]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/riscv/riscv.h
Daily bump.
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
CommitLineData
09cae750 1/* Definition of RISC-V target for GNU compiler.
aeee4812 2 Copyright (C) 2011-2023 Free Software Foundation, Inc.
09cae750
PD
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#ifndef GCC_RISCV_H
23#define GCC_RISCV_H
24
25#include "config/riscv/riscv-opts.h"
26
27/* Target CPU builtins. */
28#define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
29
cd1e2f63
MC
30#ifdef TARGET_BIG_ENDIAN_DEFAULT
31#define DEFAULT_ENDIAN_SPEC "b"
32#else
33#define DEFAULT_ENDIAN_SPEC "l"
34#endif
35
09cae750
PD
36/* Default target_flags if no switches are specified */
37
38#ifndef TARGET_DEFAULT
39#define TARGET_DEFAULT 0
40#endif
41
42#ifndef RISCV_TUNE_STRING_DEFAULT
43#define RISCV_TUNE_STRING_DEFAULT "rocket"
44#endif
45
f908b69c 46extern const char *riscv_expand_arch (int argc, const char **argv);
72eb8335
KC
47extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv);
48extern const char *riscv_default_mtune (int argc, const char **argv);
d72ca12b 49extern const char *riscv_multi_lib_check (int argc, const char **argv);
f908b69c
KC
50
51# define EXTRA_SPEC_FUNCTIONS \
72eb8335
KC
52 { "riscv_expand_arch", riscv_expand_arch }, \
53 { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \
d72ca12b
KC
54 { "riscv_default_mtune", riscv_default_mtune }, \
55 { "riscv_multi_lib_check", riscv_multi_lib_check },
f908b69c 56
09cae750 57/* Support for a compile-time default CPU, et cetera. The rules are:
72eb8335 58 --with-arch is ignored if -march or -mcpu is specified.
09cae750 59 --with-abi is ignored if -mabi is specified.
72eb8335 60 --with-tune is ignored if -mtune or -mcpu is specified.
06e32a5e 61 --with-isa-spec is ignored if -misa-spec is specified.
72eb8335
KC
62
63 But using default -march/-mtune value if -mcpu don't have valid option. */
09cae750 64#define OPTION_DEFAULT_SPECS \
72eb8335
KC
65 {"tune", "%{!mtune=*:" \
66 " %{!mcpu=*:-mtune=%(VALUE)}" \
67 " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \
68 {"arch", "%{!march=*:" \
69 " %{!mcpu=*:-march=%(VALUE)}" \
70 " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \
09cae750 71 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
06e32a5e 72 {"isa_spec", "%{!misa-spec=*:-misa-spec=%(VALUE)}" }, \
09cae750
PD
73
74#ifdef IN_LIBGCC2
75#undef TARGET_64BIT
76/* Make this compile time constant for libgcc2 */
77#define TARGET_64BIT (__riscv_xlen == 64)
78#endif /* IN_LIBGCC2 */
79
4b815282
KC
80#ifdef HAVE_AS_MISA_SPEC
81#define ASM_MISA_SPEC "%{misa-spec=*}"
82#else
83#define ASM_MISA_SPEC ""
84#endif
85
a5ad5d5c
KC
86/* Reference:
87 https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing */
88#define STRINGIZING(s) __STRINGIZING(s)
89#define __STRINGIZING(s) #s
90
91#define MULTILIB_DEFAULTS \
92 {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \
93 "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) }
94
09cae750
PD
95#undef ASM_SPEC
96#define ASM_SPEC "\
97%(subtarget_asm_debugging_spec) \
98%{" FPIE_OR_FPIC_SPEC ":-fpic} \
f4670347 99%{march=*} \
09cae750 100%{mabi=*} \
3b0a7d62 101%{mno-relax} \
a9604fcb
MC
102%{mbig-endian} \
103%{mlittle-endian} \
4b815282
KC
104%(subtarget_asm_spec)" \
105ASM_MISA_SPEC
09cae750 106
f4670347 107#undef DRIVER_SELF_SPECS
72eb8335
KC
108#define DRIVER_SELF_SPECS \
109"%{march=*:%:riscv_expand_arch(%*)} " \
110"%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
f4670347 111
09cae750
PD
112#define TARGET_DEFAULT_CMODEL CM_MEDLOW
113
114#define LOCAL_LABEL_PREFIX "."
