]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/mips/mips.h
Turn HARD_REGNO_MODE_OK into a target hook
[thirdparty/gcc.git] / gcc / config / mips / mips.h
CommitLineData
c8829dad 1/* Definitions of target machine for GNU compiler. MIPS version.
aad93da1 2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
bad0fa11 3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
c910419d 5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
bad0fa11 6 Brendan Eich (brendan@microunity.com).
c8829dad 7
187b36cf 8This file is part of GCC.
c8829dad 9
187b36cf 10GCC is free software; you can redistribute it and/or modify
c8829dad 11it under the terms of the GNU General Public License as published by
038d1e19 12the Free Software Foundation; either version 3, or (at your option)
c8829dad 13any later version.
14
187b36cf 15GCC is distributed in the hope that it will be useful,
c8829dad 16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
038d1e19 21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
c8829dad 23
24
a8a393cb 25#include "config/vxworks-dummy.h"
26
96cfbaee 27#ifdef GENERATOR_FILE
28/* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30extern int target_flags_explicit;
31#endif
32
c8829dad 33/* MIPS external variables defined in mips.c. */
34
efd092f3 35/* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
c910419d 37 to work on a 64-bit machine. */
6c51b52b 38
ef9c575c 39#define ABI_32 0
40#define ABI_N32 1
41#define ABI_64 2
42#define ABI_EABI 3
a4e2d767 43#define ABI_O64 4
582b17a6 44
6b65ee54 45/* Masks that affect tuning.
46
e55aa189 47 PTF_AVOID_BRANCHLIKELY_SPEED
6b65ee54 48 Set if it is usually not profitable to use branch-likely instructions
e55aa189 49 for this target when optimizing code for speed, typically because
50 the branches are always predicted taken and so incur a large overhead
51 when not taken.
52
53 PTF_AVOID_BRANCHLIKELY_SIZE
54 As above but when optimizing for size.
55
56 PTF_AVOID_BRANCHLIKELY_ALWAYS
57 As above but regardless of whether we optimize for speed or size.
14844884 58
59 PTF_AVOID_IMADD
60 Set if it is usually not profitable to use the integer MADD or MSUB
61 instructions because of the overhead of getting the result out of
62 the HI/LO registers. */
63
e55aa189 64#define PTF_AVOID_BRANCHLIKELY_SPEED 0x1
65#define PTF_AVOID_BRANCHLIKELY_SIZE 0x2
66#define PTF_AVOID_BRANCHLIKELY_ALWAYS (PTF_AVOID_BRANCHLIKELY_SPEED | \
67 PTF_AVOID_BRANCHLIKELY_SIZE)
68#define PTF_AVOID_IMADD 0x4
6b65ee54 69
a2f10574 70/* Information about one recognized processor. Defined here for the
5153cc32 71 benefit of TARGET_CPU_CPP_BUILTINS. */
72struct mips_cpu_info {
73 /* The 'canonical' name of the processor as far as GCC is concerned.
74 It's typically a manufacturer's prefix followed by a numerical
c910419d 75 designation. It should be lowercase. */
5153cc32 76 const char *name;
77
78 /* The internal processor number that most closely matches this
79 entry. Several processors can have the same value, if there's no
80 difference between them from GCC's point of view. */
5d54fceb 81 enum processor cpu;
5153cc32 82
83 /* The ISA level that the processor implements. */
84 int isa;
6b65ee54 85
86 /* A mask of PTF_* values. */
87 unsigned int tune_flags;
5153cc32 88};
89
498fed4e 90#include "config/mips/mips-opts.h"
f02776dd 91
e47c8b8f 92/* Macros to silence warnings about numbers being signed in traditional
93 C and unsigned in ISO C when compiled on 32-bit hosts. */
94
95#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
96#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
97#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
98
1656cc5c 99\f
100/* Run-time compilation parameters selecting different hardware subsets. */
101
a8a393cb 102/* True if we are generating position-independent VxWorks RTP code. */
103#define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
104
59449ca9 105/* Compact branches must not be used if the user either selects the
106 'never' policy or the 'optimal' policy on a core that lacks
107 compact branch instructions. */
108#define TARGET_CB_NEVER (mips_cb == MIPS_CB_NEVER \
109 || (mips_cb == MIPS_CB_OPTIMAL \
110 && !ISA_HAS_COMPACT_BRANCHES))
111
112/* Compact branches may be used if the user either selects the
113 'always' policy or the 'optimal' policy on a core that supports
114 compact branch instructions. */
115#define TARGET_CB_MAYBE (TARGET_CB_ALWAYS \
116 || (mips_cb == MIPS_CB_OPTIMAL \
117 && ISA_HAS_COMPACT_BRANCHES))
118
119/* Compact branches must always be generated if the user selects
120 the 'always' policy or the 'optimal' policy om a core that
121 lacks delay slot branch instructions. */
122#define TARGET_CB_ALWAYS (mips_cb == MIPS_CB_ALWAYS \
123 || (mips_cb == MIPS_CB_OPTIMAL \
124 && !ISA_HAS_DELAY_SLOTS))
125
126/* Special handling for JRC that exists in microMIPSR3 as well as R6
127 ISAs with full compact branch support. */
128#define ISA_HAS_JRC ((ISA_HAS_COMPACT_BRANCHES \
129 || TARGET_MICROMIPS) \
130 && mips_cb != MIPS_CB_NEVER)
131
4a909f69 132/* True if the output file is marked as ".abicalls; .option pic0"
133 (-call_nonpic). */
134#define TARGET_ABICALLS_PIC0 \
135 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
136
137/* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
138#define TARGET_ABICALLS_PIC2 \
139 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
140
c9e1a048 141/* True if the call patterns should be split into a jalr followed by
46414626 142 an instruction to restore $gp. It is only safe to split the load
74facf6e 143 from the call when every use of $gp is explicit.
144
145 See mips_must_initialize_gp_p for details about how we manage the
146 global pointer. */
c9e1a048 147
148#define TARGET_SPLIT_CALLS \
74facf6e 149 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
c9e1a048 150
1b6b10a9 151/* True if we're generating a form of -mabicalls in which we can use
152 operators like %hi and %lo to refer to locally-binding symbols.
153 We can only do this for -mno-shared, and only then if we can use
154 relocation operations instead of assembly macros. It isn't really
155 worth using absolute sequences for 64-bit symbols because GOT
156 accesses are so much shorter. */
157
158#define TARGET_ABSOLUTE_ABICALLS \
159 (TARGET_ABICALLS \
160 && !TARGET_SHARED \
161 && TARGET_EXPLICIT_RELOCS \
162 && !ABI_HAS_64BIT_SYMBOLS)
163
c9e1a048 164/* True if we can optimize sibling calls. For simplicity, we only
165 handle cases in which call_insn_operand will reject invalid
166 sibcall addresses. There are two cases in which this isn't true:
167
168 - TARGET_MIPS16. call_insn_operand accepts constant addresses
169 but there is no direct jump instruction. It isn't worth
170 using sibling calls in this case anyway; they would usually
171 be longer than normal calls.
172
46414626 173 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
174 accepts global constants, but all sibcalls must be indirect. */
c9e1a048 175#define TARGET_SIBCALLS \
46414626 176 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
177
178/* True if we need to use a global offset table to access some symbols. */
a8a393cb 179#define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
46414626 180
181/* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
182#define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
183
184/* True if TARGET_USE_GOT and if $gp is a call-saved register. */
185#define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
186
74facf6e 187/* True if we should use .cprestore to store to the cprestore slot.
188
189 We continue to use .cprestore for explicit-reloc code so that JALs
190 inside inline asms will work correctly. */
191#define TARGET_CPRESTORE_DIRECTIVE \
192 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
193
194/* True if we can use the J and JAL instructions. */
195#define TARGET_ABSOLUTE_JUMPS \
196 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
197
a8a393cb 198/* True if indirect calls must use register class PIC_FN_ADDR_REG.
199 This is true for both the PIC and non-PIC VxWorks RTP modes. */
200#define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
c9e1a048 201
5641963c 202/* True if .gpword or .gpdword should be used for switch tables. */
4a909f69 203#define TARGET_GPWORD \
5641963c 204 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
c9e1a048 205
c4cf26ad 206/* True if the output must have a writable .eh_frame.
207 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
208#ifdef HAVE_LD_PERSONALITY_RELAXATION
209#define TARGET_WRITABLE_EH_FRAME 0
210#else
211#define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
212#endif
213
3e60fdb7 214/* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
215#ifdef HAVE_AS_DSPR1_MULT
216#define ISA_HAS_DSP_MULT ISA_HAS_DSP
217#else
218#define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
219#endif
220
79c79069 221/* ISA has LSA available. */
74324645 222#define ISA_HAS_LSA (mips_isa_rev >= 6 || ISA_HAS_MSA)
79c79069 223
224/* ISA has DLSA available. */
74324645 225#define ISA_HAS_DLSA (TARGET_64BIT \
226 && (mips_isa_rev >= 6 \
227 || ISA_HAS_MSA))
79c79069 228
ff9c1bc1 229/* The ISA compression flags that are currently in effect. */
230#define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
231
d0989c92 232/* Generate mips16 code */
17322e2e 233#define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
606c99b0 234/* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
d0989c92 235#define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
0e13e859 236/* Generate mips16e register save/restore sequences. */
237#define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
4ddcf2b2 238
f02776dd 239/* True if we're generating a form of MIPS16 code in which general
240 text loads are allowed. */
241#define TARGET_MIPS16_TEXT_LOADS \
242 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
243
244/* True if we're generating a form of MIPS16 code in which PC-relative
245 loads are allowed. */
246#define TARGET_MIPS16_PCREL_LOADS \
247 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
248
fa2b6990 249/* Generic ISA defines. */
250#define ISA_MIPS1 (mips_isa == 1)
251#define ISA_MIPS2 (mips_isa == 2)
252#define ISA_MIPS3 (mips_isa == 3)
253#define ISA_MIPS4 (mips_isa == 4)
254#define ISA_MIPS32 (mips_isa == 32)
a02568c6 255#define ISA_MIPS32R2 (mips_isa == 33)
32ac2387 256#define ISA_MIPS32R3 (mips_isa == 34)
257#define ISA_MIPS32R5 (mips_isa == 36)
78645e70 258#define ISA_MIPS32R6 (mips_isa == 37)
fa2b6990 259#define ISA_MIPS64 (mips_isa == 64)
606c99b0 260#define ISA_MIPS64R2 (mips_isa == 65)
32ac2387 261#define ISA_MIPS64R3 (mips_isa == 66)
262#define ISA_MIPS64R5 (mips_isa == 68)
78645e70 263#define ISA_MIPS64R6 (mips_isa == 69)
fa2b6990 264
08aec1b6 265/* Architecture target defines. */
606c99b0 266#define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
267#define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
268#define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
b85e9a16 269#define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
08aec1b6 270#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
271#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
e3759132 272#define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
bff47c96 273#define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
2857c21b 274#define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
275#define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
60b34f30 276#define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
350ddac6 277#define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
668de2f7 278#define TARGET_MIPS8000 (mips_arch == PROCESSOR_R8000)
587d2e9a 279#define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
caa36f1c 280#define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
f083e315 281 || mips_arch == PROCESSOR_OCTEON2 \
282 || mips_arch == PROCESSOR_OCTEON3)
283#define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2 \
284 || mips_arch == PROCESSOR_OCTEON3)
2ca4dfa4 285#define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
286 || mips_arch == PROCESSOR_SB1A)
2857c21b 287#define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
974f0a74 288#define TARGET_XLP (mips_arch == PROCESSOR_XLP)
08aec1b6 289
290/* Scheduling target defines. */
606c99b0 291#define TUNE_20KC (mips_tune == PROCESSOR_20KC)
292#define TUNE_24K (mips_tune == PROCESSOR_24KC \
293 || mips_tune == PROCESSOR_24KF2_1 \
294 || mips_tune == PROCESSOR_24KF1_1)
295#define TUNE_74K (mips_tune == PROCESSOR_74KC \
296 || mips_tune == PROCESSOR_74KF2_1 \
297 || mips_tune == PROCESSOR_74KF1_1 \
298 || mips_tune == PROCESSOR_74KF3_2)
299#define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
300 || mips_tune == PROCESSOR_LOONGSON_2F)
b85e9a16 301#define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
34d2ed06 302#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
303#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
304#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
66e8e04f 305#define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
306#define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
34d2ed06 307#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
2857c21b 308#define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
309#define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
34d2ed06 310#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
350ddac6 311#define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
587d2e9a 312#define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
caa36f1c 313#define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
f083e315 314 || mips_tune == PROCESSOR_OCTEON2 \
315 || mips_tune == PROCESSOR_OCTEON3)
2ca4dfa4 316#define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
317 || mips_tune == PROCESSOR_SB1A)
c3440169 318#define TUNE_P5600 (mips_tune == PROCESSOR_P5600)
607f558c 319#define TUNE_I6400 (mips_tune == PROCESSOR_I6400)
08aec1b6 320
9636921b 321/* Whether vector modes and intrinsics for ST Microelectronics
322 Loongson-2E/2F processors should be enabled. In o32 pairs of
323 floating-point registers provide 64-bit values. */
324#define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
b85e9a16 325 && (TARGET_LOONGSON_2EF \
326 || TARGET_LOONGSON_3A))
9636921b 327
1a5fa45d 328/* True if the pre-reload scheduler should try to create chains of
329 multiply-add or multiply-subtract instructions. For example,
330 suppose we have:
331
332 t1 = a * b
333 t2 = t1 + c * d
92a94cc3 334 t3 = e * f
335 t4 = t3 - g * h
1a5fa45d 336
92a94cc3 337 t1 will have a higher priority than t2 and t3 will have a higher
1a5fa45d 338 priority than t4. However, before reload, there is no dependence
339 between t1 and t3, and they can often have similar priorities.
340 The scheduler will then tend to prefer:
341
342 t1 = a * b
343 t3 = e * f
344 t2 = t1 + c * d
345 t4 = t3 - g * h
346
347 which stops us from making full use of macc/madd-style instructions.
348 This sort of situation occurs frequently in Fourier transforms and
349 in unrolled loops.
350
351 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
352 queue so that chained multiply-add and multiply-subtract instructions
353 appear ahead of any other instruction that is likely to clobber lo.
354 In the example above, if t2 and t3 become ready at the same time,
355 the code ensures that t2 is scheduled first.
356
357 Multiply-accumulate instructions are a bigger win for some targets
358 than others, so this macro is defined on an opt-in basis. */
66e8e04f 359#define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
360 || TUNE_MIPS4120 \
7f666194 361 || TUNE_MIPS4130 \
c3440169 362 || TUNE_24K \
363 || TUNE_P5600)
1a5fa45d 364
93a1903e 365#define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
c9e1a048 366#define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
367
951d98af 368/* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
369 directly accessible, while the command-line options select
370 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
371 in use. */
372#define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
373#define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
3c367092 374
f2b55aea 375/* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
376 -mfpxx, derive TARGET_FLOAT32 to represent -mfp32. */
377#define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
378
379/* TARGET_O32_FP64A_ABI represents all the conditions that form the
380 o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg). */
381#define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
382 && !TARGET_ODD_SPREG)
383
3c367092 384/* False if SC acts as a memory barrier with respect to itself,
385 otherwise a SYNC will be emitted after SC for atomic operations
386 that require ordering between the SC and following loads and
387 stores. It does not tell anything about ordering of loads and
388 stores prior to and following the SC, only about the SC itself and
389 those loads and stores follow it. */
974f0a74 390#define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
3c367092 391
5153cc32 392/* Define preprocessor macros for the -march and -mtune options.
