]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/mips/mips.h
optabs.h (OTI_flodiv, [...]): Kill.
[thirdparty/gcc.git] / gcc / config / mips / mips.h
CommitLineData
e75b25e7 1/* Definitions of target machine for GNU compiler. MIPS version.
214be03f 2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
cf011243 3 1999, 2000, 2001 Free Software Foundation, Inc.
ae3e1bb4
RK
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
e75b25e7
MM
8
9This file is part of GNU CC.
10
11GNU CC is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2, or (at your option)
14any later version.
15
16GNU CC is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with GNU CC; see the file COPYING. If not, write to
75fe0c5e
RK
23the Free Software Foundation, 59 Temple Place - Suite 330,
24Boston, MA 02111-1307, USA. */
e75b25e7
MM
25
26
e75b25e7
MM
27/* Standard GCC variables that we reference. */
28
0fb5ac6f
MM
29extern char *asm_file_name;
30extern char call_used_regs[];
0fb5ac6f 31extern int may_call_alloca;
0fb5ac6f
MM
32extern char **save_argv;
33extern int target_flags;
e75b25e7
MM
34
35/* MIPS external variables defined in mips.c. */
36
37/* comparison type */
38enum cmp_type {
876c09d3
JW
39 CMP_SI, /* compare four byte integers */
40 CMP_DI, /* compare eight byte integers */
e75b25e7
MM
41 CMP_SF, /* compare single precision floats */
42 CMP_DF, /* compare double precision floats */
43 CMP_MAX /* max comparison type */
44};
45
46/* types of delay slot */
47enum delay_type {
48 DELAY_NONE, /* no delay slot */
49 DELAY_LOAD, /* load from memory delay */
34b650b3
MM
50 DELAY_HILO, /* move from/to hi/lo registers */
51 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
e75b25e7
MM
52};
53
54/* Which processor to schedule for. Since there is no difference between
55 a R2000 and R3000 in terms of the scheduler, we collapse them into
4a392643
RS
56 just an R3000. The elements of the enumeration must match exactly
57 the cpu attribute in the mips.md machine description. */
e75b25e7
MM
58
59enum processor_type {
60 PROCESSOR_DEFAULT,
61 PROCESSOR_R3000,
e9a25f70 62 PROCESSOR_R3900,
e75b25e7 63 PROCESSOR_R6000,
876c09d3 64 PROCESSOR_R4000,
00b3e052
JW
65 PROCESSOR_R4100,
66 PROCESSOR_R4300,
516a2dfd 67 PROCESSOR_R4600,
053665d7 68 PROCESSOR_R4650,
b8eb88d0 69 PROCESSOR_R5000,
516a2dfd 70 PROCESSOR_R8000
e75b25e7
MM
71};
72
4a392643 73/* Recast the cpu class to be the cpu attribute. */
919b1aec 74#define mips_cpu_attr ((enum attr_cpu)mips_tune)
4a392643 75
04bd620d 76/* Which ABI to use. These are constants because abi64.h must check their
a53f72db
GRK
77 value at preprocessing time.
78
79 ABI_32 (original 32, or o32), ABI_N32 (n32), ABI_64 (n64) are all
80 defined by SGI. ABI_O64 is o32 extended to work on a 64 bit machine. */
b2d8cf33 81
04bd620d
JW
82#define ABI_32 0
83#define ABI_N32 1
84#define ABI_64 2
85#define ABI_EABI 3
a53f72db 86#define ABI_O64 4
b2d8cf33
JW
87
88#ifndef MIPS_ABI_DEFAULT
89/* We define this away so that there is no extra runtime cost if the target
90 doesn't support multiple ABIs. */
91#define mips_abi ABI_32
92#else
04bd620d 93extern int mips_abi;
b2d8cf33
JW
94#endif
95
45ceb85d
RS
96/* Whether to emit abicalls code sequences or not. */
97
98enum mips_abicalls_type {
99 MIPS_ABICALLS_NO,
100 MIPS_ABICALLS_YES
101};
102
103/* Recast the abicalls class to be the abicalls attribute. */
104#define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
105
b7d3fabe
RS
106/* Which type of block move to do (whether or not the last store is
107 split out so it can fill a branch delay slot). */
108
109enum block_move_type {
110 BLOCK_MOVE_NORMAL, /* generate complete block move */
111 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
112 BLOCK_MOVE_LAST /* generate just the last store */
113};
114
e75b25e7
MM
115extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
116extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
e2fe6aba 117extern const char *current_function_file; /* filename current function is in */
e75b25e7
MM
118extern int num_source_filenames; /* current .file # */
119extern int inside_function; /* != 0 if inside of a function */
120extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
121extern int file_in_function_warning; /* warning given about .file in func */
122extern int sdb_label_count; /* block start/end next label # */
a642a781 123extern int sdb_begin_function_line; /* Starting Line of current function */
e75b25e7
MM
124extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
125extern int g_switch_value; /* value of the -G xx switch */
126extern int g_switch_set; /* whether -G xx was passed. */
127extern int sym_lineno; /* sgi next label # for each stmt */
128extern int set_noreorder; /* # of nested .set noreorder's */
129extern int set_nomacro; /* # of nested .set nomacro's */
130extern int set_noat; /* # of nested .set noat's */
131extern int set_volatile; /* # of nested .set volatile's */
e75b25e7
MM
132extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
133extern int mips_dbx_regno[]; /* Map register # to debug register # */
e75b25e7
MM
134extern struct rtx_def *branch_cmp[2]; /* operands for compare */
135extern enum cmp_type branch_type; /* what type of branch to use */
7dac2f89
EC
136extern enum processor_type mips_arch; /* which cpu to codegen for */
137extern enum processor_type mips_tune; /* which cpu to schedule for */
45ceb85d 138extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
e75b25e7 139extern int mips_isa; /* architectural level */
2bcb2ab3
GK
140extern int mips16; /* whether generating mips16 code */
141extern int mips16_hard_float; /* mips16 without -msoft-float */
142extern int mips_entry; /* generate entry/exit for mips16 */
e2fe6aba 143extern const char *mips_cpu_string; /* for -mcpu=<xxx> */
7dac2f89
EC
144extern const char *mips_arch_string; /* for -march=<xxx> */
145extern const char *mips_tune_string; /* for -mtune=<xxx> */
e2fe6aba
KG
146extern const char *mips_isa_string; /* for -mips{1,2,3,4} */
147extern const char *mips_abi_string; /* for -mabi={32,n32,64} */
148extern const char *mips_entry_string; /* for -mentry */
149extern const char *mips_no_mips16_string;/* for -mno-mips16 */
3ce1ba83 150extern const char *mips_explicit_type_size_string;/* for -mexplicit-type-size */
ce57d6f4 151extern int mips_split_addresses; /* perform high/lo_sum support */
e75b25e7
MM
152extern int dslots_load_total; /* total # load related delay slots */
153extern int dslots_load_filled; /* # filled load delay slots */
154extern int dslots_jump_total; /* total # jump related delay slots */
155extern int dslots_jump_filled; /* # filled jump delay slots */
156extern int dslots_number_nops; /* # of nops needed by previous insn */
157extern int num_refs[3]; /* # 1/2/3 word references */
158extern struct rtx_def *mips_load_reg; /* register to check for load delay */
159extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
160extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
161extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
92544bdf 162extern struct rtx_def *embedded_pic_fnaddr_rtx; /* function address */
2bcb2ab3
GK
163extern int mips_string_length; /* length of strings for mips16 */
164extern struct rtx_def *mips16_gp_pseudo_rtx; /* psuedo reg holding $gp */
e75b25e7 165
0fb5ac6f 166/* Functions to change what output section we are using. */
bd9f1972
KG
167extern void rdata_section PARAMS ((void));
168extern void sdata_section PARAMS ((void));
cc8f5ec0 169extern void sbss_section PARAMS ((void));
e75b25e7 170
31c714e3
MM
171/* Stubs for half-pic support if not OSF/1 reference platform. */
172
173#ifndef HALF_PIC_P
174#define HALF_PIC_P() 0
4a392643
RS
175#define HALF_PIC_NUMBER_PTRS 0
176#define HALF_PIC_NUMBER_REFS 0
31c714e3 177#define HALF_PIC_ENCODE(DECL)
f3b39eba 178#define HALF_PIC_DECLARE(NAME)
31c714e3
MM
179#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
180#define HALF_PIC_ADDRESS_P(X) 0
d26e29e1
MM
181#define HALF_PIC_PTR(X) X
182#define HALF_PIC_FINISH(STREAM)
31c714e3
MM
183#endif
184
3a6ee9f4
MM
185/* Macros to silence warnings about numbers being signed in traditional
186 C and unsigned in ISO C when compiled on 32-bit hosts. */
187
188#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
189#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
190#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
191
149e4e00
MM
192\f
193/* Run-time compilation parameters selecting different hardware subsets. */
194
195/* Macros used in the machine description to test the flags. */
196
197 /* Bits for real switches */
6d81ba45
CD
198#define MASK_INT64 0x00000001 /* ints are 64 bits */
199#define MASK_LONG64 0x00000002 /* longs are 64 bits */
200#define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
201#define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
202#define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
203#define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
204#define MASK_STATS 0x00000040 /* print statistics to stderr */
205#define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
206#define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
207#define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
208#define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
209#define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
210#define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
211#define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
212#define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
365c6a0b 213#define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
6d81ba45
CD
214#define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
215#define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
216#define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
217#define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
7dac2f89 218#define MASK_MIPS16 0x00100000 /* Generate mips16 code */
6d81ba45 219#define MASK_NO_CHECK_ZERO_DIV \
7dac2f89 220 0x00200000 /* divide by zero checking */
6d81ba45 221#define MASK_CHECK_RANGE_DIV \
7dac2f89 222 0x00400000 /* divide result range checking */
6d81ba45 223#define MASK_UNINIT_CONST_IN_RODATA \
7dac2f89 224 0x00800000 /* Store uninitialized
6d81ba45 225 consts in rodata */
149e4e00
MM
226
227 /* Debug switches, not documented */
6d81ba45
CD
228#define MASK_DEBUG 0 /* unused */
229#define MASK_DEBUG_A 0 /* don't allow <label>($reg) addrs */
230#define MASK_DEBUG_B 0 /* GO_IF_LEGITIMATE_ADDRESS debug */
231#define MASK_DEBUG_C 0 /* don't expand seq, etc. */
08c2951c 232#define MASK_DEBUG_D 0 /* don't do define_split's */
e4f5c5d6 233#define MASK_DEBUG_E 0 /* function_arg debug */
6d81ba45 234#define MASK_DEBUG_F 0 /* ??? */
2bcb2ab3 235#define MASK_DEBUG_G 0 /* don't support 64 bit arithmetic */
6d1350cd 236#define MASK_DEBUG_H 0 /* allow ints in FP registers */
e4f5c5d6 237#define MASK_DEBUG_I 0 /* unused */
149e4e00 238
6d81ba45
CD
239 /* Dummy switches used only in specs */
240#define MASK_MIPS_TFILE 0 /* flag for mips-tfile usage */
241
149e4e00
MM
242 /* r4000 64 bit sizes */
243#define TARGET_INT64 (target_flags & MASK_INT64)
244#define TARGET_LONG64 (target_flags & MASK_LONG64)
149e4e00 245#define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
876c09d3 246#define TARGET_64BIT (target_flags & MASK_64BIT)
149e4e00 247
5ef37cd3
JW
248 /* Mips vs. GNU linker */
249#define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
250
149e4e00
MM
251 /* Mips vs. GNU assembler */
252#define TARGET_GAS (target_flags & MASK_GAS)
6d81ba45 253#define TARGET_MIPS_AS (!TARGET_GAS)
149e4e00 254
6d81ba45 255 /* Debug Modes */
149e4e00
MM
256#define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
257#define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
258#define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
259#define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
260#define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
261#define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
262#define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
263#define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
264#define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
265#define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
149e4e00
MM
266
267 /* Reg. Naming in .s ($21 vs. $a0) */
268#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
269
270 /* Optimize for Sdata/Sbss */
271#define TARGET_GP_OPT (target_flags & MASK_GPOPT)
272
273 /* print program statistics */
274#define TARGET_STATS (target_flags & MASK_STATS)
275
276 /* call memcpy instead of inline code */
277#define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
278
279 /* .abicalls, etc from Pyramid V.4 */
280#define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
281
282 /* OSF pic references to externs */
283#define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
284
285 /* software floating point */
286#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
287#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
288
289 /* always call through a register */
290#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
291
e0bfcea5
ILT
292 /* generate embedded PIC code;
293 requires gas. */
294#define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
295
365c6a0b
JW
296 /* for embedded systems, optimize for
297 reduced RAM space instead of for
298 fastest code. */
299#define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
300
919509ce
DN
301 /* always store uninitialized const
302 variables in rodata, requires
303 TARGET_EMBEDDED_DATA. */
304#define TARGET_UNINIT_CONST_IN_RODATA (target_flags & MASK_UNINIT_CONST_IN_RODATA)
305
96abdcb1
ILT
306 /* generate big endian code. */
307#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
308
46299de9
ILT
309#define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
310#define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
311
312#define TARGET_MAD (target_flags & MASK_MAD)
313
00b3e052
JW
314#define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
315
08c2951c
SC
316#define TARGET_NO_CHECK_ZERO_DIV (target_flags & MASK_NO_CHECK_ZERO_DIV)
317#define TARGET_CHECK_RANGE_DIV (target_flags & MASK_CHECK_RANGE_DIV)
318
33b5e50b
JW
319/* This is true if we must enable the assembly language file switching
320 code. */
321
f99ffb60
RH
322#define TARGET_FILE_SWITCHING \
323 (TARGET_GP_OPT && ! TARGET_GAS && ! TARGET_MIPS16)
33b5e50b
JW
324
325/* We must disable the function end stabs when doing the file switching trick,
326 because the Lscope stabs end up in the wrong place, making it impossible
327 to debug the resulting code. */
328#define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
329
2bcb2ab3
GK
330 /* Generate mips16 code */
331#define TARGET_MIPS16 (target_flags & MASK_MIPS16)
332
7dac2f89
EC
333/* Architecture target defines. */
334#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
335#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
336#define TARGET_MIPS4100 (mips_arch == PROCESSOR_R4100)
337#define TARGET_MIPS4300 (mips_arch == PROCESSOR_R4300)
338
339/* Scheduling target defines. */
7a38df19
EC
340#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
341#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
342#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
343#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
344#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
7dac2f89 345
149e4e00
MM
346/* Macro to define tables used to set the flags.
347 This is a list in braces of pairs in braces,
348 each pair being { "NAME", VALUE }
349 where VALUE is the bits to set or minus the bits to clear.
350 An empty string NAME is used to identify the default VALUE. */
351
352#define TARGET_SWITCHES \
353{ \
c45fd7f9 354 {"no-crt0", 0, \
047142d3 355 N_("No default crt0.o") }, \
a127db75 356 {"int64", MASK_INT64 | MASK_LONG64, \
047142d3 357 N_("Use 64-bit int type")}, \
a127db75 358 {"long64", MASK_LONG64, \
047142d3 359 N_("Use 64-bit long type")}, \
a127db75 360 {"long32", -(MASK_LONG64 | MASK_INT64), \
047142d3 361 N_("Use 32-bit long type")}, \
a127db75 362 {"split-addresses", MASK_SPLIT_ADDR, \
047142d3 363 N_("Optimize lui/addiu address loads")}, \
a127db75 364 {"no-split-addresses", -MASK_SPLIT_ADDR, \
047142d3 365 N_("Don't optimize lui/addiu address loads")}, \
a127db75 366 {"mips-as", -MASK_GAS, \
047142d3 367 N_("Use MIPS as")}, \
a127db75 368 {"gas", MASK_GAS, \
047142d3 369 N_("Use GNU as")}, \
a127db75 370 {"rnames", MASK_NAME_REGS, \
047142d3 371 N_("Use symbolic register names")}, \
a127db75 372 {"no-rnames", -MASK_NAME_REGS, \
047142d3 373 N_("Don't use symbolic register names")}, \
a127db75 374 {"gpOPT", MASK_GPOPT, \
047142d3 375 N_("Use GP relative sdata/sbss sections")}, \
a127db75 376 {"gpopt", MASK_GPOPT, \
047142d3 377 N_("Use GP relative sdata/sbss sections")}, \
a127db75 378 {"no-gpOPT", -MASK_GPOPT, \
047142d3 379 N_("Don't use GP relative sdata/sbss sections")}, \
a127db75 380 {"no-gpopt", -MASK_GPOPT, \
047142d3 381 N_("Don't use GP relative sdata/sbss sections")}, \
a127db75 382 {"stats", MASK_STATS, \
047142d3 383 N_("Output compiler statistics")}, \
a127db75 384 {"no-stats", -MASK_STATS, \
047142d3 385 N_("Don't output compiler statistics")}, \
a127db75 386 {"memcpy", MASK_MEMCPY, \
047142d3 387 N_("Don't optimize block moves")}, \
a127db75 388 {"no-memcpy", -MASK_MEMCPY, \
047142d3 389 N_("Optimize block moves")}, \
a127db75 390 {"mips-tfile", MASK_MIPS_TFILE, \
047142d3 391 N_("Use mips-tfile asm postpass")}, \
a127db75 392 {"no-mips-tfile", -MASK_MIPS_TFILE, \
047142d3 393 N_("Don't use mips-tfile asm postpass")}, \
a127db75 394 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 395 N_("Use software floating point")}, \
a127db75 396 {"hard-float", -MASK_SOFT_FLOAT, \
047142d3 397 N_("Use hardware floating point")}, \
a127db75 398 {"fp64", MASK_FLOAT64, \
047142d3 399 N_("Use 64-bit FP registers")}, \
a127db75 400 {"fp32", -MASK_FLOAT64, \
047142d3 401 N_("Use 32-bit FP registers")}, \
a127db75 402 {"gp64", MASK_64BIT, \
047142d3 403 N_("Use 64-bit general registers")}, \
a127db75 404 {"gp32", -MASK_64BIT, \
047142d3 405 N_("Use 32-bit general registers")}, \
a127db75 406 {"abicalls", MASK_ABICALLS, \
047142d3 407 N_("Use Irix PIC")}, \
a127db75 408 {"no-abicalls", -MASK_ABICALLS, \
047142d3 409 N_("Don't use Irix PIC")}, \
a127db75 410 {"half-pic", MASK_HALF_PIC, \
047142d3 411 N_("Use OSF PIC")}, \
a127db75 412 {"no-half-pic", -MASK_HALF_PIC, \
047142d3 413 N_("Don't use OSF PIC")}, \
a127db75 414 {"long-calls", MASK_LONG_CALLS, \
047142d3 415 N_("Use indirect calls")}, \
a127db75 416 {"no-long-calls", -MASK_LONG_CALLS, \
047142d3 417 N_("Don't use indirect calls")}, \
a127db75 418 {"embedded-pic", MASK_EMBEDDED_PIC, \
047142d3 419 N_("Use embedded PIC")}, \
a127db75 420 {"no-embedded-pic", -MASK_EMBEDDED_PIC, \
047142d3 421 N_("Don't use embedded PIC")}, \
a127db75 422 {"embedded-data", MASK_EMBEDDED_DATA, \
047142d3 423 N_("Use ROM instead of RAM")}, \
a127db75 424 {"no-embedded-data", -MASK_EMBEDDED_DATA, \
047142d3 425 N_("Don't use ROM instead of RAM")}, \
919509ce 426 {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
047142d3 427 N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
919509ce 428 {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
047142d3 429 N_("Don't put uninitialized constants in ROM")}, \
a127db75 430 {"eb", MASK_BIG_ENDIAN, \
047142d3 431 N_("Use big-endian byte order")}, \
a127db75 432 {"el", -MASK_BIG_ENDIAN, \
047142d3 433 N_("Use little-endian byte order")}, \
a127db75 434 {"single-float", MASK_SINGLE_FLOAT, \
047142d3 435 N_("Use single (32-bit) FP only")}, \
a127db75 436 {"double-float", -MASK_SINGLE_FLOAT, \
047142d3 437 N_("Don't use single (32-bit) FP only")}, \
a127db75 438 {"mad", MASK_MAD, \
047142d3 439 N_("Use multiply accumulate")}, \
a127db75 440 {"no-mad", -MASK_MAD, \
047142d3 441 N_("Don't use multiply accumulate")}, \
a127db75 442 {"fix4300", MASK_4300_MUL_FIX, \
047142d3 443 N_("Work around early 4300 hardware bug")}, \
a127db75 444 {"no-fix4300", -MASK_4300_MUL_FIX, \
047142d3 445 N_("Don't work around early 4300 hardware bug")}, \
7dac2f89 446 {"3900", 0, \
047142d3 447 N_("Optimize for 3900")}, \
7dac2f89
EC
448 {"4650", 0, \
449 N_("Optimize for 4650")}, \
a127db75 450 {"check-zero-division",-MASK_NO_CHECK_ZERO_DIV, \
047142d3 451 N_("Trap on integer divide by zero")}, \
a127db75 452 {"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV, \
047142d3 453 N_("Don't trap on integer divide by zero")}, \
a127db75 454 {"check-range-division",MASK_CHECK_RANGE_DIV, \
047142d3 455 N_("Trap on integer divide overflow")}, \
a127db75 456 {"no-check-range-division",-MASK_CHECK_RANGE_DIV, \
047142d3 457 N_("Don't trap on integer divide overflow")}, \
a127db75
JW
458 {"debug", MASK_DEBUG, \
459 NULL}, \
460 {"debuga", MASK_DEBUG_A, \
461 NULL}, \
462 {"debugb", MASK_DEBUG_B, \
463 NULL}, \
464 {"debugc", MASK_DEBUG_C, \
465 NULL}, \
466 {"debugd", MASK_DEBUG_D, \
467 NULL}, \
468 {"debuge", MASK_DEBUG_E, \
469 NULL}, \
470 {"debugf", MASK_DEBUG_F, \
471 NULL}, \
472 {"debugg", MASK_DEBUG_G, \
473 NULL}, \
474 {"debugh", MASK_DEBUG_H, \
475 NULL}, \
476 {"debugi", MASK_DEBUG_I, \
477 NULL}, \
96abdcb1
ILT
478 {"", (TARGET_DEFAULT \
479 | TARGET_CPU_DEFAULT \
a127db75
JW
480 | TARGET_ENDIAN_DEFAULT), \
481 NULL}, \
7dac2f89 482}
149e4e00
MM
483
484/* Default target_flags if no switches are specified */
485
486#ifndef TARGET_DEFAULT
487#define TARGET_DEFAULT 0
488#endif
489
404f986e
MM
490#ifndef TARGET_CPU_DEFAULT
491#define TARGET_CPU_DEFAULT 0
492#endif
493
96abdcb1
ILT
494#ifndef TARGET_ENDIAN_DEFAULT
495#ifndef DECSTATION
496#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
497#else
498#define TARGET_ENDIAN_DEFAULT 0
499#endif
500#endif
501
ea09f032
GRK
502#ifndef MIPS_ISA_DEFAULT
503#define MIPS_ISA_DEFAULT 1
504#endif
505
996ed075
JJ
506#ifdef IN_LIBGCC2
507#undef TARGET_64BIT
508/* Make this compile time constant for libgcc2 */
509#ifdef __mips64
510#define TARGET_64BIT 1
511#else
512#define TARGET_64BIT 0
513#endif
440927ec 514#endif /* IN_LIBGCC2 */
996ed075 515
cbab8d02 516#ifndef MULTILIB_ENDIAN_DEFAULT
7f2e00db 517#if TARGET_ENDIAN_DEFAULT == 0
cbab8d02 518#define MULTILIB_ENDIAN_DEFAULT "EL"
7f2e00db 519#else
cbab8d02
GRK
520#define MULTILIB_ENDIAN_DEFAULT "EB"
521#endif
7f2e00db 522#endif
cbab8d02 523
ea09f032 524#ifndef MULTILIB_ISA_DEFAULT
7ce2fcb9
KG
525# if MIPS_ISA_DEFAULT == 1
526# define MULTILIB_ISA_DEFAULT "mips1"
527# else
528# if MIPS_ISA_DEFAULT == 2
529# define MULTILIB_ISA_DEFAULT "mips2"
530# else
531# if MIPS_ISA_DEFAULT == 3
532# define MULTILIB_ISA_DEFAULT "mips3"
533# else
534# if MIPS_ISA_DEFAULT == 4
535# define MULTILIB_ISA_DEFAULT "mips4"
536# else
537# define MULTILIB_ISA_DEFAULT "mips1"
538# endif
539# endif
540# endif
541# endif
ea09f032
GRK
542#endif
543
cbab8d02 544#ifndef MULTILIB_DEFAULTS
ea09f032 545#define MULTILIB_DEFAULTS { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT }
7f2e00db
RK
546#endif
547
34bcd7fd
JW
548/* We must pass -EL to the linker by default for little endian embedded
549 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
550 linker will default to using big-endian output files. The OUTPUT_FORMAT
551 line must be in the linker script, otherwise -EB/-EL will not work. */
552
120dc6cd 553#ifndef ENDIAN_SPEC
34bcd7fd 554#if TARGET_ENDIAN_DEFAULT == 0
120dc6cd 555#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EL} %{EB}"
34bcd7fd 556#else
120dc6cd 557#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EB} %{EL}"
34bcd7fd
JW
558#endif
559#endif
560
149e4e00
MM
561/* This macro is similar to `TARGET_SWITCHES' but defines names of
562 command options that have values. Its definition is an
563 initializer with a subgrouping for each command option.
