]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/nds32/nds32.h
[NDS32] Generate alu-shift instructions only for -Os.
[thirdparty/gcc.git] / gcc / config / nds32 / nds32.h
CommitLineData
9304f876 1/* Definitions of target machine of Andes NDS32 cpu for GNU compiler
85ec4feb 2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
9304f876
CJW
3 Contributed by Andes Technology Corporation.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22/* ------------------------------------------------------------------------ */
23
24/* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
26
511a41d7
CJW
27/* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
28 It is used in nds32_encode_section_info() to store flag in symbol_ref
29 in case the symbol should be placed in .rodata section.
30 So that we can check it in nds32_legitimate_address_p(). */
31#define NDS32_SYMBOL_FLAG_RODATA \
32 (SYMBOL_FLAG_MACH_DEP << 0)
33#define NDS32_SYMBOL_REF_RODATA_P(x) \
34 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
9304f876 35
6e9ca932
CJW
36/* Classifies expand result for expand helper function. */
37enum nds32_expand_result_type
38{
39 EXPAND_DONE,
40 EXPAND_FAIL,
41 EXPAND_CREATE_TEMPLATE
42};
43
9304f876
CJW
44/* Computing the Length of an Insn. */
45#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
46 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
47
48/* Check instruction LS-37-FP-implied form.
49 Note: actually its immediate range is imm9u
50 since it is used for lwi37/swi37 instructions. */
51#define NDS32_LS_37_FP_P(rt, ra, imm) \
52 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
53 && REGNO (ra) == FP_REGNUM \
54 && satisfies_constraint_Iu09 (imm))
55
56/* Check instruction LS-37-SP-implied form.
57 Note: actually its immediate range is imm9u
58 since it is used for lwi37/swi37 instructions. */
59#define NDS32_LS_37_SP_P(rt, ra, imm) \
60 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
61 && REGNO (ra) == SP_REGNUM \
62 && satisfies_constraint_Iu09 (imm))
63
64
65/* Check load/store instruction form : Rt3, Ra3, imm3u. */
66#define NDS32_LS_333_P(rt, ra, imm, mode) nds32_ls_333_p (rt, ra, imm, mode)
67
68/* Check load/store instruction form : Rt4, Ra5, const_int_0.
69 Note: no need to check ra because Ra5 means it covers all registers. */
70#define NDS32_LS_450_P(rt, ra, imm) \
71 ((imm == const0_rtx) \
72 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
73 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
74
75/* Check instruction RRI-333-form. */
76#define NDS32_RRI_333_P(rt, ra, imm) \
77 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
78 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
79 && satisfies_constraint_Iu03 (imm))
80
81/* Check instruction RI-45-form. */
82#define NDS32_RI_45_P(rt, ra, imm) \
83 (REGNO (rt) == REGNO (ra) \
84 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
85 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS) \
86 && satisfies_constraint_Iu05 (imm))
87
88
89/* Check instruction RR-33-form. */
90#define NDS32_RR_33_P(rt, ra) \
91 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
92 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS)
93
94/* Check instruction RRR-333-form. */
95#define NDS32_RRR_333_P(rt, ra, rb) \
96 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
97 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
98 && REGNO_REG_CLASS (REGNO (rb)) == LOW_REGS)
99
100/* Check instruction RR-45-form.
101 Note: no need to check rb because Rb5 means it covers all registers. */
102#define NDS32_RR_45_P(rt, ra, rb) \
103 (REGNO (rt) == REGNO (ra) \
104 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
105 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
106
107/* Classifies address type to distinguish 16-bit/32-bit format. */
108enum nds32_16bit_address_type
109{
110 /* [reg]: 45 format address. */
111 ADDRESS_REG,
112 /* [lo_reg + imm3u]: 333 format address. */
113 ADDRESS_LO_REG_IMM3U,
114 /* post_inc [lo_reg + imm3u]: 333 format address. */
115 ADDRESS_POST_INC_LO_REG_IMM3U,
116 /* [$fp + imm7u]: fp imply address. */
117 ADDRESS_FP_IMM7U,
118 /* [$sp + imm7u]: sp imply address. */
119 ADDRESS_SP_IMM7U,
120 /* Other address format. */
121 ADDRESS_NOT_16BIT_FORMAT
122};
123
124
125/* ------------------------------------------------------------------------ */
126
127/* Define maximum numbers of registers for passing arguments. */
9d93cc24 128#define NDS32_MAX_GPR_REGS_FOR_ARGS 6
9304f876
CJW
129
130/* Define the register number for first argument. */
131#define NDS32_GPR_ARG_FIRST_REGNUM 0
132
133/* Define the register number for return value. */
134#define NDS32_GPR_RET_FIRST_REGNUM 0
135
9d93cc24
CJW
136/* Define the first integer register number. */
137#define NDS32_FIRST_GPR_REGNUM 0
138/* Define the last integer register number. */
139#define NDS32_LAST_GPR_REGNUM 31
9304f876 140
a6c7e777
MC
141#define NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM 6
142#define NDS32_LAST_CALLEE_SAVE_GPR_REGNUM \
143 (TARGET_REDUCED_REGS ? 10 : 14)
144
9304f876
CJW
145/* Define double word alignment bits. */
146#define NDS32_DOUBLE_WORD_ALIGNMENT 64
147
148/* Define alignment checking macros for convenience. */
149#define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
150#define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
151#define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
152
634bdae9
CJW
153/* Get alignment according to mode or type information.
