]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/pa/pa.h
Merge basic-improvements-branch to trunk
[thirdparty/gcc.git] / gcc / config / pa / pa.h
CommitLineData
eabd3262 1/* Definitions of target machine for GNU compiler, for the HP Spectrum.
cf011243 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
8f949e7e 3 2001, 2002 Free Software Foundation, Inc.
8b109b37 4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
eabd3262
RK
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
7
8This file is part of GNU CC.
9
10GNU CC is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
c063dc98 12the Free Software Foundation; either version 2, or (at your option)
eabd3262
RK
13any later version.
14
15GNU CC is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with GNU CC; see the file COPYING. If not, write to
0e29e3c9
RK
22the Free Software Foundation, 59 Temple Place - Suite 330,
23Boston, MA 02111-1307, USA. */
eabd3262
RK
24
25enum cmp_type /* comparison type */
26{
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
31};
32
279c9bde 33/* For long call handling. */
a02aa5b0 34extern unsigned long total_code_bytes;
279c9bde 35
c47decad
JL
36/* Which processor to schedule for. */
37
38enum processor_type
39{
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
e14b50ce 43 PROCESSOR_7200,
fae15c93 44 PROCESSOR_7300,
e14b50ce 45 PROCESSOR_8000
c47decad
JL
46};
47
c47decad 48/* For -mschedule= option. */
519104fe 49extern const char *pa_cpu_string;
c47decad
JL
50extern enum processor_type pa_cpu;
51
62d65906
JL
52#define pa_cpu_attr ((enum attr_cpu)pa_cpu)
53
ea3bfbfe
JQ
54/* Which architecture to generate code for. */
55
56enum architecture_type
57{
58 ARCHITECTURE_10,
59 ARCHITECTURE_11,
60 ARCHITECTURE_20
61};
62
5dfcd8e1 63struct rtx_def;
5dfcd8e1 64
ea3bfbfe 65/* For -march= option. */
519104fe 66extern const char *pa_arch_string;
ea3bfbfe
JQ
67extern enum architecture_type pa_arch;
68
eabd3262
RK
69/* Print subsidiary information on the compiler version in use. */
70
e236a9ff 71#define TARGET_VERSION fputs (" (hppa)", stderr);
eabd3262 72
3f8f5a3f 73/* Run-time compilation parameters selecting different hardware subsets. */
eabd3262
RK
74
75extern int target_flags;
76
c219e1da 77/* compile code for HP-PA 1.1 ("Snake"). */
eabd3262 78
13ee407e 79#define MASK_PA_11 1
520babc7 80
8c0a7019
JL
81/* Disable all FP registers (they all become fixed). This may be necessary
82 for compiling kernels which perform lazy context switching of FP regs.
5a1c10de 83 Note if you use this option and try to perform floating point operations
8c0a7019
JL
84 the compiler will abort! */
85
3723cad9
JL
86#define MASK_DISABLE_FPREGS 2
87#define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
8c0a7019 88
a7721dc0
AM
89/* Generate code which assumes that all space register are equivalent.
90 Triggers aggressive unscaled index addressing and faster
91 builtin_return_address. */
3723cad9
JL
92#define MASK_NO_SPACE_REGS 4
93#define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
105ce113 94
0a1daad4 95/* Allow unconditional jumps in the delay slots of call instructions. */
3723cad9
JL
96#define MASK_JUMP_IN_DELAY 8
97#define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
0a1daad4 98
24c6ab1c 99/* Disable indexed addressing modes. */
3723cad9
JL
100#define MASK_DISABLE_INDEXING 32
101#define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
8c0a7019 102
2822d96e
JL
103/* Emit code which follows the new portable runtime calling conventions
104 HP wants everyone to use for ELF objects. If at all possible you want
f726ea7d
JL
105 to avoid this since it's a performance loss for non-prototyped code.
106
279c9bde
JL
107 Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
108 long-call stubs which is quite expensive. */
3723cad9
JL
109#define MASK_PORTABLE_RUNTIME 64
110#define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
2822d96e 111
c87ba671
JL
112/* Emit directives only understood by GAS. This allows parameter
113 relocations to work for static functions. There is no way
2822d96e 114 to make them work the HP assembler at this time. */
3723cad9
JL
115#define MASK_GAS 128
116#define TARGET_GAS (target_flags & MASK_GAS)
c87ba671 117
74356a72 118/* Emit code for processors which do not have an FPU. */
3723cad9
JL
119#define MASK_SOFT_FLOAT 256
120#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
74356a72 121
c3d4f633
JL
122/* Use 3-insn load/store sequences for access to large data segments
123 in shared libraries on hpux10. */
3723cad9
JL
124#define MASK_LONG_LOAD_STORE 512
125#define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
c3d4f633 126
a7721dc0
AM
127/* Use a faster sequence for indirect calls. This assumes that calls
128 through function pointers will never cross a space boundary, and
129 that the executable is not dynamically linked. Such assumptions
130 are generally safe for building kernels and statically linked
131 executables. Code compiled with this option will fail miserably if
132 the executable is dynamically linked or uses nested functions! */
3723cad9
JL
133#define MASK_FAST_INDIRECT_CALLS 1024
134#define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
3aba034b 135
3e056efc 136/* Generate code with big switch statements to avoid out of range branches
956d6950 137 occurring within the switch table. */
3723cad9
JL
138#define MASK_BIG_SWITCH 2048
139#define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
3e056efc 140
ea3bfbfe
JQ
141/* Generate code for the HPPA 2.0 architecture. TARGET_PA_11 should also be
142 true when this is true. */
143#define MASK_PA_20 4096
c219e1da
JDA
144
145/* Generate cpp defines for server I/O. */
146#define MASK_SIO 8192
147#define TARGET_SIO (target_flags & MASK_SIO)
148
83eb95f9
SE
149/* Assume GNU linker by default. */
150#define MASK_GNU_LD 16384
151#ifndef TARGET_GNU_LD
152#define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
153#endif
154
a02aa5b0
JDA
155/* Force generation of long calls. */
156#define MASK_LONG_CALLS 32768
157#ifndef TARGET_LONG_CALLS
158#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
159#endif
160
c219e1da
JDA
161#ifndef TARGET_PA_10
162#define TARGET_PA_10 (target_flags & (MASK_PA_11 | MASK_PA_20) == 0)
163#endif
164
165#ifndef TARGET_PA_11
166#define TARGET_PA_11 (target_flags & MASK_PA_11)
167#endif
168
520babc7 169#ifndef TARGET_PA_20
ea3bfbfe 170#define TARGET_PA_20 (target_flags & MASK_PA_20)
520babc7
JL
171#endif
172
173/* Generate code for the HPPA 2.0 architecture in 64bit mode. */
174#ifndef TARGET_64BIT
175#define TARGET_64BIT 0
176#endif
ea3bfbfe 177
fe19a83d 178/* Generate code for ELF32 ABI. */
e25724d8
AM
179#ifndef TARGET_ELF32
180#define TARGET_ELF32 0
181#endif
182
3d9268b6
JDA
183/* Generate code for SOM 32bit ABI. */
184#ifndef TARGET_SOM
185#define TARGET_SOM 0
186#endif
187
a02aa5b0
JDA
188/* The following three defines are potential target switches. The current
189 defines are optimal given the current capabilities of GAS and GNU ld. */
190
191/* Define to a C expression evaluating to true to use long absolute calls.
