]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/nds32/nds32.h
Remove the useless constant UNSPEC_VOLATILE_FUNC_RETURN.
[thirdparty/gcc.git] / gcc / config / nds32 / nds32.h
CommitLineData
9304f876 1/* Definitions of target machine of Andes NDS32 cpu for GNU compiler
cbe34bb5 2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
9304f876
CJW
3 Contributed by Andes Technology Corporation.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22/* ------------------------------------------------------------------------ */
23
24/* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
26
511a41d7
CJW
27/* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
28 It is used in nds32_encode_section_info() to store flag in symbol_ref
29 in case the symbol should be placed in .rodata section.
30 So that we can check it in nds32_legitimate_address_p(). */
31#define NDS32_SYMBOL_FLAG_RODATA \
32 (SYMBOL_FLAG_MACH_DEP << 0)
33#define NDS32_SYMBOL_REF_RODATA_P(x) \
34 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
9304f876
CJW
35
36/* Computing the Length of an Insn. */
37#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
38 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
39
40/* Check instruction LS-37-FP-implied form.
41 Note: actually its immediate range is imm9u
42 since it is used for lwi37/swi37 instructions. */
43#define NDS32_LS_37_FP_P(rt, ra, imm) \
44 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
45 && REGNO (ra) == FP_REGNUM \
46 && satisfies_constraint_Iu09 (imm))
47
48/* Check instruction LS-37-SP-implied form.
49 Note: actually its immediate range is imm9u
50 since it is used for lwi37/swi37 instructions. */
51#define NDS32_LS_37_SP_P(rt, ra, imm) \
52 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
53 && REGNO (ra) == SP_REGNUM \
54 && satisfies_constraint_Iu09 (imm))
55
56
57/* Check load/store instruction form : Rt3, Ra3, imm3u. */
58#define NDS32_LS_333_P(rt, ra, imm, mode) nds32_ls_333_p (rt, ra, imm, mode)
59
60/* Check load/store instruction form : Rt4, Ra5, const_int_0.
61 Note: no need to check ra because Ra5 means it covers all registers. */
62#define NDS32_LS_450_P(rt, ra, imm) \
63 ((imm == const0_rtx) \
64 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
65 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
66
67/* Check instruction RRI-333-form. */
68#define NDS32_RRI_333_P(rt, ra, imm) \
69 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
70 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
71 && satisfies_constraint_Iu03 (imm))
72
73/* Check instruction RI-45-form. */
74#define NDS32_RI_45_P(rt, ra, imm) \
75 (REGNO (rt) == REGNO (ra) \
76 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
77 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS) \
78 && satisfies_constraint_Iu05 (imm))
79
80
81/* Check instruction RR-33-form. */
82#define NDS32_RR_33_P(rt, ra) \
83 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
84 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS)
85
86/* Check instruction RRR-333-form. */
87#define NDS32_RRR_333_P(rt, ra, rb) \
88 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
89 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
90 && REGNO_REG_CLASS (REGNO (rb)) == LOW_REGS)
91
92/* Check instruction RR-45-form.
93 Note: no need to check rb because Rb5 means it covers all registers. */
94#define NDS32_RR_45_P(rt, ra, rb) \
95 (REGNO (rt) == REGNO (ra) \
96 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
97 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
98
99/* Classifies address type to distinguish 16-bit/32-bit format. */
100enum nds32_16bit_address_type
101{
102 /* [reg]: 45 format address. */
103 ADDRESS_REG,
104 /* [lo_reg + imm3u]: 333 format address. */
105 ADDRESS_LO_REG_IMM3U,
106 /* post_inc [lo_reg + imm3u]: 333 format address. */
107 ADDRESS_POST_INC_LO_REG_IMM3U,
108 /* [$fp + imm7u]: fp imply address. */
109 ADDRESS_FP_IMM7U,
110 /* [$sp + imm7u]: sp imply address. */
111 ADDRESS_SP_IMM7U,
112 /* Other address format. */
113 ADDRESS_NOT_16BIT_FORMAT
114};
115
116
117/* ------------------------------------------------------------------------ */
118
119/* Define maximum numbers of registers for passing arguments. */
9d93cc24 120#define NDS32_MAX_GPR_REGS_FOR_ARGS 6
9304f876
CJW
121
122/* Define the register number for first argument. */
123#define NDS32_GPR_ARG_FIRST_REGNUM 0
124
125/* Define the register number for return value. */
126#define NDS32_GPR_RET_FIRST_REGNUM 0
127
9d93cc24
CJW
128/* Define the first integer register number. */
129#define NDS32_FIRST_GPR_REGNUM 0
130/* Define the last integer register number. */
131#define NDS32_LAST_GPR_REGNUM 31
9304f876
CJW
132
133/* Define double word alignment bits. */
134#define NDS32_DOUBLE_WORD_ALIGNMENT 64
135
136/* Define alignment checking macros for convenience. */
137#define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
138#define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
139#define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
140
634bdae9
CJW
141/* Get alignment according to mode or type information.