564
565 Each subgrouping contains a string constant, that defines the
7dac2f89 566 fixed part of the option name, and the address of a variable.
149e4e00
MM
567 The variable, type `char *', is set to the variable part of the
568 given option if the fixed part matches. The actual option name
569 is made by appending `-m' to the specified name.
570
571 Here is an example which defines `-mshort-data-NUMBER'. If the
572 given option is `-mshort-data-512', the variable `m88k_short_data'
573 will be set to the string `"512"'.
574
575 extern char *m88k_short_data;
576 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
577
578#define TARGET_OPTIONS \
579{ \
b2d8cf33 580 SUBTARGET_TARGET_OPTIONS \
a127db75 581 { "cpu=", &mips_cpu_string, \
047142d3 582 N_("Specify CPU for scheduling purposes")}, \
7dac2f89
EC
583 { "tune=", &mips_tune_string, \
584 N_("Specify CPU for scheduling purposes")}, \
585 { "arch=", &mips_arch_string, \
586 N_("Specify CPU for code generation purposes")}, \
a127db75 587 { "ips", &mips_isa_string, \
7dac2f89 588 N_("Specify a Standard MIPS ISA")}, \
a127db75 589 { "entry", &mips_entry_string, \
047142d3 590 N_("Use mips16 entry/exit psuedo ops")}, \
a127db75 591 { "no-mips16", &mips_no_mips16_string, \
047142d3 592 N_("Don't use MIPS16 instructions")}, \
a127db75
JW
593 { "explicit-type-size", &mips_explicit_type_size_string, \
594 NULL}, \
149e4e00
MM
595}
596
b2d8cf33
JW
597/* This is meant to be redefined in the host dependent files. */
598#define SUBTARGET_TARGET_OPTIONS
599
7dac2f89 600#define GENERATE_BRANCHLIKELY (!TARGET_MIPS16 && ISA_HAS_BRANCHLIKELY)
e4f5c5d6
KR
601
602/* Generate three-operand multiply instructions for both SImode and DImode. */
2bcb2ab3 603#define GENERATE_MULT3 (TARGET_MIPS3900 \
60db002d 604 && !TARGET_MIPS16)
e9a25f70 605
149e4e00
MM
606/* Macros to decide whether certain features are available or not,
607 depending on the instruction set architecture level. */
608
e9a25f70 609#define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
1d5d552e
GRK
610#define HAVE_SQRT_P() (mips_isa != 1)
611
612/* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3). */
76ee8042
GRK
613#define ISA_HAS_64BIT_REGS (mips_isa == 3 || mips_isa == 4 \
614 )
1d5d552e 615
7dac2f89
EC
616/* ISA has branch likely instructions (eg. mips2). */
617/* Disable branchlikely for tx39 until compare rewrite. They haven't
618 been generated up to this point. */
619#define ISA_HAS_BRANCHLIKELY (mips_isa != 1 \
620 /* || TARGET_MIPS3900 */)
1d5d552e 621
76ee8042
GRK
622/* ISA has the conditional move instructions introduced in mips4. */
623#define ISA_HAS_CONDMOVE (mips_isa == 4 \
624 )
625
0025b7fa
GRK
626/* ISA has just the integer condition move instructions (movn,movz) */
627#define ISA_HAS_INT_CONDMOVE 0
628
629
630
76ee8042
GRK
631/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
632 branch on CC, and move (both FP and non-FP) on CC. */
633#define ISA_HAS_8CC (mips_isa == 4 \
634 )
635
636
637/* This is a catch all for the other new mips4 instructions: indexed load and
7dac2f89 638 indexed prefetch instructions, the FP madd,msub,nmadd, and nmsub instructions,
76ee8042
GRK
639 and the FP recip and recip sqrt instructions */
640#define ISA_HAS_FP4 (mips_isa == 4 \
641 )
642
a0b6cdee
GM
643/* ISA has conditional trap instructions. */
644#define ISA_HAS_COND_TRAP (mips_isa >= 2)
1d5d552e 645
1f28c666
AH
646/* ISA has nmadd and nmsub instructions. */
647#define ISA_HAS_NMADD_NMSUB (mips_isa == 4 \
648 )
149e4e00 649
516a2dfd
JW
650/* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
651 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
2370b831
JW
652 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
653 target_flags, and -mgp64 sets MASK_64BIT.
876c09d3 654
2370b831
JW
655 Setting MASK_64BIT in target_flags will cause gcc to assume that
656 registers are 64 bits wide. int, long and void * will be 32 bit;
657 this may be changed with -mint64 or -mlong64.
876c09d3 658
2370b831
JW
659 The gen* programs link code that refers to MASK_64BIT. They don't
660 actually use the information in target_flags; they just refer to
661 it. */
e75b25e7
MM
662\f
663/* Switch Recognition by gcc.c. Add -G xx support */
664
665#ifdef SWITCH_TAKES_ARG
666#undef SWITCH_TAKES_ARG
667#endif
668
669#define SWITCH_TAKES_ARG(CHAR) \
7d4ea832 670 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
e75b25e7
MM
671
672/* Sometimes certain combinations of command options do not make sense
673 on a particular target machine. You can define a macro
674 `OVERRIDE_OPTIONS' to take account of this. This macro, if
675 defined, is executed once just after all the command options have
676 been parsed.
677
678 On the MIPS, it is used to handle -G. We also use it to set up all
679 of the tables referenced in the other macros. */
680
681#define OVERRIDE_OPTIONS override_options ()
682
683/* Zero or more C statements that may conditionally modify two
684 variables `fixed_regs' and `call_used_regs' (both of type `char
685 []') after they have been initialized from the two preceding
686 macros.
687
688 This is necessary in case the fixed or call-clobbered registers
689 depend on target flags.
690
691 You need not define this macro if it has no work to do.
692
693 If the usage of an entire class of registers depends on the target
694 flags, you may indicate this to GCC by using this macro to modify
695 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
696 the classes which should not be used by GCC. Also define the macro
697 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
698 letter for a class that shouldn't be used.
699
700 (However, if this class is not included in `GENERAL_REGS' and all
701 of the insn patterns whose constraints permit this class are
702 controlled by target switches, then GCC will automatically avoid
703 using these registers when the target switches are opposed to
704 them.) */
705
706#define CONDITIONAL_REGISTER_USAGE \
707do \
708 { \
709 if (!TARGET_HARD_FLOAT) \
710 { \
711 int regno; \
712 \
713 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
714 fixed_regs[regno] = call_used_regs[regno] = 1; \
b8eb88d0
ILT
715 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
716 fixed_regs[regno] = call_used_regs[regno] = 1; \
717 } \
76ee8042 718 else if (! ISA_HAS_8CC) \
b8eb88d0
ILT
719 { \
720 int regno; \
721 \
722 /* We only have a single condition code register. We \
723 implement this by hiding all the condition code registers, \
724 and generating RTL that refers directly to ST_REG_FIRST. */ \
725 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
726 fixed_regs[regno] = call_used_regs[regno] = 1; \
e75b25e7 727 } \
2bcb2ab3
GK
728 /* In mips16 mode, we permit the $t temporary registers to be used \
729 for reload. We prohibit the unused $s registers, since they \
730 are caller saved, and saving them via a mips16 register would \
731 probably waste more time than just reloading the value. */ \
732 if (TARGET_MIPS16) \
733 { \
734 fixed_regs[18] = call_used_regs[18] = 1; \
735 fixed_regs[19] = call_used_regs[19] = 1; \
736 fixed_regs[20] = call_used_regs[20] = 1; \
737 fixed_regs[21] = call_used_regs[21] = 1; \
738 fixed_regs[22] = call_used_regs[22] = 1; \
739 fixed_regs[23] = call_used_regs[23] = 1; \
740 fixed_regs[26] = call_used_regs[26] = 1; \
741 fixed_regs[27] = call_used_regs[27] = 1; \
742 fixed_regs[30] = call_used_regs[30] = 1; \
743 } \
516a2dfd 744 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
e75b25e7
MM
745 } \
746while (0)
747
b2d8cf33 748/* This is meant to be redefined in the host dependent files. */
516a2dfd
JW
749#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
750
7be1e523
RK
751/* Show we can debug even without a frame pointer. */
752#define CAN_DEBUG_WITHOUT_FP
753\f
e75b25e7
MM
754/* Complain about missing specs and predefines that should be defined in each
755 of the target tm files to override the defaults. This is mostly a place-
756 holder until I can get each of the files updated [mm]. */
757
758#if defined(OSF_OS) \
759 || defined(DECSTATION) \
760 || defined(SGI_TARGET) \
761 || defined(MIPS_NEWS) \
762 || defined(MIPS_SYSV) \
59c94430 763 || defined(MIPS_SVR4) \
e75b25e7
MM
764 || defined(MIPS_BSD43)
765
766#ifndef CPP_PREDEFINES
767 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
768#endif
769
e75b25e7
MM
770#ifndef LIB_SPEC
771 #error "Define LIB_SPEC in the appropriate tm.h file"
772#endif
773
774#ifndef STARTFILE_SPEC
775 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
776#endif
777
778#ifndef MACHINE_TYPE
779 #error "Define MACHINE_TYPE in the appropriate tm.h file"
780#endif
781#endif
782
59c94430
MM
783/* Tell collect what flags to pass to nm. */
784#ifndef NM_FLAGS
2ce3c6c6 785#define NM_FLAGS "-Bn"
59c94430
MM
786#endif
787
e75b25e7
MM
788\f
789/* Names to predefine in the preprocessor for this target machine. */
790
791#ifndef CPP_PREDEFINES
d4099651 792#define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
65c42379 793-D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
2b57e919 794-Asystem=unix -Asystem=bsd -Acpu=mips -Amachine=mips"
e75b25e7
MM
795#endif
796
4e88bbcd
ILT
797/* Assembler specs. */
798
799/* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
800 than gas. */
801
802#define MIPS_AS_ASM_SPEC "\
803%{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
804%{pipe: %e-pipe is not supported.} \
805%{K} %(subtarget_mips_as_asm_spec)"
806
807/* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
808 rather than gas. It may be overridden by subtargets. */
809
810#ifndef SUBTARGET_MIPS_AS_ASM_SPEC
811#define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
812#endif
813
814/* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
815 assembler. */
816
7dac2f89 817#define GAS_ASM_SPEC "%{march=*} %{mtune=*} %{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v} %{mgp32} %{mgp64}"
4e88bbcd
ILT
818
819/* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
820 GAS_ASM_SPEC as the default, depending upon the value of
821 TARGET_DEFAULT. */
e75b25e7 822
bb98bc58
JW
823#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
824/* GAS */
bb98bc58 825
4e88bbcd
ILT
826#define TARGET_ASM_SPEC "\
827%{mmips-as: %(mips_as_asm_spec)} \
828%{!mmips-as: %(gas_asm_spec)}"
829
830#else /* not GAS */
831
832#define TARGET_ASM_SPEC "\
833%{!mgas: %(mips_as_asm_spec)} \
834%{mgas: %(gas_asm_spec)}"
835
836#endif /* not GAS */
837
838/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
839 to the assembler. It may be overridden by subtargets. */
840#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
841#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
bb98bc58 842%{noasmopt:-O0} \
4e88bbcd
ILT
843%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
844#endif
845
846/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
847 the assembler. It may be overridden by subtargets. */
848#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
849#define SUBTARGET_ASM_DEBUGGING_SPEC "\
bb98bc58
JW
850%{g} %{g0} %{g1} %{g2} %{g3} \
851%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
852%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
853%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
4e88bbcd
ILT
854%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
855#endif
bb98bc58 856
4e88bbcd
ILT
857/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
858 overridden by subtargets. */
859
860#ifndef SUBTARGET_ASM_SPEC
861#define SUBTARGET_ASM_SPEC ""
bb98bc58 862#endif
4e88bbcd
ILT
863
864/* ASM_SPEC is the set of arguments to pass to the assembler. */
865
b2bcb32d 866#undef ASM_SPEC
4e88bbcd 867#define ASM_SPEC "\
120dc6cd 868%{!membedded-pic:%{G*}} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
2bcb2ab3 869%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
4e88bbcd
ILT
870%(subtarget_asm_optimizing_spec) \
871%(subtarget_asm_debugging_spec) \
872%{membedded-pic} \
1e387156 873%{mfix7000} \
4e88bbcd
ILT
874%{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
875%(target_asm_spec) \
876%(subtarget_asm_spec)"
e75b25e7
MM
877
878/* Specify to run a post-processor, mips-tfile after the assembler
879 has run to stuff the mips debug information into the object file.
880 This is needed because the $#!%^ MIPS assembler provides no way
a813fadf
MM
881 of specifying such information in the assembly file. If we are
882 cross compiling, disable mips-tfile unless the user specifies
883 -mmips-tfile. */
e75b25e7
MM
884
885#ifndef ASM_FINAL_SPEC
bb98bc58
JW
886#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
887/* GAS */
31c714e3 888#define ASM_FINAL_SPEC "\
149e4e00 889%{mmips-as: %{!mno-mips-tfile: \
31c714e3
MM
890 \n mips-tfile %{v*: -v} \
891 %{K: -I %b.o~} \
892 %{!K: %{save-temps: -I %b.o~}} \
ab78d4a8 893 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
31c714e3 894 %{.s:%i} %{!.s:%g.s}}}"
a813fadf 895
bb98bc58
JW
896#else
897/* not GAS */
a813fadf 898#define ASM_FINAL_SPEC "\
149e4e00 899%{!mgas: %{!mno-mips-tfile: \
a813fadf
MM
900 \n mips-tfile %{v*: -v} \
901 %{K: -I %b.o~} \
902 %{!K: %{save-temps: -I %b.o~}} \
903 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
904 %{.s:%i} %{!.s:%g.s}}}"
905
bb98bc58 906#endif
a813fadf 907#endif /* ASM_FINAL_SPEC */
e75b25e7
MM
908
909/* Redefinition of libraries used. Mips doesn't support normal
910 UNIX style profiling via calling _mcount. It does offer
911 profiling that samples the PC, so do what we can... */
912
913#ifndef LIB_SPEC
914#define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
915#endif
916
31c714e3 917/* Extra switches sometimes passed to the linker. */
bb98bc58
JW
918/* ??? The bestGnum will never be passed to the linker, because the gcc driver
919 will interpret it as a -b option. */
e75b25e7
MM
920
921#ifndef LINK_SPEC
31c714e3 922#define LINK_SPEC "\
120dc6cd
MR
923%(endian_spec) \
924%{G*} %{mips1} %{mips2} %{mips3} %{mips4} \
925%{bestGnum} %{shared} %{non_shared}"
bb98bc58 926#endif /* LINK_SPEC defined */
e75b25e7
MM
927
928/* Specs for the compiler proper */
929
c9db96ce
JR
930/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
931 overridden by subtargets. */
932#ifndef SUBTARGET_CC1_SPEC
933#define SUBTARGET_CC1_SPEC ""
934#endif
935
7dac2f89
EC
936/* Deal with historic options. */
937#ifndef CC1_CPU_SPEC
938#define CC1_CPU_SPEC "\
939%{!mcpu*: \
940%{m3900:-march=r3900 -mips1 -mfp32 -mgp32 \
941%n`-m3900' is deprecated. Use `-march=r3900' instead.\n} \
942%{m4650:-march=r4650 -mmad -msingle-float \
943%n`-m4650' is deprecated. Use `-march=r4650' instead.\n}}"
944#endif
945
c9db96ce
JR
946/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
947
e75b25e7 948#ifndef CC1_SPEC
31c714e3 949#define CC1_SPEC "\
31c714e3 950%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
7e99e494 951%{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
46299de9 952%{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
516a2dfd 953%{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
46299de9
ILT
954%{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
955%{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
3ce1ba83 956%{mint64|mlong64|mlong32:-mexplicit-type-size }\
96abdcb1 957%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
31c714e3
MM
958%{pic-none: -mno-half-pic} \
959%{pic-lib: -mhalf-pic} \
960%{pic-extern: -mhalf-pic} \
961%{pic-calls: -mhalf-pic} \
c9db96ce 962%{save-temps: } \
7dac2f89
EC
963%(subtarget_cc1_spec) \
964%(cc1_cpu_spec)"
e75b25e7
MM
965#endif
966
4e88bbcd
ILT
967/* Preprocessor specs. */
968
969/* SUBTARGET_CPP_SIZE_SPEC defines SIZE_TYPE and PTRDIFF_TYPE. It may
970 be overridden by subtargets. */
971
972#ifndef SUBTARGET_CPP_SIZE_SPEC
973#define SUBTARGET_CPP_SIZE_SPEC "\
3ce1ba83 974%{mlong64:%{!mips1:%{!mips2:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int}}} \
4e88bbcd
ILT
975%{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}"
976#endif
977
978/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
979 overridden by subtargets. */
980#ifndef SUBTARGET_CPP_SPEC
981#define SUBTARGET_CPP_SPEC ""
982#endif
983
4eb66248
JL
984/* If we're using 64bit longs, then we have to define __LONG_MAX__
985 correctly. Similarly for 64bit ints and __INT_MAX__. */
986#ifndef LONG_MAX_SPEC
987#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_LONG64)
3ce1ba83 988#define LONG_MAX_SPEC "%{!mlong32:-D__LONG_MAX__=9223372036854775807L}"
4eb66248
JL
989#else
990#define LONG_MAX_SPEC "%{mlong64:-D__LONG_MAX__=9223372036854775807L}"
991#endif
992#endif
993
64b172fe
RO
994/* For C++ we need to ensure that _LANGUAGE_C_PLUS_PLUS is defined independent
995 of the source file extension. */
b2bcb32d 996#undef CPLUSPLUS_CPP_SPEC
64b172fe
RO
997#define CPLUSPLUS_CPP_SPEC "\
998-D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS \
999%(cpp) \
1000"
4e88bbcd 1001/* CPP_SPEC is the set of arguments to pass to the preprocessor. */
e75b25e7
MM
1002
1003#ifndef CPP_SPEC
31c714e3 1004#define CPP_SPEC "\
0002d808 1005%{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
64b172fe
RO
1006%{.S|.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
1007%{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.cpp: %{!.cp: %{!.c++: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}}}}} \
4e88bbcd 1008%(subtarget_cpp_size_spec) \
192616a4
RK
1009%{mips3:-U__mips -D__mips=3 -D__mips64} \
1010%{mips4:-U__mips -D__mips=4 -D__mips64} \
1011%{mgp32:-U__mips64} %{mgp64:-D__mips64} \
54efdaa4
JW
1012%{msingle-float:%{!msoft-float:-D__mips_single_float}} \
1013%{m4650:%{!msoft-float:-D__mips_single_float}} \
293a36eb
ILT
1014%{msoft-float:-D__mips_soft_float} \
1015%{mabi=eabi:-D__mips_eabi} \
2bcb2ab3 1016%{mips16:%{!mno-mips16:-D__mips16}} \
96abdcb1 1017%{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
4e88bbcd 1018%{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
4eb66248 1019%(long_max_spec) \
4e88bbcd
ILT
1020%(subtarget_cpp_spec) "
1021#endif
1022
1023/* This macro defines names of additional specifications to put in the specs
1024 that can be used in various specifications like CC1_SPEC. Its definition
1025 is an initializer with a subgrouping for each command option.
1026
1027 Each subgrouping contains a string constant, that defines the
1028 specification name, and a string constant that used by the GNU CC driver
1029 program.
1030
1031 Do not define this macro if it does not need to do anything. */
1032
1033#define EXTRA_SPECS \
829245be 1034 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
7a38df19 1035 { "cc1_cpu_spec", CC1_CPU_SPEC}, \
829245be
KG
1036 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1037 { "subtarget_cpp_size_spec", SUBTARGET_CPP_SIZE_SPEC }, \
1038 { "long_max_spec", LONG_MAX_SPEC }, \
1039 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
1040 { "gas_asm_spec", GAS_ASM_SPEC }, \
1041 { "target_asm_spec", TARGET_ASM_SPEC }, \
1042 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
1043 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1044 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1045 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
120dc6cd 1046 { "endian_spec", ENDIAN_SPEC }, \
4e88bbcd
ILT
1047 SUBTARGET_EXTRA_SPECS
1048
1049#ifndef SUBTARGET_EXTRA_SPECS
1050#define SUBTARGET_EXTRA_SPECS
e75b25e7
MM
1051#endif
1052
1053/* If defined, this macro is an additional prefix to try after
1054 `STANDARD_EXEC_PREFIX'. */
1055
1056#ifndef MD_EXEC_PREFIX
31c714e3 1057#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
e75b25e7
MM
1058#endif
1059
59c94430
MM
1060#ifndef MD_STARTFILE_PREFIX
1061#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
1062#endif
1063
e75b25e7
MM
1064\f
1065/* Print subsidiary information on the compiler version in use. */
1066
42dee4c7 1067#define MIPS_VERSION "[AL 1.1, MM 40]"
e75b25e7
MM
1068
1069#ifndef MACHINE_TYPE
1070#define MACHINE_TYPE "BSD Mips"
1071#endif
1072
1073#ifndef TARGET_VERSION_INTERNAL
1074#define TARGET_VERSION_INTERNAL(STREAM) \
1075 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
1076#endif
1077
1078#ifndef TARGET_VERSION
1079#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
1080#endif
1081
1082\f
1083#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1084#define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
1085#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1086
1087#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 1088#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
e75b25e7
MM
1089#endif
1090
59c94430
MM
1091/* By default, turn on GDB extensions. */
1092#define DEFAULT_GDB_EXTENSIONS 1
1093
e75b25e7
MM
1094/* If we are passing smuggling stabs through the MIPS ECOFF object
1095 format, put a comment in front of the .stab<x> operation so
1096 that the MIPS assembler does not choke. The mips-tfile program
1097 will correctly put the stab into the object file. */
1098
78d057d8
HPN
1099#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1100#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1101#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
e75b25e7 1102
6ae1498b
JW
1103/* Local compiler-generated symbols must have a prefix that the assembler
1104 understands. By default, this is $, although some targets (e.g.,
1105 NetBSD-ELF) need to override this. */
1106
1107#ifndef LOCAL_LABEL_PREFIX
1108#define LOCAL_LABEL_PREFIX "$"
1109#endif
1110
1111/* By default on the mips, external symbols do not have an underscore
1112 prepended, but some targets (e.g., NetBSD) require this. */
1113
1114#ifndef USER_LABEL_PREFIX
1115#define USER_LABEL_PREFIX ""
1116#endif
1117
e75b25e7
MM
1118/* Forward references to tags are allowed. */
1119#define SDB_ALLOW_FORWARD_REFERENCES
1120
1121/* Unknown tags are also allowed. */
1122#define SDB_ALLOW_UNKNOWN_REFERENCES
1123
1124/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1125 since the length can run past this up to a continuation point. */
44404b8b 1126#undef DBX_CONTIN_LENGTH
e75b25e7
MM
1127#define DBX_CONTIN_LENGTH 1500
1128
e75b25e7
MM
1129/* How to renumber registers for dbx and gdb. */
1130#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
1131
c8cc5c4a 1132/* The mapping from gcc register number to DWARF 2 CFA column number.