154 When 'type' is nonnull, there is no need to look at 'mode'. */
155#define NDS32_MODE_TYPE_ALIGN(mode, type) \
156 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
157
9304f876
CJW
158/* Round X up to the nearest double word. */
159#define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
160
161
162/* This macro is used to calculate the numbers of registers for
163 containing 'size' bytes of the argument.
164 The size of a register is a word in nds32 target.
165 So we use UNITS_PER_WORD to do the calculation. */
166#define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
167 ((mode == BLKmode) \
168 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
169 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
170
171/* This macro is used to return the register number for passing argument.
172 We need to obey the following rules:
173 1. If it is required MORE THAN one register,
8a498f99
CJW
174 we need to further check if it really needs to be
175 aligned on double words.
176 a) If double word alignment is necessary,
177 the register number must be even value.
178 b) Otherwise, the register number can be odd or even value.
9304f876 179 2. If it is required ONLY one register,
8a498f99
CJW
180 the register number can be odd or even value. */
181#define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
182 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
183 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
184 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
185 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
9304f876
CJW
186 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
187
188/* This macro is to check if there are still available registers
7f6cd86b
CJW
189 for passing argument, which must be entirely in registers. */
190#define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
191 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
192 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
193 <= (NDS32_GPR_ARG_FIRST_REGNUM \
194 + NDS32_MAX_GPR_REGS_FOR_ARGS))
195
196/* This macro is to check if there are still available registers
197 for passing argument, either entirely in registers or partially
198 in registers. */
199#define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
200 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
201 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
9304f876
CJW
202
203/* This macro is to check if the register is required to be saved on stack.
204 If call_used_regs[regno] == 0, regno is the callee-saved register.
205 If df_regs_ever_live_p(regno) == true, it is used in the current function.
206 As long as the register satisfies both criteria above,
207 it is required to be saved. */
208#define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
209 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
210
a6c7e777
MC
211/* This macro is to check if the push25/pop25 are available to be used
212 for code generation. Because pop25 also performs return behavior,
213 the instructions may not be available for some cases.
214 If we want to use push25/pop25, all the following conditions must
215 be satisfied:
216 1. TARGET_V3PUSH is set.
217 2. Current function is not an ISR function.
218 3. Current function is not a variadic function.*/
219#define NDS32_V3PUSH_AVAILABLE_P \
220 (TARGET_V3PUSH \
221 && !nds32_isr_function_p (current_function_decl) \
222 && (cfun->machine->va_args_size == 0))
223
9304f876
CJW
224/* ------------------------------------------------------------------------ */
225
226/* A C structure for machine-specific, per-function data.
227 This is added to the cfun structure. */
228struct GTY(()) machine_function
229{
230 /* Number of bytes allocated on the stack for variadic args
231 if we want to push them into stack as pretend arguments by ourself. */
232 int va_args_size;
233 /* Number of bytes reserved on the stack for
234 local and temporary variables. */
235 int local_size;
236 /* Number of bytes allocated on the stack for outgoing arguments. */
237 int out_args_size;
238
239 /* Number of bytes on the stack for saving $fp. */
240 int fp_size;
241 /* Number of bytes on the stack for saving $gp. */
242 int gp_size;
243 /* Number of bytes on the stack for saving $lp. */
244 int lp_size;
245
c457f751
CJW
246 /* Number of bytes on the stack for saving general purpose
247 callee-saved registers. */
248 int callee_saved_gpr_regs_size;
249
9304f876 250 /* The padding bytes in callee-saved area may be required. */
c457f751 251 int callee_saved_area_gpr_padding_bytes;
9304f876 252
c457f751
CJW
253 /* The first required general purpose callee-saved register. */
254 int callee_saved_first_gpr_regno;
255 /* The last required general purpose callee-saved register. */
256 int callee_saved_last_gpr_regno;
9304f876 257
dd1536a7
CJW
258 /* The padding bytes in varargs area may be required. */
259 int va_args_area_padding_bytes;
260
261 /* The first required register that should be saved on stack for va_args. */
262 int va_args_first_regno;
263 /* The last required register that should be saved on stack for va_args. */
264 int va_args_last_regno;
265
9304f876
CJW
266 /* Indicate that whether this function needs
267 prologue/epilogue code generation. */
268 int naked_p;
269 /* Indicate that whether this function
270 uses fp_as_gp optimization. */
271 int fp_as_gp_p;
272};
273
274/* A C structure that contains the arguments information. */
275typedef struct
276{
9d93cc24 277 unsigned int gpr_offset;
9304f876
CJW
278} nds32_cumulative_args;
279
280/* ------------------------------------------------------------------------ */
281
282/* The following we define C-ISR related stuff.
