]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/mn10300/mn10300.h
Merge in gcc2-ss-010999
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
CommitLineData
956d6950 1/* Definitions of target machine for GNU compiler. Matsushita MN10300 series
c5c76735 2 Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
11bb1f11
JL
3 Contributed by Jeff Law (law@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22#include "svr4.h"
23
24#undef ASM_SPEC
25#undef ASM_FINAL_SPEC
26#undef LIB_SPEC
27#undef ENDFILE_SPEC
28#undef LINK_SPEC
29#undef STARTFILE_SPEC
30
31/* Names to predefine in the preprocessor for this target machine. */
32
33#define CPP_PREDEFINES "-D__mn10300__ -D__MN10300__"
34
35/* Run-time compilation parameters selecting different hardware subsets. */
36
37extern int target_flags;
38
39/* Macros used in the machine description to test the flags. */
40
41/* Macro to define tables used to set the flags.
42 This is a list in braces of pairs in braces,
43 each pair being { "NAME", VALUE }
44 where VALUE is the bits to set or minus the bits to clear.
45 An empty string NAME is used to identify the default VALUE. */
46
a6f7ba17
JL
47/* Generate code to work around mul/mulq bugs on the mn10300. */
48#define TARGET_MULT_BUG (target_flags & 0x1)
11bb1f11 49#define TARGET_SWITCHES \
8ae4a315
JL
50 {{ "mult-bug", 0x1, "Work around hardware multiply bug"}, \
51 { "no-mult-bug", -0x1, "Do not work around hardware multiply bug"},\
880b8fb8 52 { "", TARGET_DEFAULT, NULL}}
11bb1f11
JL
53
54#ifndef TARGET_DEFAULT
a6f7ba17 55#define TARGET_DEFAULT 0x1
11bb1f11
JL
56#endif
57
58/* Print subsidiary information on the compiler version in use. */
59
60#define TARGET_VERSION fprintf (stderr, " (MN10300)");
61
62\f
63/* Target machine storage layout */
64
65/* Define this if most significant bit is lowest numbered
66 in instructions that operate on numbered bit-fields.
67 This is not true on the Matsushita MN1003. */
68#define BITS_BIG_ENDIAN 0
69
70/* Define this if most significant byte of a word is the lowest numbered. */
71/* This is not true on the Matsushita MN10300. */
72#define BYTES_BIG_ENDIAN 0
73
74/* Define this if most significant word of a multiword number is lowest
75 numbered.
76 This is not true on the Matsushita MN10300. */
77#define WORDS_BIG_ENDIAN 0
78
79/* Number of bits in an addressable storage unit */
80#define BITS_PER_UNIT 8
81
82/* Width in bits of a "word", which is the contents of a machine register.
83 Note that this is not necessarily the width of data type `int';
84 if using 16-bit ints on a 68000, this would still be 32.
85 But on a machine with 16-bit registers, this would be 16. */
86#define BITS_PER_WORD 32
87
88/* Width of a word, in units (bytes). */
89#define UNITS_PER_WORD 4
90
91/* Width in bits of a pointer.
92 See also the macro `Pmode' defined below. */
93#define POINTER_SIZE 32
94
95/* Allocation boundary (in *bits*) for storing arguments in argument list. */
96#define PARM_BOUNDARY 32
97
98/* The stack goes in 32 bit lumps. */
99#define STACK_BOUNDARY 32
100
101/* Allocation boundary (in *bits*) for the code of a function.
102 8 is the minimum boundary; it's unclear if bigger alignments
103 would improve performance. */
104#define FUNCTION_BOUNDARY 8
105
106/* No data type wants to be aligned rounder than this. */
107#define BIGGEST_ALIGNMENT 32
108
109/* Alignment of field after `int : 0' in a structure. */
110#define EMPTY_FIELD_BOUNDARY 32
111
112/* Define this if move instructions will actually fail to work
113 when given unaligned data. */
114#define STRICT_ALIGNMENT 1
115
116/* Define this as 1 if `char' should by default be signed; else as 0. */
117#define DEFAULT_SIGNED_CHAR 0
118
119/* Define results of standard character escape sequences. */
120#define TARGET_BELL 007
121#define TARGET_BS 010
122#define TARGET_TAB 011
123#define TARGET_NEWLINE 012
124#define TARGET_VT 013
125#define TARGET_FF 014
126#define TARGET_CR 015
127\f
128/* Standard register usage. */
129
130/* Number of actual hardware registers.
131 The hardware registers are assigned numbers for the compiler
132 from 0 to just below FIRST_PSEUDO_REGISTER.
133
134 All registers that the compiler knows about must be given numbers,
135 even those that are not normally considered general registers. */
136
777fbf09 137#define FIRST_PSEUDO_REGISTER 10
11bb1f11
JL
138
139/* 1 for registers that have pervasive standard uses
140 and are not available for the register allocator. */
141
142#define FIXED_REGISTERS \
777fbf09 143 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}
11bb1f11
JL
144
145/* 1 for registers not available across function calls.
