]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/mn10300/mn10300.c
Change the types of arguments and return values for several functions from rtx to...
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.c
CommitLineData
29a404f9 1/* Subroutines for insn-output.c for Matsushita MN10300 series
3aea1f79 2 Copyright (C) 1996-2014 Free Software Foundation, Inc.
29a404f9 3 Contributed by Jeff Law (law@cygnus.com).
4
3626e955 5 This file is part of GCC.
29a404f9 6
3626e955 7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
29a404f9 11
3626e955 12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
29a404f9 16
3626e955 17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
29a404f9 20
29a404f9 21#include "config.h"
7014838c 22#include "system.h"
805e22b2 23#include "coretypes.h"
24#include "tm.h"
29a404f9 25#include "rtl.h"
4faf81b8 26#include "tree.h"
9ed99284 27#include "stor-layout.h"
28#include "varasm.h"
29#include "calls.h"
29a404f9 30#include "regs.h"
31#include "hard-reg-set.h"
29a404f9 32#include "insn-config.h"
33#include "conditions.h"
29a404f9 34#include "output.h"
35#include "insn-attr.h"
36#include "flags.h"
37#include "recog.h"
8b8be022 38#include "reload.h"
29a404f9 39#include "expr.h"
d8fc4d0b 40#include "optabs.h"
4faf81b8 41#include "function.h"
29a404f9 42#include "obstack.h"
0b205f4c 43#include "diagnostic-core.h"
59086782 44#include "tm_p.h"
e7076c21 45#include "tm-constrs.h"
a767736d 46#include "target.h"
47#include "target-def.h"
5574dbdd 48#include "df.h"
fba5dd52 49#include "opts.h"
f9b3e8f5 50#include "cfgloop.h"
b9ed1410 51#include "dumpfile.h"
f7715905 52#include "builtins.h"
29a404f9 53
1acdfc69 54/* This is used in the am33_2.0-linux-gnu port, in which global symbol
55 names are not prefixed by underscores, to tell whether to prefix a
56 label with a plus sign or not, so that the assembler can tell
57 symbol names from register names. */
58int mn10300_protect_label;
59
4879b320 60/* Selected processor type for tuning. */
61enum processor_type mn10300_tune_cpu = PROCESSOR_DEFAULT;
62
990679af 63#define CC_FLAG_Z 1
64#define CC_FLAG_N 2
65#define CC_FLAG_C 4
66#define CC_FLAG_V 8
67
68static int cc_flags_for_mode(enum machine_mode);
69static int cc_flags_for_code(enum rtx_code);
a767736d 70\f
4c834714 71/* Implement TARGET_OPTION_OVERRIDE. */
4c834714 72static void
73mn10300_option_override (void)
8c2c40c5 74{
75 if (TARGET_AM33)
76 target_flags &= ~MASK_MULT_BUG;
4879b320 77 else
78 {
79 /* Disable scheduling for the MN10300 as we do
80 not have timing information available for it. */
81 flag_schedule_insns = 0;
82 flag_schedule_insns_after_reload = 0;
731049b6 83
84 /* Force enable splitting of wide types, as otherwise it is trivial
85 to run out of registers. Indeed, this works so well that register
86 allocation problems are now more common *without* optimization,
87 when this flag is not enabled by default. */
88 flag_split_wide_types = 1;
4879b320 89 }
990679af 90
4879b320 91 if (mn10300_tune_string)
92 {
93 if (strcasecmp (mn10300_tune_string, "mn10300") == 0)
94 mn10300_tune_cpu = PROCESSOR_MN10300;
95 else if (strcasecmp (mn10300_tune_string, "am33") == 0)
96 mn10300_tune_cpu = PROCESSOR_AM33;
97 else if (strcasecmp (mn10300_tune_string, "am33-2") == 0)
98 mn10300_tune_cpu = PROCESSOR_AM33_2;
99 else if (strcasecmp (mn10300_tune_string, "am34") == 0)
100 mn10300_tune_cpu = PROCESSOR_AM34;
101 else
102 error ("-mtune= expects mn10300, am33, am33-2, or am34");
103 }
8c2c40c5 104}
105
92c473b8 106static void
3285410a 107mn10300_file_start (void)
29a404f9 108{
92c473b8 109 default_file_start ();
911517ac 110
b166356e 111 if (TARGET_AM33_2)
112 fprintf (asm_out_file, "\t.am33_2\n");
113 else if (TARGET_AM33)
92c473b8 114 fprintf (asm_out_file, "\t.am33\n");
29a404f9 115}
116\f
f9e46c25 117/* Note: This list must match the liw_op attribute in mn10300.md. */
118
119static const char *liw_op_names[] =
120{
121 "add", "cmp", "sub", "mov",
122 "and", "or", "xor",
123 "asr", "lsr", "asl",
124 "none", "max"
125};
126
29a404f9 127/* Print operand X using operand code CODE to assembly language output file
128 FILE. */
129
130void
3626e955 131mn10300_print_operand (FILE *file, rtx x, int code)
29a404f9 132{
133 switch (code)
134 {
f9e46c25 135 case 'W':
136 {
137 unsigned int liw_op = UINTVAL (x);
990679af 138
f9e46c25 139 gcc_assert (TARGET_ALLOW_LIW);
140 gcc_assert (liw_op < LIW_OP_MAX);
141 fputs (liw_op_names[liw_op], file);
29a404f9 142 break;
f9e46c25 143 }
990679af 144
f9e46c25 145 case 'b':
146 case 'B':
147 {
148 enum rtx_code cmp = GET_CODE (x);
149 enum machine_mode mode = GET_MODE (XEXP (x, 0));
150 const char *str;
151 int have_flags;
152
153 if (code == 'B')
154 cmp = reverse_condition (cmp);
155 have_flags = cc_flags_for_mode (mode);
fb16c776 156
f9e46c25 157 switch (cmp)
b166356e 158 {
f9e46c25 159 case NE:
160 str = "ne";
b166356e 161 break;
f9e46c25 162 case EQ:
163 str = "eq";
164 break;
165 case GE:
166 /* bge is smaller than bnc. */
167 str = (have_flags & CC_FLAG_V ? "ge" : "nc");
168 break;
169 case LT:
170 str = (have_flags & CC_FLAG_V ? "lt" : "ns");
171 break;
172 case GT:
173 str = "gt";
174 break;
175 case LE:
176 str = "le";
177 break;
178 case GEU:
179 str = "cc";
180 break;
181 case GTU:
182 str = "hi";
183 break;
184 case LEU:
185 str = "ls";
186 break;
187 case LTU:
188 str = "cs";
189 break;
190 case ORDERED:
191 str = "lge";
192 break;
193 case UNORDERED:
194 str = "uo";
195 break;
196 case LTGT:
197 str = "lg";
198 break;
199 case UNEQ:
200 str = "ue";
201 break;
202 case UNGE:
203 str = "uge";
204 break;
205 case UNGT:
206 str = "ug";
207 break;
208 case UNLE:
209 str = "ule";
210 break;
211 case UNLT:
212 str = "ul";
b166356e 213 break;
b166356e 214 default:
cf41bb03 215 gcc_unreachable ();
b166356e 216 }
f9e46c25 217
218 gcc_checking_assert ((cc_flags_for_code (cmp) & ~have_flags) == 0);
219 fputs (str, file);
220 }
221 break;
222
223 case 'C':
224 /* This is used for the operand to a call instruction;
225 if it's a REG, enclose it in parens, else output
226 the operand normally. */
227 if (REG_P (x))
228 {
229 fputc ('(', file);
230 mn10300_print_operand (file, x, 0);
231 fputc (')', file);
232 }
233 else
234 mn10300_print_operand (file, x, 0);
235 break;
236
237 case 'D':
238 switch (GET_CODE (x))
239 {
240 case MEM:
241 fputc ('(', file);
242 output_address (XEXP (x, 0));
243 fputc (')', file);
244 break;
245
246 case REG:
247 fprintf (file, "fd%d", REGNO (x) - 18);
248 break;
249
250 default:
251 gcc_unreachable ();
252 }
253 break;
b166356e 254
6ce19398 255 /* These are the least significant word in a 64bit value. */
f9e46c25 256 case 'L':
257 switch (GET_CODE (x))
258 {
259 case MEM:
260 fputc ('(', file);
261 output_address (XEXP (x, 0));
262 fputc (')', file);
263 break;
6ce19398 264
f9e46c25 265 case REG:
266 fprintf (file, "%s", reg_names[REGNO (x)]);
267 break;
6ce19398 268
f9e46c25 269 case SUBREG:
270 fprintf (file, "%s", reg_names[subreg_regno (x)]);
271 break;
6ce19398 272
f9e46c25 273 case CONST_DOUBLE:
274 {
275 long val[2];
276 REAL_VALUE_TYPE rv;
6ce19398 277
f9e46c25 278 switch (GET_MODE (x))
279 {
280 case DFmode:
281 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
282 REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
283 fprintf (file, "0x%lx", val[0]);
284 break;;
285 case SFmode:
286 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
287 REAL_VALUE_TO_TARGET_SINGLE (rv, val[0]);
288 fprintf (file, "0x%lx", val[0]);
289 break;;
290 case VOIDmode:
291 case DImode:
292 mn10300_print_operand_address (file,
293 GEN_INT (CONST_DOUBLE_LOW (x)));
294 break;
295 default:
6ce19398 296 break;
297 }
f9e46c25 298 break;
299 }
6ce19398 300
f9e46c25 301 case CONST_INT:
302 {
303 rtx low, high;
304 split_double (x, &low, &high);
305 fprintf (file, "%ld", (long)INTVAL (low));
306 break;
964d057c 307 }
6ce19398 308
f9e46c25 309 default:
310 gcc_unreachable ();
311 }
312 break;
6ce19398 313
314 /* Similarly, but for the most significant word. */
f9e46c25 315 case 'H':
316 switch (GET_CODE (x))
317 {
318 case MEM:
319 fputc ('(', file);
320 x = adjust_address (x, SImode, 4);
321 output_address (XEXP (x, 0));
322 fputc (')', file);
323 break;
6ce19398 324
f9e46c25 325 case REG:
326 fprintf (file, "%s", reg_names[REGNO (x) + 1]);
327 break;
6ce19398 328
f9e46c25 329 case SUBREG:
330 fprintf (file, "%s", reg_names[subreg_regno (x) + 1]);
331 break;
6ce19398 332
f9e46c25 333 case CONST_DOUBLE:
334 {
335 long val[2];
336 REAL_VALUE_TYPE rv;
6ce19398 337
f9e46c25 338 switch (GET_MODE (x))
339 {
340 case DFmode:
341 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
342 REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
343 fprintf (file, "0x%lx", val[1]);
344 break;;
345 case SFmode:
346 gcc_unreachable ();
347 case VOIDmode:
348 case DImode:
349 mn10300_print_operand_address (file,
350 GEN_INT (CONST_DOUBLE_HIGH (x)));
351 break;
352 default:
6ce19398 353 break;
354 }
f9e46c25 355 break;
356 }
6ce19398 357
f9e46c25 358 case CONST_INT:
359 {
360 rtx low, high;
361 split_double (x, &low, &high);
362 fprintf (file, "%ld", (long)INTVAL (high));
363 break;
6ce19398 364 }
6ce19398 365
f9e46c25 366 default:
367 gcc_unreachable ();
368 }
369 break;
6ce19398 370
f9e46c25 371 case 'A':
372 fputc ('(', file);
373 if (REG_P (XEXP (x, 0)))
374 output_address (gen_rtx_PLUS (SImode, XEXP (x, 0), const0_rtx));
375 else
376 output_address (XEXP (x, 0));
377 fputc (')', file);
378 break;
058f71f0 379
f9e46c25 380 case 'N':
381 gcc_assert (INTVAL (x) >= -128 && INTVAL (x) <= 255);
382 fprintf (file, "%d", (int)((~INTVAL (x)) & 0xff));
383 break;
384
385 case 'U':
386 gcc_assert (INTVAL (x) >= -128 && INTVAL (x) <= 255);
387 fprintf (file, "%d", (int)(INTVAL (x) & 0xff));
388 break;
167fa942 389
63e678f2 390 /* For shift counts. The hardware ignores the upper bits of
391 any immediate, but the assembler will flag an out of range
392 shift count as an error. So we mask off the high bits
393 of the immediate here. */
f9e46c25 394 case 'S':
395 if (CONST_INT_P (x))
396 {
397 fprintf (file, "%d", (int)(INTVAL (x) & 0x1f));
398 break;
399 }
400 /* FALL THROUGH */
63e678f2 401
f9e46c25 402 default:
403 switch (GET_CODE (x))
404 {
405 case MEM:
406 fputc ('(', file);
407 output_address (XEXP (x, 0));
408 fputc (')', file);
409 break;
29a404f9 410
f9e46c25 411 case PLUS:
412 output_address (x);
413 break;
6ce19398 414
f9e46c25 415 case REG:
416 fprintf (file, "%s", reg_names[REGNO (x)]);
417 break;
29a404f9 418
f9e46c25 419 case SUBREG:
420 fprintf (file, "%s", reg_names[subreg_regno (x)]);
421 break;
29a404f9 422
6ce19398 423 /* This will only be single precision.... */
f9e46c25 424 case CONST_DOUBLE:
425 {
426 unsigned long val;
427 REAL_VALUE_TYPE rv;
6ce19398 428
f9e46c25 429 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
430 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
431 fprintf (file, "0x%lx", val);
29a404f9 432 break;
29a404f9 433 }
f9e46c25 434
435 case CONST_INT:
436 case SYMBOL_REF:
437 case CONST:
438 case LABEL_REF:
439 case CODE_LABEL:
440 case UNSPEC:
441 mn10300_print_operand_address (file, x);
442 break;
443 default:
444 gcc_unreachable ();
445 }
446 break;
447 }
29a404f9 448}
449
450/* Output assembly language output for the address ADDR to FILE. */
451
452void
3626e955 453mn10300_print_operand_address (FILE *file, rtx addr)
29a404f9 454{
455 switch (GET_CODE (addr))
456 {
911517ac 457 case POST_INC:
c8a596d6 458 mn10300_print_operand (file, XEXP (addr, 0), 0);
911517ac 459 fputc ('+', file);
460 break;
c8a596d6 461
462 case POST_MODIFY:
463 mn10300_print_operand (file, XEXP (addr, 0), 0);
464 fputc ('+', file);
465 fputc (',', file);
466 mn10300_print_operand (file, XEXP (addr, 1), 0);
467 break;
468
29a404f9 469 case REG:
3626e955 470 mn10300_print_operand (file, addr, 0);
29a404f9 471 break;
472 case PLUS:
473 {
c8a596d6 474 rtx base = XEXP (addr, 0);
475 rtx index = XEXP (addr, 1);
476
477 if (REG_P (index) && !REG_OK_FOR_INDEX_P (index))
478 {
479 rtx x = base;
480 base = index;
481 index = x;
482
483 gcc_assert (REG_P (index) && REG_OK_FOR_INDEX_P (index));
484 }
485 gcc_assert (REG_OK_FOR_BASE_P (base));
486
3626e955 487 mn10300_print_operand (file, index, 0);
29a404f9 488 fputc (',', file);
c8a596d6 489 mn10300_print_operand (file, base, 0);
29a404f9 490 break;
491 }
492 case SYMBOL_REF:
493 output_addr_const (file, addr);
494 break;
495 default:
496 output_addr_const (file, addr);
497 break;
498 }
499}
500
22680c28 501/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA.
502
503 Used for PIC-specific UNSPECs. */
504
505static bool
506mn10300_asm_output_addr_const_extra (FILE *file, rtx x)
507{
508 if (GET_CODE (x) == UNSPEC)
509 {
510 switch (XINT (x, 1))
511 {
22680c28 512 case UNSPEC_PIC:
513 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */
514 output_addr_const (file, XVECEXP (x, 0, 0));
515 break;
516 case UNSPEC_GOT:
517 output_addr_const (file, XVECEXP (x, 0, 0));
518 fputs ("@GOT", file);
519 break;
520 case UNSPEC_GOTOFF:
521 output_addr_const (file, XVECEXP (x, 0, 0));
522 fputs ("@GOTOFF", file);
523 break;
524 case UNSPEC_PLT:
525 output_addr_const (file, XVECEXP (x, 0, 0));
526 fputs ("@PLT", file);
527 break;
528 case UNSPEC_GOTSYM_OFF:
529 assemble_name (file, GOT_SYMBOL_NAME);
530 fputs ("-(", file);
531 output_addr_const (file, XVECEXP (x, 0, 0));
532 fputs ("-.)", file);
533 break;
534 default:
535 return false;
536 }
537 return true;
538 }
539 else
540 return false;
541}
542
b166356e 543/* Count the number of FP registers that have to be saved. */
544static int
3285410a 545fp_regs_to_save (void)
b166356e 546{
547 int i, n = 0;
548
549 if (! TARGET_AM33_2)
550 return 0;
551
552 for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
d37e81ec 553 if (df_regs_ever_live_p (i) && ! call_really_used_regs[i])
b166356e 554 ++n;
555
556 return n;
557}
558
4caa3669 559/* Print a set of registers in the format required by "movm" and "ret".