283 In nds32 architecture, we have 73 vectors for interrupt/exception.
284 For each vector (except for vector 0, which is used for reset behavior),
285 we allow users to set its register saving scheme and interrupt level. */
286
287/* There are 73 vectors in nds32 architecture.
288 0 for reset handler,
289 1-8 for exception handler,
290 and 9-72 for interrupt handler.
291 We use an array, which is defined in nds32.c, to record
292 essential information for each vector. */
293#define NDS32_N_ISR_VECTORS 73
294
295/* Define possible isr category. */
296enum nds32_isr_category
297{
298 NDS32_ISR_NONE,
299 NDS32_ISR_INTERRUPT,
300 NDS32_ISR_EXCEPTION,
301 NDS32_ISR_RESET
302};
303
304/* Define isr register saving scheme. */
305enum nds32_isr_save_reg
306{
307 NDS32_SAVE_ALL,
308 NDS32_PARTIAL_SAVE
309};
310
311/* Define isr nested type. */
312enum nds32_isr_nested_type
313{
314 NDS32_NESTED,
315 NDS32_NOT_NESTED,
316 NDS32_NESTED_READY
317};
318
319/* Define structure to record isr information.
320 The isr vector array 'isr_vectors[]' with this structure
321 is defined in nds32.c. */
322struct nds32_isr_info
323{
324 /* The field to identify isr category.
325 It should be set to NDS32_ISR_NONE by default.
326 If user specifies a function as isr by using attribute,
327 this field will be set accordingly. */
328 enum nds32_isr_category category;
329
330 /* A string for the applied function name.
331 It should be set to empty string by default. */
332 char func_name[100];
333
334 /* The register saving scheme.
335 It should be set to NDS32_PARTIAL_SAVE by default
336 unless user specifies attribute to change it. */
337 enum nds32_isr_save_reg save_reg;
338
339 /* The nested type.
340 It should be set to NDS32_NOT_NESTED by default
341 unless user specifies attribute to change it. */
342 enum nds32_isr_nested_type nested_type;
343
344 /* Total vectors.
345 The total vectors = interrupt + exception numbers + reset.
346 It should be set to 0 by default.
347 This field is ONLY used in NDS32_ISR_RESET category. */
348 unsigned int total_n_vectors;
349
350 /* A string for nmi handler name.
351 It should be set to empty string by default.
352 This field is ONLY used in NDS32_ISR_RESET category. */
353 char nmi_name[100];
354
355 /* A string for warm handler name.
356 It should be set to empty string by default.
357 This field is ONLY used in NDS32_ISR_RESET category. */
358 char warm_name[100];
359};
360
361/* ------------------------------------------------------------------------ */
362
363/* Define code for all nds32 builtins. */
364enum nds32_builtins
365{
366 NDS32_BUILTIN_ISYNC,
367 NDS32_BUILTIN_ISB,
368 NDS32_BUILTIN_MFSR,
369 NDS32_BUILTIN_MFUSR,
370 NDS32_BUILTIN_MTSR,
371 NDS32_BUILTIN_MTUSR,
372 NDS32_BUILTIN_SETGIE_EN,
7a12ea32 373 NDS32_BUILTIN_SETGIE_DIS,
3999578c
MC
374 NDS32_BUILTIN_FFB,
375 NDS32_BUILTIN_FFMISM,
376 NDS32_BUILTIN_FLMISM,
e576ddb5
KC
377 NDS32_BUILTIN_UALOAD_HW,
378 NDS32_BUILTIN_UALOAD_W,
379 NDS32_BUILTIN_UALOAD_DW,
380 NDS32_BUILTIN_UASTORE_HW,
381 NDS32_BUILTIN_UASTORE_W,
382 NDS32_BUILTIN_UASTORE_DW,
7a12ea32 383 NDS32_BUILTIN_COUNT
9304f876
CJW
384};
385
386/* ------------------------------------------------------------------------ */
387
388#define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
389#define TARGET_ISA_V3 (nds32_arch_option == ARCH_V3)
390#define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
391
77b7a1ca
CJW
392#define TARGET_CMODEL_SMALL \
393 (nds32_cmodel_option == CMODEL_SMALL)
394#define TARGET_CMODEL_MEDIUM \
395 (nds32_cmodel_option == CMODEL_MEDIUM)
396#define TARGET_CMODEL_LARGE \
397 (nds32_cmodel_option == CMODEL_LARGE)
398
399/* When -mcmodel=small or -mcmodel=medium,
400 compiler may generate gp-base instruction directly. */
401#define TARGET_GP_DIRECT \
402 (nds32_cmodel_option == CMODEL_SMALL\
403 || nds32_cmodel_option == CMODEL_MEDIUM)
404
d4a6a4d9
CJW
405#define TARGET_SOFT_FLOAT 1
406#define TARGET_HARD_FLOAT 0
407
9304f876
CJW
408/* ------------------------------------------------------------------------ */
409\f
410/* Controlling the Compilation Driver. */
411
412#define OPTION_DEFAULT_SPECS \
413 {"arch", "%{!march=*:-march=%(VALUE)}" }
414
415#define CC1_SPEC \
416 ""
417
418#define ASM_SPEC \
419 " %{mbig-endian:-EB} %{mlittle-endian:-EL}"
420
2ca1ca65 421/* If user issues -mrelax, we need to pass '--relax' to linker. */
9304f876
CJW
422#define LINK_SPEC \
423 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
2ca1ca65 424 " %{mrelax:--relax}"
9304f876
CJW
425
426#define LIB_SPEC \
427 " -lc -lgloss"
428
429/* The option -mno-ctor-dtor can disable constructor/destructor feature
430 by applying different crt stuff. In the convention, crt0.o is the
431 startup file without constructor/destructor;
432 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
433 startup files with constructor/destructor.