146 These must include the FIXED_REGISTERS and also any
147 registers that can be used without being saved.
148 The latter must include the registers where values are returned
149 and the register where structure-value addresses are passed.
150 Aside from that, you can include as many other registers as you
151 like. */
152
153#define CALL_USED_REGISTERS \
777fbf09 154 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1}
11bb1f11
JL
155
156#define REG_ALLOC_ORDER \
777fbf09 157 { 0, 1, 4, 5, 2, 3, 6, 7, 8, 9}
11bb1f11
JL
158
159/* Return number of consecutive hard regs needed starting at reg REGNO
160 to hold something of mode MODE.
161
162 This is ordinarily the length in words of a value of mode MODE
163 but can be less for certain modes in special long registers. */
164
165#define HARD_REGNO_NREGS(REGNO, MODE) \
166 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
167
168/* Value is 1 if hard register REGNO can hold a value of machine-mode
169 MODE. */
170
171#define HARD_REGNO_MODE_OK(REGNO, MODE) \
172 (REGNO_REG_CLASS (REGNO) == DATA_REGS \
173 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
174 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
175
176/* Value is 1 if it is a good idea to tie two pseudo registers
177 when one has mode MODE1 and one has mode MODE2.
178 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
179 for any hard reg, then this must be 0 for correct output. */
180#define MODES_TIEABLE_P(MODE1, MODE2) \
2fed503d 181 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
11bb1f11 182
4246e0c5
JL
183/* 4 data, and effectively 3 address registers is small as far as I'm
184 concerned. */
185#define SMALL_REGISTER_CLASSES 1
11bb1f11
JL
186\f
187/* Define the classes of registers for register constraints in the
188 machine description. Also define ranges of constants.
189
190 One of the classes must always be named ALL_REGS and include all hard regs.
191 If there is more than one class, another class must be named NO_REGS
192 and contain no registers.
193
194 The name GENERAL_REGS must be the name of a class (or an alias for
195 another name such as ALL_REGS). This is the class of registers
196 that is allowed by "g" or "r" in a register constraint.
197 Also, registers outside this class are allocated only when
198 instructions express preferences for them.
199
200 The classes must be numbered in nondecreasing order; that is,
201 a larger-numbered class must never be contained completely
202 in a smaller-numbered class.
203
204 For any two classes, it is very desirable that there be another
205 class that represents their union. */
206
207enum reg_class {
4d1a91c2
JL
208 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
209 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
210 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
11bb1f11
JL
211};
212
213#define N_REG_CLASSES (int) LIM_REG_CLASSES
214
215/* Give names of register classes as strings for dump file. */
216
217#define REG_CLASS_NAMES \
218{ "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
777fbf09
JL
219 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
220 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
11bb1f11
JL
221
222/* Define which registers fit in which classes.
223 This is an initializer for a vector of HARD_REG_SET
224 of length N_REG_CLASSES. */
225
226#define REG_CLASS_CONTENTS \
227{ 0, /* No regs */ \
228 0x00f, /* DATA_REGS */ \
777fbf09
JL
229 0x1f0, /* ADDRESS_REGS */ \
230 0x200, /* SP_REGS */ \
231 0x1ff, /* DATA_OR_ADDRESS_REGS */\
232 0x1f0, /* SP_OR_ADDRESS_REGS */\
233 0x1ff, /* GENERAL_REGS */ \
234 0x3ff, /* ALL_REGS */ \
11bb1f11
JL
235}
236
237/* The same information, inverted:
238 Return the class number of the smallest class containing
239 reg number REGNO. This could be a conditional expression
240 or could index an array. */
241
242#define REGNO_REG_CLASS(REGNO) \
243 ((REGNO) < 4 ? DATA_REGS : \
777fbf09 244 (REGNO) < 9 ? ADDRESS_REGS : \
4d1a91c2 245 (REGNO) == 9 ? SP_REGS : 0)
11bb1f11
JL
246
247/* The class value for index registers, and the one for base regs. */
11bb1f11
JL
248#define INDEX_REG_CLASS DATA_REGS
249#define BASE_REG_CLASS SP_OR_ADDRESS_REGS
250
251/* Get reg_class from a letter such as appears in the machine description. */
252
253#define REG_CLASS_FROM_LETTER(C) \
254 ((C) == 'd' ? DATA_REGS : \
255 (C) == 'a' ? ADDRESS_REGS : \
4d1a91c2 256 (C) == 'y' ? SP_REGS : NO_REGS)
11bb1f11
JL
257
258/* Macros to check register numbers against specific register classes. */
259
260/* These assume that REGNO is a hard or pseudo reg number.
261 They give nonzero only if REGNO is a hard reg of the suitable class
262 or a pseudo reg currently allocated to a suitable hard reg.
