981 { "$31", 31 + GP_REG_FIRST }, \
3982 { "$sp", 29 + GP_REG_FIRST }, \
3983 { "$fp", 30 + GP_REG_FIRST }, \
3984 { "at", 1 + GP_REG_FIRST }, \
3985 { "v0", 2 + GP_REG_FIRST }, \
3986 { "v1", 3 + GP_REG_FIRST }, \
3987 { "a0", 4 + GP_REG_FIRST }, \
3988 { "a1", 5 + GP_REG_FIRST }, \
3989 { "a2", 6 + GP_REG_FIRST }, \
3990 { "a3", 7 + GP_REG_FIRST }, \
3991 { "t0", 8 + GP_REG_FIRST }, \
3992 { "t1", 9 + GP_REG_FIRST }, \
3993 { "t2", 10 + GP_REG_FIRST }, \
3994 { "t3", 11 + GP_REG_FIRST }, \
3995 { "t4", 12 + GP_REG_FIRST }, \
3996 { "t5", 13 + GP_REG_FIRST }, \
3997 { "t6", 14 + GP_REG_FIRST }, \
3998 { "t7", 15 + GP_REG_FIRST }, \
3999 { "s0", 16 + GP_REG_FIRST }, \
4000 { "s1", 17 + GP_REG_FIRST }, \
4001 { "s2", 18 + GP_REG_FIRST }, \
4002 { "s3", 19 + GP_REG_FIRST }, \
4003 { "s4", 20 + GP_REG_FIRST }, \
4004 { "s5", 21 + GP_REG_FIRST }, \
4005 { "s6", 22 + GP_REG_FIRST }, \
4006 { "s7", 23 + GP_REG_FIRST }, \
4007 { "t8", 24 + GP_REG_FIRST }, \
4008 { "t9", 25 + GP_REG_FIRST }, \
4009 { "k0", 26 + GP_REG_FIRST }, \
4010 { "k1", 27 + GP_REG_FIRST }, \
4011 { "gp", 28 + GP_REG_FIRST }, \
4012 { "sp", 29 + GP_REG_FIRST }, \
4013 { "fp", 30 + GP_REG_FIRST }, \
4014 { "ra", 31 + GP_REG_FIRST }, \
924706a0 4015 { "$sp", 29 + GP_REG_FIRST }, \
b8eb88d0 4016 { "$fp", 30 + GP_REG_FIRST } \
e75b25e7
MM
4017}
4018
e75b25e7
MM
4019/* A C compound statement to output to stdio stream STREAM the
4020 assembler syntax for an instruction operand X. X is an RTL
4021 expression.
4022
4023 CODE is a value that can be used to specify one of several ways
4024 of printing the operand. It is used when identical operands
4025 must be printed differently depending on the context. CODE
4026 comes from the `%' specification that was used to request
4027 printing of the operand. If the specification was just `%DIGIT'
4028 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4029 is the ASCII code for LTR.
4030
4031 If X is a register, this macro should print the register's name.
4032 The names can be found in an array `reg_names' whose type is
4033 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4034
4035 When the machine description has a specification `%PUNCT' (a `%'
4036 followed by a punctuation character), this macro is called with
4037 a null pointer for X and the punctuation character for CODE.
4038
4039 See mips.c for the MIPS specific codes. */
4040
4041#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
4042
4043/* A C expression which evaluates to true if CODE is a valid
4044 punctuation character for use in the `PRINT_OPERAND' macro. If
4045 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
4046 punctuation characters (except for the standard one, `%') are
4047 used in this way. */
4048
4049#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
4050
4051/* A C compound statement to output to stdio stream STREAM the
4052 assembler syntax for an instruction operand that is a memory
4053 reference whose address is ADDR. ADDR is an RTL expression.
4054
4055 On some machines, the syntax for a symbolic address depends on
4056 the section that the address refers to. On these machines,
4057 define the macro `ENCODE_SECTION_INFO' to store the information
4058 into the `symbol_ref', and then check for it here. */
4059
4060#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
4061
4062
4063/* A C statement, to be executed after all slot-filler instructions
4064 have been output. If necessary, call `dbr_sequence_length' to
4065 determine the number of slots filled in a sequence (zero if not
4066 currently outputting a sequence), to decide how many no-ops to
4067 output, or whatever.
