]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/nds32/nds32.h
[NDS32] Implement n7 pipeline.
[thirdparty/gcc.git] / gcc / config / nds32 / nds32.h
CommitLineData
9304f876 1/* Definitions of target machine of Andes NDS32 cpu for GNU compiler
85ec4feb 2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
9304f876
CJW
3 Contributed by Andes Technology Corporation.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22/* ------------------------------------------------------------------------ */
23
24/* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
26
a5876228
CJW
27#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
28 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
29
511a41d7
CJW
30/* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
31 It is used in nds32_encode_section_info() to store flag in symbol_ref
32 in case the symbol should be placed in .rodata section.
33 So that we can check it in nds32_legitimate_address_p(). */
34#define NDS32_SYMBOL_FLAG_RODATA \
35 (SYMBOL_FLAG_MACH_DEP << 0)
36#define NDS32_SYMBOL_REF_RODATA_P(x) \
37 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
9304f876 38
6e9ca932
CJW
39/* Classifies expand result for expand helper function. */
40enum nds32_expand_result_type
41{
42 EXPAND_DONE,
43 EXPAND_FAIL,
44 EXPAND_CREATE_TEMPLATE
45};
46
9304f876
CJW
47/* Classifies address type to distinguish 16-bit/32-bit format. */
48enum nds32_16bit_address_type
49{
50 /* [reg]: 45 format address. */
51 ADDRESS_REG,
52 /* [lo_reg + imm3u]: 333 format address. */
53 ADDRESS_LO_REG_IMM3U,
54 /* post_inc [lo_reg + imm3u]: 333 format address. */
55 ADDRESS_POST_INC_LO_REG_IMM3U,
67e1eb3d
SC
56 /* post_modify [lo_reg + imm3u]: 333 format address. */
57 ADDRESS_POST_MODIFY_LO_REG_IMM3U,
8656bbcf
SC
58 /* [$r8 + imm7u]: r8 imply address. */
59 ADDRESS_R8_IMM7U,
9304f876
CJW
60 /* [$fp + imm7u]: fp imply address. */
61 ADDRESS_FP_IMM7U,
62 /* [$sp + imm7u]: sp imply address. */
63 ADDRESS_SP_IMM7U,
64 /* Other address format. */
65 ADDRESS_NOT_16BIT_FORMAT
66};
67
68
69/* ------------------------------------------------------------------------ */
70
71/* Define maximum numbers of registers for passing arguments. */
9d93cc24 72#define NDS32_MAX_GPR_REGS_FOR_ARGS 6
e2286268 73#define NDS32_MAX_FPR_REGS_FOR_ARGS 6
9304f876
CJW
74
75/* Define the register number for first argument. */
76#define NDS32_GPR_ARG_FIRST_REGNUM 0
e2286268 77#define NDS32_FPR_ARG_FIRST_REGNUM 34
9304f876
CJW
78
79/* Define the register number for return value. */
80#define NDS32_GPR_RET_FIRST_REGNUM 0
e2286268 81#define NDS32_FPR_RET_FIRST_REGNUM 34
9304f876 82
9d93cc24
CJW
83/* Define the first integer register number. */
84#define NDS32_FIRST_GPR_REGNUM 0
85/* Define the last integer register number. */
86#define NDS32_LAST_GPR_REGNUM 31
9304f876 87
a6c7e777
MC
88#define NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM 6
89#define NDS32_LAST_CALLEE_SAVE_GPR_REGNUM \
90 (TARGET_REDUCED_REGS ? 10 : 14)
91
e2286268
MC
92/* Define the floating-point number of registers. */
93#define NDS32_FLOAT_REGISTER_NUMBER \
94 (((nds32_fp_regnum == NDS32_CONFIG_FPU_0) \
95 || (nds32_fp_regnum == NDS32_CONFIG_FPU_4)) ? 8 \
96 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_1) \
97 || (nds32_fp_regnum == NDS32_CONFIG_FPU_5)) ? 16 \
98 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_2) \
99 || (nds32_fp_regnum == NDS32_CONFIG_FPU_6)) ? 32 \
100 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_3) \
101 || (nds32_fp_regnum == NDS32_CONFIG_FPU_7)) ? 64 \
102 : 32)
103
104#define NDS32_EXT_FPU_DOT_E (nds32_fp_regnum >= 4)
105
106/* Define the first floating-point register number. */
107#define NDS32_FIRST_FPR_REGNUM 34
108/* Define the last floating-point register number. */
109#define NDS32_LAST_FPR_REGNUM \
110 (NDS32_FIRST_FPR_REGNUM + NDS32_FLOAT_REGISTER_NUMBER - 1)
111
112
113#define NDS32_IS_EXT_FPR_REGNUM(regno) \
114 (((regno) >= NDS32_FIRST_FPR_REGNUM + 32) \
115 && ((regno) < NDS32_FIRST_FPR_REGNUM + 64))
116
117#define NDS32_IS_FPR_REGNUM(regno) \
118 (((regno) >= NDS32_FIRST_FPR_REGNUM) \
119 && ((regno) <= NDS32_LAST_FPR_REGNUM))
120
121#define NDS32_FPR_REGNO_OK_FOR_SINGLE(regno) \
122 ((regno) <= NDS32_LAST_FPR_REGNUM)
123
124#define NDS32_FPR_REGNO_OK_FOR_DOUBLE(regno) \
125 ((((regno) - NDS32_FIRST_FPR_REGNUM) & 1) == 0)
126
127#define NDS32_IS_GPR_REGNUM(regno) \
128 (((regno) <= NDS32_LAST_GPR_REGNUM))
129
9304f876
CJW
130/* Define double word alignment bits. */
131#define NDS32_DOUBLE_WORD_ALIGNMENT 64
132
133/* Define alignment checking macros for convenience. */
134#define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
135#define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
136#define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
137
43fa41c1
CJW
138/* Determine whether we would like to have code generation strictly aligned.
139 We set it strictly aligned when -malways-align is enabled.
140 Check gcc/common/config/nds32/nds32-common.c for the optimizations that
141 apply -malways-align. */
142#define NDS32_ALIGN_P() (TARGET_ALWAYS_ALIGN)
634bdae9
CJW
143/* Get alignment according to mode or type information.
144 When 'type' is nonnull, there is no need to look at 'mode'. */
145#define NDS32_MODE_TYPE_ALIGN(mode, type) \
146 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
147
9304f876
CJW
148/* Round X up to the nearest double word. */
149#define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
150
151
152/* This macro is used to calculate the numbers of registers for
153 containing 'size' bytes of the argument.
154 The size of a register is a word in nds32 target.
155 So we use UNITS_PER_WORD to do the calculation. */
156#define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
157 ((mode == BLKmode) \
158 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
159 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
160
161/* This macro is used to return the register number for passing argument.
162 We need to obey the following rules:
163 1. If it is required MORE THAN one register,
8a498f99
CJW
164 we need to further check if it really needs to be
165 aligned on double words.
166 a) If double word alignment is necessary,
167 the register number must be even value.
168 b) Otherwise, the register number can be odd or even value.