434 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
435 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
436 currently provided by GCC for nds32 target.
437
438 For nds32 target so far:
439 If -mno-ctor-dtor, we are going to link
440 "crt0.o [user objects]".
441 If general cases, we are going to link
442 "crt1.o crtbegin1.o [user objects] crtend1.o". */
443#define STARTFILE_SPEC \
444 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
445 " %{!mno-ctor-dtor:crtbegin1.o%s}"
446#define ENDFILE_SPEC \
447 " %{!mno-ctor-dtor:crtend1.o%s}"
448
c9eb51a7
CJW
449/* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
450 configure gcc with --target=nds32be-* setting.
451 Check gcc/config.gcc for more information. */
9304f876 452#ifdef TARGET_BIG_ENDIAN_DEFAULT
c9eb51a7 453# define NDS32_ENDIAN_DEFAULT "mbig-endian"
9304f876 454#else
c9eb51a7 455# define NDS32_ENDIAN_DEFAULT "mlittle-endian"
9304f876
CJW
456#endif
457
c9eb51a7
CJW
458/* Currently we only have elf toolchain,
459 where -mcmodel=medium is always the default. */
460#define NDS32_CMODEL_DEFAULT "mcmodel=medium"
461
462#define MULTILIB_DEFAULTS \
463 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
464
9304f876
CJW
465\f
466/* Run-time Target Specification. */
467
72b7e5e1
KC
468#define TARGET_CPU_CPP_BUILTINS() \
469 nds32_cpu_cpp_builtins (pfile)
9304f876
CJW
470
471\f
472/* Defining Data Structures for Per-function Information. */
473
474/* This macro is called once per function,
475 before generation of any RTL has begun. */
476#define INIT_EXPANDERS nds32_init_expanders ()
477
478\f
479/* Storage Layout. */
480
481#define BITS_BIG_ENDIAN 0
482
483#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
484
485#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
486
487#define UNITS_PER_WORD 4
488
489#define PROMOTE_MODE(m, unsignedp, type) \
490 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
491 { \
492 (m) = SImode; \
493 }
494
495#define PARM_BOUNDARY 32
496
497#define STACK_BOUNDARY 64
498
499#define FUNCTION_BOUNDARY 32
500
501#define BIGGEST_ALIGNMENT 64
502
503#define EMPTY_FIELD_BOUNDARY 32
504
505#define STRUCTURE_SIZE_BOUNDARY 8
506
507#define STRICT_ALIGNMENT 1
508
509#define PCC_BITFIELD_TYPE_MATTERS 1
510
511\f
512/* Layout of Source Language Data Types. */
513
514#define INT_TYPE_SIZE 32
515#define SHORT_TYPE_SIZE 16
516#define LONG_TYPE_SIZE 32
517#define LONG_LONG_TYPE_SIZE 64
518
519#define FLOAT_TYPE_SIZE 32
520#define DOUBLE_TYPE_SIZE 64
521#define LONG_DOUBLE_TYPE_SIZE 64
522
523#define DEFAULT_SIGNED_CHAR 1
524
525#define SIZE_TYPE "long unsigned int"
526#define PTRDIFF_TYPE "long int"
7f983342
CJW
527#define WCHAR_TYPE "unsigned int"
528#define WCHAR_TYPE_SIZE 32
9304f876
CJW
529
530\f
531/* Register Usage. */
532
533/* Number of actual hardware registers.
534 The hardware registers are assigned numbers for the compiler
535 from 0 to just below FIRST_PSEUDO_REGISTER.
536 All registers that the compiler knows about must be given numbers,
537 even those that are not normally considered general registers. */
71d8eff1 538#define FIRST_PSEUDO_REGISTER 101
9304f876
CJW
539
540/* An initializer that says which registers are used for fixed
541 purposes all throughout the compiled code and are therefore
542 not available for general allocation.
