]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/nds32/nds32.h
re PR sanitizer/84307 (asan blocks dead-store elimination)
[thirdparty/gcc.git] / gcc / config / nds32 / nds32.h
CommitLineData
9304f876 1/* Definitions of target machine of Andes NDS32 cpu for GNU compiler
85ec4feb 2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
9304f876
CJW
3 Contributed by Andes Technology Corporation.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22/* ------------------------------------------------------------------------ */
23
24/* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
26
a5876228
CJW
27#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
28 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
29
511a41d7
CJW
30/* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
31 It is used in nds32_encode_section_info() to store flag in symbol_ref
32 in case the symbol should be placed in .rodata section.
33 So that we can check it in nds32_legitimate_address_p(). */
34#define NDS32_SYMBOL_FLAG_RODATA \
35 (SYMBOL_FLAG_MACH_DEP << 0)
36#define NDS32_SYMBOL_REF_RODATA_P(x) \
37 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
9304f876 38
6e9ca932
CJW
39/* Classifies expand result for expand helper function. */
40enum nds32_expand_result_type
41{
42 EXPAND_DONE,
43 EXPAND_FAIL,
44 EXPAND_CREATE_TEMPLATE
45};
46
9304f876
CJW
47/* Classifies address type to distinguish 16-bit/32-bit format. */
48enum nds32_16bit_address_type
49{
50 /* [reg]: 45 format address. */
51 ADDRESS_REG,
52 /* [lo_reg + imm3u]: 333 format address. */
53 ADDRESS_LO_REG_IMM3U,
54 /* post_inc [lo_reg + imm3u]: 333 format address. */
55 ADDRESS_POST_INC_LO_REG_IMM3U,
67e1eb3d
SC
56 /* post_modify [lo_reg + imm3u]: 333 format address. */
57 ADDRESS_POST_MODIFY_LO_REG_IMM3U,
8656bbcf
SC
58 /* [$r8 + imm7u]: r8 imply address. */
59 ADDRESS_R8_IMM7U,
9304f876
CJW
60 /* [$fp + imm7u]: fp imply address. */
61 ADDRESS_FP_IMM7U,
62 /* [$sp + imm7u]: sp imply address. */
63 ADDRESS_SP_IMM7U,
64 /* Other address format. */
65 ADDRESS_NOT_16BIT_FORMAT
66};
67
68
69/* ------------------------------------------------------------------------ */
70
71/* Define maximum numbers of registers for passing arguments. */
9d93cc24 72#define NDS32_MAX_GPR_REGS_FOR_ARGS 6
e2286268 73#define NDS32_MAX_FPR_REGS_FOR_ARGS 6
9304f876
CJW
74
75/* Define the register number for first argument. */
76#define NDS32_GPR_ARG_FIRST_REGNUM 0
e2286268 77#define NDS32_FPR_ARG_FIRST_REGNUM 34
9304f876
CJW
78
79/* Define the register number for return value. */
80#define NDS32_GPR_RET_FIRST_REGNUM 0
e2286268 81#define NDS32_FPR_RET_FIRST_REGNUM 34
9304f876 82
9d93cc24
CJW
83/* Define the first integer register number. */
84#define NDS32_FIRST_GPR_REGNUM 0
85/* Define the last integer register number. */
86#define NDS32_LAST_GPR_REGNUM 31
9304f876 87
a6c7e777
MC
88#define NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM 6
89#define NDS32_LAST_CALLEE_SAVE_GPR_REGNUM \
90 (TARGET_REDUCED_REGS ? 10 : 14)
91
e2286268
MC
92/* Define the floating-point number of registers. */
93#define NDS32_FLOAT_REGISTER_NUMBER \
94 (((nds32_fp_regnum == NDS32_CONFIG_FPU_0) \
95 || (nds32_fp_regnum == NDS32_CONFIG_FPU_4)) ? 8 \
96 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_1) \
97 || (nds32_fp_regnum == NDS32_CONFIG_FPU_5)) ? 16 \
98 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_2) \
99 || (nds32_fp_regnum == NDS32_CONFIG_FPU_6)) ? 32 \
100 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_3) \
101 || (nds32_fp_regnum == NDS32_CONFIG_FPU_7)) ? 64 \
102 : 32)
103
104#define NDS32_EXT_FPU_DOT_E (nds32_fp_regnum >= 4)
105
106/* Define the first floating-point register number. */
107#define NDS32_FIRST_FPR_REGNUM 34
108/* Define the last floating-point register number. */
109#define NDS32_LAST_FPR_REGNUM \
110 (NDS32_FIRST_FPR_REGNUM + NDS32_FLOAT_REGISTER_NUMBER - 1)
111
112
113#define NDS32_IS_EXT_FPR_REGNUM(regno) \
114 (((regno) >= NDS32_FIRST_FPR_REGNUM + 32) \
115 && ((regno) < NDS32_FIRST_FPR_REGNUM + 64))
116
117#define NDS32_IS_FPR_REGNUM(regno) \
118 (((regno) >= NDS32_FIRST_FPR_REGNUM) \
119 && ((regno) <= NDS32_LAST_FPR_REGNUM))
120
121#define NDS32_FPR_REGNO_OK_FOR_SINGLE(regno) \
122 ((regno) <= NDS32_LAST_FPR_REGNUM)
123
124#define NDS32_FPR_REGNO_OK_FOR_DOUBLE(regno) \
125 ((((regno) - NDS32_FIRST_FPR_REGNUM) & 1) == 0)
126
127#define NDS32_IS_GPR_REGNUM(regno) \
128 (((regno) <= NDS32_LAST_GPR_REGNUM))
129
9304f876
CJW
130/* Define double word alignment bits. */
131#define NDS32_DOUBLE_WORD_ALIGNMENT 64
132
133/* Define alignment checking macros for convenience. */
134#define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
135#define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
136#define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
137
43fa41c1
CJW
138/* Determine whether we would like to have code generation strictly aligned.
139 We set it strictly aligned when -malways-align is enabled.
140 Check gcc/common/config/nds32/nds32-common.c for the optimizations that
141 apply -malways-align. */
142#define NDS32_ALIGN_P() (TARGET_ALWAYS_ALIGN)
634bdae9
CJW
143/* Get alignment according to mode or type information.
144 When 'type' is nonnull, there is no need to look at 'mode'. */
145#define NDS32_MODE_TYPE_ALIGN(mode, type) \
146 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
147
9304f876
CJW
148/* Round X up to the nearest double word. */
149#define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
150
151
152/* This macro is used to calculate the numbers of registers for
153 containing 'size' bytes of the argument.
154 The size of a register is a word in nds32 target.
155 So we use UNITS_PER_WORD to do the calculation. */
156#define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
157 ((mode == BLKmode) \
158 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
159 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
160
161/* This macro is used to return the register number for passing argument.
162 We need to obey the following rules:
163 1. If it is required MORE THAN one register,
8a498f99
CJW
164 we need to further check if it really needs to be
165 aligned on double words.
166 a) If double word alignment is necessary,
167 the register number must be even value.
168 b) Otherwise, the register number can be odd or even value.