393 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
394 processor. If INFO's canonical name is "foo", define PREFIX to
395 be "foo", and define an additional macro PREFIX_FOO. */
396#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
397 do \
398 { \
399 char *macro, *p; \
400 \
401 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
402 for (p = macro; *p != 0; p++) \
fe415b69 403 if (*p == '+') \
404 *p = 'P'; \
405 else \
406 *p = TOUPPER (*p); \
5153cc32 407 \
408 builtin_define (macro); \
409 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
410 free (macro); \
411 } \
412 while (0)
413
fa2b6990 414/* Target CPU builtins. */
5aeba334 415#define TARGET_CPU_CPP_BUILTINS() \
416 do \
417 { \
5641963c 418 builtin_assert ("machine=mips"); \
5aeba334 419 builtin_assert ("cpu=mips"); \
420 builtin_define ("__mips__"); \
421 builtin_define ("_mips"); \
422 \
2baac351 423 /* We do this here because __mips is defined below and so we \
424 can't use builtin_define_std. We don't ever want to define \
425 "mips" for VxWorks because some of the VxWorks headers \
426 construct include filenames from a root directory macro, \
427 an architecture macro and a filename, where the architecture \
428 macro expands to 'mips'. If we define 'mips' to 1, the \
429 architecture macro expands to 1 as well. */ \
430 if (!flag_iso && !TARGET_VXWORKS) \
5aeba334 431 builtin_define ("mips"); \
432 \
433 if (TARGET_64BIT) \
434 builtin_define ("__mips64"); \
435 \
5641963c 436 /* Treat _R3000 and _R4000 like register-size \
437 defines, which is how they've historically \
438 been used. */ \
439 if (TARGET_64BIT) \
5aeba334 440 { \
5641963c 441 builtin_define_std ("R4000"); \
442 builtin_define ("_R4000"); \
443 } \
444 else \
445 { \
446 builtin_define_std ("R3000"); \
447 builtin_define ("_R3000"); \
5aeba334 448 } \
5641963c 449 \
5aeba334 450 if (TARGET_FLOAT64) \
451 builtin_define ("__mips_fpr=64"); \
f2b55aea 452 else if (TARGET_FLOATXX) \
453 builtin_define ("__mips_fpr=0"); \
5aeba334 454 else \
455 builtin_define ("__mips_fpr=32"); \
456 \
ff9c1bc1 457 if (mips_base_compression_flags & MASK_MIPS16) \
5aeba334 458 builtin_define ("__mips16"); \
459 \
460 if (TARGET_MIPS3D) \
461 builtin_define ("__mips3d"); \
462 \
463 if (TARGET_SMARTMIPS) \
464 builtin_define ("__mips_smartmips"); \
465 \
ff9c1bc1 466 if (mips_base_compression_flags & MASK_MICROMIPS) \
467 builtin_define ("__mips_micromips"); \
468 \
e876044e 469 if (TARGET_MCU) \
470 builtin_define ("__mips_mcu"); \
471 \
3721f3a0 472 if (TARGET_EVA) \
473 builtin_define ("__mips_eva"); \
474 \
5aeba334 475 if (TARGET_DSP) \
476 { \
477 builtin_define ("__mips_dsp"); \
478 if (TARGET_DSPR2) \
479 { \
480 builtin_define ("__mips_dspr2"); \
481 builtin_define ("__mips_dsp_rev=2"); \
482 } \
483 else \
484 builtin_define ("__mips_dsp_rev=1"); \
485 } \
486 \
ddc6405a 487 if (ISA_HAS_MSA) \
488 { \
489 builtin_define ("__mips_msa"); \
490 builtin_define ("__mips_msa_width=128"); \
491 } \
492 \
5aeba334 493 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
494 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
495 \
496 if (ISA_MIPS1) \
497 { \
498 builtin_define ("__mips=1"); \
499 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
500 } \
501 else if (ISA_MIPS2) \
502 { \
503 builtin_define ("__mips=2"); \
504 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
505 } \
506 else if (ISA_MIPS3) \
507 { \
508 builtin_define ("__mips=3"); \
509 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
510 } \
511 else if (ISA_MIPS4) \
512 { \
513 builtin_define ("__mips=4"); \
514 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
515 } \
78645e70 516 else if (mips_isa >= 32 && mips_isa < 64) \
5aeba334 517 { \
518 builtin_define ("__mips=32"); \
5aeba334 519 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
520 } \
78645e70 521 else if (mips_isa >= 64) \
32ac2387 522 { \
523 builtin_define ("__mips=64"); \
524 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
525 } \
95faea77 526 if (mips_isa_rev > 0) \
527 builtin_define_with_int_value ("__mips_isa_rev", \
528 mips_isa_rev); \
5aeba334 529 \
530 switch (mips_abi) \
531 { \
532 case ABI_32: \
533 builtin_define ("_ABIO32=1"); \
534 builtin_define ("_MIPS_SIM=_ABIO32"); \
535 break; \
536 \
537 case ABI_N32: \
538 builtin_define ("_ABIN32=2"); \
539 builtin_define ("_MIPS_SIM=_ABIN32"); \
540 break; \
541 \
542 case ABI_64: \
543 builtin_define ("_ABI64=3"); \
544 builtin_define ("_MIPS_SIM=_ABI64"); \
545 break; \
546 \
547 case ABI_O64: \
548 builtin_define ("_ABIO64=4"); \
549 builtin_define ("_MIPS_SIM=_ABIO64"); \
550 break; \
551 } \
552 \
553 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
554 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
555 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
556 builtin_define_with_int_value ("_MIPS_FPSET", \
557 32 / MAX_FPRS_PER_FMT); \
f2b55aea 558 builtin_define_with_int_value ("_MIPS_SPFPSET", \
559 TARGET_ODD_SPREG ? 32 : 16); \
5aeba334 560 \
561 /* These defines reflect the ABI in use, not whether the \
562 FPU is directly accessible. */ \
27a909cf 563 if (TARGET_NO_FLOAT) \
564 builtin_define ("__mips_no_float"); \
565 else if (TARGET_HARD_FLOAT_ABI) \
5aeba334 566 builtin_define ("__mips_hard_float"); \
567 else \
568 builtin_define ("__mips_soft_float"); \
569 \
570 if (TARGET_SINGLE_FLOAT) \
571 builtin_define ("__mips_single_float"); \
572 \
573 if (TARGET_PAIRED_SINGLE_FLOAT) \
574 builtin_define ("__mips_paired_single_float"); \
575 \
0bd32132 576 if (mips_abs == MIPS_IEEE_754_2008) \
577 builtin_define ("__mips_abs2008"); \
578 \
579 if (mips_nan == MIPS_IEEE_754_2008) \
580 builtin_define ("__mips_nan2008"); \
581 \
5aeba334 582 if (TARGET_BIG_ENDIAN) \
583 { \
584 builtin_define_std ("MIPSEB"); \
585 builtin_define ("_MIPSEB"); \
586 } \
587 else \
588 { \
589 builtin_define_std ("MIPSEL"); \
590 builtin_define ("_MIPSEL"); \
591 } \
9636921b 592 \
87c85492 593 /* Whether calls should go through $25. The separate __PIC__ \
594 macro indicates whether abicalls code might use a GOT. */ \
595 if (TARGET_ABICALLS) \
596 builtin_define ("__mips_abicalls"); \
597 \
9636921b 598 /* Whether Loongson vector modes are enabled. */ \
599 if (TARGET_LOONGSON_VECTORS) \
600 builtin_define ("__mips_loongson_vector_rev"); \
5aeba334 601 \
fc84efeb 602 /* Historical Octeon macro. */ \
603 if (TARGET_OCTEON) \
604 builtin_define ("__OCTEON__"); \
605 \
164f4c55 606 if (TARGET_SYNCI) \
607 builtin_define ("__mips_synci"); \
608 \
5aeba334 609 /* Macros dependent on the C dialect. */ \
610 if (preprocessing_asm_p ()) \
611 { \
612 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
613 builtin_define ("_LANGUAGE_ASSEMBLY"); \
614 } \
615 else if (c_dialect_cxx ()) \
616 { \
617 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
618 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
619 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
620 } \
621 else \
622 { \
623 builtin_define_std ("LANGUAGE_C"); \
624 builtin_define ("_LANGUAGE_C"); \
625 } \
626 if (c_dialect_objc ()) \
627 { \
628 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
629 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
5641963c 630 /* Bizarre, but retained for backwards compatibility. */ \
5aeba334 631 builtin_define_std ("LANGUAGE_C"); \
632 builtin_define ("_LANGUAGE_C"); \
633 } \
634 \
635 if (mips_abi == ABI_EABI) \
636 builtin_define ("__mips_eabi"); \
f5ec18cc 637 \
638 if (TARGET_CACHE_BUILTIN) \
639 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
fccc4b54 640 if (!ISA_HAS_LXC1_SXC1) \
641 builtin_define ("__mips_no_lxc1_sxc1"); \
eb5c0cb6 642 if (!ISA_HAS_UNFUSED_MADD4 && !ISA_HAS_FUSED_MADD4) \
643 builtin_define ("__mips_no_madd4"); \
5aeba334 644 } \
645 while (0)
fa2b6990 646
1656cc5c 647/* Default target_flags if no switches are specified */
648
649#ifndef TARGET_DEFAULT
650#define TARGET_DEFAULT 0
651#endif
652
e7a21b43 653#ifndef TARGET_CPU_DEFAULT
654#define TARGET_CPU_DEFAULT 0
655#endif
656
5a5f5a9c 657#ifndef TARGET_ENDIAN_DEFAULT
5a5f5a9c 658#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
5a5f5a9c 659#endif
660
cf378360 661#ifdef IN_LIBGCC2
662#undef TARGET_64BIT
663/* Make this compile time constant for libgcc2 */
664#ifdef __mips64
665#define TARGET_64BIT 1
666#else
667#define TARGET_64BIT 0
668#endif
e94b904f 669#endif /* IN_LIBGCC2 */
cf378360 670
07e0e650 671/* Force the call stack unwinders in unwind.inc not to be MIPS16 code
672 when compiled with hardware floating point. This is because MIPS16
673 code cannot save and restore the floating-point registers, which is
674 important if in a mixed MIPS16/non-MIPS16 environment. */
675
676#ifdef IN_LIBGCC2
677#if __mips_hard_float
678#define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
679#endif
680#endif /* IN_LIBGCC2 */
681
91e8ab5c 682#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
683
d7f27604 684#ifndef MULTILIB_ENDIAN_DEFAULT
340eaec8 685#if TARGET_ENDIAN_DEFAULT == 0
d7f27604 686#define MULTILIB_ENDIAN_DEFAULT "EL"
340eaec8 687#else
d7f27604 688#define MULTILIB_ENDIAN_DEFAULT "EB"
689#endif
340eaec8 690#endif
d7f27604 691
13823aa8 692#ifndef MULTILIB_ISA_DEFAULT
e0462563 693#if MIPS_ISA_DEFAULT == 1
694#define MULTILIB_ISA_DEFAULT "mips1"
695#elif MIPS_ISA_DEFAULT == 2
696#define MULTILIB_ISA_DEFAULT "mips2"
697#elif MIPS_ISA_DEFAULT == 3
698#define MULTILIB_ISA_DEFAULT "mips3"
699#elif MIPS_ISA_DEFAULT == 4
700#define MULTILIB_ISA_DEFAULT "mips4"
701#elif MIPS_ISA_DEFAULT == 32
702#define MULTILIB_ISA_DEFAULT "mips32"
703#elif MIPS_ISA_DEFAULT == 33
704#define MULTILIB_ISA_DEFAULT "mips32r2"
78645e70 705#elif MIPS_ISA_DEFAULT == 37
706#define MULTILIB_ISA_DEFAULT "mips32r6"
e0462563 707#elif MIPS_ISA_DEFAULT == 64
708#define MULTILIB_ISA_DEFAULT "mips64"
709#elif MIPS_ISA_DEFAULT == 65
710#define MULTILIB_ISA_DEFAULT "mips64r2"
78645e70 711#elif MIPS_ISA_DEFAULT == 69
712#define MULTILIB_ISA_DEFAULT "mips64r6"
e0462563 713#else
714#define MULTILIB_ISA_DEFAULT "mips1"
715#endif
13823aa8 716#endif
717
38c0064e 718#ifndef MIPS_ABI_DEFAULT
719#define MIPS_ABI_DEFAULT ABI_32
720#endif
721
722/* Use the most portable ABI flag for the ASM specs. */
723
724#if MIPS_ABI_DEFAULT == ABI_32
725#define MULTILIB_ABI_DEFAULT "mabi=32"
e0462563 726#elif MIPS_ABI_DEFAULT == ABI_O64
38c0064e 727#define MULTILIB_ABI_DEFAULT "mabi=o64"
e0462563 728#elif MIPS_ABI_DEFAULT == ABI_N32
38c0064e 729#define MULTILIB_ABI_DEFAULT "mabi=n32"
e0462563 730#elif MIPS_ABI_DEFAULT == ABI_64
38c0064e 731#define MULTILIB_ABI_DEFAULT "mabi=64"
e0462563 732#elif MIPS_ABI_DEFAULT == ABI_EABI
38c0064e 733#define MULTILIB_ABI_DEFAULT "mabi=eabi"
734#endif
735
d7f27604 736#ifndef MULTILIB_DEFAULTS
5153cc32 737#define MULTILIB_DEFAULTS \
738 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
340eaec8 739#endif
740
514d8465 741/* We must pass -EL to the linker by default for little endian embedded
742 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
743 linker will default to using big-endian output files. The OUTPUT_FORMAT
744 line must be in the linker script, otherwise -EB/-EL will not work. */
745
fb9d1677 746#ifndef ENDIAN_SPEC
514d8465 747#if TARGET_ENDIAN_DEFAULT == 0
557acce7 748#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
514d8465 749#else
557acce7 750#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
514d8465 751#endif
752#endif
753
7583e786 754/* A spec condition that matches all non-mips16 -mips arguments. */
755
756#define MIPS_ISA_LEVEL_OPTION_SPEC \
757 "mips1|mips2|mips3|mips4|mips32*|mips64*"
758
759/* A spec condition that matches all non-mips16 architecture arguments. */
760
761#define MIPS_ARCH_OPTION_SPEC \
762 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
763
c1fe1a98 764/* A spec that infers a -mips argument from an -march argument. */
7583e786 765
766#define MIPS_ISA_LEVEL_SPEC \
767 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
768 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
769 %{march=mips2|march=r6000:-mips2} \
e07ac3b5 770 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
271ed4b0 771 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
772 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
7b50aae4 773 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
774 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
606d0d6e 775 |march=34k*|march=74k*|march=m14k*|march=1004k* \
776 |march=interaptiv: -mips32r2} \
32ac2387 777 %{march=mips32r3: -mips32r3} \
68fb4349 778 %{march=mips32r5|march=p5600|march=m5100|march=m5101: -mips32r5} \
78645e70 779 %{march=mips32r6: -mips32r6} \
eb91c01f 780 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
2158068e 781 |march=xlr: -mips64} \
782 %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
32ac2387 783 %{march=mips64r3: -mips64r3} \
784 %{march=mips64r5: -mips64r5} \
607f558c 785 %{march=mips64r6|march=i6400: -mips64r6}}"
c1fe1a98 786
787/* A spec that injects the default multilib ISA if no architecture is
788 specified. */
789
790#define MIPS_DEFAULT_ISA_LEVEL_SPEC \
791 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
5aeba334 792 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
793
7938ee8c 794/* A spec that infers a -mhard-float or -msoft-float setting from an
795 -march argument. Note that soft-float and hard-float code are not
796 link-compatible. */
797
798#define MIPS_ARCH_FLOAT_SPEC \
e931fbeb 799 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
7938ee8c 800 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
8dcd4f26 801 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
68fb4349 802 |march=m14k*|march=m5101|march=octeon|march=xlr: -msoft-float; \
7938ee8c 803 march=*: -mhard-float}"
804
5aeba334 805/* A spec condition that matches 32-bit options. It only works if
806 MIPS_ISA_LEVEL_SPEC has been applied. */
807
808#define MIPS_32BIT_OPTION_SPEC \
809 "mips1|mips2|mips32*|mgp32"
7583e786 810
f2b55aea 811/* A spec condition that matches architectures should be targeted with
812 o32 FPXX for compatibility reasons. */
813#define MIPS_FPXX_OPTION_SPEC \
814 "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
815 mips64|mips64r2|mips64r3|mips64r5"
816
32108f3d 817/* Infer a -msynci setting from a -mips argument, on the assumption that
818 -msynci is desired where possible. */
819#define MIPS_ISA_SYNCI_SPEC \
78645e70 820 "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
821 |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
822
c1fe1a98 823/* Infer a -mnan=2008 setting from a -mips argument. */
78645e70 824#define MIPS_ISA_NAN2008_SPEC \
68fb4349 825 "%{mnan*:;mips32r6|mips64r6:-mnan=2008;march=m51*: \
826 %{!msoft-float:-mnan=2008}}"
32108f3d 827
e0462563 828#if (MIPS_ABI_DEFAULT == ABI_O64 \
829 || MIPS_ABI_DEFAULT == ABI_N32 \
830 || MIPS_ABI_DEFAULT == ABI_64)
38c0064e 831#define OPT_ARCH64 "mabi=32|mgp32:;"
832#define OPT_ARCH32 "mabi=32|mgp32"
833#else
834#define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
835#define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
836#endif
837
7dd97ab6 838/* Support for a compile-time default CPU, et cetera. The rules are:
839 --with-arch is ignored if -march is specified or a -mips is specified
38c0064e 840 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
841 --with-tune is ignored if -mtune is specified; likewise
842 --with-tune-32 and --with-tune-64.
7dd97ab6 843 --with-abi is ignored if -mabi is specified.
844 --with-float is ignored if -mhard-float or -msoft-float are
f9262d1e 845 specified.
f2b55aea 846 --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
847 specified.