9304f876 169 2. If it is required ONLY one register,
8a498f99
CJW
170 the register number can be odd or even value. */
171#define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
172 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
173 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
174 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
175 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
9304f876
CJW
176 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
177
e2286268
MC
178#define NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG(reg_offset, mode, type) \
179 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
180 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
181 ? (((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM + 1) & ~1) \
182 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM)) \
183 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM))
184
185/* These two macros are to check if there are still available registers
7f6cd86b
CJW
186 for passing argument, which must be entirely in registers. */
187#define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
188 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
189 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
190 <= (NDS32_GPR_ARG_FIRST_REGNUM \
191 + NDS32_MAX_GPR_REGS_FOR_ARGS))
192
e2286268
MC
193#define NDS32_ARG_ENTIRE_IN_FPR_REG_P(reg_offset, mode, type) \
194 ((NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
195 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
196 <= (NDS32_FPR_ARG_FIRST_REGNUM \
197 + NDS32_MAX_FPR_REGS_FOR_ARGS))
198
199/* These two macros are to check if there are still available registers
7f6cd86b
CJW
200 for passing argument, either entirely in registers or partially
201 in registers. */
202#define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
203 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
204 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
9304f876 205
e2286268
MC
206#define NDS32_ARG_PARTIAL_IN_FPR_REG_P(reg_offset, mode, type) \
207 (NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
208 < NDS32_FPR_ARG_FIRST_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS)
209
9304f876
CJW
210/* This macro is to check if the register is required to be saved on stack.
211 If call_used_regs[regno] == 0, regno is the callee-saved register.
212 If df_regs_ever_live_p(regno) == true, it is used in the current function.
213 As long as the register satisfies both criteria above,
214 it is required to be saved. */
215#define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
216 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
217
a6c7e777
MC
218/* This macro is to check if the push25/pop25 are available to be used
219 for code generation. Because pop25 also performs return behavior,
220 the instructions may not be available for some cases.
221 If we want to use push25/pop25, all the following conditions must
222 be satisfied:
223 1. TARGET_V3PUSH is set.
224 2. Current function is not an ISR function.
225 3. Current function is not a variadic function.*/
226#define NDS32_V3PUSH_AVAILABLE_P \
227 (TARGET_V3PUSH \
228 && !nds32_isr_function_p (current_function_decl) \
229 && (cfun->machine->va_args_size == 0))
230
9304f876
CJW
231/* ------------------------------------------------------------------------ */
232
233/* A C structure for machine-specific, per-function data.
234 This is added to the cfun structure. */
235struct GTY(()) machine_function
236{
237 /* Number of bytes allocated on the stack for variadic args
238 if we want to push them into stack as pretend arguments by ourself. */
239 int va_args_size;
240 /* Number of bytes reserved on the stack for
241 local and temporary variables. */
242 int local_size;
243 /* Number of bytes allocated on the stack for outgoing arguments. */
244 int out_args_size;
245
246 /* Number of bytes on the stack for saving $fp. */
247 int fp_size;
248 /* Number of bytes on the stack for saving $gp. */
249 int gp_size;
250 /* Number of bytes on the stack for saving $lp. */
251 int lp_size;
252
c457f751
CJW
253 /* Number of bytes on the stack for saving general purpose
254 callee-saved registers. */
255 int callee_saved_gpr_regs_size;
256
e2286268
MC
257 /* Number of bytes on the stack for saving floating-point
258 callee-saved registers. */
259 int callee_saved_fpr_regs_size;
260
9304f876 261 /* The padding bytes in callee-saved area may be required. */
c457f751 262 int callee_saved_area_gpr_padding_bytes;
9304f876 263
c457f751
CJW
264 /* The first required general purpose callee-saved register. */
265 int callee_saved_first_gpr_regno;
266 /* The last required general purpose callee-saved register. */
267 int callee_saved_last_gpr_regno;
9304f876 268
e2286268
MC
269 /* The first required floating-point callee-saved register. */
270 int callee_saved_first_fpr_regno;
271 /* The last required floating-point callee-saved register. */
272 int callee_saved_last_fpr_regno;
273
dd1536a7
CJW
274 /* The padding bytes in varargs area may be required. */
275 int va_args_area_padding_bytes;
276
277 /* The first required register that should be saved on stack for va_args. */
278 int va_args_first_regno;
279 /* The last required register that should be saved on stack for va_args. */
280 int va_args_last_regno;
281
ca3a4a55
CJW
282 /* Number of bytes on the stack for saving exception handling registers. */
283 int eh_return_data_regs_size;
284 /* The first register of passing exception handling information. */
285 int eh_return_data_first_regno;
286 /* The last register of passing exception handling information. */
287 int eh_return_data_last_regno;
288
289 /* Indicate that whether this function
290 calls __builtin_eh_return. */
291 int use_eh_return_p;
292
9304f876
CJW
293 /* Indicate that whether this function needs
294 prologue/epilogue code generation. */
295 int naked_p;
296 /* Indicate that whether this function
297 uses fp_as_gp optimization. */
298 int fp_as_gp_p;
299};
300
301/* A C structure that contains the arguments information. */
302typedef struct
303{
9d93cc24 304 unsigned int gpr_offset;
e2286268 305 unsigned int fpr_offset;
9304f876
CJW
306} nds32_cumulative_args;
307
308/* ------------------------------------------------------------------------ */
309
310/* The following we define C-ISR related stuff.
311 In nds32 architecture, we have 73 vectors for interrupt/exception.
312 For each vector (except for vector 0, which is used for reset behavior),
313 we allow users to set its register saving scheme and interrupt level. */
314
315/* There are 73 vectors in nds32 architecture.
316 0 for reset handler,
317 1-8 for exception handler,
318 and 9-72 for interrupt handler.
319 We use an array, which is defined in nds32.c, to record
320 essential information for each vector. */
321#define NDS32_N_ISR_VECTORS 73
322
323/* Define possible isr category. */
324enum nds32_isr_category
325{
326 NDS32_ISR_NONE,
327 NDS32_ISR_INTERRUPT,
328 NDS32_ISR_EXCEPTION,
329 NDS32_ISR_RESET
330};
331
332/* Define isr register saving scheme. */
333enum nds32_isr_save_reg
334{
335 NDS32_SAVE_ALL,
336 NDS32_PARTIAL_SAVE
337};
338
339/* Define isr nested type. */
340enum nds32_isr_nested_type
341{
342 NDS32_NESTED,
343 NDS32_NOT_NESTED,
344 NDS32_NESTED_READY
345};
346
347/* Define structure to record isr information.
348 The isr vector array 'isr_vectors[]' with this structure
349 is defined in nds32.c. */
350struct nds32_isr_info
351{
352 /* The field to identify isr category.
353 It should be set to NDS32_ISR_NONE by default.
354 If user specifies a function as isr by using attribute,
355 this field will be set accordingly. */
356 enum nds32_isr_category category;
357
358 /* A string for the applied function name.
359 It should be set to empty string by default. */
360 char func_name[100];
361
362 /* The register saving scheme.