4068
4069 Don't define this macro if it has nothing to do, but it is
4070 helpful in reading assembly output if the extent of the delay
4071 sequence is made explicit (e.g. with white space).
4072
4073 Note that output routines for instructions with delay slots must
4074 be prepared to deal with not being output as part of a sequence
4075 (i.e. when the scheduling pass is not run, or when no slot
4076 fillers could be found.) The variable `final_sequence' is null
4077 when not processing a sequence, otherwise it contains the
4078 `sequence' rtx being output. */
4079
4080#define DBR_OUTPUT_SEQEND(STREAM) \
4081do \
4082 { \
4083 if (set_nomacro > 0 && --set_nomacro == 0) \
4084 fputs ("\t.set\tmacro\n", STREAM); \
4085 \
4086 if (set_noreorder > 0 && --set_noreorder == 0) \
4087 fputs ("\t.set\treorder\n", STREAM); \
4088 \
4089 dslots_jump_filled++; \
4090 fputs ("\n", STREAM); \
4091 } \
4092while (0)
4093
4094
4095/* How to tell the debugger about changes of source files. Note, the
4096 mips ECOFF format cannot deal with changes of files inside of
4097 functions, which means the output of parser generators like bison
4098 is generally not debuggable without using the -l switch. Lose,
4099 lose, lose. Silicon graphics seems to want all .file's hardwired
4100 to 1. */
4101
4102#ifndef SET_FILE_NUMBER
4103#define SET_FILE_NUMBER() ++num_source_filenames
4104#endif
4105
4106#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
4107 mips_output_filename (STREAM, NAME)
4108
ddd5a7c1 4109/* This is defined so that it can be overridden in iris6.h. */
516a2dfd
JW
4110#define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
4111do \
4112 { \
4113 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
4114 output_quoted_string (STREAM, NAME); \
4115 fputs ("\n", STREAM); \
4116 } \
4117while (0)
4118
e75b25e7
MM
4119/* This is how to output a note the debugger telling it the line number
4120 to which the following sequence of instructions corresponds.
4121 Silicon graphics puts a label after each .loc. */
4122
4123#ifndef LABEL_AFTER_LOC
4124#define LABEL_AFTER_LOC(STREAM)
4125#endif
4126
b2bcb32d 4127#ifndef ASM_OUTPUT_SOURCE_LINE
e75b25e7
MM
4128#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
4129 mips_output_lineno (STREAM, LINE)
b2bcb32d 4130#endif
e75b25e7 4131
9ec36da5 4132/* The MIPS implementation uses some labels for its own purpose. The
e75b25e7
MM
4133 following lists what labels are created, and are all formed by the
4134 pattern $L[a-z].*. The machine independent portion of GCC creates
4135 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
4136
c5b7917e 4137 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
e75b25e7
MM
4138 $Lb[0-9]+ Begin blocks for MIPS debug support
4139 $Lc[0-9]+ Label for use in s<xx> operation.
4140 $Le[0-9]+ End blocks for MIPS debug support
ab78d4a8 4141 $Lp\..+ Half-pic labels. */
e75b25e7
MM
4142
4143/* This is how to output the definition of a user-level label named NAME,
4144 such as the label on a static function or variable NAME.
4145
4146 If we are optimizing the gp, remember that this label has been put
4147 out, so we know not to emit an .extern for it in mips_asm_file_end.
4148 We use one of the common bits in the IDENTIFIER tree node for this,
4149 since those bits seem to be unused, and we don't have any method
4150 of getting the decl nodes from the name. */
4151
e75b25e7
MM
4152#define ASM_OUTPUT_LABEL(STREAM,NAME) \
4153do { \
4154 assemble_name (STREAM, NAME); \
4155 fputs (":\n", STREAM); \
e75b25e7
MM
4156} while (0)
4157
31c714e3
MM
4158
4159/* A C statement (sans semicolon) to output to the stdio stream
4160 STREAM any text necessary for declaring the name NAME of an
4161 initialized variable which is being defined. This macro must
7dac2f89 4162 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
31c714e3
MM
4163 The argument DECL is the `VAR_DECL' tree node representing the
4164 variable.