0bd32132 848 --with-nan is ignored if -mnan is specified.
ddc6405a 849 --with-fp-32 is ignored if -msoft-float, -msingle-float, -mmsa or -mfp are
850 specified.
f2b55aea 851 --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
852 or -mno-odd-spreg are specified.
f9262d1e 853 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
854 specified. */
7dd97ab6 855#define OPTION_DEFAULT_SPECS \
7583e786 856 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
38c0064e 857 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
858 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
7dd97ab6 859 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
38c0064e 860 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
861 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
7dd97ab6 862 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
f9262d1e 863 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
f2b55aea 864 {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
0bd32132 865 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
f2b55aea 866 {"fp_32", "%{" OPT_ARCH32 \
ddc6405a 867 ":%{!msoft-float:%{!msingle-float:%{!mfp*:%{!mmsa:-mfp%(VALUE)}}}}}" }, \
f2b55aea 868 {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
869 "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
bc4c18f7 870 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
4a909f69 871 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
1af9587c 872 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
fccc4b54 873 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }, \
eb5c0cb6 874 {"lxc1-sxc1", "%{!mlxc1-sxc1:%{!mno-lxc1-sxc1:-m%(VALUE)}}" }, \
875 {"madd4", "%{!mmadd4:%{!mno-madd4:-m%(VALUE)}}" } \
f9262d1e 876
c1fe1a98 877/* A spec that infers the:
878 -mnan=2008 setting from a -mips argument,
879 -mdsp setting from a -march argument. */
4e6c8c3b 880#define BASE_DRIVER_SELF_SPECS \
78645e70 881 MIPS_ISA_NAN2008_SPEC, \
86a6a456 882 "%{!mno-dsp: \
606d0d6e 883 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k* \
884 |march=interaptiv: -mdsp} \
351a64c5 885 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
4e6c8c3b 886
78645e70 887#define DRIVER_SELF_SPECS \
888 MIPS_ISA_LEVEL_SPEC, \
889 BASE_DRIVER_SELF_SPECS
4e6c8c3b 890
f9262d1e 891#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
892 && ISA_HAS_COND_TRAP)
7dd97ab6 893
6b65ee54 894#define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
44333ad0 895
5153cc32 896/* True if the ABI can only work with 64-bit integer registers. We
897 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
898 otherwise floating-point registers must also be 64-bit. */
93a1903e 899#define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
5153cc32 900
901/* Likewise for 32-bit regs. */
902#define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
903
0a959c1d 904/* True if the file format uses 64-bit symbols. At present, this is
905 only true for n64, which uses 64-bit ELF. */
906#define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
907
908/* True if symbols are 64 bits wide. This is usually determined by
909 the ABI's file format, but it can be overridden by -msym32. Note that
910 overriding the size with -msym32 changes the ABI of relocatable objects,
911 although it doesn't change the ABI of a fully-linked object. */
9d81057b 912#define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
913 && Pmode == DImode \
914 && !TARGET_SYM32)
c9e1a048 915
c910419d 916/* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
d2f64a9e 917#define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
918 || ISA_MIPS4 \
606c99b0 919 || ISA_MIPS64 \
32ac2387 920 || ISA_MIPS64R2 \
921 || ISA_MIPS64R3 \
78645e70 922 || ISA_MIPS64R5 \
923 || ISA_MIPS64R6)
924
925#define ISA_HAS_JR (mips_isa_rev <= 5)
3edb38b8 926
59449ca9 927#define ISA_HAS_DELAY_SLOTS 1
928
929#define ISA_HAS_COMPACT_BRANCHES (mips_isa_rev >= 6)
930
a361b456 931/* ISA has branch likely instructions (e.g. mips2). */
08aec1b6 932/* Disable branchlikely for tx39 until compare rewrite. They haven't
933 been generated up to this point. */
78645e70 934#define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 && mips_isa_rev <= 5)
3edb38b8 935
f2b55aea 936/* ISA has 32 single-precision registers. */
937#define ISA_HAS_ODD_SPREG ((mips_isa_rev >= 1 \
938 && !TARGET_LOONGSON_3A) \
939 || TARGET_FLOAT64 \
940 || TARGET_MIPS5900)
941
fa7637bd 942/* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
425e1c96 943#define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
944 || TARGET_MIPS5400 \
945 || TARGET_MIPS5500 \
0b4e9fcd 946 || TARGET_MIPS5900 \
425e1c96 947 || TARGET_MIPS7000 \
948 || TARGET_MIPS9000 \
949 || TARGET_MAD \
78645e70 950 || (mips_isa_rev >= 1 \
951 && mips_isa_rev <= 5)) \
425e1c96 952 && !TARGET_MIPS16)
953
9c6a9ea0 954/* ISA has a three-operand multiplication instruction. */
0118f95f 955#define ISA_HAS_DMUL3 (TARGET_64BIT \
956 && TARGET_OCTEON \
957 && !TARGET_MIPS16)
9c6a9ea0 958
78645e70 959/* ISA has HI and LO registers. */
960#define ISA_HAS_HILO (mips_isa_rev <= 5)
961
0b4e9fcd 962/* ISA supports instructions DMULT and DMULTU. */
78645e70 963#define ISA_HAS_DMULT (TARGET_64BIT \
964 && !TARGET_MIPS5900 \
965 && mips_isa_rev <= 5)
0b4e9fcd 966
78645e70 967/* ISA supports instructions MULT and MULTU. */
968#define ISA_HAS_MULT (mips_isa_rev <= 5)
969
970/* ISA supports instructions MUL, MULU, MUH, MUHU. */
971#define ISA_HAS_R6MUL (mips_isa_rev >= 6)
972
973/* ISA supports instructions DMUL, DMULU, DMUH, DMUHU. */
974#define ISA_HAS_R6DMUL (TARGET_64BIT && mips_isa_rev >= 6)
0b4e9fcd 975
5e08e6c7 976/* For Loongson, it is preferable to use the Loongson-specific division and
977 modulo instructions instead of the regular (D)DIV(U) instruction,
978 because the former are faster and can also have the effect of reducing
979 code size. */
980#define ISA_AVOID_DIV_HILO ((TARGET_LOONGSON_2EF \
981 || TARGET_LOONGSON_3A) \
982 && !TARGET_MIPS16)
983
0b4e9fcd 984/* ISA supports instructions DDIV and DDIVU. */
78645e70 985#define ISA_HAS_DDIV (TARGET_64BIT \
986 && !TARGET_MIPS5900 \
5e08e6c7 987 && !ISA_AVOID_DIV_HILO \
78645e70 988 && mips_isa_rev <= 5)
0b4e9fcd 989
990/* ISA supports instructions DIV and DIVU.
991 This is always true, but the macro is needed for ISA_HAS_<D>DIV
992 in mips.md. */
5e08e6c7 993#define ISA_HAS_DIV (!ISA_AVOID_DIV_HILO \
994 && mips_isa_rev <= 5)
e0462563 995
78645e70 996/* ISA supports instructions DIV, DIVU, MOD and MODU. */
997#define ISA_HAS_R6DIV (mips_isa_rev >= 6)
998
999/* ISA supports instructions DDIV, DDIVU, DMOD and DMODU. */
1000#define ISA_HAS_R6DDIV (TARGET_64BIT && mips_isa_rev >= 6)
1001
d598f4ff 1002/* ISA has the floating-point conditional move instructions introduced
1003 in mips4. */
1004#define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
78645e70 1005 || (mips_isa_rev >= 1 \
1006 && mips_isa_rev <= 5)) \
425e1c96 1007 && !TARGET_MIPS5500 \
fa2b6990 1008 && !TARGET_MIPS16)
2cec2f38 1009
d598f4ff 1010/* ISA has the integer conditional move instructions introduced in mips4 and
1011 ST Loongson 2E/2F. */
60b34f30 1012#define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
1013 || TARGET_MIPS5900 \
1014 || TARGET_LOONGSON_2EF)
d598f4ff 1015
36a24c97 1016/* ISA has LDC1 and SDC1. */
394563b3 1017#define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
1018 && !TARGET_MIPS5900 \
1019 && !TARGET_MIPS16)
36a24c97 1020
2cec2f38 1021/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
00f58f47 1022 branch on CC, and move (both FP and non-FP) on CC. */
78645e70 1023#define ISA_HAS_8CC (ISA_MIPS4 \
1024 || (mips_isa_rev >= 1 \
1025 && mips_isa_rev <= 5))
1026
1027/* ISA has the FP condition code instructions that store the flag in an
1028 FP register. */
1029#define ISA_HAS_CCF (mips_isa_rev >= 6)
1030
1031#define ISA_HAS_SEL (mips_isa_rev >= 6)
2cec2f38 1032
e0820f9b 1033/* This is a catch all for other mips4 instructions: indexed load, the
1034 FP madd and msub instructions, and the FP recip and recip sqrt
75be7a44 1035 instructions. Note that this macro should only be used by other
1036 ISA_HAS_* macros. */
425e1c96 1037#define ISA_HAS_FP4 ((ISA_MIPS4 \
606c99b0 1038 || ISA_MIPS64 \
78645e70 1039 || (mips_isa_rev >= 2 \
1040 && mips_isa_rev <= 5)) \
425e1c96 1041 && !TARGET_MIPS16)
2cec2f38 1042
75be7a44 1043/* ISA has floating-point indexed load and store instructions
1044 (LWXC1, LDXC1, SWXC1 and SDXC1). */
fccc4b54 1045#define ISA_HAS_LXC1_SXC1 (ISA_HAS_FP4 \
1046 && mips_lxc1_sxc1)
75be7a44 1047
07a96917 1048/* ISA has paired-single instructions. */
81d49cc1 1049#define ISA_HAS_PAIRED_SINGLE ((ISA_MIPS64 \
1050 || (mips_isa_rev >= 2 \
1051 && mips_isa_rev <= 5)) \
1052 && !TARGET_OCTEON)
07a96917 1053
ea98ee52 1054/* ISA has conditional trap instructions. */
fa2b6990 1055#define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
1056 && !TARGET_MIPS16)
3edb38b8 1057
78645e70 1058/* ISA has conditional trap with immediate instructions. */
1059#define ISA_HAS_COND_TRAPI (!ISA_MIPS1 \
1060 && mips_isa_rev <= 5 \
1061 && !TARGET_MIPS16)
1062
d8c4db28 1063/* ISA has integer multiply-accumulate instructions, madd and msub. */
78645e70 1064#define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1 \
1065 && mips_isa_rev <= 5)
582b17a6 1066
11b70d7d 1067/* Integer multiply-accumulate instructions should be generated. */
14844884 1068#define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
11b70d7d 1069
668de2f7 1070/* ISA has 4 operand fused madd instructions of the form
1071 'd = [+-] (a * b [+-] c)'. */
eb5c0cb6 1072#define ISA_HAS_FUSED_MADD4 (mips_madd4 \
1073 && (TARGET_MIPS8000 \
1074 || TARGET_LOONGSON_3A))
d598f4ff 1075
668de2f7 1076/* ISA has 4 operand unfused madd instructions of the form
1077 'd = [+-] (a * b [+-] c)'. */
eb5c0cb6 1078#define ISA_HAS_UNFUSED_MADD4 (mips_madd4 \
1079 && ISA_HAS_FP4 \
04877b8f 1080 && !TARGET_MIPS8000 \
1081 && !TARGET_LOONGSON_3A)
78645e70 1082
668de2f7 1083/* ISA has 3 operand r6 fused madd instructions of the form
1084 'c = c [+-] (a * b)'. */
1085#define ISA_HAS_FUSED_MADDF (mips_isa_rev >= 6)
d598f4ff 1086
668de2f7 1087/* ISA has 3 operand loongson fused madd instructions of the form
1088 'c = [+-] (a * b [+-] c)'. */
1089#define ISA_HAS_FUSED_MADD3 TARGET_LOONGSON_2EF
d598f4ff 1090
385361c9 1091/* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
1092 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
1093 doubles are stored in pairs of FPRs, so for safety's sake, we apply
1094 this restriction to the MIPS IV ISA too. */
1095#define ISA_HAS_FP_RECIP_RSQRT(MODE) \
75be7a44 1096 (((ISA_HAS_FP4 \
385361c9 1097 && ((MODE) == SFmode \
1098 || ((TARGET_FLOAT64 \
95faea77 1099 || mips_isa_rev >= 2) \
385361c9 1100 && (MODE) == DFmode))) \
78645e70 1101 || (((MODE) == SFmode \
1102 || (MODE) == DFmode) \
1103 && (mips_isa_rev >= 6)) \
385361c9 1104 || (TARGET_SB1 \
1105 && (MODE) == V2SFmode)) \
1106 && !TARGET_MIPS16)
1107
78645e70 1108#define ISA_HAS_LWL_LWR (mips_isa_rev <= 5 && !TARGET_MIPS16)
1109
1110#define ISA_HAS_IEEE_754_LEGACY (mips_isa_rev <= 5)
1111
1112#define ISA_HAS_IEEE_754_2008 (mips_isa_rev >= 2)
1113
582b17a6 1114/* ISA has count leading zeroes/ones instruction (not implemented). */
95faea77 1115#define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16)
582b17a6 1116
2857c21b 1117/* ISA has three operand multiply instructions that put
1118 the high part in an accumulator: mulhi or mulhiu. */
425e1c96 1119#define ISA_HAS_MULHI ((TARGET_MIPS5400 \
1120 || TARGET_MIPS5500 \
1121 || TARGET_SR71K) \
1122 && !TARGET_MIPS16)
2857c21b 1123
512f12d6 1124/* ISA has three operand multiply instructions that negate the
1125 result and put the result in an accumulator. */
425e1c96 1126#define ISA_HAS_MULS ((TARGET_MIPS5400 \
1127 || TARGET_MIPS5500 \
1128 || TARGET_SR71K) \
1129 && !TARGET_MIPS16)
2857c21b 1130
512f12d6 1131/* ISA has three operand multiply instructions that subtract the
1132 result from a 4th operand and put the result in an accumulator. */
425e1c96 1133#define ISA_HAS_MSAC ((TARGET_MIPS5400 \
1134 || TARGET_MIPS5500 \
1135 || TARGET_SR71K) \
1136 && !TARGET_MIPS16)
1137
512f12d6 1138/* ISA has three operand multiply instructions that add the result
1139 to a 4th operand and put the result in an accumulator. */
425e1c96 1140#define ISA_HAS_MACC ((TARGET_MIPS4120 \
1141 || TARGET_MIPS4130 \
1142 || TARGET_MIPS5400 \
1143 || TARGET_MIPS5500 \
1144 || TARGET_SR71K) \
1145 && !TARGET_MIPS16)
2857c21b 1146
b6586786 1147/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
425e1c96 1148#define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
1149 || TARGET_MIPS4130) \
1150 && !TARGET_MIPS16)
1151
1152/* ISA has the "ror" (rotate right) instructions. */
95faea77 1153#define ISA_HAS_ROR ((mips_isa_rev >= 2 \
425e1c96 1154 || TARGET_MIPS5400 \
1155 || TARGET_MIPS5500 \
122a6978 1156 || TARGET_SR71K \
1157 || TARGET_SMARTMIPS) \
425e1c96 1158 && !TARGET_MIPS16)
2857c21b 1159
a5ca8551 1160/* ISA has the WSBH (word swap bytes within halfwords) instruction.
1161 64-bit targets also provide DSBH and DSHD. */
95faea77 1162#define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16)
a5ca8551 1163
e0820f9b 1164/* ISA has data prefetch instructions. This controls use of 'pref'. */
d2f64a9e 1165#define ISA_HAS_PREFETCH ((ISA_MIPS4 \
eb1b9bce 1166 || TARGET_LOONGSON_2EF \
60b34f30 1167 || TARGET_MIPS5900 \
95faea77 1168 || mips_isa_rev >= 1) \
d2f64a9e 1169 && !TARGET_MIPS16)
1170
05af34e2 1171/* ISA has data prefetch, LL and SC with limited 9-bit displacement. */
1172#define ISA_HAS_9BIT_DISPLACEMENT (mips_isa_rev >= 6)
78645e70 1173
e0820f9b 1174/* ISA has data indexed prefetch instructions. This controls use of
1175 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1176 (prefx is a cop1x instruction, so can only be used if FP is
1177 enabled.) */
75be7a44 1178#define ISA_HAS_PREFETCHX ISA_HAS_FP4
e0820f9b 1179
01a6581c 1180/* True if trunc.w.s and trunc.w.d are real (not synthetic)
1181 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1182 also requires TARGET_DOUBLE_FLOAT. */
1183#define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1184
a02568c6 1185/* ISA includes the MIPS32r2 seb and seh instructions. */
95faea77 1186#define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16)
a02568c6 1187
48365021 1188/* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
95faea77 1189#define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16)
48365021 1190
c910419d 1191/* ISA has instructions for accessing top part of 64-bit fp regs. */
f2b55aea 1192#define ISA_HAS_MXHC1 (!TARGET_FLOAT32 \
1193 && mips_isa_rev >= 2)
4ec596ee 1194
122a6978 1195/* ISA has lwxs instruction (load w/scaled index address. */
ff9c1bc1 1196#define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1197 && !TARGET_MIPS16)
122a6978 1198
b7508909 1199/* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1200#define ISA_HAS_LBX (TARGET_OCTEON2)
1201#define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1202#define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1203#define ISA_HAS_LHUX (TARGET_OCTEON2)
1204#define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1205#define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1206#define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1207 && TARGET_64BIT)
1208
c19eff17 1209/* The DSP ASE is available. */
1210#define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1211
1212/* Revision 2 of the DSP ASE is available. */
1213#define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1214
ddc6405a 1215/* The MSA ASE is available. */
1216#define ISA_HAS_MSA (TARGET_MSA && !TARGET_MIPS16)
1217
203ea55a 1218/* True if the result of a load is not available to the next instruction.
1219 A nop will then be needed between instructions like "lw $4,..."
1220 and "addiu $4,$4,1". */
425e1c96 1221#define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
203ea55a 1222 && !TARGET_MIPS3900 \
60b34f30 1223 && !TARGET_MIPS5900 \
ff9c1bc1 1224 && !TARGET_MIPS16 \
1225 && !TARGET_MICROMIPS)
203ea55a 1226
1227/* Likewise mtc1 and mfc1. */
dc5599bf 1228#define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
60b34f30 1229 && !TARGET_MIPS5900 \
dc5599bf 1230 && !TARGET_LOONGSON_2EF)
203ea55a 1231
1232/* Likewise floating-point comparisons. */
dc5599bf 1233#define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
60b34f30 1234 && !TARGET_MIPS5900 \
dc5599bf 1235 && !TARGET_LOONGSON_2EF)
203ea55a 1236
1237/* True if mflo and mfhi can be immediately followed by instructions
e78db7f7 1238 which write to the HI and LO registers.