9304f876 169 2. If it is required ONLY one register,
8a498f99
CJW
170 the register number can be odd or even value. */
171#define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
172 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
173 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
174 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
175 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
9304f876
CJW
176 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
177
e2286268
MC
178#define NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG(reg_offset, mode, type) \
179 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
180 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
181 ? (((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM + 1) & ~1) \
182 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM)) \
183 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM))
184
185/* These two macros are to check if there are still available registers
7f6cd86b
CJW
186 for passing argument, which must be entirely in registers. */
187#define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
188 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
189 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
190 <= (NDS32_GPR_ARG_FIRST_REGNUM \
191 + NDS32_MAX_GPR_REGS_FOR_ARGS))
192
e2286268
MC
193#define NDS32_ARG_ENTIRE_IN_FPR_REG_P(reg_offset, mode, type) \
194 ((NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
195 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
196 <= (NDS32_FPR_ARG_FIRST_REGNUM \
197 + NDS32_MAX_FPR_REGS_FOR_ARGS))
198
199/* These two macros are to check if there are still available registers
7f6cd86b
CJW
200 for passing argument, either entirely in registers or partially
201 in registers. */
202#define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
203 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
204 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
9304f876 205
e2286268
MC
206#define NDS32_ARG_PARTIAL_IN_FPR_REG_P(reg_offset, mode, type) \
207 (NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
208 < NDS32_FPR_ARG_FIRST_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS)
209
9304f876
CJW
210/* This macro is to check if the register is required to be saved on stack.
211 If call_used_regs[regno] == 0, regno is the callee-saved register.
212 If df_regs_ever_live_p(regno) == true, it is used in the current function.
213 As long as the register satisfies both criteria above,
214 it is required to be saved. */
215#define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
216 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
217
a6c7e777
MC
218/* This macro is to check if the push25/pop25 are available to be used
219 for code generation. Because pop25 also performs return behavior,
220 the instructions may not be available for some cases.
221 If we want to use push25/pop25, all the following conditions must
222 be satisfied:
223 1. TARGET_V3PUSH is set.
224 2. Current function is not an ISR function.
225 3. Current function is not a variadic function.*/
226#define NDS32_V3PUSH_AVAILABLE_P \
227 (TARGET_V3PUSH \
228 && !nds32_isr_function_p (current_function_decl) \
229 && (cfun->machine->va_args_size == 0))
230
9304f876
CJW
231/* ------------------------------------------------------------------------ */
232
233/* A C structure for machine-specific, per-function data.
234 This is added to the cfun structure. */
235struct GTY(()) machine_function
236{
237 /* Number of bytes allocated on the stack for variadic args
238 if we want to push them into stack as pretend arguments by ourself. */
239 int va_args_size;
240 /* Number of bytes reserved on the stack for
241 local and temporary variables. */
242 int local_size;
243 /* Number of bytes allocated on the stack for outgoing arguments. */
244 int out_args_size;
245
246 /* Number of bytes on the stack for saving $fp. */
247 int fp_size;
248 /* Number of bytes on the stack for saving $gp. */
249 int gp_size;
250 /* Number of bytes on the stack for saving $lp. */
251 int lp_size;
252
c457f751
CJW
253 /* Number of bytes on the stack for saving general purpose
254 callee-saved registers. */
255 int callee_saved_gpr_regs_size;
256
e2286268
MC
257 /* Number of bytes on the stack for saving floating-point
258 callee-saved registers. */
259 int callee_saved_fpr_regs_size;
260
9304f876 261 /* The padding bytes in callee-saved area may be required. */
c457f751 262 int callee_saved_area_gpr_padding_bytes;
9304f876 263
c457f751
CJW
264 /* The first required general purpose callee-saved register. */
265 int callee_saved_first_gpr_regno;
266 /* The last required general purpose callee-saved register. */
267 int callee_saved_last_gpr_regno;
9304f876 268
e2286268
MC
269 /* The first required floating-point callee-saved register. */
270 int callee_saved_first_fpr_regno;
271 /* The last required floating-point callee-saved register. */
272 int callee_saved_last_fpr_regno;
273
dd1536a7
CJW
274 /* The padding bytes in varargs area may be required. */
275 int va_args_area_padding_bytes;
276
277 /* The first required register that should be saved on stack for va_args. */
278 int va_args_first_regno;
279 /* The last required register that should be saved on stack for va_args. */
280 int va_args_last_regno;
281
ca3a4a55
CJW
282 /* Number of bytes on the stack for saving exception handling registers. */
283 int eh_return_data_regs_size;
284 /* The first register of passing exception handling information. */
285 int eh_return_data_first_regno;
286 /* The last register of passing exception handling information. */
287 int eh_return_data_last_regno;
288
289 /* Indicate that whether this function
290 calls __builtin_eh_return. */
291 int use_eh_return_p;
292
9304f876
CJW
293 /* Indicate that whether this function needs
294 prologue/epilogue code generation. */
295 int naked_p;
296 /* Indicate that whether this function
297 uses fp_as_gp optimization. */
298 int fp_as_gp_p;
5f2a98c3
CJW
299 /* Indicate that whether this function is under strictly aligned
300 situation for legitimate address checking. This flag informs
301 nds32_legitimate_address_p() how to treat offset alignment:
302 1. The IVOPT phase needs to detect available range for memory access,
303 such as checking [base + 32767] ~ [base + (-32768)].
304 For this case we do not want address to be strictly aligned.
305 2. The rtl lowering and optimization are close to target code.
306 For this case we need address to be strictly aligned. */
307 int strict_aligned_p;
9304f876
CJW
308};
309
310/* A C structure that contains the arguments information. */
311typedef struct
312{
9d93cc24 313 unsigned int gpr_offset;
e2286268 314 unsigned int fpr_offset;
9304f876
CJW
315} nds32_cumulative_args;
316
317/* ------------------------------------------------------------------------ */
318
319/* The following we define C-ISR related stuff.
320 In nds32 architecture, we have 73 vectors for interrupt/exception.
321 For each vector (except for vector 0, which is used for reset behavior),
322 we allow users to set its register saving scheme and interrupt level. */
323
324/* There are 73 vectors in nds32 architecture.
325 0 for reset handler,
326 1-8 for exception handler,
327 and 9-72 for interrupt handler.
328 We use an array, which is defined in nds32.c, to record
329 essential information for each vector. */
330#define NDS32_N_ISR_VECTORS 73
331
332/* Define possible isr category. */
333enum nds32_isr_category
334{
335 NDS32_ISR_NONE,
336 NDS32_ISR_INTERRUPT,
337 NDS32_ISR_EXCEPTION,
338 NDS32_ISR_RESET
339};
340
341/* Define isr register saving scheme. */
342enum nds32_isr_save_reg
343{
344 NDS32_SAVE_ALL,
345 NDS32_PARTIAL_SAVE
346};
347
348/* Define isr nested type. */
349enum nds32_isr_nested_type
350{
351 NDS32_NESTED,
352 NDS32_NOT_NESTED,
353 NDS32_NESTED_READY
354};
355
356/* Define structure to record isr information.
357 The isr vector array 'isr_vectors[]' with this structure
358 is defined in nds32.c. */
359struct nds32_isr_info
360{
361 /* The field to identify isr category.
362 It should be set to NDS32_ISR_NONE by default.
363 If user specifies a function as isr by using attribute,
364 this field will be set accordingly. */
365 enum nds32_isr_category category;
366
367 /* A string for the applied function name.
368 It should be set to empty string by default. */
369 char func_name[100];
370
371 /* The register saving scheme.
372 It should be set to NDS32_PARTIAL_SAVE by default
373 unless user specifies attribute to change it. */
374 enum nds32_isr_save_reg save_reg;
375
376 /* The nested type.