263 Since they use reg_renumber, they are safe only once reg_renumber
264 has been allocated, which happens in local-alloc.c. */
265
266#define REGNO_OK_FOR_BASE_P(regno) \
267 (((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \
268 || (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER))
269
4d1a91c2
JL
270#define REGNO_OK_FOR_BIT_BASE_P(regno) \
271 (((regno) > 3 && regno < 10) \
272 || (reg_renumber[regno] > 3 && reg_renumber[regno] < 10))
273
11bb1f11
JL
274#define REGNO_OK_FOR_INDEX_P(regno) \
275 (((regno) >= 0 && regno < 4) \
276 || (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4))
277
278
279/* Given an rtx X being reloaded into a reg required to be
280 in class CLASS, return the class of reg to actually use.
281 In general this is just CLASS; but on some machines
282 in some cases it is preferable to use a more restrictive class. */
283
284#define PREFERRED_RELOAD_CLASS(X,CLASS) \
285 (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS)
286
777fbf09
JL
287#define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
288 (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS)
289
11bb1f11
JL
290#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
291 ((MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
292
293#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
294 secondary_reload_class(CLASS,MODE,IN)
295
296/* Return the maximum number of consecutive registers
297 needed to represent mode MODE in a register of class CLASS. */
298
299#define CLASS_MAX_NREGS(CLASS, MODE) \
300 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
301
302/* The letters I, J, K, L, M, N, O, P in a register constraint string
303 can be used to stand for particular ranges of immediate operands.
304 This macro defines what the ranges are.
305 C is the letter, and VALUE is a constant value.
306 Return 1 if VALUE is in the range specified by C. */
307
308#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
309#define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
310
311#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
312#define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
313#define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
314#define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
777fbf09 315#define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
38c37a0e 316#define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
11bb1f11
JL
317
318#define CONST_OK_FOR_LETTER_P(VALUE, C) \
319 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
320 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
321 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
777fbf09 322 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
38c37a0e
JL
323 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
324 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
11bb1f11
JL
325
326
327/* Similar, but for floating constants, and defining letters G and H.
328 Here VALUE is the CONST_DOUBLE rtx itself.
329
330 `G' is a floating-point zero. */
331
38c37a0e
JL
332#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
333 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
334 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
11bb1f11
JL
335
336\f
337/* Stack layout; function entry, exit and calling. */
338
339/* Define this if pushing a word on the stack
340 makes the stack pointer a smaller address. */
341
342#define STACK_GROWS_DOWNWARD
343
344/* Define this if the nominal address of the stack frame
345 is at the high-address end of the local variables;
346 that is, each additional local variable allocated
347 goes at a more negative offset in the frame. */
348
349#define FRAME_GROWS_DOWNWARD
350
351/* Offset within stack frame to start allocating local variables at.
352 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
353 first local allocated. Otherwise, it is the offset to the BEGINNING
354 of the first local allocated. */
355
6e86170d 356#define STARTING_FRAME_OFFSET 0
11bb1f11
JL
357
358/* Offset of first parameter from the argument pointer register value. */
359/* Is equal to the size of the saved fp + pc, even if an fp isn't
360 saved since the value is used before we know. */
361
22ef4e9b 362#define FIRST_PARM_OFFSET(FNDECL) 4
11bb1f11
JL
363
364/* Specify the registers used for certain standard purposes.
365 The values of these macros are register numbers. */
366
367/* Register to use for pushing function arguments. */
777fbf09 368#define STACK_POINTER_REGNUM 9
11bb1f11
JL
369
370/* Base register for access to local variables of the function. */
371#define FRAME_POINTER_REGNUM 7
372
777fbf09
JL
373/* Base register for access to arguments of the function. This
374 is a fake register and will be eliminated into either the frame
375 pointer or stack pointer. */
376#define ARG_POINTER_REGNUM 8
11bb1f11
JL
377
378/* Register in which static-chain is passed to a function. */
379#define STATIC_CHAIN_REGNUM 5
380
777fbf09
JL
381#define ELIMINABLE_REGS \
382{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
383 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
384 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
385
386#define CAN_ELIMINATE(FROM, TO) 1
11bb1f11 387
777fbf09
JL
388#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
389 OFFSET = initial_offset (FROM, TO)
11bb1f11 390
460f4b9d
JL
391/* We can debug without frame pointers on the mn10300, so eliminate
392 them whenever possible. */
393#define FRAME_POINTER_REQUIRED 0
777fbf09 394#define CAN_DEBUG_WITHOUT_FP
11bb1f11
JL
395
396/* A guess for the MN10300. */
397#define PROMOTE_PROTOTYPES 1
398
399/* Value is the number of bytes of arguments automatically
400 popped when returning from a subroutine call.
401 FUNDECL is the declaration node of the function (as a tree),
402 FUNTYPE is the data type of the function (as a tree),
403 or for a library call it is an identifier node for the subroutine name.