1239
1240 According to MIPS specifications, MIPS ISAs I, II, and III need
1241 (at least) two instructions between the reads of HI/LO and
1242 instructions which write them, and later ISAs do not. Contradicting
1243 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1244 the UM for the NEC Vr5000) document needing the instructions between
1245 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1246 MIPS64 and later ISAs to have the interlocks, plus any specific
1247 earlier-ISA CPUs for which CPU documentation declares that the
1248 instructions are really interlocked. */
95faea77 1249#define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \
dc5599bf 1250 || TARGET_MIPS5500 \
60b34f30 1251 || TARGET_MIPS5900 \
dc5599bf 1252 || TARGET_LOONGSON_2EF)
381be270 1253
1254/* ISA includes synci, jr.hb and jalr.hb. */
95faea77 1255#define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
381be270 1256
e5ee2a85 1257/* ISA includes sync. */
1258#define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
652f626b 1259#define GENERATE_SYNC \
1260 (target_flags_explicit & MASK_LLSC \
1261 ? TARGET_LLSC && !TARGET_MIPS16 \
1262 : ISA_HAS_SYNC)
e5ee2a85 1263
1264/* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1265 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1266 instructions. */
5e524dea 1267#define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
652f626b 1268#define GENERATE_LL_SC \
1269 (target_flags_explicit & MASK_LLSC \
1270 ? TARGET_LLSC && !TARGET_MIPS16 \
1271 : ISA_HAS_LL_SC)
fc84efeb 1272
974f0a74 1273#define ISA_HAS_SWAP (TARGET_XLP)
1274#define ISA_HAS_LDADD (TARGET_XLP)
1275
765b6fef 1276/* ISA includes the baddu instruction. */
0118f95f 1277#define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
765b6fef 1278
17ae43a3 1279/* ISA includes the bbit* instructions. */
0118f95f 1280#define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
17ae43a3 1281
04877dac 1282/* ISA includes the cins instruction. */
0118f95f 1283#define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
04877dac 1284
71966e79 1285/* ISA includes the exts instruction. */
0118f95f 1286#define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
71966e79 1287
5d4f5520 1288/* ISA includes the seq and sne instructions. */
0118f95f 1289#define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
5d4f5520 1290
fc84efeb 1291/* ISA includes the pop instruction. */
0118f95f 1292#define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
f5ec18cc 1293
1294/* The CACHE instruction is available in non-MIPS16 code. */
1295#define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1296
1297/* The CACHE instruction is available. */
1298#define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
c8829dad 1299\f
8d1a12c9 1300/* Tell collect what flags to pass to nm. */
1301#ifndef NM_FLAGS
9bc65db1 1302#define NM_FLAGS "-Bn"
8d1a12c9 1303#endif
1304
c8829dad 1305\f
4fc9a770 1306/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
b93bf04a 1307 the assembler. It may be overridden by subtargets.
1308
1309 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1310 COFF debugging info. */
1311
4fc9a770 1312#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1313#define SUBTARGET_ASM_DEBUGGING_SPEC "\
63586066 1314%{g} %{g0} %{g1} %{g2} %{g3} \
1315%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1316%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1317%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
3c791c03 1318%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
b93bf04a 1319%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
4fc9a770 1320#endif
63586066 1321
b33cff21 1322/* FP_ASM_SPEC represents the floating-point options that must be passed
1323 to the assembler when FPXX support exists. Prior to that point the
1324 assembler could accept the options but were not required for
1325 correctness. We only add the options when absolutely necessary
1326 because passing -msoft-float to the assembler will cause it to reject
1327 all hard-float instructions which may require some user code to be
1328 updated. */
1329
1330#ifdef HAVE_AS_DOT_MODULE
1331#define FP_ASM_SPEC "\
1332%{mhard-float} %{msoft-float} \
1333%{msingle-float} %{mdouble-float}"
1334#else
1335#define FP_ASM_SPEC
1336#endif
1337
4fc9a770 1338/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1339 overridden by subtargets. */
1340
1341#ifndef SUBTARGET_ASM_SPEC
1342#define SUBTARGET_ASM_SPEC ""
63586066 1343#endif
4fc9a770 1344
71d957f9 1345#undef ASM_SPEC
4fc9a770 1346#define ASM_SPEC "\
a02568c6 1347%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
606c99b0 1348%{mips32*} %{mips64*} \
e6a71de3 1349%{mips16} %{mno-mips16:-no-mips16} \
ff9c1bc1 1350%{mmicromips} %{mno-micromips} \
e6a71de3 1351%{mips3d} %{mno-mips3d:-no-mips3d} \
1352%{mdmx} %{mno-mdmx:-no-mdmx} \
1353%{mdsp} %{mno-dsp} \
1354%{mdspr2} %{mno-dspr2} \
e876044e 1355%{mmcu} %{mno-mcu} \
3721f3a0 1356%{meva} %{mno-eva} \
486e9c5f 1357%{mvirt} %{mno-virt} \
c7078bf2 1358%{mxpa} %{mno-xpa} \
ddc6405a 1359%{mmsa} %{mno-msa} \
122a6978 1360%{msmartmips} %{mno-smartmips} \
e6a71de3 1361%{mmt} %{mno-mt} \
20607a76 1362%{mfix-rm7000} %{mno-fix-rm7000} \
b6586786 1363%{mfix-vr4120} %{mfix-vr4130} \
516cedbd 1364%{mfix-24k} \
dd71e058 1365%{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
4fc9a770 1366%(subtarget_asm_debugging_spec) \
4a909f69 1367%{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
9f733327 1368%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
f2b55aea 1369%{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
1370%{modd-spreg} %{mno-odd-spreg} \
1b6b10a9 1371%{mshared} %{mno-shared} \
6f172a83 1372%{msym32} %{mno-sym32} \
b33cff21 1373%{mtune=*}" \
1374FP_ASM_SPEC "\
4fc9a770 1375%(subtarget_asm_spec)"
c8829dad 1376
904c9ae7 1377/* Extra switches sometimes passed to the linker. */
c8829dad 1378
1379#ifndef LINK_SPEC
904c9ae7 1380#define LINK_SPEC "\
fb9d1677 1381%(endian_spec) \
606c99b0 1382%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1572b5b7 1383%{shared}"
582b17a6 1384#endif /* LINK_SPEC defined */
1385
c8829dad 1386
1387/* Specs for the compiler proper */
1388
5fafa3a5 1389/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1390 overridden by subtargets. */
1391#ifndef SUBTARGET_CC1_SPEC
1392#define SUBTARGET_CC1_SPEC ""
1393#endif
1394
1395/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1396
06eca8b8 1397#undef CC1_SPEC
904c9ae7 1398#define CC1_SPEC "\
5a5f5a9c 1399%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
6a59b91a 1400%(subtarget_cc1_spec)"
c8829dad 1401
4fc9a770 1402/* Preprocessor specs. */
1403
4fc9a770 1404/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1405 overridden by subtargets. */
1406#ifndef SUBTARGET_CPP_SPEC
1407#define SUBTARGET_CPP_SPEC ""
1408#endif
1409
fa2b6990 1410#define CPP_SPEC "%(subtarget_cpp_spec)"
4fc9a770 1411
1412/* This macro defines names of additional specifications to put in the specs
1413 that can be used in various specifications like CC1_SPEC. Its definition
1414 is an initializer with a subgrouping for each command option.
1415
1416 Each subgrouping contains a string constant, that defines the
187b36cf 1417 specification name, and a string constant that used by the GCC driver
4fc9a770 1418 program.
1419
1420 Do not define this macro if it does not need to do anything. */
1421
1422#define EXTRA_SPECS \
6b40eba4 1423 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1424 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
6b40eba4 1425 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1426 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
b93bf04a 1427 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
fb9d1677 1428 { "endian_spec", ENDIAN_SPEC }, \
4fc9a770 1429 SUBTARGET_EXTRA_SPECS
1430
1431#ifndef SUBTARGET_EXTRA_SPECS
1432#define SUBTARGET_EXTRA_SPECS
c8829dad 1433#endif
c8829dad 1434\f
a4cad234 1435#define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
09b049bd 1436#define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1437
1438#ifndef PREFERRED_DEBUGGING_TYPE
1439#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1440#endif
c8829dad 1441
0a959c1d 1442/* The size of DWARF addresses should be the same as the size of symbols
1443 in the target file format. They shouldn't depend on things like -msym32,
1444 because many DWARF consumers do not allow the mixture of address sizes
1445 that one would then get from linking -msym32 code with -msym64 code.
1446
1447 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1448 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1449#define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
004cc9ee 1450
8d1a12c9 1451/* By default, turn on GDB extensions. */
1452#define DEFAULT_GDB_EXTENSIONS 1
1453
d1e7dfe2 1454/* Registers may have a prefix which can be ignored when matching
1455 user asm and register definitions. */
1456#ifndef REGISTER_PREFIX
1457#define REGISTER_PREFIX "$"
1458#endif
1459
34a7f2a4 1460/* Local compiler-generated symbols must have a prefix that the assembler
1461 understands. By default, this is $, although some targets (e.g.,
00f58f47 1462 NetBSD-ELF) need to override this. */
34a7f2a4 1463
1464#ifndef LOCAL_LABEL_PREFIX
1465#define LOCAL_LABEL_PREFIX "$"
1466#endif
1467
1468/* By default on the mips, external symbols do not have an underscore
00f58f47 1469 prepended, but some targets (e.g., NetBSD) require this. */
34a7f2a4 1470
1471#ifndef USER_LABEL_PREFIX
1472#define USER_LABEL_PREFIX ""
1473#endif
1474
c8829dad 1475/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1476 since the length can run past this up to a continuation point. */
cd16e7b6 1477#undef DBX_CONTIN_LENGTH
c8829dad 1478#define DBX_CONTIN_LENGTH 1500
1479
00f58f47 1480/* How to renumber registers for dbx and gdb. */
4509d619 1481#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
c8829dad 1482
933d6ec0 1483/* The mapping from gcc register number to DWARF 2 CFA column number. */
4509d619 1484#define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
212538c2 1485
1486/* The DWARF 2 CFA column which tracks the return address. */
2ae168f4 1487#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
2c36ab68 1488
df78b73b 1489/* Before the prologue, RA lives in r31. */
4083d5ee 1490#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)
df78b73b 1491
b92c85dc 1492/* Describe how we implement __builtin_eh_return. */
9f115c31 1493#define EH_RETURN_DATA_REGNO(N) \
1494 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1495
b92c85dc 1496#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1497
74facf6e 1498#define EH_USES(N) mips_eh_uses (N)
1499
08aec1b6 1500/* Offsets recorded in opcodes are a multiple of this alignment factor.
ffbc3131 1501 The default for this in 64-bit mode is 8, which causes problems with
1502 SFmode register saves. */
a18b01d6 1503#define DWARF_CIE_DATA_ALIGNMENT -4
ffbc3131 1504
9f4bac70 1505/* Correct the offset of automatic variables and arguments. Note that
1506 the MIPS debug format wants all automatic variables and arguments
1507 to be in terms of the virtual frame pointer (stack pointer before
1508 any adjustment in the function), while the MIPS 3.0 linker wants
1509 the frame pointer to be the stack pointer after the initial
1510 adjustment. */
c8829dad 1511
d2f64a9e 1512#define DEBUGGER_AUTO_OFFSET(X) \
c5aa1e92 1513 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
d2f64a9e 1514#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
c5aa1e92 1515 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
c8829dad 1516\f
1517/* Target machine storage layout */
1518
9f571898 1519#define BITS_BIG_ENDIAN 0
5a5f5a9c 1520#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
5a5f5a9c 1521#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
c8829dad 1522
e29b85c8 1523#define MAX_BITS_PER_WORD 64
c8829dad 1524
1525/* Width of a word, in units (bytes). */
e425840e 1526#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
53a488ea 1527#ifndef IN_LIBGCC2
65748b1b 1528#define MIN_UNITS_PER_WORD 4
53a488ea 1529#endif
e29b85c8 1530
ddc6405a 1531/* Width of a MSA vector register in bytes. */
1532#define UNITS_PER_MSA_REG 16
1533/* Width of a MSA vector register in bits. */
1534#define BITS_PER_MSA_REG (UNITS_PER_MSA_REG * BITS_PER_UNIT)
1535
e29b85c8 1536/* For MIPS, width of a floating point register. */
e425840e 1537#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
c8829dad 1538
fef98e29 1539/* The number of consecutive floating-point registers needed to store the
1540 largest format supported by the FPU. */
1541#define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1542
1543/* The number of consecutive floating-point registers needed to store the
1544 smallest format supported by the FPU. */
1545#define MIN_FPRS_PER_FMT \
f2b55aea 1546 (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
8c9bf23a 1547
3968abe0 1548/* The largest size of value that can be held in floating-point
1549 registers and moved with a single instruction. */
fef98e29 1550#define UNITS_PER_HWFPVALUE \
50b412ce 1551 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
3968abe0 1552
1553/* The largest size of value that can be held in floating-point
1554 registers. */
2538b6a3 1555#define UNITS_PER_FPVALUE \
50b412ce 1556 (TARGET_SOFT_FLOAT_ABI ? 0 \
2538b6a3 1557 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1558 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
09a41b31 1559
1560/* The number of bytes in a double. */
1561#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
8c9bf23a 1562
933d6ec0 1563/* Set the sizes of the core types. */
c8829dad 1564#define SHORT_TYPE_SIZE 16
6cb9e8e1 1565#define INT_TYPE_SIZE 32
e425840e 1566#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
9147314e 1567#define LONG_LONG_TYPE_SIZE 64
c8829dad 1568
933d6ec0 1569#define FLOAT_TYPE_SIZE 32
c8829dad 1570#define DOUBLE_TYPE_SIZE 64
93a1903e 1571#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
3968abe0 1572
d20b198f 1573/* Define the sizes of fixed-point types. */
1574#define SHORT_FRACT_TYPE_SIZE 8
1575#define FRACT_TYPE_SIZE 16
1576#define LONG_FRACT_TYPE_SIZE 32
1577#define LONG_LONG_FRACT_TYPE_SIZE 64
1578
1579#define SHORT_ACCUM_TYPE_SIZE 16
1580#define ACCUM_TYPE_SIZE 32
1581#define LONG_ACCUM_TYPE_SIZE 64
1582/* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1583 doesn't support 128-bit integers for MIPS32 currently. */
1584#define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1585
3968abe0 1586/* long double is not a fixed mode, but the idea is that, if we
1587 support long double, we also want a 128-bit integer type. */
1588#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1589
c9e1a048 1590/* Width in bits of a pointer. */
7a9d1fec 1591#ifndef POINTER_SIZE
c9e1a048 1592#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
7a9d1fec 1593#endif
c8829dad 1594
c8829dad 1595/* Allocation boundary (in *bits*) for storing arguments in argument list. */
a5ab28e7 1596#define PARM_BOUNDARY BITS_PER_WORD
c9e1a048 1597
c8829dad 1598/* Allocation boundary (in *bits*) for the code of a function. */
1599#define FUNCTION_BOUNDARY 32
1600
1601/* Alignment of field after `int : 0' in a structure. */
449fb1f8 1602#define EMPTY_FIELD_BOUNDARY 32
c8829dad 1603
1604/* Every structure's size must be a multiple of this. */
1605/* 8 is observed right on a DECstation and on riscos 4.02. */
1606#define STRUCTURE_SIZE_BOUNDARY 8
1607
ddc6405a 1608/* There is no point aligning anything to a rounder boundary than
1609 LONG_DOUBLE_TYPE_SIZE, unless under MSA the bigggest alignment is
1610 BITS_PER_MSA_REG. */
1611#define BIGGEST_ALIGNMENT \
1612 (ISA_HAS_MSA ? BITS_PER_MSA_REG : LONG_DOUBLE_TYPE_SIZE)
c8829dad 1613
933d6ec0 1614/* All accesses must be aligned. */
904c9ae7 1615#define STRICT_ALIGNMENT 1
c8829dad 1616
1617/* Define this if you wish to imitate the way many other C compilers
1618 handle alignment of bitfields and the structures that contain
1619 them.
1620
ceb2fe0f 1621 The behavior is that the type written for a bit-field (`int',
c8829dad 1622 `short', or other integer type) imposes an alignment for the
1623 entire structure, as if the structure really did contain an
ceb2fe0f 1624 ordinary field of that type. In addition, the bit-field is placed
c8829dad 1625 within the structure so that it would fit within such a field,
1626 not crossing a boundary for it.
1627
ceb2fe0f 1628 Thus, on most machines, a bit-field whose type is written as `int'
c8829dad 1629 would not cross a four-byte boundary, and would force four-byte
1630 alignment for the whole structure. (The alignment used may not
1631 be four bytes; it is controlled by the other alignment
1632 parameters.)
1633
1634 If the macro is defined, its definition should be a C expression;
1635 a nonzero value for the expression enables this behavior. */
1636
1637#define PCC_BITFIELD_TYPE_MATTERS 1
1638
1639/* If defined, a C expression to compute the alignment given to a
1640 constant that is being placed in memory. CONSTANT is the constant
1641 and ALIGN is the alignment that the object would ordinarily have.
1642 The value of this macro is used instead of that alignment to align
1643 the object.
1644
1645 If this macro is not defined, then ALIGN is used.
1646
1647 The typical use of this macro is to increase alignment for string
1648 constants to be word aligned so that `strcpy' calls that copy
1649 constants can be done inline. */
1650
1651#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1652 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
0eacd412 1653 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
c8829dad 1654
1655/* If defined, a C expression to compute the alignment for a static
1656 variable. TYPE is the data type, and ALIGN is the alignment that
1657 the object would ordinarily have. The value of this macro is used
1658 instead of that alignment to align the object.