543
544 $r28 : $fp
545 $r29 : $gp
546 $r30 : $lp
547 $r31 : $sp
548
549 caller-save registers: $r0 ~ $r5, $r16 ~ $r23
550 callee-save registers: $r6 ~ $r10, $r11 ~ $r14
551
552 reserved for assembler : $r15
553 reserved for other use : $r24, $r25, $r26, $r27 */
71d8eff1
CJW
554#define FIXED_REGISTERS \
555{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
556 0, 0, 0, 0, 0, 0, 0, 0, \
557 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
558 0, 0, 0, 0, 0, 0, 0, 1, \
559 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
560 0, 0, 0, 0, 0, 0, 0, 0, \
561 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
562 1, 1, 1, 1, 0, 1, 0, 1, \
563 /* AP FP Reserved.................... */ \
564 1, 1, 1, 1, 1, 1, 1, 1, \
565 /* Reserved............................... */ \
566 1, 1, 1, 1, 1, 1, 1, 1, \
567 /* Reserved............................... */ \
568 1, 1, 1, 1, 1, 1, 1, 1, \
569 /* Reserved............................... */ \
570 1, 1, 1, 1, 1, 1, 1, 1, \
571 /* Reserved............................... */ \
572 1, 1, 1, 1, 1, 1, 1, 1, \
573 /* Reserved............................... */ \
574 1, 1, 1, 1, 1, 1, 1, 1, \
575 /* Reserved............................... */ \
576 1, 1, 1, 1, 1, 1, 1, 1, \
577 /* Reserved............................... */ \
578 1, 1, 1, 1, 1, 1, 1, 1, \
579 /* Reserved............................... */ \
580 1, 1, 1, 1, 1 \
9304f876
CJW
581}
582
583/* Identifies the registers that are not available for
584 general allocation of values that must live across
585 function calls -- so they are caller-save registers.
586
587 0 : callee-save registers
588 1 : caller-save registers */
71d8eff1
CJW
589#define CALL_USED_REGISTERS \
590{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
591 1, 1, 1, 1, 1, 1, 0, 0, \
592 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
593 0, 0, 0, 0, 0, 0, 0, 1, \
594 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
595 1, 1, 1, 1, 1, 1, 1, 1, \
596 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
597 1, 1, 1, 1, 0, 1, 0, 1, \
598 /* AP FP Reserved.................... */ \
599 1, 1, 1, 1, 1, 1, 1, 1, \
600 /* Reserved............................... */ \
601 1, 1, 1, 1, 1, 1, 1, 1, \
602 /* Reserved............................... */ \
603 1, 1, 1, 1, 1, 1, 1, 1, \
604 /* Reserved............................... */ \
605 1, 1, 1, 1, 1, 1, 1, 1, \
606 /* Reserved............................... */ \
607 1, 1, 1, 1, 1, 1, 1, 1, \
608 /* Reserved............................... */ \
609 1, 1, 1, 1, 1, 1, 1, 1, \
610 /* Reserved............................... */ \
611 1, 1, 1, 1, 1, 1, 1, 1, \
612 /* Reserved............................... */ \
613 1, 1, 1, 1, 1, 1, 1, 1, \
614 /* Reserved............................... */ \
615 1, 1, 1, 1, 1 \
9304f876
CJW
616}
617
618/* In nds32 target, we have three levels of registers:
619 LOW_COST_REGS : $r0 ~ $r7
620 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
621 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
71d8eff1
CJW
622#define REG_ALLOC_ORDER \
623{ 0, 1, 2, 3, 4, 5, 6, 7, \
624 16, 17, 18, 19, 9, 10, 11, 12, \
625 13, 14, 8, 15, 20, 21, 22, 23, \
626 24, 25, 26, 27, 28, 29, 30, 31, \
627 32, 33, 34, 35, 36, 37, 38, 39, \
628 40, 41, 42, 43, 44, 45, 46, 47, \
629 48, 49, 50, 51, 52, 53, 54, 55, \
630 56, 57, 58, 59, 60, 61, 62, 63, \
631 64, 65, 66, 67, 68, 69, 70, 71, \
632 72, 73, 74, 75, 76, 77, 78, 79, \
633 80, 81, 82, 83, 84, 85, 86, 87, \
634 88, 89, 90, 91, 92, 93, 94, 95, \
635 96, 97, 98, 99, 100, \
9304f876
CJW
636}
637
5e6ae0cc
CJW
638/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
639 to be rearranged based on optimizing for speed or size. */
640#define ADJUST_REG_ALLOC_ORDER nds32_adjust_reg_alloc_order ()
641
9304f876
CJW
642/* Tell IRA to use the order we define rather than messing it up with its
643 own cost calculations. */
96092404 644#define HONOR_REG_ALLOC_ORDER optimize_size
9304f876 645
9304f876
CJW
646\f
647/* Register Classes. */
648
649/* In nds32 target, we have three levels of registers:
650 Low cost regsiters : $r0 ~ $r7
651 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
652 High cost registers : $r12 ~ $r14, $r20 ~ $r31
653
654 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
655 so that it provides more chance to use low cost registers. */
656enum reg_class
657{
658 NO_REGS,
36f28760
CJW
659 R5_REG,
660 R8_REG,
9304f876
CJW
661 R15_TA_REG,
662 STACK_REG,
36f28760 663 FRAME_POINTER_REG,
9304f876
CJW
664 LOW_REGS,
665 MIDDLE_REGS,
666 HIGH_REGS,
667 GENERAL_REGS,
668 FRAME_REGS,
669 ALL_REGS,
670 LIM_REG_CLASSES
671};
672
673#define N_REG_CLASSES (int) LIM_REG_CLASSES
674
675#define REG_CLASS_NAMES \
676{ \
677 "NO_REGS", \
36f28760
CJW