142 When 'type' is nonnull, there is no need to look at 'mode'. */
143#define NDS32_MODE_TYPE_ALIGN(mode, type) \
144 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
145
9304f876
CJW
146/* Round X up to the nearest double word. */
147#define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
148
149
150/* This macro is used to calculate the numbers of registers for
151 containing 'size' bytes of the argument.
152 The size of a register is a word in nds32 target.
153 So we use UNITS_PER_WORD to do the calculation. */
154#define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
155 ((mode == BLKmode) \
156 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
157 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
158
159/* This macro is used to return the register number for passing argument.
160 We need to obey the following rules:
161 1. If it is required MORE THAN one register,
8a498f99
CJW
162 we need to further check if it really needs to be
163 aligned on double words.
164 a) If double word alignment is necessary,
165 the register number must be even value.
166 b) Otherwise, the register number can be odd or even value.
9304f876 167 2. If it is required ONLY one register,
8a498f99
CJW
168 the register number can be odd or even value. */
169#define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
170 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
171 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
172 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
173 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
9304f876
CJW
174 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
175
176/* This macro is to check if there are still available registers
7f6cd86b
CJW
177 for passing argument, which must be entirely in registers. */
178#define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
179 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
180 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
181 <= (NDS32_GPR_ARG_FIRST_REGNUM \
182 + NDS32_MAX_GPR_REGS_FOR_ARGS))
183
184/* This macro is to check if there are still available registers
185 for passing argument, either entirely in registers or partially
186 in registers. */
187#define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
188 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
189 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
9304f876
CJW
190
191/* This macro is to check if the register is required to be saved on stack.
192 If call_used_regs[regno] == 0, regno is the callee-saved register.
193 If df_regs_ever_live_p(regno) == true, it is used in the current function.
194 As long as the register satisfies both criteria above,
195 it is required to be saved. */
196#define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
197 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
198
199/* ------------------------------------------------------------------------ */
200
201/* A C structure for machine-specific, per-function data.
202 This is added to the cfun structure. */
203struct GTY(()) machine_function
204{
205 /* Number of bytes allocated on the stack for variadic args
206 if we want to push them into stack as pretend arguments by ourself. */
207 int va_args_size;
208 /* Number of bytes reserved on the stack for
209 local and temporary variables. */
210 int local_size;
211 /* Number of bytes allocated on the stack for outgoing arguments. */
212 int out_args_size;
213
214 /* Number of bytes on the stack for saving $fp. */
215 int fp_size;
216 /* Number of bytes on the stack for saving $gp. */
217 int gp_size;
218 /* Number of bytes on the stack for saving $lp. */
219 int lp_size;
220
c457f751
CJW
221 /* Number of bytes on the stack for saving general purpose
222 callee-saved registers. */
223 int callee_saved_gpr_regs_size;
224
9304f876 225 /* The padding bytes in callee-saved area may be required. */
c457f751 226 int callee_saved_area_gpr_padding_bytes;
9304f876 227
c457f751
CJW
228 /* The first required general purpose callee-saved register. */
229 int callee_saved_first_gpr_regno;
230 /* The last required general purpose callee-saved register. */
231 int callee_saved_last_gpr_regno;
9304f876 232
dd1536a7
CJW
233 /* The padding bytes in varargs area may be required. */
234 int va_args_area_padding_bytes;
235
236 /* The first required register that should be saved on stack for va_args. */
237 int va_args_first_regno;
238 /* The last required register that should be saved on stack for va_args. */
239 int va_args_last_regno;
240
9304f876
CJW
241 /* Indicate that whether this function needs
242 prologue/epilogue code generation. */
243 int naked_p;
244 /* Indicate that whether this function
245 uses fp_as_gp optimization. */
246 int fp_as_gp_p;
247};
248
249/* A C structure that contains the arguments information. */
250typedef struct
251{
9d93cc24 252 unsigned int gpr_offset;
9304f876
CJW
253} nds32_cumulative_args;
254
255/* ------------------------------------------------------------------------ */
256
257/* The following we define C-ISR related stuff.