192 Currently, only the HP assembler and SOM linker support long absolute
193 calls. They are used only in non-pic code. */
194#define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
195
196/* Define to a C expression evaluating to true to use long pic symbol
197 difference calls. This is a call variant similar to the long pic
198 pc-relative call. Long pic symbol difference calls are only used with
199 the HP SOM linker. Currently, only the HP assembler supports these
200 calls. GAS doesn't allow an arbritrary difference of two symbols. */
201#define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
202
203/* Define to a C expression evaluating to true to use long pic
204 pc-relative calls. Long pic pc-relative calls are only used with
205 GAS. Currently, they are usable for calls within a module but
206 not for external calls. */
207#define TARGET_LONG_PIC_PCREL_CALL 0
208
c219e1da
JDA
209/* Macro to define tables used to set the flags. This is a
210 list in braces of target switches with each switch being
211 { "NAME", VALUE, "HELP_STRING" }. VALUE is the bits to set,
212 or minus the bits to clear. An empty string NAME is used to
213 identify the default VALUE. Do not mark empty strings for
214 translation. */
eabd3262
RK
215
216#define TARGET_SWITCHES \
c219e1da
JDA
217 {{ "snake", MASK_PA_11, \
218 N_("Generate PA1.1 code") }, \
219 { "nosnake", -(MASK_PA_11 | MASK_PA_20), \
220 N_("Generate PA1.0 code") }, \
221 { "pa-risc-1-0", -(MASK_PA_11 | MASK_PA_20), \
222 N_("Generate PA1.0 code") }, \
223 { "pa-risc-1-1", MASK_PA_11, \
224 N_("Generate PA1.1 code") }, \
225 { "pa-risc-2-0", MASK_PA_20, \
226 N_("Generate PA2.0 code (requires binutils 2.10 or later)") }, \
227 { "disable-fpregs", MASK_DISABLE_FPREGS, \
228 N_("Disable FP regs") }, \
229 { "no-disable-fpregs", -MASK_DISABLE_FPREGS, \
230 N_("Do not disable FP regs") }, \
231 { "no-space-regs", MASK_NO_SPACE_REGS, \
232 N_("Disable space regs") }, \
233 { "space-regs", -MASK_NO_SPACE_REGS, \
234 N_("Do not disable space regs") }, \
235 { "jump-in-delay", MASK_JUMP_IN_DELAY, \
236 N_("Put jumps in call delay slots") }, \
237 { "no-jump-in-delay", -MASK_JUMP_IN_DELAY, \
238 N_("Do not put jumps in call delay slots") }, \
239 { "disable-indexing", MASK_DISABLE_INDEXING, \
240 N_("Disable indexed addressing") }, \
241 { "no-disable-indexing", -MASK_DISABLE_INDEXING, \
242 N_("Do not disable indexed addressing") }, \
243 { "portable-runtime", MASK_PORTABLE_RUNTIME, \
244 N_("Use portable calling conventions") }, \
245 { "no-portable-runtime", -MASK_PORTABLE_RUNTIME, \
246 N_("Do not use portable calling conventions") }, \
247 { "gas", MASK_GAS, \
248 N_("Assume code will be assembled by GAS") }, \
249 { "no-gas", -MASK_GAS, \
250 N_("Do not assume code will be assembled by GAS") }, \
251 { "soft-float", MASK_SOFT_FLOAT, \
252 N_("Use software floating point") }, \
253 { "no-soft-float", -MASK_SOFT_FLOAT, \
254 N_("Do not use software floating point") }, \
255 { "long-load-store", MASK_LONG_LOAD_STORE, \
256 N_("Emit long load/store sequences") }, \
257 { "no-long-load-store", -MASK_LONG_LOAD_STORE, \
258 N_("Do not emit long load/store sequences") }, \
259 { "fast-indirect-calls", MASK_FAST_INDIRECT_CALLS, \
260 N_("Generate fast indirect calls") }, \
261 { "no-fast-indirect-calls", -MASK_FAST_INDIRECT_CALLS, \
262 N_("Do not generate fast indirect calls") }, \
263 { "big-switch", MASK_BIG_SWITCH, \
264 N_("Generate code for huge switch statements") }, \
265 { "no-big-switch", -MASK_BIG_SWITCH, \
266 N_("Do not generate code for huge switch statements") }, \
a02aa5b0
JDA
267 { "long-calls", MASK_LONG_CALLS, \
268 N_("Always generate long calls") }, \
269 { "no-long-calls", -MASK_LONG_CALLS, \
270 N_("Generate long calls only when needed") }, \
c219e1da
JDA
271 { "linker-opt", 0, \
272 N_("Enable linker optimizations") }, \
273 SUBTARGET_SWITCHES \
274 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
275 NULL }}
eabd3262 276
233c0fef 277#ifndef TARGET_DEFAULT
3723cad9 278#define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
233c0fef
TG
279#endif
280
b34ec578
RK
281#ifndef TARGET_CPU_DEFAULT
282#define TARGET_CPU_DEFAULT 0
283#endif
284
c219e1da
JDA
285#ifndef SUBTARGET_SWITCHES
286#define SUBTARGET_SWITCHES
287#endif
288
806bf413
JDA
289#ifndef TARGET_SCHED_DEFAULT
290#define TARGET_SCHED_DEFAULT "8000"
291#endif
292
c219e1da
JDA
293#define TARGET_OPTIONS \
294{ \
295 { "schedule=", &pa_cpu_string, \
296 N_("Specify CPU for scheduling purposes") }, \
297 { "arch=", &pa_arch_string, \
298 N_("Specify architecture for code generation. Values are 1.0, 1.1, and 2.0. 2.0 requires gas snapshot 19990413 or later.") }\
c47decad
JL
299}
300
f38b27c7
JL
301/* Specify the dialect of assembler to use. New mnemonics is dialect one
302 and the old mnemonics are dialect zero. */
303#define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
304
c47decad
JL
305#define OVERRIDE_OPTIONS override_options ()
306
0d381b47
JL
307/* stabs-in-som is nearly identical to stabs-in-elf. To avoid useless
308 code duplication we simply include this file and override as needed. */
309#include "dbxelf.h"
310
311/* We do not have to be compatible with dbx, so we enable gdb extensions
312 by default. */
794b7f56 313#define DEFAULT_GDB_EXTENSIONS 1
233c0fef 314
0d381b47
JL
315/* This used to be zero (no max length), but big enums and such can
316 cause huge strings which killed gas.
317
318 We also have to avoid lossage in dbxout.c -- it does not compute the
319 string size accurately, so we are real conservative here. */
320#undef DBX_CONTIN_LENGTH
321#define DBX_CONTIN_LENGTH 3000
75600ead 322
ddd5a7c1 323/* Only labels should ever begin in column zero. */
76bbee81
HPN
324#define ASM_STABS_OP "\t.stabs\t"
325#define ASM_STABN_OP "\t.stabn\t"
bb2049d1 326
2e7e7121
JL
327/* GDB always assumes the current function's frame begins at the value
328 of the stack pointer upon entry to the current function. Accessing
6a5c0a8e
JL
329 local variables and parameters passed on the stack is done using the
330 base of the frame + an offset provided by GCC.
2e7e7121
JL
331
332 For functions which have frame pointers this method works fine;
333 the (frame pointer) == (stack pointer at function entry) and GCC provides
334 an offset relative to the frame pointer.
335
336 This loses for functions without a frame pointer; GCC provides an offset
337 which is relative to the stack pointer after adjusting for the function's
338 frame size. GDB would prefer the offset to be relative to the value of
339 the stack pointer at the function's entry. Yuk! */
340#define DEBUGGER_AUTO_OFFSET(X) \
341 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
342 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
343
6a5c0a8e
JL
344#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
345 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
346 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
347
c219e1da
JDA
348#define TARGET_CPU_CPP_BUILTINS() \
349do { \
350 builtin_assert("cpu=hppa"); \
351 builtin_assert("machine=hppa"); \
352 builtin_define("__hppa"); \
353 builtin_define("__hppa__"); \
354 if (TARGET_64BIT) \
355 { \
356 builtin_define("_LP64"); \
357 builtin_define("__LP64__"); \
358 } \
359 if (TARGET_PA_20) \
360 builtin_define("_PA_RISC2_0"); \
361 else if (TARGET_PA_11) \
362 builtin_define("_PA_RISC1_1"); \
363 else \
364 builtin_define("_PA_RISC1_0"); \
365} while (0)
366
367/* An old set of OS defines for various BSD-like systems. */
368#define TARGET_OS_CPP_BUILTINS() \
369 do \
370 { \
371 builtin_define_std ("REVARGV"); \
372 builtin_define_std ("hp800"); \
373 builtin_define_std ("hp9000"); \
374 builtin_define_std ("hp9k8"); \
375 if (c_language != clk_cplusplus \
376 && !flag_iso) \
377 builtin_define ("hppa"); \
378 builtin_define_std ("spectrum"); \
379 builtin_define_std ("unix"); \
380 builtin_assert ("system=bsd"); \
381 builtin_assert ("system=unix"); \
382 } \
383 while (0)
233c0fef 384
233c0fef 385#define CC1_SPEC "%{pg:} %{p:}"
5a1c10de 386
ad238e4b 387#define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
233c0fef 388
0fffa5e1
RK
389/* We don't want -lg. */
390#ifndef LIB_SPEC
391#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
392#endif
393
dc36ec2c
RK
394/* This macro defines command-line switches that modify the default
395 target name.
396
397 The definition is be an initializer for an array of structures. Each
398 array element has have three elements: the switch name, one of the
399 enumeration codes ADD or DELETE to indicate whether the string should be
fe19a83d 400 inserted or deleted, and the string to be inserted or deleted. */
dc36ec2c
RK
401#define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
402
233c0fef
TG
403/* Make gcc agree with <machine/ansi.h> */
404
405#define SIZE_TYPE "unsigned int"
406#define PTRDIFF_TYPE "int"
3c9a7b64
JL
407#define WCHAR_TYPE "unsigned int"
408#define WCHAR_TYPE_SIZE 32
233c0fef 409
4f074454
RK
410/* Show we can debug even without a frame pointer. */
411#define CAN_DEBUG_WITHOUT_FP
233c0fef 412
746a9efa
JL
413/* Machine dependent reorg pass. */
414#define MACHINE_DEPENDENT_REORG(X) pa_reorg(X)
415
eabd3262
RK
416\f
417/* target machine storage layout */
418
9f9fba36
TG
419/* Define this macro if it is advisable to hold scalars in registers
420 in a wider mode than that declared by the program. In such cases,
421 the value is constrained to be within the bounds of the declared
422 type, but kept valid in the wider mode. The signedness of the
423 extension may differ from that of the type. */
424
425#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
426 if (GET_MODE_CLASS (MODE) == MODE_INT \
d7735a07 427 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
690d4228 428 (MODE) = word_mode;
9f9fba36 429
eabd3262
RK
430/* Define this if most significant bit is lowest numbered
431 in instructions that operate on numbered bit-fields. */
432#define BITS_BIG_ENDIAN 1
433
434/* Define this if most significant byte of a word is the lowest numbered. */
23643037 435/* That is true on the HP-PA. */
eabd3262
RK
436#define BYTES_BIG_ENDIAN 1
437
438/* Define this if most significant word of a multiword number is lowest
439 numbered. */
eabd3262
RK
440#define WORDS_BIG_ENDIAN 1
441
520babc7 442#define MAX_BITS_PER_WORD 64
b73bff7e 443#define MAX_LONG_TYPE_SIZE 32
eabd3262
RK
444
445/* Width of a word, in units (bytes). */
520babc7
JL
446#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
447#define MIN_UNITS_PER_WORD 4
eabd3262 448
eabd3262 449/* Allocation boundary (in *bits*) for storing arguments in argument list. */
cb16fe9f 450#define PARM_BOUNDARY BITS_PER_WORD
eabd3262
RK
451
452/* Largest alignment required for any stack parameter, in bits.
453 Don't define this if it is equal to PARM_BOUNDARY */
d6567b3a 454#define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
eabd3262 455
981e5cd9
JL
456/* Boundary (in *bits*) on which stack pointer is always aligned;
457 certain optimizations in combine depend on this.