0021b564
JM
1133 This mapping does not allow for tracking register 0, since SGI's broken
1134 dwarf reader thinks column 0 is used for the frame address, but since
1135 register 0 is fixed this is not a problem. */
469ac993 1136#define DWARF_FRAME_REGNUM(REG) \
0021b564 1137 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
c8cc5c4a
JM
1138
1139/* The DWARF 2 CFA column which tracks the return address. */
1140#define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
e75b25e7 1141
469ac993 1142/* Before the prologue, RA lives in r31. */
c5c76735 1143#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
469ac993 1144
9e800206
RH
1145/* Describe how we implement __builtin_eh_return. */
1146#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1147#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1148
7dac2f89 1149/* Offsets recorded in opcodes are a multiple of this alignment factor.
b3276c7a
GK
1150 The default for this in 64-bit mode is 8, which causes problems with
1151 SFmode register saves. */
1152#define DWARF_CIE_DATA_ALIGNMENT 4
1153
e75b25e7
MM
1154/* Overrides for the COFF debug format. */
1155#define PUT_SDB_SCL(a) \
1156do { \
1157 extern FILE *asm_out_text_file; \
1158 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
1159} while (0)
1160
1161#define PUT_SDB_INT_VAL(a) \
1162do { \
1163 extern FILE *asm_out_text_file; \
1164 fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
1165} while (0)
1166
1167#define PUT_SDB_VAL(a) \
1168do { \
1169 extern FILE *asm_out_text_file; \
1170 fputs ("\t.val\t", asm_out_text_file); \
1171 output_addr_const (asm_out_text_file, (a)); \
1172 fputc (';', asm_out_text_file); \
1173} while (0)
1174
1175#define PUT_SDB_DEF(a) \
1176do { \
1177 extern FILE *asm_out_text_file; \
b82b0773
MM
1178 fprintf (asm_out_text_file, "\t%s.def\t", \
1179 (TARGET_GAS) ? "" : "#"); \
e75b25e7
MM
1180 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1181 fputc (';', asm_out_text_file); \
1182} while (0)
1183
1184#define PUT_SDB_PLAIN_DEF(a) \
1185do { \
1186 extern FILE *asm_out_text_file; \
b82b0773
MM
1187 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1188 (TARGET_GAS) ? "" : "#", (a)); \
e75b25e7
MM
1189} while (0)
1190
1191#define PUT_SDB_ENDEF \
1192do { \
1193 extern FILE *asm_out_text_file; \
1194 fprintf (asm_out_text_file, "\t.endef\n"); \
1195} while (0)
1196
1197#define PUT_SDB_TYPE(a) \
1198do { \
1199 extern FILE *asm_out_text_file; \
1200 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1201} while (0)
1202
1203#define PUT_SDB_SIZE(a) \
1204do { \
1205 extern FILE *asm_out_text_file; \
1206 fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
1207} while (0)
1208
1209#define PUT_SDB_DIM(a) \
1210do { \
1211 extern FILE *asm_out_text_file; \
1212 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1213} while (0)
1214
1215#ifndef PUT_SDB_START_DIM
1216#define PUT_SDB_START_DIM \
1217do { \
1218 extern FILE *asm_out_text_file; \
1219 fprintf (asm_out_text_file, "\t.dim\t"); \
1220} while (0)
1221#endif
1222
1223#ifndef PUT_SDB_NEXT_DIM
1224#define PUT_SDB_NEXT_DIM(a) \
1225do { \
1226 extern FILE *asm_out_text_file; \
1227 fprintf (asm_out_text_file, "%d,", a); \
1228} while (0)
1229#endif
1230
1231#ifndef PUT_SDB_LAST_DIM
1232#define PUT_SDB_LAST_DIM(a) \
1233do { \
1234 extern FILE *asm_out_text_file; \
1235 fprintf (asm_out_text_file, "%d;", a); \
1236} while (0)
1237#endif
1238
1239#define PUT_SDB_TAG(a) \
1240do { \
1241 extern FILE *asm_out_text_file; \
1242 fprintf (asm_out_text_file, "\t.tag\t"); \
1243 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1244 fputc (';', asm_out_text_file); \
1245} while (0)
1246
1247/* For block start and end, we create labels, so that
1248 later we can figure out where the correct offset is.
1249 The normal .ent/.end serve well enough for functions,
1250 so those are just commented out. */
1251
1252#define PUT_SDB_BLOCK_START(LINE) \
1253do { \
1254 extern FILE *asm_out_text_file; \
1255 fprintf (asm_out_text_file, \
6ae1498b
JW
1256 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1257 LOCAL_LABEL_PREFIX, \
e75b25e7 1258 sdb_label_count, \
b82b0773 1259 (TARGET_GAS) ? "" : "#", \
6ae1498b 1260 LOCAL_LABEL_PREFIX, \
e75b25e7
MM
1261 sdb_label_count, \
1262 (LINE)); \
1263 sdb_label_count++; \
1264} while (0)
1265
1266#define PUT_SDB_BLOCK_END(LINE) \
1267do { \
1268 extern FILE *asm_out_text_file; \
1269 fprintf (asm_out_text_file, \
6ae1498b
JW
1270 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1271 LOCAL_LABEL_PREFIX, \
e75b25e7 1272 sdb_label_count, \
b82b0773 1273 (TARGET_GAS) ? "" : "#", \
6ae1498b 1274 LOCAL_LABEL_PREFIX, \
e75b25e7
MM
1275 sdb_label_count, \
1276 (LINE)); \
1277 sdb_label_count++; \
1278} while (0)
1279
1280#define PUT_SDB_FUNCTION_START(LINE)
1281
a642a781
RK
1282#define PUT_SDB_FUNCTION_END(LINE) \
1283do { \
1284 extern FILE *asm_out_text_file; \
1285 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1286} while (0)
e75b25e7
MM
1287
1288#define PUT_SDB_EPILOGUE_END(NAME)
1289
cc694a81
DE
1290#define PUT_SDB_SRC_FILE(FILENAME) \
1291do { \
1292 extern FILE *asm_out_text_file; \
1293 output_file_directive (asm_out_text_file, (FILENAME)); \
1294} while (0)
1295
e75b25e7
MM
1296#define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1297 sprintf ((BUFFER), ".%dfake", (NUMBER));
1298
ab78d4a8
MM
1299/* Correct the offset of automatic variables and arguments. Note that
1300 the MIPS debug format wants all automatic variables and arguments
1301 to be in terms of the virtual frame pointer (stack pointer before
1302 any adjustment in the function), while the MIPS 3.0 linker wants
1303 the frame pointer to be the stack pointer after the initial
1304 adjustment. */
e75b25e7 1305
f5963e61
JL
1306#define DEBUGGER_AUTO_OFFSET(X) \
1307 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1308#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1309 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
31c714e3
MM
1310
1311/* Tell collect that the object format is ECOFF */
1312#ifndef OBJECT_FORMAT_ROSE
1313#define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1314#define EXTENDED_COFF /* ECOFF, not normal coff */
1315#endif
e75b25e7
MM
1316\f
1317/* Target machine storage layout */
1318
96abdcb1
ILT
1319/* Define in order to support both big and little endian float formats
1320 in the same gcc binary. */
1321#define REAL_ARITHMETIC
1322
e75b25e7
MM
1323/* Define this if most significant bit is lowest numbered
1324 in instructions that operate on numbered bit-fields.
1325*/
4851a75c 1326#define BITS_BIG_ENDIAN 0
e75b25e7
MM
1327
1328/* Define this if most significant byte of a word is the lowest numbered. */
96abdcb1 1329#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7
MM
1330
1331/* Define this if most significant word of a multiword number is the lowest. */
96abdcb1 1332#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7 1333
96abdcb1
ILT
1334/* Define this to set the endianness to use in libgcc2.c, which can
1335 not depend on target_flags. */
1336#if !defined(MIPSEL) && !defined(__MIPSEL__)
1337#define LIBGCC2_WORDS_BIG_ENDIAN 1
e75b25e7 1338#else
96abdcb1 1339#define LIBGCC2_WORDS_BIG_ENDIAN 0
e75b25e7
MM
1340#endif
1341
31c714e3 1342/* Number of bits in an addressable storage unit */
e75b25e7
MM
1343#define BITS_PER_UNIT 8
1344
1345/* Width in bits of a "word", which is the contents of a machine register.
1346 Note that this is not necessarily the width of data type `int';
1347 if using 16-bit ints on a 68000, this would still be 32.
1348 But on a machine with 16-bit registers, this would be 16. */
456f6501 1349#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
876c09d3 1350#define MAX_BITS_PER_WORD 64
e75b25e7
MM
1351
1352/* Width of a word, in units (bytes). */
456f6501 1353#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
ef0e53ce 1354#define MIN_UNITS_PER_WORD 4
876c09d3
JW
1355
1356/* For MIPS, width of a floating point register. */
456f6501 1357#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
e75b25e7
MM
1358
1359/* A C expression for the size in bits of the type `int' on the
1360 target machine. If you don't define this, the default is one
1361 word. */
456f6501 1362#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
876c09d3
JW
1363#define MAX_INT_TYPE_SIZE 64
1364
1365/* Tell the preprocessor the maximum size of wchar_t. */
1366#ifndef MAX_WCHAR_TYPE_SIZE
1367#ifndef WCHAR_TYPE_SIZE
1368#define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
1369#endif
1370#endif
e75b25e7
MM
1371
1372/* A C expression for the size in bits of the type `short' on the
1373 target machine. If you don't define this, the default is half a
1374 word. (If this would be less than one storage unit, it is
1375 rounded up to one unit.) */
1376#define SHORT_TYPE_SIZE 16
1377
1378/* A C expression for the size in bits of the type `long' on the
1379 target machine. If you don't define this, the default is one
1380 word. */
456f6501 1381#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
876c09d3 1382#define MAX_LONG_TYPE_SIZE 64
e75b25e7
MM
1383
1384/* A C expression for the size in bits of the type `long long' on the
1385 target machine. If you don't define this, the default is two
1386 words. */
923d630e 1387#define LONG_LONG_TYPE_SIZE 64
e75b25e7
MM
1388
1389/* A C expression for the size in bits of the type `char' on the
1390 target machine. If you don't define this, the default is one
1391 quarter of a word. (If this would be less than one storage unit,
1392 it is rounded up to one unit.) */
1393#define CHAR_TYPE_SIZE BITS_PER_UNIT
1394
1395/* A C expression for the size in bits of the type `float' on the
1396 target machine. If you don't define this, the default is one
1397 word. */
1398#define FLOAT_TYPE_SIZE 32
1399
1400/* A C expression for the size in bits of the type `double' on the
1401 target machine. If you don't define this, the default is two
1402 words. */
1403#define DOUBLE_TYPE_SIZE 64
1404
1405/* A C expression for the size in bits of the type `long double' on
1406 the target machine. If you don't define this, the default is two
1407 words. */
1408#define LONG_DOUBLE_TYPE_SIZE 64
1409
1410/* Width in bits of a pointer.
1411 See also the macro `Pmode' defined below. */
1eeed24e 1412#ifndef POINTER_SIZE
456f6501 1413#define POINTER_SIZE (Pmode == DImode ? 64 : 32)
1eeed24e 1414#endif
e75b25e7
MM
1415
1416/* Allocation boundary (in *bits*) for storing pointers in memory. */
456f6501 1417#define POINTER_BOUNDARY (Pmode == DImode ? 64 : 32)
e75b25e7
MM
1418
1419/* Allocation boundary (in *bits*) for storing arguments in argument list. */
456f6501 1420#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
e75b25e7
MM
1421
1422/* Allocation boundary (in *bits*) for the code of a function. */
1423#define FUNCTION_BOUNDARY 32
1424
1425/* Alignment of field after `int : 0' in a structure. */
9e95597a 1426#define EMPTY_FIELD_BOUNDARY 32
e75b25e7
MM
1427
1428/* Every structure's size must be a multiple of this. */
1429/* 8 is observed right on a DECstation and on riscos 4.02. */
1430#define STRUCTURE_SIZE_BOUNDARY 8
1431
1432/* There is no point aligning anything to a rounder boundary than this. */
1433#define BIGGEST_ALIGNMENT 64
1434
31c714e3 1435/* Set this nonzero if move instructions will actually fail to work
e75b25e7 1436 when given unaligned data. */
31c714e3 1437#define STRICT_ALIGNMENT 1
e75b25e7
MM
1438
1439/* Define this if you wish to imitate the way many other C compilers
1440 handle alignment of bitfields and the structures that contain
1441 them.
1442
1443 The behavior is that the type written for a bitfield (`int',
1444 `short', or other integer type) imposes an alignment for the
1445 entire structure, as if the structure really did contain an
1446 ordinary field of that type. In addition, the bitfield is placed
1447 within the structure so that it would fit within such a field,
1448 not crossing a boundary for it.
1449
1450 Thus, on most machines, a bitfield whose type is written as `int'
1451 would not cross a four-byte boundary, and would force four-byte
1452 alignment for the whole structure. (The alignment used may not
1453 be four bytes; it is controlled by the other alignment
1454 parameters.)
1455
1456 If the macro is defined, its definition should be a C expression;
1457 a nonzero value for the expression enables this behavior. */
1458
1459#define PCC_BITFIELD_TYPE_MATTERS 1
1460
1461/* If defined, a C expression to compute the alignment given to a
1462 constant that is being placed in memory. CONSTANT is the constant
1463 and ALIGN is the alignment that the object would ordinarily have.
1464 The value of this macro is used instead of that alignment to align
1465 the object.
1466
1467 If this macro is not defined, then ALIGN is used.
1468
1469 The typical use of this macro is to increase alignment for string
1470 constants to be word aligned so that `strcpy' calls that copy
1471 constants can be done inline. */
1472
1473#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1474 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
75131237 1475 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
e75b25e7
MM
1476
1477/* If defined, a C expression to compute the alignment for a static
1478 variable. TYPE is the data type, and ALIGN is the alignment that
1479 the object would ordinarily have. The value of this macro is used
1480 instead of that alignment to align the object.
1481
1482 If this macro is not defined, then ALIGN is used.
1483
1484 One use of this macro is to increase alignment of medium-size
1485 data to make it all fit in fewer cache lines. Another is to
1486 cause character arrays to be word-aligned so that `strcpy' calls
1487 that copy constants to character arrays can be done inline. */
1488
1489#undef DATA_ALIGNMENT
1490#define DATA_ALIGNMENT(TYPE, ALIGN) \
1491 ((((ALIGN) < BITS_PER_WORD) \
1492 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1493 || TREE_CODE (TYPE) == UNION_TYPE \
1494 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1495
f5c8ac96
CP
1496
1497/* Force right-alignment for small varargs in 32 bit little_endian mode */
1498
1499#define PAD_VARARGS_DOWN (TARGET_64BIT ? BYTES_BIG_ENDIAN : !BYTES_BIG_ENDIAN)
1500
e75b25e7
MM
1501/* Define this macro if an argument declared as `char' or `short' in a
1502 prototype should actually be passed as an `int'. In addition to
1503 avoiding errors in certain cases of mismatch, it also makes for
1504 better code on certain machines. */
1505
cb560352 1506#define PROMOTE_PROTOTYPES 1
e75b25e7 1507
9a63901f
RK
1508/* Define if operations between registers always perform the operation
1509 on the full register even if a narrower mode is specified. */
1510#define WORD_REGISTER_OPERATIONS
1511
1512/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1513 will either zero-extend or sign-extend. The value of this macro should
1514 be the code that says which one of the two operations is implicitly
7dac2f89 1515 done, NIL if none.
a872728c
JL
1516
1517 When in 64 bit mode, mips_move_1word will sign extend SImode and CCmode
1518 moves. All other referces are zero extended. */
1519#define LOAD_EXTEND_OP(MODE) \
1520 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1521 ? SIGN_EXTEND : ZERO_EXTEND)
2bcb2ab3
GK
1522
1523/* Define this macro if it is advisable to hold scalars in registers
7dac2f89 1524 in a wider mode than that declared by the program. In such cases,
2bcb2ab3
GK
1525 the value is constrained to be within the bounds of the declared
1526 type, but kept valid in the wider mode. The signedness of the
1527 extension may differ from that of the type.
1528
1529 We promote any value smaller than SImode up to SImode. We don't
1530 want to promote to DImode when in 64 bit mode, because that would
1531 prevent us from using the faster SImode multiply and divide
1532 instructions. */
1533
1534#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1535 if (GET_MODE_CLASS (MODE) == MODE_INT \
1536 && GET_MODE_SIZE (MODE) < 4) \
1537 (MODE) = SImode;
1538
1539/* Define this if function arguments should also be promoted using the above
1540 procedure. */
1541
1542#define PROMOTE_FUNCTION_ARGS
1543
1544/* Likewise, if the function return value is promoted. */
1545
1546#define PROMOTE_FUNCTION_RETURN
e75b25e7
MM
1547\f
1548/* Standard register usage. */
1549
1550/* Number of actual hardware registers.
1551 The hardware registers are assigned numbers for the compiler
1552 from 0 to just below FIRST_PSEUDO_REGISTER.
1553 All registers that the compiler knows about must be given numbers,
1554 even those that are not normally considered general registers.
1555
225b8835 1556 On the Mips, we have 32 integer registers, 32 floating point
b8eb88d0
ILT
1557 registers, 8 condition code registers, and the special registers
1558 hi, lo, hilo, and rap. The 8 condition code registers are only
1559 used if mips_isa >= 4. The hilo register is only used in 64 bit
1560 mode. It represents a 64 bit value stored as two 32 bit values in
1561 the hi and lo registers; this is the result of the mult
1562 instruction. rap is a pointer to the stack where the return
1563 address reg ($31) was stored. This is needed for C++ exception
1564 handling. */
e75b25e7 1565
b8eb88d0 1566#define FIRST_PSEUDO_REGISTER 76
e75b25e7
MM
1567
1568/* 1 for registers that have pervasive standard uses
1569 and are not available for the register allocator.
1570
1571 On the MIPS, see conventions, page D-2 */
1572
1573#define FIXED_REGISTERS \
1574{ \
1575 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1576 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1577 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1578 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
b8eb88d0 1579 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 \
e75b25e7
MM
1580}
1581
1582
1583/* 1 for registers not available across function calls.
1584 These must include the FIXED_REGISTERS and also any
1585 registers that can be used without being saved.
1586 The latter must include the registers where values are returned
1587 and the register where structure-value addresses are passed.
1588 Aside from that, you can include as many other registers as you like. */
1589
1590#define CALL_USED_REGISTERS \
1591{ \
1592 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1593 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1594 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1595 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
b8eb88d0 1596 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
e75b25e7
MM
1597}
1598
1599
1600/* Internal macros to classify a register number as to whether it's a
1601 general purpose register, a floating point register, a
516a2dfd 1602 multiply/divide register, or a status register. */
e75b25e7
MM
1603
1604#define GP_REG_FIRST 0
1605#define GP_REG_LAST 31
1606#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1607#define GP_DBX_FIRST 0
1608
1609#define FP_REG_FIRST 32
1610#define FP_REG_LAST 63
1611#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1612#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1613
1614#define MD_REG_FIRST 64
225b8835 1615#define MD_REG_LAST 66
e75b25e7
MM
1616#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1617
225b8835 1618#define ST_REG_FIRST 67
b8eb88d0 1619#define ST_REG_LAST 74
e75b25e7
MM
1620#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1621
b8eb88d0 1622#define RAP_REG_NUM 75
39dffea3 1623
e75b25e7
MM
1624#define AT_REGNUM (GP_REG_FIRST + 1)
1625#define HI_REGNUM (MD_REG_FIRST + 0)
1626#define LO_REGNUM (MD_REG_FIRST + 1)
225b8835 1627#define HILO_REGNUM (MD_REG_FIRST + 2)
b8eb88d0
ILT
1628
1629/* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1630 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1631 should be used instead. */
e75b25e7
MM
1632#define FPSW_REGNUM ST_REG_FIRST
1633
75131237
RK
1634#define GP_REG_P(REGNO) \
1635 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
2bcb2ab3
GK
1636#define M16_REG_P(REGNO) \
1637 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
75131237
RK
1638#define FP_REG_P(REGNO) \
1639 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1640#define MD_REG_P(REGNO) \
1641 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1642#define ST_REG_P(REGNO) \
1643 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
e75b25e7 1644
e75b25e7
MM
1645/* Return number of consecutive hard regs needed starting at reg REGNO
1646 to hold something of mode MODE.
1647 This is ordinarily the length in words of a value of mode MODE
1648 but can be less for certain modes in special long registers.
1649
1650 On the MIPS, all general registers are one word long. Except on
1651 the R4000 with the FR bit set, the floating point uses register
956d6950 1652 pairs, with the second register not being allocable. */
e75b25e7
MM
1653
1654#define HARD_REGNO_NREGS(REGNO, MODE) \
1655 (! FP_REG_P (REGNO) \
1656 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
ef9e5f13 1657 : ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG))
e75b25e7
MM
1658
1659/* Value is 1 if hard register REGNO can hold a value of machine-mode
876c09d3
JW
1660 MODE. In 32 bit mode, require that DImode and DFmode be in even
1661 registers. For DImode, this makes some of the insns easier to
1662 write, since you don't have to worry about a DImode value in
1663 registers 3 & 4, producing a result in 4 & 5.
e75b25e7
MM
1664
1665 To make the code simpler HARD_REGNO_MODE_OK now just references an
1666 array built in override_options. Because machmodes.h is not yet
1667 included before this file is processed, the MODE bound can't be
1668 expressed here. */
1669
1670extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1671
1672#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1673 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1674
1675/* Value is 1 if it is a good idea to tie two pseudo registers
1676 when one has mode MODE1 and one has mode MODE2.
1677 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1678 for any hard reg, then this must be 0 for correct output. */
1679#define MODES_TIEABLE_P(MODE1, MODE2) \
1680 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1681 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1682 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1683 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1684
1685/* MIPS pc is not overloaded on a register. */
1686/* #define PC_REGNUM xx */
1687
1688/* Register to use for pushing function arguments. */
0fb5ac6f 1689#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
e75b25e7 1690
97116296
ILT
1691/* Offset from the stack pointer to the first available location. Use
1692 the default value zero. */
1693/* #define STACK_POINTER_OFFSET 0 */
e75b25e7 1694
2bcb2ab3
GK
1695/* Base register for access to local variables of the function. We
1696 pretend that the frame pointer is $1, and then eliminate it to
1697 HARD_FRAME_POINTER_REGNUM. We can get away with this because $1 is
1698 a fixed register, and will not be used for anything else. */
1699#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
1700
0ff83799
MM
1701/* Temporary scratch register for use by the assembler. */
1702#define ASSEMBLER_SCRATCH_REGNUM (GP_REG_FIRST + 1)
1703
2bcb2ab3
GK
1704/* $30 is not available on the mips16, so we use $17 as the frame
1705 pointer. */
1706#define HARD_FRAME_POINTER_REGNUM \
1707 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
e75b25e7
MM
1708
1709/* Value should be nonzero if functions must have frame pointers.
1710 Zero means the frame pointer need not be set up (and parms
1711 may be accessed via the stack pointer) in functions that seem suitable.
1712 This is computed in `reload', in reload1.c. */
1713#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1714
1715/* Base register for access to arguments of the function. */
ab78d4a8 1716#define ARG_POINTER_REGNUM GP_REG_FIRST
e75b25e7 1717
39dffea3
JW
1718/* Fake register that holds the address on the stack of the
1719 current function's return address. */
1720#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1721
e75b25e7 1722/* Register in which static-chain is passed to a function. */
0fb5ac6f 1723#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
e75b25e7 1724
1154b096
MM
1725/* If the structure value address is passed in a register, then
1726 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1727/* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1728
1729/* If the structure value address is not passed in a register, define
1730 `STRUCT_VALUE' as an expression returning an RTX for the place
1731 where the address is passed. If it returns 0, the address is
1732 passed as an "invisible" first argument. */
f58cfbfb 1733#define STRUCT_VALUE 0
e75b25e7
MM
1734
1735/* Mips registers used in prologue/epilogue code when the stack frame
1736 is larger than 32K bytes. These registers must come from the
1737 scratch register set, and not used for passing and returning
1738 arguments and any other information used in the calling sequence
516a2dfd
JW
1739 (such as pic). Must start at 12, since t0/t3 are parameter passing
1740 registers in the 64 bit ABI. */
7bea35e7 1741
516a2dfd
JW
1742#define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1743#define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
e75b25e7
MM
1744
1745/* Define this macro if it is as good or better to call a constant
1746 function address than to call an address kept in a register. */
1747#define NO_FUNCTION_CSE 1
1748
1749/* Define this macro if it is as good or better for a function to
1750 call itself with an explicit address than to call an address
1751 kept in a register. */
1752#define NO_RECURSIVE_FUNCTION_CSE 1
1753
1754/* The register number of the register used to address a table of
1755 static data addresses in memory. In some cases this register is
7dac2f89 1756 defined by a processor's "application binary interface" (ABI).
e75b25e7
MM
1757 When this macro is defined, RTL is generated for this register
1758 once, as with the stack pointer and frame pointer registers. If
1759 this macro is not defined, it is up to the machine-dependent
1760 files to allocate such a register (if necessary). */
0fb5ac6f 1761#define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
e75b25e7 1762
24e214e3
JW
1763#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1764
77b597df
JW
1765/* Initialize embedded_pic_fnaddr_rtx before RTL generation for
1766 each function. We used to do this in FINALIZE_PIC, but FINALIZE_PIC
1767 isn't always called for static inline functions. */
2bcb2ab3
GK
1768#define INIT_EXPANDERS \
1769do { \
1770 embedded_pic_fnaddr_rtx = NULL; \
1771 mips16_gp_pseudo_rtx = NULL; \
1772} while (0)
e75b25e7
MM
1773\f
1774/* Define the classes of registers for register constraints in the
1775 machine description. Also define ranges of constants.