404 SIZE is the number of bytes of arguments passed on the stack. */
405
406#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
407
22ef4e9b
JL
408/* We use d0/d1 for passing parameters, so allocate 8 bytes of space
409 for a register flushback area. */
410#define REG_PARM_STACK_SPACE(DECL) 8
460f4b9d
JL
411#define OUTGOING_REG_PARM_STACK_SPACE
412#define ACCUMULATE_OUTGOING_ARGS
3dbc43d1
JL
413
414/* So we can allocate space for return pointers once for the function
415 instead of around every call. */
416#define STACK_POINTER_OFFSET 4
6e86170d 417
11bb1f11
JL
418/* 1 if N is a possible register number for function argument passing.
419 On the MN10300, no registers are used in this way. */
420
22ef4e9b
JL
421#define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
422
11bb1f11
JL
423\f
424/* Define a data type for recording info about an argument list
425 during the scan of that argument list. This data type should
426 hold all necessary information about the function itself
427 and about the args processed so far, enough to enable macros
428 such as FUNCTION_ARG to determine where the next arg should go.
429
430 On the MN10300, this is a single integer, which is a number of bytes
431 of arguments scanned so far. */
432
22ef4e9b
JL
433#define CUMULATIVE_ARGS struct cum_arg
434struct cum_arg {int nbytes; };
11bb1f11
JL
435
436/* Initialize a variable CUM of type CUMULATIVE_ARGS
437 for a call to a function whose data type is FNTYPE.
438 For a library call, FNTYPE is 0.
439
440 On the MN10300, the offset starts at 0. */
441
442#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
22ef4e9b 443 ((CUM).nbytes = 0)
11bb1f11
JL
444
445/* Update the data in CUM to advance over an argument
446 of mode MODE and data type TYPE.
447 (TYPE is null for libcalls where that information may not be available.) */
448
449#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
22ef4e9b
JL
450 ((CUM).nbytes += ((MODE) != BLKmode \
451 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
452 : (int_size_in_bytes (TYPE) + 3) & ~3))
11bb1f11
JL
453
454/* Define where to put the arguments to a function.
455 Value is zero to push the argument on the stack,
456 or a hard register in which to store the argument.
457
458 MODE is the argument's machine mode.
459 TYPE is the data type of the argument (as a tree).
460 This is null for libcalls where that information may
461 not be available.
462 CUM is a variable of type CUMULATIVE_ARGS which gives info about
463 the preceding args and about the function being called.
464 NAMED is nonzero if this argument is a named parameter
465 (otherwise it is an extra parameter matching an ellipsis). */
466
467/* On the MN10300 all args are pushed. */
468
22ef4e9b
JL
469extern struct rtx_def *function_arg ();
470#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
471 function_arg (&CUM, MODE, TYPE, NAMED)
472
473#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
474 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
11bb1f11
JL
475\f
476#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
477 ((TYPE) && int_size_in_bytes (TYPE) > 8)
478
479#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
480 ((TYPE) && int_size_in_bytes (TYPE) > 8)
481
482/* Define how to find the value returned by a function.
483 VALTYPE is the data type of the value (as a tree).
484 If the precise function being called is known, FUNC is its FUNCTION_DECL;
485 otherwise, FUNC is 0. */
460f4b9d
JL
486
487#define FUNCTION_VALUE(VALTYPE, FUNC) \
c5c76735 488 gen_rtx_REG (TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) ? 4 : 0)
11bb1f11
JL
489
490/* Define how to find the value returned by a library function
491 assuming the value has mode MODE. */
492
c5c76735 493#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
11bb1f11
JL
494
495/* 1 if N is a possible register number for a function value. */
496
460f4b9d 497#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 4)
11bb1f11
JL
498
499/* Return values > 8 bytes in length in memory. */
500#define DEFAULT_PCC_STRUCT_RETURN 0
501#define RETURN_IN_MEMORY(TYPE) \
502 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
503
504/* Register in which address to store a structure value
505 is passed to a function. On the MN10300 it's passed as
506 the first parameter. */
507
508#define STRUCT_VALUE 0
509
510/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
511 the stack pointer does not matter. The value is tested only in
512 functions that have frame pointers.
513 No definition is equivalent to always zero. */
514
515#define EXIT_IGNORE_STACK 1
516
517/* Output assembler code to FILE to increment profiler label # LABELNO
518 for profiling a function entry. */
519
520#define FUNCTION_PROFILER(FILE, LABELNO) ;
521
522#define TRAMPOLINE_TEMPLATE(FILE) \
523 do { \
524 fprintf (FILE, "\tadd -4,sp\n"); \
22ef4e9b
JL
525 fprintf (FILE, "\t.long 0x0004fffa\n"); \
526 fprintf (FILE, "\tmov (0,sp),a0\n"); \
11bb1f11 527 fprintf (FILE, "\tadd 4,sp\n"); \
22ef4e9b
JL
528 fprintf (FILE, "\tmov (13,a0),a1\n"); \
529 fprintf (FILE, "\tmov (17,a0),a0\n"); \
11bb1f11
JL
530 fprintf (FILE, "\tjmp (a0)\n"); \
531 fprintf (FILE, "\t.long 0\n"); \
532 fprintf (FILE, "\t.long 0\n"); \
533 } while (0)
534
535/* Length in units of the trampoline for entering a nested function. */
536
22ef4e9b 537#define TRAMPOLINE_SIZE 0x1b
11bb1f11
JL
538
539#define TRAMPOLINE_ALIGNMENT 32
540
541/* Emit RTL insns to initialize the variable parts of a trampoline.