458
d6567b3a
JDA
459 GCC for the PA always rounds its stacks to a 8 * STACK_BOUNDARY
460 boundary, but that happens late in the compilation process. */
461#define STACK_BOUNDARY BIGGEST_ALIGNMENT
eabd3262 462
d6567b3a 463#define PREFERRED_STACK_BOUNDARY (8 * STACK_BOUNDARY)
79109502 464
eabd3262 465/* Allocation boundary (in *bits*) for the code of a function. */
d6567b3a 466#define FUNCTION_BOUNDARY BITS_PER_WORD
eabd3262
RK
467
468/* Alignment of field after `int : 0' in a structure. */
469#define EMPTY_FIELD_BOUNDARY 32
470
471/* Every structure's size must be a multiple of this. */
472#define STRUCTURE_SIZE_BOUNDARY 8
473
43a88a8c 474/* A bit-field declared as `int' forces `int' alignment for the struct. */
eabd3262
RK
475#define PCC_BITFIELD_TYPE_MATTERS 1
476
d6567b3a
JDA
477/* No data type wants to be aligned rounder than this. */
478#define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
eabd3262 479
fe19a83d 480/* Get around hp-ux assembler bug, and make strcpy of constants fast. */
eabd3262
RK
481#define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
482 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
483
484/* Make arrays of chars word-aligned for the same reasons. */
485#define DATA_ALIGNMENT(TYPE, ALIGN) \
486 (TREE_CODE (TYPE) == ARRAY_TYPE \
487 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
488 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
489
eabd3262
RK
490/* Set this nonzero if move instructions will actually fail to work
491 when given unaligned data. */
492#define STRICT_ALIGNMENT 1
493
494/* Generate calls to memcpy, memcmp and memset. */
495#define TARGET_MEM_FUNCTIONS
eabd3262
RK
496
497/* Value is 1 if it is a good idea to tie two pseudo registers
498 when one has mode MODE1 and one has mode MODE2.
499 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
500 for any hard reg, then this must be 0 for correct output. */
501#define MODES_TIEABLE_P(MODE1, MODE2) \
3518f904 502 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
eabd3262
RK
503
504/* Specify the registers used for certain standard purposes.
505 The values of these macros are register numbers. */
506
3f8f5a3f 507/* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
eabd3262
RK
508/* #define PC_REGNUM */
509
510/* Register to use for pushing function arguments. */
511#define STACK_POINTER_REGNUM 30
512
513/* Base register for access to local variables of the function. */
75600ead 514#define FRAME_POINTER_REGNUM 3
eabd3262 515
e63ffc38 516/* Value should be nonzero if functions must have frame pointers. */
9e18f575 517#define FRAME_POINTER_REQUIRED \
e63ffc38 518 (current_function_calls_alloca)
eabd3262
RK
519
520/* C statement to store the difference between the frame pointer
521 and the stack pointer values immediately after the function prologue.
522
523 Note, we always pretend that this is a leaf function because if
524 it's not, there's no point in trying to eliminate the
525 frame pointer. If it is a leaf function, we guessed right! */
526#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
86daf4a6 527 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
eabd3262
RK
528
529/* Base register for access to arguments of the function. */
75600ead 530#define ARG_POINTER_REGNUM 3
eabd3262
RK
531
532/* Register in which static-chain is passed to a function. */
eabd3262
RK
533#define STATIC_CHAIN_REGNUM 29
534
535/* Register which holds offset table for position-independent
536 data references. */
537
520babc7 538#define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? 27 : 19)
6bb36601 539#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
eabd3262 540
d777856d
JDA
541/* Function to return the rtx used to save the pic offset table register
542 across function calls. */
543extern struct rtx_def *hppa_pic_save_rtx PARAMS ((void));
eabd3262 544
451d86c2 545#define DEFAULT_PCC_STRUCT_RETURN 0
520babc7
JL
546
547/* SOM ABI says that objects larger than 64 bits are returned in memory.
0779eeb2 548 PA64 ABI says that objects larger than 128 bits are returned in memory.
010dc908
JDA
549 Note, int_size_in_bytes can return -1 if the size of the object is
550 variable or larger than the maximum value that can be expressed as
9dff28ab
JDA
551 a HOST_WIDE_INT. It can also return zero for an empty type. The
552 simplest way to handle variable and empty types is to pass them in
553 memory. This avoids problems in defining the boundaries of argument
554 slots, allocating registers, etc. */
11734ce8 555#define RETURN_IN_MEMORY(TYPE) \
9dff28ab
JDA
556 (int_size_in_bytes (TYPE) > (TARGET_64BIT ? 16 : 8) \
557 || int_size_in_bytes (TYPE) <= 0)
11734ce8 558
eabd3262
RK
559/* Register in which address to store a structure value
560 is passed to a function. */
561#define STRUCT_VALUE_REGNUM 28
e25724d8
AM
562
563/* Describe how we implement __builtin_eh_return. */
564#define EH_RETURN_DATA_REGNO(N) \
47a4976f 565 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
e25724d8 566#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
823fbbce
JDA
567#define EH_RETURN_HANDLER_RTX \
568 gen_rtx_MEM (word_mode, \
569 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
570 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
571
572
573/* Offset from the argument pointer register value to the top of
574 stack. This is different from FIRST_PARM_OFFSET because of the
575 frame marker. */
576#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
eabd3262 577\f
eabd3262
RK
578/* The letters I, J, K, L and M in a register constraint string
579 can be used to stand for particular ranges of immediate operands.
580 This macro defines what the ranges are.
581 C is the letter, and VALUE is a constant value.
582 Return 1 if VALUE is in the range specified by C.
583
eabd3262
RK
584 `I' is used for the 11 bit constants.
585 `J' is used for the 14 bit constants.
7e8b33d9 586 `K' is used for values that can be moved with a zdepi insn.
eabd3262 587 `L' is used for the 5 bit constants.
7e8b33d9 588 `M' is used for 0.
520babc7
JL
589 `N' is used for values with the least significant 11 bits equal to zero
590 and when sign extended from 32 to 64 bits the
591 value does not change.
7e8b33d9
TG
592 `O' is used for numbers n such that n+1 is a power of 2.
593 */
eabd3262
RK
594
595#define CONST_OK_FOR_LETTER_P(VALUE, C) \
e0c556d3
AM
596 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
597 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
598 : (C) == 'K' ? zdepi_cint_p (VALUE) \
599 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
600 : (C) == 'M' ? (VALUE) == 0 \
601 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
602 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
603 == (HOST_WIDE_INT) -1 << 31)) \
604 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
605 : (C) == 'P' ? and_mask_p (VALUE) \
eabd3262
RK
606 : 0)
607
af69aabb
JL
608/* Similar, but for floating or large integer constants, and defining letters
609 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
eabd3262 610
af69aabb
JL
611 For PA, `G' is the floating-point constant zero. `H' is undefined. */
612
613#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
614 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
615 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
616 : 0)
eabd3262 617
88624c0e
JL
618/* The class value for index registers, and the one for base regs. */
619#define INDEX_REG_CLASS GENERAL_REGS
620#define BASE_REG_CLASS GENERAL_REGS
621
622#define FP_REG_CLASS_P(CLASS) \
623 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
624
625/* True if register is floating-point. */
626#define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
627
eabd3262
RK
628/* Given an rtx X being reloaded into a reg required to be
629 in class CLASS, return the class of reg to actually use.
630 In general this is just CLASS; but on some machines
631 in some cases it is preferable to use a more restrictive class. */
632#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
633
634/* Return the register class of a scratch register needed to copy IN into
e236a9ff
JL
635 or out of a register in CLASS in MODE. If it can be done directly
636 NO_REGS is returned.
637
638 Avoid doing any work for the common case calls. */
eabd3262
RK
639
640#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
e236a9ff
JL
641 ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
642 && REGNO (IN) < FIRST_PSEUDO_REGISTER) \
643 ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
eabd3262 644
5a1c10de 645/* On the PA it is not possible to directly move data between
6b0ae684
JL
646 GENERAL_REGS and FP_REGS. */
647#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
a40ed31b 648 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
6b0ae684
JL
649
650/* Return the stack location to use for secondary memory needed reloads. */
651#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
ad2c71b7 652 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
6b0ae684 653
eabd3262
RK
654\f
655/* Stack layout; function entry, exit and calling. */
656
657/* Define this if pushing a word on the stack
658 makes the stack pointer a smaller address. */
659/* #define STACK_GROWS_DOWNWARD */
660
661/* Believe it or not. */
662#define ARGS_GROW_DOWNWARD
663
664/* Define this if the nominal address of the stack frame
665 is at the high-address end of the local variables;
666 that is, each additional local variable allocated
667 goes at a more negative offset in the frame. */
668/* #define FRAME_GROWS_DOWNWARD */
669
670/* Offset within stack frame to start allocating local variables at.
671 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
672 first local allocated. Otherwise, it is the offset to the BEGINNING
581d9404
JDA
673 of the first local allocated. The start of the locals must lie on
674 a STACK_BOUNDARY or else the frame size of leaf functions will not
675 be zero. */
676#define STARTING_FRAME_OFFSET (TARGET_64BIT ? 16 : 8)
eabd3262
RK
677
678/* If we generate an insn to push BYTES bytes,
679 this says how many the stack pointer really advances by.
3f8f5a3f 680 On the HP-PA, don't define this because there are no push insns. */
eabd3262
RK
681/* #define PUSH_ROUNDING(BYTES) */
682
683/* Offset of first parameter from the argument pointer register value.
684 This value will be negated because the arguments grow down.
685 Also note that on STACK_GROWS_UPWARD machines (such as this one)
686 this is the distance from the frame pointer to the end of the first
687 argument, not it's beginning. To get the real offset of the first
8c417c25 688 argument, the size of the argument must be added. */
eabd3262 689
520babc7 690#define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
eabd3262 691
eabd3262
RK
692/* When a parameter is passed in a register, stack space is still
693 allocated for it. */
520babc7 694#define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
eabd3262
RK
695
696/* Define this if the above stack space is to be considered part of the
697 space allocated by the caller. */
698#define OUTGOING_REG_PARM_STACK_SPACE
699
700/* Keep the stack pointer constant throughout the function.
701 This is both an optimization and a necessity: longjmp
702 doesn't behave itself when the stack pointer moves within
703 the function! */
f73ad30e 704#define ACCUMULATE_OUTGOING_ARGS 1
5a1c10de
TG
705
706/* The weird HPPA calling conventions require a minimum of 48 bytes on
eabd3262
RK
707 the stack: 16 bytes for register saves, and 32 bytes for magic.