678 "R5_REG", \
679 "R8_REG", \
9304f876
CJW
680 "R15_TA_REG", \
681 "STACK_REG", \
36f28760 682 "FRAME_POINTER_REG", \
9304f876
CJW
683 "LOW_REGS", \
684 "MIDDLE_REGS", \
685 "HIGH_REGS", \
686 "GENERAL_REGS", \
687 "FRAME_REGS", \
688 "ALL_REGS" \
689}
690
691#define REG_CLASS_CONTENTS \
71d8eff1
CJW
692{ /* NO_REGS */ \
693 {0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
694 /* R5_REG : 5 */ \
695 {0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
696 /* R8_REG : 8 */ \
697 {0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
698 /* R15_TA_REG : 15 */ \
699 {0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
700 /* STACK_REG : 31 */ \
701 {0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
702 /* FRAME_POINTER_REG : 28 */ \
703 {0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
704 /* LOW_REGS : 0-7 */ \
705 {0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
706 /* MIDDLE_REGS : 0-11, 16-19 */ \
707 {0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
708 /* HIGH_REGS : 12-14, 20-31 */ \
709 {0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
710 /* GENERAL_REGS : 0-31 */ \
711 {0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
712 /* FRAME_REGS : 32, 33 */ \
713 {0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
714 /* ALL_REGS : 0-100 */ \
715 {0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
9304f876
CJW
716}
717
718#define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
719
720#define BASE_REG_CLASS GENERAL_REGS
721#define INDEX_REG_CLASS GENERAL_REGS
722
723/* Return nonzero if it is suitable for use as a
724 base register in operand addresses.
725 So far, we return nonzero only if "num" is a hard reg
726 of the suitable class or a pseudo register which is
727 allocated to a suitable hard reg. */
728#define REGNO_OK_FOR_BASE_P(num) \
729 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
730
731/* Return nonzero if it is suitable for use as a
732 index register in operand addresses.
733 So far, we return nonzero only if "num" is a hard reg
734 of the suitable class or a pseudo register which is
735 allocated to a suitable hard reg.
736 The difference between an index register and a base register is that
737 the index register may be scaled. */
738#define REGNO_OK_FOR_INDEX_P(num) \
739 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
740
741\f
742/* Obsolete Macros for Defining Constraints. */
743
744\f
745/* Stack Layout and Calling Conventions. */
746
62f9f30b 747#define STACK_GROWS_DOWNWARD 1
9304f876
CJW
748
749#define FRAME_GROWS_DOWNWARD 1
750
9304f876
CJW
751#define STACK_POINTER_OFFSET 0
752
4f44e960
CJW
753#define FIRST_PARM_OFFSET(fundecl) \
754 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
9304f876
CJW
755
756#define RETURN_ADDR_RTX(count, frameaddr) \
757 nds32_return_addr_rtx (count, frameaddr)
758
759/* A C expression whose value is RTL representing the location
760 of the incoming return address at the beginning of any function
761 before the prologue.
762 If this RTL is REG, you should also define
763 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
764#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
765#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
766
767#define STACK_POINTER_REGNUM SP_REGNUM
768
769#define FRAME_POINTER_REGNUM 33
770
771#define HARD_FRAME_POINTER_REGNUM FP_REGNUM
772
773#define ARG_POINTER_REGNUM 32
774
775#define STATIC_CHAIN_REGNUM 16
776
777#define ELIMINABLE_REGS \
778{ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
779 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
780 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
781 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
782
783#define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
784 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
785
786#define ACCUMULATE_OUTGOING_ARGS 1
787
788#define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
789
790#define CUMULATIVE_ARGS nds32_cumulative_args
791
792#define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
793 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
794
795/* The REGNO is an unsigned integer but NDS32_GPR_ARG_FIRST_REGNUM may be 0.
796 We better cast REGNO into signed integer so that we can avoid
797 'comparison of unsigned expression >= 0 is always true' warning. */
798#define FUNCTION_ARG_REGNO_P(regno) \
799 (((int) regno - NDS32_GPR_ARG_FIRST_REGNUM >= 0) \
9d93cc24 800 && ((int) regno - NDS32_GPR_ARG_FIRST_REGNUM < NDS32_MAX_GPR_REGS_FOR_ARGS))
9304f876
CJW
801
802#define DEFAULT_PCC_STRUCT_RETURN 0
803
804/* EXIT_IGNORE_STACK should be nonzero if, when returning
805 from a function, the stack pointer does not matter.