258 In nds32 architecture, we have 73 vectors for interrupt/exception.
259 For each vector (except for vector 0, which is used for reset behavior),
260 we allow users to set its register saving scheme and interrupt level. */
261
262/* There are 73 vectors in nds32 architecture.
263 0 for reset handler,
264 1-8 for exception handler,
265 and 9-72 for interrupt handler.
266 We use an array, which is defined in nds32.c, to record
267 essential information for each vector. */
268#define NDS32_N_ISR_VECTORS 73
269
270/* Define possible isr category. */
271enum nds32_isr_category
272{
273 NDS32_ISR_NONE,
274 NDS32_ISR_INTERRUPT,
275 NDS32_ISR_EXCEPTION,
276 NDS32_ISR_RESET
277};
278
279/* Define isr register saving scheme. */
280enum nds32_isr_save_reg
281{
282 NDS32_SAVE_ALL,
283 NDS32_PARTIAL_SAVE
284};
285
286/* Define isr nested type. */
287enum nds32_isr_nested_type
288{
289 NDS32_NESTED,
290 NDS32_NOT_NESTED,
291 NDS32_NESTED_READY
292};
293
294/* Define structure to record isr information.
295 The isr vector array 'isr_vectors[]' with this structure
296 is defined in nds32.c. */
297struct nds32_isr_info
298{
299 /* The field to identify isr category.
300 It should be set to NDS32_ISR_NONE by default.
301 If user specifies a function as isr by using attribute,
302 this field will be set accordingly. */
303 enum nds32_isr_category category;
304
305 /* A string for the applied function name.
306 It should be set to empty string by default. */
307 char func_name[100];
308
309 /* The register saving scheme.
310 It should be set to NDS32_PARTIAL_SAVE by default
311 unless user specifies attribute to change it. */
312 enum nds32_isr_save_reg save_reg;
313
314 /* The nested type.
315 It should be set to NDS32_NOT_NESTED by default
316 unless user specifies attribute to change it. */
317 enum nds32_isr_nested_type nested_type;
318
319 /* Total vectors.
320 The total vectors = interrupt + exception numbers + reset.
321 It should be set to 0 by default.
322 This field is ONLY used in NDS32_ISR_RESET category. */
323 unsigned int total_n_vectors;
324
325 /* A string for nmi handler name.
326 It should be set to empty string by default.
327 This field is ONLY used in NDS32_ISR_RESET category. */
328 char nmi_name[100];
329
330 /* A string for warm handler name.
331 It should be set to empty string by default.
332 This field is ONLY used in NDS32_ISR_RESET category. */
333 char warm_name[100];
334};
335
336/* ------------------------------------------------------------------------ */
337
338/* Define code for all nds32 builtins. */
339enum nds32_builtins
340{
341 NDS32_BUILTIN_ISYNC,
342 NDS32_BUILTIN_ISB,
343 NDS32_BUILTIN_MFSR,
344 NDS32_BUILTIN_MFUSR,
345 NDS32_BUILTIN_MTSR,
346 NDS32_BUILTIN_MTUSR,
347 NDS32_BUILTIN_SETGIE_EN,
348 NDS32_BUILTIN_SETGIE_DIS
349};
350
351/* ------------------------------------------------------------------------ */
352
353#define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
354#define TARGET_ISA_V3 (nds32_arch_option == ARCH_V3)
355#define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
356
77b7a1ca
CJW
357#define TARGET_CMODEL_SMALL \
358 (nds32_cmodel_option == CMODEL_SMALL)
359#define TARGET_CMODEL_MEDIUM \
360 (nds32_cmodel_option == CMODEL_MEDIUM)
361#define TARGET_CMODEL_LARGE \
362 (nds32_cmodel_option == CMODEL_LARGE)
363
364/* When -mcmodel=small or -mcmodel=medium,
365 compiler may generate gp-base instruction directly. */
366#define TARGET_GP_DIRECT \
367 (nds32_cmodel_option == CMODEL_SMALL\
368 || nds32_cmodel_option == CMODEL_MEDIUM)
369
d4a6a4d9
CJW
370#define TARGET_SOFT_FLOAT 1
371#define TARGET_HARD_FLOAT 0
372
9304f876
CJW
373/* ------------------------------------------------------------------------ */
374\f
375/* Controlling the Compilation Driver. */
376
377#define OPTION_DEFAULT_SPECS \
378 {"arch", "%{!march=*:-march=%(VALUE)}" }
379
380#define CC1_SPEC \
381 ""
382
383#define ASM_SPEC \
384 " %{mbig-endian:-EB} %{mlittle-endian:-EL}"
385
2ca1ca65 386/* If user issues -mrelax, we need to pass '--relax' to linker. */
9304f876
CJW
387#define LINK_SPEC \
388 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
2ca1ca65 389 " %{mrelax:--relax}"
9304f876
CJW
390
391#define LIB_SPEC \
392 " -lc -lgloss"
393
394/* The option -mno-ctor-dtor can disable constructor/destructor feature
395 by applying different crt stuff. In the convention, crt0.o is the
396 startup file without constructor/destructor;
397 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
398 startup files with constructor/destructor.