708 This is the difference between the logical top of stack and the
fe19a83d 709 actual sp. */
520babc7
JL
710#define STACK_POINTER_OFFSET \
711 (TARGET_64BIT ? -(current_function_outgoing_args_size + 16): -32)
eabd3262
RK
712
713#define STACK_DYNAMIC_OFFSET(FNDECL) \
520babc7
JL
714 (TARGET_64BIT \
715 ? (STACK_POINTER_OFFSET) \
716 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
eabd3262
RK
717
718/* Value is 1 if returning from a function call automatically
719 pops the arguments described by the number-of-args field in the call.
8b109b37 720 FUNDECL is the declaration node of the function (as a tree),
eabd3262
RK
721 FUNTYPE is the data type of the function (as a tree),
722 or for a library call it is an identifier node for the subroutine name. */
723
8b109b37 724#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
eabd3262
RK
725
726/* Define how to find the value returned by a function.
727 VALTYPE is the data type of the value (as a tree).
728 If the precise function being called is known, FUNC is its FUNCTION_DECL;
729 otherwise, FUNC is 0. */
730
44571d6e 731#define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
eabd3262 732
eabd3262
RK
733/* Define how to find the value returned by a library function
734 assuming the value has mode MODE. */
735
74356a72 736#define LIBCALL_VALUE(MODE) \
ad2c71b7
JL
737 gen_rtx_REG (MODE, \
738 (! TARGET_SOFT_FLOAT \
c5c76735 739 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
eabd3262
RK
740
741/* 1 if N is a possible register number for a function value
742 as seen by the caller. */
743
a40ed31b 744#define FUNCTION_VALUE_REGNO_P(N) \
74356a72 745 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
eabd3262 746
eabd3262
RK
747\f
748/* Define a data type for recording info about an argument list
749 during the scan of that argument list. This data type should
750 hold all necessary information about the function itself
751 and about the args processed so far, enough to enable macros
752 such as FUNCTION_ARG to determine where the next arg should go.
753
3f8f5a3f 754 On the HP-PA, this is a single integer, which is a number of words
eabd3262
RK
755 of arguments scanned so far (including the invisible argument,
756 if any, which holds the structure-value-address).
757 Thus 4 or more means all following args should go on the stack. */
758
2c7ee1a6 759struct hppa_args {int words, nargs_prototype, indirect; };
2822d96e
JL
760
761#define CUMULATIVE_ARGS struct hppa_args
eabd3262
RK
762
763/* Initialize a variable CUM of type CUMULATIVE_ARGS
764 for a call to a function whose data type is FNTYPE.
2822d96e 765 For a library call, FNTYPE is 0. */
eabd3262 766
2c7ee1a6 767#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
2822d96e 768 (CUM).words = 0, \
2c7ee1a6 769 (CUM).indirect = INDIRECT, \
2822d96e
JL
770 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
771 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
772 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
773 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
774 : 0)
775
776
777
778/* Similar, but when scanning the definition of a procedure. We always
bd625e21 779 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
2822d96e
JL
780
781#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
782 (CUM).words = 0, \
a5bbd4b8 783 (CUM).indirect = 0, \
2822d96e 784 (CUM).nargs_prototype = 1000
eabd3262 785
9dff28ab
JDA
786/* Figure out the size in words of the function argument. The size
787 returned by this macro should always be greater than zero because
788 we pass variable and zero sized objects by reference. */
eabd3262
RK
789
790#define FUNCTION_ARG_SIZE(MODE, TYPE) \
d7735a07 791 ((((MODE) != BLKmode \
6e9c53b4 792 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
d7735a07 793 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
eabd3262
RK
794
795/* Update the data in CUM to advance over an argument
796 of mode MODE and data type TYPE.
797 (TYPE is null for libcalls where that information may not be available.) */
798
799#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2822d96e 800{ (CUM).nargs_prototype--; \
d8bea1c6
RB
801 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
802 + (((CUM).words & 01) && (TYPE) != 0 \
803 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
2822d96e 804}
eabd3262
RK
805
806/* Determine where to put an argument to a function.
807 Value is zero to push the argument on the stack,
808 or a hard register in which to store the argument.
809
810 MODE is the argument's machine mode.
811 TYPE is the data type of the argument (as a tree).
812 This is null for libcalls where that information may
813 not be available.
814 CUM is a variable of type CUMULATIVE_ARGS which gives info about
815 the preceding args and about the function being called.
816 NAMED is nonzero if this argument is a named parameter
2822d96e 817 (otherwise it is an extra parameter matching an ellipsis).
eabd3262 818
2822d96e 819 On the HP-PA the first four words of args are normally in registers
eabd3262 820 and the rest are pushed. But any arg that won't entirely fit in regs
3d247e85
TM
821 is pushed.
822
99977c61
RS
823 Arguments passed in registers are either 1 or 2 words long.
824
825 The caller must make a distinction between calls to explicitly named
826 functions and calls through pointers to functions -- the conventions
827 are different! Calls through pointers to functions only use general
279c9bde 828 registers for the first four argument words.
eabd3262 829
2822d96e
JL
830 Of course all this is different for the portable runtime model
831 HP wants everyone to use for ELF. Ugh. Here's a quick description
832 of how it's supposed to work.
833
834 1) callee side remains unchanged. It expects integer args to be
835 in the integer registers, float args in the float registers and
836 unnamed args in integer registers.
837
838 2) caller side now depends on if the function being called has
839 a prototype in scope (rather than if it's being called indirectly).
840
841 2a) If there is a prototype in scope, then arguments are passed
842 according to their type (ints in integer registers, floats in float
843 registers, unnamed args in integer registers.
844
845 2b) If there is no prototype in scope, then floating point arguments
846 are passed in both integer and float registers. egad.
847
848 FYI: The portable parameter passing conventions are almost exactly like
849 the standard parameter passing conventions on the RS6000. That's why
850 you'll see lots of similar code in rs6000.h. */
a40ed31b 851
eabd3262
RK
852#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
853
2822d96e
JL
854/* Do not expect to understand this without reading it several times. I'm
855 tempted to try and simply it, but I worry about breaking something. */
856
520babc7
JL
857#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
858 function_arg (&CUM, MODE, TYPE, NAMED, 0)
859
9dff28ab
JDA
860/* Nonzero if we do not know how to pass TYPE solely in registers. */
861#define MUST_PASS_IN_STACK(MODE,TYPE) \
862 ((TYPE) != 0 \
863 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
864 || TREE_ADDRESSABLE (TYPE)))
865
520babc7
JL
866#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
867 function_arg (&CUM, MODE, TYPE, NAMED, 1)
eabd3262 868
eabd3262
RK
869/* For an arg passed partly in registers and partly in memory,
870 this is the number of registers used.
871 For args passed entirely in registers or entirely in memory, zero. */
872
520babc7 873/* For PA32 there are never split arguments. PA64, on the other hand, can
fe19a83d 874 pass arguments partially in registers and partially in memory. */
520babc7
JL
875#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
876 (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
eabd3262
RK
877
878/* If defined, a C expression that gives the alignment boundary, in
879 bits, of an argument with the specified mode and type. If it is
880 not defined, `PARM_BOUNDARY' is used for all arguments. */
881
9dff28ab
JDA
882/* Arguments larger than one word are double word aligned. */
883
884#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
885 (((TYPE) \
886 ? (integer_zerop (TYPE_SIZE (TYPE)) \
887 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
888 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
889 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
890 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
891
892/* In the 32-bit runtime, arguments larger than eight bytes are passed
893 by invisible reference. As a GCC extension, we also pass anything
894 with a zero or variable size by reference.
895
896 The 64-bit runtime does not describe passing any types by invisible
897 reference. The internals of GCC can't currently handle passing
898 empty structures, and zero or variable length arrays when they are
899 not passed entirely on the stack or by reference. Thus, as a GCC
900 extension, we pass these types by reference. The HP compiler doesn't
901 support these types, so hopefully there shouldn't be any compatibility
902 issues. This may have to be revisited when HP releases a C99 compiler
903 or updates the ABI. */
eabd3262 904#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
520babc7 905 (TARGET_64BIT \
9dff28ab
JDA
906 ? ((TYPE) && int_size_in_bytes (TYPE) <= 0) \
907 : (((TYPE) && (int_size_in_bytes (TYPE) > 8 \
908 || int_size_in_bytes (TYPE) <= 0)) \
520babc7 909 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
32addcdf 910
9dff28ab
JDA
911#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
912 FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED)
32addcdf 913
eabd3262 914\f
e2500fed
GK
915extern GTY(()) rtx hppa_compare_op0;
916extern GTY(()) rtx hppa_compare_op1;
eabd3262
RK
917extern enum cmp_type hppa_branch_type;
918
1c7a8112 919/* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
f6f315fe
AM
920 as assembly via FUNCTION_PROFILER. Just output a local label.
921 We can't use the function label because the GAS SOM target can't
922 handle the difference of a global symbol and a local symbol. */
eabd3262 923
f6f315fe
AM
924#ifndef FUNC_BEGIN_PROLOG_LABEL
925#define FUNC_BEGIN_PROLOG_LABEL "LFBP"
926#endif
927
928#define FUNCTION_PROFILER(FILE, LABEL) \
4977bab6 929 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
eabd3262 930
1c7a8112
AM
931#define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
932void hppa_profile_hook PARAMS ((int label_no));
eabd3262 933
8f949e7e
JDA
934/* The profile counter if emitted must come before the prologue. */
935#define PROFILE_BEFORE_PROLOGUE 1
936
eabd3262
RK
937/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
938 the stack pointer does not matter. The value is tested only in
939 functions that have frame pointers.