560 Register K is saved if bit K of MASK is set. The data and address
561 registers can be stored individually, but the extended registers cannot.
f2b32076 562 We assume that the mask already takes that into account. For instance,
09e5ce26 563 bits 14 to 17 must have the same value. */
4caa3669 564
565void
3285410a 566mn10300_print_reg_list (FILE *file, int mask)
4caa3669 567{
568 int need_comma;
569 int i;
570
571 need_comma = 0;
572 fputc ('[', file);
573
574 for (i = 0; i < FIRST_EXTENDED_REGNUM; i++)
575 if ((mask & (1 << i)) != 0)
576 {
577 if (need_comma)
578 fputc (',', file);
579 fputs (reg_names [i], file);
580 need_comma = 1;
581 }
582
583 if ((mask & 0x3c000) != 0)
584 {
cf41bb03 585 gcc_assert ((mask & 0x3c000) == 0x3c000);
4caa3669 586 if (need_comma)
587 fputc (',', file);
588 fputs ("exreg1", file);
589 need_comma = 1;
590 }
591
592 fputc (']', file);
593}
594
ad3e6900 595/* If the MDR register is never clobbered, we can use the RETF instruction
596 which takes the address from the MDR register. This is 3 cycles faster
597 than having to load the address from the stack. */
598
599bool
600mn10300_can_use_retf_insn (void)
601{
602 /* Don't bother if we're not optimizing. In this case we won't
603 have proper access to df_regs_ever_live_p. */
604 if (!optimize)
605 return false;
606
607 /* EH returns alter the saved return address; MDR is not current. */
608 if (crtl->calls_eh_return)
609 return false;
610
611 /* Obviously not if MDR is ever clobbered. */
612 if (df_regs_ever_live_p (MDR_REG))
613 return false;
614
615 /* ??? Careful not to use this during expand_epilogue etc. */
616 gcc_assert (!in_sequence_p ());
617 return leaf_function_p ();
618}
619
620bool
621mn10300_can_use_rets_insn (void)
6ce19398 622{
6f22c3b4 623 return !mn10300_initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM);
6ce19398 624}
625
4caa3669 626/* Returns the set of live, callee-saved registers as a bitmask. The
627 callee-saved extended registers cannot be stored individually, so
23ecf105 628 all of them will be included in the mask if any one of them is used.
d876ba6e 629 Also returns the number of bytes in the registers in the mask if
630 BYTES_SAVED is not NULL. */
4caa3669 631
d876ba6e 632unsigned int
633mn10300_get_live_callee_saved_regs (unsigned int * bytes_saved)
4caa3669 634{
635 int mask;
636 int i;
d876ba6e 637 unsigned int count;
4caa3669 638
d876ba6e 639 count = mask = 0;
b166356e 640 for (i = 0; i <= LAST_EXTENDED_REGNUM; i++)
d37e81ec 641 if (df_regs_ever_live_p (i) && ! call_really_used_regs[i])
d876ba6e 642 {
643 mask |= (1 << i);
644 ++ count;
645 }
646
4caa3669 647 if ((mask & 0x3c000) != 0)
d876ba6e 648 {
649 for (i = 0x04000; i < 0x40000; i <<= 1)
650 if ((mask & i) == 0)
651 ++ count;
652
653 mask |= 0x3c000;
654 }
655
656 if (bytes_saved)
657 * bytes_saved = count * UNITS_PER_WORD;
4caa3669 658
659 return mask;
660}
661
5f2853dd 662static rtx
663F (rtx r)
664{
665 RTX_FRAME_RELATED_P (r) = 1;
666 return r;
667}
668
4caa3669 669/* Generate an instruction that pushes several registers onto the stack.
670 Register K will be saved if bit K in MASK is set. The function does
671 nothing if MASK is zero.
672
673 To be compatible with the "movm" instruction, the lowest-numbered
674 register must be stored in the lowest slot. If MASK is the set
675 { R1,...,RN }, where R1...RN are ordered least first, the generated
676 instruction will have the form:
677
678 (parallel
679 (set (reg:SI 9) (plus:SI (reg:SI 9) (const_int -N*4)))
680 (set (mem:SI (plus:SI (reg:SI 9)
681 (const_int -1*4)))
682 (reg:SI RN))
683 ...
684 (set (mem:SI (plus:SI (reg:SI 9)
685 (const_int -N*4)))
686 (reg:SI R1))) */
687
32f9c04a 688static void
689mn10300_gen_multiple_store (unsigned int mask)
4caa3669 690{
32f9c04a 691 /* The order in which registers are stored, from SP-4 through SP-N*4. */
692 static const unsigned int store_order[8] = {
693 /* e2, e3: never saved */
694 FIRST_EXTENDED_REGNUM + 4,
695 FIRST_EXTENDED_REGNUM + 5,
696 FIRST_EXTENDED_REGNUM + 6,
697 FIRST_EXTENDED_REGNUM + 7,
698 /* e0, e1, mdrq, mcrh, mcrl, mcvf: never saved. */
699 FIRST_DATA_REGNUM + 2,
700 FIRST_DATA_REGNUM + 3,
701 FIRST_ADDRESS_REGNUM + 2,
702 FIRST_ADDRESS_REGNUM + 3,
703 /* d0, d1, a0, a1, mdr, lir, lar: never saved. */
704 };
705
706 rtx x, elts[9];
707 unsigned int i;
708 int count;
709
710 if (mask == 0)
711 return;
712
713 for (i = count = 0; i < ARRAY_SIZE(store_order); ++i)
4caa3669 714 {
32f9c04a 715 unsigned regno = store_order[i];
716
717 if (((mask >> regno) & 1) == 0)
718 continue;
4caa3669 719
32f9c04a 720 ++count;
29c05e22 721 x = plus_constant (Pmode, stack_pointer_rtx, count * -4);
32f9c04a 722 x = gen_frame_mem (SImode, x);
723 x = gen_rtx_SET (VOIDmode, x, gen_rtx_REG (SImode, regno));
724 elts[count] = F(x);
725
726 /* Remove the register from the mask so that... */
727 mask &= ~(1u << regno);
4caa3669 728 }
32f9c04a 729
730 /* ... we can make sure that we didn't try to use a register
731 not listed in the store order. */
732 gcc_assert (mask == 0);
733
734 /* Create the instruction that updates the stack pointer. */
29c05e22 735 x = plus_constant (Pmode, stack_pointer_rtx, count * -4);
32f9c04a 736 x = gen_rtx_SET (VOIDmode, stack_pointer_rtx, x);
737 elts[0] = F(x);
738
739 /* We need one PARALLEL element to update the stack pointer and
740 an additional element for each register that is stored. */
741 x = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (count + 1, elts));
742 F (emit_insn (x));
4caa3669 743}
744
36706943 745static inline unsigned int
746popcount (unsigned int mask)
747{
748 unsigned int count = 0;
749
750 while (mask)
751 {
752 ++ count;
753 mask &= ~ (mask & - mask);
754 }
755 return count;
756}
757
29a404f9 758void
3626e955 759mn10300_expand_prologue (void)
29a404f9 760{
6f22c3b4 761 HOST_WIDE_INT size = mn10300_frame_size ();
36706943 762 unsigned int mask;
29a404f9 763
36706943 764 mask = mn10300_get_live_callee_saved_regs (NULL);
09e5ce26 765 /* If we use any of the callee-saved registers, save them now. */
36706943 766 mn10300_gen_multiple_store (mask);
767
768 if (flag_stack_usage_info)
769 current_function_static_stack_size = size + popcount (mask) * 4;
48cb86e3 770
b166356e 771 if (TARGET_AM33_2 && fp_regs_to_save ())
772 {
773 int num_regs_to_save = fp_regs_to_save (), i;
774 HOST_WIDE_INT xsize;
3626e955 775 enum
776 {
777 save_sp_merge,
778 save_sp_no_merge,
779 save_sp_partial_merge,
780 save_a0_merge,
781 save_a0_no_merge
782 } strategy;
b166356e 783 unsigned int strategy_size = (unsigned)-1, this_strategy_size;
784 rtx reg;
b166356e 785
36706943 786 if (flag_stack_usage_info)
787 current_function_static_stack_size += num_regs_to_save * 4;
788
b166356e 789 /* We have several different strategies to save FP registers.
790 We can store them using SP offsets, which is beneficial if
791 there are just a few registers to save, or we can use `a0' in
792 post-increment mode (`a0' is the only call-clobbered address
793 register that is never used to pass information to a
794 function). Furthermore, if we don't need a frame pointer, we
795 can merge the two SP adds into a single one, but this isn't
796 always beneficial; sometimes we can just split the two adds
797 so that we don't exceed a 16-bit constant size. The code
798 below will select which strategy to use, so as to generate
799 smallest code. Ties are broken in favor or shorter sequences
800 (in terms of number of instructions). */
801
802#define SIZE_ADD_AX(S) ((((S) >= (1 << 15)) || ((S) < -(1 << 15))) ? 6 \
803 : (((S) >= (1 << 7)) || ((S) < -(1 << 7))) ? 4 : 2)
804#define SIZE_ADD_SP(S) ((((S) >= (1 << 15)) || ((S) < -(1 << 15))) ? 6 \
805 : (((S) >= (1 << 7)) || ((S) < -(1 << 7))) ? 4 : 3)
e14cac83 806
807/* We add 0 * (S) in two places to promote to the type of S,
808 so that all arms of the conditional have the same type. */
b166356e 809#define SIZE_FMOV_LIMIT(S,N,L,SIZE1,SIZE2,ELSE) \
e14cac83 810 (((S) >= (L)) ? 0 * (S) + (SIZE1) * (N) \
b166356e 811 : ((S) + 4 * (N) >= (L)) ? (((L) - (S)) / 4 * (SIZE2) \
812 + ((S) + 4 * (N) - (L)) / 4 * (SIZE1)) \
e14cac83 813 : 0 * (S) + (ELSE))
b166356e 814#define SIZE_FMOV_SP_(S,N) \
815 (SIZE_FMOV_LIMIT ((S), (N), (1 << 24), 7, 6, \
816 SIZE_FMOV_LIMIT ((S), (N), (1 << 8), 6, 4, \
817 (S) ? 4 * (N) : 3 + 4 * ((N) - 1))))
818#define SIZE_FMOV_SP(S,N) (SIZE_FMOV_SP_ ((unsigned HOST_WIDE_INT)(S), (N)))
819
820 /* Consider alternative save_sp_merge only if we don't need the
fa483857 821 frame pointer and size is nonzero. */
b166356e 822 if (! frame_pointer_needed && size)
823 {
824 /* Insn: add -(size + 4 * num_regs_to_save), sp. */
825 this_strategy_size = SIZE_ADD_SP (-(size + 4 * num_regs_to_save));
826 /* Insn: fmov fs#, (##, sp), for each fs# to be saved. */
827 this_strategy_size += SIZE_FMOV_SP (size, num_regs_to_save);
828
829 if (this_strategy_size < strategy_size)
830 {
831 strategy = save_sp_merge;
832 strategy_size = this_strategy_size;
833 }
834 }
835
836 /* Consider alternative save_sp_no_merge unconditionally. */
837 /* Insn: add -4 * num_regs_to_save, sp. */
838 this_strategy_size = SIZE_ADD_SP (-4 * num_regs_to_save);
839 /* Insn: fmov fs#, (##, sp), for each fs# to be saved. */
840 this_strategy_size += SIZE_FMOV_SP (0, num_regs_to_save);
841 if (size)
842 {
843 /* Insn: add -size, sp. */
844 this_strategy_size += SIZE_ADD_SP (-size);
845 }
846
847 if (this_strategy_size < strategy_size)
848 {
849 strategy = save_sp_no_merge;
850 strategy_size = this_strategy_size;
851 }
852
853 /* Consider alternative save_sp_partial_merge only if we don't
854 need a frame pointer and size is reasonably large. */
855 if (! frame_pointer_needed && size + 4 * num_regs_to_save > 128)
856 {
857 /* Insn: add -128, sp. */
858 this_strategy_size = SIZE_ADD_SP (-128);
859 /* Insn: fmov fs#, (##, sp), for each fs# to be saved. */
860 this_strategy_size += SIZE_FMOV_SP (128 - 4 * num_regs_to_save,
861 num_regs_to_save);
862 if (size)
863 {
864 /* Insn: add 128-size, sp. */
865 this_strategy_size += SIZE_ADD_SP (128 - size);
866 }
867
868 if (this_strategy_size < strategy_size)
869 {
870 strategy = save_sp_partial_merge;
871 strategy_size = this_strategy_size;
872 }
873 }
874
875 /* Consider alternative save_a0_merge only if we don't need a
fa483857 876 frame pointer, size is nonzero and the user hasn't
b166356e 877 changed the calling conventions of a0. */
878 if (! frame_pointer_needed && size
d37e81ec 879 && call_really_used_regs [FIRST_ADDRESS_REGNUM]
b166356e 880 && ! fixed_regs[FIRST_ADDRESS_REGNUM])
881 {
882 /* Insn: add -(size + 4 * num_regs_to_save), sp. */
883 this_strategy_size = SIZE_ADD_SP (-(size + 4 * num_regs_to_save));
884 /* Insn: mov sp, a0. */
885 this_strategy_size++;
886 if (size)
887 {
888 /* Insn: add size, a0. */
889 this_strategy_size += SIZE_ADD_AX (size);
890 }
891 /* Insn: fmov fs#, (a0+), for each fs# to be saved. */
892 this_strategy_size += 3 * num_regs_to_save;
893
894 if (this_strategy_size < strategy_size)
895 {
896 strategy = save_a0_merge;
897 strategy_size = this_strategy_size;
898 }
899 }
900
901 /* Consider alternative save_a0_no_merge if the user hasn't
09e5ce26 902 changed the calling conventions of a0. */
d37e81ec 903 if (call_really_used_regs [FIRST_ADDRESS_REGNUM]
b166356e 904 && ! fixed_regs[FIRST_ADDRESS_REGNUM])
905 {
906 /* Insn: add -4 * num_regs_to_save, sp. */
907 this_strategy_size = SIZE_ADD_SP (-4 * num_regs_to_save);
908 /* Insn: mov sp, a0. */
909 this_strategy_size++;
910 /* Insn: fmov fs#, (a0+), for each fs# to be saved. */
911 this_strategy_size += 3 * num_regs_to_save;
912 if (size)
913 {
914 /* Insn: add -size, sp. */
915 this_strategy_size += SIZE_ADD_SP (-size);
916 }
917
918 if (this_strategy_size < strategy_size)
919 {
920 strategy = save_a0_no_merge;
921 strategy_size = this_strategy_size;
922 }
923 }
924
925 /* Emit the initial SP add, common to all strategies. */
926 switch (strategy)
927 {
928 case save_sp_no_merge:
929 case save_a0_no_merge:
5f2853dd 930 F (emit_insn (gen_addsi3 (stack_pointer_rtx,
931 stack_pointer_rtx,
932 GEN_INT (-4 * num_regs_to_save))));