4165
4166 If this macro is not defined, then the variable name is defined
4167 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
4168
44404b8b 4169#undef ASM_DECLARE_OBJECT_NAME
31c714e3 4170#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
f3b39eba
MM
4171do \
4172 { \
4173 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
4174 HALF_PIC_DECLARE (NAME); \
4175 } \
4176while (0)
31c714e3 4177
e75b25e7
MM
4178
4179/* This is how to output a command to make the user-level label named NAME
4180 defined for reference from other files. */
4181
e75b25e7
MM
4182#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
4183 do { \
4184 fputs ("\t.globl\t", STREAM); \
4185 assemble_name (STREAM, NAME); \
4186 fputs ("\n", STREAM); \
4187 } while (0)
4188
31c714e3 4189/* This says how to define a global common symbol. */
e75b25e7 4190
919509ce
DN
4191#define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
4192 do { \
4193 /* If the target wants uninitialized const declarations in \
4194 .rdata then don't put them in .comm */ \
4195 if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA \
4196 && TREE_CODE (DECL) == VAR_DECL && TREE_READONLY (DECL) \
4197 && (DECL_INITIAL (DECL) == 0 \
4198 || DECL_INITIAL (DECL) == error_mark_node)) \
4199 { \
4200 if (TREE_PUBLIC (DECL) && DECL_NAME (DECL)) \
4201 ASM_GLOBALIZE_LABEL (STREAM, NAME); \
4202 \
4203 READONLY_DATA_SECTION (); \
4204 ASM_OUTPUT_ALIGN (STREAM, floor_log2 (ALIGN / BITS_PER_UNIT)); \
4205 mips_declare_object (STREAM, NAME, "", ":\n\t.space\t%u\n", \
4206 (SIZE)); \
4207 } \
4208 else \
4209 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", \
4210 (SIZE)); \
4211 } while (0)
4212
e75b25e7 4213
c5b7917e 4214/* This says how to define a local common symbol (ie, not visible to
31c714e3 4215 linker). */
e75b25e7
MM
4216
4217#define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
69520b54 4218 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
e75b25e7
MM
4219
4220
4221/* This says how to output an external. It would be possible not to
4222 output anything and let undefined symbol become external. However
4223 the assembler uses length information on externals to allocate in
4224 data/sdata bss/sbss, thereby saving exec time. */
4225
4226#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
4227 mips_output_external(STREAM,DECL,NAME)
4228
4229/* This says what to print at the end of the assembly file */
44404b8b 4230#undef ASM_FILE_END
e75b25e7
MM
4231#define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
4232
4233
f99ffb60
RH
4234/* Play switch file games if we're optimizing the global pointer. */
4235
4236#undef TEXT_SECTION
4237#define TEXT_SECTION() \
4238do { \
4239 extern FILE *asm_out_text_file; \
4240 if (TARGET_FILE_SWITCHING) \
4241 asm_out_file = asm_out_text_file; \
4242 fputs (TEXT_SECTION_ASM_OP, asm_out_file); \
4243 fputc ('\n', asm_out_file); \
4244} while (0)