940 No definition is equivalent to always zero. */
941
942extern int may_call_alloca;
eabd3262
RK
943
944#define EXIT_IGNORE_STACK \
945 (get_frame_size () != 0 \
946 || current_function_calls_alloca || current_function_outgoing_args_size)
947
eabd3262 948/* Output assembler code for a block containing the constant parts
f16fe394 949 of a trampoline, leaving space for the variable parts.\
eabd3262 950
f16fe394
JL
951 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
952 and then branches to the specified routine.
eabd3262 953
f16fe394
JL
954 This code template is copied from text segment to stack location
955 and then patched with INITIALIZE_TRAMPOLINE to contain
5a1c10de 956 valid values, and then entered as a subroutine.
eabd3262 957
5a1c10de 958 It is best to keep this as small as possible to avoid having to
f16fe394
JL
959 flush multiple lines in the cache. */
960
520babc7
JL
961#define TRAMPOLINE_TEMPLATE(FILE) \
962 { \
963 if (! TARGET_64BIT) \
964 { \
965 fputs ("\tldw 36(%r22),%r21\n", FILE); \
966 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
967 if (ASSEMBLER_DIALECT == 0) \
968 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
969 else \
970 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
971 fputs ("\tldw 4(%r21),%r19\n", FILE); \
972 fputs ("\tldw 0(%r21),%r21\n", FILE); \
973 fputs ("\tldsid (%r21),%r1\n", FILE); \
974 fputs ("\tmtsp %r1,%sr0\n", FILE); \
975 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
976 fputs ("\tldw 40(%r22),%r29\n", FILE); \
977 fputs ("\t.word 0\n", FILE); \
978 fputs ("\t.word 0\n", FILE); \
8e1494b7
JDA
979 fputs ("\t.word 0\n", FILE); \
980 fputs ("\t.word 0\n", FILE); \
520babc7
JL
981 } \
982 else \
983 { \
984 fputs ("\t.dword 0\n", FILE); \
985 fputs ("\t.dword 0\n", FILE); \
986 fputs ("\t.dword 0\n", FILE); \
987 fputs ("\t.dword 0\n", FILE); \
988 fputs ("\tmfia %r31\n", FILE); \
989 fputs ("\tldd 24(%r31),%r1\n", FILE); \
990 fputs ("\tldd 24(%r1),%r27\n", FILE); \
991 fputs ("\tldd 16(%r1),%r1\n", FILE); \
992 fputs ("\tbve (%r1)\n", FILE); \
993 fputs ("\tldd 32(%r31),%r31\n", FILE); \
994 fputs ("\t.dword 0 ; fptr\n", FILE); \
995 fputs ("\t.dword 0 ; static link\n", FILE); \
996 } \
77a2f698 997 }
f16fe394
JL
998
999/* Length in units of the trampoline for entering a nested function.
afcc28b2
RS
1000
1001 Flush the cache entries corresponding to the first and last addresses
1002 of the trampoline. This is necessary as the trampoline may cross two
5a1c10de 1003 cache lines.
afcc28b2 1004
77a2f698
TG
1005 If the code part of the trampoline ever grows to > 32 bytes, then it
1006 will become necessary to hack on the cacheflush pattern in pa.md. */
f16fe394 1007
8e1494b7 1008#define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
eabd3262
RK
1009
1010/* Emit RTL insns to initialize the variable parts of a trampoline.
1011 FNADDR is an RTX for the address of the function's pure code.
1012 CXT is an RTX for the static chain value for the function.
1013
8e1494b7
JDA
1014 Move the function address to the trampoline template at offset 36.
1015 Move the static chain value to trampoline template at offset 40.
1016 Move the trampoline address to trampoline template at offset 44.
1017 Move r19 to trampoline template at offset 48. The latter two
1018 words create a plabel for the indirect call to the trampoline. */
f16fe394 1019
520babc7 1020#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
77a2f698 1021{ \
520babc7
JL
1022 if (! TARGET_64BIT) \
1023 { \
1024 rtx start_addr, end_addr; \
1025 \
1026 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
1027 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1028 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
1029 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
8e1494b7
JDA
1030 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
1031 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (TRAMP)); \
1032 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
1033 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), \
1034 gen_rtx_REG (Pmode, 19)); \
520babc7
JL
1035 /* fdc and fic only use registers for the address to flush, \
1036 they do not accept integer displacements. */ \
1037 start_addr = force_reg (Pmode, (TRAMP)); \
1038 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1039 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1040 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1041 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1042 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1043 } \
1044 else \
1045 { \
1046 rtx start_addr, end_addr; \
77a2f698 1047 \
520babc7
JL
1048 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
1049 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1050 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
1051 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
fe19a83d 1052 /* Create a fat pointer for the trampoline. */ \
520babc7
JL
1053 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1054 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1055 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1056 end_addr = gen_rtx_REG (Pmode, 27); \
1057 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1058 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1059 /* fdc and fic only use registers for the address to flush, \
1060 they do not accept integer displacements. */ \
1061 start_addr = force_reg (Pmode, (TRAMP)); \
1062 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1063 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1064 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1065 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1066 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1067 } \
f16fe394 1068}
eabd3262 1069
8e1494b7
JDA
1070/* Perform any machine-specific adjustment in the address of the trampoline.
1071 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1072 Adjust the trampoline address to point to the plabel at offset 44. */
1073
1074#define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1075 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1076
eabd3262
RK
1077/* Emit code for a call to builtin_saveregs. We must emit USE insns which
1078 reference the 4 integer arg registers and 4 fp arg registers.
1079 Ordinarily they are not call used registers, but they are for
1080 _builtin_saveregs, so we must make this explicit. */
1081
648d2ffc 1082#define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
eabd3262 1083
ca5f4364
RH
1084/* Implement `va_start' for varargs and stdarg. */
1085
e5faf155
ZW
1086#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1087 hppa_va_start (valist, nextarg)
ca5f4364
RH
1088
1089/* Implement `va_arg'. */
1090
ca5f4364
RH
1091#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1092 hppa_va_arg (valist, type)
eabd3262 1093\f
51c2de46 1094/* Addressing modes, and classification of registers for them.
eabd3262 1095
51c2de46
JQ
1096 Using autoincrement addressing modes on PA8000 class machines is
1097 not profitable. */
eabd3262 1098
42a21f70
JQ
1099#define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1100#define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
51c2de46 1101
42a21f70
JQ
1102#define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1103#define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
eabd3262
RK
1104
1105/* Macros to check register numbers against specific register classes. */
1106
1107/* These assume that REGNO is a hard or pseudo reg number.
1108 They give nonzero only if REGNO is a hard reg of the suitable class
1109 or a pseudo reg currently allocated to a suitable hard reg.
1110 Since they use reg_renumber, they are safe only once reg_renumber
1111 has been allocated, which happens in local-alloc.c. */
1112
1113#define REGNO_OK_FOR_INDEX_P(REGNO) \
1114 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1115#define REGNO_OK_FOR_BASE_P(REGNO) \
1116 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1117#define REGNO_OK_FOR_FP_P(REGNO) \
5345f91a 1118 (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
eabd3262
RK
1119
1120/* Now macros that check whether X is a register and also,
1121 strictly, whether it is in a specified class.
1122
38e01259 1123 These macros are specific to the HP-PA, and may be used only
eabd3262
RK
1124 in code for printing assembler insns and in conditions for
1125 define_optimization. */
1126
1127/* 1 if X is an fp register. */
1128
1129#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1130\f
1131/* Maximum number of registers that can appear in a valid memory address. */
1132
1133#define MAX_REGS_PER_ADDRESS 2
1134
901a8cea
JL
1135/* Recognize any constant value that is a valid address except
1136 for symbolic addresses. We get better CSE by rejecting them
6eff269e
BK
1137 here and allowing hppa_legitimize_address to break them up. We
1138 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
eabd3262 1139
901a8cea 1140#define CONSTANT_ADDRESS_P(X) \
6eff269e
BK
1141 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1142 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
6e11a328
JL
1143 || GET_CODE (X) == HIGH) \
1144 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
6eff269e 1145
af69aabb 1146/* Include all constant integers and constant doubles, but not
f45ebe47 1147 floating-point, except for floating-point zero.
af69aabb 1148
520babc7
JL
1149 Reject LABEL_REFs if we're not using gas or the new HP assembler.
1150
1151 ?!? For now also reject CONST_DOUBLES in 64bit mode. This will need
1152 further work. */
8d913d99
AM
1153#ifndef NEW_HP_ASSEMBLER
1154#define NEW_HP_ASSEMBLER 0
f45ebe47 1155#endif
8d913d99
AM
1156#define LEGITIMATE_CONSTANT_P(X) \
1157 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1158 || (X) == CONST0_RTX (GET_MODE (X))) \
1159 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1160 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1161 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1162 && !(HOST_BITS_PER_WIDE_INT <= 32 \
b8e42321
JDA
1163 || (INTVAL (X) >= (HOST_WIDE_INT) -32 << 31 \
1164 && INTVAL (X) < (HOST_WIDE_INT) 32 << 31) \
8d913d99
AM
1165 || cint_ok_for_move (INTVAL (X)))) \
1166 && !function_label_operand (X, VOIDmode))
eabd3262 1167
5a1c10de 1168/* Subroutine for EXTRA_CONSTRAINT.
eabd3262 1169
16594451
JL
1170 Return 1 iff OP is a pseudo which did not get a hard register and
1171 we are running the reload pass. */
1172
1173#define IS_RELOADING_PSEUDO_P(OP) \
1174 ((reload_in_progress \
1175 && GET_CODE (OP) == REG \
1176 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1177 && reg_renumber [REGNO (OP)] < 0))
eabd3262
RK
1178
1179/* Optional extra constraints for this machine. Borrowed from sparc.h.
1180
1181 For the HPPA, `Q' means that this is a memory operand but not a
1182 symbolic memory operand. Note that an unassigned pseudo register
1183 is such a memory operand. Needed because reload will generate
1184 these things in insns and then not re-recognize the insns, causing
1185 constrain_operands to fail.