363 It should be set to NDS32_PARTIAL_SAVE by default
364 unless user specifies attribute to change it. */
365 enum nds32_isr_save_reg save_reg;
366
367 /* The nested type.
368 It should be set to NDS32_NOT_NESTED by default
369 unless user specifies attribute to change it. */
370 enum nds32_isr_nested_type nested_type;
371
372 /* Total vectors.
373 The total vectors = interrupt + exception numbers + reset.
374 It should be set to 0 by default.
375 This field is ONLY used in NDS32_ISR_RESET category. */
376 unsigned int total_n_vectors;
377
378 /* A string for nmi handler name.
379 It should be set to empty string by default.
380 This field is ONLY used in NDS32_ISR_RESET category. */
381 char nmi_name[100];
382
383 /* A string for warm handler name.
384 It should be set to empty string by default.
385 This field is ONLY used in NDS32_ISR_RESET category. */
386 char warm_name[100];
387};
388
389/* ------------------------------------------------------------------------ */
390
391/* Define code for all nds32 builtins. */
392enum nds32_builtins
393{
394 NDS32_BUILTIN_ISYNC,
395 NDS32_BUILTIN_ISB,
154e3ea6
MC
396 NDS32_BUILTIN_DSB,
397 NDS32_BUILTIN_MSYNC_ALL,
398 NDS32_BUILTIN_MSYNC_STORE,
9304f876
CJW
399 NDS32_BUILTIN_MFSR,
400 NDS32_BUILTIN_MFUSR,
401 NDS32_BUILTIN_MTSR,
154e3ea6
MC
402 NDS32_BUILTIN_MTSR_ISB,
403 NDS32_BUILTIN_MTSR_DSB,
9304f876
CJW
404 NDS32_BUILTIN_MTUSR,
405 NDS32_BUILTIN_SETGIE_EN,
7a12ea32 406 NDS32_BUILTIN_SETGIE_DIS,
0bb4423d
MC
407 NDS32_BUILTIN_FMFCFG,
408 NDS32_BUILTIN_FMFCSR,
409 NDS32_BUILTIN_FMTCSR,
410 NDS32_BUILTIN_FCPYNSS,
411 NDS32_BUILTIN_FCPYSS,
412 NDS32_BUILTIN_FCPYNSD,
413 NDS32_BUILTIN_FCPYSD,
2feae6cd
MC
414 NDS32_BUILTIN_ABS,
415 NDS32_BUILTIN_AVE,
416 NDS32_BUILTIN_BCLR,
417 NDS32_BUILTIN_BSET,
418 NDS32_BUILTIN_BTGL,
419 NDS32_BUILTIN_BTST,
420 NDS32_BUILTIN_CLIP,
421 NDS32_BUILTIN_CLIPS,
422 NDS32_BUILTIN_CLZ,
423 NDS32_BUILTIN_CLO,
424 NDS32_BUILTIN_MAX,
425 NDS32_BUILTIN_MIN,
426 NDS32_BUILTIN_PBSAD,
427 NDS32_BUILTIN_PBSADA,
428 NDS32_BUILTIN_BSE,
429 NDS32_BUILTIN_BSP,
3999578c
MC
430 NDS32_BUILTIN_FFB,
431 NDS32_BUILTIN_FFMISM,
432 NDS32_BUILTIN_FLMISM,
2feae6cd
MC
433
434 NDS32_BUILTIN_ROTR,
435 NDS32_BUILTIN_SVA,
436 NDS32_BUILTIN_SVS,
437 NDS32_BUILTIN_WSBH,
438 NDS32_BUILTIN_JR_ITOFF,
439 NDS32_BUILTIN_JR_TOFF,
440 NDS32_BUILTIN_JRAL_ITON,
441 NDS32_BUILTIN_JRAL_TON,
442 NDS32_BUILTIN_RET_ITOFF,
443 NDS32_BUILTIN_RET_TOFF,
444 NDS32_BUILTIN_STANDBY_NO_WAKE_GRANT,
445 NDS32_BUILTIN_STANDBY_WAKE_GRANT,
446 NDS32_BUILTIN_STANDBY_WAKE_DONE,
447 NDS32_BUILTIN_TEQZ,
448 NDS32_BUILTIN_TNEZ,
449 NDS32_BUILTIN_TRAP,
450 NDS32_BUILTIN_SETEND_BIG,
451 NDS32_BUILTIN_SETEND_LITTLE,
452 NDS32_BUILTIN_SYSCALL,
453 NDS32_BUILTIN_BREAK,
454 NDS32_BUILTIN_NOP,
455 NDS32_BUILTIN_SCHE_BARRIER,
456 NDS32_BUILTIN_GET_CURRENT_SP,
457 NDS32_BUILTIN_SET_CURRENT_SP,
458 NDS32_BUILTIN_RETURN_ADDRESS,
154e3ea6
MC
459 NDS32_BUILTIN_LLW,
460 NDS32_BUILTIN_LWUP,
461 NDS32_BUILTIN_LBUP,
462 NDS32_BUILTIN_SCW,
463 NDS32_BUILTIN_SWUP,
464 NDS32_BUILTIN_SBUP,
f1a0afe2
MC
465 NDS32_BUILTIN_CCTL_VA_LCK,
466 NDS32_BUILTIN_CCTL_IDX_WBINVAL,
467 NDS32_BUILTIN_CCTL_VA_WBINVAL_L1,
468 NDS32_BUILTIN_CCTL_VA_WBINVAL_LA,
469 NDS32_BUILTIN_CCTL_IDX_READ,
470 NDS32_BUILTIN_CCTL_IDX_WRITE,
471 NDS32_BUILTIN_CCTL_L1D_INVALALL,
472 NDS32_BUILTIN_CCTL_L1D_WBALL_ALVL,
473 NDS32_BUILTIN_CCTL_L1D_WBALL_ONE_LVL,
57aaf0cc
MC
474 NDS32_BUILTIN_DPREF_QW,
475 NDS32_BUILTIN_DPREF_HW,
476 NDS32_BUILTIN_DPREF_W,
477 NDS32_BUILTIN_DPREF_DW,
478 NDS32_BUILTIN_TLBOP_TRD,
479 NDS32_BUILTIN_TLBOP_TWR,
480 NDS32_BUILTIN_TLBOP_RWR,
481 NDS32_BUILTIN_TLBOP_RWLK,
482 NDS32_BUILTIN_TLBOP_UNLK,
483 NDS32_BUILTIN_TLBOP_PB,
484 NDS32_BUILTIN_TLBOP_INV,
485 NDS32_BUILTIN_TLBOP_FLUA,
e576ddb5
KC
486 NDS32_BUILTIN_UALOAD_HW,
487 NDS32_BUILTIN_UALOAD_W,
488 NDS32_BUILTIN_UALOAD_DW,
489 NDS32_BUILTIN_UASTORE_HW,
490 NDS32_BUILTIN_UASTORE_W,
491 NDS32_BUILTIN_UASTORE_DW,
7a12ea32 492 NDS32_BUILTIN_COUNT
9304f876
CJW
493};
494
495/* ------------------------------------------------------------------------ */
496
497#define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
e2286268
MC
498
499#define TARGET_ISA_V3 \
500 (nds32_arch_option == ARCH_V3 \
501 || nds32_arch_option == ARCH_V3F \
502 || nds32_arch_option == ARCH_V3S)
9304f876
CJW
503#define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
504
b99353a2
KC
505#define TARGET_PIPELINE_N9 \
506 (nds32_cpu_option == CPU_N9)
507#define TARGET_PIPELINE_SIMPLE \
508 (nds32_cpu_option == CPU_SIMPLE)
509
77b7a1ca
CJW
510#define TARGET_CMODEL_SMALL \
511 (nds32_cmodel_option == CMODEL_SMALL)
512#define TARGET_CMODEL_MEDIUM \
513 (nds32_cmodel_option == CMODEL_MEDIUM)
514#define TARGET_CMODEL_LARGE \
515 (nds32_cmodel_option == CMODEL_LARGE)
516
517/* When -mcmodel=small or -mcmodel=medium,
518 compiler may generate gp-base instruction directly. */
519#define TARGET_GP_DIRECT \
520 (nds32_cmodel_option == CMODEL_SMALL\
521 || nds32_cmodel_option == CMODEL_MEDIUM)
522
b99353a2
KC
523#define TARGET_MUL_SLOW \
524 (nds32_mul_config == MUL_TYPE_SLOW)
d4a6a4d9 525
e2286268
MC
526/* Run-time Target Specification. */
527#define TARGET_SOFT_FLOAT (nds32_abi == NDS32_ABI_V2)
528/* Use hardware floating point calling convention. */
529#define TARGET_HARD_FLOAT (nds32_abi == NDS32_ABI_V2_FP_PLUS)
530
531/* Record arch version in TARGET_ARCH_DEFAULT. 0 means soft ABI,