806 The value is tested only in functions that have frame pointers.
807 In nds32 target, the function epilogue recovers the
808 stack pointer from the frame. */
809#define EXIT_IGNORE_STACK 1
810
811#define FUNCTION_PROFILER(file, labelno) \
9e362bd0
CJW
812 fprintf (file, "/* profiler %d */\n", (labelno))
813
814#define PROFILE_HOOK(LABEL) \
815 { \
816 rtx fun, lp; \
817 lp = get_hard_reg_initial_val (Pmode, LP_REGNUM); \
818 fun = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
819 emit_library_call (fun, LCT_NORMAL, VOIDmode, lp, Pmode); \
820 }
9304f876
CJW
821
822\f
823/* Implementing the Varargs Macros. */
824
825\f
826/* Trampolines for Nested Functions. */
827
828/* Giving A-function and B-function,
829 if B-function wants to call A-function's nested function,
830 we need to fill trampoline code into A-function's stack
831 so that B-function can execute the code in stack to indirectly
832 jump to (like 'trampoline' action) desired nested function.
833
834 The trampoline code for nds32 target must contains following parts:
835
836 1. instructions (4 * 4 = 16 bytes):
8a498f99
CJW
837 get $pc first
838 load chain_value to static chain register via $pc
839 load nested function address to $r15 via $pc
840 jump to desired nested function via $r15
9304f876 841 2. data (4 * 2 = 8 bytes):
8a498f99
CJW
842 chain_value
843 nested function address
9304f876
CJW
844
845 Please check nds32.c implementation for more information. */
846#define TRAMPOLINE_SIZE 24
847
848/* Because all instructions/data in trampoline template are 4-byte size,
849 we set trampoline alignment 8*4=32 bits. */
850#define TRAMPOLINE_ALIGNMENT 32
851
852\f
853/* Implicit Calls to Library Routines. */
854
855\f
856/* Addressing Modes. */
857
858/* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
859#define HAVE_POST_INCREMENT 1
860/* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
861#define HAVE_POST_DECREMENT 1
862
863/* We have "LWI.bi Rt, [Ra], imm" instruction form. */
864#define HAVE_POST_MODIFY_DISP 1
865/* We have "LW.bi Rt, [Ra], Rb" instruction form. */
866#define HAVE_POST_MODIFY_REG 1
867
868#define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
869
566f31a4 870#define MAX_REGS_PER_ADDRESS 3
9304f876
CJW
871
872\f
873/* Anchored Addresses. */
874
875\f
876/* Condition Code Status. */
877
878\f
879/* Describing Relative Costs of Operations. */
880
881/* A C expression for the cost of a branch instruction.
882 A value of 1 is the default;
883 other values are interpreted relative to that. */
15c193e2 884#define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 1)
9304f876 885
08ed6d29
CJW
886/* Override BRANCH_COST heuristic which empirically produces worse
887 performance for removing short circuiting from the logical ops. */
888#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
889
9304f876
CJW
890#define SLOW_BYTE_ACCESS 1
891
1e8552c2 892#define NO_FUNCTION_CSE 1
9304f876
CJW
893
894\f
895/* Adjusting the Instruction Scheduler. */
896
897\f
898/* Dividing the Output into Sections (Texts, Data, . . . ). */
899
900#define TEXT_SECTION_ASM_OP "\t.text"
901#define DATA_SECTION_ASM_OP "\t.data"
902
903/* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
904 So we use '.section .bss' alternatively. */
905#define BSS_SECTION_ASM_OP "\t.section\t.bss"
906
907/* Define this macro to be an expression with a nonzero value if jump tables
908 (for tablejump insns) should be output in the text section,
909 along with the assembler instructions.
910 Otherwise, the readonly data section is used. */
911#define JUMP_TABLES_IN_TEXT_SECTION 1
912
913\f
914/* Position Independent Code. */
915
64a08b7f
CJW
916#define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
917
9304f876
CJW
918\f
919/* Defining the Output Assembler Language. */
920
921#define ASM_COMMENT_START "!"
922
923#define ASM_APP_ON "! #APP"
924
925#define ASM_APP_OFF "! #NO_APP\n"
926
927#define ASM_OUTPUT_LABELREF(stream, name) \
928 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
929
930#define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
931 assemble_name (stream, XSTR (sym, 0))
932
933#define ASM_OUTPUT_LABEL_REF(stream, buf) \
934 assemble_name (stream, buf)
935
936#define LOCAL_LABEL_PREFIX "."