4245
4246
e75b25e7
MM
4247/* This is how to declare a function name. The actual work of
4248 emitting the label is moved to function_prologue, so that we can
4249 get the line number correctly emitted before the .ent directive,
f99ffb60 4250 and after any .file directives. */
e75b25e7 4251
44404b8b 4252#undef ASM_DECLARE_FUNCTION_NAME
f99ffb60
RH
4253#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
4254 HALF_PIC_DECLARE (NAME)
e75b25e7 4255
e75b25e7
MM
4256/* This is how to output an internal numbered label where
4257 PREFIX is the class of label and NUM is the number within the class. */
4258
44404b8b 4259#undef ASM_OUTPUT_INTERNAL_LABEL
e75b25e7 4260#define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
6ae1498b 4261 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
e75b25e7
MM
4262
4263/* This is how to store into the string LABEL
4264 the symbol_ref name of an internal numbered label where
4265 PREFIX is the class of label and NUM is the number within the class.
4266 This is suitable for output with `assemble_name'. */
4267
44404b8b 4268#undef ASM_GENERATE_INTERNAL_LABEL
e75b25e7 4269#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4f70758f 4270 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
e75b25e7
MM
4271
4272/* This is how to output an assembler line defining a `double' constant. */
4273
4274#define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
dbe9742d
MM
4275 mips_output_double (STREAM, VALUE)
4276
e75b25e7
MM
4277
4278/* This is how to output an assembler line defining a `float' constant. */
4279
4280#define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
dbe9742d
MM
4281 mips_output_float (STREAM, VALUE)
4282
e75b25e7
MM
4283
4284/* This is how to output an assembler line defining an `int' constant. */
4285
e75b25e7
MM
4286#define ASM_OUTPUT_INT(STREAM,VALUE) \
4287do { \
4288 fprintf (STREAM, "\t.word\t"); \
4289 output_addr_const (STREAM, (VALUE)); \
4290 fprintf (STREAM, "\n"); \
4291} while (0)
4292
7dac2f89 4293/* Likewise for 64 bit, `char' and `short' constants.
d89ccde6
GRK
4294
4295 FIXME: operand_subword can't handle some complex constant expressions
4296 that output_addr_const can (for example it does not call
7dac2f89 4297 simplify_subtraction). Since GAS can handle dword, even for mipsII,
d89ccde6
GRK
4298 rely on that to avoid operand_subword for most of the cases where this
4299 matters. Try gcc.c-torture/compile/930326-1.c with -mips2 -mlong64,
4300 or the same case with the type of 'i' changed to long long.
4301
4302*/
876c09d3
JW
4303
4304#define ASM_OUTPUT_DOUBLE_INT(STREAM,VALUE) \
4305do { \
d89ccde6 4306 if (TARGET_64BIT || TARGET_GAS) \
876c09d3
JW
4307 { \
4308 fprintf (STREAM, "\t.dword\t"); \
a88d48a4
JW
4309 if (HOST_BITS_PER_WIDE_INT < 64 || GET_CODE (VALUE) != CONST_INT) \
4310 /* We can't use 'X' for negative numbers, because then we won't \
4311 get the right value for the upper 32 bits. */ \
4312 output_addr_const (STREAM, VALUE); \
4313 else \
4314 /* We must use 'X', because otherwise LONG_MIN will print as \
4315 a number that the Irix 6 assembler won't accept. */ \
4316 print_operand (STREAM, VALUE, 'X'); \
876c09d3
JW
4317 fprintf (STREAM, "\n"); \
4318 } \
4319 else \
4320 { \
4321 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
c8af3574 4322 UNITS_PER_WORD, BITS_PER_WORD, 1); \
876c09d3 4323 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
c8af3574 4324 UNITS_PER_WORD, BITS_PER_WORD, 1); \
876c09d3
JW
4325 } \
4326} while (0)
e75b25e7
MM
4327
4328#define ASM_OUTPUT_SHORT(STREAM,VALUE) \
4329{ \
4330 fprintf (STREAM, "\t.half\t"); \
4331 output_addr_const (STREAM, (VALUE)); \
4332 fprintf (STREAM, "\n"); \
4333}
4334
4335#define ASM_OUTPUT_CHAR(STREAM,VALUE) \
4336{ \
4337 fprintf (STREAM, "\t.byte\t"); \
4338 output_addr_const (STREAM, (VALUE)); \
4339 fprintf (STREAM, "\n"); \
4340}
4341
e75b25e7
MM
4342/* This is how to output an assembler line for a numeric constant byte. */
4343
4344#define ASM_OUTPUT_BYTE(STREAM,VALUE) \
c3d03e3a 4345 fprintf (STREAM, "\t.byte\t0x%x\n", (int)(VALUE))
e75b25e7
MM
4346
4347/* This is how to output an element of a case-vector that is absolute. */
4348
4349#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
6ae1498b 4350 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4351 Pmode == DImode ? ".dword" : ".word", \
6ae1498b 4352 LOCAL_LABEL_PREFIX, \
876c09d3 4353 VALUE)
e75b25e7
MM
4354
4355/* This is how to output an element of a case-vector that is relative.