b166356e 933 xsize = 0;
934 break;
935
936 case save_sp_partial_merge:
5f2853dd 937 F (emit_insn (gen_addsi3 (stack_pointer_rtx,
938 stack_pointer_rtx,
939 GEN_INT (-128))));
b166356e 940 xsize = 128 - 4 * num_regs_to_save;
941 size -= xsize;
942 break;
943
944 case save_sp_merge:
945 case save_a0_merge:
5f2853dd 946 F (emit_insn (gen_addsi3 (stack_pointer_rtx,
947 stack_pointer_rtx,
948 GEN_INT (-(size + 4 * num_regs_to_save)))));
b166356e 949 /* We'll have to adjust FP register saves according to the
09e5ce26 950 frame size. */
b166356e 951 xsize = size;
952 /* Since we've already created the stack frame, don't do it
09e5ce26 953 again at the end of the function. */
b166356e 954 size = 0;
955 break;
956
957 default:
cf41bb03 958 gcc_unreachable ();
b166356e 959 }
fb16c776 960
b166356e 961 /* Now prepare register a0, if we have decided to use it. */
962 switch (strategy)
963 {
964 case save_sp_merge:
965 case save_sp_no_merge:
966 case save_sp_partial_merge:
967 reg = 0;
968 break;
969
970 case save_a0_merge:
971 case save_a0_no_merge:
972 reg = gen_rtx_REG (SImode, FIRST_ADDRESS_REGNUM);
5f2853dd 973 F (emit_insn (gen_movsi (reg, stack_pointer_rtx)));
b166356e 974 if (xsize)
5f2853dd 975 F (emit_insn (gen_addsi3 (reg, reg, GEN_INT (xsize))));
b166356e 976 reg = gen_rtx_POST_INC (SImode, reg);
977 break;
fb16c776 978
b166356e 979 default:
cf41bb03 980 gcc_unreachable ();
b166356e 981 }
fb16c776 982
b166356e 983 /* Now actually save the FP registers. */
984 for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
d37e81ec 985 if (df_regs_ever_live_p (i) && ! call_really_used_regs [i])
b166356e 986 {
987 rtx addr;
988
989 if (reg)
990 addr = reg;
991 else
992 {
993 /* If we aren't using `a0', use an SP offset. */
994 if (xsize)
995 {
996 addr = gen_rtx_PLUS (SImode,
997 stack_pointer_rtx,
998 GEN_INT (xsize));
999 }
1000 else
1001 addr = stack_pointer_rtx;
fb16c776 1002
b166356e 1003 xsize += 4;
1004 }
1005
5f2853dd 1006 F (emit_insn (gen_movsf (gen_rtx_MEM (SFmode, addr),
1007 gen_rtx_REG (SFmode, i))));
b166356e 1008 }
1009 }
1010
48cb86e3 1011 /* Now put the frame pointer into the frame pointer register. */
29a404f9 1012 if (frame_pointer_needed)
5f2853dd 1013 F (emit_move_insn (frame_pointer_rtx, stack_pointer_rtx));
29a404f9 1014
48cb86e3 1015 /* Allocate stack for this frame. */
29a404f9 1016 if (size)
5f2853dd 1017 F (emit_insn (gen_addsi3 (stack_pointer_rtx,
1018 stack_pointer_rtx,
1019 GEN_INT (-size))));
1020
3072d30e 1021 if (flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM))
6f22c3b4 1022 emit_insn (gen_load_pic ());
29a404f9 1023}
1024
1025void
3626e955 1026mn10300_expand_epilogue (void)
29a404f9 1027{
6f22c3b4 1028 HOST_WIDE_INT size = mn10300_frame_size ();
d876ba6e 1029 unsigned int reg_save_bytes;
1030
1031 mn10300_get_live_callee_saved_regs (& reg_save_bytes);
1032
b166356e 1033 if (TARGET_AM33_2 && fp_regs_to_save ())
1034 {
1035 int num_regs_to_save = fp_regs_to_save (), i;
1036 rtx reg = 0;
1037
1038 /* We have several options to restore FP registers. We could
1039 load them from SP offsets, but, if there are enough FP
1040 registers to restore, we win if we use a post-increment
1041 addressing mode. */
1042
1043 /* If we have a frame pointer, it's the best option, because we
1044 already know it has the value we want. */
1045 if (frame_pointer_needed)
1046 reg = gen_rtx_REG (SImode, FRAME_POINTER_REGNUM);
1047 /* Otherwise, we may use `a1', since it's call-clobbered and
1048 it's never used for return values. But only do so if it's
1049 smaller than using SP offsets. */
1050 else
1051 {
1052 enum { restore_sp_post_adjust,
1053 restore_sp_pre_adjust,
1054 restore_sp_partial_adjust,
1055 restore_a1 } strategy;
1056 unsigned int this_strategy_size, strategy_size = (unsigned)-1;
1057
1058 /* Consider using sp offsets before adjusting sp. */
1059 /* Insn: fmov (##,sp),fs#, for each fs# to be restored. */
1060 this_strategy_size = SIZE_FMOV_SP (size, num_regs_to_save);
1061 /* If size is too large, we'll have to adjust SP with an
1062 add. */
ad3e6900 1063 if (size + 4 * num_regs_to_save + reg_save_bytes > 255)
b166356e 1064 {
1065 /* Insn: add size + 4 * num_regs_to_save, sp. */
1066 this_strategy_size += SIZE_ADD_SP (size + 4 * num_regs_to_save);
1067 }
1068 /* If we don't have to restore any non-FP registers,
1069 we'll be able to save one byte by using rets. */
ad3e6900 1070 if (! reg_save_bytes)
b166356e 1071 this_strategy_size--;
1072
1073 if (this_strategy_size < strategy_size)
1074 {
1075 strategy = restore_sp_post_adjust;
1076 strategy_size = this_strategy_size;
1077 }
1078
1079 /* Consider using sp offsets after adjusting sp. */
1080 /* Insn: add size, sp. */
1081 this_strategy_size = SIZE_ADD_SP (size);
1082 /* Insn: fmov (##,sp),fs#, for each fs# to be restored. */
1083 this_strategy_size += SIZE_FMOV_SP (0, num_regs_to_save);
1084 /* We're going to use ret to release the FP registers
09e5ce26 1085 save area, so, no savings. */
b166356e 1086
1087 if (this_strategy_size < strategy_size)
1088 {
1089 strategy = restore_sp_pre_adjust;
1090 strategy_size = this_strategy_size;
1091 }
1092
1093 /* Consider using sp offsets after partially adjusting sp.
1094 When size is close to 32Kb, we may be able to adjust SP
1095 with an imm16 add instruction while still using fmov
1096 (d8,sp). */
ad3e6900 1097 if (size + 4 * num_regs_to_save + reg_save_bytes > 255)
b166356e 1098 {
1099 /* Insn: add size + 4 * num_regs_to_save
ad3e6900 1100 + reg_save_bytes - 252,sp. */
b166356e 1101 this_strategy_size = SIZE_ADD_SP (size + 4 * num_regs_to_save
df70f973 1102 + (int) reg_save_bytes - 252);
b166356e 1103 /* Insn: fmov (##,sp),fs#, fo each fs# to be restored. */
ad3e6900 1104 this_strategy_size += SIZE_FMOV_SP (252 - reg_save_bytes
b166356e 1105 - 4 * num_regs_to_save,
1106 num_regs_to_save);
1107 /* We're going to use ret to release the FP registers
09e5ce26 1108 save area, so, no savings. */
b166356e 1109
1110 if (this_strategy_size < strategy_size)
1111 {
1112 strategy = restore_sp_partial_adjust;
1113 strategy_size = this_strategy_size;
1114 }
1115 }
1116
1117 /* Consider using a1 in post-increment mode, as long as the
1118 user hasn't changed the calling conventions of a1. */
d37e81ec 1119 if (call_really_used_regs [FIRST_ADDRESS_REGNUM + 1]
b166356e 1120 && ! fixed_regs[FIRST_ADDRESS_REGNUM+1])
1121 {
1122 /* Insn: mov sp,a1. */
1123 this_strategy_size = 1;
1124 if (size)
1125 {
1126 /* Insn: add size,a1. */
1127 this_strategy_size += SIZE_ADD_AX (size);
1128 }
1129 /* Insn: fmov (a1+),fs#, for each fs# to be restored. */
1130 this_strategy_size += 3 * num_regs_to_save;
1131 /* If size is large enough, we may be able to save a
1132 couple of bytes. */
ad3e6900 1133 if (size + 4 * num_regs_to_save + reg_save_bytes > 255)
b166356e 1134 {
1135 /* Insn: mov a1,sp. */
1136 this_strategy_size += 2;
1137 }
1138 /* If we don't have to restore any non-FP registers,
1139 we'll be able to save one byte by using rets. */
ad3e6900 1140 if (! reg_save_bytes)
b166356e 1141 this_strategy_size--;
1142
1143 if (this_strategy_size < strategy_size)
1144 {
1145 strategy = restore_a1;
1146 strategy_size = this_strategy_size;
1147 }
1148 }
1149
1150 switch (strategy)
1151 {
1152 case restore_sp_post_adjust:
1153 break;
1154
1155 case restore_sp_pre_adjust:
1156 emit_insn (gen_addsi3 (stack_pointer_rtx,
1157 stack_pointer_rtx,
1158 GEN_INT (size)));
1159 size = 0;
1160 break;
1161
1162 case restore_sp_partial_adjust:
1163 emit_insn (gen_addsi3 (stack_pointer_rtx,
1164 stack_pointer_rtx,
1165 GEN_INT (size + 4 * num_regs_to_save
ad3e6900 1166 + reg_save_bytes - 252)));
1167 size = 252 - reg_save_bytes - 4 * num_regs_to_save;
b166356e 1168 break;
fb16c776 1169
b166356e 1170 case restore_a1:
1171 reg = gen_rtx_REG (SImode, FIRST_ADDRESS_REGNUM + 1);
1172 emit_insn (gen_movsi (reg, stack_pointer_rtx));
1173 if (size)
1174 emit_insn (gen_addsi3 (reg, reg, GEN_INT (size)));
1175 break;
1176
1177 default:
cf41bb03 1178 gcc_unreachable ();
b166356e 1179 }
1180 }
1181
1182 /* Adjust the selected register, if any, for post-increment. */
1183 if (reg)
1184 reg = gen_rtx_POST_INC (SImode, reg);
1185
1186 for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
d37e81ec 1187 if (df_regs_ever_live_p (i) && ! call_really_used_regs [i])
b166356e 1188 {
1189 rtx addr;
fb16c776 1190
b166356e 1191 if (reg)
1192 addr = reg;
1193 else if (size)
1194 {
1195 /* If we aren't using a post-increment register, use an
09e5ce26 1196 SP offset. */
b166356e 1197 addr = gen_rtx_PLUS (SImode,
1198 stack_pointer_rtx,
1199 GEN_INT (size));
1200 }
1201 else
1202 addr = stack_pointer_rtx;
1203
1204 size += 4;
1205
5f2853dd 1206 emit_insn (gen_movsf (gen_rtx_REG (SFmode, i),
1207 gen_rtx_MEM (SFmode, addr)));
b166356e 1208 }
1209
1210 /* If we were using the restore_a1 strategy and the number of
1211 bytes to be released won't fit in the `ret' byte, copy `a1'
1212 to `sp', to avoid having to use `add' to adjust it. */
ad3e6900 1213 if (! frame_pointer_needed && reg && size + reg_save_bytes > 255)
b166356e 1214 {
1215 emit_move_insn (stack_pointer_rtx, XEXP (reg, 0));
1216 size = 0;
1217 }
1218 }
1219
461cabcc 1220 /* Maybe cut back the stack, except for the register save area.
1221
1222 If the frame pointer exists, then use the frame pointer to
1223 cut back the stack.
1224
1225 If the stack size + register save area is more than 255 bytes,
1226 then the stack must be cut back here since the size + register
fb16c776 1227 save size is too big for a ret/retf instruction.
461cabcc 1228
1229 Else leave it alone, it will be cut back as part of the
1230 ret/retf instruction, or there wasn't any stack to begin with.
1231
dfd1079d 1232 Under no circumstances should the register save area be
461cabcc 1233 deallocated here, that would leave a window where an interrupt
1234 could occur and trash the register save area. */
29a404f9 1235 if (frame_pointer_needed)
1236 {
29a404f9 1237 emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
b21218d6 1238 size = 0;
1239 }
ad3e6900 1240 else if (size + reg_save_bytes > 255)
b21218d6 1241 {
1242 emit_insn (gen_addsi3 (stack_pointer_rtx,
1243 stack_pointer_rtx,
1244 GEN_INT (size)));
1245 size = 0;
29a404f9 1246 }
29a404f9 1247
55daf463 1248 /* Adjust the stack and restore callee-saved registers, if any. */
ad3e6900 1249 if (mn10300_can_use_rets_insn ())
1a860023 1250 emit_jump_insn (ret_rtx);
48cb86e3 1251 else
d876ba6e 1252 emit_jump_insn (gen_return_ret (GEN_INT (size + reg_save_bytes)));
29a404f9 1253}
1254
a2f10574 1255/* Recognize the PARALLEL rtx generated by mn10300_gen_multiple_store().
4caa3669 1256 This function is for MATCH_PARALLEL and so assumes OP is known to be
1257 parallel. If OP is a multiple store, return a mask indicating which
1258 registers it saves. Return 0 otherwise. */
1259
bc6d465d 1260unsigned int
1261mn10300_store_multiple_regs (rtx op)
4caa3669 1262{
1263 int count;
1264 int mask;
1265 int i;
1266 unsigned int last;
1267 rtx elt;
1268
1269 count = XVECLEN (op, 0);
1270 if (count < 2)
1271 return 0;
1272
1273 /* Check that first instruction has the form (set (sp) (plus A B)) */
1274 elt = XVECEXP (op, 0, 0);
1275 if (GET_CODE (elt) != SET
3626e955 1276 || (! REG_P (SET_DEST (elt)))
4caa3669 1277 || REGNO (SET_DEST (elt)) != STACK_POINTER_REGNUM
1278 || GET_CODE (SET_SRC (elt)) != PLUS)
1279 return 0;
1280
1281 /* Check that A is the stack pointer and B is the expected stack size.
1282 For OP to match, each subsequent instruction should push a word onto
1283 the stack. We therefore expect the first instruction to create
09e5ce26 1284 COUNT-1 stack slots. */
4caa3669 1285 elt = SET_SRC (elt);
3626e955 1286 if ((! REG_P (XEXP (elt, 0)))
4caa3669 1287 || REGNO (XEXP (elt, 0)) != STACK_POINTER_REGNUM
3626e955 1288 || (! CONST_INT_P (XEXP (elt, 1)))
4caa3669 1289 || INTVAL (XEXP (elt, 1)) != -(count - 1) * 4)
1290 return 0;
1291
4caa3669 1292 mask = 0;
1293 for (i = 1; i < count; i++)
1294 {
32f9c04a 1295 /* Check that element i is a (set (mem M) R). */
1296 /* ??? Validate the register order a-la mn10300_gen_multiple_store.