399 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
400 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
401 currently provided by GCC for nds32 target.
402
403 For nds32 target so far:
404 If -mno-ctor-dtor, we are going to link
405 "crt0.o [user objects]".
406 If general cases, we are going to link
407 "crt1.o crtbegin1.o [user objects] crtend1.o". */
408#define STARTFILE_SPEC \
409 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
410 " %{!mno-ctor-dtor:crtbegin1.o%s}"
411#define ENDFILE_SPEC \
412 " %{!mno-ctor-dtor:crtend1.o%s}"
413
c9eb51a7
CJW
414/* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
415 configure gcc with --target=nds32be-* setting.
416 Check gcc/config.gcc for more information. */
9304f876 417#ifdef TARGET_BIG_ENDIAN_DEFAULT
c9eb51a7 418# define NDS32_ENDIAN_DEFAULT "mbig-endian"
9304f876 419#else
c9eb51a7 420# define NDS32_ENDIAN_DEFAULT "mlittle-endian"
9304f876
CJW
421#endif
422
c9eb51a7
CJW
423/* Currently we only have elf toolchain,
424 where -mcmodel=medium is always the default. */
425#define NDS32_CMODEL_DEFAULT "mcmodel=medium"
426
427#define MULTILIB_DEFAULTS \
428 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
429
9304f876
CJW
430\f
431/* Run-time Target Specification. */
432
433#define TARGET_CPU_CPP_BUILTINS() \
434 do \
435 { \
436 builtin_define ("__nds32__"); \
437 \
438 if (TARGET_ISA_V2) \
439 builtin_define ("__NDS32_ISA_V2__"); \
440 if (TARGET_ISA_V3) \
441 builtin_define ("__NDS32_ISA_V3__"); \
442 if (TARGET_ISA_V3M) \
443 builtin_define ("__NDS32_ISA_V3M__"); \
444 \
445 if (TARGET_BIG_ENDIAN) \
446 builtin_define ("__big_endian__"); \
447 if (TARGET_REDUCED_REGS) \
448 builtin_define ("__NDS32_REDUCED_REGS__"); \
449 if (TARGET_CMOV) \
450 builtin_define ("__NDS32_CMOV__"); \
aa4b851c
CJW
451 if (TARGET_EXT_PERF) \
452 builtin_define ("__NDS32_EXT_PERF__"); \
453 if (TARGET_EXT_PERF2) \
454 builtin_define ("__NDS32_EXT_PERF2__"); \
455 if (TARGET_EXT_STRING) \
456 builtin_define ("__NDS32_EXT_STRING__"); \
9304f876
CJW
457 if (TARGET_16_BIT) \
458 builtin_define ("__NDS32_16_BIT__"); \
459 if (TARGET_GP_DIRECT) \
460 builtin_define ("__NDS32_GP_DIRECT__"); \
461 \
462 builtin_assert ("cpu=nds32"); \
463 builtin_assert ("machine=nds32"); \
464 } while (0)
465
466\f
467/* Defining Data Structures for Per-function Information. */
468
469/* This macro is called once per function,
470 before generation of any RTL has begun. */
471#define INIT_EXPANDERS nds32_init_expanders ()
472
473\f
474/* Storage Layout. */
475
476#define BITS_BIG_ENDIAN 0
477
478#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
479
480#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
481
482#define UNITS_PER_WORD 4
483
484#define PROMOTE_MODE(m, unsignedp, type) \
485 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
486 { \
487 (m) = SImode; \
488 }
489
490#define PARM_BOUNDARY 32
491
492#define STACK_BOUNDARY 64
493
494#define FUNCTION_BOUNDARY 32
495
496#define BIGGEST_ALIGNMENT 64
497
498#define EMPTY_FIELD_BOUNDARY 32
499
500#define STRUCTURE_SIZE_BOUNDARY 8
501
502#define STRICT_ALIGNMENT 1
503
504#define PCC_BITFIELD_TYPE_MATTERS 1
505
506\f
507/* Layout of Source Language Data Types. */
508
509#define INT_TYPE_SIZE 32
510#define SHORT_TYPE_SIZE 16
511#define LONG_TYPE_SIZE 32
512#define LONG_LONG_TYPE_SIZE 64
513
514#define FLOAT_TYPE_SIZE 32
515#define DOUBLE_TYPE_SIZE 64
516#define LONG_DOUBLE_TYPE_SIZE 64
517
518#define DEFAULT_SIGNED_CHAR 1
519
520#define SIZE_TYPE "long unsigned int"
521#define PTRDIFF_TYPE "long int"
522#define WCHAR_TYPE "short unsigned int"
523#define WCHAR_TYPE_SIZE 16
524
525\f