1659
1660 If this macro is not defined, then ALIGN is used.
1661
1662 One use of this macro is to increase alignment of medium-size
1663 data to make it all fit in fewer cache lines. Another is to
1664 cause character arrays to be word-aligned so that `strcpy' calls
1665 that copy constants to character arrays can be done inline. */
1666
1667#undef DATA_ALIGNMENT
1668#define DATA_ALIGNMENT(TYPE, ALIGN) \
1669 ((((ALIGN) < BITS_PER_WORD) \
1670 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1671 || TREE_CODE (TYPE) == UNION_TYPE \
1672 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1673
3e7d5e0d 1674/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1675 character arrays to be word-aligned so that `strcpy' calls that copy
1676 constants to character arrays can be done inline, and 'strcmp' can be
1677 optimised to use word loads. */
1678#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1679 DATA_ALIGNMENT (TYPE, ALIGN)
1680
0fee47f4 1681#define PAD_VARARGS_DOWN \
1682 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
262088a4 1683
29701bb8 1684/* Define if operations between registers always perform the operation
1685 on the full register even if a narrower mode is specified. */
94f1fba7 1686#define WORD_REGISTER_OPERATIONS 1
29701bb8 1687
c910419d 1688/* When in 64-bit mode, move insns will sign extend SImode and CCmode
dfd1079d 1689 moves. All other references are zero extended. */
75bf6244 1690#define LOAD_EXTEND_OP(MODE) \
1691 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1692 ? SIGN_EXTEND : ZERO_EXTEND)
4ddcf2b2 1693
1694/* Define this macro if it is advisable to hold scalars in registers
08aec1b6 1695 in a wider mode than that declared by the program. In such cases,
4ddcf2b2 1696 the value is constrained to be within the bounds of the declared
1697 type, but kept valid in the wider mode. The signedness of the
c9e1a048 1698 extension may differ from that of the type. */
4ddcf2b2 1699
1700#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1701 if (GET_MODE_CLASS (MODE) == MODE_INT \
c9e1a048 1702 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1703 { \
1704 if ((MODE) == SImode) \
1705 (UNSIGNEDP) = 0; \
1706 (MODE) = Pmode; \
1707 }
1708
223ccc42 1709/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1710 Extensions of pointers to word_mode must be signed. */
1711#define POINTERS_EXTEND_UNSIGNED false
1712
c9e1a048 1713/* Define if loading short immediate values into registers sign extends. */
d0b99710 1714#define SHORT_IMMEDIATES_SIGN_EXTEND 1
929dcf95 1715
1716/* The [d]clz instructions have the natural values at 0. */
1717
1718#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
ddc6405a 1719 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
c8829dad 1720\f
1721/* Standard register usage. */
1722
933d6ec0 1723/* Number of hardware registers. We have:
c8829dad 1724
933d6ec0 1725 - 32 integer registers
1726 - 32 floating point registers
1727 - 8 condition code registers
1728 - 2 accumulator registers (hi and lo)
1729 - 32 registers each for coprocessors 0, 2 and 3
74facf6e 1730 - 4 fake registers:
5b1aef3e 1731 - ARG_POINTER_REGNUM
1732 - FRAME_POINTER_REGNUM
5eec32fe 1733 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
74facf6e 1734 - CPRESTORE_SLOT_REGNUM
1735 - 2 dummy entries that were used at various times in the past.
b7efe757 1736 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1737 - 6 DSP control registers */
c8829dad 1738
b7efe757 1739#define FIRST_PSEUDO_REGISTER 188
c8829dad 1740
933d6ec0 1741/* By default, fix the kernel registers ($26 and $27), the global
1742 pointer ($28) and the stack pointer ($29). This can change
1743 depending on the command-line options.
c8829dad 1744
933d6ec0 1745 Regarding coprocessor registers: without evidence to the contrary,
8d85666f 1746 it's best to assume that each coprocessor register has a unique
e188502f 1747 use. This can be overridden, in, e.g., mips_option_override or
b2d7ede1 1748 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1749 inappropriate for a particular target. */
8d85666f 1750
c8829dad 1751#define FIXED_REGISTERS \
1752{ \
1753 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
c9e1a048 1754 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
c8829dad 1755 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1756 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
c5717e12 1757 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
8d85666f 1758 /* COP0 registers */ \
1759 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1760 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1761 /* COP2 registers */ \
1762 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1763 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1764 /* COP3 registers */ \
1765 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b7efe757 1766 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1767 /* 6 DSP accumulator registers & 6 control registers */ \
1768 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
c8829dad 1769}
1770
1771
933d6ec0 1772/* Set up this array for o32 by default.
1773
1774 Note that we don't mark $31 as a call-clobbered register. The idea is
1775 that it's really the call instructions themselves which clobber $31.
c9e1a048 1776 We don't care what the called function does with it afterwards.
1777
1778 This approach makes it easier to implement sibcalls. Unlike normal
1779 calls, sibcalls don't clobber $31, so the register reaches the
1780 called function in tact. EPILOGUE_USES says that $31 is useful
1781 to the called function. */
c8829dad 1782
1783#define CALL_USED_REGISTERS \
1784{ \
1785 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
c9e1a048 1786 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
c8829dad 1787 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1788 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
c9e1a048 1789 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
8d85666f 1790 /* COP0 registers */ \
1791 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1792 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1793 /* COP2 registers */ \
1794 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1795 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1796 /* COP3 registers */ \
1797 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b7efe757 1798 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1799 /* 6 DSP accumulator registers & 6 control registers */ \
1800 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
c8829dad 1801}
1802
dfabc2e7 1803
933d6ec0 1804/* Define this since $28, though fixed, is call-saved in many ABIs. */
dfabc2e7 1805
1806#define CALL_REALLY_USED_REGISTERS \
1807{ /* General registers. */ \
1808 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
c9e1a048 1809 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
dfabc2e7 1810 /* Floating-point registers. */ \
1811 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1812 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1813 /* Others. */ \
5eec32fe 1814 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
8d85666f 1815 /* COP0 registers */ \
1816 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1817 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1818 /* COP2 registers */ \
1819 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1820 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1821 /* COP3 registers */ \
1822 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
b7efe757 1823 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1824 /* 6 DSP accumulator registers & 6 control registers */ \
1825 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
dfabc2e7 1826}
c8829dad 1827
1828/* Internal macros to classify a register number as to whether it's a
1829 general purpose register, a floating point register, a
37727f6d 1830 multiply/divide register, or a status register. */
c8829dad 1831
1832#define GP_REG_FIRST 0
1833#define GP_REG_LAST 31
1834#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1835#define GP_DBX_FIRST 0
0bfaf4c4 1836#define K0_REG_NUM (GP_REG_FIRST + 26)
1837#define K1_REG_NUM (GP_REG_FIRST + 27)
1838#define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
c8829dad 1839
1840#define FP_REG_FIRST 32
1841#define FP_REG_LAST 63
1842#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1843#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1844
1845#define MD_REG_FIRST 64
c5717e12 1846#define MD_REG_LAST 65
c8829dad 1847#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
f4bfc916 1848#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
c8829dad 1849
ddc6405a 1850#define MSA_REG_FIRST FP_REG_FIRST
1851#define MSA_REG_LAST FP_REG_LAST
1852#define MSA_REG_NUM FP_REG_NUM
1853
f7e97fb8 1854/* The DWARF 2 CFA column which tracks the return address from a
1855 signal handler context. This means that to maintain backwards
1856 compatibility, no hard register can be assigned this column if it
1857 would need to be handled by the DWARF unwinder. */
1858#define DWARF_ALT_FRAME_RETURN_COLUMN 66
1859
fe761857 1860#define ST_REG_FIRST 67
0ca99114 1861#define ST_REG_LAST 74
c8829dad 1862#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1863
2b801d92 1864
c9e1a048 1865/* FIXME: renumber. */
8d85666f 1866#define COP0_REG_FIRST 80
1867#define COP0_REG_LAST 111
1868#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1869
0bfaf4c4 1870#define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1871#define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1872#define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1873
8d85666f 1874#define COP2_REG_FIRST 112
1875#define COP2_REG_LAST 143
1876#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1877
1878#define COP3_REG_FIRST 144
1879#define COP3_REG_LAST 175
1880#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
2df386e3 1881
1882/* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1883#define ALL_COP_REG_FIRST COP0_REG_FIRST
1884#define ALL_COP_REG_LAST COP3_REG_LAST
1885#define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
8d85666f 1886
b7efe757 1887#define DSP_ACC_REG_FIRST 176
1888#define DSP_ACC_REG_LAST 181
1889#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1890
c8829dad 1891#define AT_REGNUM (GP_REG_FIRST + 1)
4509d619 1892#define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1893#define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
0ca99114 1894
0bfaf4c4 1895/* A few bitfield locations for the coprocessor registers. */
1896/* Request Interrupt Priority Level is from bit 10 to bit 15 of
1897 the cause register for the EIC interrupt mode. */
1898#define CAUSE_IPL 10
b6f884d4 1899/* COP1 Enable is at bit 29 of the status register. */
1900#define SR_COP1 29
0bfaf4c4 1901/* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1902#define SR_IPL 10
70b5547a 1903/* Interrupt masks start with IM0 at bit 8 to IM7 at bit 15 of the status
1904 register. */
1905#define SR_IM0 8
0bfaf4c4 1906/* Exception Level is at bit 1 of the status register. */
1907#define SR_EXL 1
1908/* Interrupt Enable is at bit 0 of the status register. */
1909#define SR_IE 0
1910
933d6ec0 1911/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1912 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
0ca99114 1913 should be used instead. */
c8829dad 1914#define FPSW_REGNUM ST_REG_FIRST
1915
0eacd412 1916#define GP_REG_P(REGNO) \
1917 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
4ddcf2b2 1918#define M16_REG_P(REGNO) \
1919 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
ff9c1bc1 1920#define M16STORE_REG_P(REGNO) \
1921 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
0eacd412 1922#define FP_REG_P(REGNO) \
1923 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1924#define MD_REG_P(REGNO) \
1925 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1926#define ST_REG_P(REGNO) \
1927 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
8d85666f 1928#define COP0_REG_P(REGNO) \
1929 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1930#define COP2_REG_P(REGNO) \
1931 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1932#define COP3_REG_P(REGNO) \
1933 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1934#define ALL_COP_REG_P(REGNO) \
1935 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
b7efe757 1936/* Test if REGNO is one of the 6 new DSP accumulators. */
1937#define DSP_ACC_REG_P(REGNO) \
1938 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1939/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1940#define ACC_REG_P(REGNO) \
1941 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
ddc6405a 1942#define MSA_REG_P(REGNO) \
1943 ((unsigned int) ((int) (REGNO) - MSA_REG_FIRST) < MSA_REG_NUM)
8d85666f 1944
a605649a 1945#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
ddc6405a 1946#define MSA_REG_RTX_P(X) (REG_P (X) && MSA_REG_P (REGNO (X)))
8d5952bf 1947
2fbff099 1948/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1949 to initialize the mips16 gp pseudo register. */
1950#define CONST_GP_P(X) \
1951 (GET_CODE (X) == CONST \
1952 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1953 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1954
8d85666f 1955/* Return coprocessor number from register number. */
1956
1957#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1958 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1959 : COP3_REG_P (REGNO) ? '3' : '?')
c8829dad 1960
c8829dad 1961
582b17a6 1962#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
c8829dad 1963
35ed5ce3 1964#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
1965 mips_hard_regno_rename_ok (OLD_REG, NEW_REG)
1966
f2b55aea 1967/* Select a register mode required for caller save of hard regno REGNO. */
1968#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1969 mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
1970
07a96917 1971#define MODES_TIEABLE_P mips_modes_tieable_p
c8829dad 1972
c8829dad 1973/* Register to use for pushing function arguments. */
e15eeed0 1974#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
c8829dad 1975
5b1aef3e 1976/* These two registers don't really exist: they get eliminated to either
1977 the stack or hard frame pointer. */
1978#define ARG_POINTER_REGNUM 77
1979#define FRAME_POINTER_REGNUM 78
4ddcf2b2 1980
1981/* $30 is not available on the mips16, so we use $17 as the frame
1982 pointer. */
1983#define HARD_FRAME_POINTER_REGNUM \
1984 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
c8829dad 1985
5ae82d58 1986#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1987#define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1988
c8829dad 1989/* Register in which static-chain is passed to a function. */
d0d816ec 1990#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
c8829dad 1991
559b0712 1992/* Registers used as temporaries in prologue/epilogue code:
3ba8ab31 1993
559b0712 1994 - If a MIPS16 PIC function needs access to _gp, it first loads
1995 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1996
1997 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1998 register. The register must not conflict with MIPS16_PIC_TEMP.
1999
51ad9863 2000 - If we aren't generating MIPS16 code, the prologue can also use
2001 MIPS_PROLOGUE_TEMP2 as a general temporary register.
2002
559b0712 2003 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
2004 register.
2005
2006 If we're generating MIPS16 code, these registers must come from the
2007 core set of 8. The prologue registers mustn't conflict with any
2008 incoming arguments, the static chain pointer, or the frame pointer.
2009 The epilogue temporary mustn't conflict with the return registers,
2010 the PIC call register ($25), the frame pointer, the EH stack adjustment,
0bfaf4c4 2011 or the EH data registers.
2012
2013 If we're generating interrupt handlers, we use K0 as a temporary register
2014 in prologue/epilogue code. */
559b0712 2015
2016#define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
0bfaf4c4 2017#define MIPS_PROLOGUE_TEMP_REGNUM \
2018 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
51ad9863 2019#define MIPS_PROLOGUE_TEMP2_REGNUM \
2020 (TARGET_MIPS16 \
2021 ? (gcc_unreachable (), INVALID_REGNUM) \
2022 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
0bfaf4c4 2023#define MIPS_EPILOGUE_TEMP_REGNUM \
2024 (cfun->machine->interrupt_handler_p \
2025 ? K0_REG_NUM \
2026 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
3ba8ab31 2027
559b0712 2028#define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
3ba8ab31 2029#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
51ad9863 2030#define MIPS_PROLOGUE_TEMP2(MODE) \
2031 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
3ba8ab31 2032#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
c8829dad 2033
2034/* Define this macro if it is as good or better to call a constant
2035 function address than to call an address kept in a register. */
2036#define NO_FUNCTION_CSE 1
2037
5e681afc 2038/* The ABI-defined global pointer. Sometimes we use a different
2039 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
2040#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
2041
2042/* We normally use $28 as the global pointer. However, when generating
2043 n32/64 PIC, it is better for leaf functions to use a call-clobbered
2044 register instead. They can then avoid saving and restoring $28
2045 and perhaps avoid using a frame at all.
2046
2047 When a leaf function uses something other than $28, mips_expand_prologue
2048 will modify pic_offset_table_rtx in place. Take the register number
2049 from there after reload. */
2050#define PIC_OFFSET_TABLE_REGNUM \
2051 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
c8829dad 2052\f
2053/* Define the classes of registers for register constraints in the
2054 machine description. Also define ranges of constants.
2055
2056 One of the classes must always be named ALL_REGS and include all hard regs.
2057 If there is more than one class, another class must be named NO_REGS
2058 and contain no registers.
2059
2060 The name GENERAL_REGS must be the name of a class (or an alias for
2061 another name such as ALL_REGS). This is the class of registers
2062 that is allowed by "g" or "r" in a register constraint.
2063 Also, registers outside this class are allocated only when
2064 instructions express preferences for them.
2065
2066 The classes must be numbered in nondecreasing order; that is,
2067 a larger-numbered class must never be contained completely
2068 in a smaller-numbered class.
2069
2070 For any two classes, it is very desirable that there be another
2071 class that represents their union. */
2072
2073enum reg_class
2074{
2075 NO_REGS, /* no registers in set */
8deb0486 2076 M16_STORE_REGS, /* microMIPS store registers */
4ddcf2b2 2077 M16_REGS, /* mips16 directly accessible registers */
3c0e3fb9 2078 M16_SP_REGS, /* mips16 + $sp */
4ddcf2b2 2079 T_REG, /* mips16 T register ($24) */
2080 M16_T_REGS, /* mips16 registers plus T register */
c9e1a048 2081 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
ccb1cd1e 2082 V1_REG, /* Register $v1 ($3) used for TLS access. */
3c0e3fb9 2083 SPILL_REGS, /* All but $sp and call preserved regs are in here */
c9e1a048 2084 LEA_REGS, /* Every GPR except $25 */
c8829dad 2085 GR_REGS, /* integer registers */
2086 FP_REGS, /* floating point registers */
4509d619 2087 MD0_REG, /* first multiply/divide register */
2088 MD1_REG, /* second multiply/divide register */
c8829dad 2089 MD_REGS, /* multiply/divide registers (hi/lo) */
8d85666f 2090 COP0_REGS, /* generic coprocessor classes */
2091 COP2_REGS,
2092 COP3_REGS,
c8829dad 2093 ST_REGS, /* status registers (fp status) */
b7efe757 2094 DSP_ACC_REGS, /* DSP accumulator registers */
2095 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
024f0a8a 2096 FRAME_REGS, /* $arg and $frame */
1678533f 2097 GR_AND_MD0_REGS, /* union classes */
2098 GR_AND_MD1_REGS,
2099 GR_AND_MD_REGS,
2100 GR_AND_ACC_REGS,
c8829dad 2101 ALL_REGS, /* all registers */
2102 LIM_REG_CLASSES /* max value + 1 */
2103};
2104
2105#define N_REG_CLASSES (int) LIM_REG_CLASSES
2106
2107#define GENERAL_REGS GR_REGS
2108
2109/* An initializer containing the names of the register classes as C
2110 string constants. These names are used in writing some of the
2111 debugging dumps. */
2112
2113#define REG_CLASS_NAMES \
2114{ \
2115 "NO_REGS", \
8deb0486 2116 "M16_STORE_REGS", \
4ddcf2b2 2117 "M16_REGS", \
3c0e3fb9 2118 "M16_SP_REGS", \
4ddcf2b2 2119 "T_REG", \
2120 "M16_T_REGS", \
c9e1a048 2121 "PIC_FN_ADDR_REG", \
ccb1cd1e 2122 "V1_REG", \
3c0e3fb9 2123 "SPILL_REGS", \
c9e1a048 2124 "LEA_REGS", \
c8829dad 2125 "GR_REGS", \
2126 "FP_REGS", \
4509d619 2127 "MD0_REG", \
2128 "MD1_REG", \
c8829dad 2129 "MD_REGS", \
8d85666f 2130 /* coprocessor registers */ \
2131 "COP0_REGS", \
2132 "COP2_REGS", \
2133 "COP3_REGS", \
c8829dad 2134 "ST_REGS", \
b7efe757 2135 "DSP_ACC_REGS", \
2136 "ACC_REGS", \
024f0a8a 2137 "FRAME_REGS", \
1678533f 2138 "GR_AND_MD0_REGS", \
2139 "GR_AND_MD1_REGS", \
2140 "GR_AND_MD_REGS", \
2141 "GR_AND_ACC_REGS", \
c8829dad 2142 "ALL_REGS" \
2143}
2144
2145/* An initializer containing the contents of the register classes,
2146 as integers which are bit masks. The Nth integer specifies the
2147 contents of class N. The way the integer MASK is interpreted is
2148 that register R is in the class if `MASK & (1 << R)' is 1.