377 It should be set to NDS32_NOT_NESTED by default
378 unless user specifies attribute to change it. */
379 enum nds32_isr_nested_type nested_type;
380
381 /* Total vectors.
382 The total vectors = interrupt + exception numbers + reset.
383 It should be set to 0 by default.
384 This field is ONLY used in NDS32_ISR_RESET category. */
385 unsigned int total_n_vectors;
386
387 /* A string for nmi handler name.
388 It should be set to empty string by default.
389 This field is ONLY used in NDS32_ISR_RESET category. */
390 char nmi_name[100];
391
392 /* A string for warm handler name.
393 It should be set to empty string by default.
394 This field is ONLY used in NDS32_ISR_RESET category. */
395 char warm_name[100];
396};
397
398/* ------------------------------------------------------------------------ */
399
400/* Define code for all nds32 builtins. */
401enum nds32_builtins
402{
403 NDS32_BUILTIN_ISYNC,
404 NDS32_BUILTIN_ISB,
154e3ea6
MC
405 NDS32_BUILTIN_DSB,
406 NDS32_BUILTIN_MSYNC_ALL,
407 NDS32_BUILTIN_MSYNC_STORE,
9304f876
CJW
408 NDS32_BUILTIN_MFSR,
409 NDS32_BUILTIN_MFUSR,
410 NDS32_BUILTIN_MTSR,
154e3ea6
MC
411 NDS32_BUILTIN_MTSR_ISB,
412 NDS32_BUILTIN_MTSR_DSB,
9304f876
CJW
413 NDS32_BUILTIN_MTUSR,
414 NDS32_BUILTIN_SETGIE_EN,
7a12ea32 415 NDS32_BUILTIN_SETGIE_DIS,
0bb4423d
MC
416 NDS32_BUILTIN_FMFCFG,
417 NDS32_BUILTIN_FMFCSR,
418 NDS32_BUILTIN_FMTCSR,
419 NDS32_BUILTIN_FCPYNSS,
420 NDS32_BUILTIN_FCPYSS,
421 NDS32_BUILTIN_FCPYNSD,
422 NDS32_BUILTIN_FCPYSD,
2feae6cd
MC
423 NDS32_BUILTIN_ABS,
424 NDS32_BUILTIN_AVE,
425 NDS32_BUILTIN_BCLR,
426 NDS32_BUILTIN_BSET,
427 NDS32_BUILTIN_BTGL,
428 NDS32_BUILTIN_BTST,
429 NDS32_BUILTIN_CLIP,
430 NDS32_BUILTIN_CLIPS,
431 NDS32_BUILTIN_CLZ,
432 NDS32_BUILTIN_CLO,
433 NDS32_BUILTIN_MAX,
434 NDS32_BUILTIN_MIN,
435 NDS32_BUILTIN_PBSAD,
436 NDS32_BUILTIN_PBSADA,
437 NDS32_BUILTIN_BSE,
438 NDS32_BUILTIN_BSP,
3999578c
MC
439 NDS32_BUILTIN_FFB,
440 NDS32_BUILTIN_FFMISM,
441 NDS32_BUILTIN_FLMISM,
2feae6cd
MC
442
443 NDS32_BUILTIN_ROTR,
444 NDS32_BUILTIN_SVA,
445 NDS32_BUILTIN_SVS,
446 NDS32_BUILTIN_WSBH,
447 NDS32_BUILTIN_JR_ITOFF,
448 NDS32_BUILTIN_JR_TOFF,
449 NDS32_BUILTIN_JRAL_ITON,
450 NDS32_BUILTIN_JRAL_TON,
451 NDS32_BUILTIN_RET_ITOFF,
452 NDS32_BUILTIN_RET_TOFF,
453 NDS32_BUILTIN_STANDBY_NO_WAKE_GRANT,
454 NDS32_BUILTIN_STANDBY_WAKE_GRANT,
455 NDS32_BUILTIN_STANDBY_WAKE_DONE,
456 NDS32_BUILTIN_TEQZ,
457 NDS32_BUILTIN_TNEZ,
458 NDS32_BUILTIN_TRAP,
459 NDS32_BUILTIN_SETEND_BIG,
460 NDS32_BUILTIN_SETEND_LITTLE,
461 NDS32_BUILTIN_SYSCALL,
462 NDS32_BUILTIN_BREAK,
463 NDS32_BUILTIN_NOP,
464 NDS32_BUILTIN_SCHE_BARRIER,
465 NDS32_BUILTIN_GET_CURRENT_SP,
466 NDS32_BUILTIN_SET_CURRENT_SP,
467 NDS32_BUILTIN_RETURN_ADDRESS,
154e3ea6
MC
468 NDS32_BUILTIN_LLW,
469 NDS32_BUILTIN_LWUP,
470 NDS32_BUILTIN_LBUP,
471 NDS32_BUILTIN_SCW,
472 NDS32_BUILTIN_SWUP,
473 NDS32_BUILTIN_SBUP,
f1a0afe2
MC
474 NDS32_BUILTIN_CCTL_VA_LCK,
475 NDS32_BUILTIN_CCTL_IDX_WBINVAL,
476 NDS32_BUILTIN_CCTL_VA_WBINVAL_L1,
477 NDS32_BUILTIN_CCTL_VA_WBINVAL_LA,
478 NDS32_BUILTIN_CCTL_IDX_READ,
479 NDS32_BUILTIN_CCTL_IDX_WRITE,
480 NDS32_BUILTIN_CCTL_L1D_INVALALL,
481 NDS32_BUILTIN_CCTL_L1D_WBALL_ALVL,
482 NDS32_BUILTIN_CCTL_L1D_WBALL_ONE_LVL,
57aaf0cc
MC
483 NDS32_BUILTIN_DPREF_QW,
484 NDS32_BUILTIN_DPREF_HW,
485 NDS32_BUILTIN_DPREF_W,
486 NDS32_BUILTIN_DPREF_DW,
487 NDS32_BUILTIN_TLBOP_TRD,
488 NDS32_BUILTIN_TLBOP_TWR,
489 NDS32_BUILTIN_TLBOP_RWR,
490 NDS32_BUILTIN_TLBOP_RWLK,
491 NDS32_BUILTIN_TLBOP_UNLK,
492 NDS32_BUILTIN_TLBOP_PB,
493 NDS32_BUILTIN_TLBOP_INV,
494 NDS32_BUILTIN_TLBOP_FLUA,
e576ddb5
KC
495 NDS32_BUILTIN_UALOAD_HW,
496 NDS32_BUILTIN_UALOAD_W,
497 NDS32_BUILTIN_UALOAD_DW,
498 NDS32_BUILTIN_UASTORE_HW,
499 NDS32_BUILTIN_UASTORE_W,
500 NDS32_BUILTIN_UASTORE_DW,
8b9322f0
MC
501 NDS32_BUILTIN_GIE_DIS,
502 NDS32_BUILTIN_GIE_EN,
503 NDS32_BUILTIN_ENABLE_INT,
504 NDS32_BUILTIN_DISABLE_INT,
505 NDS32_BUILTIN_SET_PENDING_SWINT,
506 NDS32_BUILTIN_CLR_PENDING_SWINT,
507 NDS32_BUILTIN_CLR_PENDING_HWINT,
508 NDS32_BUILTIN_GET_ALL_PENDING_INT,
509 NDS32_BUILTIN_GET_PENDING_INT,
510 NDS32_BUILTIN_SET_INT_PRIORITY,
511 NDS32_BUILTIN_GET_INT_PRIORITY,
512 NDS32_BUILTIN_SET_TRIG_LEVEL,
513 NDS32_BUILTIN_SET_TRIG_EDGE,
514 NDS32_BUILTIN_GET_TRIG_TYPE,
bc8a8810
MC
515
516 NDS32_BUILTIN_UNALIGNED_FEATURE,
517 NDS32_BUILTIN_ENABLE_UNALIGNED,
518 NDS32_BUILTIN_DISABLE_UNALIGNED,
7a12ea32 519 NDS32_BUILTIN_COUNT
9304f876
CJW
520};
521
522/* ------------------------------------------------------------------------ */