532 1 means hard ABI and using full floating-point instruction,
533 2 means hard ABI and only using single-precision floating-point
534 instruction */
535#if TARGET_ARCH_DEFAULT == 1
536# define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
537# define TARGET_DEFAULT_FPU_ISA MASK_FPU_DOUBLE | MASK_FPU_SINGLE
538# define TARGET_DEFAULT_FPU_FMA 0
539#else
540# if TARGET_ARCH_DEFAULT == 2
541# define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
542# define TARGET_DEFAULT_FPU_ISA MASK_FPU_SINGLE
543# define TARGET_DEFAULT_FPU_FMA 0
544# else
545# define TARGET_DEFAULT_ABI NDS32_ABI_V2
546# define TARGET_DEFAULT_FPU_ISA 0
547# define TARGET_DEFAULT_FPU_FMA 0
548# endif
549#endif
550
551#define TARGET_CONFIG_FPU_DEFAULT NDS32_CONFIG_FPU_2
9304f876
CJW
552/* ------------------------------------------------------------------------ */
553\f
554/* Controlling the Compilation Driver. */
555
556#define OPTION_DEFAULT_SPECS \
e2286268
MC
557 {"arch", " %{!march=*:-march=%(VALUE)}" \
558 " %{march=v3f:%{!mfloat-abi=*:-mfloat-abi=hard}" \
559 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}" \
560 " %{!mno-ext-fpu-dp:%{!mext-fpu-dp:-mext-fpu-dp}}}" \
561 " %{march=v3s:%{!mfloat-abi=*:-mfloat-abi=hard}" \
562 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}}" }, \
b99353a2 563 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
e2286268 564 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }
9304f876
CJW
565
566#define CC1_SPEC \
567 ""
568
569#define ASM_SPEC \
e2286268
MC
570 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
571 " %{march=*:-march=%*}" \
572 " %{mabi=*:-mabi=v%*}" \
573 " %{mconfig-fpu=*:-mfpu-freg=%*}" \
574 " %{mext-fpu-mac:-mmac}" \
575 " %{mno-ext-fpu-mac:-mno-mac}" \
576 " %{mext-fpu-sp:-mfpu-sp-ext}" \
577 " %{mno-ext-fpu-sp:-mno-fpu-sp-ext}" \
578 " %{mext-fpu-dp:-mfpu-dp-ext}" \
579 " %{mno-ext-fpu-sp:-mno-fpu-dp-ext}"
9304f876 580
2ca1ca65 581/* If user issues -mrelax, we need to pass '--relax' to linker. */
9304f876
CJW
582#define LINK_SPEC \
583 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
2ca1ca65 584 " %{mrelax:--relax}"
9304f876
CJW
585
586#define LIB_SPEC \
587 " -lc -lgloss"
588
589/* The option -mno-ctor-dtor can disable constructor/destructor feature
590 by applying different crt stuff. In the convention, crt0.o is the
591 startup file without constructor/destructor;
592 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
593 startup files with constructor/destructor.
594 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
595 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
596 currently provided by GCC for nds32 target.
597
598 For nds32 target so far:
599 If -mno-ctor-dtor, we are going to link
600 "crt0.o [user objects]".
601 If general cases, we are going to link
602 "crt1.o crtbegin1.o [user objects] crtend1.o". */
603#define STARTFILE_SPEC \
604 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
605 " %{!mno-ctor-dtor:crtbegin1.o%s}"
606#define ENDFILE_SPEC \
607 " %{!mno-ctor-dtor:crtend1.o%s}"
608
c9eb51a7
CJW
609/* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
610 configure gcc with --target=nds32be-* setting.
611 Check gcc/config.gcc for more information. */
9304f876 612#ifdef TARGET_BIG_ENDIAN_DEFAULT
c9eb51a7 613# define NDS32_ENDIAN_DEFAULT "mbig-endian"
9304f876 614#else
c9eb51a7 615# define NDS32_ENDIAN_DEFAULT "mlittle-endian"
9304f876
CJW
616#endif
617
c9eb51a7
CJW
618/* Currently we only have elf toolchain,
619 where -mcmodel=medium is always the default. */
620#define NDS32_CMODEL_DEFAULT "mcmodel=medium"
621
622#define MULTILIB_DEFAULTS \
623 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
624
9304f876
CJW
625\f
626/* Run-time Target Specification. */
627
72b7e5e1
KC
628#define TARGET_CPU_CPP_BUILTINS() \
629 nds32_cpu_cpp_builtins (pfile)
9304f876
CJW
630
631\f
632/* Defining Data Structures for Per-function Information. */
633
634/* This macro is called once per function,
635 before generation of any RTL has begun. */
636#define INIT_EXPANDERS nds32_init_expanders ()
637
638\f
639/* Storage Layout. */
640
641#define BITS_BIG_ENDIAN 0
642
643#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
644
645#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
646
647#define UNITS_PER_WORD 4
648
649#define PROMOTE_MODE(m, unsignedp, type) \
650 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
651 { \
652 (m) = SImode; \
653 }
654
655#define PARM_BOUNDARY 32
656
657#define STACK_BOUNDARY 64
658
43fa41c1
CJW
659#define FUNCTION_BOUNDARY \
660 ((NDS32_ALIGN_P () || TARGET_ALIGN_FUNCTION) ? 32 : 16)
9304f876
CJW
661
662#define BIGGEST_ALIGNMENT 64
663
664#define EMPTY_FIELD_BOUNDARY 32
665
666#define STRUCTURE_SIZE_BOUNDARY 8
667
668#define STRICT_ALIGNMENT 1
669
670#define PCC_BITFIELD_TYPE_MATTERS 1
671
672\f
673/* Layout of Source Language Data Types. */
674
675#define INT_TYPE_SIZE 32
676#define SHORT_TYPE_SIZE 16
677#define LONG_TYPE_SIZE 32
678#define LONG_LONG_TYPE_SIZE 64
679
680#define FLOAT_TYPE_SIZE 32
681#define DOUBLE_TYPE_SIZE 64
682#define LONG_DOUBLE_TYPE_SIZE 64
683
684#define DEFAULT_SIGNED_CHAR 1
685
686#define SIZE_TYPE "long unsigned int"
687#define PTRDIFF_TYPE "long int"
7f983342
CJW
688#define WCHAR_TYPE "unsigned int"
689#define WCHAR_TYPE_SIZE 32
9304f876
CJW
690
691\f
692/* Register Usage. */
693
694/* Number of actual hardware registers.