1297 Remember: the ordering is *not* monotonic. */
4caa3669 1298 elt = XVECEXP (op, 0, i);
1299 if (GET_CODE (elt) != SET
3626e955 1300 || (! MEM_P (SET_DEST (elt)))
32f9c04a 1301 || (! REG_P (SET_SRC (elt))))
4caa3669 1302 return 0;
1303
32f9c04a 1304 /* Remember which registers are to be saved. */
4caa3669 1305 last = REGNO (SET_SRC (elt));
1306 mask |= (1 << last);
1307
1308 /* Check that M has the form (plus (sp) (const_int -I*4)) */
1309 elt = XEXP (SET_DEST (elt), 0);
1310 if (GET_CODE (elt) != PLUS
3626e955 1311 || (! REG_P (XEXP (elt, 0)))
4caa3669 1312 || REGNO (XEXP (elt, 0)) != STACK_POINTER_REGNUM
3626e955 1313 || (! CONST_INT_P (XEXP (elt, 1)))
4caa3669 1314 || INTVAL (XEXP (elt, 1)) != -i * 4)
1315 return 0;
1316 }
1317
09e5ce26 1318 /* All or none of the callee-saved extended registers must be in the set. */
4caa3669 1319 if ((mask & 0x3c000) != 0
1320 && (mask & 0x3c000) != 0x3c000)
1321 return 0;
1322
1323 return mask;
1324}
1325
029ca87f 1326/* Implement TARGET_PREFERRED_RELOAD_CLASS. */
1327
1328static reg_class_t
1329mn10300_preferred_reload_class (rtx x, reg_class_t rclass)
1330{
1331 if (x == stack_pointer_rtx && rclass != SP_REGS)
c78ac668 1332 return (TARGET_AM33 ? GENERAL_REGS : ADDRESS_REGS);
029ca87f 1333 else if (MEM_P (x)
1334 || (REG_P (x)
1335 && !HARD_REGISTER_P (x))
1336 || (GET_CODE (x) == SUBREG
1337 && REG_P (SUBREG_REG (x))
1338 && !HARD_REGISTER_P (SUBREG_REG (x))))
1339 return LIMIT_RELOAD_CLASS (GET_MODE (x), rclass);
1340 else
1341 return rclass;
1342}
1343
1344/* Implement TARGET_PREFERRED_OUTPUT_RELOAD_CLASS. */
1345
1346static reg_class_t
1347mn10300_preferred_output_reload_class (rtx x, reg_class_t rclass)
1348{
1349 if (x == stack_pointer_rtx && rclass != SP_REGS)
c78ac668 1350 return (TARGET_AM33 ? GENERAL_REGS : ADDRESS_REGS);
029ca87f 1351 return rclass;
1352}
1353
c78ac668 1354/* Implement TARGET_SECONDARY_RELOAD. */
3626e955 1355
c78ac668 1356static reg_class_t
1357mn10300_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
1358 enum machine_mode mode, secondary_reload_info *sri)
29a404f9 1359{
c78ac668 1360 enum reg_class rclass = (enum reg_class) rclass_i;
1361 enum reg_class xclass = NO_REGS;
1362 unsigned int xregno = INVALID_REGNUM;
1363
1364 if (REG_P (x))
8ecf154e 1365 {
c78ac668 1366 xregno = REGNO (x);
1367 if (xregno >= FIRST_PSEUDO_REGISTER)
1368 xregno = true_regnum (x);
1369 if (xregno != INVALID_REGNUM)
1370 xclass = REGNO_REG_CLASS (xregno);
1371 }
1372
1373 if (!TARGET_AM33)
1374 {
1375 /* Memory load/stores less than a full word wide can't have an
1376 address or stack pointer destination. They must use a data
1377 register as an intermediate register. */
1378 if (rclass != DATA_REGS
1379 && (mode == QImode || mode == HImode)
1380 && xclass == NO_REGS)
1381 return DATA_REGS;
1382
1383 /* We can only move SP to/from an address register. */
1384 if (in_p
1385 && rclass == SP_REGS
1386 && xclass != ADDRESS_REGS)
1387 return ADDRESS_REGS;
1388 if (!in_p
1389 && xclass == SP_REGS
1390 && rclass != ADDRESS_REGS
1391 && rclass != SP_OR_ADDRESS_REGS)
1392 return ADDRESS_REGS;
8ecf154e 1393 }
29a404f9 1394
c78ac668 1395 /* We can't directly load sp + const_int into a register;
1396 we must use an address register as an scratch. */
1397 if (in_p
1398 && rclass != SP_REGS
8deb3959 1399 && rclass != SP_OR_ADDRESS_REGS
c8a596d6 1400 && rclass != SP_OR_GENERAL_REGS
c78ac668 1401 && GET_CODE (x) == PLUS
1402 && (XEXP (x, 0) == stack_pointer_rtx
1403 || XEXP (x, 1) == stack_pointer_rtx))
1404 {
1405 sri->icode = CODE_FOR_reload_plus_sp_const;
1406 return NO_REGS;
1407 }
29a404f9 1408
85a6eed4 1409 /* We can only move MDR to/from a data register. */
1410 if (rclass == MDR_REGS && xclass != DATA_REGS)
1411 return DATA_REGS;
1412 if (xclass == MDR_REGS && rclass != DATA_REGS)
1413 return DATA_REGS;
1414
c78ac668 1415 /* We can't load/store an FP register from a constant address. */
8b8be022 1416 if (TARGET_AM33_2
c78ac668 1417 && (rclass == FP_REGS || xclass == FP_REGS)
1418 && (xclass == NO_REGS || rclass == NO_REGS))
b166356e 1419 {
c78ac668 1420 rtx addr = NULL;
1421
1422 if (xregno >= FIRST_PSEUDO_REGISTER && xregno != INVALID_REGNUM)
1423 {
1c654ff1 1424 addr = reg_equiv_mem (xregno);
c78ac668 1425 if (addr)
1426 addr = XEXP (addr, 0);
1427 }
1428 else if (MEM_P (x))
1429 addr = XEXP (x, 0);
8b8be022 1430
c78ac668 1431 if (addr && CONSTANT_ADDRESS_P (addr))
c8a596d6 1432 return GENERAL_REGS;
b166356e 1433 }
48cb86e3 1434 /* Otherwise assume no secondary reloads are needed. */
1435 return NO_REGS;
1436}
1437
6f22c3b4 1438int
1439mn10300_frame_size (void)
1440{
1441 /* size includes the fixed stack space needed for function calls. */
1442 int size = get_frame_size () + crtl->outgoing_args_size;
1443
1444 /* And space for the return pointer. */
1445 size += crtl->outgoing_args_size ? 4 : 0;
1446
1447 return size;
1448}
1449
48cb86e3 1450int
3626e955 1451mn10300_initial_offset (int from, int to)
48cb86e3 1452{
6f22c3b4 1453 int diff = 0;
1454
1455 gcc_assert (from == ARG_POINTER_REGNUM || from == FRAME_POINTER_REGNUM);
1456 gcc_assert (to == FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);
1457
1458 if (to == STACK_POINTER_REGNUM)
1459 diff = mn10300_frame_size ();
1460
f1899bff 1461 /* The difference between the argument pointer and the frame pointer
1462 is the size of the callee register save area. */
6f22c3b4 1463 if (from == ARG_POINTER_REGNUM)
29a404f9 1464 {
d876ba6e 1465 unsigned int reg_save_bytes;
1466
1467 mn10300_get_live_callee_saved_regs (& reg_save_bytes);
1468 diff += reg_save_bytes;
6f22c3b4 1469 diff += 4 * fp_regs_to_save ();
29a404f9 1470 }
1471
6f22c3b4 1472 return diff;
29a404f9 1473}
bb4959a8 1474
6644435d 1475/* Worker function for TARGET_RETURN_IN_MEMORY. */
1476
f2d49d02 1477static bool
fb80456a 1478mn10300_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
f2d49d02 1479{
1480 /* Return values > 8 bytes in length in memory. */
00b1da0e 1481 return (int_size_in_bytes (type) > 8
1482 || int_size_in_bytes (type) == 0
1483 || TYPE_MODE (type) == BLKmode);
f2d49d02 1484}
1485
bb4959a8 1486/* Flush the argument registers to the stack for a stdarg function;
1487 return the new argument pointer. */
f2d49d02 1488static rtx
3285410a 1489mn10300_builtin_saveregs (void)
bb4959a8 1490{
ed554036 1491 rtx offset, mem;
bb4959a8 1492 tree fntype = TREE_TYPE (current_function_decl);
257d99c3 1493 int argadj = ((!stdarg_p (fntype))
bb4959a8 1494 ? UNITS_PER_WORD : 0);
32c2fdea 1495 alias_set_type set = get_varargs_alias_set ();
bb4959a8 1496
1497 if (argadj)
29c05e22 1498 offset = plus_constant (Pmode, crtl->args.arg_offset_rtx, argadj);
bb4959a8 1499 else
abe32cce 1500 offset = crtl->args.arg_offset_rtx;
bb4959a8 1501
abe32cce 1502 mem = gen_rtx_MEM (SImode, crtl->args.internal_arg_pointer);
ab6ab77e 1503 set_mem_alias_set (mem, set);
ed554036 1504 emit_move_insn (mem, gen_rtx_REG (SImode, 0));
1505
1506 mem = gen_rtx_MEM (SImode,
29c05e22 1507 plus_constant (Pmode,
1508 crtl->args.internal_arg_pointer, 4));
ab6ab77e 1509 set_mem_alias_set (mem, set);
ed554036 1510 emit_move_insn (mem, gen_rtx_REG (SImode, 1));
1511
bb4959a8 1512 return copy_to_reg (expand_binop (Pmode, add_optab,
abe32cce 1513 crtl->args.internal_arg_pointer,
bb4959a8 1514 offset, 0, 0, OPTAB_LIB_WIDEN));
1515}
1516
8a58ed0a 1517static void
3285410a 1518mn10300_va_start (tree valist, rtx nextarg)
ed554036 1519{
7ccc713a 1520 nextarg = expand_builtin_saveregs ();
7df226a2 1521 std_expand_builtin_va_start (valist, nextarg);
ed554036 1522}
1523
b981d932 1524/* Return true when a parameter should be passed by reference. */
1525
1526static bool
39cba157 1527mn10300_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
fb80456a 1528 enum machine_mode mode, const_tree type,
b981d932 1529 bool named ATTRIBUTE_UNUSED)
1530{
1531 unsigned HOST_WIDE_INT size;
1532
1533 if (type)
1534 size = int_size_in_bytes (type);
1535 else
1536 size = GET_MODE_SIZE (mode);
1537
00b1da0e 1538 return (size > 8 || size == 0);
b981d932 1539}
1540
bb4959a8 1541/* Return an RTX to represent where a value with mode MODE will be returned
e92d3ba8 1542 from a function. If the result is NULL_RTX, the argument is pushed. */
bb4959a8 1543
dc67179a 1544static rtx
39cba157 1545mn10300_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
dc67179a 1546 const_tree type, bool named ATTRIBUTE_UNUSED)
bb4959a8 1547{
39cba157 1548 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
e92d3ba8 1549 rtx result = NULL_RTX;
e14cac83 1550 int size;
bb4959a8 1551
1552 /* We only support using 2 data registers as argument registers. */
1553 int nregs = 2;
1554
1555 /* Figure out the size of the object to be passed. */
1556 if (mode == BLKmode)
1557 size = int_size_in_bytes (type);
1558 else
1559 size = GET_MODE_SIZE (mode);
1560
bb4959a8 1561 cum->nbytes = (cum->nbytes + 3) & ~3;
1562
1563 /* Don't pass this arg via a register if all the argument registers
1564 are used up. */
1565 if (cum->nbytes > nregs * UNITS_PER_WORD)
e92d3ba8 1566 return result;
bb4959a8 1567
1568 /* Don't pass this arg via a register if it would be split between
1569 registers and memory. */
1570 if (type == NULL_TREE
1571 && cum->nbytes + size > nregs * UNITS_PER_WORD)
e92d3ba8 1572 return result;
bb4959a8 1573
1574 switch (cum->nbytes / UNITS_PER_WORD)
1575 {
1576 case 0:
e92d3ba8 1577 result = gen_rtx_REG (mode, FIRST_ARGUMENT_REGNUM);
bb4959a8 1578 break;
1579 case 1:
e92d3ba8 1580 result = gen_rtx_REG (mode, FIRST_ARGUMENT_REGNUM + 1);
bb4959a8 1581 break;
1582 default:
e92d3ba8 1583 break;
bb4959a8 1584 }
1585
1586 return result;
1587}
1588
dc67179a 1589/* Update the data in CUM to advance over an argument
1590 of mode MODE and data type TYPE.
1591 (TYPE is null for libcalls where that information may not be available.) */
1592
1593static void
39cba157 1594mn10300_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
dc67179a 1595 const_tree type, bool named ATTRIBUTE_UNUSED)
1596{
39cba157 1597 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1598
dc67179a 1599 cum->nbytes += (mode != BLKmode
1600 ? (GET_MODE_SIZE (mode) + 3) & ~3
1601 : (int_size_in_bytes (type) + 3) & ~3);
1602}
1603
f054eb3c 1604/* Return the number of bytes of registers to use for an argument passed
1605 partially in registers and partially in memory. */
bb4959a8 1606
f054eb3c 1607static int
39cba157 1608mn10300_arg_partial_bytes (cumulative_args_t cum_v, enum machine_mode mode,
f054eb3c 1609 tree type, bool named ATTRIBUTE_UNUSED)
bb4959a8 1610{
39cba157 1611 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
e14cac83 1612 int size;
bb4959a8 1613
1614 /* We only support using 2 data registers as argument registers. */
1615 int nregs = 2;
1616
1617 /* Figure out the size of the object to be passed. */
1618 if (mode == BLKmode)
1619 size = int_size_in_bytes (type);
1620 else
1621 size = GET_MODE_SIZE (mode);
1622
bb4959a8 1623 cum->nbytes = (cum->nbytes + 3) & ~3;
1624
1625 /* Don't pass this arg via a register if all the argument registers
1626 are used up. */
1627 if (cum->nbytes > nregs * UNITS_PER_WORD)
1628 return 0;
1629
1630 if (cum->nbytes + size <= nregs * UNITS_PER_WORD)
1631 return 0;
1632
1633 /* Don't pass this arg via a register if it would be split between
1634 registers and memory. */
1635 if (type == NULL_TREE
1636 && cum->nbytes + size > nregs * UNITS_PER_WORD)
1637 return 0;
1638
f054eb3c 1639 return nregs * UNITS_PER_WORD - cum->nbytes;
bb4959a8 1640}
1641
00b1da0e 1642/* Return the location of the function's value. This will be either
1643 $d0 for integer functions, $a0 for pointers, or a PARALLEL of both
1644 $d0 and $a0 if the -mreturn-pointer-on-do flag is set. Note that
1645 we only return the PARALLEL for outgoing values; we do not want
1646 callers relying on this extra copy. */
1647
b6713ba6 1648static rtx
1649mn10300_function_value (const_tree valtype,
1650 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
1651 bool outgoing)
00b1da0e 1652{
1653 rtx rv;
1654 enum machine_mode mode = TYPE_MODE (valtype);
1655
1656 if (! POINTER_TYPE_P (valtype))
1657 return gen_rtx_REG (mode, FIRST_DATA_REGNUM);
1658 else if (! TARGET_PTR_A0D0 || ! outgoing
18d50ae6 1659 || cfun->returns_struct)
00b1da0e 1660 return gen_rtx_REG (mode, FIRST_ADDRESS_REGNUM);
1661
1662 rv = gen_rtx_PARALLEL (mode, rtvec_alloc (2));
1663 XVECEXP (rv, 0, 0)
1664 = gen_rtx_EXPR_LIST (VOIDmode,
1665 gen_rtx_REG (mode, FIRST_ADDRESS_REGNUM),
1666 GEN_INT (0));
fb16c776 1667
00b1da0e 1668 XVECEXP (rv, 0, 1)
1669 = gen_rtx_EXPR_LIST (VOIDmode,
1670 gen_rtx_REG (mode, FIRST_DATA_REGNUM),
1671 GEN_INT (0));
1672 return rv;
1673}
1674
b6713ba6 1675/* Implements TARGET_LIBCALL_VALUE. */
1676
1677static rtx
1678mn10300_libcall_value (enum machine_mode mode,
1679 const_rtx fun ATTRIBUTE_UNUSED)
1680{
1681 return gen_rtx_REG (mode, FIRST_DATA_REGNUM);
1682}
1683
1684/* Implements FUNCTION_VALUE_REGNO_P. */
1685
1686bool
1687mn10300_function_value_regno_p (const unsigned int regno)
1688{
1689 return (regno == FIRST_DATA_REGNUM || regno == FIRST_ADDRESS_REGNUM);
1690}
1691
990679af 1692/* Output an addition operation. */
5574dbdd 1693
feb9af9f 1694const char *
990679af 1695mn10300_output_add (rtx operands[3], bool need_flags)
bb4959a8 1696{
990679af 1697 rtx dest, src1, src2;
1698 unsigned int dest_regnum, src1_regnum, src2_regnum;
1699 enum reg_class src1_class, src2_class, dest_class;
bb4959a8 1700
990679af 1701 dest = operands[0];
1702 src1 = operands[1];
1703 src2 = operands[2];
bb4959a8 1704
990679af 1705 dest_regnum = true_regnum (dest);
1706 src1_regnum = true_regnum (src1);
bb4959a8 1707
990679af 1708 dest_class = REGNO_REG_CLASS (dest_regnum);
1709 src1_class = REGNO_REG_CLASS (src1_regnum);
bb4959a8 1710
f9e46c25 1711 if (CONST_INT_P (src2))
990679af 1712 {
1713 gcc_assert (dest_regnum == src1_regnum);
bb4959a8 1714
990679af 1715 if (src2 == const1_rtx && !need_flags)
1716 return "inc %0";
1717 if (INTVAL (src2) == 4 && !need_flags && dest_class != DATA_REGS)
1718 return "inc4 %0";
911517ac 1719
990679af 1720 gcc_assert (!need_flags || dest_class != SP_REGS);
1721 return "add %2,%0";
1722 }
1723 else if (CONSTANT_P (src2))
1724 return "add %2,%0";
1725
1726 src2_regnum = true_regnum (src2);
1727 src2_class = REGNO_REG_CLASS (src2_regnum);
1728
1729 if (dest_regnum == src1_regnum)
1730 return "add %2,%0";
1731 if (dest_regnum == src2_regnum)
1732 return "add %1,%0";
1733
1734 /* The rest of the cases are reg = reg+reg. For AM33, we can implement
1735 this directly, as below, but when optimizing for space we can sometimes
1736 do better by using a mov+add. For MN103, we claimed that we could
1737 implement a three-operand add because the various move and add insns
1738 change sizes across register classes, and we can often do better than
1739 reload in choosing which operand to move. */
1740 if (TARGET_AM33 && optimize_insn_for_speed_p ())
1741 return "add %2,%1,%0";
1742
1743 /* Catch cases where no extended register was used. */
1744 if (src1_class != EXTENDED_REGS
1745 && src2_class != EXTENDED_REGS
1746 && dest_class != EXTENDED_REGS)
1747 {
1748 /* We have to copy one of the sources into the destination, then
1749 add the other source to the destination.