523
524#define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
e2286268
MC
525
526#define TARGET_ISA_V3 \
527 (nds32_arch_option == ARCH_V3 \
528 || nds32_arch_option == ARCH_V3F \
529 || nds32_arch_option == ARCH_V3S)
9304f876
CJW
530#define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
531
b99353a2
KC
532#define TARGET_PIPELINE_N9 \
533 (nds32_cpu_option == CPU_N9)
534#define TARGET_PIPELINE_SIMPLE \
535 (nds32_cpu_option == CPU_SIMPLE)
536
77b7a1ca
CJW
537#define TARGET_CMODEL_SMALL \
538 (nds32_cmodel_option == CMODEL_SMALL)
539#define TARGET_CMODEL_MEDIUM \
540 (nds32_cmodel_option == CMODEL_MEDIUM)
541#define TARGET_CMODEL_LARGE \
542 (nds32_cmodel_option == CMODEL_LARGE)
543
544/* When -mcmodel=small or -mcmodel=medium,
545 compiler may generate gp-base instruction directly. */
546#define TARGET_GP_DIRECT \
547 (nds32_cmodel_option == CMODEL_SMALL\
548 || nds32_cmodel_option == CMODEL_MEDIUM)
549
b99353a2
KC
550#define TARGET_MUL_SLOW \
551 (nds32_mul_config == MUL_TYPE_SLOW)
d4a6a4d9 552
e2286268
MC
553/* Run-time Target Specification. */
554#define TARGET_SOFT_FLOAT (nds32_abi == NDS32_ABI_V2)
555/* Use hardware floating point calling convention. */
556#define TARGET_HARD_FLOAT (nds32_abi == NDS32_ABI_V2_FP_PLUS)
557
558/* Record arch version in TARGET_ARCH_DEFAULT. 0 means soft ABI,
559 1 means hard ABI and using full floating-point instruction,
560 2 means hard ABI and only using single-precision floating-point
561 instruction */
562#if TARGET_ARCH_DEFAULT == 1
563# define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
564# define TARGET_DEFAULT_FPU_ISA MASK_FPU_DOUBLE | MASK_FPU_SINGLE
565# define TARGET_DEFAULT_FPU_FMA 0
566#else
567# if TARGET_ARCH_DEFAULT == 2
568# define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
569# define TARGET_DEFAULT_FPU_ISA MASK_FPU_SINGLE
570# define TARGET_DEFAULT_FPU_FMA 0
571# else
572# define TARGET_DEFAULT_ABI NDS32_ABI_V2
573# define TARGET_DEFAULT_FPU_ISA 0
574# define TARGET_DEFAULT_FPU_FMA 0
575# endif
576#endif
577
578#define TARGET_CONFIG_FPU_DEFAULT NDS32_CONFIG_FPU_2
9304f876
CJW
579/* ------------------------------------------------------------------------ */
580\f
581/* Controlling the Compilation Driver. */
582
583#define OPTION_DEFAULT_SPECS \
e2286268
MC
584 {"arch", " %{!march=*:-march=%(VALUE)}" \
585 " %{march=v3f:%{!mfloat-abi=*:-mfloat-abi=hard}" \
586 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}" \
587 " %{!mno-ext-fpu-dp:%{!mext-fpu-dp:-mext-fpu-dp}}}" \
588 " %{march=v3s:%{!mfloat-abi=*:-mfloat-abi=hard}" \
589 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}}" }, \
b99353a2 590 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
e2286268 591 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }
9304f876
CJW
592
593#define CC1_SPEC \
594 ""
595
596#define ASM_SPEC \
e2286268
MC
597 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
598 " %{march=*:-march=%*}" \
599 " %{mabi=*:-mabi=v%*}" \
600 " %{mconfig-fpu=*:-mfpu-freg=%*}" \
601 " %{mext-fpu-mac:-mmac}" \
602 " %{mno-ext-fpu-mac:-mno-mac}" \
603 " %{mext-fpu-sp:-mfpu-sp-ext}" \
604 " %{mno-ext-fpu-sp:-mno-fpu-sp-ext}" \
605 " %{mext-fpu-dp:-mfpu-dp-ext}" \
606 " %{mno-ext-fpu-sp:-mno-fpu-dp-ext}"
9304f876 607
2ca1ca65 608/* If user issues -mrelax, we need to pass '--relax' to linker. */
9304f876
CJW
609#define LINK_SPEC \
610 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
2ca1ca65 611 " %{mrelax:--relax}"
9304f876
CJW
612
613#define LIB_SPEC \
614 " -lc -lgloss"
615
616/* The option -mno-ctor-dtor can disable constructor/destructor feature
617 by applying different crt stuff. In the convention, crt0.o is the
618 startup file without constructor/destructor;
619 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
620 startup files with constructor/destructor.
621 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
622 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
623 currently provided by GCC for nds32 target.
624
625 For nds32 target so far:
626 If -mno-ctor-dtor, we are going to link
627 "crt0.o [user objects]".
628 If general cases, we are going to link
629 "crt1.o crtbegin1.o [user objects] crtend1.o". */
630#define STARTFILE_SPEC \
631 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
632 " %{!mno-ctor-dtor:crtbegin1.o%s}"
633#define ENDFILE_SPEC \
634 " %{!mno-ctor-dtor:crtend1.o%s}"
635
c9eb51a7
CJW
636/* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
637 configure gcc with --target=nds32be-* setting.