542 FNADDR is an RTX for the address of the function's pure code.
543 CXT is an RTX for the static chain value for the function. */
544
545#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
546{ \
c5c76735 547 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
11bb1f11 548 (CXT)); \
c5c76735 549 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
11bb1f11
JL
550 (FNADDR)); \
551}
74452ac3
JL
552/* A C expression whose value is RTL representing the value of the return
553 address for the frame COUNT steps up from the current frame.
554
555 On the mn10300, the return address is not at a constant location
556 due to the frame layout. Luckily, it is at a constant offset from
557 the argument pointer, so we define RETURN_ADDR_RTX to return a
558 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
559 with a reference to the stack/frame pointer + an appropriate offset. */
560
561#define RETURN_ADDR_RTX(COUNT, FRAME) \
562 ((COUNT == 0) \
c5c76735 563 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
74452ac3
JL
564 : (rtx) 0)
565
22ef4e9b
JL
566/* Emit code for a call to builtin_saveregs. We must emit USE insns which
567 reference the 2 integer arg registers.
568 Ordinarily they are not call used registers, but they are for
569 _builtin_saveregs, so we must make this explicit. */
570
571extern struct rtx_def *mn10300_builtin_saveregs ();
648d2ffc 572#define EXPAND_BUILTIN_SAVEREGS() mn10300_builtin_saveregs ()
11bb1f11 573
fc2acc87
RH
574/* Implement `va_start' for varargs and stdarg. */
575extern void mn10300_va_start();
576#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
577 mn10300_va_start (stdarg, valist, nextarg)
578
579/* Implement `va_arg'. */
580extern struct rtx_def *mn10300_va_arg();
581#define EXPAND_BUILTIN_VA_ARG(valist, type) \
582 mn10300_va_arg (valist, type)
583
11bb1f11
JL
584/* Addressing modes, and classification of registers for them. */
585
586\f
587/* 1 if X is an rtx for a constant that is a valid address. */
588
589#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
590
591/* Extra constraints. */
592
38c37a0e
JL
593#define OK_FOR_R(OP) \
594 (GET_CODE (OP) == MEM \
595 && GET_MODE (OP) == QImode \
596 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
597 || (GET_CODE (XEXP (OP, 0)) == REG \
4d1a91c2 598 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
38c37a0e
JL
599 && XEXP (OP, 0) != stack_pointer_rtx) \
600 || (GET_CODE (XEXP (OP, 0)) == PLUS \
601 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
4d1a91c2 602 && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0)) \
38c37a0e
JL
603 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
604 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
605 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
606
11bb1f11 607#define EXTRA_CONSTRAINT(OP, C) \
38c37a0e 608 ((C) == 'R' ? OK_FOR_R (OP) : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : 0)
11bb1f11
JL
609
610/* Maximum number of registers that can appear in a valid memory address. */
611
612#define MAX_REGS_PER_ADDRESS 2
613
614/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
615 and check its validity for a certain class.
616 We have two alternate definitions for each of them.
617 The usual definition accepts all pseudo regs; the other rejects
618 them unless they have been allocated suitable hard regs.
619 The symbol REG_OK_STRICT causes the latter definition to be used.
620
621 Most source files want to accept pseudo regs in the hope that
622 they will get allocated to the class that the insn wants them to be in.
623 Source files for reload pass need to be strict.
624 After reload, it makes no difference, since pseudo regs have
625 been eliminated by then. */
626
627#ifndef REG_OK_STRICT
628/* Nonzero if X is a hard reg that can be used as an index
629 or if it is a pseudo reg. */
630#define REG_OK_FOR_INDEX_P(X) \
4d1a91c2 631 ((REGNO (X) >= 0 && REGNO(X) <= 3) || REGNO (X) >= 10)
11bb1f11
JL
632/* Nonzero if X is a hard reg that can be used as a base reg
633 or if it is a pseudo reg. */
634#define REG_OK_FOR_BASE_P(X) \
4d1a91c2
JL
635 ((REGNO (X) >= 4 && REGNO(X) <= 9) || REGNO (X) >= 10)
636#define REG_OK_FOR_BIT_BASE_P(X) \
637 ((REGNO (X) >= 4 && REGNO(X) <= 9))
11bb1f11
JL
638#else
639/* Nonzero if X is a hard reg that can be used as an index. */
640#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
641/* Nonzero if X is a hard reg that can be used as a base reg. */
642#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
4d1a91c2
JL
643/* Nonzero if X is a hard reg that can be used as a base reg. */
644#define REG_OK_FOR_BIT_BASE_P(X) REGNO_OK_FOR_BIT_BASE_P (REGNO (X))
11bb1f11
JL
645#endif
646
647\f
648/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
649 that is a valid memory address for an instruction.