695 The hardware registers are assigned numbers for the compiler
696 from 0 to just below FIRST_PSEUDO_REGISTER.
697 All registers that the compiler knows about must be given numbers,
698 even those that are not normally considered general registers. */
71d8eff1 699#define FIRST_PSEUDO_REGISTER 101
9304f876
CJW
700
701/* An initializer that says which registers are used for fixed
702 purposes all throughout the compiled code and are therefore
703 not available for general allocation.
704
705 $r28 : $fp
706 $r29 : $gp
707 $r30 : $lp
708 $r31 : $sp
709
e2286268
MC
710 caller-save registers: $r0 ~ $r5, $r16 ~ $r23, $fs0 ~ $fs5, $fs22 ~ $fs47
711 callee-save registers: $r6 ~ $r10, $r11 ~ $r14, $fs6 ~ $fs21, $fs48 ~ $fs63
9304f876
CJW
712
713 reserved for assembler : $r15
714 reserved for other use : $r24, $r25, $r26, $r27 */
71d8eff1
CJW
715#define FIXED_REGISTERS \
716{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
717 0, 0, 0, 0, 0, 0, 0, 0, \
718 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
719 0, 0, 0, 0, 0, 0, 0, 1, \
720 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
721 0, 0, 0, 0, 0, 0, 0, 0, \
722 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
723 1, 1, 1, 1, 0, 1, 0, 1, \
e2286268 724 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
71d8eff1 725 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 726 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
71d8eff1 727 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 728 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
71d8eff1 729 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 730 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
71d8eff1 731 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 732 /* fs30 fs31 fd16 fd17 fd18 */ \
71d8eff1 733 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 734 /* fd19 fd20 fd21 fd22 */ \
71d8eff1 735 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 736 /* fd23 fd24 fd25 fd26 */ \
71d8eff1 737 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 738 /* fd27 fd28 fd29 fd30 */ \
71d8eff1 739 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 740 /* fd31 Reserved..................... */ \
71d8eff1 741 1, 1, 1, 1, 1 \
9304f876
CJW
742}
743
744/* Identifies the registers that are not available for
745 general allocation of values that must live across
746 function calls -- so they are caller-save registers.
747
748 0 : callee-save registers
749 1 : caller-save registers */
71d8eff1
CJW
750#define CALL_USED_REGISTERS \
751{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
752 1, 1, 1, 1, 1, 1, 0, 0, \
753 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
754 0, 0, 0, 0, 0, 0, 0, 1, \
755 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
756 1, 1, 1, 1, 1, 1, 1, 1, \
757 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
758 1, 1, 1, 1, 0, 1, 0, 1, \
e2286268 759 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
71d8eff1 760 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 761 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
71d8eff1 762 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 763 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
71d8eff1 764 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 765 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
71d8eff1 766 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 767 /* fs30 fs31 fd16 fd17 fd18 */ \
71d8eff1 768 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 769 /* fd19 fd20 fd21 fd22 */ \
71d8eff1 770 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 771 /* fd23 fd24 fd25 fd26 */ \
71d8eff1 772 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 773 /* fd27 fd28 fd29 fd30 */ \
71d8eff1 774 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 775 /* fd31 Reserved..................... */ \
71d8eff1 776 1, 1, 1, 1, 1 \
9304f876
CJW
777}
778
779/* In nds32 target, we have three levels of registers:
780 LOW_COST_REGS : $r0 ~ $r7
781 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
782 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
71d8eff1
CJW
783#define REG_ALLOC_ORDER \
784{ 0, 1, 2, 3, 4, 5, 6, 7, \
785 16, 17, 18, 19, 9, 10, 11, 12, \
786 13, 14, 8, 15, 20, 21, 22, 23, \
787 24, 25, 26, 27, 28, 29, 30, 31, \
788 32, 33, 34, 35, 36, 37, 38, 39, \
789 40, 41, 42, 43, 44, 45, 46, 47, \
790 48, 49, 50, 51, 52, 53, 54, 55, \
791 56, 57, 58, 59, 60, 61, 62, 63, \
792 64, 65, 66, 67, 68, 69, 70, 71, \
793 72, 73, 74, 75, 76, 77, 78, 79, \
794 80, 81, 82, 83, 84, 85, 86, 87, \
795 88, 89, 90, 91, 92, 93, 94, 95, \
796 96, 97, 98, 99, 100, \
9304f876
CJW
797}
798
5e6ae0cc
CJW
799/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
800 to be rearranged based on optimizing for speed or size. */
801#define ADJUST_REG_ALLOC_ORDER nds32_adjust_reg_alloc_order ()
802
9304f876
CJW
803/* Tell IRA to use the order we define rather than messing it up with its
804 own cost calculations. */
96092404 805#define HONOR_REG_ALLOC_ORDER optimize_size
9304f876 806
9304f876
CJW
807\f
808/* Register Classes. */
809
810/* In nds32 target, we have three levels of registers:
811 Low cost regsiters : $r0 ~ $r7
812 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
813 High cost registers : $r12 ~ $r14, $r20 ~ $r31
814
815 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
816 so that it provides more chance to use low cost registers. */
817enum reg_class
818{
819 NO_REGS,
36f28760
CJW
820 R5_REG,
821 R8_REG,
9304f876
CJW
822 R15_TA_REG,
823 STACK_REG,
36f28760 824 FRAME_POINTER_REG,
9304f876
CJW
825 LOW_REGS,
826 MIDDLE_REGS,
827 HIGH_REGS,
828 GENERAL_REGS,
829 FRAME_REGS,
e2286268 830 FP_REGS,
9304f876
CJW
831 ALL_REGS,
832 LIM_REG_CLASSES
833};
834
835#define N_REG_CLASSES (int) LIM_REG_CLASSES
836
837#define REG_CLASS_NAMES \
838{ \
839 "NO_REGS", \
36f28760
CJW
840 "R5_REG", \
841 "R8_REG", \
9304f876
CJW
842 "R15_TA_REG", \
843 "STACK_REG", \
36f28760 844 "FRAME_POINTER_REG", \
9304f876
CJW
845 "LOW_REGS", \
846 "MIDDLE_REGS", \
847 "HIGH_REGS", \
848 "GENERAL_REGS", \
849 "FRAME_REGS", \
e2286268 850 "FP_REGS", \
9304f876
CJW
851 "ALL_REGS" \
852}
853
854#define REG_CLASS_CONTENTS \
71d8eff1
CJW
855{ /* NO_REGS */ \
856 {0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
857 /* R5_REG : 5 */ \
858 {0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
859 /* R8_REG : 8 */ \
860 {0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
861 /* R15_TA_REG : 15 */ \
862 {0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
863 /* STACK_REG : 31 */ \
864 {0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
865 /* FRAME_POINTER_REG : 28 */ \
866 {0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
867 /* LOW_REGS : 0-7 */ \
868 {0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
869 /* MIDDLE_REGS : 0-11, 16-19 */ \
870 {0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
871 /* HIGH_REGS : 12-14, 20-31 */ \
872 {0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
873 /* GENERAL_REGS : 0-31 */ \
874 {0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
875 /* FRAME_REGS : 32, 33 */ \
876 {0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
e2286268
MC
877 /* FP_REGS : 34-98 */ \
878 {0x00000000, 0xfffffffc, 0xffffffff, 0x00000003}, \
71d8eff1
CJW
879 /* ALL_REGS : 0-100 */ \
880 {0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
9304f876
CJW
881}
882
883#define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
884
885#define BASE_REG_CLASS GENERAL_REGS
886#define INDEX_REG_CLASS GENERAL_REGS
887
e2286268
MC
888#define TEST_REGNO(R, TEST, VALUE) \
889 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
890
9304f876
CJW
891/* Return nonzero if it is suitable for use as a
892 base register in operand addresses.