526/* Register Usage. */
527
528/* Number of actual hardware registers.
529 The hardware registers are assigned numbers for the compiler
530 from 0 to just below FIRST_PSEUDO_REGISTER.
531 All registers that the compiler knows about must be given numbers,
532 even those that are not normally considered general registers. */
533#define FIRST_PSEUDO_REGISTER 34
534
535/* An initializer that says which registers are used for fixed
536 purposes all throughout the compiled code and are therefore
537 not available for general allocation.
538
539 $r28 : $fp
540 $r29 : $gp
541 $r30 : $lp
542 $r31 : $sp
543
544 caller-save registers: $r0 ~ $r5, $r16 ~ $r23
545 callee-save registers: $r6 ~ $r10, $r11 ~ $r14
546
547 reserved for assembler : $r15
548 reserved for other use : $r24, $r25, $r26, $r27 */
549#define FIXED_REGISTERS \
550{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
551 0, 0, 0, 0, 0, 0, 0, 0, \
552 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
553 0, 0, 0, 0, 0, 0, 0, 1, \
554 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
555 0, 0, 0, 0, 0, 0, 0, 0, \
556 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
557 1, 1, 1, 1, 0, 1, 0, 1, \
558 /* ARG_POINTER:32 */ \
559 1, \
560 /* FRAME_POINTER:33 */ \
561 1 \
562}
563
564/* Identifies the registers that are not available for
565 general allocation of values that must live across
566 function calls -- so they are caller-save registers.
567
568 0 : callee-save registers
569 1 : caller-save registers */
570#define CALL_USED_REGISTERS \
571{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
572 1, 1, 1, 1, 1, 1, 0, 0, \
573 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
574 0, 0, 0, 0, 0, 0, 0, 1, \
575 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
576 1, 1, 1, 1, 1, 1, 1, 1, \
577 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
578 1, 1, 1, 1, 0, 1, 0, 1, \
579 /* ARG_POINTER:32 */ \
580 1, \
581 /* FRAME_POINTER:33 */ \
582 1 \
583}
584
585/* In nds32 target, we have three levels of registers:
586 LOW_COST_REGS : $r0 ~ $r7
587 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
588 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
589#define REG_ALLOC_ORDER \
590{ \
591 0, 1, 2, 3, 4, 5, 6, 7, \
592 8, 9, 10, 11, 16, 17, 18, 19, \
593 12, 13, 14, 15, 20, 21, 22, 23, \
594 24, 25, 26, 27, 28, 29, 30, 31, \
595 32, \
596 33 \
597}
598
599/* Tell IRA to use the order we define rather than messing it up with its
600 own cost calculations. */
96092404 601#define HONOR_REG_ALLOC_ORDER optimize_size
9304f876 602
9304f876
CJW
603\f
604/* Register Classes. */
605
606/* In nds32 target, we have three levels of registers:
607 Low cost regsiters : $r0 ~ $r7
608 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
609 High cost registers : $r12 ~ $r14, $r20 ~ $r31
610
611 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
612 so that it provides more chance to use low cost registers. */
613enum reg_class
614{
615 NO_REGS,
616 R15_TA_REG,
617 STACK_REG,
618 LOW_REGS,
619 MIDDLE_REGS,
620 HIGH_REGS,
621 GENERAL_REGS,
622 FRAME_REGS,
623 ALL_REGS,
624 LIM_REG_CLASSES
625};
626
627#define N_REG_CLASSES (int) LIM_REG_CLASSES
628
629#define REG_CLASS_NAMES \
630{ \
631 "NO_REGS", \
632 "R15_TA_REG", \
633 "STACK_REG", \
634 "LOW_REGS", \
635 "MIDDLE_REGS", \
636 "HIGH_REGS", \
637 "GENERAL_REGS", \
638 "FRAME_REGS", \
639 "ALL_REGS" \
640}
641
642#define REG_CLASS_CONTENTS \
643{ \
644 {0x00000000, 0x00000000}, /* NO_REGS : */ \
645 {0x00008000, 0x00000000}, /* R15_TA_REG : 15 */ \
646 {0x80000000, 0x00000000}, /* STACK_REG : 31 */ \
647 {0x000000ff, 0x00000000}, /* LOW_REGS : 0-7 */ \