650 The MODE argument is the machine mode for the MEM expression
651 that wants to use this address.
652
653 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
654 except for CONSTANT_ADDRESS_P which is actually
0cecc190
JL
655 machine-independent.
656
657 On the mn10300, the value in the address register must be
658 in the same memory space/segment as the effective address.
659
660 This is problematical for reload since it does not understand
661 that base+index != index+base in a memory reference.
662
663 Note it is still possible to use reg+reg addressing modes,
664 it's just much more difficult. For a discussion of a possible
665 workaround and solution, see the comments in pa.c before the
666 function record_unscaled_index_insn_codes. */
11bb1f11
JL
667
668/* Accept either REG or SUBREG where a register is valid. */
669
670#define RTX_OK_FOR_BASE_P(X) \
671 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
672 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
673 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
674
675#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
676{ \
677 if (CONSTANT_ADDRESS_P (X)) \
678 goto ADDR; \
679 if (RTX_OK_FOR_BASE_P (X)) \
680 goto ADDR; \
681 if (GET_CODE (X) == PLUS) \
682 { \
683 rtx base = 0, index = 0; \
684 if (REG_P (XEXP (X, 0)) \
685 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
686 base = XEXP (X, 0), index = XEXP (X, 1); \
687 if (REG_P (XEXP (X, 1)) \
688 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
689 base = XEXP (X, 1), index = XEXP (X, 0); \
690 if (base != 0 && index != 0) \
691 { \
e9ad4573 692 if (GET_CODE (index) == CONST_INT) \
11bb1f11 693 goto ADDR; \
11bb1f11
JL
694 } \
695 } \
696}
697
698\f
699/* Try machine-dependent ways of modifying an illegitimate address
700 to be legitimate. If we find one, return the new, valid address.
701 This macro is used in only one place: `memory_address' in explow.c.
702
703 OLDX is the address as it was before break_out_memory_refs was called.
704 In some cases it is useful to look at this to decide what needs to be done.
705
706 MODE and WIN are passed so that this macro can use
707 GO_IF_LEGITIMATE_ADDRESS.
708
709 It is always safe for this macro to do nothing. It exists to recognize
710 opportunities to optimize the output. */
711
e9ad4573
JL
712extern struct rtx_def *legitimize_address ();
713#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
714{ rtx orig_x = (X); \
715 (X) = legitimize_address (X, OLDX, MODE); \
716 if ((X) != orig_x && memory_address_p (MODE, X)) \
717 goto WIN; }
11bb1f11
JL
718
719/* Go to LABEL if ADDR (a legitimate address expression)
720 has an effect that depends on the machine mode it is used for. */
721
722#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
723
724/* Nonzero if the constant value X is a legitimate general operand.
725 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
726
38c37a0e 727#define LEGITIMATE_CONSTANT_P(X) 1
11bb1f11
JL
728
729\f
730/* Tell final.c how to eliminate redundant test instructions. */
731
732/* Here we define machine-dependent flags and fields in cc_status
733 (see `conditions.h'). No extra ones are needed for the vax. */
734
735/* Store in cc_status the expressions
736 that the condition codes will describe
737 after execution of an instruction whose pattern is EXP.
738 Do not alter them if the instruction would not alter the cc's. */
739
82c6faa8 740#define CC_OVERFLOW_UNUSABLE 0x200
d116300b 741#define CC_NO_CARRY CC_NO_OVERFLOW
11bb1f11
JL
742#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
743
744/* Compute the cost of computing a constant rtl expression RTX
745 whose rtx-code is CODE. The body of this macro is a portion
746 of a switch statement. If the code is computed here,
747 return it with a return statement. Otherwise, break from the switch. */
748
749#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
38c37a0e
JL
750 case CONST_INT: \
751 /* Zeros are extremely cheap. */ \
752 if (INTVAL (RTX) == 0 && OUTER_CODE == SET) \
753 return 0; \
754 /* If it fits in 8 bits, then it's still relatively cheap. */ \
755 if (INT_8_BITS (INTVAL (RTX))) \
756 return 1; \
757 /* This is the "base" cost, includes constants where either the \
758 upper or lower 16bits are all zeros. */ \
759 if (INT_16_BITS (INTVAL (RTX)) \
760 || (INTVAL (RTX) & 0xffff) == 0 \
761 || (INTVAL (RTX) & 0xffff0000) == 0) \
762 return 2; \
763 return 4; \
764 /* These are more costly than a CONST_INT, but we can relax them, \
765 so they're less costly than a CONST_DOUBLE. */ \
766 case CONST: \
767 case LABEL_REF: \
768 case SYMBOL_REF: \
769 return 6; \
770 /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
771 so their cost is very high. */ \
772 case CONST_DOUBLE: \
773 return 8;
774