893 So far, we return nonzero only if "num" is a hard reg
894 of the suitable class or a pseudo register which is
895 allocated to a suitable hard reg. */
896#define REGNO_OK_FOR_BASE_P(num) \
e2286268
MC
897 (TEST_REGNO (num, <, 32) \
898 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
899 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
9304f876
CJW
900
901/* Return nonzero if it is suitable for use as a
902 index register in operand addresses.
903 So far, we return nonzero only if "num" is a hard reg
904 of the suitable class or a pseudo register which is
905 allocated to a suitable hard reg.
906 The difference between an index register and a base register is that
907 the index register may be scaled. */
908#define REGNO_OK_FOR_INDEX_P(num) \
e2286268
MC
909 (TEST_REGNO (num, <, 32) \
910 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
911 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
9304f876
CJW
912
913\f
914/* Obsolete Macros for Defining Constraints. */
915
916\f
917/* Stack Layout and Calling Conventions. */
918
62f9f30b 919#define STACK_GROWS_DOWNWARD 1
9304f876
CJW
920
921#define FRAME_GROWS_DOWNWARD 1
922
9304f876
CJW
923#define STACK_POINTER_OFFSET 0
924
4f44e960
CJW
925#define FIRST_PARM_OFFSET(fundecl) \
926 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
9304f876 927
ca3a4a55
CJW
928/* A C expression whose value is RTL representing the address in a stack frame
929 where the pointer to the caller's frame is stored. */
930#define DYNAMIC_CHAIN_ADDRESS(frameaddr) \
931 nds32_dynamic_chain_address (frameaddr)
932
9304f876
CJW
933#define RETURN_ADDR_RTX(count, frameaddr) \
934 nds32_return_addr_rtx (count, frameaddr)
935
936/* A C expression whose value is RTL representing the location
937 of the incoming return address at the beginning of any function
938 before the prologue.
939 If this RTL is REG, you should also define
940 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
941#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
942#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
943
ca3a4a55
CJW
944/* Use $r0 $r1 to pass exception handling information. */
945#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) : INVALID_REGNUM)
946/* The register $r2 that represents a location in which to store a stack
947 adjustment to be applied before function return.
948 This is used to unwind the stack to an exception handler's call frame. */
949#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
950
e2286268
MC
951#define DBX_REGISTER_NUMBER(REGNO) nds32_dbx_register_number (REGNO)
952
9304f876
CJW
953#define STACK_POINTER_REGNUM SP_REGNUM
954
955#define FRAME_POINTER_REGNUM 33
956
957#define HARD_FRAME_POINTER_REGNUM FP_REGNUM
958
959#define ARG_POINTER_REGNUM 32
960
961#define STATIC_CHAIN_REGNUM 16
962
963#define ELIMINABLE_REGS \
964{ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
965 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
966 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
967 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
968
969#define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
970 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
971
972#define ACCUMULATE_OUTGOING_ARGS 1
973
974#define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
975
976#define CUMULATIVE_ARGS nds32_cumulative_args
977
978#define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
979 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
980
e2286268
MC
981#define FUNCTION_ARG_REGNO_P(regno) \
982 (IN_RANGE ((regno), NDS32_FIRST_GPR_REGNUM, NDS32_MAX_GPR_REGS_FOR_ARGS - 1) \
983 || ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE) \
984 && IN_RANGE ((regno), NDS32_FPR_ARG_FIRST_REGNUM, \
985 NDS32_FIRST_FPR_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS - 1)))
9304f876
CJW
986
987#define DEFAULT_PCC_STRUCT_RETURN 0
988
989/* EXIT_IGNORE_STACK should be nonzero if, when returning
990 from a function, the stack pointer does not matter.
991 The value is tested only in functions that have frame pointers.
992 In nds32 target, the function epilogue recovers the
993 stack pointer from the frame. */
994#define EXIT_IGNORE_STACK 1
995
996#define FUNCTION_PROFILER(file, labelno) \
9e362bd0
CJW
997 fprintf (file, "/* profiler %d */\n", (labelno))
998
999#define PROFILE_HOOK(LABEL) \
1000 { \
1001 rtx fun, lp; \
1002 lp = get_hard_reg_initial_val (Pmode, LP_REGNUM); \
1003 fun = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
1004 emit_library_call (fun, LCT_NORMAL, VOIDmode, lp, Pmode); \
1005 }
9304f876
CJW
1006
1007\f
1008/* Implementing the Varargs Macros. */
1009
1010\f
1011/* Trampolines for Nested Functions. */
1012
1013/* Giving A-function and B-function,
1014 if B-function wants to call A-function's nested function,
1015 we need to fill trampoline code into A-function's stack
1016 so that B-function can execute the code in stack to indirectly
1017 jump to (like 'trampoline' action) desired nested function.