638 Check gcc/config.gcc for more information. */
9304f876 639#ifdef TARGET_BIG_ENDIAN_DEFAULT
c9eb51a7 640# define NDS32_ENDIAN_DEFAULT "mbig-endian"
9304f876 641#else
c9eb51a7 642# define NDS32_ENDIAN_DEFAULT "mlittle-endian"
9304f876
CJW
643#endif
644
c9eb51a7
CJW
645/* Currently we only have elf toolchain,
646 where -mcmodel=medium is always the default. */
647#define NDS32_CMODEL_DEFAULT "mcmodel=medium"
648
649#define MULTILIB_DEFAULTS \
650 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
651
9304f876
CJW
652\f
653/* Run-time Target Specification. */
654
72b7e5e1
KC
655#define TARGET_CPU_CPP_BUILTINS() \
656 nds32_cpu_cpp_builtins (pfile)
9304f876
CJW
657
658\f
659/* Defining Data Structures for Per-function Information. */
660
661/* This macro is called once per function,
662 before generation of any RTL has begun. */
663#define INIT_EXPANDERS nds32_init_expanders ()
664
665\f
666/* Storage Layout. */
667
668#define BITS_BIG_ENDIAN 0
669
670#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
671
672#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
673
674#define UNITS_PER_WORD 4
675
676#define PROMOTE_MODE(m, unsignedp, type) \
677 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
678 { \
679 (m) = SImode; \
680 }
681
682#define PARM_BOUNDARY 32
683
684#define STACK_BOUNDARY 64
685
43fa41c1
CJW
686#define FUNCTION_BOUNDARY \
687 ((NDS32_ALIGN_P () || TARGET_ALIGN_FUNCTION) ? 32 : 16)
9304f876
CJW
688
689#define BIGGEST_ALIGNMENT 64
690
79498ad8
CJW
691#define DATA_ALIGNMENT(constant, basic_align) \
692 nds32_data_alignment (constant, basic_align)
693
694#define LOCAL_ALIGNMENT(type, basic_align) \
695 nds32_local_alignment (type, basic_align)
696
9304f876
CJW
697#define EMPTY_FIELD_BOUNDARY 32
698
699#define STRUCTURE_SIZE_BOUNDARY 8
700
701#define STRICT_ALIGNMENT 1
702
703#define PCC_BITFIELD_TYPE_MATTERS 1
704
705\f
706/* Layout of Source Language Data Types. */
707
708#define INT_TYPE_SIZE 32
709#define SHORT_TYPE_SIZE 16
710#define LONG_TYPE_SIZE 32
711#define LONG_LONG_TYPE_SIZE 64
712
713#define FLOAT_TYPE_SIZE 32
714#define DOUBLE_TYPE_SIZE 64
715#define LONG_DOUBLE_TYPE_SIZE 64
716
717#define DEFAULT_SIGNED_CHAR 1
718
719#define SIZE_TYPE "long unsigned int"
720#define PTRDIFF_TYPE "long int"
7f983342
CJW
721#define WCHAR_TYPE "unsigned int"
722#define WCHAR_TYPE_SIZE 32
9304f876
CJW
723
724\f
725/* Register Usage. */
726
727/* Number of actual hardware registers.
728 The hardware registers are assigned numbers for the compiler
729 from 0 to just below FIRST_PSEUDO_REGISTER.
730 All registers that the compiler knows about must be given numbers,
731 even those that are not normally considered general registers. */
71d8eff1 732#define FIRST_PSEUDO_REGISTER 101
9304f876
CJW
733
734/* An initializer that says which registers are used for fixed
735 purposes all throughout the compiled code and are therefore
736 not available for general allocation.
737
738 $r28 : $fp
739 $r29 : $gp
740 $r30 : $lp
741 $r31 : $sp
742
e2286268
MC
743 caller-save registers: $r0 ~ $r5, $r16 ~ $r23, $fs0 ~ $fs5, $fs22 ~ $fs47
744 callee-save registers: $r6 ~ $r10, $r11 ~ $r14, $fs6 ~ $fs21, $fs48 ~ $fs63
9304f876
CJW
745
746 reserved for assembler : $r15
747 reserved for other use : $r24, $r25, $r26, $r27 */
71d8eff1
CJW
748#define FIXED_REGISTERS \
749{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
750 0, 0, 0, 0, 0, 0, 0, 0, \
751 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
752 0, 0, 0, 0, 0, 0, 0, 1, \
753 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
754 0, 0, 0, 0, 0, 0, 0, 0, \
755 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
756 1, 1, 1, 1, 0, 1, 0, 1, \
e2286268 757 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
71d8eff1 758 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 759 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
71d8eff1 760 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 761 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
71d8eff1 762 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 763 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
71d8eff1 764 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 765 /* fs30 fs31 fd16 fd17 fd18 */ \
71d8eff1 766 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 767 /* fd19 fd20 fd21 fd22 */ \
71d8eff1 768 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 769 /* fd23 fd24 fd25 fd26 */ \
71d8eff1 770 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 771 /* fd27 fd28 fd29 fd30 */ \
71d8eff1 772 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 773 /* fd31 Reserved..................... */ \
71d8eff1 774 1, 1, 1, 1, 1 \
9304f876
CJW
775}
776
777/* Identifies the registers that are not available for
778 general allocation of values that must live across
779 function calls -- so they are caller-save registers.
780
781 0 : callee-save registers
782 1 : caller-save registers */
71d8eff1
CJW
783#define CALL_USED_REGISTERS \
784{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
785 1, 1, 1, 1, 1, 1, 0, 0, \
786 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
787 0, 0, 0, 0, 0, 0, 0, 1, \
788 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
789 1, 1, 1, 1, 1, 1, 1, 1, \
790 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
791 1, 1, 1, 1, 0, 1, 0, 1, \
e2286268 792 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
71d8eff1 793 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 794 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
71d8eff1 795 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 796 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
71d8eff1 797 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 798 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
71d8eff1 799 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 800 /* fs30 fs31 fd16 fd17 fd18 */ \
71d8eff1 801 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 802 /* fd19 fd20 fd21 fd22 */ \
71d8eff1 803 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 804 /* fd23 fd24 fd25 fd26 */ \
71d8eff1 805 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 806 /* fd27 fd28 fd29 fd30 */ \
71d8eff1 807 1, 1, 1, 1, 1, 1, 1, 1, \
e2286268 808 /* fd31 Reserved..................... */ \
71d8eff1 809 1, 1, 1, 1, 1 \
9304f876
CJW
810}
811
812/* In nds32 target, we have three levels of registers:
813 LOW_COST_REGS : $r0 ~ $r7
814 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
815 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
71d8eff1
CJW
816#define REG_ALLOC_ORDER \
817{ 0, 1, 2, 3, 4, 5, 6, 7, \
818 16, 17, 18, 19, 9, 10, 11, 12, \
819 13, 14, 8, 15, 20, 21, 22, 23, \
820 24, 25, 26, 27, 28, 29, 30, 31, \
821 32, 33, 34, 35, 36, 37, 38, 39, \
822 40, 41, 42, 43, 44, 45, 46, 47, \
823 48, 49, 50, 51, 52, 53, 54, 55, \
824 56, 57, 58, 59, 60, 61, 62, 63, \
825 64, 65, 66, 67, 68, 69, 70, 71, \
826 72, 73, 74, 75, 76, 77, 78, 79, \
827 80, 81, 82, 83, 84, 85, 86, 87, \
828 88, 89, 90, 91, 92, 93, 94, 95, \
829 96, 97, 98, 99, 100, \
9304f876
CJW
830}
831
5e6ae0cc
CJW
832/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
833 to be rearranged based on optimizing for speed or size. */
834#define ADJUST_REG_ALLOC_ORDER nds32_adjust_reg_alloc_order ()
835
9304f876
CJW
836/* Tell IRA to use the order we define rather than messing it up with its
837 own cost calculations. */
96092404 838#define HONOR_REG_ALLOC_ORDER optimize_size
9304f876 839
9304f876
CJW
840\f
841/* Register Classes. */
842
843/* In nds32 target, we have three levels of registers:
844 Low cost regsiters : $r0 ~ $r7