115#define USER_LABEL_PREFIX ""
116
117/* Offsets recorded in opcodes are a multiple of this alignment factor.
118 The default for this in 64-bit mode is 8, which causes problems with
119 SFmode register saves. */
120#define DWARF_CIE_DATA_ALIGNMENT -4
121
122/* The mapping from gcc register number to DWARF 2 CFA column number. */
31380d4b 123#define DWARF_FRAME_REGNUM(REGNO) \
5ed88078
JZ
124 (VXRM_REG_P (REGNO) ? RISCV_DWARF_VXRM \
125 : VL_REG_P (REGNO) ? RISCV_DWARF_VL \
31380d4b 126 : VTYPE_REG_P (REGNO) \
127 ? RISCV_DWARF_VTYPE \
128 : (GP_REG_P (REGNO) || FP_REG_P (REGNO) || V_REG_P (REGNO) \
129 ? REGNO \
130 : INVALID_REGNUM))
09cae750
PD
131
132/* The DWARF 2 CFA column which tracks the return address. */
133#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
134#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
135
136/* Describe how we implement __builtin_eh_return. */
137#define EH_RETURN_DATA_REGNO(N) \
138 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
139
140#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
141
142/* Target machine storage layout */
143
144#define BITS_BIG_ENDIAN 0
a9604fcb
MC
145#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
146#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
09cae750
PD
147
148#define MAX_BITS_PER_WORD 64
149
150/* Width of a word, in units (bytes). */
151#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
152#ifndef IN_LIBGCC2
153#define MIN_UNITS_PER_WORD 4
154#endif
155
e53b6e56 156/* Allows SImode op in builtin overflow pattern, see internal-fn.cc. */
6efd040c
L
157#undef TARGET_MIN_ARITHMETIC_PRECISION
158#define TARGET_MIN_ARITHMETIC_PRECISION riscv_min_arithmetic_precision
159
09cae750
PD
160/* The `Q' extension is not yet supported. */
161#define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
e9f827d7 162/* Size per vector register. For VLEN = 32, size = poly (4, 4). Otherwise, size = poly (8, 8). */
31380d4b 163#define UNITS_PER_V_REG (riscv_vector_chunks * riscv_bytes_per_vector_chunk)
09cae750
PD
164
165/* The largest type that can be passed in floating-point registers. */
09baee1a
KC
166#define UNITS_PER_FP_ARG \
167 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
168 || riscv_abi == ABI_LP64) \
169 ? 0 \
170 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
09cae750
PD
171
172/* Set the sizes of the core types. */
173#define SHORT_TYPE_SIZE 16
174#define INT_TYPE_SIZE 32
175#define LONG_LONG_TYPE_SIZE 64
176#define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
177#define LONG_TYPE_SIZE POINTER_SIZE
178
179#define FLOAT_TYPE_SIZE 32
180#define DOUBLE_TYPE_SIZE 64
181#define LONG_DOUBLE_TYPE_SIZE 128
182
183/* Allocation boundary (in *bits*) for storing arguments in argument list. */
184#define PARM_BOUNDARY BITS_PER_WORD
185
186/* Allocation boundary (in *bits*) for the code of a function. */
187#define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
188
0ce42fe1 189/* The smallest supported stack boundary the calling convention supports. */
75902396
JW
190#define STACK_BOUNDARY \
191 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
0ce42fe1
AW
192
193/* The ABI stack alignment. */
75902396 194#define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
0ce42fe1 195
09cae750 196/* There is no point aligning anything to a rounder boundary than this. */
c0d3d1b6 197#define BIGGEST_ALIGNMENT 128
09cae750 198
82285692
AW
199/* The user-level ISA permits unaligned accesses, but they are not required
200 of the privileged architecture. */
201#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
202
09cae750
PD
203/* Define this if you wish to imitate the way many other C compilers
204 handle alignment of bitfields and the structures that contain
205 them.