1018
1019 The trampoline code for nds32 target must contains following parts:
1020
1021 1. instructions (4 * 4 = 16 bytes):
8a498f99
CJW
1022 get $pc first
1023 load chain_value to static chain register via $pc
1024 load nested function address to $r15 via $pc
1025 jump to desired nested function via $r15
9304f876 1026 2. data (4 * 2 = 8 bytes):
8a498f99
CJW
1027 chain_value
1028 nested function address
9304f876
CJW
1029
1030 Please check nds32.c implementation for more information. */
1031#define TRAMPOLINE_SIZE 24
1032
1033/* Because all instructions/data in trampoline template are 4-byte size,
1034 we set trampoline alignment 8*4=32 bits. */
1035#define TRAMPOLINE_ALIGNMENT 32
1036
1037\f
1038/* Implicit Calls to Library Routines. */
1039
1040\f
1041/* Addressing Modes. */
1042
1043/* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
1044#define HAVE_POST_INCREMENT 1
1045/* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
1046#define HAVE_POST_DECREMENT 1
1047
1048/* We have "LWI.bi Rt, [Ra], imm" instruction form. */
1049#define HAVE_POST_MODIFY_DISP 1
1050/* We have "LW.bi Rt, [Ra], Rb" instruction form. */
1051#define HAVE_POST_MODIFY_REG 1
1052
1053#define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
1054
566f31a4 1055#define MAX_REGS_PER_ADDRESS 3
9304f876
CJW
1056
1057\f
1058/* Anchored Addresses. */
1059
1060\f
1061/* Condition Code Status. */
1062
1063\f
1064/* Describing Relative Costs of Operations. */
1065
1066/* A C expression for the cost of a branch instruction.
1067 A value of 1 is the default;
1068 other values are interpreted relative to that. */
15c193e2 1069#define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 1)
9304f876 1070
08ed6d29
CJW
1071/* Override BRANCH_COST heuristic which empirically produces worse
1072 performance for removing short circuiting from the logical ops. */
1073#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1074
9304f876
CJW
1075#define SLOW_BYTE_ACCESS 1
1076
1e8552c2 1077#define NO_FUNCTION_CSE 1
9304f876
CJW
1078
1079\f
1080/* Adjusting the Instruction Scheduler. */
1081
1082\f
1083/* Dividing the Output into Sections (Texts, Data, . . . ). */
1084
1085#define TEXT_SECTION_ASM_OP "\t.text"
1086#define DATA_SECTION_ASM_OP "\t.data"
1087
1088/* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
1089 So we use '.section .bss' alternatively. */
1090#define BSS_SECTION_ASM_OP "\t.section\t.bss"
1091
1092/* Define this macro to be an expression with a nonzero value if jump tables
1093 (for tablejump insns) should be output in the text section,
1094 along with the assembler instructions.
1095 Otherwise, the readonly data section is used. */
1096#define JUMP_TABLES_IN_TEXT_SECTION 1
1097
1098\f
1099/* Position Independent Code. */
1100
64a08b7f
CJW
1101#define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
1102
9304f876
CJW
1103\f
1104/* Defining the Output Assembler Language. */
1105
1106#define ASM_COMMENT_START "!"
1107
1108#define ASM_APP_ON "! #APP"
1109
1110#define ASM_APP_OFF "! #NO_APP\n"
1111
1112#define ASM_OUTPUT_LABELREF(stream, name) \
1113 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
1114
1115#define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
1116 assemble_name (stream, XSTR (sym, 0))
1117
1118#define ASM_OUTPUT_LABEL_REF(stream, buf) \
1119 assemble_name (stream, buf)
1120
1121#define LOCAL_LABEL_PREFIX "."
1122
71d8eff1
CJW
1123#define REGISTER_NAMES \
1124{ "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
9304f876
CJW
1125 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
1126 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
1127 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
e2286268
MC
1128 "$AP", "$SFP", "$fs0", "$fs1", "$fs2", "$fs3", "$fs4", "$fs5", \
1129 "$fs6", "$fs7", "$fs8", "$fs9", "$fs10","$fs11","$fs12","$fs13",\
1130 "$fs14","$fs15","$fs16","$fs17","$fs18","$fs19","$fs20","$fs21",\
1131 "$fs22","$fs23","$fs24","$fs25","$fs26","$fs27","$fs28","$fs29",\
1132 "$fs30","$fs31","$fs32","$fs33","$fs34","$fs35","$fs36","$fs37",\
1133 "$fs38","$fs39","$fs40","$fs41","$fs42","$fs43","$fs44","$fs45",\
1134 "$fs46","$fs47","$fs48","$fs49","$fs50","$fs51","$fs52","$fs53",\
1135 "$fs54","$fs55","$fs56","$fs57","$fs58","$fs59","$fs60","$fs61",\
1136 "$fs62","$fs63", "LB", "LE", "LC" \
1137}
1138
1139#define ADDITIONAL_REGISTER_NAMES \
1140{ \
1141 {"$r15", 15}, \
1142 {"$r28", 28}, {"$r29", 29}, {"$r30", 30}, {"$r31", 31}, \
1143 {"$a0", 0}, {"$a1", 1}, {"$a2", 2}, \
1144 {"$a3", 3}, {"$a4", 4}, {"$a5", 5}, \
1145 {"$s0", 6}, {"$s1", 7}, {"$s2", 8}, {"$s3", 9}, \
1146 {"$s4", 10}, {"$s5", 11}, {"$s6", 12}, {"$s7", 13}, \
1147 {"$s8", 14}, \
1148 {"$t0", 16}, {"$t1", 17}, {"$t2", 18}, {"$t3", 19}, \
1149 {"$t4", 20}, {"$t5", 21}, {"$t6", 22}, {"$t7", 23}, \
1150 {"$t8", 24}, {"$t9", 25}, \
1151 {"$p0", 26}, {"$p1", 27}, \
1152 {"$h0", 0}, {"$h1", 1}, {"$h2", 2}, {"$h3", 3}, \
1153 {"$h4", 4}, {"$h5", 5}, {"$h6", 6}, {"$h7", 7}, \
1154 {"$h8", 8}, {"$h9", 9}, {"$h10", 10}, {"$h11", 11}, \
1155 {"$h12", 16}, {"$h13", 17}, {"$h14", 18}, {"$h15", 19}, \
1156 {"$o0", 0}, {"$o1", 1}, {"$o2", 2}, {"$o3", 3}, \
1157 {"$o4", 4}, {"$o5", 5}, {"$o6", 6}, {"$o7", 7}, \
1158}
1159
1160#define OVERLAPPING_REGISTER_NAMES \
1161{ \
1162 {"$fd0", NDS32_FIRST_FPR_REGNUM + 0, 2}, \
1163 {"$fd1", NDS32_FIRST_FPR_REGNUM + 2, 2}, \
1164 {"$fd2", NDS32_FIRST_FPR_REGNUM + 4, 2}, \
1165 {"$fd3", NDS32_FIRST_FPR_REGNUM + 6, 2}, \
1166 {"$fd4", NDS32_FIRST_FPR_REGNUM + 8, 2}, \
1167 {"$fd5", NDS32_FIRST_FPR_REGNUM + 10, 2}, \
1168 {"$fd6", NDS32_FIRST_FPR_REGNUM + 12, 2}, \
1169 {"$fd7", NDS32_FIRST_FPR_REGNUM + 14, 2}, \
1170 {"$fd8", NDS32_FIRST_FPR_REGNUM + 16, 2}, \
1171 {"$fd9", NDS32_FIRST_FPR_REGNUM + 18, 2}, \
1172 {"$fd10", NDS32_FIRST_FPR_REGNUM + 20, 2}, \
1173 {"$fd11", NDS32_FIRST_FPR_REGNUM + 22, 2}, \
1174 {"$fd12", NDS32_FIRST_FPR_REGNUM + 24, 2}, \
1175 {"$fd13", NDS32_FIRST_FPR_REGNUM + 26, 2}, \
1176 {"$fd14", NDS32_FIRST_FPR_REGNUM + 28, 2}, \
1177 {"$fd15", NDS32_FIRST_FPR_REGNUM + 30, 2}, \