937
71d8eff1
CJW
938#define REGISTER_NAMES \
939{ "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
9304f876
CJW
940 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
941 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
942 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
71d8eff1
CJW
943 "$AP", "$SFP", "NA", "NA", "NA", "NA", "NA", "NA", \
944 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
945 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
946 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
947 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
948 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
949 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
950 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
951 "NA", "NA", "NA", "NA", "NA" \
9304f876
CJW
952}
953
954/* Output normal jump table entry. */
955#define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
956 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
957
958/* Output pc relative jump table entry. */
959#define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
960 do \
961 { \
962 switch (GET_MODE (body)) \
963 { \
4e10a5a7 964 case E_QImode: \
9304f876
CJW
965 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
966 break; \
4e10a5a7 967 case E_HImode: \
9304f876
CJW
968 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
969 break; \
4e10a5a7 970 case E_SImode: \
9304f876
CJW
971 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
972 break; \
973 default: \
974 gcc_unreachable(); \
975 } \
976 } while (0)
977
978/* We have to undef it first because elfos.h formerly define it
979 check gcc/config.gcc and gcc/config/elfos.h for more information. */
980#undef ASM_OUTPUT_CASE_LABEL
981#define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
982 do \
983 { \
984 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
985 (*targetm.asm_out.internal_label) (stream, prefix, num); \
986 } while (0)
987
988#define ASM_OUTPUT_CASE_END(stream, num, table) \
989 do \
990 { \
991 /* Because our jump table is in text section, \
8a498f99
CJW
992 we need to make sure 2-byte alignment after \
993 the jump table for instructions fetch. */ \
9304f876 994 if (GET_MODE (PATTERN (table)) == QImode) \
8a498f99 995 ASM_OUTPUT_ALIGN (stream, 1); \
9304f876
CJW
996 asm_fprintf (stream, "\t! Jump Table End\n"); \
997 } while (0)
998
999/* This macro is not documented yet.
1000 But we do need it to make jump table vector aligned. */
1001#define ADDR_VEC_ALIGN(JUMPTABLE) 2
1002
1003#define DWARF2_UNWIND_INFO 1
1004
1005#define JUMP_ALIGN(x) \
1006 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
1007
1008#define LOOP_ALIGN(x) \
1009 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
1010
1011#define LABEL_ALIGN(x) \
1012 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
1013
1014#define ASM_OUTPUT_ALIGN(stream, power) \
1015 fprintf (stream, "\t.align\t%d\n", power)
1016
1017\f
1018/* Controlling Debugging Information Format. */
1019
1020#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1021
1022#define DWARF2_DEBUGGING_INFO 1
1023
1024#define DWARF2_ASM_LINE_DEBUG_INFO 1
1025
1026\f
1027/* Cross Compilation and Floating Point. */
1028
1029\f
1030/* Mode Switching Instructions. */
1031
1032\f
1033/* Defining target-specific uses of __attribute__. */
1034
1035\f
1036/* Emulating TLS. */
1037
1038\f
1039/* Defining coprocessor specifics for MIPS targets. */
1040
1041\f
1042/* Parameters for Precompiled Header Validity Checking. */
1043
1044\f
1045/* C++ ABI parameters. */
1046
1047\f
1048/* Adding support for named address spaces. */
1049
1050\f
1051/* Miscellaneous Parameters. */
1052
1053/* This is the machine mode that elements of a jump-table should have. */
1054#define CASE_VECTOR_MODE Pmode
1055
1056/* Return the preferred mode for and addr_diff_vec when the mininum
1057 and maximum offset are known. */
1058#define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
1059 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
1060 : (max_offset >= 100) ? HImode \
1061 : QImode)
1062
1063/* Generate pc relative jump table when -fpic or -Os. */
1064#define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
1065
1066/* Define this macro if operations between registers with integral mode
1067 smaller than a word are always performed on the entire register. */
9e11bfef 1068#define WORD_REGISTER_OPERATIONS 1
9304f876
CJW
1069
1070/* A C expression indicating when insns that read memory in mem_mode,
1071 an integral mode narrower than a word, set the bits outside of mem_mode
1072 to be either the sign-extension or the zero-extension of the data read. */
1073#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1074
1075/* The maximum number of bytes that a single instruction can move quickly
1076 between memory and registers or between two memory locations. */
1077#define MOVE_MAX 4
1078
1079/* A C expression that is nonzero if on this machine the number of bits
1080 actually used for the count of a shift operation is equal to the number
1081 of bits needed to represent the size of the object being shifted. */
1082#define SHIFT_COUNT_TRUNCATED 1
1083
9304f876
CJW
1084/* A C expression describing the value returned by a comparison operator with
1085 an integral mode and stored by a store-flag instruction ('cstoremode4')
1086 when the condition is true. */
1087#define STORE_FLAG_VALUE 1
1088
24a71166
CJW
1089/* A C expression that indicates whether the architecture defines a value for
1090 clz or ctz with a zero operand. In nds32 clz for 0 result 32 is defined
1091 in ISA spec */
1092#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1093
9304f876
CJW
1094/* An alias for the machine mode for pointers. */
1095#define Pmode SImode
1096
1097/* An alias for the machine mode used for memory references to functions
1098 being called, in call RTL expressions. */
1099#define FUNCTION_MODE SImode
1100
1101/* ------------------------------------------------------------------------ */