2149
2150 When the machine has more than 32 registers, an integer does not
2151 suffice. Then the integers are replaced by sub-initializers,
2152 braced groupings containing several integers. Each
2153 sub-initializer must be suitable as an initializer for the type
2154 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
2155
8eb3a059 2156#define REG_CLASS_CONTENTS \
2157{ \
1678533f 2158 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
8deb0486 2159 { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
1678533f 2160 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
3c0e3fb9 2161 { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_SP_REGS */ \
1678533f 2162 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
2163 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
2164 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
2165 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
3c0e3fb9 2166 { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SPILL_REGS */ \
1678533f 2167 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
2168 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
2169 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
2170 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
2171 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
2172 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
2173 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
2174 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
2175 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
2176 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
2177 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
2178 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
2179 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
2180 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
2181 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
2182 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
2183 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
2184 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
c8829dad 2185}
2186
2187
2188/* A C expression whose value is a register class containing hard
2189 register REGNO. In general there is more that one such class;
2190 choose a class which is "minimal", meaning that no smaller class
2191 also contains the register. */
2192
c8829dad 2193#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2194
2195/* A macro whose definition is the name of the class to which a
2196 valid base register must belong. A base register is one used in
2197 an address which is the register value plus a displacement. */
2198
3c0e3fb9 2199#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
c8829dad 2200
2201/* A macro whose definition is the name of the class to which a
2202 valid index register must belong. An index register is one used
2203 in an address where its value is either multiplied by a scale
2204 factor or added to another register (as well as added to a
2205 displacement). */
2206
e29b85c8 2207#define INDEX_REG_CLASS NO_REGS
c8829dad 2208
a0fa45d8 2209/* We generally want to put call-clobbered registers ahead of
2210 call-saved ones. (IRA expects this.) */
4ddcf2b2 2211
2212#define REG_ALLOC_ORDER \
867a63a5 2213{ /* Accumulator registers. When GPRs and accumulators have equal \
2214 cost, we generally prefer to use accumulators. For example, \
2215 a division of multiplication result is better allocated to LO, \
2216 so that we put the MFLO at the point of use instead of at the \
2217 point of definition. It's also needed if we're to take advantage \
2218 of the extra accumulators available with -mdspr2. In some cases, \
2219 it can also help to reduce register pressure. */ \
2220 64, 65,176,177,178,179,180,181, \
2221 /* Call-clobbered GPRs. */ \
2222 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
a0fa45d8 2223 24, 25, 31, \
2224 /* The global pointer. This is call-clobbered for o32 and o64 \
2225 abicalls, call-saved for n32 and n64 abicalls, and a program \
2226 invariant otherwise. Putting it between the call-clobbered \
2227 and call-saved registers should cope with all eventualities. */ \
2228 28, \
2229 /* Call-saved GPRs. */ \
2230 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2231 /* GPRs that can never be exposed to the register allocator. */ \
867a63a5 2232 0, 26, 27, 29, \
a0fa45d8 2233 /* Call-clobbered FPRs. */ \
4ddcf2b2 2234 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
a0fa45d8 2235 48, 49, 50, 51, \
2236 /* FPRs that are usually call-saved. The odd ones are actually \
2237 call-clobbered for n32, but listing them ahead of the even \
2238 registers might encourage the register allocator to fragment \
2239 the available FPR pairs. We need paired FPRs to store long \
2240 doubles, so it isn't clear that using a different order \
2241 for n32 would be a win. */ \
2242 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2243 /* None of the remaining classes have defined call-saved \
2244 registers. */ \
867a63a5 2245 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
8d85666f 2246 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2247 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2248 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2249 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2250 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
b7efe757 2251 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
867a63a5 2252 182,183,184,185,186,187 \
4ddcf2b2 2253}
2254
77aa6362 2255/* True if VALUE is an unsigned 6-bit number. */
b7efe757 2256
2257#define UIMM6_OPERAND(VALUE) \
2258 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2259
2260/* True if VALUE is a signed 10-bit number. */
2261
2262#define IMM10_OPERAND(VALUE) \
2263 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2264
c9e1a048 2265/* True if VALUE is a signed 16-bit number. */
2266
2267#define SMALL_OPERAND(VALUE) \
2268 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2269
2270/* True if VALUE is an unsigned 16-bit number. */
2271
2272#define SMALL_OPERAND_UNSIGNED(VALUE) \
2273 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2274
2275/* True if VALUE can be loaded into a register using LUI. */
2276
2277#define LUI_OPERAND(VALUE) \
2278 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2279 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2280
2281/* Return a value X with the low 16 bits clear, and such that
2282 VALUE - X is a signed 16-bit value. */
2283
2284#define CONST_HIGH_PART(VALUE) \
2285 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2286
2287#define CONST_LOW_PART(VALUE) \
2288 ((VALUE) - CONST_HIGH_PART (VALUE))
2289
2290#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2291#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2292#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
ff9c1bc1 2293#define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
78645e70 2294#define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
c9e1a048 2295
2fe68916 2296/* The HI and LO registers can only be reloaded via the general
0ca99114 2297 registers. Condition code registers can only be loaded to the
2298 general registers, and from the floating point registers. */
2fe68916 2299
fe761857 2300#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
a798da4d 2301 mips_secondary_reload_class (CLASS, MODE, X, true)
fe761857 2302#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
a798da4d 2303 mips_secondary_reload_class (CLASS, MODE, X, false)
2fe68916 2304
f2b55aea 2305/* When targeting the o32 FPXX ABI, all moves with a length of doubleword
2306 or greater must be performed by FR-mode-aware instructions.
2307 This can be achieved using MFHC1/MTHC1 when these instructions are
2308 available but otherwise moves must go via memory.
2309 For the o32 FP64A ABI, all odd-numbered moves with a length of
2310 doubleword or greater are required to use memory. Using MTC1/MFC1
2311 to access the lower-half of these registers would require a forbidden
2312 single-precision access. We require all double-word moves to use
2313 memory because adding even and odd floating-point registers classes
2314 would have a significant impact on the backend. */
2315#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2316 mips_secondary_memory_needed ((CLASS1), (CLASS2), (MODE))
2317
c8829dad 2318/* Return the maximum number of consecutive registers
2319 needed to represent mode MODE in a register of class CLASS. */
2320
8d85666f 2321#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
c8829dad 2322
22aae821 2323#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2324 mips_cannot_change_mode_class (FROM, TO, CLASS)
c8829dad 2325\f
2326/* Stack layout; function entry, exit and calling. */
2327
2b785411 2328#define STACK_GROWS_DOWNWARD 1
c8829dad 2329
f9eddbcf 2330#define FRAME_GROWS_DOWNWARD flag_stack_protect
d529383e 2331
f9eddbcf 2332/* Size of the area allocated in the frame to save the GP. */
2333
2334#define MIPS_GP_SAVE_AREA_SIZE \
2335 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2336
2337/* The offset of the first local variable from the frame pointer. See
2338 mips_compute_frame_info for details about the frame layout. */
2339
2340#define STARTING_FRAME_OFFSET \
2341 (FRAME_GROWS_DOWNWARD \
2342 ? 0 \
2343 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
9f4bac70 2344
c9e1a048 2345#define RETURN_ADDR_RTX mips_return_addr
2b801d92 2346
036b8c98 2347/* Mask off the MIPS16 ISA bit in unwind addresses.
2348
2349 The reason for this is a little subtle. When unwinding a call,
2350 we are given the call's return address, which on most targets
2351 is the address of the following instruction. However, what we
2352 actually want to find is the EH region for the call itself.
2353 The target-independent unwind code therefore searches for "RA - 1".
2354
2355 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2356 RA - 1 is therefore the real (even-valued) start of the return
2357 instruction. EH region labels are usually odd-valued MIPS16 symbols
2358 too, so a search for an even address within a MIPS16 region would
2359 usually work.
2360
2361 However, there is an exception. If the end of an EH region is also
2362 the end of a function, the end label is allowed to be even. This is
2363 necessary because a following non-MIPS16 function may also need EH
2364 information for its first instruction.
2365
2366 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2367 non-ISA-encoded address. This probably isn't ideal, but it is
2368 the traditional (legacy) behavior. It is therefore only safe
2369 to search MIPS EH regions for an _odd-valued_ address.
2370
2371 Masking off the ISA bit means that the target-independent code
2372 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
1a6a6dab 2373#define MASK_RETURN_ADDR GEN_INT (-2)
2374
c9e1a048 2375
1a6a6dab 2376/* Similarly, don't use the least-significant bit to tell pointers to
2377 code from vtable index. */
2378
2379#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2380
933d6ec0 2381/* The eliminations to $17 are only used for mips16 code. See the
4ddcf2b2 2382 definition of HARD_FRAME_POINTER_REGNUM. */
9f4bac70 2383
2384#define ELIMINABLE_REGS \
2385{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
4ddcf2b2 2386 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2387 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
4ddcf2b2 2388 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2389 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2390 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
9f4bac70 2391
cfdba943 2392#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
933d6ec0 2393 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
c8829dad 2394
933d6ec0 2395/* Allocate stack space for arguments at the beginning of each function. */
4448f543 2396#define ACCUMULATE_OUTGOING_ARGS 1
c8829dad 2397
933d6ec0 2398/* The argument pointer always points to the first argument. */
13a452a6 2399#define FIRST_PARM_OFFSET(FNDECL) 0
c8829dad 2400
933d6ec0 2401/* o32 and o64 reserve stack space for all argument registers. */
2402#define REG_PARM_STACK_SPACE(FNDECL) \
93a1903e 2403 (TARGET_OLDABI \
933d6ec0 2404 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
efd092f3 2405 : 0)
c8829dad 2406
2407/* Define this if it is the responsibility of the caller to
08aec1b6 2408 allocate the area reserved for arguments passed in registers.
c8829dad 2409 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
08aec1b6 2410 of this macro is to determine whether the space is included in
abe32cce 2411 `crtl->outgoing_args_size'. */
22c61100 2412#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
c8829dad 2413
a5ab28e7 2414#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
c8829dad 2415\f
c8829dad 2416/* Symbolic macros for the registers used to return integer and floating
2417 point values. */
2418
2419#define GP_RETURN (GP_REG_FIRST + 2)
2420#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2421
93a1903e 2422#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
efd092f3 2423
c8829dad 2424/* Symbolic macros for the first/last argument registers. */
2425
2426#define GP_ARG_FIRST (GP_REG_FIRST + 4)
efd092f3 2427#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
c8829dad 2428#define FP_ARG_FIRST (FP_REG_FIRST + 12)
efd092f3 2429#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
c8829dad 2430
ddc6405a 2431/* True if MODE is vector and supported in a MSA vector register. */
2432#define MSA_SUPPORTED_MODE_P(MODE) \
2433 (ISA_HAS_MSA \
2434 && GET_MODE_SIZE (MODE) == UNITS_PER_MSA_REG \
2435 && (GET_MODE_CLASS (MODE) == MODE_VECTOR_INT \
2436 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT))
2437
9d0ddb1d 2438/* Temporary register that is used when restoring $gp after a call. $4 and $5
2439 are used for returning complex double values in soft-float code, so $6 is the
2440 first suitable candidate for TARGET_MIPS16. For !TARGET_MIPS16 we can use
2441 $gp itself as the temporary. */
2442#define POST_CALL_TMP_REG \
2443 (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
2444
60cc2ea6 2445/* 1 if N is a possible register number for function argument passing.
f2b55aea 2446 We have no FP argument registers when soft-float. Special handling
2447 is required for O32 where only even numbered registers are used for
2448 O32-FPXX and O32-FP64. */
60cc2ea6 2449
2450#define FUNCTION_ARG_REGNO_P(N) \
b6026f5a 2451 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
f2b55aea 2452 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
2453 && (mips_abi != ABI_32 \
2454 || TARGET_FLOAT32 \
2455 || ((N) % 2 == 0)))) \
b6026f5a 2456 && !fixed_regs[N])
c8829dad 2457\f
933d6ec0 2458/* This structure has to cope with two different argument allocation
26bcab5a 2459 schemes. Most MIPS ABIs view the arguments as a structure, of which
2460 the first N words go in registers and the rest go on the stack. If I
2461 < N, the Ith word might go in Ith integer argument register or in a
2462 floating-point register. For these ABIs, we only need to remember
2463 the offset of the current argument into the structure.
09a41b31 2464
2465 The EABI instead allocates the integer and floating-point arguments
2466 separately. The first N words of FP arguments go in FP registers,
2467 the rest go on the stack. Likewise, the first N words of the other
2468 arguments go in integer registers, and the rest go on the stack. We
2469 need to maintain three counts: the number of integer registers used,
2470 the number of floating-point registers used, and the number of words
2471 passed on the stack.
2472
2473 We could keep separate information for the two ABIs (a word count for
2474 the standard ABIs, and three separate counts for the EABI). But it
2475 seems simpler to view the standard ABIs as forms of EABI that do not
2476 allocate floating-point registers.
2477
2478 So for the standard ABIs, the first N words are allocated to integer
a798da4d 2479 registers, and mips_function_arg decides on an argument-by-argument
2480 basis whether that argument should really go in an integer register,
2481 or in a floating-point one. */
c8829dad 2482
2483typedef struct mips_args {
09a41b31 2484 /* Always true for varargs functions. Otherwise true if at least
2485 one argument has been passed in an integer register. */
2486 int gp_reg_found;
2487
2488 /* The number of arguments seen so far. */
2489 unsigned int arg_number;
2490
26bcab5a 2491 /* The number of integer registers used so far. For all ABIs except
2492 EABI, this is the number of words that have been added to the
2493 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
e87dac45 2494 unsigned int num_gprs;
09a41b31 2495
2496 /* For EABI, the number of floating-point registers used so far. */
e87dac45 2497 unsigned int num_fprs;
09a41b31 2498
2499 /* The number of words passed on the stack. */
2500 unsigned int stack_words;
2501
2502 /* On the mips16, we need to keep track of which floating point
2503 arguments were passed in general registers, but would have been
c910419d 2504 passed in the FP regs if this were a 32-bit function, so that we
2505 can move them to the FP regs if we wind up calling a 32-bit
09a41b31 2506 function. We record this information in fp_code, encoded in base
2507 four. A zero digit means no floating point argument, a one digit
2508 means an SFmode argument, and a two digit means a DFmode argument,
2509 and a three digit is not used. The low order digit is the first
2510 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2511 an SFmode argument. ??? A more sophisticated approach will be
2512 needed if MIPS_ABI != ABI_32. */
2513 int fp_code;
2514
2515 /* True if the function has a prototype. */
2516 int prototype;
c8829dad 2517} CUMULATIVE_ARGS;
2518
2519/* Initialize a variable CUM of type CUMULATIVE_ARGS
2520 for a call to a function whose data type is FNTYPE.
e487406e 2521 For a library call, FNTYPE is 0. */
c8829dad 2522
30c70355 2523#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
a798da4d 2524 mips_init_cumulative_args (&CUM, FNTYPE)
c8829dad 2525
a798da4d 2526#define FUNCTION_ARG_PADDING(MODE, TYPE) \
0fee47f4 2527 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2528
a798da4d 2529#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
0fee47f4 2530 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
efd092f3 2531
09a41b31 2532/* True if using EABI and varargs can be passed in floating-point
2533 registers. Under these conditions, we need a more complex form
2534 of va_list, which tracks GPR, FPR and stack arguments separately. */
2535#define EABI_FLOAT_VARARGS_P \
2536 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2537
c8829dad 2538\f
0bfaf4c4 2539#define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
c9e1a048 2540
efd092f3 2541/* Treat LOC as a byte offset from the stack pointer and round it up
2542 to the next fully-aligned offset. */
a5ab28e7 2543#define MIPS_STACK_ALIGN(LOC) \
63e70e28 2544 (TARGET_NEWABI ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8))
c8829dad 2545
2546\f
2547/* Output assembler code to FILE to increment profiler label # LABELNO
2548 for profiling a function entry. */
2549
57bb39d9 2550#define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
c8829dad 2551
68c9bc25 2552/* The profiler preserves all interesting registers, including $31. */
2553#define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2554
e54b69e7 2555/* No mips port has ever used the profiler counter word, so don't emit it
2556 or the label for it. */
2557
2558#define NO_PROFILE_COUNTERS 1
2559
7e3176e8 2560/* Define this macro if the code for function profiling should come
2561 before the function prologue. Normally, the profiling code comes
2562 after. */
2563
2564/* #define PROFILE_BEFORE_PROLOGUE */
2565
c8829dad 2566/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2567 the stack pointer does not matter. The value is tested only in
2568 functions that have frame pointers.