206
207 The behavior is that the type written for a bit-field (`int',
208 `short', or other integer type) imposes an alignment for the
209 entire structure, as if the structure really did contain an
210 ordinary field of that type. In addition, the bit-field is placed
211 within the structure so that it would fit within such a field,
212 not crossing a boundary for it.
213
214 Thus, on most machines, a bit-field whose type is written as `int'
215 would not cross a four-byte boundary, and would force four-byte
216 alignment for the whole structure. (The alignment used may not
217 be four bytes; it is controlled by the other alignment
218 parameters.)
219
220 If the macro is defined, its definition should be a C expression;
221 a nonzero value for the expression enables this behavior. */
222
223#define PCC_BITFIELD_TYPE_MATTERS 1
224
d3f952c5
JW
225/* An integer expression for the size in bits of the largest integer machine
226 mode that should actually be used. We allow pairs of registers. */
227#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
228
ffbb9818
ID
229/* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
230#define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
231 (((COND) && ((ALIGN) < BITS_PER_WORD) \
232 && (TREE_CODE (TYPE) == ARRAY_TYPE \
233 || TREE_CODE (TYPE) == UNION_TYPE \
234 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
235
09cae750
PD
236/* If defined, a C expression to compute the alignment for a static
237 variable. TYPE is the data type, and ALIGN is the alignment that
238 the object would ordinarily have. The value of this macro is used
239 instead of that alignment to align the object.
240
241 If this macro is not defined, then ALIGN is used.
242
243 One use of this macro is to increase alignment of medium-size
244 data to make it all fit in fewer cache lines. Another is to
245 cause character arrays to be word-aligned so that `strcpy' calls
246 that copy constants to character arrays can be done inline. */
247
ffbb9818
ID
248#define DATA_ALIGNMENT(TYPE, ALIGN) \
249 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
250 TYPE, ALIGN)
09cae750
PD
251
252/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
253 character arrays to be word-aligned so that `strcpy' calls that copy
254 constants to character arrays can be done inline, and 'strcmp' can be
255 optimised to use word loads. */
256#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
ffbb9818 257 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
09cae750
PD
258
259/* Define if operations between registers always perform the operation
260 on the full register even if a narrower mode is specified. */
261#define WORD_REGISTER_OPERATIONS 1
262
263/* When in 64-bit mode, move insns will sign extend SImode and CCmode
264 moves. All other references are zero extended. */
265#define LOAD_EXTEND_OP(MODE) \
266 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
267
268/* Define this macro if it is advisable to hold scalars in registers
269 in a wider mode than that declared by the program. In such cases,
270 the value is constrained to be within the bounds of the declared
271 type, but kept valid in the wider mode. The signedness of the
272 extension may differ from that of the type. */
273
274#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
275 if (GET_MODE_CLASS (MODE) == MODE_INT \
276 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
277 { \
278 if ((MODE) == SImode) \
279 (UNSIGNEDP) = 0; \
280 (MODE) = word_mode; \
281 }
282
283/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
284 Extensions of pointers to word_mode must be signed. */
285#define POINTERS_EXTEND_UNSIGNED false
286
09cae750
PD
287/* Define if loading short immediate values into registers sign extends. */
288#define SHORT_IMMEDIATES_SIGN_EXTEND 1
289
290/* Standard register usage. */
291
292/* Number of hardware registers. We have:
293
294 - 32 integer registers
295 - 32 floating point registers
296 - 2 fake registers:
297 - ARG_POINTER_REGNUM
31380d4b 298 - FRAME_POINTER_REGNUM
299 - 1 vl register
300 - 1 vtype register
301 - 30 unused registers for future expansion
302 - 32 vector registers */
09cae750 303
31380d4b 304#define FIRST_PSEUDO_REGISTER 128
09cae750
PD
305
306/* x0, sp, gp, and tp are fixed. */
307
308#define FIXED_REGISTERS \
309{ /* General registers. */ \
310 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
311 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
312 /* Floating-point registers. */ \
313 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
314 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
315 /* Others. */ \
a035d133 316 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
31380d4b 317 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
318 /* Vector registers. */ \
319 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
320 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
09cae750
PD
321}
322
f3abed16 323/* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
09cae750
PD
324 The call RTLs themselves clobber ra. */
325
326#define CALL_USED_REGISTERS \
327{ /* General registers. */ \
328 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
329 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
330 /* Floating-point registers. */ \
331 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
332 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
333 /* Others. */ \
31380d4b 334 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
335 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
336 /* Vector registers. */ \
337 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
338 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
09cae750
PD
339}
340
b780f68e
JW
341/* Select a register mode required for caller save of hard regno REGNO.