648 {0x000f0fff, 0x00000000}, /* MIDDLE_REGS : 0-11, 16-19 */ \
649 {0xfff07000, 0x00000000}, /* HIGH_REGS : 12-14, 20-31 */ \
650 {0xffffffff, 0x00000000}, /* GENERAL_REGS: 0-31 */ \
651 {0x00000000, 0x00000003}, /* FRAME_REGS : 32, 33 */ \
652 {0xffffffff, 0x00000003} /* ALL_REGS : 0-31, 32, 33 */ \
653}
654
655#define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
656
657#define BASE_REG_CLASS GENERAL_REGS
658#define INDEX_REG_CLASS GENERAL_REGS
659
660/* Return nonzero if it is suitable for use as a
661 base register in operand addresses.
662 So far, we return nonzero only if "num" is a hard reg
663 of the suitable class or a pseudo register which is
664 allocated to a suitable hard reg. */
665#define REGNO_OK_FOR_BASE_P(num) \
666 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
667
668/* Return nonzero if it is suitable for use as a
669 index register in operand addresses.
670 So far, we return nonzero only if "num" is a hard reg
671 of the suitable class or a pseudo register which is
672 allocated to a suitable hard reg.
673 The difference between an index register and a base register is that
674 the index register may be scaled. */
675#define REGNO_OK_FOR_INDEX_P(num) \
676 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
677
678\f
679/* Obsolete Macros for Defining Constraints. */
680
681\f
682/* Stack Layout and Calling Conventions. */
683
62f9f30b 684#define STACK_GROWS_DOWNWARD 1
9304f876
CJW
685
686#define FRAME_GROWS_DOWNWARD 1
687
9304f876
CJW
688#define STACK_POINTER_OFFSET 0
689
4f44e960
CJW
690#define FIRST_PARM_OFFSET(fundecl) \
691 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
9304f876
CJW
692
693#define RETURN_ADDR_RTX(count, frameaddr) \
694 nds32_return_addr_rtx (count, frameaddr)
695
696/* A C expression whose value is RTL representing the location
697 of the incoming return address at the beginning of any function
698 before the prologue.
699 If this RTL is REG, you should also define
700 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
701#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
702#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
703
704#define STACK_POINTER_REGNUM SP_REGNUM
705
706#define FRAME_POINTER_REGNUM 33
707
708#define HARD_FRAME_POINTER_REGNUM FP_REGNUM
709
710#define ARG_POINTER_REGNUM 32
711
712#define STATIC_CHAIN_REGNUM 16
713
714#define ELIMINABLE_REGS \
715{ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
716 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
717 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
718 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
719
720#define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
721 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
722
723#define ACCUMULATE_OUTGOING_ARGS 1
724
725#define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
726
727#define CUMULATIVE_ARGS nds32_cumulative_args
728
729#define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
730 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
731
732/* The REGNO is an unsigned integer but NDS32_GPR_ARG_FIRST_REGNUM may be 0.
733 We better cast REGNO into signed integer so that we can avoid
734 'comparison of unsigned expression >= 0 is always true' warning. */
735#define FUNCTION_ARG_REGNO_P(regno) \
736 (((int) regno - NDS32_GPR_ARG_FIRST_REGNUM >= 0) \
9d93cc24 737 && ((int) regno - NDS32_GPR_ARG_FIRST_REGNUM < NDS32_MAX_GPR_REGS_FOR_ARGS))
9304f876
CJW
738
739#define DEFAULT_PCC_STRUCT_RETURN 0
740
741/* EXIT_IGNORE_STACK should be nonzero if, when returning
742 from a function, the stack pointer does not matter.