1750
1751 Carefully select which source to copy to the destination; a
1752 naive implementation will waste a byte when the source classes
1753 are different and the destination is an address register.
1754 Selecting the lowest cost register copy will optimize this
1755 sequence. */
1756 if (src1_class == dest_class)
1757 return "mov %1,%0\n\tadd %2,%0";
1758 else
1759 return "mov %2,%0\n\tadd %1,%0";
1760 }
911517ac 1761
990679af 1762 /* At least one register is an extended register. */
bb4959a8 1763
990679af 1764 /* The three operand add instruction on the am33 is a win iff the
1765 output register is an extended register, or if both source
1766 registers are extended registers. */
1767 if (dest_class == EXTENDED_REGS || src1_class == src2_class)
1768 return "add %2,%1,%0";
1769
1770 /* It is better to copy one of the sources to the destination, then
1771 perform a 2 address add. The destination in this case must be
1772 an address or data register and one of the sources must be an
1773 extended register and the remaining source must not be an extended
1774 register.
1775
1776 The best code for this case is to copy the extended reg to the
1777 destination, then emit a two address add. */
1778 if (src1_class == EXTENDED_REGS)
1779 return "mov %1,%0\n\tadd %2,%0";
1780 else
1781 return "mov %2,%0\n\tadd %1,%0";
bb4959a8 1782}
36ed4406 1783
c4cd8f6a 1784/* Return 1 if X contains a symbolic expression. We know these
1785 expressions will have one of a few well defined forms, so
1786 we need only check those forms. */
3626e955 1787
c4cd8f6a 1788int
3626e955 1789mn10300_symbolic_operand (rtx op,
1790 enum machine_mode mode ATTRIBUTE_UNUSED)
c4cd8f6a 1791{
1792 switch (GET_CODE (op))
1793 {
1794 case SYMBOL_REF:
1795 case LABEL_REF:
1796 return 1;
1797 case CONST:
1798 op = XEXP (op, 0);
1799 return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
1800 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
4879b320 1801 && CONST_INT_P (XEXP (op, 1)));
c4cd8f6a 1802 default:
1803 return 0;
1804 }
1805}
1806
1807/* Try machine dependent ways of modifying an illegitimate address
1808 to be legitimate. If we find one, return the new valid address.
1809 This macro is used in only one place: `memory_address' in explow.c.
1810
1811 OLDX is the address as it was before break_out_memory_refs was called.
1812 In some cases it is useful to look at this to decide what needs to be done.
1813
c4cd8f6a 1814 Normally it is always safe for this macro to do nothing. It exists to
1815 recognize opportunities to optimize the output.
1816
1817 But on a few ports with segmented architectures and indexed addressing
1818 (mn10300, hppa) it is used to rewrite certain problematical addresses. */
3626e955 1819
5574dbdd 1820static rtx
41e3a0c7 1821mn10300_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
1822 enum machine_mode mode ATTRIBUTE_UNUSED)
c4cd8f6a 1823{
3626e955 1824 if (flag_pic && ! mn10300_legitimate_pic_operand_p (x))
1825 x = mn10300_legitimize_pic_address (oldx, NULL_RTX);
b87a151a 1826
c4cd8f6a 1827 /* Uh-oh. We might have an address for x[n-100000]. This needs
1828 special handling to avoid creating an indexed memory address
1829 with x-100000 as the base. */
1830 if (GET_CODE (x) == PLUS
3626e955 1831 && mn10300_symbolic_operand (XEXP (x, 1), VOIDmode))
c4cd8f6a 1832 {
1833 /* Ugly. We modify things here so that the address offset specified
1834 by the index expression is computed first, then added to x to form
1835 the entire address. */
1836
59086782 1837 rtx regx1, regy1, regy2, y;
c4cd8f6a 1838
1839 /* Strip off any CONST. */
1840 y = XEXP (x, 1);
1841 if (GET_CODE (y) == CONST)
1842 y = XEXP (y, 0);
1843
c927a8ab 1844 if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS)
1845 {
1846 regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0));
1847 regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0));
1848 regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0));
1849 regx1 = force_reg (Pmode,
3626e955 1850 gen_rtx_fmt_ee (GET_CODE (y), Pmode, regx1,
1851 regy2));
7014838c 1852 return force_reg (Pmode, gen_rtx_PLUS (Pmode, regx1, regy1));
c927a8ab 1853 }
c4cd8f6a 1854 }
11b4605c 1855 return x;
c4cd8f6a 1856}
e2aead91 1857
b87a151a 1858/* Convert a non-PIC address in `orig' to a PIC address using @GOT or
09e5ce26 1859 @GOTOFF in `reg'. */
3626e955 1860
b87a151a 1861rtx
3626e955 1862mn10300_legitimize_pic_address (rtx orig, rtx reg)
b87a151a 1863{
d92c1383 1864 rtx x;
1865
b87a151a 1866 if (GET_CODE (orig) == LABEL_REF
1867 || (GET_CODE (orig) == SYMBOL_REF
1868 && (CONSTANT_POOL_ADDRESS_P (orig)
1869 || ! MN10300_GLOBAL_P (orig))))
1870 {
d92c1383 1871 if (reg == NULL)
b87a151a 1872 reg = gen_reg_rtx (Pmode);
1873
d92c1383 1874 x = gen_rtx_UNSPEC (SImode, gen_rtvec (1, orig), UNSPEC_GOTOFF);
1875 x = gen_rtx_CONST (SImode, x);
1876 emit_move_insn (reg, x);
1877
1878 x = emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx));
b87a151a 1879 }
1880 else if (GET_CODE (orig) == SYMBOL_REF)
1881 {
d92c1383 1882 if (reg == NULL)
b87a151a 1883 reg = gen_reg_rtx (Pmode);
1884
d92c1383 1885 x = gen_rtx_UNSPEC (SImode, gen_rtvec (1, orig), UNSPEC_GOT);
1886 x = gen_rtx_CONST (SImode, x);
1887 x = gen_rtx_PLUS (SImode, pic_offset_table_rtx, x);
1888 x = gen_const_mem (SImode, x);
1889
1890 x = emit_move_insn (reg, x);
b87a151a 1891 }
d92c1383 1892 else
1893 return orig;
1894
1895 set_unique_reg_note (x, REG_EQUAL, orig);
1896 return reg;
b87a151a 1897}
1898
1899/* Return zero if X references a SYMBOL_REF or LABEL_REF whose symbol
fa483857 1900 isn't protected by a PIC unspec; nonzero otherwise. */
3626e955 1901
b87a151a 1902int
3626e955 1903mn10300_legitimate_pic_operand_p (rtx x)
b87a151a 1904{
3626e955 1905 const char *fmt;
1906 int i;
b87a151a 1907
1908 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1909 return 0;
1910
1911 if (GET_CODE (x) == UNSPEC
1912 && (XINT (x, 1) == UNSPEC_PIC
1913 || XINT (x, 1) == UNSPEC_GOT
1914 || XINT (x, 1) == UNSPEC_GOTOFF
b6e3379c 1915 || XINT (x, 1) == UNSPEC_PLT
1916 || XINT (x, 1) == UNSPEC_GOTSYM_OFF))
b87a151a 1917 return 1;
1918
b87a151a 1919 fmt = GET_RTX_FORMAT (GET_CODE (x));
1920 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
1921 {
1922 if (fmt[i] == 'E')
1923 {
5574dbdd 1924 int j;
b87a151a 1925
1926 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3626e955 1927 if (! mn10300_legitimate_pic_operand_p (XVECEXP (x, i, j)))
b87a151a 1928 return 0;
1929 }
3626e955 1930 else if (fmt[i] == 'e'
1931 && ! mn10300_legitimate_pic_operand_p (XEXP (x, i)))
b87a151a 1932 return 0;
1933 }
1934
1935 return 1;
1936}
1937
5411aa8c 1938/* Return TRUE if the address X, taken from a (MEM:MODE X) rtx, is
fd50b071 1939 legitimate, and FALSE otherwise.
1940
1941 On the mn10300, the value in the address register must be
1942 in the same memory space/segment as the effective address.
1943
1944 This is problematical for reload since it does not understand
1945 that base+index != index+base in a memory reference.
1946
1947 Note it is still possible to use reg+reg addressing modes,
1948 it's just much more difficult. For a discussion of a possible
1949 workaround and solution, see the comments in pa.c before the
1950 function record_unscaled_index_insn_codes. */
1951
5574dbdd 1952static bool
fd50b071 1953mn10300_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
5411aa8c 1954{
c8a596d6 1955 rtx base, index;
1956
1957 if (CONSTANT_ADDRESS_P (x))
1958 return !flag_pic || mn10300_legitimate_pic_operand_p (x);
5411aa8c 1959
1960 if (RTX_OK_FOR_BASE_P (x, strict))
c8a596d6 1961 return true;
1962
1963 if (TARGET_AM33 && (mode == SImode || mode == SFmode || mode == HImode))
1964 {
1965 if (GET_CODE (x) == POST_INC)
1966 return RTX_OK_FOR_BASE_P (XEXP (x, 0), strict);
1967 if (GET_CODE (x) == POST_MODIFY)
1968 return (RTX_OK_FOR_BASE_P (XEXP (x, 0), strict)
1969 && CONSTANT_ADDRESS_P (XEXP (x, 1)));
1970 }
1971
1972 if (GET_CODE (x) != PLUS)
1973 return false;
5411aa8c 1974
c8a596d6 1975 base = XEXP (x, 0);
1976 index = XEXP (x, 1);
5411aa8c 1977
c8a596d6 1978 if (!REG_P (base))
1979 return false;
1980 if (REG_P (index))
5411aa8c 1981 {
c8a596d6 1982 /* ??? Without AM33 generalized (Ri,Rn) addressing, reg+reg
1983 addressing is hard to satisfy. */
1984 if (!TARGET_AM33)
1985 return false;
5411aa8c 1986
c8a596d6 1987 return (REGNO_GENERAL_P (REGNO (base), strict)
1988 && REGNO_GENERAL_P (REGNO (index), strict));
1989 }
5411aa8c 1990
c8a596d6 1991 if (!REGNO_STRICT_OK_FOR_BASE_P (REGNO (base), strict))
1992 return false;
5411aa8c 1993
c8a596d6 1994 if (CONST_INT_P (index))
1995 return IN_RANGE (INTVAL (index), -1 - 0x7fffffff, 0x7fffffff);
1996
1997 if (CONSTANT_ADDRESS_P (index))
1998 return !flag_pic || mn10300_legitimate_pic_operand_p (index);
1999
2000 return false;
2001}
2002
2003bool
2004mn10300_regno_in_class_p (unsigned regno, int rclass, bool strict)
2005{
2006 if (regno >= FIRST_PSEUDO_REGISTER)
2007 {
2008 if (!strict)
2009 return true;
2010 if (!reg_renumber)
2011 return false;
2012 regno = reg_renumber[regno];
c2fa9c24 2013 if (regno == INVALID_REGNUM)
2014 return false;
c8a596d6 2015 }
2016 return TEST_HARD_REG_BIT (reg_class_contents[rclass], regno);
2017}
2018
2019rtx
2020mn10300_legitimize_reload_address (rtx x,
2021 enum machine_mode mode ATTRIBUTE_UNUSED,
2022 int opnum, int type,
2023 int ind_levels ATTRIBUTE_UNUSED)
2024{
2025 bool any_change = false;
2026
2027 /* See above re disabling reg+reg addressing for MN103. */
2028 if (!TARGET_AM33)
2029 return NULL_RTX;
2030
2031 if (GET_CODE (x) != PLUS)
2032 return NULL_RTX;
2033
2034 if (XEXP (x, 0) == stack_pointer_rtx)
2035 {
2036 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
2037 GENERAL_REGS, GET_MODE (x), VOIDmode, 0, 0,
2038 opnum, (enum reload_type) type);
2039 any_change = true;
2040 }
2041 if (XEXP (x, 1) == stack_pointer_rtx)
2042 {
2043 push_reload (XEXP (x, 1), NULL_RTX, &XEXP (x, 1), NULL,
2044 GENERAL_REGS, GET_MODE (x), VOIDmode, 0, 0,
2045 opnum, (enum reload_type) type);
2046 any_change = true;
5411aa8c 2047 }
2048
c8a596d6 2049 return any_change ? x : NULL_RTX;
5411aa8c 2050}
2051
ca316360 2052/* Implement TARGET_LEGITIMATE_CONSTANT_P. Returns TRUE if X is a valid
5574dbdd 2053 constant. Note that some "constants" aren't valid, such as TLS
2054 symbols and unconverted GOT-based references, so we eliminate
2055 those here. */
2056
ca316360 2057static bool
2058mn10300_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
5574dbdd 2059{
2060 switch (GET_CODE (x))
2061 {
2062 case CONST:
2063 x = XEXP (x, 0);
2064
2065 if (GET_CODE (x) == PLUS)
2066 {
3626e955 2067 if (! CONST_INT_P (XEXP (x, 1)))
5574dbdd 2068 return false;
2069 x = XEXP (x, 0);
2070 }
2071
2072 /* Only some unspecs are valid as "constants". */
2073 if (GET_CODE (x) == UNSPEC)
2074 {
5574dbdd 2075 switch (XINT (x, 1))
2076 {
5574dbdd 2077 case UNSPEC_PIC:
2078 case UNSPEC_GOT:
2079 case UNSPEC_GOTOFF:
2080 case UNSPEC_PLT:
2081 return true;
2082 default:
2083 return false;
2084 }
2085 }
2086
2087 /* We must have drilled down to a symbol. */
3626e955 2088 if (! mn10300_symbolic_operand (x, Pmode))
5574dbdd 2089 return false;
2090 break;
2091
2092 default:
2093 break;
2094 }
2095
2096 return true;
2097}
2098
4c6c308e 2099/* Undo pic address legitimization for the benefit of debug info. */
2100
2101static rtx
2102mn10300_delegitimize_address (rtx orig_x)
2103{
2104 rtx x = orig_x, ret, addend = NULL;
2105 bool need_mem;
2106
2107 if (MEM_P (x))
2108 x = XEXP (x, 0);
2109 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
2110 return orig_x;
2111
2112 if (XEXP (x, 0) == pic_offset_table_rtx)
2113 ;
2114 /* With the REG+REG addressing of AM33, var-tracking can re-assemble
2115 some odd-looking "addresses" that were never valid in the first place.
2116 We need to look harder to avoid warnings being emitted. */
2117 else if (GET_CODE (XEXP (x, 0)) == PLUS)
2118 {
2119 rtx x0 = XEXP (x, 0);
2120 rtx x00 = XEXP (x0, 0);
2121 rtx x01 = XEXP (x0, 1);
2122
2123 if (x00 == pic_offset_table_rtx)
2124 addend = x01;
2125 else if (x01 == pic_offset_table_rtx)
2126 addend = x00;
2127 else
2128 return orig_x;
2129
2130 }
2131 else
2132 return orig_x;
2133 x = XEXP (x, 1);
2134
2135 if (GET_CODE (x) != CONST)
2136 return orig_x;
2137 x = XEXP (x, 0);
2138 if (GET_CODE (x) != UNSPEC)
2139 return orig_x;
2140
2141 ret = XVECEXP (x, 0, 0);
2142 if (XINT (x, 1) == UNSPEC_GOTOFF)
2143 need_mem = false;
2144 else if (XINT (x, 1) == UNSPEC_GOT)
2145 need_mem = true;
2146 else
2147 return orig_x;
2148
2149 gcc_assert (GET_CODE (ret) == SYMBOL_REF);
2150 if (need_mem != MEM_P (orig_x))
2151 return orig_x;
2152 if (need_mem && addend)
2153 return orig_x;
2154 if (addend)
2155 ret = gen_rtx_PLUS (Pmode, addend, ret);
2156 return ret;
2157}
2158
28f32607 2159/* For addresses, costs are relative to "MOV (Rm),Rn". For AM33 this is
2160 the 3-byte fully general instruction; for MN103 this is the 2-byte form
2161 with an address register. */
2162
ec0457a8 2163static int
d9c5e5f4 2164mn10300_address_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
2165 addr_space_t as ATTRIBUTE_UNUSED, bool speed)
e2aead91 2166{
28f32607 2167 HOST_WIDE_INT i;
2168 rtx base, index;
2169
e2aead91 2170 switch (GET_CODE (x))
2171 {
28f32607 2172 case CONST:
2173 case SYMBOL_REF:
2174 case LABEL_REF:
2175 /* We assume all of these require a 32-bit constant, even though
2176 some symbol and label references can be relaxed. */
2177 return speed ? 1 : 4;
2178
e2aead91 2179 case REG:
28f32607 2180 case SUBREG:
2181 case POST_INC:
2182 return 0;
2183
2184 case POST_MODIFY:
2185 /* Assume any symbolic offset is a 32-bit constant. */
2186 i = (CONST_INT_P (XEXP (x, 1)) ? INTVAL (XEXP (x, 1)) : 0x12345678);
2187 if (IN_RANGE (i, -128, 127))
2188 return speed ? 0 : 1;
2189 if (speed)
2190 return 1;
2191 if (IN_RANGE (i, -0x800000, 0x7fffff))
2192 return 3;
2193 return 4;
2194
2195 case PLUS:
2196 base = XEXP (x, 0);
2197 index = XEXP (x, 1);
2198 if (register_operand (index, SImode))
e2aead91 2199 {
28f32607 2200 /* Attempt to minimize the number of registers in the address.