1178 {"$fd16", NDS32_FIRST_FPR_REGNUM + 32, 2}, \
1179 {"$fd17", NDS32_FIRST_FPR_REGNUM + 34, 2}, \
1180 {"$fd18", NDS32_FIRST_FPR_REGNUM + 36, 2}, \
1181 {"$fd19", NDS32_FIRST_FPR_REGNUM + 38, 2}, \
1182 {"$fd20", NDS32_FIRST_FPR_REGNUM + 40, 2}, \
1183 {"$fd21", NDS32_FIRST_FPR_REGNUM + 42, 2}, \
1184 {"$fd22", NDS32_FIRST_FPR_REGNUM + 44, 2}, \
1185 {"$fd23", NDS32_FIRST_FPR_REGNUM + 46, 2}, \
1186 {"$fd24", NDS32_FIRST_FPR_REGNUM + 48, 2}, \
1187 {"$fd25", NDS32_FIRST_FPR_REGNUM + 50, 2}, \
1188 {"$fd26", NDS32_FIRST_FPR_REGNUM + 52, 2}, \
1189 {"$fd27", NDS32_FIRST_FPR_REGNUM + 54, 2}, \
1190 {"$fd28", NDS32_FIRST_FPR_REGNUM + 56, 2}, \
1191 {"$fd29", NDS32_FIRST_FPR_REGNUM + 58, 2}, \
1192 {"$fd30", NDS32_FIRST_FPR_REGNUM + 60, 2}, \
1193 {"$fd31", NDS32_FIRST_FPR_REGNUM + 62, 2}, \
9304f876
CJW
1194}
1195
1196/* Output normal jump table entry. */
1197#define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
1198 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
1199
1200/* Output pc relative jump table entry. */
1201#define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
1202 do \
1203 { \
1204 switch (GET_MODE (body)) \
1205 { \
4e10a5a7 1206 case E_QImode: \
9304f876
CJW
1207 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
1208 break; \
4e10a5a7 1209 case E_HImode: \
9304f876
CJW
1210 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
1211 break; \
4e10a5a7 1212 case E_SImode: \
9304f876
CJW
1213 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
1214 break; \
1215 default: \
1216 gcc_unreachable(); \
1217 } \
1218 } while (0)
1219
1220/* We have to undef it first because elfos.h formerly define it
1221 check gcc/config.gcc and gcc/config/elfos.h for more information. */
1222#undef ASM_OUTPUT_CASE_LABEL
1223#define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
1224 do \
1225 { \
1226 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
1227 (*targetm.asm_out.internal_label) (stream, prefix, num); \
1228 } while (0)
1229
1230#define ASM_OUTPUT_CASE_END(stream, num, table) \
1231 do \
1232 { \
1233 /* Because our jump table is in text section, \
8a498f99
CJW
1234 we need to make sure 2-byte alignment after \
1235 the jump table for instructions fetch. */ \
9304f876 1236 if (GET_MODE (PATTERN (table)) == QImode) \
8a498f99 1237 ASM_OUTPUT_ALIGN (stream, 1); \
9304f876
CJW
1238 asm_fprintf (stream, "\t! Jump Table End\n"); \
1239 } while (0)
1240
1241/* This macro is not documented yet.
1242 But we do need it to make jump table vector aligned. */
1243#define ADDR_VEC_ALIGN(JUMPTABLE) 2
1244
1245#define DWARF2_UNWIND_INFO 1
1246
1247#define JUMP_ALIGN(x) \
1248 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
1249
1250#define LOOP_ALIGN(x) \
1251 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
1252
1253#define LABEL_ALIGN(x) \
1254 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
1255
1256#define ASM_OUTPUT_ALIGN(stream, power) \
1257 fprintf (stream, "\t.align\t%d\n", power)
1258
1259\f
1260/* Controlling Debugging Information Format. */
1261
1262#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1263
1264#define DWARF2_DEBUGGING_INFO 1
1265
1266#define DWARF2_ASM_LINE_DEBUG_INFO 1
1267
1268\f
1269/* Cross Compilation and Floating Point. */
1270
1271\f
1272/* Mode Switching Instructions. */
1273
1274\f
1275/* Defining target-specific uses of __attribute__. */
1276
1277\f
1278/* Emulating TLS. */
1279
1280\f
1281/* Defining coprocessor specifics for MIPS targets. */
1282
1283\f
1284/* Parameters for Precompiled Header Validity Checking. */
1285
1286\f
1287/* C++ ABI parameters. */
1288
1289\f
1290/* Adding support for named address spaces. */
1291
1292\f
1293/* Miscellaneous Parameters. */
1294
1295/* This is the machine mode that elements of a jump-table should have. */
1296#define CASE_VECTOR_MODE Pmode
1297
1298/* Return the preferred mode for and addr_diff_vec when the mininum
1299 and maximum offset are known. */
1300#define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
1301 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
1302 : (max_offset >= 100) ? HImode \
1303 : QImode)
1304
1305/* Generate pc relative jump table when -fpic or -Os. */
1306#define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
1307
1308/* Define this macro if operations between registers with integral mode
1309 smaller than a word are always performed on the entire register. */
9e11bfef 1310#define WORD_REGISTER_OPERATIONS 1
9304f876
CJW
1311
1312/* A C expression indicating when insns that read memory in mem_mode,
1313 an integral mode narrower than a word, set the bits outside of mem_mode
1314 to be either the sign-extension or the zero-extension of the data read. */
1315#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1316
1317/* The maximum number of bytes that a single instruction can move quickly
1318 between memory and registers or between two memory locations. */
1319#define MOVE_MAX 4
1320
1321/* A C expression that is nonzero if on this machine the number of bits
1322 actually used for the count of a shift operation is equal to the number
1323 of bits needed to represent the size of the object being shifted. */
1324#define SHIFT_COUNT_TRUNCATED 1
1325
9304f876
CJW
1326/* A C expression describing the value returned by a comparison operator with
1327 an integral mode and stored by a store-flag instruction ('cstoremode4')
1328 when the condition is true. */
1329#define STORE_FLAG_VALUE 1
1330
24a71166
CJW
1331/* A C expression that indicates whether the architecture defines a value for
1332 clz or ctz with a zero operand. In nds32 clz for 0 result 32 is defined
1333 in ISA spec */
1334#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1335
9304f876
CJW
1336/* An alias for the machine mode for pointers. */
1337#define Pmode SImode
1338
1339/* An alias for the machine mode used for memory references to functions
1340 being called, in call RTL expressions. */
1341#define FUNCTION_MODE SImode
1342
1343/* ------------------------------------------------------------------------ */