743 The value is tested only in functions that have frame pointers.
744 In nds32 target, the function epilogue recovers the
745 stack pointer from the frame. */
746#define EXIT_IGNORE_STACK 1
747
748#define FUNCTION_PROFILER(file, labelno) \
749 fprintf (file, "/* profiler %d */", (labelno))
750
751\f
752/* Implementing the Varargs Macros. */
753
754\f
755/* Trampolines for Nested Functions. */
756
757/* Giving A-function and B-function,
758 if B-function wants to call A-function's nested function,
759 we need to fill trampoline code into A-function's stack
760 so that B-function can execute the code in stack to indirectly
761 jump to (like 'trampoline' action) desired nested function.
762
763 The trampoline code for nds32 target must contains following parts:
764
765 1. instructions (4 * 4 = 16 bytes):
8a498f99
CJW
766 get $pc first
767 load chain_value to static chain register via $pc
768 load nested function address to $r15 via $pc
769 jump to desired nested function via $r15
9304f876 770 2. data (4 * 2 = 8 bytes):
8a498f99
CJW
771 chain_value
772 nested function address
9304f876
CJW
773
774 Please check nds32.c implementation for more information. */
775#define TRAMPOLINE_SIZE 24
776
777/* Because all instructions/data in trampoline template are 4-byte size,
778 we set trampoline alignment 8*4=32 bits. */
779#define TRAMPOLINE_ALIGNMENT 32
780
781\f
782/* Implicit Calls to Library Routines. */
783
784\f
785/* Addressing Modes. */
786
787/* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
788#define HAVE_POST_INCREMENT 1
789/* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
790#define HAVE_POST_DECREMENT 1
791
792/* We have "LWI.bi Rt, [Ra], imm" instruction form. */
793#define HAVE_POST_MODIFY_DISP 1
794/* We have "LW.bi Rt, [Ra], Rb" instruction form. */
795#define HAVE_POST_MODIFY_REG 1
796
797#define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
798
799#define MAX_REGS_PER_ADDRESS 2
800
801\f
802/* Anchored Addresses. */
803
804\f
805/* Condition Code Status. */
806
807\f
808/* Describing Relative Costs of Operations. */
809
810/* A C expression for the cost of a branch instruction.
811 A value of 1 is the default;
812 other values are interpreted relative to that. */
813#define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 0)
814
815#define SLOW_BYTE_ACCESS 1
816
1e8552c2 817#define NO_FUNCTION_CSE 1
9304f876
CJW
818
819\f
820/* Adjusting the Instruction Scheduler. */
821
822\f
823/* Dividing the Output into Sections (Texts, Data, . . . ). */
824
825#define TEXT_SECTION_ASM_OP "\t.text"
826#define DATA_SECTION_ASM_OP "\t.data"
827
828/* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
829 So we use '.section .bss' alternatively. */
830#define BSS_SECTION_ASM_OP "\t.section\t.bss"
831
832/* Define this macro to be an expression with a nonzero value if jump tables
833 (for tablejump insns) should be output in the text section,
834 along with the assembler instructions.
835 Otherwise, the readonly data section is used. */
836#define JUMP_TABLES_IN_TEXT_SECTION 1
837
838\f
839/* Position Independent Code. */
840
64a08b7f
CJW
841#define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
842
9304f876
CJW
843\f
844/* Defining the Output Assembler Language. */
845
846#define ASM_COMMENT_START "!"
847
848#define ASM_APP_ON "! #APP"
849
850#define ASM_APP_OFF "! #NO_APP\n"
851
852#define ASM_OUTPUT_LABELREF(stream, name) \
853 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
854
855#define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
856 assemble_name (stream, XSTR (sym, 0))
857
858#define ASM_OUTPUT_LABEL_REF(stream, buf) \
859 assemble_name (stream, buf)
860
861#define LOCAL_LABEL_PREFIX "."