845 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
846 High cost registers : $r12 ~ $r14, $r20 ~ $r31
847
848 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
849 so that it provides more chance to use low cost registers. */
850enum reg_class
851{
852 NO_REGS,
36f28760
CJW
853 R5_REG,
854 R8_REG,
9304f876
CJW
855 R15_TA_REG,
856 STACK_REG,
36f28760 857 FRAME_POINTER_REG,
9304f876
CJW
858 LOW_REGS,
859 MIDDLE_REGS,
860 HIGH_REGS,
861 GENERAL_REGS,
862 FRAME_REGS,
e2286268 863 FP_REGS,
9304f876
CJW
864 ALL_REGS,
865 LIM_REG_CLASSES
866};
867
868#define N_REG_CLASSES (int) LIM_REG_CLASSES
869
870#define REG_CLASS_NAMES \
871{ \
872 "NO_REGS", \
36f28760
CJW
873 "R5_REG", \
874 "R8_REG", \
9304f876
CJW
875 "R15_TA_REG", \
876 "STACK_REG", \
36f28760 877 "FRAME_POINTER_REG", \
9304f876
CJW
878 "LOW_REGS", \
879 "MIDDLE_REGS", \
880 "HIGH_REGS", \
881 "GENERAL_REGS", \
882 "FRAME_REGS", \
e2286268 883 "FP_REGS", \
9304f876
CJW
884 "ALL_REGS" \
885}
886
887#define REG_CLASS_CONTENTS \
71d8eff1
CJW
888{ /* NO_REGS */ \
889 {0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
890 /* R5_REG : 5 */ \
891 {0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
892 /* R8_REG : 8 */ \
893 {0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
894 /* R15_TA_REG : 15 */ \
895 {0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
896 /* STACK_REG : 31 */ \
897 {0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
898 /* FRAME_POINTER_REG : 28 */ \
899 {0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
900 /* LOW_REGS : 0-7 */ \
901 {0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
902 /* MIDDLE_REGS : 0-11, 16-19 */ \
903 {0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
904 /* HIGH_REGS : 12-14, 20-31 */ \
905 {0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
906 /* GENERAL_REGS : 0-31 */ \
907 {0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
908 /* FRAME_REGS : 32, 33 */ \
909 {0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
e2286268
MC
910 /* FP_REGS : 34-98 */ \
911 {0x00000000, 0xfffffffc, 0xffffffff, 0x00000003}, \
71d8eff1
CJW
912 /* ALL_REGS : 0-100 */ \
913 {0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
9304f876
CJW
914}
915
916#define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
917
918#define BASE_REG_CLASS GENERAL_REGS
919#define INDEX_REG_CLASS GENERAL_REGS
920
e2286268
MC
921#define TEST_REGNO(R, TEST, VALUE) \
922 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
923
9304f876
CJW
924/* Return nonzero if it is suitable for use as a
925 base register in operand addresses.
926 So far, we return nonzero only if "num" is a hard reg
927 of the suitable class or a pseudo register which is
928 allocated to a suitable hard reg. */
929#define REGNO_OK_FOR_BASE_P(num) \
e2286268
MC
930 (TEST_REGNO (num, <, 32) \
931 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
932 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
9304f876
CJW
933
934/* Return nonzero if it is suitable for use as a
935 index register in operand addresses.
936 So far, we return nonzero only if "num" is a hard reg
937 of the suitable class or a pseudo register which is
938 allocated to a suitable hard reg.
939 The difference between an index register and a base register is that
940 the index register may be scaled. */
941#define REGNO_OK_FOR_INDEX_P(num) \
e2286268
MC
942 (TEST_REGNO (num, <, 32) \
943 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
944 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
9304f876
CJW
945
946\f
947/* Obsolete Macros for Defining Constraints. */
948
949\f
950/* Stack Layout and Calling Conventions. */
951
62f9f30b 952#define STACK_GROWS_DOWNWARD 1
9304f876
CJW
953
954#define FRAME_GROWS_DOWNWARD 1
955
9304f876
CJW
956#define STACK_POINTER_OFFSET 0
957
4f44e960
CJW
958#define FIRST_PARM_OFFSET(fundecl) \
959 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
9304f876 960
ca3a4a55
CJW
961/* A C expression whose value is RTL representing the address in a stack frame
962 where the pointer to the caller's frame is stored. */
963#define DYNAMIC_CHAIN_ADDRESS(frameaddr) \
964 nds32_dynamic_chain_address (frameaddr)
965
9304f876
CJW
966#define RETURN_ADDR_RTX(count, frameaddr) \
967 nds32_return_addr_rtx (count, frameaddr)
968
969/* A C expression whose value is RTL representing the location
970 of the incoming return address at the beginning of any function
971 before the prologue.
972 If this RTL is REG, you should also define
973 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
974#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
975#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
976
ca3a4a55
CJW
977/* Use $r0 $r1 to pass exception handling information. */
978#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) : INVALID_REGNUM)
979/* The register $r2 that represents a location in which to store a stack
980 adjustment to be applied before function return.
981 This is used to unwind the stack to an exception handler's call frame. */
982#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
983
e2286268
MC
984#define DBX_REGISTER_NUMBER(REGNO) nds32_dbx_register_number (REGNO)
985
9304f876
CJW
986#define STACK_POINTER_REGNUM SP_REGNUM
987
988#define FRAME_POINTER_REGNUM 33
989
990#define HARD_FRAME_POINTER_REGNUM FP_REGNUM
991
992#define ARG_POINTER_REGNUM 32
993
994#define STATIC_CHAIN_REGNUM 16
995
996#define ELIMINABLE_REGS \
997{ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
998 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
999 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
1000 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
1001
1002#define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
1003 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
1004
1005#define ACCUMULATE_OUTGOING_ARGS 1
1006
1007#define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
1008
1009#define CUMULATIVE_ARGS nds32_cumulative_args
1010
1011#define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
1012 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
1013
e2286268
MC
1014#define FUNCTION_ARG_REGNO_P(regno) \
1015 (IN_RANGE ((regno), NDS32_FIRST_GPR_REGNUM, NDS32_MAX_GPR_REGS_FOR_ARGS - 1) \
1016 || ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE) \
1017 && IN_RANGE ((regno), NDS32_FPR_ARG_FIRST_REGNUM, \
1018 NDS32_FIRST_FPR_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS - 1)))
9304f876
CJW
1019
1020#define DEFAULT_PCC_STRUCT_RETURN 0
1021
1022/* EXIT_IGNORE_STACK should be nonzero if, when returning
1023 from a function, the stack pointer does not matter.
1024 The value is tested only in functions that have frame pointers.
1025 In nds32 target, the function epilogue recovers the
1026 stack pointer from the frame. */
1027#define EXIT_IGNORE_STACK 1
1028
1029#define FUNCTION_PROFILER(file, labelno) \
9e362bd0
CJW
1030 fprintf (file, "/* profiler %d */\n", (labelno))
1031
1032#define PROFILE_HOOK(LABEL) \
1033 { \
1034 rtx fun, lp; \
1035 lp = get_hard_reg_initial_val (Pmode, LP_REGNUM); \
1036 fun = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
1037 emit_library_call (fun, LCT_NORMAL, VOIDmode, lp, Pmode); \
1038 }
9304f876
CJW
1039
1040\f
1041/* Implementing the Varargs Macros. */
1042
1043\f
1044/* Trampolines for Nested Functions. */
1045
1046/* Giving A-function and B-function,
1047 if B-function wants to call A-function's nested function,
1048 we need to fill trampoline code into A-function's stack
1049 so that B-function can execute the code in stack to indirectly
1050 jump to (like 'trampoline' action) desired nested function.