1776
1777 One of the classes must always be named ALL_REGS and include all hard regs.
1778 If there is more than one class, another class must be named NO_REGS
1779 and contain no registers.
1780
1781 The name GENERAL_REGS must be the name of a class (or an alias for
1782 another name such as ALL_REGS). This is the class of registers
1783 that is allowed by "g" or "r" in a register constraint.
1784 Also, registers outside this class are allocated only when
1785 instructions express preferences for them.
1786
1787 The classes must be numbered in nondecreasing order; that is,
1788 a larger-numbered class must never be contained completely
1789 in a smaller-numbered class.
1790
1791 For any two classes, it is very desirable that there be another
1792 class that represents their union. */
1793
1794enum reg_class
1795{
1796 NO_REGS, /* no registers in set */
2bcb2ab3
GK
1797 M16_NA_REGS, /* mips16 regs not used to pass args */
1798 M16_REGS, /* mips16 directly accessible registers */
1799 T_REG, /* mips16 T register ($24) */
1800 M16_T_REGS, /* mips16 registers plus T register */
e75b25e7
MM
1801 GR_REGS, /* integer registers */
1802 FP_REGS, /* floating point registers */
1803 HI_REG, /* hi register */
1804 LO_REG, /* lo register */
225b8835 1805 HILO_REG, /* hilo register pair for 64 bit mode mult */
e75b25e7 1806 MD_REGS, /* multiply/divide registers (hi/lo) */
e4f5c5d6
KR
1807 HI_AND_GR_REGS, /* union classes */
1808 LO_AND_GR_REGS,
1809 HILO_AND_GR_REGS,
e75b25e7
MM
1810 ST_REGS, /* status registers (fp status) */
1811 ALL_REGS, /* all registers */
1812 LIM_REG_CLASSES /* max value + 1 */
1813};
1814
1815#define N_REG_CLASSES (int) LIM_REG_CLASSES
1816
1817#define GENERAL_REGS GR_REGS
1818
1819/* An initializer containing the names of the register classes as C
1820 string constants. These names are used in writing some of the
1821 debugging dumps. */
1822
1823#define REG_CLASS_NAMES \
1824{ \
1825 "NO_REGS", \
2bcb2ab3
GK
1826 "M16_NA_REGS", \
1827 "M16_REGS", \
1828 "T_REG", \
1829 "M16_T_REGS", \
e75b25e7
MM
1830 "GR_REGS", \
1831 "FP_REGS", \
1832 "HI_REG", \
1833 "LO_REG", \
225b8835 1834 "HILO_REG", \
e75b25e7 1835 "MD_REGS", \
e4f5c5d6
KR
1836 "HI_AND_GR_REGS", \
1837 "LO_AND_GR_REGS", \
1838 "HILO_AND_GR_REGS", \
e75b25e7
MM
1839 "ST_REGS", \
1840 "ALL_REGS" \
1841}
1842
1843/* An initializer containing the contents of the register classes,
1844 as integers which are bit masks. The Nth integer specifies the
1845 contents of class N. The way the integer MASK is interpreted is
1846 that register R is in the class if `MASK & (1 << R)' is 1.
1847
1848 When the machine has more than 32 registers, an integer does not
1849 suffice. Then the integers are replaced by sub-initializers,
1850 braced groupings containing several integers. Each
1851 sub-initializer must be suitable as an initializer for the type
1852 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1853
1854#define REG_CLASS_CONTENTS \
1855{ \
1856 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
2bcb2ab3
GK
1857 { 0x0003000c, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1858 { 0x000300fc, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1859 { 0x01000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1860 { 0x010300fc, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
e75b25e7
MM
1861 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1862 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
2e7bfcec
MM
1863 { 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
1864 { 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
225b8835 1865 { 0x00000000, 0x00000000, 0x00000004 }, /* hilo register */ \
e75b25e7 1866 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
e4f5c5d6
KR
1867 { 0xffffffff, 0x00000000, 0x00000001 }, /* union classes */ \
1868 { 0xffffffff, 0x00000000, 0x00000002 }, \
1869 { 0xffffffff, 0x00000000, 0x00000004 }, \
b8eb88d0
ILT
1870 { 0x00000000, 0x00000000, 0x000007f8 }, /* status registers */ \
1871 { 0xffffffff, 0xffffffff, 0x000007ff } /* all registers */ \
e75b25e7
MM
1872}
1873
1874
1875/* A C expression whose value is a register class containing hard
1876 register REGNO. In general there is more that one such class;
1877 choose a class which is "minimal", meaning that no smaller class
1878 also contains the register. */
1879
1880extern enum reg_class mips_regno_to_class[];
1881
1882#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1883
1884/* A macro whose definition is the name of the class to which a
1885 valid base register must belong. A base register is one used in
1886 an address which is the register value plus a displacement. */
1887
2bcb2ab3 1888#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
e75b25e7
MM
1889
1890/* A macro whose definition is the name of the class to which a
1891 valid index register must belong. An index register is one used
1892 in an address where its value is either multiplied by a scale
1893 factor or added to another register (as well as added to a
1894 displacement). */
1895
876c09d3 1896#define INDEX_REG_CLASS NO_REGS
e75b25e7 1897
2bcb2ab3
GK
1898/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1899 registers explicitly used in the rtl to be used as spill registers
1900 but prevents the compiler from extending the lifetime of these
1901 registers. */
1902
1903#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1904
1905/* This macro is used later on in the file. */
1906#define GR_REG_CLASS_P(CLASS) \
1907 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
1908 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)
1909
1910/* REG_ALLOC_ORDER is to order in which to allocate registers. This
1911 is the default value (allocate the registers in numeric order). We
1912 define it just so that we can override it for the mips16 target in
1913 ORDER_REGS_FOR_LOCAL_ALLOC. */
1914
1915#define REG_ALLOC_ORDER \
1916{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1917 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1918 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1919 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1920 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 \
1921}
1922
1923/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1924 to be rearranged based on a particular function. On the mips16, we
1925 want to allocate $24 (T_REG) before other registers for
1926 instructions for which it is possible. */
1927
1928#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
e75b25e7
MM
1929
1930/* REGISTER AND CONSTANT CLASSES */
1931
1932/* Get reg_class from a letter such as appears in the machine
1933 description.
1934
1935 DEFINED REGISTER CLASSES:
1936
1937 'd' General (aka integer) registers
2bcb2ab3
GK
1938 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
1939 'y' General registers (in both mips16 and non mips16 mode)
1940 'e' mips16 non argument registers (M16_NA_REGS)
1941 't' mips16 temporary register ($24)
e75b25e7
MM
1942 'f' Floating point registers
1943 'h' Hi register
1944 'l' Lo register
34b650b3 1945 'x' Multiply/divide registers
225b8835
ILT
1946 'a' HILO_REG
1947 'z' FP Status register
1948 'b' All registers */
e75b25e7
MM
1949
1950extern enum reg_class mips_char_to_class[];
1951
8f54374e 1952#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
e75b25e7
MM
1953
1954/* The letters I, J, K, L, M, N, O, and P in a register constraint
1955 string can be used to stand for particular ranges of immediate
1956 operands. This macro defines what the ranges are. C is the
1957 letter, and VALUE is a constant value. Return 1 if VALUE is
1958 in the range specified by C. */
1959
1960/* For MIPS:
1961
1962 `I' is used for the range of constants an arithmetic insn can
1963 actually contain (16 bits signed integers).
1964
1965 `J' is used for the range which is just zero (ie, $r0).
1966
1967 `K' is used for the range of constants a logical insn can actually
1968 contain (16 bit zero-extended integers).
1969
1970 `L' is used for the range of constants that be loaded with lui
1971 (ie, the bottom 16 bits are zero).
1972
1973 `M' is used for the range of constants that take two words to load
1974 (ie, not matched by `I', `K', and `L').
1975
2bcb2ab3 1976 `N' is used for negative 16 bit constants other than -65536.
e75b25e7 1977
2bcb2ab3 1978 `O' is a 15 bit signed integer.
e75b25e7
MM
1979
1980 `P' is used for positive 16 bit constants. */
1981
516a2dfd
JW
1982#define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1983#define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
e75b25e7
MM
1984
1985#define CONST_OK_FOR_LETTER_P(VALUE, C) \
516a2dfd 1986 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
e75b25e7 1987 : (C) == 'J' ? ((VALUE) == 0) \
516a2dfd 1988 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
876c09d3
JW
1989 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
1990 && (((VALUE) & ~2147483647) == 0 \
1991 || ((VALUE) & ~2147483647) == ~2147483647)) \
99cbc4b0
MM
1992 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
1993 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
876c09d3
JW
1994 && (((VALUE) & 0x0000ffff) != 0 \
1995 || (((VALUE) & ~2147483647) != 0 \
1996 && ((VALUE) & ~2147483647) != ~2147483647))) \
2bcb2ab3
GK
1997 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
1998 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
99cbc4b0 1999 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
e75b25e7
MM
2000 : 0)
2001
2002/* Similar, but for floating constants, and defining letters G and H.
2003 Here VALUE is the CONST_DOUBLE rtx itself. */
2004
2005/* For Mips
2006
2007 'G' : Floating point 0 */
2008
2009#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2010 ((C) == 'G' \
876c09d3 2011 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
e75b25e7
MM
2012
2013/* Letters in the range `Q' through `U' may be defined in a
7dac2f89 2014 machine-dependent fashion to stand for arbitrary operand types.
e75b25e7
MM
2015 The machine description macro `EXTRA_CONSTRAINT' is passed the
2016 operand as its first argument and the constraint letter as its
2017 second operand.
2018
2bcb2ab3 2019 `Q' is for mips16 GP relative constants
31c714e3 2020 `R' is for memory references which take 1 word for the instruction.
2bcb2ab3
GK
2021 `S' is for references to extern items which are PIC for OSF/rose.
2022 `T' is for memory addresses that can be used to load two words. */
e75b25e7
MM
2023
2024#define EXTRA_CONSTRAINT(OP,CODE) \
2bcb2ab3
GK
2025 (((CODE) == 'T') ? double_memory_operand (OP, GET_MODE (OP)) \
2026 : ((CODE) == 'Q') ? (GET_CODE (OP) == CONST \
2027 && mips16_gp_offset_p (OP)) \
2028 : (GET_CODE (OP) != MEM) ? FALSE \
e75b25e7 2029 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
31c714e3
MM
2030 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
2031 && HALF_PIC_ADDRESS_P (OP)) \
e75b25e7
MM
2032 : FALSE)
2033
2034/* Given an rtx X being reloaded into a reg required to be
2035 in class CLASS, return the class of reg to actually use.
2036 In general this is just CLASS; but on some machines
2037 in some cases it is preferable to use a more restrictive class. */
2038
2039#define PREFERRED_RELOAD_CLASS(X,CLASS) \
876c09d3 2040 ((CLASS) != ALL_REGS \
2bcb2ab3
GK
2041 ? (! TARGET_MIPS16 \
2042 ? (CLASS) \
2043 : ((CLASS) != GR_REGS \
2044 ? (CLASS) \
2045 : M16_REGS)) \
876c09d3
JW
2046 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2047 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
2bcb2ab3
GK
2048 ? (TARGET_SOFT_FLOAT \
2049 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2050 : FP_REGS) \
876c09d3
JW
2051 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
2052 || GET_MODE (X) == VOIDmode) \
2bcb2ab3 2053 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
876c09d3 2054 : (CLASS))))
e75b25e7 2055
0fb5ac6f
MM
2056/* Certain machines have the property that some registers cannot be
2057 copied to some other registers without using memory. Define this
2058 macro on those machines to be a C expression that is non-zero if
2059 objects of mode MODE in registers of CLASS1 can only be copied to
2060 registers of class CLASS2 by storing a register of CLASS1 into
2061 memory and loading that memory location into a register of CLASS2.
2062
2063 Do not define this macro if its value would always be zero. */
2064
2065#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2370b831
JW
2066 ((!TARGET_DEBUG_H_MODE \
2067 && GET_MODE_CLASS (MODE) == MODE_INT \
2bcb2ab3
GK
2068 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
2069 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
2370b831 2070 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
2bcb2ab3
GK
2071 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
2072 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
0fb5ac6f 2073
46299de9 2074/* The HI and LO registers can only be reloaded via the general
b8eb88d0
ILT
2075 registers. Condition code registers can only be loaded to the
2076 general registers, and from the floating point registers. */
46299de9 2077
225b8835
ILT
2078#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2079 mips_secondary_reload_class (CLASS, MODE, X, 1)
2080#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2081 mips_secondary_reload_class (CLASS, MODE, X, 0)
46299de9 2082
e75b25e7
MM
2083/* Return the maximum number of consecutive registers
2084 needed to represent mode MODE in a register of class CLASS. */
2085
b206a757
JW
2086#define CLASS_UNITS(mode, size) \
2087 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
574c75a3 2088
e75b25e7 2089#define CLASS_MAX_NREGS(CLASS, MODE) \
b206a757
JW
2090 ((CLASS) == FP_REGS \
2091 ? (TARGET_FLOAT64 \
2092 ? CLASS_UNITS (MODE, 8) \
2093 : 2 * CLASS_UNITS (MODE, 8)) \
2094 : CLASS_UNITS (MODE, UNITS_PER_WORD))
e75b25e7 2095
87d9d860 2096/* If defined, gives a class of registers that cannot be used as the
02188693 2097 operand of a SUBREG that changes the mode of the object illegally. */
87d9d860 2098
02188693 2099#define CLASS_CANNOT_CHANGE_MODE \
87d9d860 2100 (TARGET_FLOAT64 && ! TARGET_64BIT ? FP_REGS : NO_REGS)
02188693
RH
2101
2102/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
2103
2104#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
2105 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
e75b25e7
MM
2106\f
2107/* Stack layout; function entry, exit and calling. */
2108
2109/* Define this if pushing a word on the stack
2110 makes the stack pointer a smaller address. */
2111#define STACK_GROWS_DOWNWARD
2112
2113/* Define this if the nominal address of the stack frame
2114 is at the high-address end of the local variables;
2115 that is, each additional local variable allocated
2116 goes at a more negative offset in the frame. */
ab78d4a8 2117/* #define FRAME_GROWS_DOWNWARD */
e75b25e7
MM
2118
2119/* Offset within stack frame to start allocating local variables at.
2120 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
2121 first local allocated. Otherwise, it is the offset to the BEGINNING
2122 of the first local allocated. */
24e214e3
JW
2123#define STARTING_FRAME_OFFSET \
2124 (current_function_outgoing_args_size \
2125 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
ab78d4a8
MM
2126
2127/* Offset from the stack pointer register to an item dynamically
2128 allocated on the stack, e.g., by `alloca'.
2129
2130 The default value for this macro is `STACK_POINTER_OFFSET' plus the
2131 length of the outgoing arguments. The default is correct for most
2132 machines. See `function.c' for details.
2133
51bdc4d3
MM
2134 The MIPS ABI states that functions which dynamically allocate the
2135 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
2136 we are trying to create a second frame pointer to the function, so
2137 allocate some stack space to make it happy.
ab78d4a8 2138
51bdc4d3
MM
2139 However, the linker currently complains about linking any code that
2140 dynamically allocates stack space, and there seems to be a bug in
2141 STACK_DYNAMIC_OFFSET, so don't define this right now. */
2142
2143#if 0
ab78d4a8
MM
2144#define STACK_DYNAMIC_OFFSET(FUNDECL) \
2145 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
2146 ? 4*UNITS_PER_WORD \
2147 : current_function_outgoing_args_size)
51bdc4d3 2148#endif
e75b25e7 2149
39dffea3
JW
2150/* The return address for the current frame is in r31 is this is a leaf
2151 function. Otherwise, it is on the stack. It is at a variable offset
2152 from sp/fp/ap, so we define a fake hard register rap which is a
2153 poiner to the return address on the stack. This always gets eliminated
2154 during reload to be either the frame pointer or the stack pointer plus
2155 an offset. */
2156
2157/* ??? This definition fails for leaf functions. There is currently no
2158 general solution for this problem. */
2159
2160/* ??? There appears to be no way to get the return address of any previous
2161 frame except by disassembling instructions in the prologue/epilogue.
2162 So currently we support only the current frame. */
2163
2164#define RETURN_ADDR_RTX(count, frame) \
2165 ((count == 0) \
c5c76735 2166 ? gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM))\
24ba333f 2167 : (rtx) 0)
39dffea3 2168
e75b25e7
MM
2169/* Structure to be filled in by compute_frame_size with register
2170 save masks, and offsets for the current function. */
2171
2172struct mips_frame_info
2173{
7bea35e7
MM
2174 long total_size; /* # bytes that the entire frame takes up */
2175 long var_size; /* # bytes that variables take up */
2176 long args_size; /* # bytes that outgoing arguments take up */
2177 long extra_size; /* # bytes of extra gunk */
2178 int gp_reg_size; /* # bytes needed to store gp regs */
2179 int fp_reg_size; /* # bytes needed to store fp regs */
2180 long mask; /* mask of saved gp registers */
2181 long fmask; /* mask of saved fp registers */
2182 long gp_save_offset; /* offset from vfp to store gp registers */
2183 long fp_save_offset; /* offset from vfp to store fp registers */
2184 long gp_sp_offset; /* offset from new sp to store gp registers */
2185 long fp_sp_offset; /* offset from new sp to store fp registers */
2186 int initialized; /* != 0 if frame size already calculated */
2187 int num_gp; /* number of gp registers saved */
2188 int num_fp; /* number of fp registers saved */
2bcb2ab3 2189 long insns_len; /* length of insns; mips16 only */
e75b25e7
MM
2190};
2191
2192extern struct mips_frame_info current_frame_info;
2193
ab78d4a8
MM
2194/* If defined, this macro specifies a table of register pairs used to
2195 eliminate unneeded registers that point into the stack frame. If
2196 it is not defined, the only elimination attempted by the compiler
2197 is to replace references to the frame pointer with references to
2198 the stack pointer.
2199
2200 The definition of this macro is a list of structure
2201 initializations, each of which specifies an original and
2202 replacement register.
2203
2204 On some machines, the position of the argument pointer is not
2205 known until the compilation is completed. In such a case, a
7dac2f89 2206 separate hard register must be used for the argument pointer.
ab78d4a8
MM
2207 This register can be eliminated by replacing it with either the
2208 frame pointer or the argument pointer, depending on whether or not
2209 the frame pointer has been eliminated.
2210
2211 In this case, you might specify:
2212 #define ELIMINABLE_REGS \
2213 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2214 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
2215 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
2216
2217 Note that the elimination of the argument pointer with the stack
2bcb2ab3
GK
2218 pointer is specified first since that is the preferred elimination.
2219
2220 The eliminations to $17 are only used on the mips16. See the
2221 definition of HARD_FRAME_POINTER_REGNUM. */
ab78d4a8
MM
2222
2223#define ELIMINABLE_REGS \
2224{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2225 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2226 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
39dffea3 2227 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2228 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2229 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17}, \
08c2951c 2230 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31}, \
2bcb2ab3
GK
2231 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2232 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2233 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
ab78d4a8 2234
ab78d4a8
MM
2235/* A C expression that returns non-zero if the compiler is allowed to
2236 try to replace register number FROM-REG with register number
2237 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
2238 defined, and will usually be the constant 1, since most of the
2239 cases preventing register elimination are things that the compiler
2bcb2ab3
GK
2240 already knows about.
2241
365ca18b
GK
2242 When not in mips16 and mips64, we can always eliminate to the
2243 frame pointer. We can eliminate to the stack pointer unless
2244 a frame pointer is needed. In mips16 mode, we need a frame
2245 pointer for a large frame; otherwise, reload may be unable
2246 to compute the address of a local variable, since there is
2247 no way to add a large constant to the stack pointer
2248 without using a temporary register.
2249
2250 In mips16, for some instructions (eg lwu), we can't eliminate the
2251 frame pointer for the stack pointer. These instructions are
2252 only generated in TARGET_64BIT mode.
2253 */
ab78d4a8
MM
2254
2255#define CAN_ELIMINATE(FROM, TO) \
08c2951c 2256 (((FROM) == RETURN_ADDRESS_POINTER_REGNUM && (! leaf_function_p () \
973838fd 2257 || (TO == GP_REG_FIRST + 31 && leaf_function_p))) \
08c2951c
SC
2258 || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
2259 && ((TO) == HARD_FRAME_POINTER_REGNUM \
2bcb2ab3 2260 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed \
365ca18b 2261 && ! (TARGET_MIPS16 && TARGET_64BIT) \
2bcb2ab3 2262 && (! TARGET_MIPS16 \
08c2951c 2263 || compute_frame_size (get_frame_size ()) < 32768)))))
ab78d4a8
MM
2264
2265/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
2266 specifies the initial difference between the specified pair of
2267 registers. This macro must be defined if `ELIMINABLE_REGS' is
2268 defined. */
2269
2270#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2271{ compute_frame_size (get_frame_size ()); \
2bcb2ab3
GK
2272 if (TARGET_MIPS16 && (FROM) == FRAME_POINTER_REGNUM \
2273 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2274 (OFFSET) = - current_function_outgoing_args_size; \
2275 else if ((FROM) == FRAME_POINTER_REGNUM) \
ab78d4a8 2276 (OFFSET) = 0; \
2bcb2ab3
GK
2277 else if (TARGET_MIPS16 && (FROM) == ARG_POINTER_REGNUM \
2278 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2279 (OFFSET) = (current_frame_info.total_size \
2280 - current_function_outgoing_args_size \
a53f72db
GRK
2281 - ((mips_abi != ABI_32 \
2282 && mips_abi != ABI_O64 \
2283 && mips_abi != ABI_EABI) \
2bcb2ab3
GK
2284 ? current_function_pretend_args_size \
2285 : 0)); \
2286 else if ((FROM) == ARG_POINTER_REGNUM) \
a2ef6e41 2287 (OFFSET) = (current_frame_info.total_size \
a53f72db
GRK
2288 - ((mips_abi != ABI_32 \
2289 && mips_abi != ABI_O64 \
2290 && mips_abi != ABI_EABI) \
a2ef6e41
RK
2291 ? current_function_pretend_args_size \
2292 : 0)); \
c9b4de06
JW
2293 /* Some ABIs store 64 bits to the stack, but Pmode is 32 bits, \
2294 so we must add 4 bytes to the offset to get the right value. */ \
2bcb2ab3 2295 else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM) \
973838fd 2296 { \
08c2951c
SC
2297 if (leaf_function_p ()) \
2298 (OFFSET) = 0; \
2299 else (OFFSET) = current_frame_info.gp_sp_offset \
c9b4de06
JW
2300 + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) \
2301 * (BYTES_BIG_ENDIAN != 0)); \
973838fd 2302 } \
ab78d4a8
MM
2303}
2304
e75b25e7
MM
2305/* If we generate an insn to push BYTES bytes,
2306 this says how many the stack pointer really advances by.
8aeea6e6 2307 On the VAX, sp@- in a byte insn really pushes a word. */
e75b25e7
MM
2308
2309/* #define PUSH_ROUNDING(BYTES) 0 */
2310
2311/* If defined, the maximum amount of space required for outgoing
2312 arguments will be computed and placed into the variable
2313 `current_function_outgoing_args_size'. No space will be pushed
2314 onto the stack for each call; instead, the function prologue
2315 should increase the stack frame size by this amount.
2316
2317 It is not proper to define both `PUSH_ROUNDING' and
2318 `ACCUMULATE_OUTGOING_ARGS'. */
f73ad30e 2319#define ACCUMULATE_OUTGOING_ARGS 1
e75b25e7 2320
6cb6c3b3
MM
2321/* Offset from the argument pointer register to the first argument's
2322 address. On some machines it may depend on the data type of the
2323 function.
e75b25e7 2324
6cb6c3b3 2325 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
39282292
MM
2326 the first argument's address.