2201 This is similar to what other ports do. */
2202 if (register_operand (base, SImode))
2203 return 1;
e2aead91 2204
28f32607 2205 base = XEXP (x, 1);
2206 index = XEXP (x, 0);
2207 }
e2aead91 2208
28f32607 2209 /* Assume any symbolic offset is a 32-bit constant. */
2210 i = (CONST_INT_P (XEXP (x, 1)) ? INTVAL (XEXP (x, 1)) : 0x12345678);
2211 if (IN_RANGE (i, -128, 127))
2212 return speed ? 0 : 1;
2213 if (IN_RANGE (i, -32768, 32767))
2214 return speed ? 0 : 2;
2215 return speed ? 2 : 6;
e2aead91 2216
28f32607 2217 default:
20d892d1 2218 return rtx_cost (x, MEM, 0, speed);
28f32607 2219 }
2220}
e2aead91 2221
28f32607 2222/* Implement the TARGET_REGISTER_MOVE_COST hook.
e2aead91 2223
28f32607 2224 Recall that the base value of 2 is required by assumptions elsewhere
2225 in the body of the compiler, and that cost 2 is special-cased as an
2226 early exit from reload meaning no work is required. */
e2aead91 2227
28f32607 2228static int
2229mn10300_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
2230 reg_class_t ifrom, reg_class_t ito)
2231{
2232 enum reg_class from = (enum reg_class) ifrom;
2233 enum reg_class to = (enum reg_class) ito;
2234 enum reg_class scratch, test;
2235
2236 /* Simplify the following code by unifying the fp register classes. */
2237 if (to == FP_ACC_REGS)
2238 to = FP_REGS;
2239 if (from == FP_ACC_REGS)
2240 from = FP_REGS;
2241
2242 /* Diagnose invalid moves by costing them as two moves. */
2243
2244 scratch = NO_REGS;
2245 test = from;
2246 if (to == SP_REGS)
2247 scratch = (TARGET_AM33 ? GENERAL_REGS : ADDRESS_REGS);
85a6eed4 2248 else if (to == MDR_REGS)
2249 scratch = DATA_REGS;
28f32607 2250 else if (to == FP_REGS && to != from)
2251 scratch = GENERAL_REGS;
2252 else
2253 {
2254 test = to;
2255 if (from == SP_REGS)
2256 scratch = (TARGET_AM33 ? GENERAL_REGS : ADDRESS_REGS);
85a6eed4 2257 else if (from == MDR_REGS)
2258 scratch = DATA_REGS;
28f32607 2259 else if (from == FP_REGS && to != from)
2260 scratch = GENERAL_REGS;
2261 }
2262 if (scratch != NO_REGS && !reg_class_subset_p (test, scratch))
2263 return (mn10300_register_move_cost (VOIDmode, from, scratch)
2264 + mn10300_register_move_cost (VOIDmode, scratch, to));
e2aead91 2265
28f32607 2266 /* From here on, all we need consider are legal combinations. */
e2aead91 2267
28f32607 2268 if (optimize_size)
2269 {
2270 /* The scale here is bytes * 2. */
e2aead91 2271
28f32607 2272 if (from == to && (to == ADDRESS_REGS || to == DATA_REGS))
2273 return 2;
e2aead91 2274
28f32607 2275 if (from == SP_REGS)
2276 return (to == ADDRESS_REGS ? 2 : 6);
2277
2278 /* For MN103, all remaining legal moves are two bytes. */
2279 if (TARGET_AM33)
2280 return 4;
2281
2282 if (to == SP_REGS)
2283 return (from == ADDRESS_REGS ? 4 : 6);
2284
2285 if ((from == ADDRESS_REGS || from == DATA_REGS)
2286 && (to == ADDRESS_REGS || to == DATA_REGS))
2287 return 4;
2288
2289 if (to == EXTENDED_REGS)
2290 return (to == from ? 6 : 4);
e2aead91 2291
28f32607 2292 /* What's left are SP_REGS, FP_REGS, or combinations of the above. */
2293 return 6;
2294 }
2295 else
2296 {
2297 /* The scale here is cycles * 2. */
2298
2299 if (to == FP_REGS)
2300 return 8;
2301 if (from == FP_REGS)
2302 return 4;
2303
2304 /* All legal moves between integral registers are single cycle. */
2305 return 2;
e2aead91 2306 }
2307}
fab7adbf 2308
28f32607 2309/* Implement the TARGET_MEMORY_MOVE_COST hook.
2310
2311 Given lack of the form of the address, this must be speed-relative,
2312 though we should never be less expensive than a size-relative register
2313 move cost above. This is not a problem. */
2314
ec0457a8 2315static int
28f32607 2316mn10300_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
2317 reg_class_t iclass, bool in ATTRIBUTE_UNUSED)
ec0457a8 2318{
28f32607 2319 enum reg_class rclass = (enum reg_class) iclass;
2320
2321 if (rclass == FP_REGS)
2322 return 8;
2323 return 6;
ec0457a8 2324}
2325
28f32607 2326/* Implement the TARGET_RTX_COSTS hook.
2327
2328 Speed-relative costs are relative to COSTS_N_INSNS, which is intended
2329 to represent cycles. Size-relative costs are in bytes. */
2330
fab7adbf 2331static bool
20d892d1 2332mn10300_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
2333 int *ptotal, bool speed)
fab7adbf 2334{
28f32607 2335 /* This value is used for SYMBOL_REF etc where we want to pretend
2336 we have a full 32-bit constant. */
2337 HOST_WIDE_INT i = 0x12345678;
2338 int total;
2339
fab7adbf 2340 switch (code)
2341 {
2342 case CONST_INT:
28f32607 2343 i = INTVAL (x);
2344 do_int_costs:
2345 if (speed)
2346 {
2347 if (outer_code == SET)
2348 {
2349 /* 16-bit integer loads have latency 1, 32-bit loads 2. */
2350 if (IN_RANGE (i, -32768, 32767))
2351 total = COSTS_N_INSNS (1);
2352 else
2353 total = COSTS_N_INSNS (2);
2354 }
2355 else
2356 {
2357 /* 16-bit integer operands don't affect latency;
2358 24-bit and 32-bit operands add a cycle. */
2359 if (IN_RANGE (i, -32768, 32767))
2360 total = 0;
2361 else
2362 total = COSTS_N_INSNS (1);
2363 }
2364 }
fab7adbf 2365 else
28f32607 2366 {
2367 if (outer_code == SET)
2368 {
2369 if (i == 0)
2370 total = 1;
2371 else if (IN_RANGE (i, -128, 127))
2372 total = 2;
2373 else if (IN_RANGE (i, -32768, 32767))
2374 total = 3;
2375 else
2376 total = 6;
2377 }
2378 else
2379 {
2380 /* Reference here is ADD An,Dn, vs ADD imm,Dn. */
2381 if (IN_RANGE (i, -128, 127))
2382 total = 0;
2383 else if (IN_RANGE (i, -32768, 32767))
2384 total = 2;
2385 else if (TARGET_AM33 && IN_RANGE (i, -0x01000000, 0x00ffffff))
2386 total = 3;
2387 else
2388 total = 4;
2389 }
2390 }
2391 goto alldone;
fab7adbf 2392
2393 case CONST:
2394 case LABEL_REF:
2395 case SYMBOL_REF:
fab7adbf 2396 case CONST_DOUBLE:
28f32607 2397 /* We assume all of these require a 32-bit constant, even though
2398 some symbol and label references can be relaxed. */
2399 goto do_int_costs;
74f4459c 2400
28f32607 2401 case UNSPEC:
2402 switch (XINT (x, 1))
2403 {
2404 case UNSPEC_PIC:
2405 case UNSPEC_GOT:
2406 case UNSPEC_GOTOFF:
2407 case UNSPEC_PLT:
2408 case UNSPEC_GOTSYM_OFF:
2409 /* The PIC unspecs also resolve to a 32-bit constant. */
2410 goto do_int_costs;
fab7adbf 2411
28f32607 2412 default:
2413 /* Assume any non-listed unspec is some sort of arithmetic. */
2414 goto do_arith_costs;
2415 }
8935d57c 2416
28f32607 2417 case PLUS:
2418 /* Notice the size difference of INC and INC4. */
2419 if (!speed && outer_code == SET && CONST_INT_P (XEXP (x, 1)))
2420 {
2421 i = INTVAL (XEXP (x, 1));
2422 if (i == 1 || i == 4)
2423 {
20d892d1 2424 total = 1 + rtx_cost (XEXP (x, 0), PLUS, 0, speed);
28f32607 2425 goto alldone;
2426 }
2427 }
2428 goto do_arith_costs;
2429
2430 case MINUS:
2431 case AND:
2432 case IOR:
2433 case XOR:
2434 case NOT:
2435 case NEG:
2436 case ZERO_EXTEND:
2437 case SIGN_EXTEND:
2438 case COMPARE:
2439 case BSWAP:
2440 case CLZ:
2441 do_arith_costs:
2442 total = (speed ? COSTS_N_INSNS (1) : 2);
2443 break;
8935d57c 2444
28f32607 2445 case ASHIFT:
2446 /* Notice the size difference of ASL2 and variants. */
2447 if (!speed && CONST_INT_P (XEXP (x, 1)))
2448 switch (INTVAL (XEXP (x, 1)))
2449 {
2450 case 1:
2451 case 2:
2452 total = 1;
2453 goto alldone;
2454 case 3:
2455 case 4:
2456 total = 2;
2457 goto alldone;
2458 }
2459 /* FALLTHRU */
8935d57c 2460
28f32607 2461 case ASHIFTRT:
2462 case LSHIFTRT:
2463 total = (speed ? COSTS_N_INSNS (1) : 3);
2464 goto alldone;
8935d57c 2465
28f32607 2466 case MULT:
2467 total = (speed ? COSTS_N_INSNS (3) : 2);
8935d57c 2468 break;
fb16c776 2469
28f32607 2470 case DIV:
2471 case UDIV:
2472 case MOD:
2473 case UMOD:
2474 total = (speed ? COSTS_N_INSNS (39)
2475 /* Include space to load+retrieve MDR. */
2476 : code == MOD || code == UMOD ? 6 : 4);
8935d57c 2477 break;
fb16c776 2478
28f32607 2479 case MEM:
d9c5e5f4 2480 total = mn10300_address_cost (XEXP (x, 0), GET_MODE (x),
2481 MEM_ADDR_SPACE (x), speed);
28f32607 2482 if (speed)
2483 total = COSTS_N_INSNS (2 + total);
2484 goto alldone;
2485
8935d57c 2486 default:
28f32607 2487 /* Probably not implemented. Assume external call. */
2488 total = (speed ? COSTS_N_INSNS (10) : 7);
2489 break;
8935d57c 2490 }
2491
28f32607 2492 *ptotal = total;
2493 return false;
2494
2495 alldone:
2496 *ptotal = total;
2497 return true;
8935d57c 2498}
28f32607 2499
b87a151a 2500/* If using PIC, mark a SYMBOL_REF for a non-global symbol so that we
2501 may access it using GOTOFF instead of GOT. */
2502
2503static void
b4d5791b 2504mn10300_encode_section_info (tree decl, rtx rtl, int first)
b87a151a 2505{
2506 rtx symbol;
2507
b4d5791b 2508 default_encode_section_info (decl, rtl, first);
2509
3626e955 2510 if (! MEM_P (rtl))
b87a151a 2511 return;
b4d5791b 2512
b87a151a 2513 symbol = XEXP (rtl, 0);
2514 if (GET_CODE (symbol) != SYMBOL_REF)
2515 return;
2516
2517 if (flag_pic)
2518 SYMBOL_REF_FLAG (symbol) = (*targetm.binds_local_p) (decl);
2519}
906bb5c3 2520
2521/* Dispatch tables on the mn10300 are extremely expensive in terms of code
2522 and readonly data size. So we crank up the case threshold value to
2523 encourage a series of if/else comparisons to implement many small switch
2524 statements. In theory, this value could be increased much more if we
2525 were solely optimizing for space, but we keep it "reasonable" to avoid
2526 serious code efficiency lossage. */
2527
5574dbdd 2528static unsigned int
2529mn10300_case_values_threshold (void)
906bb5c3 2530{
2531 return 6;
2532}
3e16f982 2533
3e16f982 2534/* Worker function for TARGET_TRAMPOLINE_INIT. */
2535
2536static void
2537mn10300_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
2538{
3562cea7 2539 rtx mem, disp, fnaddr = XEXP (DECL_RTL (fndecl), 0);
2540
2541 /* This is a strict alignment target, which means that we play
2542 some games to make sure that the locations at which we need
2543 to store <chain> and <disp> wind up at aligned addresses.
2544
2545 0x28 0x00 add 0,d0
2546 0xfc 0xdd mov chain,a1
2547 <chain>
2548 0xf8 0xed 0x00 btst 0,d1
2549 0xdc jmp fnaddr
2550 <disp>
2551
2552 Note that the two extra insns are effectively nops; they
2553 clobber the flags but do not affect the contents of D0 or D1. */
3e16f982 2554
3562cea7 2555 disp = expand_binop (SImode, sub_optab, fnaddr,
29c05e22 2556 plus_constant (Pmode, XEXP (m_tramp, 0), 11),
3562cea7 2557 NULL_RTX, 1, OPTAB_DIRECT);
3e16f982 2558
3562cea7 2559 mem = adjust_address (m_tramp, SImode, 0);
2560 emit_move_insn (mem, gen_int_mode (0xddfc0028, SImode));
2561 mem = adjust_address (m_tramp, SImode, 4);
3e16f982 2562 emit_move_insn (mem, chain_value);
3562cea7 2563 mem = adjust_address (m_tramp, SImode, 8);
2564 emit_move_insn (mem, gen_int_mode (0xdc00edf8, SImode));
2565 mem = adjust_address (m_tramp, SImode, 12);
2566 emit_move_insn (mem, disp);
3e16f982 2567}
e92d3ba8 2568
2569/* Output the assembler code for a C++ thunk function.