1051
1052 The trampoline code for nds32 target must contains following parts:
1053
1054 1. instructions (4 * 4 = 16 bytes):
8a498f99
CJW
1055 get $pc first
1056 load chain_value to static chain register via $pc
1057 load nested function address to $r15 via $pc
1058 jump to desired nested function via $r15
9304f876 1059 2. data (4 * 2 = 8 bytes):
8a498f99
CJW
1060 chain_value
1061 nested function address
9304f876
CJW
1062
1063 Please check nds32.c implementation for more information. */
1064#define TRAMPOLINE_SIZE 24
1065
1066/* Because all instructions/data in trampoline template are 4-byte size,
1067 we set trampoline alignment 8*4=32 bits. */
1068#define TRAMPOLINE_ALIGNMENT 32
1069
1070\f
1071/* Implicit Calls to Library Routines. */
1072
1073\f
1074/* Addressing Modes. */
1075
1076/* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
1077#define HAVE_POST_INCREMENT 1
1078/* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
1079#define HAVE_POST_DECREMENT 1
1080
1081/* We have "LWI.bi Rt, [Ra], imm" instruction form. */
1082#define HAVE_POST_MODIFY_DISP 1
1083/* We have "LW.bi Rt, [Ra], Rb" instruction form. */
1084#define HAVE_POST_MODIFY_REG 1
1085
c411e9aa
SC
1086#define USE_LOAD_POST_INCREMENT(mode) \
1087 nds32_use_load_post_increment(mode)
1088#define USE_LOAD_POST_DECREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1089#define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1090#define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1091
9304f876
CJW
1092#define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
1093
566f31a4 1094#define MAX_REGS_PER_ADDRESS 3
9304f876
CJW
1095
1096\f
1097/* Anchored Addresses. */
1098
1099\f
1100/* Condition Code Status. */
1101
1102\f
1103/* Describing Relative Costs of Operations. */
1104
1105/* A C expression for the cost of a branch instruction.
1106 A value of 1 is the default;
1107 other values are interpreted relative to that. */
15c193e2 1108#define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 1)
9304f876 1109
08ed6d29
CJW
1110/* Override BRANCH_COST heuristic which empirically produces worse
1111 performance for removing short circuiting from the logical ops. */
1112#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1113
9304f876
CJW
1114#define SLOW_BYTE_ACCESS 1
1115
1e8552c2 1116#define NO_FUNCTION_CSE 1
9304f876
CJW
1117
1118\f
1119/* Adjusting the Instruction Scheduler. */
1120
1121\f
1122/* Dividing the Output into Sections (Texts, Data, . . . ). */
1123
1124#define TEXT_SECTION_ASM_OP "\t.text"
1125#define DATA_SECTION_ASM_OP "\t.data"
1126
1127/* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
1128 So we use '.section .bss' alternatively. */
1129#define BSS_SECTION_ASM_OP "\t.section\t.bss"
1130
1131/* Define this macro to be an expression with a nonzero value if jump tables
1132 (for tablejump insns) should be output in the text section,
1133 along with the assembler instructions.
1134 Otherwise, the readonly data section is used. */
1135#define JUMP_TABLES_IN_TEXT_SECTION 1
1136
1137\f
1138/* Position Independent Code. */
1139
64a08b7f
CJW
1140#define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
1141
9304f876
CJW
1142\f
1143/* Defining the Output Assembler Language. */
1144
1145#define ASM_COMMENT_START "!"
1146
1147#define ASM_APP_ON "! #APP"
1148
1149#define ASM_APP_OFF "! #NO_APP\n"
1150
1151#define ASM_OUTPUT_LABELREF(stream, name) \
1152 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
1153
1154#define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
1155 assemble_name (stream, XSTR (sym, 0))
1156
1157#define ASM_OUTPUT_LABEL_REF(stream, buf) \
1158 assemble_name (stream, buf)
1159
1160#define LOCAL_LABEL_PREFIX "."
1161
71d8eff1
CJW
1162#define REGISTER_NAMES \
1163{ "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
9304f876
CJW
1164 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
1165 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
1166 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
e2286268
MC
1167 "$AP", "$SFP", "$fs0", "$fs1", "$fs2", "$fs3", "$fs4", "$fs5", \
1168 "$fs6", "$fs7", "$fs8", "$fs9", "$fs10","$fs11","$fs12","$fs13",\
1169 "$fs14","$fs15","$fs16","$fs17","$fs18","$fs19","$fs20","$fs21",\
1170 "$fs22","$fs23","$fs24","$fs25","$fs26","$fs27","$fs28","$fs29",\
1171 "$fs30","$fs31","$fs32","$fs33","$fs34","$fs35","$fs36","$fs37",\
1172 "$fs38","$fs39","$fs40","$fs41","$fs42","$fs43","$fs44","$fs45",\
1173 "$fs46","$fs47","$fs48","$fs49","$fs50","$fs51","$fs52","$fs53",\
1174 "$fs54","$fs55","$fs56","$fs57","$fs58","$fs59","$fs60","$fs61",\
1175 "$fs62","$fs63", "LB", "LE", "LC" \
1176}
1177
1178#define ADDITIONAL_REGISTER_NAMES \
1179{ \
1180 {"$r15", 15}, \
1181 {"$r28", 28}, {"$r29", 29}, {"$r30", 30}, {"$r31", 31}, \
1182 {"$a0", 0}, {"$a1", 1}, {"$a2", 2}, \
1183 {"$a3", 3}, {"$a4", 4}, {"$a5", 5}, \
1184 {"$s0", 6}, {"$s1", 7}, {"$s2", 8}, {"$s3", 9}, \
1185 {"$s4", 10}, {"$s5", 11}, {"$s6", 12}, {"$s7", 13}, \
1186 {"$s8", 14}, \
1187 {"$t0", 16}, {"$t1", 17}, {"$t2", 18}, {"$t3", 19}, \
1188 {"$t4", 20}, {"$t5", 21}, {"$t6", 22}, {"$t7", 23}, \
1189 {"$t8", 24}, {"$t9", 25}, \
1190 {"$p0", 26}, {"$p1", 27}, \
1191 {"$h0", 0}, {"$h1", 1}, {"$h2", 2}, {"$h3", 3}, \
1192 {"$h4", 4}, {"$h5", 5}, {"$h6", 6}, {"$h7", 7}, \
1193 {"$h8", 8}, {"$h9", 9}, {"$h10", 10}, {"$h11", 11}, \
1194 {"$h12", 16}, {"$h13", 17}, {"$h14", 18}, {"$h15", 19}, \
1195 {"$o0", 0}, {"$o1", 1}, {"$o2", 2}, {"$o3", 3}, \
1196 {"$o4", 4}, {"$o5", 5}, {"$o6", 6}, {"$o7", 7}, \
1197}
1198
1199#define OVERLAPPING_REGISTER_NAMES \
1200{ \
1201 {"$fd0", NDS32_FIRST_FPR_REGNUM + 0, 2}, \
1202 {"$fd1", NDS32_FIRST_FPR_REGNUM + 2, 2}, \
1203 {"$fd2", NDS32_FIRST_FPR_REGNUM + 4, 2}, \
1204 {"$fd3", NDS32_FIRST_FPR_REGNUM + 6, 2}, \
1205 {"$fd4", NDS32_FIRST_FPR_REGNUM + 8, 2}, \
1206 {"$fd5", NDS32_FIRST_FPR_REGNUM + 10, 2}, \
1207 {"$fd6", NDS32_FIRST_FPR_REGNUM + 12, 2}, \
1208 {"$fd7", NDS32_FIRST_FPR_REGNUM + 14, 2}, \
1209 {"$fd8", NDS32_FIRST_FPR_REGNUM + 16, 2}, \
1210 {"$fd9", NDS32_FIRST_FPR_REGNUM + 18, 2}, \
1211 {"$fd10", NDS32_FIRST_FPR_REGNUM + 20, 2}, \
1212 {"$fd11", NDS32_FIRST_FPR_REGNUM + 22, 2}, \
1213 {"$fd12", NDS32_FIRST_FPR_REGNUM + 24, 2}, \