2327
2328 On the MIPS, we must skip the first argument position if we are
876c09d3 2329 returning a structure or a union, to account for its address being
305aa9e2
MM
2330 passed in $4. However, at the current time, this produces a compiler
2331 that can't bootstrap, so comment it out for now. */
e75b25e7 2332
305aa9e2 2333#if 0
6cb6c3b3
MM
2334#define FIRST_PARM_OFFSET(FNDECL) \
2335 (FNDECL != 0 \
2336 && TREE_TYPE (FNDECL) != 0 \
2337 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2338 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
39282292
MM
2339 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2340 ? UNITS_PER_WORD \
2341 : 0)
305aa9e2
MM
2342#else
2343#define FIRST_PARM_OFFSET(FNDECL) 0
2344#endif
e75b25e7
MM
2345
2346/* When a parameter is passed in a register, stack space is still
2347 allocated for it. For the MIPS, stack space must be allocated, cf
2348 Asm Lang Prog Guide page 7-8.
2349
2350 BEWARE that some space is also allocated for non existing arguments
2351 in register. In case an argument list is of form GF used registers
2352 are a0 (a2,a3), but we should push over a1... */
2353
516a2dfd
JW
2354#define REG_PARM_STACK_SPACE(FNDECL) \
2355 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
e75b25e7
MM
2356
2357/* Define this if it is the responsibility of the caller to
7dac2f89 2358 allocate the area reserved for arguments passed in registers.
e75b25e7 2359 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
7dac2f89 2360 of this macro is to determine whether the space is included in
e75b25e7
MM
2361 `current_function_outgoing_args_size'. */
2362#define OUTGOING_REG_PARM_STACK_SPACE
2363
2364/* Align stack frames on 64 bits (Double Word ). */
d1c17572 2365#ifndef STACK_BOUNDARY
e75b25e7 2366#define STACK_BOUNDARY 64
d1c17572 2367#endif
e75b25e7 2368
876c09d3 2369/* Make sure 4 words are always allocated on the stack. */
e75b25e7
MM
2370
2371#ifndef STACK_ARGS_ADJUST
2372#define STACK_ARGS_ADJUST(SIZE) \
2373{ \
876c09d3
JW
2374 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2375 SIZE.constant = 4 * UNITS_PER_WORD; \
e75b25e7
MM
2376}
2377#endif
2378
2379\f
2380/* A C expression that should indicate the number of bytes of its
38e01259 2381 own arguments that a function pops on returning, or 0
e75b25e7
MM
2382 if the function pops no arguments and the caller must therefore
2383 pop them all after the function returns.
2384
8b109b37
RK
2385 FUNDECL is the declaration node of the function (as a tree).
2386
e75b25e7
MM
2387 FUNTYPE is a C variable whose value is a tree node that
2388 describes the function in question. Normally it is a node of
2389 type `FUNCTION_TYPE' that describes the data type of the function.
2390 From this it is possible to obtain the data types of the value
2391 and arguments (if known).
2392
2393 When a call to a library function is being considered, FUNTYPE
2394 will contain an identifier node for the library function. Thus,
2395 if you need to distinguish among various library functions, you
2396 can do so by their names. Note that "library function" in this
2397 context means a function used to perform arithmetic, whose name
2398 is known specially in the compiler and was not mentioned in the
2399 C code being compiled.
2400
2401 STACK-SIZE is the number of bytes of arguments passed on the
2402 stack. If a variable number of bytes is passed, it is zero, and
2403 argument popping will always be the responsibility of the
2404 calling function. */
2405
8b109b37 2406#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
e75b25e7
MM
2407
2408
2409/* Symbolic macros for the registers used to return integer and floating
2410 point values. */
2411
2412#define GP_RETURN (GP_REG_FIRST + 2)
2413#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2414
2415/* Symbolic macros for the first/last argument registers. */
2416
2417#define GP_ARG_FIRST (GP_REG_FIRST + 4)
2418#define GP_ARG_LAST (GP_REG_FIRST + 7)
2419#define FP_ARG_FIRST (FP_REG_FIRST + 12)
2420#define FP_ARG_LAST (FP_REG_FIRST + 15)
2421
2422#define MAX_ARGS_IN_REGISTERS 4
2423
2424/* Define how to find the value returned by a library function
2bcb2ab3
GK
2425 assuming the value has mode MODE. Because we define
2426 PROMOTE_FUNCTION_RETURN, we must promote the mode just as
2427 PROMOTE_MODE does. */
e75b25e7
MM
2428
2429#define LIBCALL_VALUE(MODE) \
2bcb2ab3
GK
2430 gen_rtx (REG, \
2431 ((GET_MODE_CLASS (MODE) != MODE_INT \
2432 || GET_MODE_SIZE (MODE) >= 4) \
2433 ? (MODE) \
2434 : SImode), \
46299de9
ILT
2435 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
2436 && (! TARGET_SINGLE_FLOAT \
2437 || GET_MODE_SIZE (MODE) <= 4)) \
2438 ? FP_RETURN \
2439 : GP_RETURN))
e75b25e7
MM
2440
2441/* Define how to find the value returned by a function.
2442 VALTYPE is the data type of the value (as a tree).
2443 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2444 otherwise, FUNC is 0. */
2445
2446#define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
2447
2448
2449/* 1 if N is a possible register number for a function value.
2450 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2451 Currently, R2 and F0 are only implemented here (C has no complex type) */
2452
2453#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2454
46af8e31
JW
2455/* 1 if N is a possible register number for function argument passing.
2456 We have no FP argument registers when soft-float. When FP registers
2457 are 32 bits, we can't directly reference the odd numbered ones. */
2458
2459#define FUNCTION_ARG_REGNO_P(N) \
2460 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
6e92f4b6 2461 || ((! TARGET_SOFT_FLOAT \
46af8e31 2462 && ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST) \
2bcb2ab3 2463 && (TARGET_FLOAT64 || (0 == (N) % 2))) \
6e92f4b6 2464 && ! fixed_regs[N]))
e75b25e7
MM
2465
2466/* A C expression which can inhibit the returning of certain function
2467 values in registers, based on the type of value. A nonzero value says
2468 to return the function value in memory, just as large structures are
2469 always returned. Here TYPE will be a C expression of type
2470 `tree', representing the data type of the value.
2471
e14fa9c4
DE
2472 Note that values of mode `BLKmode' must be explicitly
2473 handled by this macro. Also, the option `-fpcc-struct-return'
e75b25e7
MM
2474 takes effect regardless of this macro. On most systems, it is
2475 possible to leave the macro undefined; this causes a default
e14fa9c4
DE
2476 definition to be used, whose value is the constant 1 for BLKmode
2477 values, and 0 otherwise.
e75b25e7
MM
2478
2479 GCC normally converts 1 byte structures into chars, 2 byte
2480 structs into shorts, and 4 byte structs into ints, and returns
2481 them this way. Defining the following macro overrides this,
2482 to give us MIPS cc compatibility. */
2483
2484#define RETURN_IN_MEMORY(TYPE) \
e419152d 2485 (TYPE_MODE (TYPE) == BLKmode)
e75b25e7
MM
2486\f
2487/* A code distinguishing the floating point format of the target
2488 machine. There are three defined values: IEEE_FLOAT_FORMAT,
2489 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
2490
2491#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2492
2493\f
2494/* Define a data type for recording info about an argument list
2495 during the scan of that argument list. This data type should
2496 hold all necessary information about the function itself
2497 and about the args processed so far, enough to enable macros
2498 such as FUNCTION_ARG to determine where the next arg should go.
2bcb2ab3
GK
2499
2500 On the mips16, we need to keep track of which floating point
2501 arguments were passed in general registers, but would have been
2502 passed in the FP regs if this were a 32 bit function, so that we
2503 can move them to the FP regs if we wind up calling a 32 bit
2504 function. We record this information in fp_code, encoded in base
2505 four. A zero digit means no floating point argument, a one digit
2506 means an SFmode argument, and a two digit means a DFmode argument,
2507 and a three digit is not used. The low order digit is the first
2508 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2509 an SFmode argument. ??? A more sophisticated approach will be
2510 needed if MIPS_ABI != ABI_32. */
e75b25e7
MM
2511
2512typedef struct mips_args {
3f1f8d8c 2513 int gp_reg_found; /* whether a gp register was found yet */
75131237
RK
2514 unsigned int arg_number; /* argument number */
2515 unsigned int arg_words; /* # total words the arguments take */
2516 unsigned int fp_arg_words; /* # words for FP args (MIPS_EABI only) */
293a36eb 2517 int last_arg_fp; /* nonzero if last arg was FP (EABI only) */
2bcb2ab3 2518 int fp_code; /* Mode of FP arguments (mips16) */
75131237 2519 unsigned int num_adjusts; /* number of adjustments made */
3f1f8d8c 2520 /* Adjustments made to args pass in regs. */
7dac2f89 2521 /* ??? The size is doubled to work around a
b796c573
RS
2522 bug in the code that sets the adjustments
2523 in function_arg. */
2524 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
e75b25e7
MM
2525} CUMULATIVE_ARGS;
2526
2527/* Initialize a variable CUM of type CUMULATIVE_ARGS
2528 for a call to a function whose data type is FNTYPE.
2529 For a library call, FNTYPE is 0.
2530
2531*/
2532
2c7ee1a6 2533#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
e75b25e7
MM
2534 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2535
2536/* Update the data in CUM to advance over an argument
2537 of mode MODE and data type TYPE.
2538 (TYPE is null for libcalls where that information may not be available.) */
2539
2540#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2541 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2542
2543/* Determine where to put an argument to a function.
2544 Value is zero to push the argument on the stack,
2545 or a hard register in which to store the argument.
2546
2547 MODE is the argument's machine mode.
2548 TYPE is the data type of the argument (as a tree).
2549 This is null for libcalls where that information may
2550 not be available.
2551 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2552 the preceding args and about the function being called.
2553 NAMED is nonzero if this argument is a named parameter
2554 (otherwise it is an extra parameter matching an ellipsis). */
2555
2556#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2557 function_arg( &CUM, MODE, TYPE, NAMED)
2558
2559/* For an arg passed partly in registers and partly in memory,
2560 this is the number of registers used.
2561 For args passed entirely in registers or entirely in memory, zero. */
2562
2563#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2564 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2565
2566/* If defined, a C expression that gives the alignment boundary, in
2567 bits, of an argument with the specified mode and type. If it is
2568 not defined, `PARM_BOUNDARY' is used for all arguments. */
2569
2570#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2571 (((TYPE) != 0) \
75131237 2572 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
e75b25e7
MM
2573 ? PARM_BOUNDARY \
2574 : TYPE_ALIGN(TYPE)) \
2575 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2576 ? PARM_BOUNDARY \
2577 : GET_MODE_ALIGNMENT(MODE)))
2578
2579\f
e75b25e7
MM
2580/* Tell prologue and epilogue if register REGNO should be saved / restored. */
2581
2582#define MUST_SAVE_REGISTER(regno) \
2bcb2ab3
GK
2583 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2584 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
ab78d4a8 2585 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
e75b25e7
MM
2586
2587/* ALIGN FRAMES on double word boundaries */
d1c17572
JL
2588#ifndef MIPS_STACK_ALIGN
2589#define MIPS_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
2590#endif
e75b25e7 2591
5d3f2bd5
RH
2592\f
2593/* Define the `__builtin_va_list' type for the ABI. */
2594#define BUILD_VA_LIST_TYPE(VALIST) \
2595 (VALIST) = mips_build_va_list ()
2596
2597/* Implement `va_start' for varargs and stdarg. */
2598#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2599 mips_va_start (stdarg, valist, nextarg)
2600
2601/* Implement `va_arg'. */
2602#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2603 mips_va_arg (valist, type)
e75b25e7
MM
2604\f
2605/* Output assembler code to FILE to increment profiler label # LABELNO
2606 for profiling a function entry. */
2607
2608#define FUNCTION_PROFILER(FILE, LABELNO) \
2609{ \
2bcb2ab3
GK
2610 if (TARGET_MIPS16) \
2611 sorry ("mips16 function profiling"); \
e75b25e7
MM
2612 fprintf (FILE, "\t.set\tnoreorder\n"); \
2613 fprintf (FILE, "\t.set\tnoat\n"); \
2614 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2615 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2616 fprintf (FILE, "\tjal\t_mcount\n"); \
876c09d3
JW
2617 fprintf (FILE, \
2618 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2619 TARGET_64BIT ? "dsubu" : "subu", \
e75b25e7 2620 reg_names[STACK_POINTER_REGNUM], \
876c09d3 2621 reg_names[STACK_POINTER_REGNUM], \
1eeed24e 2622 Pmode == DImode ? 16 : 8); \
e75b25e7
MM
2623 fprintf (FILE, "\t.set\treorder\n"); \
2624 fprintf (FILE, "\t.set\tat\n"); \
2625}
2626
d8d5b1e1
MM
2627/* Define this macro if the code for function profiling should come
2628 before the function prologue. Normally, the profiling code comes
2629 after. */
2630
2631/* #define PROFILE_BEFORE_PROLOGUE */
2632
e75b25e7
MM
2633/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2634 the stack pointer does not matter. The value is tested only in
2635 functions that have frame pointers.
2636 No definition is equivalent to always zero. */
2637
2638#define EXIT_IGNORE_STACK 1
2639
2640\f
2641/* A C statement to output, on the stream FILE, assembler code for a
7dac2f89 2642 block of data that contains the constant parts of a trampoline.
e75b25e7
MM
2643 This code should not include a label--the label is taken care of
2644 automatically. */
2645
2646#define TRAMPOLINE_TEMPLATE(STREAM) \
2647{ \
2648 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2649 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2650 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
1eeed24e 2651 if (Pmode == DImode) \
876c09d3
JW
2652 { \
2653 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2654 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2655 } \
2656 else \
2657 { \
0acefe54
JW
2658 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2659 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
876c09d3 2660 } \
0acefe54 2661 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
e75b25e7
MM
2662 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2663 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
1eeed24e 2664 if (Pmode == DImode) \
876c09d3 2665 { \
876c09d3
JW
2666 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2667 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2668 } \
2669 else \
2670 { \
2671 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2672 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2673 } \
e75b25e7
MM
2674}
2675
2676/* A C expression for the size in bytes of the trampoline, as an
2677 integer. */
2678
1eeed24e 2679#define TRAMPOLINE_SIZE (32 + (Pmode == DImode ? 16 : 8))
e75b25e7 2680
876c09d3 2681/* Alignment required for trampolines, in bits. */
e75b25e7 2682
1eeed24e 2683#define TRAMPOLINE_ALIGNMENT (Pmode == DImode ? 64 : 32)
e75b25e7 2684
c85f7c16
JL
2685/* INITIALIZE_TRAMPOLINE calls this library function to flush
2686 program and data caches. */
2687
2688#ifndef CACHE_FLUSH_FUNC
2689#define CACHE_FLUSH_FUNC "_flush_cache"
2690#endif
2691
7dac2f89 2692/* A C statement to initialize the variable parts of a trampoline.
e75b25e7
MM
2693 ADDR is an RTX for the address of the trampoline; FNADDR is an
2694 RTX for the address of the nested function; STATIC_CHAIN is an
2695 RTX for the static chain value that should be passed to the
2696 function when it is called. */
2697
2698#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2699{ \
2700 rtx addr = ADDR; \
1eeed24e 2701 if (Pmode == DImode) \
876c09d3 2702 { \
c5c76735
JL
2703 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
2704 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
876c09d3
JW
2705 } \
2706 else \
2707 { \
c5c76735
JL
2708 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
2709 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
876c09d3 2710 } \
e75b25e7 2711 \
22b54c57
RK
2712 /* Flush both caches. We need to flush the data cache in case \
2713 the system has a write-back cache. */ \
876c09d3 2714 /* ??? Should check the return value for errors. */ \
c5c76735 2715 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, CACHE_FLUSH_FUNC), \
876c09d3 2716 0, VOIDmode, 3, addr, Pmode, \
01d74729 2717 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
22b54c57 2718 GEN_INT (3), TYPE_MODE (integer_type_node)); \
e75b25e7 2719}
e75b25e7
MM
2720\f
2721/* Addressing modes, and classification of registers for them. */
2722
940da324
JL
2723/* #define HAVE_POST_INCREMENT 0 */
2724/* #define HAVE_POST_DECREMENT 0 */
e75b25e7 2725
940da324
JL
2726/* #define HAVE_PRE_DECREMENT 0 */
2727/* #define HAVE_PRE_INCREMENT 0 */
e75b25e7
MM
2728
2729/* These assume that REGNO is a hard or pseudo reg number.
2730 They give nonzero only if REGNO is a hard reg of the suitable class
2731 or a pseudo reg currently allocated to a suitable hard reg.
2732 These definitions are NOT overridden anywhere. */
2733
2bcb2ab3
GK
2734#define BASE_REG_P(regno, mode) \
2735 (TARGET_MIPS16 \
2736 ? (M16_REG_P (regno) \
2737 || (regno) == FRAME_POINTER_REGNUM \
2738 || (regno) == ARG_POINTER_REGNUM \
2739 || ((regno) == STACK_POINTER_REGNUM \
2740 && (GET_MODE_SIZE (mode) == 4 \
2741 || GET_MODE_SIZE (mode) == 8))) \
2742 : GP_REG_P (regno))
e75b25e7 2743
2bcb2ab3
GK
2744#define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
2745 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
2746 (mode))
2747
2748#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
2749 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
e75b25e7 2750
876c09d3 2751#define REGNO_OK_FOR_INDEX_P(regno) 0
2bcb2ab3
GK
2752#define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
2753 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
e75b25e7
MM
2754
2755/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2756 and check its validity for a certain class.
2757 We have two alternate definitions for each of them.
2758 The usual definition accepts all pseudo regs; the other rejects them all.
2759 The symbol REG_OK_STRICT causes the latter definition to be used.
2760
2761 Most source files want to accept pseudo regs in the hope that
2762 they will get allocated to the class that the insn wants them to be in.
2763 Some source files that are used after register allocation
2764 need to be strict. */
2765
2766#ifndef REG_OK_STRICT
2bcb2ab3 2767#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
c94c9817 2768 mips_reg_mode_ok_for_base_p (X, MODE, 0)
e75b25e7 2769#else
2bcb2ab3 2770#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
c94c9817 2771 mips_reg_mode_ok_for_base_p (X, MODE, 1)
e75b25e7
MM
2772#endif
2773
c94c9817
MM
2774#define REG_OK_FOR_INDEX_P(X) 0
2775
e75b25e7
MM
2776\f
2777/* Maximum number of registers that can appear in a valid memory address. */
2778
2779#define MAX_REGS_PER_ADDRESS 1
2780
2781/* A C compound statement with a conditional `goto LABEL;' executed
2782 if X (an RTX) is a legitimate memory address on the target
2783 machine for a memory operand of mode MODE.
2784
2785 It usually pays to define several simpler macros to serve as
2786 subroutines for this one. Otherwise it may be too complicated
2787 to understand.
2788
2789 This macro must exist in two variants: a strict variant and a
7dac2f89 2790 non-strict one. The strict variant is used in the reload pass.
e75b25e7
MM
2791 It must be defined so that any pseudo-register that has not been
2792 allocated a hard register is considered a memory reference. In
2793 contexts where some kind of register is required, a
2794 pseudo-register with no hard register must be rejected.
2795
2796 The non-strict variant is used in other passes. It must be
2797 defined to accept all pseudo-registers in every context where
2798 some kind of register is required.
2799
2800 Compiler source files that want to use the strict variant of
2801 this macro define the macro `REG_OK_STRICT'. You should use an
2802 `#ifdef REG_OK_STRICT' conditional to define the strict variant
2803 in that case and the non-strict variant otherwise.
2804
2805 Typically among the subroutines used to define
2806 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
2807 acceptable registers for various purposes (one for base
2808 registers, one for index registers, and so on). Then only these
2809 subroutine macros need have two variants; the higher levels of
2810 macros may be the same whether strict or not.
2811
2812 Normally, constant addresses which are the sum of a `symbol_ref'
2813 and an integer are stored inside a `const' RTX to mark them as
2814 constant. Therefore, there is no need to recognize such sums
2815 specifically as legitimate addresses. Normally you would simply
2816 recognize any `const' as legitimate.
2817
2818 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
2819 constant sums that are not marked with `const'. It assumes
2820 that a naked `plus' indicates indexing. If so, then you *must*
2821 reject such naked constant sums as illegitimate addresses, so
2822 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
2823
2824 On some machines, whether a symbolic address is legitimate
2825 depends on the section that the address refers to. On these
2826 machines, define the macro `ENCODE_SECTION_INFO' to store the
7dac2f89 2827 information into the `symbol_ref', and then check for it here.
e75b25e7
MM
2828 When you see a `const', you will have to look inside it to find
2829 the `symbol_ref' in order to determine the section. */
2830
2831#if 1
bd9f1972
KG
2832#define GO_PRINTF(x) fprintf(stderr, (x))
2833#define GO_PRINTF2(x,y) fprintf(stderr, (x), (y))
e75b25e7
MM
2834#define GO_DEBUG_RTX(x) debug_rtx(x)
2835
2836#else
2837#define GO_PRINTF(x)
2838#define GO_PRINTF2(x,y)
2839#define GO_DEBUG_RTX(x)
2840#endif
2841
c94c9817
MM
2842#ifdef REG_OK_STRICT
2843#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2844{ \
2845 if (mips_legitimate_address_p (MODE, X, 1)) \
2846 goto ADDR; \
e75b25e7 2847}
c94c9817
MM
2848#else
2849#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2850{ \
2851 if (mips_legitimate_address_p (MODE, X, 0)) \
2852 goto ADDR; \
2853}
2854#endif
e75b25e7
MM
2855
2856/* A C expression that is 1 if the RTX X is a constant which is a
6eff269e
BK
2857 valid address. This is defined to be the same as `CONSTANT_P (X)',
2858 but rejecting CONST_DOUBLE. */
5de1e2ce
JW
2859/* When pic, we must reject addresses of the form symbol+large int.
2860 This is because an instruction `sw $4,s+70000' needs to be converted
2861 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2862 assembler would use $at as a temp to load in the large offset. In this
2863 case $at is already in use. We convert such problem addresses to
2864 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
516a2dfd 2865/* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
31c714e3 2866#define CONSTANT_ADDRESS_P(X) \
6eff269e 2867 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
5de1e2ce
JW
2868 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2869 || (GET_CODE (X) == CONST \
516a2dfd 2870 && ! (flag_pic && pic_address_needs_scratch (X)) \
a53f72db
GRK
2871 && (mips_abi == ABI_32 \
2872 || mips_abi == ABI_O64 \
2873 || mips_abi == ABI_EABI))) \
5de1e2ce 2874 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
e75b25e7 2875
5de1e2ce
JW
2876/* Define this, so that when PIC, reload won't try to reload invalid
2877 addresses which require two reload registers. */
2878
2879#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
e75b25e7
MM
2880
2881/* Nonzero if the constant value X is a legitimate general operand.
2882 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2883
2884 At present, GAS doesn't understand li.[sd], so don't allow it
2885 to be generated at present. Also, the MIPS assembler does not
2886 grok li.d Infinity. */
2887
7dac2f89 2888/* ??? SGI Irix 6 assembler fails for CONST address, so reject them.
8e466531
GRK
2889 Note that the Irix 6 assembler problem may already be fixed.
2890 Note also that the GET_CODE (X) == CONST test catches the mips16
2891 gp pseudo reg (see mips16_gp_pseudo_reg) deciding it is not
2892 a LEGITIMATE_CONSTANT. If we ever want mips16 and ABI_N32 or
2893 ABI_64 to work together, we'll need to fix this. */
e75b25e7 2894#define LEGITIMATE_CONSTANT_P(X) \
516a2dfd
JW
2895 ((GET_CODE (X) != CONST_DOUBLE \
2896 || mips_const_double_ok (X, GET_MODE (X))) \
8e466531
GRK
2897 && ! (GET_CODE (X) == CONST \
2898 && ! TARGET_GAS \
2899 && (mips_abi == ABI_N32 \
2900 || mips_abi == ABI_64)) \
2bcb2ab3 2901 && (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))
e75b25e7
MM
2902
2903/* A C compound statement that attempts to replace X with a valid
2904 memory address for an operand of mode MODE. WIN will be a C
2905 statement label elsewhere in the code; the macro definition may
2906 use
2907
2908 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2909
2910 to avoid further processing if the address has become legitimate.
2911
2912 X will always be the result of a call to `break_out_memory_refs',
2913 and OLDX will be the operand that was given to that function to
2914 produce X.