1186
1c6c21c8 1187 `R' is used for scaled indexed addresses.
eabd3262 1188
80559c31 1189 `S' is the constant 31.
eabd3262 1190
84721fbd 1191 `T' is for fp loads and stores. */
ec241c19
JL
1192#define EXTRA_CONSTRAINT(OP, C) \
1193 ((C) == 'Q' ? \
16594451 1194 (IS_RELOADING_PSEUDO_P (OP) \
16594451 1195 || (GET_CODE (OP) == MEM \
78c0acfd
JL
1196 && (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1197 || reload_in_progress) \
2414e0e2
JL
1198 && ! symbolic_memory_operand (OP, VOIDmode) \
1199 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1200 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1201 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\
1202 : ((C) == 'R' ? \
1203 (GET_CODE (OP) == MEM \
1204 && GET_CODE (XEXP (OP, 0)) == PLUS \
1205 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT \
1206 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT) \
1207 && (move_operand (OP, GET_MODE (OP)) \
78c0acfd
JL
1208 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1209 || reload_in_progress)) \
16594451 1210 : ((C) == 'T' ? \
84721fbd
JL
1211 (GET_CODE (OP) == MEM \
1212 /* Using DFmode forces only short displacements \
f9bd8d8e
JL
1213 to be recognized as valid in reg+d addresses. \
1214 However, this is not necessary for PA2.0 since\
a02aa5b0
JDA
1215 it has long FP loads/stores. \
1216 \
1217 FIXME: the ELF32 linker clobbers the LSB of \
1218 the FP register number in {fldw,fstw} insns. \
1219 Thus, we only allow long FP loads/stores on \
1220 TARGET_64BIT. */ \
f9bd8d8e 1221 && memory_address_p ((TARGET_PA_20 \
a02aa5b0 1222 && !TARGET_ELF32 \
f9bd8d8e
JL
1223 ? GET_MODE (OP) \
1224 : DFmode), \
1225 XEXP (OP, 0)) \
80081028
JL
1226 && !(GET_CODE (XEXP (OP, 0)) == LO_SUM \
1227 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1228 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0))\
1229 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC\
1230 && GET_MODE (XEXP (OP, 0)) == Pmode) \
2414e0e2
JL
1231 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1232 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
625bcba8 1233 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)))\
520babc7
JL
1234 : ((C) == 'U' ? \
1235 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) \
f8eb41cc
JL
1236 : ((C) == 'A' ? \
1237 (GET_CODE (OP) == MEM \
1238 && GET_CODE (XEXP (OP, 0)) == LO_SUM \
1239 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1240 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0)) \
1241 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC \
1242 && GET_MODE (XEXP (OP, 0)) == Pmode) \
80559c31 1243 : ((C) == 'S' ? \
f8eb41cc 1244 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) : 0))))))
520babc7 1245
16594451
JL
1246
1247/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1248 and check its validity for a certain class.
1249 We have two alternate definitions for each of them.
1250 The usual definition accepts all pseudo regs; the other rejects
1251 them unless they have been allocated suitable hard regs.
1252 The symbol REG_OK_STRICT causes the latter definition to be used.
1253
1254 Most source files want to accept pseudo regs in the hope that
1255 they will get allocated to the class that the insn wants them to be in.
1256 Source files for reload pass need to be strict.
1257 After reload, it makes no difference, since pseudo regs have
1258 been eliminated by then. */
ec241c19 1259
eabd3262
RK
1260#ifndef REG_OK_STRICT
1261
1262/* Nonzero if X is a hard reg that can be used as an index
1263 or if it is a pseudo reg. */
1264#define REG_OK_FOR_INDEX_P(X) \
e515e507 1265(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
eabd3262
RK
1266/* Nonzero if X is a hard reg that can be used as a base reg
1267 or if it is a pseudo reg. */
1268#define REG_OK_FOR_BASE_P(X) \
e515e507 1269(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
eabd3262 1270
eabd3262
RK
1271#else
1272
1273/* Nonzero if X is a hard reg that can be used as an index. */
1274#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1275/* Nonzero if X is a hard reg that can be used as a base reg. */
1276#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1277
eabd3262
RK
1278#endif
1279\f
1280/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1281 that is a valid memory address for an instruction.
1282 The MODE argument is the machine mode for the MEM expression
1283 that wants to use this address.
1284
3f8f5a3f 1285 On the HP-PA, the actual legitimate addresses must be
eabd3262
RK
1286 REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1287 But we can treat a SYMBOL_REF as legitimate if it is part of this
1288 function's constant-pool, because such addresses can actually
a08e7493
JL
1289 be output as REG+SMALLINT.
1290
1291 Note we only allow 5 bit immediates for access to a constant address;
1292 doing so avoids losing for loading/storing a FP register at an address
1293 which will not fit in 5 bits. */
eabd3262 1294
520babc7 1295#define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
eabd3262
RK
1296#define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1297
520babc7 1298#define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
eabd3262
RK
1299#define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1300
520babc7 1301#define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
eabd3262
RK
1302#define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1303
520babc7 1304#define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
eabd3262
RK
1305#define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1306
eabd3262
RK
1307#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1308{ \
1309 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1310 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1311 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1312 && REG_P (XEXP (X, 0)) \
1313 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1314 goto ADDR; \
1315 else if (GET_CODE (X) == PLUS) \
1316 { \
516c2342 1317 rtx base = 0, index = 0; \
7ee72796 1318 if (REG_P (XEXP (X, 0)) \
eabd3262
RK
1319 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1320 base = XEXP (X, 0), index = XEXP (X, 1); \
1321 else if (REG_P (XEXP (X, 1)) \
1322 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1323 base = XEXP (X, 1), index = XEXP (X, 0); \
1324 if (base != 0) \
1325 if (GET_CODE (index) == CONST_INT \
74356a72
TG
1326 && ((INT_14_BITS (index) \
1327 && (TARGET_SOFT_FLOAT \
a02aa5b0 1328 || (TARGET_PA_20 \
f9bd8d8e
JL
1329 && ((MODE == SFmode \
1330 && (INTVAL (index) % 4) == 0)\
1331 || (MODE == DFmode \
1332 && (INTVAL (index) % 8) == 0)))\
74356a72 1333 || ((MODE) != SFmode && (MODE) != DFmode))) \
eabd3262
RK
1334 || INT_5_BITS (index))) \
1335 goto ADDR; \
1e0e41d2 1336 if (! TARGET_SOFT_FLOAT \
96b63cd7 1337 && ! TARGET_DISABLE_INDEXING \
1e0e41d2 1338 && base \
fc209487 1339 && ((MODE) == SFmode || (MODE) == DFmode) \
2414e0e2
JL
1340 && GET_CODE (index) == MULT \
1341 && GET_CODE (XEXP (index, 0)) == REG \
1342 && REG_OK_FOR_BASE_P (XEXP (index, 0)) \
1343 && GET_CODE (XEXP (index, 1)) == CONST_INT \
fc209487 1344 && INTVAL (XEXP (index, 1)) == ((MODE) == SFmode ? 4 : 8))\
2414e0e2 1345 goto ADDR; \
eabd3262
RK
1346 } \
1347 else if (GET_CODE (X) == LO_SUM \
1348 && GET_CODE (XEXP (X, 0)) == REG \
1349 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1350 && CONSTANT_P (XEXP (X, 1)) \
74356a72 1351 && (TARGET_SOFT_FLOAT \
f9b5668e
JL
1352 /* We can allow symbolic LO_SUM addresses\
1353 for PA2.0. */ \
1354 || (TARGET_PA_20 \
a02aa5b0 1355 && !TARGET_ELF32 \
f9b5668e 1356 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
74356a72
TG
1357 || ((MODE) != SFmode \
1358 && (MODE) != DFmode))) \
eabd3262
RK
1359 goto ADDR; \
1360 else if (GET_CODE (X) == LO_SUM \
1361 && GET_CODE (XEXP (X, 0)) == SUBREG \
1362 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1363 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1364 && CONSTANT_P (XEXP (X, 1)) \
74356a72 1365 && (TARGET_SOFT_FLOAT \
f9b5668e
JL
1366 /* We can allow symbolic LO_SUM addresses\
1367 for PA2.0. */ \
1368 || (TARGET_PA_20 \
a02aa5b0 1369 && !TARGET_ELF32 \
f9b5668e 1370 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
74356a72
TG
1371 || ((MODE) != SFmode \
1372 && (MODE) != DFmode))) \
eabd3262
RK
1373 goto ADDR; \
1374 else if (GET_CODE (X) == LABEL_REF \
1375 || (GET_CODE (X) == CONST_INT \
a08e7493 1376 && INT_5_BITS (X))) \
eabd3262 1377 goto ADDR; \
a205e34b
JL
1378 /* Needed for -fPIC */ \
1379 else if (GET_CODE (X) == LO_SUM \
1380 && GET_CODE (XEXP (X, 0)) == REG \
1381 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
7eb07bdb
AM
1382 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1383 && (TARGET_SOFT_FLOAT \
a02aa5b0 1384 || (TARGET_PA_20 && !TARGET_ELF32) \
7eb07bdb
AM
1385 || ((MODE) != SFmode \
1386 && (MODE) != DFmode))) \
a205e34b 1387 goto ADDR; \
eabd3262 1388}
cc46ae8e
JL
1389
1390/* Look for machine dependent ways to make the invalid address AD a
1391 valid address.
1392
1393 For the PA, transform:
1394
1395 memory(X + <large int>)
1396
1397 into:
1398
1399 if (<large int> & mask) >= 16
1400 Y = (<large int> & ~mask) + mask + 1 Round up.
1401 else
1402 Y = (<large int> & ~mask) Round down.
1403 Z = X + Y
1404 memory (Z + (<large int> - Y));
1405
1406 This makes reload inheritance and reload_cse work better since Z
1407 can be reused.