11bb1f11 775
6c0870b8 776#define REGISTER_MOVE_COST(CLASS1, CLASS2) (CLASS1 != CLASS2 ? 4 : 2)
11bb1f11
JL
777
778/* A crude cut at RTX_COSTS for the MN10300. */
779
780/* Provide the costs of a rtl expression. This is in the body of a
22ef4e9b 781 switch on CODE. */
11bb1f11 782#define RTX_COSTS(RTX,CODE,OUTER_CODE) \
6b7e236f
JL
783 case UMOD: \
784 case UDIV: \
11bb1f11
JL
785 case MOD: \
786 case DIV: \
22ef4e9b 787 return 8; \
11bb1f11 788 case MULT: \
22ef4e9b 789 return 8;
11bb1f11
JL
790
791/* Nonzero if access to memory by bytes or half words is no faster
792 than accessing full words. */
793#define SLOW_BYTE_ACCESS 1
794
22ef4e9b
JL
795/* Dispatch tables on the mn10300 are extremely expensive in terms of code
796 and readonly data size. So we crank up the case threshold value to
797 encourage a series of if/else comparisons to implement many small switch
798 statements. In theory, this value could be increased much more if we
799 were solely optimizing for space, but we keep it "reasonable" to avoid
800 serious code efficiency lossage. */
801#define CASE_VALUES_THRESHOLD 6
802
803#define NO_FUNCTION_CSE
804
11bb1f11
JL
805/* According expr.c, a value of around 6 should minimize code size, and
806 for the MN10300 series, that's our primary concern. */
807#define MOVE_RATIO 6
808
809#define TEXT_SECTION_ASM_OP "\t.section .text"
810#define DATA_SECTION_ASM_OP "\t.section .data"
811#define BSS_SECTION_ASM_OP "\t.section .bss"
812
813/* Output at beginning/end of assembler file. */
814#undef ASM_FILE_START
815#define ASM_FILE_START(FILE) asm_file_start(FILE)
816
817#define ASM_COMMENT_START "#"
818
819/* Output to assembler file text saying following lines
820 may contain character constants, extra white space, comments, etc. */
821
822#define ASM_APP_ON "#APP\n"
823
824/* Output to assembler file text saying following lines
825 no longer contain unusual constructs. */
826
827#define ASM_APP_OFF "#NO_APP\n"
828
829/* This is how to output an assembler line defining a `double' constant.
830 It is .dfloat or .gfloat, depending. */
831
832#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
833do { char dstr[30]; \
834 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
835 fprintf (FILE, "\t.double %s\n", dstr); \
836 } while (0)
837
838
839/* This is how to output an assembler line defining a `float' constant. */
840#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
841do { char dstr[30]; \
842 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
843 fprintf (FILE, "\t.float %s\n", dstr); \
844 } while (0)
845
846/* This is how to output an assembler line defining an `int' constant. */
847
848#define ASM_OUTPUT_INT(FILE, VALUE) \
849( fprintf (FILE, "\t.long "), \
850 output_addr_const (FILE, (VALUE)), \
851 fprintf (FILE, "\n"))
852
853/* Likewise for `char' and `short' constants. */
854
855#define ASM_OUTPUT_SHORT(FILE, VALUE) \
856( fprintf (FILE, "\t.hword "), \
857 output_addr_const (FILE, (VALUE)), \
858 fprintf (FILE, "\n"))
859
860#define ASM_OUTPUT_CHAR(FILE, VALUE) \
861( fprintf (FILE, "\t.byte "), \
862 output_addr_const (FILE, (VALUE)), \
863 fprintf (FILE, "\n"))
864
865/* This is how to output an assembler line for a numeric constant byte. */
866#define ASM_OUTPUT_BYTE(FILE, VALUE) \
867 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
868
869/* Define the parentheses used to group arithmetic operations
870 in assembler code. */
871
872#define ASM_OPEN_PAREN "("
873#define ASM_CLOSE_PAREN ")"
874
875/* This says how to output the assembler to define a global
876 uninitialized but not common symbol.
877 Try to use asm_output_bss to implement this macro. */
878
f7620587
JL
879#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
880 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
11bb1f11
JL
881
882/* This is how to output the definition of a user-level label named NAME,
883 such as the label on a static function or variable NAME. */
884
885#define ASM_OUTPUT_LABEL(FILE, NAME) \
886 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
887
888/* This is how to output a command to make the user-level label named NAME
889 defined for reference from other files. */
890
891#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
892 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
893
894/* This is how to output a reference to a user-level label named NAME.
895 `assemble_name' uses this. */
896
897#undef ASM_OUTPUT_LABELREF
898#define ASM_OUTPUT_LABELREF(FILE, NAME) \
899 do { \
ec940faa 900 const char* real_name; \
11bb1f11
JL
901 STRIP_NAME_ENCODING (real_name, (NAME)); \
902 fprintf (FILE, "_%s", real_name); \
903 } while (0)
904
905/* Store in OUTPUT a string (made with alloca) containing
906 an assembler-name for a local static variable named NAME.