2915
2916 The code generated by this macro should not alter the
2917 substructure of X. If it transforms X into a more legitimate
2918 form, it should assign X (which will always be a C variable) a
2919 new value.
2920
2921 It is not necessary for this macro to come up with a legitimate
2922 address. The compiler has standard ways of doing so in all
2923 cases. In fact, it is safe for this macro to do nothing. But
2649b2ee 2924 often a machine-dependent strategy can generate better code.
e75b25e7 2925
2649b2ee
MM
2926 For the MIPS, transform:
2927
2928 memory(X + <large int>)
2929
2930 into:
2931
2932 Y = <large int> & ~0x7fff;
2933 Z = X + Y
2934 memory (Z + (<large int> & 0x7fff));
2935
5de1e2ce
JW
2936 This is for CSE to find several similar references, and only use one Z.
2937
2938 When PIC, convert addresses of the form memory (symbol+large int) to
2939 memory (reg+large int). */
7dac2f89 2940
2649b2ee
MM
2941
2942#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2943{ \
2944 register rtx xinsn = (X); \
2945 \
2946 if (TARGET_DEBUG_B_MODE) \
2947 { \
2948 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
2949 GO_DEBUG_RTX (xinsn); \
2950 } \
2951 \
ce57d6f4
JW
2952 if (mips_split_addresses && mips_check_split (X, MODE)) \
2953 { \
2954 /* ??? Is this ever executed? */ \
c5c76735
JL
2955 X = gen_rtx_LO_SUM (Pmode, \
2956 copy_to_mode_reg (Pmode, \
2957 gen_rtx (HIGH, Pmode, X)), \
2958 X); \
ce57d6f4
JW
2959 goto WIN; \
2960 } \
2961 \
516a2dfd
JW
2962 if (GET_CODE (xinsn) == CONST \
2963 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
2964 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
a53f72db
GRK
2965 || (mips_abi != ABI_32 \
2966 && mips_abi != ABI_O64 \
2967 && mips_abi != ABI_EABI))) \
516a2dfd
JW
2968 { \
2969 rtx ptr_reg = gen_reg_rtx (Pmode); \
2970 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
2971 \
2972 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
2973 \
c5c76735 2974 X = gen_rtx_PLUS (Pmode, ptr_reg, constant); \
516a2dfd
JW
2975 if (SMALL_INT (constant)) \
2976 goto WIN; \
2977 /* Otherwise we fall through so the code below will fix the \
2978 constant. */ \
2979 xinsn = X; \
2980 } \
2981 \
b3de0f1f 2982 if (GET_CODE (xinsn) == PLUS) \
2649b2ee
MM
2983 { \
2984 register rtx xplus0 = XEXP (xinsn, 0); \
2985 register rtx xplus1 = XEXP (xinsn, 1); \
2986 register enum rtx_code code0 = GET_CODE (xplus0); \
2987 register enum rtx_code code1 = GET_CODE (xplus1); \
2988 \
2989 if (code0 != REG && code1 == REG) \
2990 { \
2991 xplus0 = XEXP (xinsn, 1); \
2992 xplus1 = XEXP (xinsn, 0); \
2993 code0 = GET_CODE (xplus0); \
2994 code1 = GET_CODE (xplus1); \
2995 } \
2996 \
2bcb2ab3 2997 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
2649b2ee
MM
2998 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
2999 { \
3000 rtx int_reg = gen_reg_rtx (Pmode); \
3001 rtx ptr_reg = gen_reg_rtx (Pmode); \
3002 \
3003 emit_move_insn (int_reg, \
3004 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
3005 \
c5c76735
JL
3006 emit_insn (gen_rtx_SET (VOIDmode, \
3007 ptr_reg, \
3008 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
2649b2ee 3009 \
8da665d5 3010 X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
2649b2ee
MM
3011 goto WIN; \
3012 } \
3013 } \
3014 \
3015 if (TARGET_DEBUG_B_MODE) \
3016 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
3017}
e75b25e7
MM
3018
3019
3020/* A C statement or compound statement with a conditional `goto
3021 LABEL;' executed if memory address X (an RTX) can have different
3022 meanings depending on the machine mode of the memory reference it
3023 is used for.
3024
3025 Autoincrement and autodecrement addresses typically have
3026 mode-dependent effects because the amount of the increment or
3027 decrement is the size of the operand being addressed. Some
3028 machines have other mode-dependent addresses. Many RISC machines
3029 have no mode-dependent addresses.
3030
3031 You may assume that ADDR is a valid address for the machine. */
3032
3033#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
3034
3035
3036/* Define this macro if references to a symbol must be treated
3037 differently depending on something about the variable or
3038 function named by the symbol (such as what section it is in).
3039
3040 The macro definition, if any, is executed immediately after the
7dac2f89 3041 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
e75b25e7
MM
3042 The value of the rtl will be a `mem' whose address is a
3043 `symbol_ref'.
3044
3045 The usual thing for this macro to do is to a flag in the
3046 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
3047 name string in the `symbol_ref' (if one bit is not enough
3048 information).
3049
3050 The best way to modify the name string is by adding text to the
7dac2f89 3051 beginning, with suitable punctuation to prevent any ambiguity.
e75b25e7
MM
3052 Allocate the new name in `saveable_obstack'. You will have to
3053 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
3054 and output the name accordingly.
3055
3056 You can also check the information stored in the `symbol_ref' in
3057 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
2bcb2ab3
GK
3058 `PRINT_OPERAND_ADDRESS'.
3059
3060 When optimizing for the $gp pointer, SYMBOL_REF_FLAG is set for all
3061 small objects.
3062
3063 When generating embedded PIC code, SYMBOL_REF_FLAG is set for
3064 symbols which are not in the .text section.
3065
3066 When generating mips16 code, SYMBOL_REF_FLAG is set for string
3067 constants which are put in the .text section. We also record the
3068 total length of all such strings; this total is used to decide
3069 whether we need to split the constant table, and need not be
7dac2f89 3070 precisely correct.
a9e3e611
GRK
3071
3072 When not mips16 code nor embedded PIC, if a symbol is in a
3073 gp addresable section, SYMBOL_REF_FLAG is set prevent gcc from
3074 splitting the reference so that gas can generate a gp relative
3075 reference.
5f680ab6
DD
3076
3077 When TARGET_EMBEDDED_DATA is set, we assume that all const
3078 variables will be stored in ROM, which is too far from %gp to use
3079 %gprel addressing. Note that (1) we include "extern const"
3080 variables in this, which mips_select_section doesn't, and (2) we
3081 can't always tell if they're really const (they might be const C++
3082 objects with non-const constructors), so we err on the side of
3083 caution and won't use %gprel anyway (otherwise we'd have to defer
3084 this decision to the linker/loader). The handling of extern consts
3085 is why the DECL_INITIAL macros differ from mips_select_section.
3086
3087 If you are changing this macro, you should look at
3088 mips_select_section and see if it needs a similar change. */
e75b25e7
MM
3089
3090#define ENCODE_SECTION_INFO(DECL) \
3091do \
3092 { \
2bcb2ab3
GK
3093 if (TARGET_MIPS16) \
3094 { \
3095 if (TREE_CODE (DECL) == STRING_CST \
52ecdfda
JW
3096 && ! flag_writable_strings \
3097 /* If this string is from a function, and the function will \
3098 go in a gnu linkonce section, then we can't directly \
3099 access the string. This gets an assembler error \
3100 "unsupported PC relative reference to different section".\
3101 If we modify SELECT_SECTION to put it in function_section\
3102 instead of text_section, it still fails because \
3103 DECL_SECTION_NAME isn't set until assemble_start_function.\
3104 If we fix that, it still fails because strings are shared\
3105 among multiple functions, and we have cross section \
3106 references again. We force it to work by putting string \
3107 addresses in the constant pool and indirecting. */ \
3108 && (! current_function_decl \
7c262518 3109 || ! DECL_ONE_ONLY (current_function_decl))) \
2bcb2ab3
GK
3110 { \
3111 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
3112 mips_string_length += TREE_STRING_LENGTH (DECL); \
3113 } \
3114 } \
5f680ab6
DD
3115 \
3116 if (TARGET_EMBEDDED_DATA \
3117 && (TREE_CODE (DECL) == VAR_DECL \
3118 && TREE_READONLY (DECL) && !TREE_SIDE_EFFECTS (DECL)) \
3119 && (!DECL_INITIAL (DECL) \
3120 || TREE_CONSTANT (DECL_INITIAL (DECL)))) \
3121 { \
3122 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
3123 } \
3124 \
3125 else if (TARGET_EMBEDDED_PIC) \
92544bdf
ILT
3126 { \
3127 if (TREE_CODE (DECL) == VAR_DECL) \
3128 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3129 else if (TREE_CODE (DECL) == FUNCTION_DECL) \
3130 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
3131 else if (TREE_CODE (DECL) == STRING_CST \
3132 && ! flag_writable_strings) \
3133 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
3134 else \
3135 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
3136 } \
3137 \
a9e3e611
GRK
3138 else if (TREE_CODE (DECL) == VAR_DECL \
3139 && DECL_SECTION_NAME (DECL) != NULL_TREE \
3140 && (0 == strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (DECL)), \
3141 ".sdata") \
3142 || 0 == strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (DECL)),\
3143 ".sbss"))) \
3144 { \
3145 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3146 } \
3147 \
13b6b42c
JL
3148 /* We can not perform GP optimizations on variables which are in \
3149 specific sections, except for .sdata and .sbss which are \
3150 handled above. */ \
3151 else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL \
3152 && DECL_SECTION_NAME (DECL) == NULL_TREE) \
e75b25e7
MM
3153 { \
3154 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
3155 \
3156 if (size > 0 && size <= mips_section_threshold) \
3157 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3158 } \
3159 \
31c714e3 3160 else if (HALF_PIC_P ()) \
6e92f4b6
KG
3161 { \
3162 HALF_PIC_ENCODE (DECL); \
3163 } \
e75b25e7
MM
3164 } \
3165while (0)
3166
9c9e7632
GK
3167/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
3168 'the start of the function that this code is output in'. */
3169
3170#define ASM_OUTPUT_LABELREF(FILE,NAME) \
3171 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
3172 asm_fprintf ((FILE), "%U%s", \
3173 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
3174 else \
3175 asm_fprintf ((FILE), "%U%s", (NAME))
3176
2bcb2ab3
GK
3177/* The mips16 wants the constant pool to be after the function,
3178 because the PC relative load instructions use unsigned offsets. */
3179
3180#define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)
3181
3182#define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE) \
3183 mips_string_length = 0;
3184
3185#if 0
3186/* In mips16 mode, put most string constants after the function. */
3187#define CONSTANT_AFTER_FUNCTION_P(tree) \
3188 (TARGET_MIPS16 && mips16_constant_after_function_p (tree))
3189#endif
e75b25e7
MM
3190\f
3191/* Specify the machine mode that this machine uses
2bcb2ab3
GK
3192 for the index in the tablejump instruction.
3193 ??? Using HImode in mips16 mode can cause overflow. However, the
3194 overflow is no more likely than the overflow in a branch
3195 instruction. Large functions can currently break in both ways. */
3196#define CASE_VECTOR_MODE \
1eeed24e 3197 (TARGET_MIPS16 ? HImode : Pmode == DImode ? DImode : SImode)
2bcb2ab3
GK
3198
3199/* Define as C expression which evaluates to nonzero if the tablejump
3200 instruction expects the table to contain offsets from the address of the
3201 table.
3202 Do not define this if the table should contain absolute addresses. */
3203#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
e75b25e7
MM
3204
3205/* Specify the tree operation to be used to convert reals to integers. */
3206#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
3207
3208/* This is the kind of divide that is easiest to do in the general case. */
3209#define EASY_DIV_EXPR TRUNC_DIV_EXPR
3210
3211/* Define this as 1 if `char' should by default be signed; else as 0. */
6639753e 3212#ifndef DEFAULT_SIGNED_CHAR
e75b25e7 3213#define DEFAULT_SIGNED_CHAR 1
6639753e 3214#endif
e75b25e7
MM
3215
3216/* Max number of bytes we can move from memory to memory
3217 in one reasonably fast instruction. */
876c09d3
JW
3218#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
3219#define MAX_MOVE_MAX 8
e75b25e7
MM
3220
3221/* Define this macro as a C expression which is nonzero if
3222 accessing less than a word of memory (i.e. a `char' or a
3223 `short') is no faster than accessing a word of memory, i.e., if
3224 such access require more than one instruction or if there is no
3225 difference in cost between byte and (aligned) word loads.
3226
3227 On RISC machines, it tends to generate better code to define
3228 this as 1, since it avoids making a QI or HI mode register. */
3229#define SLOW_BYTE_ACCESS 1
3230
3231/* We assume that the store-condition-codes instructions store 0 for false
3232 and some other value for true. This is the value stored for true. */
3233
3234#define STORE_FLAG_VALUE 1
3235
3236/* Define this if zero-extension is slow (more than one real instruction). */
3237#define SLOW_ZERO_EXTEND
3238
d969caf8
RK
3239/* Define this to be nonzero if shift instructions ignore all but the low-order
3240 few bits. */
3241#define SHIFT_COUNT_TRUNCATED 1
e75b25e7
MM
3242
3243/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3244 is done just by pretending it is already truncated. */
876c09d3
JW
3245/* In 64 bit mode, 32 bit instructions require that register values be properly
3246 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
3247 converts a value >32 bits to a value <32 bits. */
3248/* ??? This results in inefficient code for 64 bit to 32 conversions.
3249 Something needs to be done about this. Perhaps not use any 32 bit
3250 instructions? Perhaps use PROMOTE_MODE? */
3251#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
3252 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
e75b25e7 3253
e75b25e7
MM
3254/* Specify the machine mode that pointers have.
3255 After generation of rtl, the compiler makes no further distinction
fb1bf66d
GRK
3256 between pointers and any other objects of this machine mode.
3257
3258 For MIPS we make pointers are the smaller of longs and gp-registers. */
876c09d3 3259
1eeed24e 3260#ifndef Pmode
8ca47902 3261#define Pmode ((TARGET_LONG64 && TARGET_64BIT) ? DImode : SImode)
1eeed24e 3262#endif
e75b25e7
MM
3263
3264/* A function address in a call instruction
3265 is a word address (for indexing purposes)
3266 so give the MEM rtx a words's mode. */
3267
1eeed24e 3268#define FUNCTION_MODE (Pmode == DImode ? DImode : SImode)
e75b25e7
MM
3269
3270/* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
3271 memset, instead of the BSD functions bcopy and bzero. */
3272
3273#if defined(MIPS_SYSV) || defined(OSF_OS)
3274#define TARGET_MEM_FUNCTIONS
3275#endif
3276
3277\f
3278/* A part of a C `switch' statement that describes the relative
3279 costs of constant RTL expressions. It must contain `case'
3280 labels for expression codes `const_int', `const', `symbol_ref',
3281 `label_ref' and `const_double'. Each case must ultimately reach
3282 a `return' statement to return the relative cost of the use of
3283 that kind of constant value in an expression. The cost may
3284 depend on the precise value of the constant, which is available
3285 for examination in X.
3286
3287 CODE is the expression code--redundant, since it can be obtained
3288 with `GET_CODE (X)'. */
3289
def9623c 3290#define CONST_COSTS(X,CODE,OUTER_CODE) \
e75b25e7 3291 case CONST_INT: \
2bcb2ab3
GK
3292 if (! TARGET_MIPS16) \
3293 { \
3294 /* Always return 0, since we don't have different sized \
3295 instructions, hence different costs according to Richard \
3296 Kenner */ \
3297 return 0; \
3298 } \
3299 if ((OUTER_CODE) == SET) \
3300 { \
3301 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3302 return 0; \
3303 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3304 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3305 return COSTS_N_INSNS (1); \
3306 else \
3307 return COSTS_N_INSNS (2); \
3308 } \
3309 /* A PLUS could be an address. We don't want to force an address \
3310 to use a register, so accept any signed 16 bit value without \
3311 complaint. */ \
3312 if ((OUTER_CODE) == PLUS \
3313 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3314 return 0; \
3315 /* A number between 1 and 8 inclusive is efficient for a shift. \
3316 Otherwise, we will need an extended instruction. */ \
3317 if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT \
3318 || (OUTER_CODE) == LSHIFTRT) \
3319 { \
3320 if (INTVAL (X) >= 1 && INTVAL (X) <= 8) \
3321 return 0; \
3322 return COSTS_N_INSNS (1); \
3323 } \
3324 /* We can use cmpi for an xor with an unsigned 16 bit value. */ \
3325 if ((OUTER_CODE) == XOR \
3326 && INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3327 return 0; \
3328 /* We may be able to use slt or sltu for a comparison with a \
3329 signed 16 bit value. (The boundary conditions aren't quite \
3330 right, but this is just a heuristic anyhow.) */ \
3331 if (((OUTER_CODE) == LT || (OUTER_CODE) == LE \
3332 || (OUTER_CODE) == GE || (OUTER_CODE) == GT \
3333 || (OUTER_CODE) == LTU || (OUTER_CODE) == LEU \
3334 || (OUTER_CODE) == GEU || (OUTER_CODE) == GTU) \
3335 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3336 return 0; \
3337 /* Equality comparisons with 0 are cheap. */ \
3338 if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE) \
3339 && INTVAL (X) == 0) \
3340 return 0; \
3341 \
3342 /* Otherwise, work out the cost to load the value into a \
3343 register. */ \
3344 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3345 return COSTS_N_INSNS (1); \
3346 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3347 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3348 return COSTS_N_INSNS (2); \
3349 else \
3350 return COSTS_N_INSNS (3); \
e75b25e7
MM
3351 \
3352 case LABEL_REF: \
3353 return COSTS_N_INSNS (2); \
3354 \
3355 case CONST: \
3356 { \
31c714e3 3357 rtx offset = const0_rtx; \
876c09d3 3358 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
e75b25e7 3359 \
2bcb2ab3
GK
3360 if (TARGET_MIPS16 && mips16_gp_offset_p (X)) \
3361 { \
3362 /* Treat this like a signed 16 bit CONST_INT. */ \
3363 if ((OUTER_CODE) == PLUS) \
3364 return 0; \
3365 else if ((OUTER_CODE) == SET) \
3366 return COSTS_N_INSNS (1); \
3367 else \
3368 return COSTS_N_INSNS (2); \
3369 } \
3370 \
e75b25e7
MM
3371 if (GET_CODE (symref) == LABEL_REF) \
3372 return COSTS_N_INSNS (2); \
3373 \
3374 if (GET_CODE (symref) != SYMBOL_REF) \
3375 return COSTS_N_INSNS (4); \
3376 \
3377 /* let's be paranoid.... */ \
31c714e3 3378 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
e75b25e7
MM
3379 return COSTS_N_INSNS (2); \
3380 \
3381 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
3382 } \
3383 \
3384 case SYMBOL_REF: \
3385 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
3386 \
3387 case CONST_DOUBLE: \
96abdcb1
ILT
3388 { \
3389 rtx high, low; \
2bcb2ab3
GK
3390 if (TARGET_MIPS16) \
3391 return COSTS_N_INSNS (4); \
96abdcb1
ILT
3392 split_double (X, &high, &low); \
3393 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
3394 || low == CONST0_RTX (GET_MODE (low))) \
3395 ? 2 : 4); \
3396 }
e75b25e7
MM
3397
3398/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
3399 This can be used, for example, to indicate how costly a multiply
3400 instruction is. In writing this macro, you can use the construct
3401 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
3402
3403 This macro is optional; do not define it if the default cost
3404 assumptions are adequate for the target machine.
3405
3406 If -mdebugd is used, change the multiply cost to 2, so multiply by
3407 a constant isn't converted to a series of shifts. This helps
3408 strength reduction, and also makes it easier to identify what the
3409 compiler is doing. */
3410
516a2dfd 3411/* ??? Fix this to be right for the R8000. */
def9623c 3412#define RTX_COSTS(X,CODE,OUTER_CODE) \
e75b25e7
MM
3413 case MEM: \
3414 { \
3415 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
3416 if (simple_memory_operand (X, GET_MODE (X))) \
3417 return COSTS_N_INSNS (num_words); \
3418 \
3419 return COSTS_N_INSNS (2*num_words); \
3420 } \
3421 \
3422 case FFS: \
3423 return COSTS_N_INSNS (6); \
3424 \
3425 case NOT: \
876c09d3 3426 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
e75b25e7
MM
3427 \
3428 case AND: \
3429 case IOR: \
3430 case XOR: \
876c09d3 3431 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
e75b25e7
MM
3432 return COSTS_N_INSNS (2); \
3433 \
2bcb2ab3 3434 break; \
e75b25e7
MM
3435 \
3436 case ASHIFT: \
3437 case ASHIFTRT: \
e75b25e7 3438 case LSHIFTRT: \
876c09d3
JW
3439 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3440 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
e75b25e7 3441 \
2bcb2ab3 3442 break; \
e75b25e7
MM
3443 \
3444 case ABS: \
3445 { \
3446 enum machine_mode xmode = GET_MODE (X); \
3447 if (xmode == SFmode || xmode == DFmode) \
3448 return COSTS_N_INSNS (1); \
3449 \
3450 return COSTS_N_INSNS (4); \
3451 } \
3452 \
3453 case PLUS: \
3454 case MINUS: \
3455 { \
3456 enum machine_mode xmode = GET_MODE (X); \
3457 if (xmode == SFmode || xmode == DFmode) \
9a863c83 3458 { \
7dac2f89
EC
3459 if (TUNE_MIPS3000 \
3460 || TUNE_MIPS3900) \
9a863c83 3461 return COSTS_N_INSNS (2); \
7dac2f89 3462 else if (TUNE_MIPS6000) \
9a863c83
JW
3463 return COSTS_N_INSNS (3); \
3464 else \
3465 return COSTS_N_INSNS (6); \
3466 } \
e75b25e7 3467 \
876c09d3 3468 if (xmode == DImode && !TARGET_64BIT) \
e75b25e7
MM
3469 return COSTS_N_INSNS (4); \
3470 \
2bcb2ab3 3471 break; \
e75b25e7
MM
3472 } \
3473 \
3474 case NEG: \
2bcb2ab3
GK
3475 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3476 return 4; \
3477 \
3478 break; \
e75b25e7
MM
3479 \
3480 case MULT: \
3481 { \
3482 enum machine_mode xmode = GET_MODE (X); \
3483 if (xmode == SFmode) \
9a863c83 3484 { \
7dac2f89
EC
3485 if (TUNE_MIPS3000 \
3486 || TUNE_MIPS3900 \
3487 || TUNE_MIPS5000) \
9a863c83 3488 return COSTS_N_INSNS (4); \
7dac2f89 3489 else if (TUNE_MIPS6000) \
9a863c83
JW
3490 return COSTS_N_INSNS (5); \
3491 else \
3492 return COSTS_N_INSNS (7); \
3493 } \
e75b25e7
MM
3494 \
3495 if (xmode == DFmode) \
9a863c83 3496 { \
7dac2f89
EC
3497 if (TUNE_MIPS3000 \
3498 || TUNE_MIPS3900 \
3499 || TUNE_MIPS5000) \
9a863c83 3500 return COSTS_N_INSNS (5); \
7dac2f89 3501 else if (TUNE_MIPS6000) \
9a863c83
JW
3502 return COSTS_N_INSNS (6); \
3503 else \
3504 return COSTS_N_INSNS (8); \
3505 } \
e75b25e7 3506 \
7dac2f89 3507 if (TUNE_MIPS3000) \
9a863c83 3508 return COSTS_N_INSNS (12); \
7dac2f89 3509 else if (TUNE_MIPS3900) \
e9a25f70 3510 return COSTS_N_INSNS (2); \
7dac2f89 3511 else if (TUNE_MIPS6000) \
9a863c83 3512 return COSTS_N_INSNS (17); \
7dac2f89 3513 else if (TUNE_MIPS5000) \
b8eb88d0 3514 return COSTS_N_INSNS (5); \
9a863c83
JW
3515 else \
3516 return COSTS_N_INSNS (10); \
e75b25e7
MM
3517 } \
3518 \
3519 case DIV: \
3520 case MOD: \
3521 { \
3522 enum machine_mode xmode = GET_MODE (X); \
3523 if (xmode == SFmode) \
9a863c83 3524 { \
7dac2f89
EC
3525 if (TUNE_MIPS3000 \
3526 || TUNE_MIPS3900) \
9a863c83 3527 return COSTS_N_INSNS (12); \
7dac2f89 3528 else if (TUNE_MIPS6000) \
9a863c83
JW
3529 return COSTS_N_INSNS (15); \
3530 else \
3531 return COSTS_N_INSNS (23); \
3532 } \
e75b25e7
MM
3533 \
3534 if (xmode == DFmode) \
9a863c83 3535 { \
7dac2f89
EC
3536 if (TUNE_MIPS3000 \
3537 || TUNE_MIPS3900) \
9a863c83 3538 return COSTS_N_INSNS (19); \
7dac2f89 3539 else if (TUNE_MIPS6000) \
9a863c83
JW
3540 return COSTS_N_INSNS (16); \
3541 else \
3542 return COSTS_N_INSNS (36); \
3543 } \
e75b25e7
MM
3544 } \
3545 /* fall through */ \
3546 \
3547 case UDIV: \
3548 case UMOD: \
7dac2f89
EC
3549 if (TUNE_MIPS3000 \
3550 || TUNE_MIPS3900) \
9a863c83 3551 return COSTS_N_INSNS (35); \
7dac2f89 3552 else if (TUNE_MIPS6000) \
9a863c83 3553 return COSTS_N_INSNS (38); \
7dac2f89 3554 else if (TUNE_MIPS5000) \
b8eb88d0 3555 return COSTS_N_INSNS (36); \
9a863c83 3556 else \
1a4fa807
ILT
3557 return COSTS_N_INSNS (69); \
3558 \
3559 case SIGN_EXTEND: \
3560 /* A sign extend from SImode to DImode in 64 bit mode is often \
3561 zero instructions, because the result can often be used \
3562 directly by another instruction; we'll call it one. */ \
3563 if (TARGET_64BIT && GET_MODE (X) == DImode \
3564 && GET_MODE (XEXP (X, 0)) == SImode) \
3565 return COSTS_N_INSNS (1); \
3566 else \
3567 return COSTS_N_INSNS (2); \
3568 \
3569 case ZERO_EXTEND: \
3570 if (TARGET_64BIT && GET_MODE (X) == DImode \
3571 && GET_MODE (XEXP (X, 0)) == SImode) \
3572 return COSTS_N_INSNS (2); \
3573 else \
3574 return COSTS_N_INSNS (1);
e75b25e7
MM
3575
3576/* An expression giving the cost of an addressing mode that
3577 contains ADDRESS. If not defined, the cost is computed from the
3578 form of the ADDRESS expression and the `CONST_COSTS' values.