1408
1409 There may be more opportunities to improve code with this hook. */
1410#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1411do { \
1412 int offset, newoffset, mask; \
5f0c590d 1413 rtx new, temp = NULL_RTX; \
f9bd8d8e
JL
1414 \
1415 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
a02aa5b0 1416 ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff); \
cc46ae8e 1417 \
2872409d 1418 if (optimize \
5f0c590d
JL
1419 && GET_CODE (AD) == PLUS) \
1420 temp = simplify_binary_operation (PLUS, Pmode, \
1421 XEXP (AD, 0), XEXP (AD, 1)); \
1422 \
1423 new = temp ? temp : AD; \
1424 \
1425 if (optimize \
1426 && GET_CODE (new) == PLUS \
1427 && GET_CODE (XEXP (new, 0)) == REG \
1428 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
cc46ae8e 1429 { \
5f0c590d 1430 offset = INTVAL (XEXP ((new), 1)); \
cc46ae8e
JL
1431 \
1432 /* Choose rounding direction. Round up if we are >= halfway. */ \
1433 if ((offset & mask) >= ((mask + 1) / 2)) \
1434 newoffset = (offset & ~mask) + mask + 1; \
1435 else \
1436 newoffset = offset & ~mask; \
1437 \
1438 if (newoffset != 0 \
1439 && VAL_14_BITS_P (newoffset)) \
1440 { \
cc46ae8e 1441 \
5f0c590d 1442 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
cc46ae8e
JL
1443 GEN_INT (newoffset)); \
1444 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1445 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1446 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1447 (OPNUM), (TYPE)); \
1448 goto WIN; \
1449 } \
1450 } \
1451} while (0)
1452
1453
1454
eabd3262
RK
1455\f
1456/* Try machine-dependent ways of modifying an illegitimate address
1457 to be legitimate. If we find one, return the new, valid address.
1458 This macro is used in only one place: `memory_address' in explow.c.
1459
1460 OLDX is the address as it was before break_out_memory_refs was called.
1461 In some cases it is useful to look at this to decide what needs to be done.
1462
1463 MODE and WIN are passed so that this macro can use
1464 GO_IF_LEGITIMATE_ADDRESS.
1465
1466 It is always safe for this macro to do nothing. It exists to recognize
901a8cea
JL
1467 opportunities to optimize the output. */
1468
901a8cea
JL
1469#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1470{ rtx orig_x = (X); \
1471 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1472 if ((X) != orig_x && memory_address_p (MODE, X)) \
1473 goto WIN; }
eabd3262
RK
1474
1475/* Go to LABEL if ADDR (a legitimate address expression)
1476 has an effect that depends on the machine mode it is used for. */
1477
1478#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1479 if (GET_CODE (ADDR) == PRE_DEC \
1480 || GET_CODE (ADDR) == POST_DEC \
1481 || GET_CODE (ADDR) == PRE_INC \
1482 || GET_CODE (ADDR) == POST_INC) \
1483 goto LABEL
1484\f
ae46c4e0 1485#define TARGET_ASM_SELECT_SECTION pa_select_section
8f851c1f 1486
e7eacc8e
JL
1487/* Define this macro if references to a symbol must be treated
1488 differently depending on something about the variable or
1489 function named by the symbol (such as what section it is in).
1490
1491 The macro definition, if any, is executed immediately after the
1492 rtl for DECL or other node is created.
1493 The value of the rtl will be a `mem' whose address is a
1494 `symbol_ref'.
1495
1496 The usual thing for this macro to do is to a flag in the
1497 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1498 name string in the `symbol_ref' (if one bit is not enough
1499 information).
1500
1501 On the HP-PA we use this to indicate if a symbol is in text or
fe19a83d 1502 data space. Also, function labels need special treatment. */
e7eacc8e
JL
1503
1504#define TEXT_SPACE_P(DECL)\
1505 (TREE_CODE (DECL) == FUNCTION_DECL \
1506 || (TREE_CODE (DECL) == VAR_DECL \
1507 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1508 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1509 && !flag_pic) \
1510 || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c' \
1511 && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1512
10d17cb7 1513#define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
e7eacc8e 1514
eabd3262
RK
1515/* Specify the machine mode that this machine uses
1516 for the index in the tablejump instruction. */
3e056efc 1517#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode)
eabd3262 1518
937ac3f9
JL
1519/* Jump tables must be 32 bit aligned, no matter the size of the element. */
1520#define ADDR_VEC_ALIGN(ADDR_VEC) 2
1521
eabd3262
RK
1522/* Define this as 1 if `char' should by default be signed; else as 0. */
1523#define DEFAULT_SIGNED_CHAR 1
1524
1525/* Max number of bytes we can move from memory to memory
1526 in one reasonably fast instruction. */
1527#define MOVE_MAX 8
1528
68944452
JL
1529/* Higher than the default as we prefer to use simple move insns
1530 (better scheduling and delay slot filling) and because our
520babc7
JL
1531 built-in block move is really a 2X unrolled loop.
1532
1533 Believe it or not, this has to be big enough to allow for copying all
1534 arguments passed in registers to avoid infinite recursion during argument
1535 setup for a function call. Why? Consider how we copy the stack slots
1536 reserved for parameters when they may be trashed by a call. */
1537#define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
68944452 1538
9a63901f
RK
1539/* Define if operations between registers always perform the operation
1540 on the full register even if a narrower mode is specified. */
1541#define WORD_REGISTER_OPERATIONS
1542
1543/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1544 will either zero-extend or sign-extend. The value of this macro should
1545 be the code that says which one of the two operations is implicitly
1546 done, NIL if none. */
1547#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
eabd3262
RK
1548
1549/* Nonzero if access to memory by bytes is slow and undesirable. */
1550#define SLOW_BYTE_ACCESS 1
1551
eabd3262
RK
1552/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1553 is done just by pretending it is already truncated. */
1554#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1555
1556/* We assume that the store-condition-codes instructions store 0 for false
1557 and some other value for true. This is the value stored for true. */
1558
1559#define STORE_FLAG_VALUE 1
1560
1561/* When a prototype says `char' or `short', really pass an `int'. */
cb560352 1562#define PROMOTE_PROTOTYPES 1
520babc7 1563#define PROMOTE_FUNCTION_RETURN 1
eabd3262
RK
1564
1565/* Specify the machine mode that pointers have.
1566 After generation of rtl, the compiler makes no further distinction
1567 between pointers and any other objects of this machine mode. */
0a16ce6f 1568#define Pmode word_mode
eabd3262 1569
eabd3262
RK
1570/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1571 return the mode to be used for the comparison. For floating-point, CCFPmode
1572 should be used. CC_NOOVmode should be used when the first operand is a
1573 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1574 needed. */
b565a316 1575#define SELECT_CC_MODE(OP,X,Y) \
eabd3262
RK
1576 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1577
1578/* A function address in a call instruction
1579 is a byte address (for indexing purposes)
1580 so give the MEM rtx a byte's mode. */
1581#define FUNCTION_MODE SImode
5a1c10de 1582
eabd3262
RK
1583/* Define this if addresses of constant functions
1584 shouldn't be put through pseudo regs where they can be cse'd.
1585 Desirable on machines where ordinary constants are expensive
1586 but a CALL with constant address is cheap. */
1587#define NO_FUNCTION_CSE
1588
d969caf8 1589/* Define this to be nonzero if shift instructions ignore all but the low-order
fe19a83d 1590 few bits. */
d969caf8 1591#define SHIFT_COUNT_TRUNCATED 1
e061ef25 1592
eabd3262
RK
1593/* Compute the cost of computing a constant rtl expression RTX
1594 whose rtx-code is CODE. The body of this macro is a portion
1595 of a switch statement. If the code is computed here,
1596 return it with a return statement. Otherwise, break from the switch. */
1597
1598#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
5feca984
KG
1599 case CONST_INT: \
1600 if (INTVAL (RTX) == 0) return 0; \
1601 if (INT_14_BITS (RTX)) return 1; \
1602 case HIGH: \
1603 return 2; \
1604 case CONST: \
1605 case LABEL_REF: \
1606 case SYMBOL_REF: \
1607 return 4; \
1608 case CONST_DOUBLE: \
1609 if ((RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)) \
1610 && OUTER_CODE != SET) \
1611 return 0; \
1612 else \
af69aabb 1613 return 8;
eabd3262
RK
1614
1615#define ADDRESS_COST(RTX) \
1616 (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
1617
1618/* Compute extra cost of moving data between one register class
5de7c240
JL
1619 and another.
1620
5ac6158d
TG
1621 Make moves from SAR so expensive they should never happen. We used to
1622 have 0xffff here, but that generates overflow in rare cases.
5de7c240 1623
5a1c10de 1624 Copies involving a FP register and a non-FP register are relatively
5de7c240
JL
1625 expensive because they must go through memory.
1626
1627 Other copies are reasonably cheap. */
cf011243 1628#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
5ac6158d 1629 (CLASS1 == SHIFT_REGS ? 0x100 \
5de7c240
JL
1630 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1631 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1632 : 2)
1633
eabd3262
RK
1634
1635/* Provide the costs of a rtl expression. This is in the body of a
1636 switch on CODE. The purpose for the cost of MULT is to encourage
1637 `synth_mult' to find a synthetic multiply when reasonable. */
1638
68944452
JL
1639#define RTX_COSTS(X,CODE,OUTER_CODE) \
1640 case MULT: \
1641 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1642 return COSTS_N_INSNS (3); \
13ee407e 1643 return (TARGET_PA_11 && ! TARGET_DISABLE_FPREGS && ! TARGET_SOFT_FLOAT) \
68944452
JL
1644 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20); \
1645 case DIV: \
1646 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1647 return COSTS_N_INSNS (14); \
1648 case UDIV: \
1649 case MOD: \
1650 case UMOD: \
1651 return COSTS_N_INSNS (60); \
1652 case PLUS: /* this includes shNadd insns */ \
1653 case MINUS: \
1654 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1655 return COSTS_N_INSNS (3); \
1656 return COSTS_N_INSNS (1); \
1657 case ASHIFT: \
1658 case ASHIFTRT: \
1659 case LSHIFTRT: \
1660 return COSTS_N_INSNS (1);
eabd3262 1661
3e47bea8
JL
1662/* Adjust the cost of branches. */
1663#define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1664
04664e24
RS
1665/* Handling the special cases is going to get too complicated for a macro,
1666 just call `pa_adjust_insn_length' to do the real work. */
eabd3262 1667#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
04664e24
RS
1668 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1669
72abf941
JL
1670/* Millicode insns are actually function calls with some special
1671 constraints on arguments and register usage.