e0bfcea5
ILT
4356 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
4357 TARGET_EMBEDDED_PIC). */
e75b25e7 4358
33f7f353 4359#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
e0bfcea5 4360do { \
2bcb2ab3
GK
4361 if (TARGET_MIPS16) \
4362 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
4363 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4364 else if (TARGET_EMBEDDED_PIC) \
6ae1498b 4365 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
1eeed24e 4366 Pmode == DImode ? ".dword" : ".word", \
6ae1498b 4367 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
a53f72db 4368 else if (mips_abi == ABI_32 || mips_abi == ABI_O64) \
6ae1498b 4369 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4370 Pmode == DImode ? ".gpdword" : ".gpword", \
6ae1498b 4371 LOCAL_LABEL_PREFIX, VALUE); \
516a2dfd 4372 else \
b2d8cf33 4373 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4374 Pmode == DImode ? ".dword" : ".word", \
b2d8cf33 4375 LOCAL_LABEL_PREFIX, VALUE); \
e0bfcea5
ILT
4376} while (0)
4377
2bcb2ab3
GK
4378/* When generating embedded PIC or mips16 code we want to put the jump
4379 table in the .text section. In all other cases, we want to put the
4380 jump table in the .rdata section. Unfortunately, we can't use
e0bfcea5
ILT
4381 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
4382 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
4383 section if appropriate. */
44404b8b 4384#undef ASM_OUTPUT_CASE_LABEL
e0bfcea5
ILT
4385#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
4386do { \
2bcb2ab3
GK
4387 if (TARGET_EMBEDDED_PIC || TARGET_MIPS16) \
4388 function_section (current_function_decl); \
e0bfcea5
ILT
4389 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
4390} while (0)
e75b25e7
MM
4391
4392/* This is how to output an assembler line
4393 that says to advance the location counter
4394 to a multiple of 2**LOG bytes. */
4395
4396#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
a688e0b7 4397 fprintf (STREAM, "\t.align\t%d\n", (LOG))
e75b25e7 4398
38e01259 4399/* This is how to output an assembler line to advance the location
e75b25e7
MM
4400 counter by SIZE bytes. */
4401
44404b8b 4402#undef ASM_OUTPUT_SKIP
e75b25e7
MM
4403#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
4404 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
4405
e75b25e7 4406/* This is how to output a string. */
44404b8b 4407#undef ASM_OUTPUT_ASCII
e75b25e7 4408#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
b3276c7a 4409 mips_output_ascii (STREAM, STRING, LEN)
e75b25e7
MM
4410
4411/* Handle certain cpp directives used in header files on sysV. */
4412#define SCCS_DIRECTIVE
4413
b2bcb32d 4414#ifndef ASM_OUTPUT_IDENT
e75b25e7
MM
4415/* Output #ident as a in the read-only data section. */
4416#define ASM_OUTPUT_IDENT(FILE, STRING) \
4417{ \
3cce094d 4418 const char *p = STRING; \
e75b25e7
MM
4419 int size = strlen (p) + 1; \
4420 rdata_section (); \
4421 assemble_string (p, size); \
4422}
b2bcb32d 4423#endif
e75b25e7 4424\f
b82b0773
MM
4425/* Default to -G 8 */
4426#ifndef MIPS_DEFAULT_GVALUE
4427#define MIPS_DEFAULT_GVALUE 8
4428#endif
e75b25e7 4429
f3b39eba
MM
4430/* Define the strings to put out for each section in the object file. */
4431#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
4432#define DATA_SECTION_ASM_OP "\t.data" /* large data */
4433#define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
4434#define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
44404b8b 4435#undef READONLY_DATA_SECTION
f3b39eba 4436#define READONLY_DATA_SECTION rdata_section
3cf6400d 4437#define SMALL_DATA_SECTION sdata_section
e75b25e7
MM
4438
4439/* What other sections we support other than the normal .data/.text. */
4440
44404b8b 4441#undef EXTRA_SECTIONS
876c09d3 4442#define EXTRA_SECTIONS in_sdata, in_rdata
e75b25e7
MM
4443
4444/* Define the additional functions to select our additional sections. */
4445
4446/* on the MIPS it is not a good idea to put constants in the text
4447 section, since this defeats the sdata/data mechanism. This is
4448 especially true when -O is used. In this case an effort is made to
4449 address with faster (gp) register relative addressing, which can
4450 only get at sdata and sbss items (there is no stext !!) However,
4451 if the constant is too large for sdata, and it's readonly, it
4452 will go into the .rdata section. */
4453
44404b8b 4454#undef EXTRA_SECTION_FUNCTIONS
e75b25e7
MM
4455#define EXTRA_SECTION_FUNCTIONS \
4456void \
4457sdata_section () \
4458{ \
4459 if (in_section != in_sdata) \
4460 { \
4461 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
4462 in_section = in_sdata; \
4463 } \
4464} \
4465 \
4466void \
4467rdata_section () \
4468{ \
4469 if (in_section != in_rdata) \
4470 { \
4471 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
4472 in_section = in_rdata; \
4473 } \
4474}
4475
4476/* Given a decl node or constant node, choose the section to output it in
4477 and select that section. */
4478
44404b8b 4479#undef SELECT_RTX_SECTION
201556f0
JJ
4480#define SELECT_RTX_SECTION(MODE, RTX, ALIGN) \
4481 mips_select_rtx_section (MODE, RTX)
e75b25e7 4482
44404b8b 4483#undef SELECT_SECTION
201556f0
JJ
4484#define SELECT_SECTION(DECL, RELOC, ALIGN) \
4485 mips_select_section (DECL, RELOC)
e75b25e7
MM
4486
4487\f
4488/* Store in OUTPUT a string (made with alloca) containing
4489 an assembler-name for a local static variable named NAME.