3579
3580 For most CISC machines, the default cost is a good approximation
3581 of the true cost of the addressing mode. However, on RISC
3582 machines, all instructions normally have the same length and
3583 execution time. Hence all addresses will have equal costs.
3584
3585 In cases where more than one form of an address is known, the
3586 form with the lowest cost will be used. If multiple forms have
3587 the same, lowest, cost, the one that is the most complex will be
3588 used.
3589
3590 For example, suppose an address that is equal to the sum of a
7dac2f89 3591 register and a constant is used twice in the same basic block.
e75b25e7
MM
3592 When this macro is not defined, the address will be computed in
3593 a register and memory references will be indirect through that
3594 register. On machines where the cost of the addressing mode
3595 containing the sum is no higher than that of a simple indirect
3596 reference, this will produce an additional instruction and
3597 possibly require an additional register. Proper specification
3598 of this macro eliminates this overhead for such machines.
3599
3600 Similar use of this macro is made in strength reduction of loops.
3601
3602 ADDRESS need not be valid as an address. In such a case, the
3603 cost is not relevant and can be any value; invalid addresses
3604 need not be assigned a different cost.
3605
3606 On machines where an address involving more than one register is
3607 as cheap as an address computation involving only one register,
3608 defining `ADDRESS_COST' to reflect this can cause two registers
3609 to be live over a region of code where only one would have been
3610 if `ADDRESS_COST' were not defined in that manner. This effect
7dac2f89 3611 should be considered in the definition of this macro.
e75b25e7
MM
3612 Equivalent costs should probably only be given to addresses with
3613 different numbers of registers on machines with lots of registers.
3614
3615 This macro will normally either not be defined or be defined as
3616 a constant. */
3617
3618#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3619
3620/* A C expression for the cost of moving data from a register in
3621 class FROM to one in class TO. The classes are expressed using
3622 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3623 the default; other values are interpreted relative to that.
3624
3625 It is not required that the cost always equal 2 when FROM is the
3626 same as TO; on some machines it is expensive to move between
3627 registers if they are not general registers.
3628
3629 If reload sees an insn consisting of a single `set' between two
3630 hard registers, and if `REGISTER_MOVE_COST' applied to their
3631 classes returns a value of 2, reload does not check to ensure
3632 that the constraints of the insn are met. Setting a cost of
3633 other than 2 will allow reload to verify that the constraints are
3634 met. You should do this if the `movM' pattern's constraints do
56dc4d15
JW
3635 not allow such copying.
3636
3637 ??? We make make the cost of moving from HI/LO/HILO/MD into general
3638 registers the same as for one of moving general registers to
3639 HI/LO/HILO/MD for TARGET_MIPS16 in order to prevent allocating a
3640 pseudo to HI/LO/HILO/MD. This might hurt optimizations though, it
3641 isn't clear if it is wise. And it might not work in all cases. We
3642 could solve the DImode LO reg problem by using a multiply, just like
3643 reload_{in,out}si. We could solve the SImode/HImode HI reg problem
3644 by using divide instructions. divu puts the remainder in the HI
3645 reg, so doing a divide by -1 will move the value in the HI reg for
3646 all values except -1. We could handle that case by using a signed
3647 divide, e.g. -1 / 2 (or maybe 1 / -2?). We'd have to emit a
3648 compare/branch to test the input value to see which instruction we
3649 need to use. This gets pretty messy, but it is feasible. */
e75b25e7 3650
cf011243 3651#define REGISTER_MOVE_COST(MODE, FROM, TO) \
2bcb2ab3
GK
3652 ((FROM) == M16_REGS && GR_REG_CLASS_P (TO) ? 2 \
3653 : (FROM) == M16_NA_REGS && GR_REG_CLASS_P (TO) ? 2 \
3654 : GR_REG_CLASS_P (FROM) && (TO) == M16_REGS ? 2 \
3655 : GR_REG_CLASS_P (FROM) && (TO) == M16_NA_REGS ? 2 \
3656 : GR_REG_CLASS_P (FROM) && GR_REG_CLASS_P (TO) ? (TARGET_MIPS16 ? 4 : 2) \
9a863c83 3657 : (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
2bcb2ab3
GK
3658 : GR_REG_CLASS_P (FROM) && (TO) == FP_REGS ? 4 \
3659 : (FROM) == FP_REGS && GR_REG_CLASS_P (TO) ? 4 \
225b8835
ILT
3660 : (((FROM) == HI_REG || (FROM) == LO_REG \
3661 || (FROM) == MD_REGS || (FROM) == HILO_REG) \
56dc4d15 3662 && GR_REG_CLASS_P (TO)) ? (TARGET_MIPS16 ? 12 : 6) \
225b8835 3663 : (((TO) == HI_REG || (TO) == LO_REG \
2bcb2ab3
GK
3664 || (TO) == MD_REGS || (TO) == HILO_REG) \
3665 && GR_REG_CLASS_P (FROM)) ? (TARGET_MIPS16 ? 12 : 6) \
3666 : (FROM) == ST_REGS && GR_REG_CLASS_P (TO) ? 4 \
b8eb88d0 3667 : (FROM) == FP_REGS && (TO) == ST_REGS ? 8 \
46299de9 3668 : 12)
e75b25e7 3669
516a2dfd 3670/* ??? Fix this to be right for the R8000. */
cbd5b9a2 3671#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
7dac2f89 3672 (((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
cbd5b9a2 3673 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
876c09d3 3674
7506f491
DE
3675/* Define if copies to/from condition code registers should be avoided.
3676
3677 This is needed for the MIPS because reload_outcc is not complete;
3678 it needs to handle cases where the source is a general or another
3679 condition code register. */
3680#define AVOID_CCMODE_COPIES
3681
e75b25e7
MM
3682/* A C expression for the cost of a branch instruction. A value of
3683 1 is the default; other values are interpreted relative to that. */
3684
516a2dfd 3685/* ??? Fix this to be right for the R8000. */
2bcb2ab3
GK
3686#define BRANCH_COST \
3687 ((! TARGET_MIPS16 \
7dac2f89 3688 && (TUNE_MIPS4000 || TUNE_MIPS6000)) \
2bcb2ab3 3689 ? 2 : 1)
e75b25e7 3690
9a863c83
JW
3691/* A C statement (sans semicolon) to update the integer variable COST
3692 based on the relationship between INSN that is dependent on
3693 DEP_INSN through the dependence LINK. The default is to make no
3694 adjustment to COST. On the MIPS, ignore the cost of anti- and
3695 output-dependencies. */
e75b25e7 3696
9a863c83
JW
3697#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
3698 if (REG_NOTE_KIND (LINK) != 0) \
3699 (COST) = 0; /* Anti or output dependence. */
0ff83799
MM
3700
3701/* If defined, modifies the length assigned to instruction INSN as a
3702 function of the context in which it is used. LENGTH is an lvalue
3703 that contains the initially computed length of the insn and should
3704 be updated with the correct length of the insn. */
3705#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
3706 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
3707
e75b25e7
MM
3708\f
3709/* Optionally define this if you have added predicates to
3710 `MACHINE.c'. This macro is called within an initializer of an
3711 array of structures. The first field in the structure is the
31c714e3 3712 name of a predicate and the second field is an array of rtl
e75b25e7
MM
3713 codes. For each predicate, list all rtl codes that can be in
3714 expressions matched by the predicate. The list should have a
3715 trailing comma. Here is an example of two entries in the list
3716 for a typical RISC machine:
3717
3718 #define PREDICATE_CODES \
3719 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3720 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3721
3722 Defining this macro does not affect the generated code (however,
3723 incorrect definitions that omit an rtl code that may be matched
7dac2f89 3724 by the predicate can cause the compiler to malfunction).
e75b25e7
MM
3725 Instead, it allows the table built by `genrecog' to be more
3726 compact and efficient, thus speeding up the compiler. The most
3727 important predicates to include in the list specified by this
3728 macro are thoses used in the most insn patterns. */
3729
3730#define PREDICATE_CODES \
3731 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3732 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3733 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
def72bd2
GRK
3734 {"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3735 {"true_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
e75b25e7
MM
3736 {"small_int", { CONST_INT }}, \
3737 {"large_int", { CONST_INT }}, \
e75b25e7 3738 {"mips_const_double_ok", { CONST_DOUBLE }}, \
b8eb88d0 3739 {"const_float_1_operand", { CONST_DOUBLE }}, \
e75b25e7 3740 {"simple_memory_operand", { MEM, SUBREG }}, \
e75b25e7
MM
3741 {"equality_op", { EQ, NE }}, \
3742 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3743 LTU, LEU }}, \
a0b6cdee 3744 {"trap_cmp_op", { EQ, NE, GE, GEU, LT, LTU }}, \
f8634644 3745 {"pc_or_label_operand", { PC, LABEL_REF }}, \
ce57d6f4
JW
3746 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3747 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3748 SYMBOL_REF, LABEL_REF, SUBREG, \
3749 REG, MEM}}, \
1908a152
ILT
3750 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3751 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3752 MEM, SIGN_EXTEND }}, \
3753 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
def72bd2 3754 {"se_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG, \
1908a152
ILT
3755 SIGN_EXTEND }}, \
3756 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3757 SIGN_EXTEND }}, \
3758 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3759 SIGN_EXTEND }}, \
3760 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3761 SYMBOL_REF, LABEL_REF, SUBREG, \
3762 REG, SIGN_EXTEND }}, \
2bcb2ab3
GK
3763 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }}, \
3764 {"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
cb923660
KR
3765 CONST_DOUBLE, CONST }}, \
3766 {"extend_operator", { SIGN_EXTEND, ZERO_EXTEND }}, \
3767 {"highpart_shift_operator", { ASHIFTRT, LSHIFTRT, ROTATERT, ROTATE }},
3768
0e7e9155
RH
3769/* A list of predicates that do special things with modes, and so
3770 should not elicit warnings for VOIDmode match_operand. */
3771
3772#define SPECIAL_MODE_PREDICATES \
3773 "pc_or_label_operand",
e75b25e7
MM
3774
3775\f
3776/* If defined, a C statement to be executed just prior to the
3777 output of assembler code for INSN, to modify the extracted
3778 operands so they will be output differently.
3779
3780 Here the argument OPVEC is the vector containing the operands
3781 extracted from INSN, and NOPERANDS is the number of elements of
3782 the vector which contain meaningful data for this insn. The
3783 contents of this vector are what will be used to convert the
3784 insn template into assembler code, so you can change the
3785 assembler output by changing the contents of the vector.
3786
3787 We use it to check if the current insn needs a nop in front of it
3788 because of load delays, and also to update the delay slot
3789 statistics. */
3790
3791#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
65437fe8 3792 final_prescan_insn (INSN, OPVEC, NOPERANDS)
e75b25e7 3793
e75b25e7
MM
3794\f
3795/* Control the assembler format that we output. */
3796
3797/* Output at beginning of assembler file.
3798 If we are optimizing to use the global pointer, create a temporary
3799 file to hold all of the text stuff, and write it out to the end.
3800 This is needed because the MIPS assembler is evidently one pass,
3801 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3802 declaration when the code is processed, it generates a two
3803 instruction sequence. */
3804
44404b8b 3805#undef ASM_FILE_START
e75b25e7
MM
3806#define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3807
3808/* Output to assembler file text saying following lines
3809 may contain character constants, extra white space, comments, etc. */
3810
b2bcb32d 3811#ifndef ASM_APP_ON
e75b25e7 3812#define ASM_APP_ON " #APP\n"
b2bcb32d 3813#endif
e75b25e7
MM
3814
3815/* Output to assembler file text saying following lines
3816 no longer contain unusual constructs. */
3817
b2bcb32d 3818#ifndef ASM_APP_OFF
e75b25e7 3819#define ASM_APP_OFF " #NO_APP\n"
b2bcb32d 3820#endif
e75b25e7
MM
3821
3822/* How to refer to registers in assembler output.
3823 This sequence is indexed by compiler's hard-register-number (see above).
3824
3825 In order to support the two different conventions for register names,
3826 we use the name of a table set up in mips.c, which is overwritten
3827 if -mrnames is used. */
3828
3829#define REGISTER_NAMES \
3830{ \
3831 &mips_reg_names[ 0][0], \
3832 &mips_reg_names[ 1][0], \
3833 &mips_reg_names[ 2][0], \
3834 &mips_reg_names[ 3][0], \
3835 &mips_reg_names[ 4][0], \
3836 &mips_reg_names[ 5][0], \
3837 &mips_reg_names[ 6][0], \
3838 &mips_reg_names[ 7][0], \
3839 &mips_reg_names[ 8][0], \
3840 &mips_reg_names[ 9][0], \
3841 &mips_reg_names[10][0], \
3842 &mips_reg_names[11][0], \
3843 &mips_reg_names[12][0], \
3844 &mips_reg_names[13][0], \
3845 &mips_reg_names[14][0], \
3846 &mips_reg_names[15][0], \
3847 &mips_reg_names[16][0], \
3848 &mips_reg_names[17][0], \
3849 &mips_reg_names[18][0], \
3850 &mips_reg_names[19][0], \
3851 &mips_reg_names[20][0], \
3852 &mips_reg_names[21][0], \
3853 &mips_reg_names[22][0], \
3854 &mips_reg_names[23][0], \
3855 &mips_reg_names[24][0], \
3856 &mips_reg_names[25][0], \
3857 &mips_reg_names[26][0], \
3858 &mips_reg_names[27][0], \
3859 &mips_reg_names[28][0], \
3860 &mips_reg_names[29][0], \
3861 &mips_reg_names[30][0], \
3862 &mips_reg_names[31][0], \
3863 &mips_reg_names[32][0], \
3864 &mips_reg_names[33][0], \
3865 &mips_reg_names[34][0], \
3866 &mips_reg_names[35][0], \
3867 &mips_reg_names[36][0], \
3868 &mips_reg_names[37][0], \
3869 &mips_reg_names[38][0], \
3870 &mips_reg_names[39][0], \
3871 &mips_reg_names[40][0], \
3872 &mips_reg_names[41][0], \
3873 &mips_reg_names[42][0], \
3874 &mips_reg_names[43][0], \
3875 &mips_reg_names[44][0], \
3876 &mips_reg_names[45][0], \
3877 &mips_reg_names[46][0], \
3878 &mips_reg_names[47][0], \
3879 &mips_reg_names[48][0], \
3880 &mips_reg_names[49][0], \
3881 &mips_reg_names[50][0], \
3882 &mips_reg_names[51][0], \
3883 &mips_reg_names[52][0], \
3884 &mips_reg_names[53][0], \
3885 &mips_reg_names[54][0], \
3886 &mips_reg_names[55][0], \
3887 &mips_reg_names[56][0], \
3888 &mips_reg_names[57][0], \
3889 &mips_reg_names[58][0], \
3890 &mips_reg_names[59][0], \
3891 &mips_reg_names[60][0], \
3892 &mips_reg_names[61][0], \
3893 &mips_reg_names[62][0], \
3894 &mips_reg_names[63][0], \
3895 &mips_reg_names[64][0], \
3896 &mips_reg_names[65][0], \
3897 &mips_reg_names[66][0], \
225b8835 3898 &mips_reg_names[67][0], \
39dffea3 3899 &mips_reg_names[68][0], \
b8eb88d0
ILT
3900 &mips_reg_names[69][0], \
3901 &mips_reg_names[70][0], \
3902 &mips_reg_names[71][0], \
3903 &mips_reg_names[72][0], \
3904 &mips_reg_names[73][0], \
3905 &mips_reg_names[74][0], \
3906 &mips_reg_names[75][0], \
e75b25e7
MM
3907}
3908
46cca58c
RS
3909/* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
3910 So define this for it. */
3911#define DEBUG_REGISTER_NAMES \
3912{ \
3913 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
3914 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
3915 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
3916 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
3917 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
3918 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
3919 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
3920 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
b8eb88d0
ILT
3921 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
3922 "$fcc5","$fcc6","$fcc7","$rap" \
46cca58c
RS
3923}
3924
e75b25e7
MM
3925/* If defined, a C initializer for an array of structures
3926 containing a name and a register number. This macro defines
3927 additional names for hard registers, thus allowing the `asm'
3928 option in declarations to refer to registers using alternate
3929 names.
3930
3931 We define both names for the integer registers here. */
3932
3933#define ADDITIONAL_REGISTER_NAMES \
3934{ \
3935 { "$0", 0 + GP_REG_FIRST }, \
3936 { "$1", 1 + GP_REG_FIRST }, \
3937 { "$2", 2 + GP_REG_FIRST }, \
3938 { "$3", 3 + GP_REG_FIRST }, \
3939 { "$4", 4 + GP_REG_FIRST }, \
3940 { "$5", 5 + GP_REG_FIRST }, \
3941 { "$6", 6 + GP_REG_FIRST }, \
3942 { "$7", 7 + GP_REG_FIRST }, \
3943 { "$8", 8 + GP_REG_FIRST }, \
3944 { "$9", 9 + GP_REG_FIRST }, \
3945 { "$10", 10 + GP_REG_FIRST }, \
3946 { "$11", 11 + GP_REG_FIRST }, \
3947 { "$12", 12 + GP_REG_FIRST }, \
3948 { "$13", 13 + GP_REG_FIRST }, \
3949 { "$14", 14 + GP_REG_FIRST }, \
3950 { "$15", 15 + GP_REG_FIRST }, \
3951 { "$16", 16 + GP_REG_FIRST }, \
3952 { "$17", 17 + GP_REG_FIRST }, \
3953 { "$18", 18 + GP_REG_FIRST }, \
3954 { "$19", 19 + GP_REG_FIRST }, \
3955 { "$20", 20 + GP_REG_FIRST }, \
3956 { "$21", 21 + GP_REG_FIRST }, \
3957 { "$22", 22 + GP_REG_FIRST }, \
3958 { "$23", 23 + GP_REG_FIRST }, \
3959 { "$24", 24 + GP_REG_FIRST }, \
3960 { "$25", 25 + GP_REG_FIRST }, \
3961 { "$26", 26 + GP_REG_FIRST }, \
3962 { "$27", 27 + GP_REG_FIRST }, \
3963 { "$28", 28 + GP_REG_FIRST }, \
3964 { "$29", 29 + GP_REG_FIRST }, \
3965 { "$30", 30 + GP_REG_FIRST }, \
3966 { "$31", 31 + GP_REG_FIRST }, \
3967 { "$sp", 29 + GP_REG_FIRST }, \
3968 { "$fp", 30 + GP_REG_FIRST }, \
3969 { "at", 1 + GP_REG_FIRST }, \
3970 { "v0", 2 + GP_REG_FIRST }, \
3971 { "v1", 3 + GP_REG_FIRST }, \
3972 { "a0", 4 + GP_REG_FIRST }, \
3973 { "a1", 5 + GP_REG_FIRST }, \
3974 { "a2", 6 + GP_REG_FIRST }, \
3975 { "a3", 7 + GP_REG_FIRST }, \
3976 { "t0", 8 + GP_REG_FIRST }, \
3977 { "t1", 9 + GP_REG_FIRST }, \
3978 { "t2", 10 + GP_REG_FIRST }, \
3979 { "t3", 11 + GP_REG_FIRST }, \
3980 { "t4", 12 + GP_REG_FIRST }, \
3981 { "t5", 13 + GP_REG_FIRST }, \
3982 { "t6", 14 + GP_REG_FIRST }, \
3983 { "t7", 15 + GP_REG_FIRST }, \
3984 { "s0", 16 + GP_REG_FIRST }, \
3985 { "s1", 17 + GP_REG_FIRST }, \
3986 { "s2", 18 + GP_REG_FIRST }, \
3987 { "s3", 19 + GP_REG_FIRST }, \
3988 { "s4", 20 + GP_REG_FIRST }, \
3989 { "s5", 21 + GP_REG_FIRST }, \
3990 { "s6", 22 + GP_REG_FIRST }, \
3991 { "s7", 23 + GP_REG_FIRST }, \
3992 { "t8", 24 + GP_REG_FIRST }, \
3993 { "t9", 25 + GP_REG_FIRST }, \
3994 { "k0", 26 + GP_REG_FIRST }, \
3995 { "k1", 27 + GP_REG_FIRST }, \
3996 { "gp", 28 + GP_REG_FIRST }, \
3997 { "sp", 29 + GP_REG_FIRST }, \
3998 { "fp", 30 + GP_REG_FIRST }, \
3999 { "ra", 31 + GP_REG_FIRST }, \
924706a0 4000 { "$sp", 29 + GP_REG_FIRST }, \
b8eb88d0 4001 { "$fp", 30 + GP_REG_FIRST } \
e75b25e7
MM
4002}
4003
e75b25e7
MM
4004/* A C compound statement to output to stdio stream STREAM the
4005 assembler syntax for an instruction operand X. X is an RTL
4006 expression.
4007
4008 CODE is a value that can be used to specify one of several ways
4009 of printing the operand. It is used when identical operands
4010 must be printed differently depending on the context. CODE
4011 comes from the `%' specification that was used to request
4012 printing of the operand. If the specification was just `%DIGIT'
4013 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4014 is the ASCII code for LTR.
4015
4016 If X is a register, this macro should print the register's name.
4017 The names can be found in an array `reg_names' whose type is
4018 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4019
4020 When the machine description has a specification `%PUNCT' (a `%'
4021 followed by a punctuation character), this macro is called with
4022 a null pointer for X and the punctuation character for CODE.
4023
4024 See mips.c for the MIPS specific codes. */
4025
4026#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
4027
4028/* A C expression which evaluates to true if CODE is a valid
4029 punctuation character for use in the `PRINT_OPERAND' macro. If
4030 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
4031 punctuation characters (except for the standard one, `%') are
4032 used in this way. */
4033
4034#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
4035
4036/* A C compound statement to output to stdio stream STREAM the
4037 assembler syntax for an instruction operand that is a memory
4038 reference whose address is ADDR. ADDR is an RTL expression.
4039
4040 On some machines, the syntax for a symbolic address depends on
4041 the section that the address refers to. On these machines,
4042 define the macro `ENCODE_SECTION_INFO' to store the information
4043 into the `symbol_ref', and then check for it here. */
4044
4045#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
4046
4047
4048/* A C statement, to be executed after all slot-filler instructions
4049 have been output. If necessary, call `dbr_sequence_length' to
4050 determine the number of slots filled in a sequence (zero if not
4051 currently outputting a sequence), to decide how many no-ops to
4052 output, or whatever.