2570 THUNK_DECL is the declaration for the thunk function itself, FUNCTION
2571 is the decl for the target function. DELTA is an immediate constant
2572 offset to be added to the THIS parameter. If VCALL_OFFSET is nonzero
2573 the word at the adjusted address *(*THIS' + VCALL_OFFSET) should be
2574 additionally added to THIS. Finally jump to the entry point of
2575 FUNCTION. */
2576
2577static void
2578mn10300_asm_output_mi_thunk (FILE * file,
2579 tree thunk_fndecl ATTRIBUTE_UNUSED,
2580 HOST_WIDE_INT delta,
2581 HOST_WIDE_INT vcall_offset,
2582 tree function)
2583{
2584 const char * _this;
2585
2586 /* Get the register holding the THIS parameter. Handle the case
2587 where there is a hidden first argument for a returned structure. */
2588 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
2589 _this = reg_names [FIRST_ARGUMENT_REGNUM + 1];
2590 else
2591 _this = reg_names [FIRST_ARGUMENT_REGNUM];
2592
2593 fprintf (file, "\t%s Thunk Entry Point:\n", ASM_COMMENT_START);
2594
2595 if (delta)
2596 fprintf (file, "\tadd %d, %s\n", (int) delta, _this);
2597
2598 if (vcall_offset)
2599 {
2600 const char * scratch = reg_names [FIRST_ADDRESS_REGNUM + 1];
2601
2602 fprintf (file, "\tmov %s, %s\n", _this, scratch);
2603 fprintf (file, "\tmov (%s), %s\n", scratch, scratch);
2604 fprintf (file, "\tadd %d, %s\n", (int) vcall_offset, scratch);
2605 fprintf (file, "\tmov (%s), %s\n", scratch, scratch);
2606 fprintf (file, "\tadd %s, %s\n", scratch, _this);
2607 }
2608
2609 fputs ("\tjmp ", file);
2610 assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
2611 putc ('\n', file);
2612}
2613
2614/* Return true if mn10300_output_mi_thunk would be able to output the
2615 assembler code for the thunk function specified by the arguments
2616 it is passed, and false otherwise. */
2617
2618static bool
2619mn10300_can_output_mi_thunk (const_tree thunk_fndecl ATTRIBUTE_UNUSED,
2620 HOST_WIDE_INT delta ATTRIBUTE_UNUSED,
2621 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
2622 const_tree function ATTRIBUTE_UNUSED)
2623{
2624 return true;
2625}
5574dbdd 2626
2627bool
2628mn10300_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
2629{
2630 if (REGNO_REG_CLASS (regno) == FP_REGS
2631 || REGNO_REG_CLASS (regno) == FP_ACC_REGS)
2632 /* Do not store integer values in FP registers. */
2633 return GET_MODE_CLASS (mode) == MODE_FLOAT && ((regno & 1) == 0);
f70166f6 2634
2635 if (! TARGET_AM33 && REGNO_REG_CLASS (regno) == EXTENDED_REGS)
2636 return false;
2637
5574dbdd 2638 if (((regno) & 1) == 0 || GET_MODE_SIZE (mode) == 4)
2639 return true;
2640
2641 if (REGNO_REG_CLASS (regno) == DATA_REGS
2642 || (TARGET_AM33 && REGNO_REG_CLASS (regno) == ADDRESS_REGS)
2643 || REGNO_REG_CLASS (regno) == EXTENDED_REGS)
2644 return GET_MODE_SIZE (mode) <= 4;
2645
2646 return false;
2647}
2648
2649bool
2650mn10300_modes_tieable (enum machine_mode mode1, enum machine_mode mode2)
2651{
2652 if (GET_MODE_CLASS (mode1) == MODE_FLOAT
2653 && GET_MODE_CLASS (mode2) != MODE_FLOAT)
2654 return false;
2655
2656 if (GET_MODE_CLASS (mode2) == MODE_FLOAT
2657 && GET_MODE_CLASS (mode1) != MODE_FLOAT)
2658 return false;
2659
2660 if (TARGET_AM33
2661 || mode1 == mode2
2662 || (GET_MODE_SIZE (mode1) <= 4 && GET_MODE_SIZE (mode2) <= 4))
2663 return true;
2664
2665 return false;
2666}
2667
990679af 2668static int
2669cc_flags_for_mode (enum machine_mode mode)
2670{
2671 switch (mode)
2672 {
2673 case CCmode:
2674 return CC_FLAG_Z | CC_FLAG_N | CC_FLAG_C | CC_FLAG_V;
2675 case CCZNCmode:
2676 return CC_FLAG_Z | CC_FLAG_N | CC_FLAG_C;
2677 case CCZNmode:
2678 return CC_FLAG_Z | CC_FLAG_N;
2679 case CC_FLOATmode:
2680 return -1;
2681 default:
2682 gcc_unreachable ();
2683 }
2684}
2685
2686static int
2687cc_flags_for_code (enum rtx_code code)
2688{
2689 switch (code)
2690 {
2691 case EQ: /* Z */
2692 case NE: /* ~Z */
2693 return CC_FLAG_Z;
2694
2695 case LT: /* N */
2696 case GE: /* ~N */
2697 return CC_FLAG_N;
2698 break;
2699
2700 case GT: /* ~(Z|(N^V)) */
2701 case LE: /* Z|(N^V) */
2702 return CC_FLAG_Z | CC_FLAG_N | CC_FLAG_V;
2703
2704 case GEU: /* ~C */
2705 case LTU: /* C */
2706 return CC_FLAG_C;
2707
2708 case GTU: /* ~(C | Z) */
2709 case LEU: /* C | Z */
2710 return CC_FLAG_Z | CC_FLAG_C;
2711
2712 case ORDERED:
2713 case UNORDERED:
2714 case LTGT:
2715 case UNEQ:
2716 case UNGE:
2717 case UNGT:
2718 case UNLE:
2719 case UNLT:
2720 return -1;
2721
2722 default:
2723 gcc_unreachable ();
2724 }
2725}
2726
5574dbdd 2727enum machine_mode
990679af 2728mn10300_select_cc_mode (enum rtx_code code, rtx x, rtx y ATTRIBUTE_UNUSED)
5574dbdd 2729{
990679af 2730 int req;
2731
2732 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
2733 return CC_FLOATmode;
2734
2735 req = cc_flags_for_code (code);
2736
2737 if (req & CC_FLAG_V)
2738 return CCmode;
2739 if (req & CC_FLAG_C)
2740 return CCZNCmode;
2741 return CCZNmode;
5574dbdd 2742}
4879b320 2743
2744static inline bool
627683ab 2745set_is_load_p (rtx set)
4879b320 2746{
627683ab 2747 return MEM_P (SET_SRC (set));
4879b320 2748}
2749
2750static inline bool
627683ab 2751set_is_store_p (rtx set)
4879b320 2752{
627683ab 2753 return MEM_P (SET_DEST (set));
4879b320 2754}
2755
2756/* Update scheduling costs for situations that cannot be
2757 described using the attributes and DFA machinery.
2758 DEP is the insn being scheduled.
2759 INSN is the previous insn.
2760 COST is the current cycle cost for DEP. */
2761
2762static int
18282db0 2763mn10300_adjust_sched_cost (rtx_insn *insn, rtx link, rtx_insn *dep, int cost)
4879b320 2764{
627683ab 2765 rtx insn_set;
2766 rtx dep_set;
2767 int timings;
4879b320 2768
2769 if (!TARGET_AM33)
2770 return 1;
2771
627683ab 2772 /* We are only interested in pairs of SET. */
2773 insn_set = single_set (insn);
2774 if (!insn_set)
2775 return cost;
4879b320 2776
627683ab 2777 dep_set = single_set (dep);
2778 if (!dep_set)
2779 return cost;
4879b320 2780
2781 /* For the AM34 a load instruction that follows a
2782 store instruction incurs an extra cycle of delay. */
2783 if (mn10300_tune_cpu == PROCESSOR_AM34
627683ab 2784 && set_is_load_p (dep_set)
2785 && set_is_store_p (insn_set))
4879b320 2786 cost += 1;
2787
2788 /* For the AM34 a non-store, non-branch FPU insn that follows
2789 another FPU insn incurs a one cycle throughput increase. */
2790 else if (mn10300_tune_cpu == PROCESSOR_AM34
627683ab 2791 && ! set_is_store_p (insn_set)
4879b320 2792 && ! JUMP_P (insn)
627683ab 2793 && GET_MODE_CLASS (GET_MODE (SET_SRC (dep_set))) == MODE_FLOAT
2794 && GET_MODE_CLASS (GET_MODE (SET_SRC (insn_set))) == MODE_FLOAT)
4879b320 2795 cost += 1;
2796
2797 /* Resolve the conflict described in section 1-7-4 of
2798 Chapter 3 of the MN103E Series Instruction Manual
2799 where it says:
2800
9d75589a 2801 "When the preceding instruction is a CPU load or
4879b320 2802 store instruction, a following FPU instruction
2803 cannot be executed until the CPU completes the
2804 latency period even though there are no register
2805 or flag dependencies between them." */
2806
2807 /* Only the AM33-2 (and later) CPUs have FPU instructions. */
2808 if (! TARGET_AM33_2)
2809 return cost;
2810
2811 /* If a data dependence already exists then the cost is correct. */
2812 if (REG_NOTE_KIND (link) == 0)
2813 return cost;
2814
2815 /* Check that the instruction about to scheduled is an FPU instruction. */
627683ab 2816 if (GET_MODE_CLASS (GET_MODE (SET_SRC (dep_set))) != MODE_FLOAT)
4879b320 2817 return cost;
2818
2819 /* Now check to see if the previous instruction is a load or store. */
627683ab 2820 if (! set_is_load_p (insn_set) && ! set_is_store_p (insn_set))
4879b320 2821 return cost;
2822
2823 /* XXX: Verify: The text of 1-7-4 implies that the restriction
9d75589a 2824 only applies when an INTEGER load/store precedes an FPU
4879b320 2825 instruction, but is this true ? For now we assume that it is. */
627683ab 2826 if (GET_MODE_CLASS (GET_MODE (SET_SRC (insn_set))) != MODE_INT)
4879b320 2827 return cost;
2828
2829 /* Extract the latency value from the timings attribute. */
627683ab 2830 timings = get_attr_timings (insn);
4879b320 2831 return timings < 100 ? (timings % 10) : (timings % 100);
2832}
b2d7ede1 2833
2834static void
2835mn10300_conditional_register_usage (void)
2836{
2837 unsigned int i;
2838
2839 if (!TARGET_AM33)
2840 {
2841 for (i = FIRST_EXTENDED_REGNUM;
2842 i <= LAST_EXTENDED_REGNUM; i++)
2843 fixed_regs[i] = call_used_regs[i] = 1;
2844 }
2845 if (!TARGET_AM33_2)
2846 {
2847 for (i = FIRST_FP_REGNUM;
2848 i <= LAST_FP_REGNUM; i++)
2849 fixed_regs[i] = call_used_regs[i] = 1;
2850 }
2851 if (flag_pic)
2852 fixed_regs[PIC_OFFSET_TABLE_REGNUM] =
2853 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
2854}
7de3ada8 2855
2856/* Worker function for TARGET_MD_ASM_CLOBBERS.
2857 We do this in the mn10300 backend to maintain source compatibility
2858 with the old cc0-based compiler. */
2859
2860static tree
2861mn10300_md_asm_clobbers (tree outputs ATTRIBUTE_UNUSED,
2862 tree inputs ATTRIBUTE_UNUSED,
2863 tree clobbers)
2864{
2865 clobbers = tree_cons (NULL_TREE, build_string (5, "EPSW"),
2866 clobbers);
2867 return clobbers;
2868}
5574dbdd 2869\f
990679af 2870/* A helper function for splitting cbranch patterns after reload. */
2871
2872void
2873mn10300_split_cbranch (enum machine_mode cmp_mode, rtx cmp_op, rtx label_ref)
2874{
2875 rtx flags, x;
2876
2877 flags = gen_rtx_REG (cmp_mode, CC_REG);
2878 x = gen_rtx_COMPARE (cmp_mode, XEXP (cmp_op, 0), XEXP (cmp_op, 1));
2879 x = gen_rtx_SET (VOIDmode, flags, x);
2880 emit_insn (x);
2881
2882 x = gen_rtx_fmt_ee (GET_CODE (cmp_op), VOIDmode, flags, const0_rtx);
2883 x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, label_ref, pc_rtx);
2884 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
2885 emit_jump_insn (x);
2886}
2887
2888/* A helper function for matching parallels that set the flags. */
2889
2890bool
2891mn10300_match_ccmode (rtx insn, enum machine_mode cc_mode)
2892{
2893 rtx op1, flags;
2894 enum machine_mode flags_mode;
2895
2896 gcc_checking_assert (XVECLEN (PATTERN (insn), 0) == 2);
2897
2898 op1 = XVECEXP (PATTERN (insn), 0, 1);
2899 gcc_checking_assert (GET_CODE (SET_SRC (op1)) == COMPARE);
2900
2901 flags = SET_DEST (op1);
2902 flags_mode = GET_MODE (flags);
2903
2904 if (GET_MODE (SET_SRC (op1)) != flags_mode)
2905 return false;
2906 if (GET_MODE_CLASS (flags_mode) != MODE_CC)
2907 return false;
2908
2909 /* Ensure that the mode of FLAGS is compatible with CC_MODE. */
2910 if (cc_flags_for_mode (flags_mode) & ~cc_flags_for_mode (cc_mode))
2911 return false;
2912
2913 return true;
2914}
2915
35c2a6c6 2916/* This function is used to help split:
2917
2918 (set (reg) (and (reg) (int)))
2919
2920 into:
2921
2922 (set (reg) (shift (reg) (int))
2923 (set (reg) (shift (reg) (int))
2924
2925 where the shitfs will be shorter than the "and" insn.
2926
2927 It returns the number of bits that should be shifted. A positive
2928 values means that the low bits are to be cleared (and hence the
2929 shifts should be right followed by left) whereas a negative value
2930 means that the high bits are to be cleared (left followed by right).