4490 LABELNO is an integer which is different for each call. */
4491
4492#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
4493( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
4494 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
4495
4496#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
4497do \
4498 { \
876c09d3
JW
4499 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
4500 TARGET_64BIT ? "dsubu" : "subu", \
e75b25e7
MM
4501 reg_names[STACK_POINTER_REGNUM], \
4502 reg_names[STACK_POINTER_REGNUM], \
876c09d3 4503 TARGET_64BIT ? "sd" : "sw", \
e75b25e7
MM
4504 reg_names[REGNO], \
4505 reg_names[STACK_POINTER_REGNUM]); \
4506 } \
4507while (0)
4508
4509#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
4510do \
4511 { \
4512 if (! set_noreorder) \
4513 fprintf (STREAM, "\t.set\tnoreorder\n"); \
4514 \
4515 dslots_load_total++; \
4516 dslots_load_filled++; \
876c09d3
JW
4517 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4518 TARGET_64BIT ? "ld" : "lw", \
e75b25e7
MM
4519 reg_names[REGNO], \
4520 reg_names[STACK_POINTER_REGNUM], \
876c09d3 4521 TARGET_64BIT ? "daddu" : "addu", \
e75b25e7
MM
4522 reg_names[STACK_POINTER_REGNUM], \
4523 reg_names[STACK_POINTER_REGNUM]); \
4524 \
4525 if (! set_noreorder) \
4526 fprintf (STREAM, "\t.set\treorder\n"); \
4527 } \
4528while (0)
4529
4baed42f
DE
4530/* How to start an assembler comment.
4531 The leading space is important (the mips native assembler requires it). */
e75b25e7 4532#ifndef ASM_COMMENT_START
4baed42f 4533#define ASM_COMMENT_START " #"
e75b25e7 4534#endif
e75b25e7
MM
4535\f
4536
4537/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4538 and mips-tdump.c to print them out.