2569 No definition is equivalent to always zero. */
2570
2571#define EXIT_IGNORE_STACK 1
2572
2573\f
eb725716 2574/* Trampolines are a block of code followed by two pointers. */
c8829dad 2575
eb725716 2576#define TRAMPOLINE_SIZE \
2577 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
c8829dad 2578
eb725716 2579/* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2580 pointers from a single LUI base. */
c8829dad 2581
eb725716 2582#define TRAMPOLINE_ALIGNMENT 64
c8829dad 2583
433e9b6a 2584/* mips_trampoline_init calls this library function to flush
220345e0 2585 program and data caches. */
2586
2587#ifndef CACHE_FLUSH_FUNC
2588#define CACHE_FLUSH_FUNC "_flush_cache"
2589#endif
2590
68c9bc25 2591#define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2592 /* Flush both caches. We need to flush the data cache in case \
2593 the system has a write-back cache. */ \
2594 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
9e9e5c15 2595 LCT_NORMAL, VOIDmode, ADDR, Pmode, SIZE, Pmode, \
68c9bc25 2596 GEN_INT (3), TYPE_MODE (integer_type_node))
2597
c8829dad 2598\f
2599/* Addressing modes, and classification of registers for them. */
2600
5b1aef3e 2601#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2602#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2603 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
c8829dad 2604\f
2605/* Maximum number of registers that can appear in a valid memory address. */
2606
2607#define MAX_REGS_PER_ADDRESS 1
2608
c9e1a048 2609/* Check for constness inline but use mips_legitimate_address_p
2610 to check whether a constant really is an address. */
2611
2612#define CONSTANT_ADDRESS_P(X) \
fd50b071 2613 (CONSTANT_P (X) && memory_address_p (SImode, X))
c9e1a048 2614
2cf63cd9 2615/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2616 'the start of the function that this code is output in'. */
2617
2618#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2619 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2620 asm_fprintf ((FILE), "%U%s", \
2621 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2622 else \
2623 asm_fprintf ((FILE), "%U%s", (NAME))
c8829dad 2624\f
3d375286 2625/* Flag to mark a function decl symbol that requires a long call. */
2626#define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2627#define SYMBOL_REF_LONG_CALL_P(X) \
2628 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2629
559b0712 2630/* This flag marks functions that cannot be lazily bound. */
2631#define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2632#define SYMBOL_REF_BIND_NOW_P(RTX) \
2633 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2634
f02776dd 2635/* True if we're generating a form of MIPS16 code in which jump tables
2636 are stored in the text section and encoded as 16-bit PC-relative
2637 offsets. This is only possible when general text loads are allowed,
4db9805e 2638 since the table access itself will be an "lh" instruction. If the
2639 PC-relative offsets grow too large, 32-bit offsets are used instead. */
f02776dd 2640#define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
4ddcf2b2 2641
f02776dd 2642#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2643
7df01788 2644#define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
4db9805e 2645
2646/* Only use short offsets if their range will not overflow. */
2647#define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
7df01788 2648 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2649 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2650 : SImode)
f02776dd 2651
2652#define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
c8829dad 2653
c8829dad 2654/* Define this as 1 if `char' should by default be signed; else as 0. */
779e55fe 2655#ifndef DEFAULT_SIGNED_CHAR
c8829dad 2656#define DEFAULT_SIGNED_CHAR 1
779e55fe 2657#endif
c8829dad 2658
959fd5af 2659/* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2660 we generally don't want to use them for copying arbitrary data.
2661 A single N-word move is usually the same cost as N single-word moves. */
2662#define MOVE_MAX UNITS_PER_WORD
ddc6405a 2663/* We don't modify it for MSA as it is only used by the classic reload. */
e29b85c8 2664#define MAX_MOVE_MAX 8
c8829dad 2665
2666/* Define this macro as a C expression which is nonzero if
2667 accessing less than a word of memory (i.e. a `char' or a
2668 `short') is no faster than accessing a word of memory, i.e., if
2669 such access require more than one instruction or if there is no
2670 difference in cost between byte and (aligned) word loads.
2671
2672 On RISC machines, it tends to generate better code to define
5ee52cdb 2673 this as 1, since it avoids making a QI or HI mode register.
2674
2675 But, generating word accesses for -mips16 is generally bad as shifts
2676 (often extended) would be needed for byte accesses. */
2677#define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
c8829dad 2678
cfa9c500 2679/* Standard MIPS integer shifts truncate the shift amount to the
2680 width of the shifted operand. However, Loongson vector shifts
2681 do not truncate the shift amount at all. */
f755482b 2682#define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
c8829dad 2683
2684/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2685 is done just by pretending it is already truncated. */
e29b85c8 2686#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2687 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
c8829dad 2688
c9e1a048 2689
c8829dad 2690/* Specify the machine mode that pointers have.
2691 After generation of rtl, the compiler makes no further distinction
c9e1a048 2692 between pointers and any other objects of this machine mode. */
e29b85c8 2693
7a9d1fec 2694#ifndef Pmode
c9e1a048 2695#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
7a9d1fec 2696#endif
c8829dad 2697
c9e1a048 2698/* Give call MEMs SImode since it is the "most permissive" mode
2699 for both 32-bit and 64-bit targets. */
c8829dad 2700
c9e1a048 2701#define FUNCTION_MODE SImode
c8829dad 2702
c8829dad 2703\f
554bbdba 2704/* We allocate $fcc registers by hand and can't cope with moves of
2705 CCmode registers to and from pseudos (or memory). */
18aa2adf 2706#define AVOID_CCMODE_COPIES
2707
c8829dad 2708/* A C expression for the cost of a branch instruction. A value of
2709 1 is the default; other values are interpreted relative to that. */
2710
4a9d7ef7 2711#define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
9ddd79fc 2712#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
c8829dad 2713
6bb79546 2714/* The MIPS port has several functions that return an instruction count.
2715 Multiplying the count by this value gives the number of bytes that
2716 the instructions occupy. */
2717#define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2718
2719/* The length of a NOP in bytes. */
2720#define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2721
17695875 2722/* If defined, modifies the length assigned to instruction INSN as a
2723 function of the context in which it is used. LENGTH is an lvalue
2724 that contains the initially computed length of the insn and should
2725 be updated with the correct length of the insn. */
2726#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2727 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
fe2ed30d 2728
2729/* Return the asm template for a non-MIPS16 conditional branch instruction.
2730 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2731 its operands. */
2732#define MIPS_BRANCH(OPCODE, OPERANDS) \
2733 "%*" OPCODE "%?\t" OPERANDS "%/"
1b6b10a9 2734
59449ca9 2735#define MIPS_BRANCH_C(OPCODE, OPERANDS) \
2736 "%*" OPCODE "%:\t" OPERANDS
2737
74facf6e 2738/* Return an asm string that forces INSN to be treated as an absolute
2739 J or JAL instruction instead of an assembler macro. */
2740#define MIPS_ABSOLUTE_JUMP(INSN) \
2741 (TARGET_ABICALLS_PIC2 \
2742 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2743 : INSN)
2744
c8829dad 2745\f
2746/* Control the assembler format that we output. */
2747
c8829dad 2748/* Output to assembler file text saying following lines
2749 may contain character constants, extra white space, comments, etc. */
2750
71d957f9 2751#ifndef ASM_APP_ON
c8829dad 2752#define ASM_APP_ON " #APP\n"
71d957f9 2753#endif
c8829dad 2754
2755/* Output to assembler file text saying following lines
2756 no longer contain unusual constructs. */
2757
71d957f9 2758#ifndef ASM_APP_OFF
c8829dad 2759#define ASM_APP_OFF " #NO_APP\n"
71d957f9 2760#endif
c8829dad 2761
dbc6b055 2762#define REGISTER_NAMES \
2763{ "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2764 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2765 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2766 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2767 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2768 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2769 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2770 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2771 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
74facf6e 2772 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
dbc6b055 2773 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2774 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2775 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2776 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2777 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2778 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2779 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2780 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2781 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2782 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2783 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
b7efe757 2784 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2785 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2786 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
dbc6b055 2787
2788/* List the "software" names for each register. Also list the numerical
2789 names for $fp and $sp. */
c8829dad 2790
2791#define ADDITIONAL_REGISTER_NAMES \
2792{ \
c8829dad 2793 { "$29", 29 + GP_REG_FIRST }, \
2794 { "$30", 30 + GP_REG_FIRST }, \
c8829dad 2795 { "at", 1 + GP_REG_FIRST }, \
2796 { "v0", 2 + GP_REG_FIRST }, \
2797 { "v1", 3 + GP_REG_FIRST }, \
2798 { "a0", 4 + GP_REG_FIRST }, \
2799 { "a1", 5 + GP_REG_FIRST }, \
2800 { "a2", 6 + GP_REG_FIRST }, \
2801 { "a3", 7 + GP_REG_FIRST }, \
2802 { "t0", 8 + GP_REG_FIRST }, \
2803 { "t1", 9 + GP_REG_FIRST }, \
2804 { "t2", 10 + GP_REG_FIRST }, \
2805 { "t3", 11 + GP_REG_FIRST }, \
2806 { "t4", 12 + GP_REG_FIRST }, \
2807 { "t5", 13 + GP_REG_FIRST }, \
2808 { "t6", 14 + GP_REG_FIRST }, \
2809 { "t7", 15 + GP_REG_FIRST }, \
2810 { "s0", 16 + GP_REG_FIRST }, \
2811 { "s1", 17 + GP_REG_FIRST }, \
2812 { "s2", 18 + GP_REG_FIRST }, \
2813 { "s3", 19 + GP_REG_FIRST }, \
2814 { "s4", 20 + GP_REG_FIRST }, \
2815 { "s5", 21 + GP_REG_FIRST }, \
2816 { "s6", 22 + GP_REG_FIRST }, \
2817 { "s7", 23 + GP_REG_FIRST }, \
2818 { "t8", 24 + GP_REG_FIRST }, \
2819 { "t9", 25 + GP_REG_FIRST }, \
2820 { "k0", 26 + GP_REG_FIRST }, \
2821 { "k1", 27 + GP_REG_FIRST }, \
2822 { "gp", 28 + GP_REG_FIRST }, \
2823 { "sp", 29 + GP_REG_FIRST }, \
2824 { "fp", 30 + GP_REG_FIRST }, \
ddc6405a 2825 { "ra", 31 + GP_REG_FIRST }, \
2826 { "$w0", 0 + FP_REG_FIRST }, \
2827 { "$w1", 1 + FP_REG_FIRST }, \
2828 { "$w2", 2 + FP_REG_FIRST }, \
2829 { "$w3", 3 + FP_REG_FIRST }, \
2830 { "$w4", 4 + FP_REG_FIRST }, \
2831 { "$w5", 5 + FP_REG_FIRST }, \
2832 { "$w6", 6 + FP_REG_FIRST }, \
2833 { "$w7", 7 + FP_REG_FIRST }, \
2834 { "$w8", 8 + FP_REG_FIRST }, \
2835 { "$w9", 9 + FP_REG_FIRST }, \
2836 { "$w10", 10 + FP_REG_FIRST }, \
2837 { "$w11", 11 + FP_REG_FIRST }, \
2838 { "$w12", 12 + FP_REG_FIRST }, \
2839 { "$w13", 13 + FP_REG_FIRST }, \
2840 { "$w14", 14 + FP_REG_FIRST }, \
2841 { "$w15", 15 + FP_REG_FIRST }, \
2842 { "$w16", 16 + FP_REG_FIRST }, \
2843 { "$w17", 17 + FP_REG_FIRST }, \
2844 { "$w18", 18 + FP_REG_FIRST }, \
2845 { "$w19", 19 + FP_REG_FIRST }, \
2846 { "$w20", 20 + FP_REG_FIRST }, \
2847 { "$w21", 21 + FP_REG_FIRST }, \
2848 { "$w22", 22 + FP_REG_FIRST }, \
2849 { "$w23", 23 + FP_REG_FIRST }, \
2850 { "$w24", 24 + FP_REG_FIRST }, \
2851 { "$w25", 25 + FP_REG_FIRST }, \
2852 { "$w26", 26 + FP_REG_FIRST }, \
2853 { "$w27", 27 + FP_REG_FIRST }, \
2854 { "$w28", 28 + FP_REG_FIRST }, \
2855 { "$w29", 29 + FP_REG_FIRST }, \
2856 { "$w30", 30 + FP_REG_FIRST }, \
2857 { "$w31", 31 + FP_REG_FIRST } \
c8829dad 2858}
2859
c8829dad 2860#define DBR_OUTPUT_SEQEND(STREAM) \
2861do \
2862 { \
0a54d56a 2863 /* Undo the effect of '%*'. */ \
2864 mips_pop_asm_switch (&mips_nomacro); \
2865 mips_pop_asm_switch (&mips_noreorder); \
2866 /* Emit a blank line after the delay slot for emphasis. */ \
c8829dad 2867 fputs ("\n", STREAM); \
2868 } \
2869while (0)
2870
9e042f31 2871/* The MIPS implementation uses some labels for its own purpose. The
c8829dad 2872 following lists what labels are created, and are all formed by the
2873 pattern $L[a-z].*. The machine independent portion of GCC creates
2874 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2875
b550e058 2876 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
c8829dad 2877 $Lb[0-9]+ Begin blocks for MIPS debug support
2878 $Lc[0-9]+ Label for use in s<xx> operation.
c060279b 2879 $Le[0-9]+ End blocks for MIPS debug support */
c8829dad 2880
cd16e7b6 2881#undef ASM_DECLARE_OBJECT_NAME
592ea28a 2882#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
fb80456a 2883 mips_declare_object (STREAM, NAME, "", ":\n")
904c9ae7 2884
0036ad94 2885/* Globalizing directive for a label. */
2886#define GLOBAL_ASM_OP "\t.globl\t"
c8829dad 2887
904c9ae7 2888/* This says how to define a global common symbol. */
c8829dad 2889
31b5e645 2890#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
c8829dad 2891
a361b456 2892/* This says how to define a local common symbol (i.e., not visible to
904c9ae7 2893 linker). */
c8829dad 2894
97a4eb3d 2895#ifndef ASM_OUTPUT_ALIGNED_LOCAL
2896#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2897 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2898#endif
c8829dad 2899
2900/* This says how to output an external. It would be possible not to
2901 output anything and let undefined symbol become external. However
2902 the assembler uses length information on externals to allocate in
2903 data/sdata bss/sbss, thereby saving exec time. */
2904
a9a4d6d9 2905#undef ASM_OUTPUT_EXTERNAL
c8829dad 2906#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2907 mips_output_external(STREAM,DECL,NAME)
2908
c8829dad 2909/* This is how to declare a function name. The actual work of
2910 emitting the label is moved to function_prologue, so that we can
2911 get the line number correctly emitted before the .ent directive,
61ab9ea9 2912 and after any .file directives. Define as empty so that the function
6a59b91a 2913 is not declared before the .ent directive elsewhere. */
2914
cd16e7b6 2915#undef ASM_DECLARE_FUNCTION_NAME
c060279b 2916#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
6a59b91a 2917
c8829dad 2918/* This is how to store into the string LABEL
2919 the symbol_ref name of an internal numbered label where
2920 PREFIX is the class of label and NUM is the number within the class.
2921 This is suitable for output with `assemble_name'. */
2922
cd16e7b6 2923#undef ASM_GENERATE_INTERNAL_LABEL
c8829dad 2924#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
02da6382 2925 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
c8829dad 2926
95a3a85e 2927/* Print debug labels as "foo = ." rather than "foo:" because they should
2928 represent a byte pointer rather than an ISA-encoded address. This is
2929 particularly important for code like:
2930
2931 $LFBxxx = .
2932 .cfi_startproc
2933 ...
2934 .section .gcc_except_table,...
2935 ...
2936 .uleb128 foo-$LFBxxx
2937
2938 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2939 likewise a byte pointer rather than an ISA-encoded address.
2940
2941 At the time of writing, this hook is not used for the function end
2942 label:
2943
2944 $LFExxx:
2945 .end foo
2946
2947 But this doesn't matter, because GAS doesn't treat a pre-.end label
2948 as a MIPS16 one anyway. */
2949
2950#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2951 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2952
c8829dad 2953/* This is how to output an element of a case-vector that is absolute. */
2954
2955#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
34a7f2a4 2956 fprintf (STREAM, "\t%s\t%sL%d\n", \
c9e1a048 2957 ptr_mode == DImode ? ".dword" : ".word", \
34a7f2a4 2958 LOCAL_LABEL_PREFIX, \
e29b85c8 2959 VALUE)
c8829dad 2960
364dfbc0 2961/* This is how to output an element of a case-vector. We can make the
2962 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2963 is supported. */
c8829dad 2964
9eaab178 2965#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
82b0e8e5 2966do { \
f02776dd 2967 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
4db9805e 2968 { \
2969 if (GET_MODE (BODY) == HImode) \
2970 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2971 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2972 else \
2973 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2974 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2975 } \
c9e1a048 2976 else if (TARGET_GPWORD) \
34a7f2a4 2977 fprintf (STREAM, "\t%s\t%sL%d\n", \
c9e1a048 2978 ptr_mode == DImode ? ".gpdword" : ".gpword", \
34a7f2a4 2979 LOCAL_LABEL_PREFIX, VALUE); \
a8a393cb 2980 else if (TARGET_RTP_PIC) \
2981 { \
2982 /* Make the entry relative to the start of the function. */ \
2983 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2984 fprintf (STREAM, "\t%s\t%sL%d-", \
2985 Pmode == DImode ? ".dword" : ".word", \
2986 LOCAL_LABEL_PREFIX, VALUE); \
2987 assemble_name (STREAM, XSTR (fnsym, 0)); \
2988 fprintf (STREAM, "\n"); \
2989 } \
37727f6d 2990 else \
6c51b52b 2991 fprintf (STREAM, "\t%s\t%sL%d\n", \
c9e1a048 2992 ptr_mode == DImode ? ".dword" : ".word", \
6c51b52b 2993 LOCAL_LABEL_PREFIX, VALUE); \
82b0e8e5 2994} while (0)
2995
35293eb1 2996/* Mark inline jump tables as data for the purpose of disassembly. For
2997 simplicity embed the jump table's label number in the local symbol
2998 produced so that multiple jump tables within a single function end
2999 up marked with unique symbols. Retain the alignment setting from
3000 `elfos.h' as we are replacing the definition from there. */
3001
3002#undef ASM_OUTPUT_BEFORE_CASE_LABEL
3003#define ASM_OUTPUT_BEFORE_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \
3004 do \
3005 { \
3006 ASM_OUTPUT_ALIGN ((STREAM), 2); \
3007 if (JUMP_TABLES_IN_TEXT_SECTION) \
3008 mips_set_text_contents_type (STREAM, "__jump_", NUM, FALSE); \
3009 } \
3010 while (0);
3011
3012/* Reset text marking to code after an inline jump table. Like with
3013 the beginning of a jump table use the label number to keep symbols
3014 unique. */
3015
3016#define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) \
3017 do \
3018 if (JUMP_TABLES_IN_TEXT_SECTION) \
3019 mips_set_text_contents_type (STREAM, "__jend_", NUM, TRUE); \
3020 while (0);
3021
c8829dad 3022/* This is how to output an assembler line
3023 that says to advance the location counter
3024 to a multiple of 2**LOG bytes. */
3025
3026#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
c84a4504 3027 fprintf (STREAM, "\t.align\t%d\n", (LOG))
c8829dad 3028
3398e91d 3029/* This is how to output an assembler line to advance the location
c8829dad 3030 counter by SIZE bytes. */
3031
cd16e7b6 3032#undef ASM_OUTPUT_SKIP
c8829dad 3033#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
f03df321 3034 fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
c8829dad 3035
c8829dad 3036/* This is how to output a string. */
cd16e7b6 3037#undef ASM_OUTPUT_ASCII
a798da4d 3038#define ASM_OUTPUT_ASCII mips_output_ascii
c8829dad 3039
c8829dad 3040\f
8963a639 3041/* Default to -G 8 */
3042#ifndef MIPS_DEFAULT_GVALUE
3043#define MIPS_DEFAULT_GVALUE 8
3044#endif
c8829dad 3045
490085e5 3046/* Define the strings to put out for each section in the object file. */
3047#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3048#define DATA_SECTION_ASM_OP "\t.data" /* large data */
858ac7b9 3049
3050#undef READONLY_DATA_SECTION_ASM_OP
6cde52a2 3051#define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
c8829dad 3052\f
c8829dad 3053#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3054do \
3055 { \
c865346a 3056 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
3057 TARGET_64BIT ? "daddiu" : "addiu", \
c8829dad 3058 reg_names[STACK_POINTER_REGNUM], \
3059 reg_names[STACK_POINTER_REGNUM], \
e29b85c8 3060 TARGET_64BIT ? "sd" : "sw", \
c8829dad 3061 reg_names[REGNO], \
3062 reg_names[STACK_POINTER_REGNUM]); \
3063 } \
3064while (0)
3065
3066#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3067do \
3068 { \
0a54d56a 3069 mips_push_asm_switch (&mips_noreorder); \
e29b85c8 3070 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
3071 TARGET_64BIT ? "ld" : "lw", \
c8829dad 3072 reg_names[REGNO], \
3073 reg_names[STACK_POINTER_REGNUM], \
e29b85c8 3074 TARGET_64BIT ? "daddu" : "addu", \
c8829dad 3075 reg_names[STACK_POINTER_REGNUM], \
3076 reg_names[STACK_POINTER_REGNUM]); \
0a54d56a 3077 mips_pop_asm_switch (&mips_noreorder); \
c8829dad 3078 } \
3079while (0)
3080
3d207e9d 3081/* How to start an assembler comment.