907 LABELNO is an integer which is different for each call. */
908
909#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
910( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
911 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
912
913/* This is how we tell the assembler that two symbols have the same value. */
914
915#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
916 do { assemble_name(FILE, NAME1); \
917 fputs(" = ", FILE); \
918 assemble_name(FILE, NAME2); \
919 fputc('\n', FILE); } while (0)
920
921
922/* How to refer to registers in assembler output.
923 This sequence is indexed by compiler's hard-register-number (see above). */
924
925#define REGISTER_NAMES \
777fbf09 926{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp" }
11bb1f11
JL
927
928/* Print an instruction operand X on file FILE.
929 look in mn10300.c for details */
930
931#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
932
933/* Print a memory operand whose address is X, on file FILE.
934 This uses a function in output-vax.c. */
935
936#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
937
938#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
939#define ASM_OUTPUT_REG_POP(FILE,REGNO)
940
941/* This is how to output an element of a case-vector that is absolute. */
942
943#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
944 asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
945
946/* This is how to output an element of a case-vector that is relative. */
947
33f7f353 948#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
11bb1f11
JL
949 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
950
951#define ASM_OUTPUT_ALIGN(FILE,LOG) \
952 if ((LOG) != 0) \
953 fprintf (FILE, "\t.align %d\n", (LOG))
954
956d6950 955/* We don't have to worry about dbx compatibility for the mn10300. */
11bb1f11
JL
956#define DEFAULT_GDB_EXTENSIONS 1
957
958/* Use stabs debugging info by default. */
959#undef PREFERRED_DEBUGGING_TYPE
960#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
961
962#define DBX_REGISTER_NUMBER(REGNO) REGNO
963
4944f54f
JL
964/* GDB always assumes the current function's frame begins at the value
965 of the stack pointer upon entry to the current function. Accessing
966 local variables and parameters passed on the stack is done using the
967 base of the frame + an offset provided by GCC.
968
969 For functions which have frame pointers this method works fine;
970 the (frame pointer) == (stack pointer at function entry) and GCC provides
971 an offset relative to the frame pointer.
972
973 This loses for functions without a frame pointer; GCC provides an offset
974 which is relative to the stack pointer after adjusting for the function's
975 frame size. GDB would prefer the offset to be relative to the value of
976 the stack pointer at the function's entry. Yuk! */
977#define DEBUGGER_AUTO_OFFSET(X) \
978 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
979 + (frame_pointer_needed \
980 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
981
982#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
983 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
984 + (frame_pointer_needed \
985 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
986
fa88e837
JL
987/* We need to prepend underscores. */
988#define ASM_OUTPUT_DWARF2_ADDR_CONST(FILE,ADDR) \
989 fprintf ((FILE), "\t%s\t_%s", UNALIGNED_WORD_ASM_OP, (ADDR))
990
11bb1f11
JL
991/* Define to use software floating point emulator for REAL_ARITHMETIC and
992 decimal <-> binary conversion. */
993#define REAL_ARITHMETIC
994
995/* Specify the machine mode that this machine uses
996 for the index in the tablejump instruction. */
997#define CASE_VECTOR_MODE Pmode
998
11bb1f11
JL
999/* Define if operations between registers always perform the operation
1000 on the full register even if a narrower mode is specified. */
1001#define WORD_REGISTER_OPERATIONS
1002
1003#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1004
1005/* Specify the tree operation to be used to convert reals to integers. */
1006#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1007
1008/* This flag, if defined, says the same insns that convert to a signed fixnum
1009 also convert validly to an unsigned one. */
1010#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1011
1012/* This is the kind of divide that is easiest to do in the general case. */
1013#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1014
1015/* Max number of bytes we can move from memory to memory
1016 in one reasonably fast instruction. */
1017#define MOVE_MAX 4
1018
1019/* Define if shifts truncate the shift count
1020 which implies one can omit a sign-extension or zero-extension
1021 of a shift count. */
1022#define SHIFT_COUNT_TRUNCATED 1
1023
1024/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1025 is done just by pretending it is already truncated. */
1026#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1027
11bb1f11
JL
1028/* Specify the machine mode that pointers have.
1029 After generation of rtl, the compiler makes no further distinction
1030 between pointers and any other objects of this machine mode. */
1031#define Pmode SImode
1032
1033/* A function address in a call instruction
1034 is a byte address (for indexing purposes)
1035 so give the MEM rtx a byte's mode. */
1036#define FUNCTION_MODE QImode
1037
1038/* The assembler op to get a word. */
1039
1040#define FILE_ASM_OP "\t.file\n"
1041
1042extern void asm_file_start ();
1043extern int const_costs ();
1044extern void print_operand ();
1045extern void print_operand_address ();
1046extern void expand_prologue ();
1047extern void expand_epilogue ();
1048extern void notice_update_cc ();
1049extern int call_address_operand ();
460f4b9d 1050extern int impossible_plus_operand ();
11bb1f11 1051extern enum reg_class secondary_reload_class ();
777fbf09 1052extern int initial_offset ();
22ef4e9b 1053extern char *output_tst ();
e9ad4573 1054int symbolic_operand ();