4539
4540 These must match the corresponding definitions in gdb/mipsread.c.
4541 Unfortunately, gcc and gdb do not currently share any directories. */
4542
4543#define CODE_MASK 0x8F300
4544#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4545#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4546#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
3f1f8d8c
MM
4547
4548\f
4549/* Default definitions for size_t and ptrdiff_t. */
4550
4551#ifndef SIZE_TYPE
876c09d3 4552#define NO_BUILTIN_SIZE_TYPE
79e69af0 4553#define SIZE_TYPE (Pmode == DImode ? "long unsigned int" : "unsigned int")
3f1f8d8c
MM
4554#endif
4555
4556#ifndef PTRDIFF_TYPE
876c09d3 4557#define NO_BUILTIN_PTRDIFF_TYPE
79e69af0 4558#define PTRDIFF_TYPE (Pmode == DImode ? "long int" : "int")
3f1f8d8c 4559#endif
28174a14
MS
4560
4561/* See mips_expand_prologue's use of loadgp for when this should be
4562 true. */
4563
a53f72db
GRK
4564#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS \
4565 && mips_abi != ABI_32 \
4566 && mips_abi != ABI_O64)
2bcb2ab3
GK
4567\f
4568/* In mips16 mode, we need to look through the function to check for
4569 PC relative loads that are out of range. */
4570#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)
4571
4572/* We need to use a special set of functions to handle hard floating
4573 point code in mips16 mode. */
337e2b69
ILT
4574
4575#ifndef INIT_SUBTARGET_OPTABS
4576#define INIT_SUBTARGET_OPTABS
4577#endif
4578
4579#define INIT_TARGET_OPTABS \
4580do \
4581 { \
2bcb2ab3
GK
4582 if (! TARGET_MIPS16 || ! mips16_hard_float) \
4583 INIT_SUBTARGET_OPTABS; \
4584 else \
4585 { \
4586 add_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4587 init_one_libfunc ("__mips16_addsf3"); \
2bcb2ab3 4588 sub_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4589 init_one_libfunc ("__mips16_subsf3"); \
2bcb2ab3 4590 smul_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4591 init_one_libfunc ("__mips16_mulsf3"); \
ef89d648 4592 sdiv_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4593 init_one_libfunc ("__mips16_divsf3"); \
2bcb2ab3 4594 \
e85cde9a
JL
4595 eqsf2_libfunc = init_one_libfunc ("__mips16_eqsf2"); \
4596 nesf2_libfunc = init_one_libfunc ("__mips16_nesf2"); \
4597 gtsf2_libfunc = init_one_libfunc ("__mips16_gtsf2"); \
4598 gesf2_libfunc = init_one_libfunc ("__mips16_gesf2"); \
4599 ltsf2_libfunc = init_one_libfunc ("__mips16_ltsf2"); \
4600 lesf2_libfunc = init_one_libfunc ("__mips16_lesf2"); \
2bcb2ab3
GK
4601 \
4602 floatsisf_libfunc = \
e85cde9a 4603 init_one_libfunc ("__mips16_floatsisf"); \
2bcb2ab3 4604 fixsfsi_libfunc = \
e85cde9a 4605 init_one_libfunc ("__mips16_fixsfsi"); \
2bcb2ab3
GK
4606 \
4607 if (TARGET_DOUBLE_FLOAT) \
4608 { \
4609 add_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4610 init_one_libfunc ("__mips16_adddf3"); \
2bcb2ab3 4611 sub_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4612 init_one_libfunc ("__mips16_subdf3"); \
2bcb2ab3 4613 smul_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4614 init_one_libfunc ("__mips16_muldf3"); \
ef89d648 4615 sdiv_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4616 init_one_libfunc ("__mips16_divdf3"); \
2bcb2ab3
GK
4617 \
4618 extendsfdf2_libfunc = \
e85cde9a 4619 init_one_libfunc ("__mips16_extendsfdf2"); \
2bcb2ab3 4620 truncdfsf2_libfunc = \
e85cde9a 4621 init_one_libfunc ("__mips16_truncdfsf2"); \
2bcb2ab3
GK
4622 \
4623 eqdf2_libfunc = \
e85cde9a 4624 init_one_libfunc ("__mips16_eqdf2"); \
2bcb2ab3 4625 nedf2_libfunc = \
e85cde9a 4626 init_one_libfunc ("__mips16_nedf2"); \
2bcb2ab3 4627 gtdf2_libfunc = \
e85cde9a 4628 init_one_libfunc ("__mips16_gtdf2"); \
2bcb2ab3 4629 gedf2_libfunc = \
e85cde9a 4630 init_one_libfunc ("__mips16_gedf2"); \
2bcb2ab3 4631 ltdf2_libfunc = \
e85cde9a 4632 init_one_libfunc ("__mips16_ltdf2"); \
2bcb2ab3 4633 ledf2_libfunc = \
e85cde9a 4634 init_one_libfunc ("__mips16_ledf2"); \
2bcb2ab3
GK
4635 \
4636 floatsidf_libfunc = \
e85cde9a 4637 init_one_libfunc ("__mips16_floatsidf"); \
2bcb2ab3 4638 fixdfsi_libfunc = \
e85cde9a 4639 init_one_libfunc ("__mips16_fixdfsi"); \
2bcb2ab3
GK
4640 } \
4641 } \
337e2b69
ILT
4642 } \
4643while (0)