1672
1673 Millicode calls always expect their arguments in the integer argument
1674 registers, and always return their result in %r29 (ret1). They
7d8b1412
AM
1675 are expected to clobber their arguments, %r1, %r29, and the return
1676 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
72abf941 1677
2561a923
JL
1678 This macro tells reorg that the references to arguments and
1679 millicode calls do not appear to happen until after the millicode call.
1680 This allows reorg to put insns which set the argument registers into the
1681 delay slot of the millicode call -- thus they act more like traditional
1682 CALL_INSNs.
1683
1684 Note we can not consider side effects of the insn to be delayed because
1685 the branch and link insn will clobber the return pointer. If we happened
1686 to use the return pointer in the delay slot of the call, then we lose.
72abf941
JL
1687
1688 get_attr_type will try to recognize the given insn, so make sure to
d0ca05ef
RS
1689 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1690 in particular. */
2561a923 1691#define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
72abf941 1692
eabd3262
RK
1693\f
1694/* Control the assembler format that we output. */
1695
eabd3262
RK
1696/* Output to assembler file text saying following lines
1697 may contain character constants, extra white space, comments, etc. */
1698
1699#define ASM_APP_ON ""
1700
1701/* Output to assembler file text saying following lines
1702 no longer contain unusual constructs. */
1703
1704#define ASM_APP_OFF ""
1705
50b424a9
JDA
1706/* Output deferred plabels at the end of the file. */
1707
1708#define ASM_FILE_END(FILE) output_deferred_plabels (FILE)
1709
eabd3262
RK
1710/* This is how to output the definition of a user-level label named NAME,
1711 such as the label on a static function or variable NAME. */
1712
1713#define ASM_OUTPUT_LABEL(FILE, NAME) \
37d7333e 1714 do { assemble_name (FILE, NAME); \
37d7333e 1715 fputc ('\n', FILE); } while (0)
eabd3262 1716
eabd3262
RK
1717/* This is how to output a reference to a user-level label named NAME.
1718 `assemble_name' uses this. */
1719
1720#define ASM_OUTPUT_LABELREF(FILE,NAME) \
7830ba7b
JDA
1721 do { \
1722 const char *xname = (NAME); \
1723 if (FUNCTION_NAME_P (NAME)) \
1724 xname += 1; \
1725 if (xname[0] == '*') \
1726 xname += 1; \
1727 else \
1728 fputs (user_label_prefix, FILE); \
1729 fputs (xname, FILE); \
1730 } while (0)
eabd3262 1731
eabd3262
RK
1732/* This is how to store into the string LABEL
1733 the symbol_ref name of an internal numbered label where
1734 PREFIX is the class of label and NUM is the number within the class.
1735 This is suitable for output with `assemble_name'. */
1736
1737#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
e59f7d3d 1738 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
eabd3262 1739
5eb99654 1740#define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
e7eacc8e 1741
eabd3262
RK
1742#define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1743 output_ascii ((FILE), (P), (SIZE))
1744
eabd3262
RK
1745/* This is how to output an element of a case-vector that is absolute.
1746 Note that this method makes filling these branch delay slots
3518f904 1747 impossible. */
eabd3262
RK
1748
1749#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3e056efc
JL
1750 if (TARGET_BIG_SWITCH) \
1751 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE); \
1752 else \
1753 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
eabd3262 1754
63671b34 1755/* Jump tables are executable code and live in the TEXT section on the PA. */
75197b37 1756#define JUMP_TABLES_IN_TEXT_SECTION 1
63671b34 1757
eabd3262 1758/* This is how to output an element of a case-vector that is relative.
cface026
JL
1759 This must be defined correctly as it is used when generating PIC code.
1760
ddd5a7c1 1761 I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
cface026
JL
1762 on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
1763 rather than a table of absolute addresses. */
eabd3262 1764
33f7f353 1765#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3e056efc 1766 if (TARGET_BIG_SWITCH) \
f24d52e1 1767 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv %%r0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE); \
3e056efc
JL
1768 else \
1769 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
eabd3262
RK
1770
1771/* This is how to output an assembler line
1772 that says to advance the location counter
1773 to a multiple of 2**LOG bytes. */
1774
1775#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1776 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1777
1778#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1779 fprintf (FILE, "\t.blockz %d\n", (SIZE))
1780
6b282118
JL
1781/* This says how to output an assembler line to define a global common symbol
1782 with size SIZE (in bytes) and alignment ALIGN (in bits). */
a291e551 1783
6b282118
JL
1784#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \
1785{ bss_section (); \
1786 assemble_name ((FILE), (NAME)); \
1787 fputs ("\t.comm ", (FILE)); \
1788 fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
a291e551 1789
6b282118
JL
1790/* This says how to output an assembler line to define a local common symbol
1791 with size SIZE (in bytes) and alignment ALIGN (in bits). */
eabd3262 1792
6b282118
JL
1793#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1794{ bss_section (); \
1795 fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \
37d7333e 1796 assemble_name ((FILE), (NAME)); \
6b282118
JL
1797 fprintf ((FILE), "\n\t.block %d\n", (SIZE));}
1798
4977bab6 1799#define ASM_PN_FORMAT "%s___%lu"
eabd3262 1800
5921f26b
JL
1801/* All HP assemblers use "!" to separate logical lines. */
1802#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1803
eabd3262
RK
1804#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1805 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1806
1807/* Print operand X (an rtx) in assembler syntax to file FILE.
1808 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1809 For `%' followed by punctuation, CODE is the punctuation and X is null.
1810
3f8f5a3f 1811 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
eabd3262
RK
1812 and an immediate zero should be represented as `r0'.
1813
1814 Several % codes are defined:
1815 O an operation
1816 C compare conditions
1817 N extract conditions
1818 M modifier to handle preincrement addressing for memory refs.
1819 F modifier to handle preincrement addressing for fp memory refs */
1820
1821#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1822
1823\f
1824/* Print a memory address as an operand to reference that memory location. */
1825
1826#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1827{ register rtx addr = ADDR; \
1828 register rtx base; \
1829 int offset; \
1830 switch (GET_CODE (addr)) \
1831 { \
1832 case REG: \
d2d28085 1833 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
eabd3262
RK
1834 break; \
1835 case PLUS: \
1836 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1837 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
1838 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1839 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
1840 else \
1841 abort (); \
d2d28085 1842 fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]); \
eabd3262
RK
1843 break; \
1844 case LO_SUM: \
519104fe 1845 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
0f8f654e
RK
1846 fputs ("R'", FILE); \
1847 else if (flag_pic == 0) \
1848 fputs ("RR'", FILE); \
7ee72796 1849 else \
6bb36601 1850 fputs ("RT'", FILE); \
ad238e4b 1851 output_global_address (FILE, XEXP (addr, 1), 0); \
eabd3262
RK
1852 fputs ("(", FILE); \
1853 output_operand (XEXP (addr, 0), 0); \
1854 fputs (")", FILE); \
1855 break; \
09a1d028 1856 case CONST_INT: \
e59f7d3d
KG
1857 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr)); \
1858 fprintf (FILE, "(%%r0)"); \
09a1d028 1859 break; \
eabd3262
RK
1860 default: \
1861 output_addr_const (FILE, addr); \
1862 }}
1863
1864\f
e99d6592
MS
1865/* Find the return address associated with the frame given by
1866 FRAMEADDR. */
1867#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1868 (return_addr_rtx (COUNT, FRAMEADDR))
bbe79f84
MS
1869
1870/* Used to mask out junk bits from the return address, such as
1871 processor state, interrupt status, condition codes and the like. */
e99d6592
MS
1872#define MASK_RETURN_ADDR \
1873 /* The privilege level is in the two low order bits, mask em out \
bbe79f84 1874 of the return address. */ \
2a2ea744 1875 (GEN_INT (-4))
27a36778
MS
1876
1877/* The number of Pmode words for the setjmp buffer. */
1878#define JMP_BUF_SIZE 50
0c273d11
RH
1879
1880#define PREDICATE_CODES \
1881 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1882 {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \
1883 CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
1884 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1885 {"symbolic_memory_operand", {SUBREG, MEM}}, \
276ef573 1886 {"reg_before_reload_operand", {REG, MEM}}, \
0c273d11
RH
1887 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1888 {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT, \
1889 CONST_DOUBLE}}, \
1890 {"move_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}}, \
1891 {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
1892 {"pic_label_operand", {LABEL_REF, CONST}}, \
1893 {"fp_reg_operand", {REG}}, \
1894 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1895 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
1896 {"pre_cint_operand", {CONST_INT}}, \
1897 {"post_cint_operand", {CONST_INT}}, \
1898 {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1899 {"ireg_or_int5_operand", {CONST_INT, REG}}, \
1900 {"int5_operand", {CONST_INT}}, \
1901 {"uint5_operand", {CONST_INT}}, \
1902 {"int11_operand", {CONST_INT}}, \
1903 {"uint32_operand", {CONST_INT, \
1904 HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}}, \
1905 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
1906 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1907 {"ior_operand", {CONST_INT}}, \
1908 {"lhs_lshift_cint_operand", {CONST_INT}}, \
1909 {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
1910 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
1911 {"pc_or_label_operand", {PC, LABEL_REF}}, \
1912 {"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
1913 {"shadd_operand", {CONST_INT}}, \
1914 {"basereg_operand", {REG}}, \
1915 {"div_operand", {REG, CONST_INT}}, \
eb5a4898 1916 {"ireg_operand", {REG}}, \
27b18383
JL
1917 {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU, \
1918 GT, GTU, GE}}, \
0c273d11 1919 {"movb_comparison_operator", {EQ, NE, LT, GE}},
bf97847b
JDA
1920
1921/* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1922#define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1923 "__canonicalize_funcptr_for_compare"