862
863#define REGISTER_NAMES \
864{ \
865 "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
866 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
867 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
868 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
869 "$AP", \
870 "$SFP" \
871}
872
873/* Output normal jump table entry. */
874#define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
875 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
876
877/* Output pc relative jump table entry. */
878#define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
879 do \
880 { \
881 switch (GET_MODE (body)) \
882 { \
4e10a5a7 883 case E_QImode: \
9304f876
CJW
884 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
885 break; \
4e10a5a7 886 case E_HImode: \
9304f876
CJW
887 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
888 break; \
4e10a5a7 889 case E_SImode: \
9304f876
CJW
890 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
891 break; \
892 default: \
893 gcc_unreachable(); \
894 } \
895 } while (0)
896
897/* We have to undef it first because elfos.h formerly define it
898 check gcc/config.gcc and gcc/config/elfos.h for more information. */
899#undef ASM_OUTPUT_CASE_LABEL
900#define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
901 do \
902 { \
903 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
904 (*targetm.asm_out.internal_label) (stream, prefix, num); \
905 } while (0)
906
907#define ASM_OUTPUT_CASE_END(stream, num, table) \
908 do \
909 { \
910 /* Because our jump table is in text section, \
8a498f99
CJW
911 we need to make sure 2-byte alignment after \
912 the jump table for instructions fetch. */ \
9304f876 913 if (GET_MODE (PATTERN (table)) == QImode) \
8a498f99 914 ASM_OUTPUT_ALIGN (stream, 1); \
9304f876
CJW
915 asm_fprintf (stream, "\t! Jump Table End\n"); \
916 } while (0)
917
918/* This macro is not documented yet.
919 But we do need it to make jump table vector aligned. */
920#define ADDR_VEC_ALIGN(JUMPTABLE) 2
921
922#define DWARF2_UNWIND_INFO 1
923
924#define JUMP_ALIGN(x) \
925 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
926
927#define LOOP_ALIGN(x) \
928 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
929
930#define LABEL_ALIGN(x) \
931 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
932
933#define ASM_OUTPUT_ALIGN(stream, power) \
934 fprintf (stream, "\t.align\t%d\n", power)
935
936\f
937/* Controlling Debugging Information Format. */
938
939#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
940
941#define DWARF2_DEBUGGING_INFO 1
942
943#define DWARF2_ASM_LINE_DEBUG_INFO 1
944
945\f
946/* Cross Compilation and Floating Point. */
947
948\f
949/* Mode Switching Instructions. */
950
951\f
952/* Defining target-specific uses of __attribute__. */
953
954\f
955/* Emulating TLS. */
956
957\f
958/* Defining coprocessor specifics for MIPS targets. */
959
960\f
961/* Parameters for Precompiled Header Validity Checking. */
962
963\f
964/* C++ ABI parameters. */
965
966\f
967/* Adding support for named address spaces. */
968
969\f
970/* Miscellaneous Parameters. */
971
972/* This is the machine mode that elements of a jump-table should have. */
973#define CASE_VECTOR_MODE Pmode
974
975/* Return the preferred mode for and addr_diff_vec when the mininum
976 and maximum offset are known. */
977#define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
978 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
979 : (max_offset >= 100) ? HImode \
980 : QImode)
981
982/* Generate pc relative jump table when -fpic or -Os. */
983#define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
984
985/* Define this macro if operations between registers with integral mode
986 smaller than a word are always performed on the entire register. */
9e11bfef 987#define WORD_REGISTER_OPERATIONS 1
9304f876
CJW
988
989/* A C expression indicating when insns that read memory in mem_mode,
990 an integral mode narrower than a word, set the bits outside of mem_mode
991 to be either the sign-extension or the zero-extension of the data read. */
992#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
993
994/* The maximum number of bytes that a single instruction can move quickly
995 between memory and registers or between two memory locations. */
996#define MOVE_MAX 4
997
998/* A C expression that is nonzero if on this machine the number of bits
999 actually used for the count of a shift operation is equal to the number
1000 of bits needed to represent the size of the object being shifted. */
1001#define SHIFT_COUNT_TRUNCATED 1
1002
9304f876
CJW
1003/* A C expression describing the value returned by a comparison operator with
1004 an integral mode and stored by a store-flag instruction ('cstoremode4')
1005 when the condition is true. */
1006#define STORE_FLAG_VALUE 1
1007
1008/* An alias for the machine mode for pointers. */
1009#define Pmode SImode
1010
1011/* An alias for the machine mode used for memory references to functions
1012 being called, in call RTL expressions. */
1013#define FUNCTION_MODE SImode
1014
1015/* ------------------------------------------------------------------------ */