4053
4054 Don't define this macro if it has nothing to do, but it is
4055 helpful in reading assembly output if the extent of the delay
4056 sequence is made explicit (e.g. with white space).
4057
4058 Note that output routines for instructions with delay slots must
4059 be prepared to deal with not being output as part of a sequence
4060 (i.e. when the scheduling pass is not run, or when no slot
4061 fillers could be found.) The variable `final_sequence' is null
4062 when not processing a sequence, otherwise it contains the
4063 `sequence' rtx being output. */
4064
4065#define DBR_OUTPUT_SEQEND(STREAM) \
4066do \
4067 { \
4068 if (set_nomacro > 0 && --set_nomacro == 0) \
4069 fputs ("\t.set\tmacro\n", STREAM); \
4070 \
4071 if (set_noreorder > 0 && --set_noreorder == 0) \
4072 fputs ("\t.set\treorder\n", STREAM); \
4073 \
4074 dslots_jump_filled++; \
4075 fputs ("\n", STREAM); \
4076 } \
4077while (0)
4078
4079
4080/* How to tell the debugger about changes of source files. Note, the
4081 mips ECOFF format cannot deal with changes of files inside of
4082 functions, which means the output of parser generators like bison
4083 is generally not debuggable without using the -l switch. Lose,
4084 lose, lose. Silicon graphics seems to want all .file's hardwired
4085 to 1. */
4086
4087#ifndef SET_FILE_NUMBER
4088#define SET_FILE_NUMBER() ++num_source_filenames
4089#endif
4090
4091#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
4092 mips_output_filename (STREAM, NAME)
4093
ddd5a7c1 4094/* This is defined so that it can be overridden in iris6.h. */
516a2dfd
JW
4095#define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
4096do \
4097 { \
4098 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
4099 output_quoted_string (STREAM, NAME); \
4100 fputs ("\n", STREAM); \
4101 } \
4102while (0)
4103
e75b25e7
MM
4104/* This is how to output a note the debugger telling it the line number
4105 to which the following sequence of instructions corresponds.
4106 Silicon graphics puts a label after each .loc. */
4107
4108#ifndef LABEL_AFTER_LOC
4109#define LABEL_AFTER_LOC(STREAM)
4110#endif
4111
b2bcb32d 4112#ifndef ASM_OUTPUT_SOURCE_LINE
e75b25e7
MM
4113#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
4114 mips_output_lineno (STREAM, LINE)
b2bcb32d 4115#endif
e75b25e7 4116
9ec36da5 4117/* The MIPS implementation uses some labels for its own purpose. The
e75b25e7
MM
4118 following lists what labels are created, and are all formed by the
4119 pattern $L[a-z].*. The machine independent portion of GCC creates
4120 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
4121
c5b7917e 4122 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
e75b25e7
MM
4123 $Lb[0-9]+ Begin blocks for MIPS debug support
4124 $Lc[0-9]+ Label for use in s<xx> operation.
4125 $Le[0-9]+ End blocks for MIPS debug support
ab78d4a8 4126 $Lp\..+ Half-pic labels. */
e75b25e7
MM
4127
4128/* This is how to output the definition of a user-level label named NAME,
4129 such as the label on a static function or variable NAME.
4130
4131 If we are optimizing the gp, remember that this label has been put
4132 out, so we know not to emit an .extern for it in mips_asm_file_end.
4133 We use one of the common bits in the IDENTIFIER tree node for this,
4134 since those bits seem to be unused, and we don't have any method
4135 of getting the decl nodes from the name. */
4136
e75b25e7
MM
4137#define ASM_OUTPUT_LABEL(STREAM,NAME) \
4138do { \
4139 assemble_name (STREAM, NAME); \
4140 fputs (":\n", STREAM); \
e75b25e7
MM
4141} while (0)
4142
31c714e3
MM
4143
4144/* A C statement (sans semicolon) to output to the stdio stream
4145 STREAM any text necessary for declaring the name NAME of an
4146 initialized variable which is being defined. This macro must
7dac2f89 4147 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
31c714e3
MM
4148 The argument DECL is the `VAR_DECL' tree node representing the
4149 variable.
4150
4151 If this macro is not defined, then the variable name is defined
4152 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
4153
44404b8b 4154#undef ASM_DECLARE_OBJECT_NAME
31c714e3 4155#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
f3b39eba
MM
4156do \
4157 { \
4158 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
4159 HALF_PIC_DECLARE (NAME); \
4160 } \
4161while (0)
31c714e3 4162
e75b25e7
MM
4163
4164/* This is how to output a command to make the user-level label named NAME
4165 defined for reference from other files. */
4166
e75b25e7
MM
4167#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
4168 do { \
4169 fputs ("\t.globl\t", STREAM); \
4170 assemble_name (STREAM, NAME); \
4171 fputs ("\n", STREAM); \
4172 } while (0)
4173
31c714e3 4174/* This says how to define a global common symbol. */
e75b25e7 4175
919509ce
DN
4176#define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
4177 do { \
4178 /* If the target wants uninitialized const declarations in \
4179 .rdata then don't put them in .comm */ \
4180 if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA \
4181 && TREE_CODE (DECL) == VAR_DECL && TREE_READONLY (DECL) \
4182 && (DECL_INITIAL (DECL) == 0 \
4183 || DECL_INITIAL (DECL) == error_mark_node)) \
4184 { \
4185 if (TREE_PUBLIC (DECL) && DECL_NAME (DECL)) \
4186 ASM_GLOBALIZE_LABEL (STREAM, NAME); \
4187 \
4188 READONLY_DATA_SECTION (); \
4189 ASM_OUTPUT_ALIGN (STREAM, floor_log2 (ALIGN / BITS_PER_UNIT)); \
4190 mips_declare_object (STREAM, NAME, "", ":\n\t.space\t%u\n", \
4191 (SIZE)); \
4192 } \
4193 else \
4194 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", \
4195 (SIZE)); \
4196 } while (0)
4197
e75b25e7 4198
c5b7917e 4199/* This says how to define a local common symbol (ie, not visible to
31c714e3 4200 linker). */
e75b25e7
MM
4201
4202#define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
69520b54 4203 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
e75b25e7
MM
4204
4205
4206/* This says how to output an external. It would be possible not to
4207 output anything and let undefined symbol become external. However
4208 the assembler uses length information on externals to allocate in
4209 data/sdata bss/sbss, thereby saving exec time. */
4210
4211#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
4212 mips_output_external(STREAM,DECL,NAME)
4213
4214/* This says what to print at the end of the assembly file */
44404b8b 4215#undef ASM_FILE_END
e75b25e7
MM
4216#define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
4217
4218
f99ffb60
RH
4219/* Play switch file games if we're optimizing the global pointer. */
4220
4221#undef TEXT_SECTION
4222#define TEXT_SECTION() \
4223do { \
4224 extern FILE *asm_out_text_file; \
4225 if (TARGET_FILE_SWITCHING) \
4226 asm_out_file = asm_out_text_file; \
4227 fputs (TEXT_SECTION_ASM_OP, asm_out_file); \
4228 fputc ('\n', asm_out_file); \
4229} while (0)
4230
4231
e75b25e7
MM
4232/* This is how to declare a function name. The actual work of
4233 emitting the label is moved to function_prologue, so that we can
4234 get the line number correctly emitted before the .ent directive,
f99ffb60 4235 and after any .file directives. */
e75b25e7 4236
44404b8b 4237#undef ASM_DECLARE_FUNCTION_NAME
f99ffb60
RH
4238#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
4239 HALF_PIC_DECLARE (NAME)
e75b25e7 4240
e75b25e7
MM
4241/* This is how to output an internal numbered label where
4242 PREFIX is the class of label and NUM is the number within the class. */
4243
44404b8b 4244#undef ASM_OUTPUT_INTERNAL_LABEL
e75b25e7 4245#define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
6ae1498b 4246 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
e75b25e7
MM
4247
4248/* This is how to store into the string LABEL
4249 the symbol_ref name of an internal numbered label where
4250 PREFIX is the class of label and NUM is the number within the class.
4251 This is suitable for output with `assemble_name'. */
4252
44404b8b 4253#undef ASM_GENERATE_INTERNAL_LABEL
e75b25e7 4254#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4f70758f 4255 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
e75b25e7
MM
4256
4257/* This is how to output an assembler line defining a `double' constant. */
4258
4259#define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
dbe9742d
MM
4260 mips_output_double (STREAM, VALUE)
4261
e75b25e7
MM
4262
4263/* This is how to output an assembler line defining a `float' constant. */
4264
4265#define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
dbe9742d
MM
4266 mips_output_float (STREAM, VALUE)
4267
e75b25e7
MM
4268
4269/* This is how to output an assembler line defining an `int' constant. */
4270
e75b25e7
MM
4271#define ASM_OUTPUT_INT(STREAM,VALUE) \
4272do { \
4273 fprintf (STREAM, "\t.word\t"); \
4274 output_addr_const (STREAM, (VALUE)); \
4275 fprintf (STREAM, "\n"); \
4276} while (0)
4277
7dac2f89 4278/* Likewise for 64 bit, `char' and `short' constants.
d89ccde6
GRK
4279
4280 FIXME: operand_subword can't handle some complex constant expressions
4281 that output_addr_const can (for example it does not call
7dac2f89 4282 simplify_subtraction). Since GAS can handle dword, even for mipsII,
d89ccde6
GRK
4283 rely on that to avoid operand_subword for most of the cases where this
4284 matters. Try gcc.c-torture/compile/930326-1.c with -mips2 -mlong64,
4285 or the same case with the type of 'i' changed to long long.
4286
4287*/
876c09d3
JW
4288
4289#define ASM_OUTPUT_DOUBLE_INT(STREAM,VALUE) \
4290do { \
d89ccde6 4291 if (TARGET_64BIT || TARGET_GAS) \
876c09d3
JW
4292 { \
4293 fprintf (STREAM, "\t.dword\t"); \
a88d48a4
JW
4294 if (HOST_BITS_PER_WIDE_INT < 64 || GET_CODE (VALUE) != CONST_INT) \
4295 /* We can't use 'X' for negative numbers, because then we won't \
4296 get the right value for the upper 32 bits. */ \
4297 output_addr_const (STREAM, VALUE); \
4298 else \
4299 /* We must use 'X', because otherwise LONG_MIN will print as \
4300 a number that the Irix 6 assembler won't accept. */ \
4301 print_operand (STREAM, VALUE, 'X'); \
876c09d3
JW
4302 fprintf (STREAM, "\n"); \
4303 } \
4304 else \
4305 { \
4306 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
c8af3574 4307 UNITS_PER_WORD, BITS_PER_WORD, 1); \
876c09d3 4308 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
c8af3574 4309 UNITS_PER_WORD, BITS_PER_WORD, 1); \
876c09d3
JW
4310 } \
4311} while (0)
e75b25e7
MM
4312
4313#define ASM_OUTPUT_SHORT(STREAM,VALUE) \
4314{ \
4315 fprintf (STREAM, "\t.half\t"); \
4316 output_addr_const (STREAM, (VALUE)); \
4317 fprintf (STREAM, "\n"); \
4318}
4319
4320#define ASM_OUTPUT_CHAR(STREAM,VALUE) \
4321{ \
4322 fprintf (STREAM, "\t.byte\t"); \
4323 output_addr_const (STREAM, (VALUE)); \
4324 fprintf (STREAM, "\n"); \
4325}
4326
e75b25e7
MM
4327/* This is how to output an assembler line for a numeric constant byte. */
4328
4329#define ASM_OUTPUT_BYTE(STREAM,VALUE) \
4330 fprintf (STREAM, "\t.byte\t0x%x\n", (VALUE))
4331
4332/* This is how to output an element of a case-vector that is absolute. */
4333
4334#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
6ae1498b 4335 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4336 Pmode == DImode ? ".dword" : ".word", \
6ae1498b 4337 LOCAL_LABEL_PREFIX, \
876c09d3 4338 VALUE)
e75b25e7
MM
4339
4340/* This is how to output an element of a case-vector that is relative.
e0bfcea5
ILT
4341 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
4342 TARGET_EMBEDDED_PIC). */
e75b25e7 4343
33f7f353 4344#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
e0bfcea5 4345do { \
2bcb2ab3
GK
4346 if (TARGET_MIPS16) \
4347 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
4348 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4349 else if (TARGET_EMBEDDED_PIC) \
6ae1498b 4350 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
1eeed24e 4351 Pmode == DImode ? ".dword" : ".word", \
6ae1498b 4352 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
a53f72db 4353 else if (mips_abi == ABI_32 || mips_abi == ABI_O64) \
6ae1498b 4354 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4355 Pmode == DImode ? ".gpdword" : ".gpword", \
6ae1498b 4356 LOCAL_LABEL_PREFIX, VALUE); \
516a2dfd 4357 else \
b2d8cf33 4358 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4359 Pmode == DImode ? ".dword" : ".word", \
b2d8cf33 4360 LOCAL_LABEL_PREFIX, VALUE); \
e0bfcea5
ILT
4361} while (0)
4362
2bcb2ab3
GK
4363/* When generating embedded PIC or mips16 code we want to put the jump
4364 table in the .text section. In all other cases, we want to put the
4365 jump table in the .rdata section. Unfortunately, we can't use
e0bfcea5
ILT
4366 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
4367 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
4368 section if appropriate. */
44404b8b 4369#undef ASM_OUTPUT_CASE_LABEL
e0bfcea5
ILT
4370#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
4371do { \
2bcb2ab3
GK
4372 if (TARGET_EMBEDDED_PIC || TARGET_MIPS16) \
4373 function_section (current_function_decl); \
e0bfcea5
ILT
4374 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
4375} while (0)
e75b25e7
MM
4376
4377/* This is how to output an assembler line
4378 that says to advance the location counter
4379 to a multiple of 2**LOG bytes. */
4380
4381#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
a688e0b7 4382 fprintf (STREAM, "\t.align\t%d\n", (LOG))
e75b25e7 4383
38e01259 4384/* This is how to output an assembler line to advance the location
e75b25e7
MM
4385 counter by SIZE bytes. */
4386
44404b8b 4387#undef ASM_OUTPUT_SKIP
e75b25e7
MM
4388#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
4389 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
4390
e75b25e7 4391/* This is how to output a string. */
44404b8b 4392#undef ASM_OUTPUT_ASCII
e75b25e7 4393#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
b3276c7a 4394 mips_output_ascii (STREAM, STRING, LEN)
e75b25e7
MM
4395
4396/* Handle certain cpp directives used in header files on sysV. */
4397#define SCCS_DIRECTIVE
4398
b2bcb32d 4399#ifndef ASM_OUTPUT_IDENT
e75b25e7
MM
4400/* Output #ident as a in the read-only data section. */
4401#define ASM_OUTPUT_IDENT(FILE, STRING) \
4402{ \
3cce094d 4403 const char *p = STRING; \
e75b25e7
MM
4404 int size = strlen (p) + 1; \
4405 rdata_section (); \
4406 assemble_string (p, size); \
4407}
b2bcb32d 4408#endif
e75b25e7 4409\f
b82b0773
MM
4410/* Default to -G 8 */
4411#ifndef MIPS_DEFAULT_GVALUE
4412#define MIPS_DEFAULT_GVALUE 8
4413#endif
e75b25e7 4414
f3b39eba
MM
4415/* Define the strings to put out for each section in the object file. */
4416#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
4417#define DATA_SECTION_ASM_OP "\t.data" /* large data */
4418#define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
4419#define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
44404b8b 4420#undef READONLY_DATA_SECTION
f3b39eba 4421#define READONLY_DATA_SECTION rdata_section
3cf6400d 4422#define SMALL_DATA_SECTION sdata_section
e75b25e7
MM
4423
4424/* What other sections we support other than the normal .data/.text. */
4425
44404b8b 4426#undef EXTRA_SECTIONS
876c09d3 4427#define EXTRA_SECTIONS in_sdata, in_rdata
e75b25e7
MM
4428
4429/* Define the additional functions to select our additional sections. */
4430
4431/* on the MIPS it is not a good idea to put constants in the text
4432 section, since this defeats the sdata/data mechanism. This is
4433 especially true when -O is used. In this case an effort is made to
4434 address with faster (gp) register relative addressing, which can
4435 only get at sdata and sbss items (there is no stext !!) However,
4436 if the constant is too large for sdata, and it's readonly, it
4437 will go into the .rdata section. */
4438
44404b8b 4439#undef EXTRA_SECTION_FUNCTIONS
e75b25e7
MM
4440#define EXTRA_SECTION_FUNCTIONS \
4441void \
4442sdata_section () \
4443{ \
4444 if (in_section != in_sdata) \
4445 { \
4446 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
4447 in_section = in_sdata; \
4448 } \
4449} \
4450 \
4451void \
4452rdata_section () \
4453{ \
4454 if (in_section != in_rdata) \
4455 { \
4456 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
4457 in_section = in_rdata; \
4458 } \
4459}
4460
4461/* Given a decl node or constant node, choose the section to output it in
4462 and select that section. */
4463
44404b8b 4464#undef SELECT_RTX_SECTION
365c6a0b 4465#define SELECT_RTX_SECTION(MODE,RTX) mips_select_rtx_section (MODE, RTX)
e75b25e7 4466
44404b8b 4467#undef SELECT_SECTION
365c6a0b 4468#define SELECT_SECTION(DECL, RELOC) mips_select_section (DECL, RELOC)
e75b25e7
MM
4469
4470\f
4471/* Store in OUTPUT a string (made with alloca) containing
4472 an assembler-name for a local static variable named NAME.
4473 LABELNO is an integer which is different for each call. */
4474
4475#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
4476( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
4477 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
4478
4479#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
4480do \
4481 { \
876c09d3
JW
4482 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
4483 TARGET_64BIT ? "dsubu" : "subu", \
e75b25e7
MM
4484 reg_names[STACK_POINTER_REGNUM], \
4485 reg_names[STACK_POINTER_REGNUM], \
876c09d3 4486 TARGET_64BIT ? "sd" : "sw", \
e75b25e7
MM
4487 reg_names[REGNO], \
4488 reg_names[STACK_POINTER_REGNUM]); \
4489 } \
4490while (0)
4491
4492#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
4493do \
4494 { \
4495 if (! set_noreorder) \
4496 fprintf (STREAM, "\t.set\tnoreorder\n"); \
4497 \
4498 dslots_load_total++; \
4499 dslots_load_filled++; \
876c09d3
JW
4500 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4501 TARGET_64BIT ? "ld" : "lw", \
e75b25e7
MM
4502 reg_names[REGNO], \
4503 reg_names[STACK_POINTER_REGNUM], \
876c09d3 4504 TARGET_64BIT ? "daddu" : "addu", \
e75b25e7
MM
4505 reg_names[STACK_POINTER_REGNUM], \
4506 reg_names[STACK_POINTER_REGNUM]); \
4507 \
4508 if (! set_noreorder) \
4509 fprintf (STREAM, "\t.set\treorder\n"); \
4510 } \
4511while (0)
4512
4baed42f
DE
4513/* How to start an assembler comment.
4514 The leading space is important (the mips native assembler requires it). */
e75b25e7 4515#ifndef ASM_COMMENT_START
4baed42f 4516#define ASM_COMMENT_START " #"
e75b25e7 4517#endif
e75b25e7
MM
4518\f
4519
4520/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4521 and mips-tdump.c to print them out.
4522
4523 These must match the corresponding definitions in gdb/mipsread.c.
4524 Unfortunately, gcc and gdb do not currently share any directories. */
4525
4526#define CODE_MASK 0x8F300
4527#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4528#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4529#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
3f1f8d8c
MM
4530
4531\f
4532/* Default definitions for size_t and ptrdiff_t. */
4533
4534#ifndef SIZE_TYPE
876c09d3 4535#define NO_BUILTIN_SIZE_TYPE
79e69af0 4536#define SIZE_TYPE (Pmode == DImode ? "long unsigned int" : "unsigned int")
3f1f8d8c
MM
4537#endif
4538
4539#ifndef PTRDIFF_TYPE
876c09d3 4540#define NO_BUILTIN_PTRDIFF_TYPE
79e69af0 4541#define PTRDIFF_TYPE (Pmode == DImode ? "long int" : "int")
3f1f8d8c 4542#endif
28174a14
MS
4543
4544/* See mips_expand_prologue's use of loadgp for when this should be
4545 true. */
4546
a53f72db
GRK
4547#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS \
4548 && mips_abi != ABI_32 \
4549 && mips_abi != ABI_O64)
2bcb2ab3
GK
4550\f
4551/* In mips16 mode, we need to look through the function to check for
4552 PC relative loads that are out of range. */
4553#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)
4554
4555/* We need to use a special set of functions to handle hard floating
4556 point code in mips16 mode. */
337e2b69
ILT
4557
4558#ifndef INIT_SUBTARGET_OPTABS
4559#define INIT_SUBTARGET_OPTABS
4560#endif
4561
4562#define INIT_TARGET_OPTABS \
4563do \
4564 { \
2bcb2ab3
GK
4565 if (! TARGET_MIPS16 || ! mips16_hard_float) \
4566 INIT_SUBTARGET_OPTABS; \
4567 else \
4568 { \
4569 add_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4570 init_one_libfunc ("__mips16_addsf3"); \
2bcb2ab3 4571 sub_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4572 init_one_libfunc ("__mips16_subsf3"); \
2bcb2ab3 4573 smul_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4574 init_one_libfunc ("__mips16_mulsf3"); \
ef89d648 4575 sdiv_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4576 init_one_libfunc ("__mips16_divsf3"); \
2bcb2ab3 4577 \
e85cde9a
JL
4578 eqsf2_libfunc = init_one_libfunc ("__mips16_eqsf2"); \
4579 nesf2_libfunc = init_one_libfunc ("__mips16_nesf2"); \
4580 gtsf2_libfunc = init_one_libfunc ("__mips16_gtsf2"); \
4581 gesf2_libfunc = init_one_libfunc ("__mips16_gesf2"); \
4582 ltsf2_libfunc = init_one_libfunc ("__mips16_ltsf2"); \
4583 lesf2_libfunc = init_one_libfunc ("__mips16_lesf2"); \
2bcb2ab3
GK
4584 \
4585 floatsisf_libfunc = \
e85cde9a 4586 init_one_libfunc ("__mips16_floatsisf"); \
2bcb2ab3 4587 fixsfsi_libfunc = \
e85cde9a 4588 init_one_libfunc ("__mips16_fixsfsi"); \
2bcb2ab3
GK
4589 \
4590 if (TARGET_DOUBLE_FLOAT) \
4591 { \
4592 add_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4593 init_one_libfunc ("__mips16_adddf3"); \
2bcb2ab3 4594 sub_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4595 init_one_libfunc ("__mips16_subdf3"); \
2bcb2ab3 4596 smul_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4597 init_one_libfunc ("__mips16_muldf3"); \
ef89d648 4598 sdiv_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4599 init_one_libfunc ("__mips16_divdf3"); \
2bcb2ab3
GK
4600 \
4601 extendsfdf2_libfunc = \
e85cde9a 4602 init_one_libfunc ("__mips16_extendsfdf2"); \
2bcb2ab3 4603 truncdfsf2_libfunc = \
e85cde9a 4604 init_one_libfunc ("__mips16_truncdfsf2"); \
2bcb2ab3
GK
4605 \
4606 eqdf2_libfunc = \
e85cde9a 4607 init_one_libfunc ("__mips16_eqdf2"); \
2bcb2ab3 4608 nedf2_libfunc = \
e85cde9a 4609 init_one_libfunc ("__mips16_nedf2"); \
2bcb2ab3 4610 gtdf2_libfunc = \
e85cde9a 4611 init_one_libfunc ("__mips16_gtdf2"); \
2bcb2ab3 4612 gedf2_libfunc = \
e85cde9a 4613 init_one_libfunc ("__mips16_gedf2"); \
2bcb2ab3 4614 ltdf2_libfunc = \
e85cde9a 4615 init_one_libfunc ("__mips16_ltdf2"); \
2bcb2ab3 4616 ledf2_libfunc = \
e85cde9a 4617 init_one_libfunc ("__mips16_ledf2"); \
2bcb2ab3
GK
4618 \
4619 floatsidf_libfunc = \
e85cde9a 4620 init_one_libfunc ("__mips16_floatsidf"); \
2bcb2ab3 4621 fixdfsi_libfunc = \
e85cde9a 4622 init_one_libfunc ("__mips16_fixdfsi"); \
2bcb2ab3
GK
4623 } \
4624 } \
337e2b69
ILT
4625 } \
4626while (0)