2931 Zero is returned when it would not be economical to split the AND. */
2932
990679af 2933int
2934mn10300_split_and_operand_count (rtx op)
2935{
2936 HOST_WIDE_INT val = INTVAL (op);
2937 int count;
2938
2939 if (val < 0)
2940 {
2941 /* High bit is set, look for bits clear at the bottom. */
2942 count = exact_log2 (-val);
2943 if (count < 0)
2944 return 0;
2945 /* This is only size win if we can use the asl2 insn. Otherwise we
2946 would be replacing 1 6-byte insn with 2 3-byte insns. */
2947 if (count > (optimize_insn_for_speed_p () ? 2 : 4))
2948 return 0;
35c2a6c6 2949 return count;
990679af 2950 }
2951 else
2952 {
2953 /* High bit is clear, look for bits set at the bottom. */
2954 count = exact_log2 (val + 1);
2955 count = 32 - count;
2956 /* Again, this is only a size win with asl2. */
2957 if (count > (optimize_insn_for_speed_p () ? 2 : 4))
2958 return 0;
2959 return -count;
2960 }
2961}
2962\f
e7076c21 2963struct liw_data
2964{
2965 enum attr_liw slot;
2966 enum attr_liw_op op;
2967 rtx dest;
2968 rtx src;
2969};
2970
2971/* Decide if the given insn is a candidate for LIW bundling. If it is then
2972 extract the operands and LIW attributes from the insn and use them to fill
2973 in the liw_data structure. Return true upon success or false if the insn
2974 cannot be bundled. */
f9e46c25 2975
2976static bool
e7076c21 2977extract_bundle (rtx insn, struct liw_data * pdata)
f9e46c25 2978{
e7076c21 2979 bool allow_consts = true;
81705807 2980 rtx p;
f9e46c25 2981
e7076c21 2982 gcc_assert (pdata != NULL);
2983
2984 if (insn == NULL_RTX)
2985 return false;
2986 /* Make sure that we are dealing with a simple SET insn. */
f9e46c25 2987 p = single_set (insn);
e7076c21 2988 if (p == NULL_RTX)
2989 return false;
2990
2991 /* Make sure that it could go into one of the LIW pipelines. */
2992 pdata->slot = get_attr_liw (insn);
2993 if (pdata->slot == LIW_BOTH)
2994 return false;
2995
2996 pdata->op = get_attr_liw_op (insn);
2997
e7076c21 2998 switch (pdata->op)
f9e46c25 2999 {
3000 case LIW_OP_MOV:
e7076c21 3001 pdata->dest = SET_DEST (p);
3002 pdata->src = SET_SRC (p);
f9e46c25 3003 break;
3004 case LIW_OP_CMP:
e7076c21 3005 pdata->dest = XEXP (SET_SRC (p), 0);
3006 pdata->src = XEXP (SET_SRC (p), 1);
f9e46c25 3007 break;
3008 case LIW_OP_NONE:
3009 return false;
e7076c21 3010 case LIW_OP_AND:
3011 case LIW_OP_OR:
3012 case LIW_OP_XOR:
3013 /* The AND, OR and XOR long instruction words only accept register arguments. */
3014 allow_consts = false;
3015 /* Fall through. */
f9e46c25 3016 default:
e7076c21 3017 pdata->dest = SET_DEST (p);
3018 pdata->src = XEXP (SET_SRC (p), 1);
f9e46c25 3019 break;
3020 }
3021
e7076c21 3022 if (! REG_P (pdata->dest))
3023 return false;
3024
3025 if (REG_P (pdata->src))
3026 return true;
3027
3028 return allow_consts && satisfies_constraint_O (pdata->src);
f9e46c25 3029}
3030
e7076c21 3031/* Make sure that it is OK to execute LIW1 and LIW2 in parallel. GCC generated
3032 the instructions with the assumption that LIW1 would be executed before LIW2
3033 so we must check for overlaps between their sources and destinations. */
f9e46c25 3034
3035static bool
e7076c21 3036check_liw_constraints (struct liw_data * pliw1, struct liw_data * pliw2)
3037{
3038 /* Check for slot conflicts. */
3039 if (pliw2->slot == pliw1->slot && pliw1->slot != LIW_EITHER)
f9e46c25 3040 return false;
3041
e7076c21 3042 /* If either operation is a compare, then "dest" is really an input; the real
3043 destination is CC_REG. So these instructions need different checks. */
3044
3045 /* Changing "CMP ; OP" into "CMP | OP" is OK because the comparison will
3046 check its values prior to any changes made by OP. */
3047 if (pliw1->op == LIW_OP_CMP)
3048 {
3049 /* Two sequential comparisons means dead code, which ought to
3050 have been eliminated given that bundling only happens with
3051 optimization. We cannot bundle them in any case. */
3052 gcc_assert (pliw1->op != pliw2->op);
3053 return true;
3054 }
f9e46c25 3055
e7076c21 3056 /* Changing "OP ; CMP" into "OP | CMP" does not work if the value being compared
3057 is the destination of OP, as the CMP will look at the old value, not the new
3058 one. */
3059 if (pliw2->op == LIW_OP_CMP)
f9e46c25 3060 {
e7076c21 3061 if (REGNO (pliw2->dest) == REGNO (pliw1->dest))
3062 return false;
3063
3064 if (REG_P (pliw2->src))
3065 return REGNO (pliw2->src) != REGNO (pliw1->dest);
3066
3067 return true;
3068 }
3069
3070 /* Changing "OP1 ; OP2" into "OP1 | OP2" does not work if they both write to the
3071 same destination register. */
3072 if (REGNO (pliw2->dest) == REGNO (pliw1->dest))
3073 return false;
3074
3075 /* Changing "OP1 ; OP2" into "OP1 | OP2" generally does not work if the destination
3076 of OP1 is the source of OP2. The exception is when OP1 is a MOVE instruction when
3077 we can replace the source in OP2 with the source of OP1. */
3078 if (REG_P (pliw2->src) && REGNO (pliw2->src) == REGNO (pliw1->dest))
3079 {
3080 if (pliw1->op == LIW_OP_MOV && REG_P (pliw1->src))
f9e46c25 3081 {
e7076c21 3082 if (! REG_P (pliw1->src)
3083 && (pliw2->op == LIW_OP_AND
3084 || pliw2->op == LIW_OP_OR
3085 || pliw2->op == LIW_OP_XOR))
3086 return false;
3087
3088 pliw2->src = pliw1->src;
f9e46c25 3089 return true;
3090 }
3091 return false;
3092 }
3093
e7076c21 3094 /* Everything else is OK. */
f9e46c25 3095 return true;
3096}
3097
f9e46c25 3098/* Combine pairs of insns into LIW bundles. */
3099
3100static void
3101mn10300_bundle_liw (void)
3102{
3103 rtx r;
3104
3105 for (r = get_insns (); r != NULL_RTX; r = next_nonnote_nondebug_insn (r))
3106 {
e7076c21 3107 rtx insn1, insn2;
3108 struct liw_data liw1, liw2;
f9e46c25 3109
3110 insn1 = r;
e7076c21 3111 if (! extract_bundle (insn1, & liw1))
f9e46c25 3112 continue;
3113
3114 insn2 = next_nonnote_nondebug_insn (insn1);
e7076c21 3115 if (! extract_bundle (insn2, & liw2))
f9e46c25 3116 continue;
3117
e7076c21 3118 /* Check for source/destination overlap. */
3119 if (! check_liw_constraints (& liw1, & liw2))
f9e46c25 3120 continue;
3121
e7076c21 3122 if (liw1.slot == LIW_OP2 || liw2.slot == LIW_OP1)
f9e46c25 3123 {
e7076c21 3124 struct liw_data temp;
3125
3126 temp = liw1;
f9e46c25 3127 liw1 = liw2;
e7076c21 3128 liw2 = temp;
f9e46c25 3129 }
3130
f9e46c25 3131 delete_insn (insn2);
3132
e7076c21 3133 if (liw1.op == LIW_OP_CMP)
3134 insn2 = gen_cmp_liw (liw2.dest, liw2.src, liw1.dest, liw1.src,
3135 GEN_INT (liw2.op));
3136 else if (liw2.op == LIW_OP_CMP)
3137 insn2 = gen_liw_cmp (liw1.dest, liw1.src, liw2.dest, liw2.src,
3138 GEN_INT (liw1.op));
f9e46c25 3139 else
e7076c21 3140 insn2 = gen_liw (liw1.dest, liw2.dest, liw1.src, liw2.src,
3141 GEN_INT (liw1.op), GEN_INT (liw2.op));
f9e46c25 3142
3143 insn2 = emit_insn_after (insn2, insn1);
3144 delete_insn (insn1);
3145 r = insn2;
3146 }
3147}
3148
f9b3e8f5 3149#define DUMP(reason, insn) \
3150 do \
3151 { \
3152 if (dump_file) \
3153 { \
3154 fprintf (dump_file, reason "\n"); \
3155 if (insn != NULL_RTX) \
3156 print_rtl_single (dump_file, insn); \
3157 fprintf(dump_file, "\n"); \
3158 } \
3159 } \
3160 while (0)
3161
3162/* Replace the BRANCH insn with a Lcc insn that goes to LABEL.
3163 Insert a SETLB insn just before LABEL. */
3164
3165static void
3166mn10300_insert_setlb_lcc (rtx label, rtx branch)
3167{
3168 rtx lcc, comparison, cmp_reg;
3169
3170 if (LABEL_NUSES (label) > 1)
3171 {
3172 rtx insn;
3173
3174 /* This label is used both as an entry point to the loop
3175 and as a loop-back point for the loop. We need to separate
3176 these two functions so that the SETLB happens upon entry,
3177 but the loop-back does not go to the SETLB instruction. */
3178 DUMP ("Inserting SETLB insn after:", label);
3179 insn = emit_insn_after (gen_setlb (), label);
3180 label = gen_label_rtx ();
3181 emit_label_after (label, insn);
3182 DUMP ("Created new loop-back label:", label);
3183 }
3184 else
3185 {
3186 DUMP ("Inserting SETLB insn before:", label);
3187 emit_insn_before (gen_setlb (), label);
3188 }
3189
3190 comparison = XEXP (SET_SRC (PATTERN (branch)), 0);
3191 cmp_reg = XEXP (comparison, 0);
3192 gcc_assert (REG_P (cmp_reg));
3193
3194 /* If the comparison has not already been split out of the branch
3195 then do so now. */
3196 gcc_assert (REGNO (cmp_reg) == CC_REG);
3197
3198 if (GET_MODE (cmp_reg) == CC_FLOATmode)
3199 lcc = gen_FLcc (comparison, label);
3200 else
3201 lcc = gen_Lcc (comparison, label);
3202
3203 lcc = emit_jump_insn_before (lcc, branch);
3204 mark_jump_label (XVECEXP (PATTERN (lcc), 0, 0), lcc, 0);
bd2b2481 3205 JUMP_LABEL (lcc) = label;
f9b3e8f5 3206 DUMP ("Replacing branch insn...", branch);
3207 DUMP ("... with Lcc insn:", lcc);
3208 delete_insn (branch);
3209}
3210
3211static bool
161dfa6e 3212mn10300_block_contains_call (basic_block block)
f9b3e8f5 3213{
91a55c11 3214 rtx_insn *insn;
f9b3e8f5 3215
3216 FOR_BB_INSNS (block, insn)
3217 if (CALL_P (insn))
3218 return true;
3219
3220 return false;
3221}
3222
3223static bool
3224mn10300_loop_contains_call_insn (loop_p loop)
3225{
3226 basic_block * bbs;
3227 bool result = false;
3228 unsigned int i;
3229
3230 bbs = get_loop_body (loop);
3231
3232 for (i = 0; i < loop->num_nodes; i++)
3233 if (mn10300_block_contains_call (bbs[i]))
3234 {
3235 result = true;
3236 break;
3237 }
3238
3239 free (bbs);
3240 return result;
3241}
3242
3243static void
3244mn10300_scan_for_setlb_lcc (void)
3245{
f9b3e8f5 3246 loop_p loop;
3247
3248 DUMP ("Looking for loops that can use the SETLB insn", NULL_RTX);
3249
3250 df_analyze ();
3251 compute_bb_for_insn ();
3252
3253 /* Find the loops. */
319f4d7d 3254 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
f9b3e8f5 3255
3256 /* FIXME: For now we only investigate innermost loops. In practice however
3257 if an inner loop is not suitable for use with the SETLB/Lcc insns, it may
3258 be the case that its parent loop is suitable. Thus we should check all
3259 loops, but work from the innermost outwards. */
f21d4d00 3260 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
f9b3e8f5 3261 {
3262 const char * reason = NULL;
3263
3264 /* Check to see if we can modify this loop. If we cannot
3265 then set 'reason' to describe why it could not be done. */
3266 if (loop->latch == NULL)
3267 reason = "it contains multiple latches";
3268 else if (loop->header != loop->latch)
3269 /* FIXME: We could handle loops that span multiple blocks,
3270 but this requires a lot more work tracking down the branches
3271 that need altering, so for now keep things simple. */
3272 reason = "the loop spans multiple blocks";
3273 else if (mn10300_loop_contains_call_insn (loop))
3274 reason = "it contains CALL insns";
3275 else
3276 {
3277 rtx branch = BB_END (loop->latch);
3278
3279 gcc_assert (JUMP_P (branch));
3280 if (single_set (branch) == NULL_RTX || ! any_condjump_p (branch))
3281 /* We cannot optimize tablejumps and the like. */
3282 /* FIXME: We could handle unconditional jumps. */
3283 reason = "it is not a simple loop";
3284 else
3285 {
3286 rtx label;
3287
3288 if (dump_file)
3289 flow_loop_dump (loop, dump_file, NULL, 0);
3290
3291 label = BB_HEAD (loop->header);
3292 gcc_assert (LABEL_P (label));
3293
3294 mn10300_insert_setlb_lcc (label, branch);
3295 }
3296 }
3297
3298 if (dump_file && reason != NULL)
3299 fprintf (dump_file, "Loop starting with insn %d is not suitable because %s\n",
3300 INSN_UID (BB_HEAD (loop->header)),
3301 reason);
3302 }
3303
319f4d7d 3304 loop_optimizer_finalize ();
f9b3e8f5 3305
3306 df_finish_pass (false);
3307
3308 DUMP ("SETLB scan complete", NULL_RTX);
3309}
3310
f9e46c25 3311static void
3312mn10300_reorg (void)
3313{
f9b3e8f5 3314 /* These are optimizations, so only run them if optimizing. */
3315 if (TARGET_AM33 && (optimize > 0 || optimize_size))
f9e46c25 3316 {
f9b3e8f5 3317 if (TARGET_ALLOW_SETLB)
3318 mn10300_scan_for_setlb_lcc ();
3319
f9e46c25 3320 if (TARGET_ALLOW_LIW)
3321 mn10300_bundle_liw ();
3322 }
3323}
3324\f
3626e955 3325/* Initialize the GCC target structure. */
3326
f9e46c25 3327#undef TARGET_MACHINE_DEPENDENT_REORG
3328#define TARGET_MACHINE_DEPENDENT_REORG mn10300_reorg
3329
3626e955 3330#undef TARGET_ASM_ALIGNED_HI_OP
3331#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
3332
3333#undef TARGET_LEGITIMIZE_ADDRESS
3334#define TARGET_LEGITIMIZE_ADDRESS mn10300_legitimize_address
3335
28f32607 3336#undef TARGET_ADDRESS_COST
3337#define TARGET_ADDRESS_COST mn10300_address_cost
3338#undef TARGET_REGISTER_MOVE_COST
3339#define TARGET_REGISTER_MOVE_COST mn10300_register_move_cost
3340#undef TARGET_MEMORY_MOVE_COST
3341#define TARGET_MEMORY_MOVE_COST mn10300_memory_move_cost
3626e955 3342#undef TARGET_RTX_COSTS
3343#define TARGET_RTX_COSTS mn10300_rtx_costs
3626e955 3344
3345#undef TARGET_ASM_FILE_START
3346#define TARGET_ASM_FILE_START mn10300_file_start
3347#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
3348#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
3349
22680c28 3350#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
3351#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA mn10300_asm_output_addr_const_extra
3352
3626e955 3353#undef TARGET_OPTION_OVERRIDE
3354#define TARGET_OPTION_OVERRIDE mn10300_option_override
3355
3356#undef TARGET_ENCODE_SECTION_INFO
3357#define TARGET_ENCODE_SECTION_INFO mn10300_encode_section_info
3358
3359#undef TARGET_PROMOTE_PROTOTYPES
3360#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
3361#undef TARGET_RETURN_IN_MEMORY
3362#define TARGET_RETURN_IN_MEMORY mn10300_return_in_memory
3363#undef TARGET_PASS_BY_REFERENCE
3364#define TARGET_PASS_BY_REFERENCE mn10300_pass_by_reference
3365#undef TARGET_CALLEE_COPIES
3366#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
3367#undef TARGET_ARG_PARTIAL_BYTES
3368#define TARGET_ARG_PARTIAL_BYTES mn10300_arg_partial_bytes
dc67179a 3369#undef TARGET_FUNCTION_ARG
3370#define TARGET_FUNCTION_ARG mn10300_function_arg
3371#undef TARGET_FUNCTION_ARG_ADVANCE
3372#define TARGET_FUNCTION_ARG_ADVANCE mn10300_function_arg_advance
3626e955 3373
3374#undef TARGET_EXPAND_BUILTIN_SAVEREGS
3375#define TARGET_EXPAND_BUILTIN_SAVEREGS mn10300_builtin_saveregs
3376#undef TARGET_EXPAND_BUILTIN_VA_START
3377#define TARGET_EXPAND_BUILTIN_VA_START mn10300_va_start
3378
3379#undef TARGET_CASE_VALUES_THRESHOLD
3380#define TARGET_CASE_VALUES_THRESHOLD mn10300_case_values_threshold
3381
3382#undef TARGET_LEGITIMATE_ADDRESS_P
3383#define TARGET_LEGITIMATE_ADDRESS_P mn10300_legitimate_address_p
4c6c308e 3384#undef TARGET_DELEGITIMIZE_ADDRESS
3385#define TARGET_DELEGITIMIZE_ADDRESS mn10300_delegitimize_address
ca316360 3386#undef TARGET_LEGITIMATE_CONSTANT_P
3387#define TARGET_LEGITIMATE_CONSTANT_P mn10300_legitimate_constant_p
3626e955 3388
029ca87f 3389#undef TARGET_PREFERRED_RELOAD_CLASS
3390#define TARGET_PREFERRED_RELOAD_CLASS mn10300_preferred_reload_class
3391#undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
c78ac668 3392#define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS \
3393 mn10300_preferred_output_reload_class
3394#undef TARGET_SECONDARY_RELOAD
3395#define TARGET_SECONDARY_RELOAD mn10300_secondary_reload
029ca87f 3396
3626e955 3397#undef TARGET_TRAMPOLINE_INIT
3398#define TARGET_TRAMPOLINE_INIT mn10300_trampoline_init
3399
3400#undef TARGET_FUNCTION_VALUE
3401#define TARGET_FUNCTION_VALUE mn10300_function_value
3402#undef TARGET_LIBCALL_VALUE
3403#define TARGET_LIBCALL_VALUE mn10300_libcall_value
3404
3405#undef TARGET_ASM_OUTPUT_MI_THUNK
3406#define TARGET_ASM_OUTPUT_MI_THUNK mn10300_asm_output_mi_thunk
3407#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
3408#define TARGET_ASM_CAN_OUTPUT_MI_THUNK mn10300_can_output_mi_thunk
3409
4879b320 3410#undef TARGET_SCHED_ADJUST_COST
3411#define TARGET_SCHED_ADJUST_COST mn10300_adjust_sched_cost
3412
b2d7ede1 3413#undef TARGET_CONDITIONAL_REGISTER_USAGE
3414#define TARGET_CONDITIONAL_REGISTER_USAGE mn10300_conditional_register_usage
3415
7de3ada8 3416#undef TARGET_MD_ASM_CLOBBERS
3417#define TARGET_MD_ASM_CLOBBERS mn10300_md_asm_clobbers
3418
08207c2f 3419#undef TARGET_FLAGS_REGNUM
3420#define TARGET_FLAGS_REGNUM CC_REG
3421
3626e955 3422struct gcc_target targetm = TARGET_INITIALIZER;