3082 The leading space is important (the mips native assembler requires it). */
c8829dad 3083#ifndef ASM_COMMENT_START
3d207e9d 3084#define ASM_COMMENT_START " #"
c8829dad 3085#endif
9df6b43a 3086\f
ec2603a9 3087#undef SIZE_TYPE
c9e1a048 3088#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
9df6b43a 3089
ec2603a9 3090#undef PTRDIFF_TYPE
c9e1a048 3091#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
4b297e2e 3092
1731ea58 3093/* The minimum alignment of any expanded block move. */
3094#define MIPS_MIN_MOVE_MEM_ALIGN 16
3095
959fd5af 3096/* The maximum number of bytes that can be copied by one iteration of
3097 a movmemsi loop; see mips_block_move_loop. */
3098#define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
3099 (UNITS_PER_WORD * 4)
3100
3101/* The maximum number of bytes that can be copied by a straight-line
3102 implementation of movmemsi; see mips_block_move_straight. We want
3103 to make sure that any loop-based implementation will iterate at
3104 least twice. */
3105#define MIPS_MAX_MOVE_BYTES_STRAIGHT \
3106 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
3107
4b297e2e 3108/* The base cost of a memcpy call, for MOVE_RATIO and friends. These
3109 values were determined experimentally by benchmarking with CSiBE.
3110 In theory, the call overhead is higher for TARGET_ABICALLS (especially
3111 for o32 where we have to restore $gp afterwards as well as make an
3112 indirect call), but in practice, bumping this up higher for
3113 TARGET_ABICALLS doesn't make much difference to code size. */
3114
3115#define MIPS_CALL_RATIO 8
3116
959fd5af 3117/* Any loop-based implementation of movmemsi will have at least
3118 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
3119 moves, so allow individual copies of fewer elements.
3120
3121 When movmemsi is not available, use a value approximating
3122 the length of a memcpy call sequence, so that move_by_pieces
3123 will generate inline code if it is shorter than a function call.
3124 Since move_by_pieces_ninsns counts memory-to-memory moves, but
3125 we'll have to generate a load/store pair for each, halve the
3126 value of MIPS_CALL_RATIO to take that into account. */
3127
f5733e7c 3128#define MOVE_RATIO(speed) \
959fd5af 3129 (HAVE_movmemsi \
3130 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
3131 : MIPS_CALL_RATIO / 2)
3132
4b297e2e 3133/* For CLEAR_RATIO, when optimizing for size, give a better estimate
3134 of the length of a memset call, but use the default otherwise. */
3135
f5733e7c 3136#define CLEAR_RATIO(speed)\
3137 ((speed) ? 15 : MIPS_CALL_RATIO)
4b297e2e 3138
3139/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3140 optimizing for size adjust the ratio to account for the overhead of
3141 loading the constant and replicating it across the word. */
3142
f5733e7c 3143#define SET_RATIO(speed) \
3144 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
4ddcf2b2 3145\f
f5d86738 3146/* Since the bits of the _init and _fini function is spread across
3147 many object files, each potentially with its own GP, we must assume
3148 we need to load our GP. We don't preserve $gp or $ra, since each
3149 init/fini chunk is supposed to initialize $gp, and crti/crtn
3150 already take care of preserving $ra and, when appropriate, $gp. */
2a5f9ffc 3151#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
f5d86738 3152#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3153 asm (SECTION_OP "\n\
5780132c 3154 .set push\n\
3155 .set nomips16\n\
f5d86738 3156 .set noreorder\n\
3157 bal 1f\n\
3158 nop\n\
31591: .cpload $31\n\
3160 .set reorder\n\
3e42171c 3161 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3162 jalr $25\n\
5780132c 3163 .set pop\n\
f5d86738 3164 " TEXT_SECTION_ASM_OP);
3e42171c 3165#elif (defined _ABIN32 && _MIPS_SIM == _ABIN32)
f5d86738 3166#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3167 asm (SECTION_OP "\n\
5780132c 3168 .set push\n\
3169 .set nomips16\n\
f5d86738 3170 .set noreorder\n\
3171 bal 1f\n\
3172 nop\n\
31731: .set reorder\n\
3174 .cpsetup $31, $2, 1b\n\
3e42171c 3175 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3176 jalr $25\n\
3177 .set pop\n\
3178 " TEXT_SECTION_ASM_OP);
3179#elif (defined _ABI64 && _MIPS_SIM == _ABI64)
3180#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3181 asm (SECTION_OP "\n\
3182 .set push\n\
3183 .set nomips16\n\
3184 .set noreorder\n\
3185 bal 1f\n\
3186 nop\n\
31871: .set reorder\n\
3188 .cpsetup $31, $2, 1b\n\
3189 dla $25, " USER_LABEL_PREFIX #FUNC "\n\
3190 jalr $25\n\
5780132c 3191 .set pop\n\
f5d86738 3192 " TEXT_SECTION_ASM_OP);
3193#endif
42bdde4b 3194
3195#ifndef HAVE_AS_TLS
3196#define HAVE_AS_TLS 0
3197#endif
e5ee2a85 3198
0bd32132 3199#ifndef HAVE_AS_NAN
3200#define HAVE_AS_NAN 0
3201#endif
3202
3c73affd 3203#ifndef USED_FOR_TARGET
0a54d56a 3204/* Information about ".set noFOO; ...; .set FOO" blocks. */
3205struct mips_asm_switch {
3206 /* The FOO in the description above. */
3207 const char *name;
3208
3209 /* The current block nesting level, or 0 if we aren't in a block. */
3210 int nesting_level;
3211};
3212
3c73affd 3213extern const enum reg_class mips_regno_to_class[];
3c73affd 3214extern const char *current_function_file; /* filename current function is in */
3215extern int num_source_filenames; /* current .file # */
0a54d56a 3216extern struct mips_asm_switch mips_noreorder;
3217extern struct mips_asm_switch mips_nomacro;
3218extern struct mips_asm_switch mips_noat;
3c73affd 3219extern int mips_dbx_regno[];
3220extern int mips_dwarf_regno[];
3221extern bool mips_split_p[];
559b0712 3222extern bool mips_split_hi_p[];
a657080a 3223extern bool mips_use_pcrel_pool_p[];
3224extern const char *mips_lo_relocs[];
3225extern const char *mips_hi_relocs[];
5d54fceb 3226extern enum processor mips_arch; /* which cpu to codegen for */
3227extern enum processor mips_tune; /* which cpu to schedule for */
3c73affd 3228extern int mips_isa; /* architectural level */
95faea77 3229extern int mips_isa_rev;
3c73affd 3230extern const struct mips_cpu_info *mips_arch_info;
3231extern const struct mips_cpu_info *mips_tune_info;
ff9c1bc1 3232extern unsigned int mips_base_compression_flags;
07f1949b 3233extern GTY(()) struct target_globals *mips16_globals;
60b5d25f 3234extern GTY(()) struct target_globals *micromips_globals;
0c9081e8 3235
3236/* Information about a function's frame layout. */
3237struct GTY(()) mips_frame_info {
3238 /* The size of the frame in bytes. */
3239 HOST_WIDE_INT total_size;
3240
3241 /* The number of bytes allocated to variables. */
3242 HOST_WIDE_INT var_size;
3243
3244 /* The number of bytes allocated to outgoing function arguments. */
3245 HOST_WIDE_INT args_size;
3246
3247 /* The number of bytes allocated to the .cprestore slot, or 0 if there
3248 is no such slot. */
3249 HOST_WIDE_INT cprestore_size;
3250
3251 /* Bit X is set if the function saves or restores GPR X. */
3252 unsigned int mask;
3253
3254 /* Likewise FPR X. */
3255 unsigned int fmask;
3256
3257 /* Likewise doubleword accumulator X ($acX). */
3258 unsigned int acc_mask;
3259
3260 /* The number of GPRs, FPRs, doubleword accumulators and COP0
3261 registers saved. */
3262 unsigned int num_gp;
3263 unsigned int num_fp;
3264 unsigned int num_acc;
3265 unsigned int num_cop0_regs;
3266
3267 /* The offset of the topmost GPR, FPR, accumulator and COP0-register
3268 save slots from the top of the frame, or zero if no such slots are
3269 needed. */
3270 HOST_WIDE_INT gp_save_offset;
3271 HOST_WIDE_INT fp_save_offset;
3272 HOST_WIDE_INT acc_save_offset;
3273 HOST_WIDE_INT cop0_save_offset;
3274
3275 /* Likewise, but giving offsets from the bottom of the frame. */
3276 HOST_WIDE_INT gp_sp_offset;
3277 HOST_WIDE_INT fp_sp_offset;
3278 HOST_WIDE_INT acc_sp_offset;
3279 HOST_WIDE_INT cop0_sp_offset;
3280
3281 /* Similar, but the value passed to _mcount. */
3282 HOST_WIDE_INT ra_fp_offset;
3283
3284 /* The offset of arg_pointer_rtx from the bottom of the frame. */
3285 HOST_WIDE_INT arg_pointer_offset;
3286
3287 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
3288 HOST_WIDE_INT hard_frame_pointer_offset;
3289};
3290
3291/* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts. */
3292enum mips_int_mask
3293{
3294 INT_MASK_EIC = -1,
3295 INT_MASK_SW0 = 0,
3296 INT_MASK_SW1 = 1,
3297 INT_MASK_HW0 = 2,
3298 INT_MASK_HW1 = 3,
3299 INT_MASK_HW2 = 4,
3300 INT_MASK_HW3 = 5,
3301 INT_MASK_HW4 = 6,
3302 INT_MASK_HW5 = 7
3303};
3304
3305/* Enumeration to mark the existence of the shadow register set.
3306 SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack
3307 pointer. */
3308enum mips_shadow_set
3309{
3310 SHADOW_SET_NO,
3311 SHADOW_SET_YES,
3312 SHADOW_SET_INTSTACK
3313};
3314
3315struct GTY(()) machine_function {
3316 /* The next floating-point condition-code register to allocate
3317 for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
3318 unsigned int next_fcc;
3319
3320 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
3321 rtx mips16_gp_pseudo_rtx;
3322
3323 /* The number of extra stack bytes taken up by register varargs.
3324 This area is allocated by the callee at the very top of the frame. */
3325 int varargs_size;
3326
3327 /* The current frame information, calculated by mips_compute_frame_info. */
3328 struct mips_frame_info frame;
3329
3330 /* The register to use as the function's global pointer, or INVALID_REGNUM
3331 if the function doesn't need one. */
3332 unsigned int global_pointer;
3333
3334 /* How many instructions it takes to load a label into $AT, or 0 if
3335 this property hasn't yet been calculated. */
3336 unsigned int load_label_num_insns;
3337
3338 /* True if mips_adjust_insn_length should ignore an instruction's
3339 hazard attribute. */
3340 bool ignore_hazard_length_p;
3341
3342 /* True if the whole function is suitable for .set noreorder and
3343 .set nomacro. */
3344 bool all_noreorder_p;
3345
3346 /* True if the function has "inflexible" and "flexible" references
3347 to the global pointer. See mips_cfun_has_inflexible_gp_ref_p
3348 and mips_cfun_has_flexible_gp_ref_p for details. */
3349 bool has_inflexible_gp_insn_p;
3350 bool has_flexible_gp_insn_p;
3351
3352 /* True if the function's prologue must load the global pointer
3353 value into pic_offset_table_rtx and store the same value in
3354 the function's cprestore slot (if any). Even if this value
3355 is currently false, we may decide to set it to true later;
3356 see mips_must_initialize_gp_p () for details. */
3357 bool must_initialize_gp_p;
3358
3359 /* True if the current function must restore $gp after any potential
3360 clobber. This value is only meaningful during the first post-epilogue
3361 split_insns pass; see mips_must_initialize_gp_p () for details. */
3362 bool must_restore_gp_when_clobbered_p;
3363
3364 /* True if this is an interrupt handler. */
3365 bool interrupt_handler_p;
3366
3367 /* Records the way in which interrupts should be masked. Only used if
3368 interrupts are not kept masked. */
3369 enum mips_int_mask int_mask;
3370
3371 /* Records if this is an interrupt handler that uses shadow registers. */
3372 enum mips_shadow_set use_shadow_register_set;
3373
3374 /* True if this is an interrupt handler that should keep interrupts
3375 masked. */
3376 bool keep_interrupts_masked_p;
3377
3378 /* True if this is an interrupt handler that should use DERET
3379 instead of ERET. */
3380 bool use_debug_exception_return_p;
3381
3382 /* True if at least one of the formal parameters to a function must be
3383 written to the frame header (probably so its address can be taken). */
3384 bool does_not_use_frame_header;
3385
3386 /* True if none of the functions that are called by this function need
3387 stack space allocated for their arguments. */
3388 bool optimize_call_stack;
2208bcd9 3389
3390 /* True if one of the functions calling this function may not allocate
3391 a frame header. */
3392 bool callers_may_not_allocate_frame;
3393
3394 /* True if GCC stored callee saved registers in the frame header. */
3395 bool use_frame_header_for_callee_saved_regs;
0c9081e8 3396};
3c73affd 3397#endif
dc5599bf 3398
3399/* Enable querying of DFA units. */
3400#define CPU_UNITS_QUERY 1
e6554c42 3401
3402#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3403 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
287179e8 3404
c4cf26ad 3405/* As on most targets, we want the .eh_frame section to be read-only where
3406 possible. And as on most targets, this means two things:
3407
3408 (a) Non-locally-binding pointers must have an indirect encoding,
3409 so that the addresses in the .eh_frame section itself become
3410 locally-binding.
3411
3412 (b) A shared library's .eh_frame section must encode locally-binding
3413 pointers in a relative (relocation-free) form.
3414
3415 However, MIPS has traditionally not allowed directives like:
3416
3417 .long x-.
3418
3419 in cases where "x" is in a different section, or is not defined in the
3420 same assembly file. We are therefore unable to emit the PC-relative
3421 form required by (b) at assembly time.
3422
3423 Fortunately, the linker is able to convert absolute addresses into
3424 PC-relative addresses on our behalf. Unfortunately, only certain
3425 versions of the linker know how to do this for indirect pointers,
3426 and for personality data. We must fall back on using writable
3427 .eh_frame sections for shared libraries if the linker does not
3428 support this feature. */
3429#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3430 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
07f1949b 3431
3432/* For switching between MIPS16 and non-MIPS16 modes. */
3433#define SWITCHABLE_TARGET 1
9d81057b 3434
3435/* Several named MIPS patterns depend on Pmode. These patterns have the
3436 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3437 Add the appropriate suffix to generator function NAME and invoke it
3438 with arguments ARGS. */
3439#define PMODE_INSN(NAME, ARGS) \
3440 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
257ccd46 3441
3442/* If we are *not* using multilibs and the default ABI is not ABI_32 we
3443 need to change these from /lib and /usr/lib. */
3444#if MIPS_ABI_DEFAULT == ABI_N32
3445#define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
3446#define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
3447#elif MIPS_ABI_DEFAULT == ABI_64
3448#define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
3449#define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
3450#endif
069b9d52 3451
3452/* Load store bonding is not supported by micromips and fix_24k. The
3453 performance can be degraded for those targets. Hence, do not bond for
3454 micromips or fix_24k. */
3455#define ENABLE_LD_ST_PAIRS \
7bb34078 3456 (TARGET_LOAD_STORE_PAIRS && (TUNE_P5600 || TUNE_I6400) \
069b9d52 3457 && !TARGET_MICROMIPS && !TARGET_FIX_24K)