1214 {"$fd13", NDS32_FIRST_FPR_REGNUM + 26, 2}, \
1215 {"$fd14", NDS32_FIRST_FPR_REGNUM + 28, 2}, \
1216 {"$fd15", NDS32_FIRST_FPR_REGNUM + 30, 2}, \
1217 {"$fd16", NDS32_FIRST_FPR_REGNUM + 32, 2}, \
1218 {"$fd17", NDS32_FIRST_FPR_REGNUM + 34, 2}, \
1219 {"$fd18", NDS32_FIRST_FPR_REGNUM + 36, 2}, \
1220 {"$fd19", NDS32_FIRST_FPR_REGNUM + 38, 2}, \
1221 {"$fd20", NDS32_FIRST_FPR_REGNUM + 40, 2}, \
1222 {"$fd21", NDS32_FIRST_FPR_REGNUM + 42, 2}, \
1223 {"$fd22", NDS32_FIRST_FPR_REGNUM + 44, 2}, \
1224 {"$fd23", NDS32_FIRST_FPR_REGNUM + 46, 2}, \
1225 {"$fd24", NDS32_FIRST_FPR_REGNUM + 48, 2}, \
1226 {"$fd25", NDS32_FIRST_FPR_REGNUM + 50, 2}, \
1227 {"$fd26", NDS32_FIRST_FPR_REGNUM + 52, 2}, \
1228 {"$fd27", NDS32_FIRST_FPR_REGNUM + 54, 2}, \
1229 {"$fd28", NDS32_FIRST_FPR_REGNUM + 56, 2}, \
1230 {"$fd29", NDS32_FIRST_FPR_REGNUM + 58, 2}, \
1231 {"$fd30", NDS32_FIRST_FPR_REGNUM + 60, 2}, \
1232 {"$fd31", NDS32_FIRST_FPR_REGNUM + 62, 2}, \
9304f876
CJW
1233}
1234
1235/* Output normal jump table entry. */
1236#define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
1237 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
1238
1239/* Output pc relative jump table entry. */
1240#define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
1241 do \
1242 { \
1243 switch (GET_MODE (body)) \
1244 { \
4e10a5a7 1245 case E_QImode: \
9304f876
CJW
1246 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
1247 break; \
4e10a5a7 1248 case E_HImode: \
9304f876
CJW
1249 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
1250 break; \
4e10a5a7 1251 case E_SImode: \
9304f876
CJW
1252 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
1253 break; \
1254 default: \
1255 gcc_unreachable(); \
1256 } \
1257 } while (0)
1258
1259/* We have to undef it first because elfos.h formerly define it
1260 check gcc/config.gcc and gcc/config/elfos.h for more information. */
1261#undef ASM_OUTPUT_CASE_LABEL
1262#define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
1263 do \
1264 { \
1265 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
1266 (*targetm.asm_out.internal_label) (stream, prefix, num); \
1267 } while (0)
1268
1269#define ASM_OUTPUT_CASE_END(stream, num, table) \
1270 do \
1271 { \
1272 /* Because our jump table is in text section, \
8a498f99
CJW
1273 we need to make sure 2-byte alignment after \
1274 the jump table for instructions fetch. */ \
9304f876 1275 if (GET_MODE (PATTERN (table)) == QImode) \
8a498f99 1276 ASM_OUTPUT_ALIGN (stream, 1); \
9304f876
CJW
1277 asm_fprintf (stream, "\t! Jump Table End\n"); \
1278 } while (0)
1279
1280/* This macro is not documented yet.
1281 But we do need it to make jump table vector aligned. */
1282#define ADDR_VEC_ALIGN(JUMPTABLE) 2
1283
1284#define DWARF2_UNWIND_INFO 1
1285
1286#define JUMP_ALIGN(x) \
1287 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
1288
1289#define LOOP_ALIGN(x) \
1290 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
1291
1292#define LABEL_ALIGN(x) \
1293 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
1294
1295#define ASM_OUTPUT_ALIGN(stream, power) \
1296 fprintf (stream, "\t.align\t%d\n", power)
1297
1298\f
1299/* Controlling Debugging Information Format. */
1300
1301#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1302
1303#define DWARF2_DEBUGGING_INFO 1
1304
1305#define DWARF2_ASM_LINE_DEBUG_INFO 1
1306
1307\f
1308/* Cross Compilation and Floating Point. */
1309
1310\f
1311/* Mode Switching Instructions. */
1312
1313\f
1314/* Defining target-specific uses of __attribute__. */
1315
1316\f
1317/* Emulating TLS. */
1318
1319\f
1320/* Defining coprocessor specifics for MIPS targets. */
1321
1322\f
1323/* Parameters for Precompiled Header Validity Checking. */
1324
1325\f
1326/* C++ ABI parameters. */
1327
1328\f
1329/* Adding support for named address spaces. */
1330
1331\f
1332/* Miscellaneous Parameters. */
1333
1334/* This is the machine mode that elements of a jump-table should have. */
1335#define CASE_VECTOR_MODE Pmode
1336
1337/* Return the preferred mode for and addr_diff_vec when the mininum
1338 and maximum offset are known. */
1339#define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
2f1bb3ca 1340 nds32_case_vector_shorten_mode (min_offset, max_offset, body)
9304f876
CJW
1341
1342/* Generate pc relative jump table when -fpic or -Os. */
1343#define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
1344
1345/* Define this macro if operations between registers with integral mode
1346 smaller than a word are always performed on the entire register. */
9e11bfef 1347#define WORD_REGISTER_OPERATIONS 1
9304f876
CJW
1348
1349/* A C expression indicating when insns that read memory in mem_mode,
1350 an integral mode narrower than a word, set the bits outside of mem_mode
1351 to be either the sign-extension or the zero-extension of the data read. */
1352#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1353
1354/* The maximum number of bytes that a single instruction can move quickly
1355 between memory and registers or between two memory locations. */
1356#define MOVE_MAX 4
1357
1358/* A C expression that is nonzero if on this machine the number of bits
1359 actually used for the count of a shift operation is equal to the number
1360 of bits needed to represent the size of the object being shifted. */
1361#define SHIFT_COUNT_TRUNCATED 1
1362
9304f876
CJW
1363/* A C expression describing the value returned by a comparison operator with
1364 an integral mode and stored by a store-flag instruction ('cstoremode4')
1365 when the condition is true. */
1366#define STORE_FLAG_VALUE 1
1367
24a71166
CJW
1368/* A C expression that indicates whether the architecture defines a value for
1369 clz or ctz with a zero operand. In nds32 clz for 0 result 32 is defined
1370 in ISA spec */
1371#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1372
9304f876
CJW
1373/* An alias for the machine mode for pointers. */
1374#define Pmode SImode
1375
1376/* An alias for the machine mode used for memory references to functions
1377 being called, in call RTL expressions. */
1378#define FUNCTION_MODE SImode
1379
1380/* ------------------------------------------------------------------------ */