342 Contrary to what is documented, the default is not the smallest suitable
343 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
344 it quickly creates paradoxical subregs that can be problematic. */
345#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
346 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
347
09cae750
PD
348/* Internal macros to classify an ISA register's type. */
349
350#define GP_REG_FIRST 0
09baee1a 351#define GP_REG_LAST (TARGET_RVE ? 15 : 31)
09cae750
PD
352#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
353
354#define FP_REG_FIRST 32
355#define FP_REG_LAST 63
356#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
357
31380d4b 358#define V_REG_FIRST 96
359#define V_REG_LAST 127
360#define V_REG_NUM (V_REG_LAST - V_REG_FIRST + 1)
361
09cae750
PD
362/* The DWARF 2 CFA column which tracks the return address from a
363 signal handler context. This means that to maintain backwards
364 compatibility, no hard register can be assigned this column if it
365 would need to be handled by the DWARF unwinder. */
366#define DWARF_ALT_FRAME_RETURN_COLUMN 64
367
368#define GP_REG_P(REGNO) \
369 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
370#define FP_REG_P(REGNO) \
371 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
31380d4b 372#define V_REG_P(REGNO) \
373 ((unsigned int) ((int) (REGNO) - V_REG_FIRST) < V_REG_NUM)
374#define VL_REG_P(REGNO) ((REGNO) == VL_REGNUM)
375#define VTYPE_REG_P(REGNO) ((REGNO) == VTYPE_REGNUM)
5ed88078 376#define VXRM_REG_P(REGNO) ((REGNO) == VXRM_REGNUM)
09cae750 377
e18a6d14
AB
378/* True when REGNO is in SIBCALL_REGS set. */
379#define SIBCALL_REG_P(REGNO) \
380 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
381
09cae750
PD
382#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
383
09cae750
PD
384/* Use s0 as the frame pointer if it is so requested. */
385#define HARD_FRAME_POINTER_REGNUM 8
386#define STACK_POINTER_REGNUM 2
387#define THREAD_POINTER_REGNUM 4
388
389/* These two registers don't really exist: they get eliminated to either
390 the stack or hard frame pointer. */
391#define ARG_POINTER_REGNUM 64
392#define FRAME_POINTER_REGNUM 65
393
31380d4b 394/* Define Dwarf for RVV. */
5ed88078 395#define RISCV_DWARF_VXRM (4096 + 0x00a)
31380d4b 396#define RISCV_DWARF_VL (4096 + 0xc20)
397#define RISCV_DWARF_VTYPE (4096 + 0xc21)
5576518a 398#define RISCV_DWARF_VLENB (4096 + 0xc22)
31380d4b 399
09cae750
PD
400/* Register in which static-chain is passed to a function. */
401#define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
402
403/* Registers used as temporaries in prologue/epilogue code.
404
405 The prologue registers mustn't conflict with any
406 incoming arguments, the static chain pointer, or the frame pointer.
407 The epilogue temporary mustn't conflict with the return registers,
408 the frame pointer, the EH stack adjustment, or the EH data registers. */
409
207de839 410#define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
09cae750 411#define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
5576518a
JZZ
412#define RISCV_PROLOGUE_TEMP2_REGNUM (GP_TEMP_FIRST + 1)
413#define RISCV_PROLOGUE_TEMP2(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP2_REGNUM)
09cae750 414
207de839
MC
415#define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
416#define RISCV_CALL_ADDRESS_TEMP(MODE) \
417 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
418
09cae750
PD
419#define MCOUNT_NAME "_mcount"
420
421#define NO_PROFILE_COUNTERS 1
422
423/* Emit rtl for profiling. Output assembler code to FILE
424 to call "_mcount" for profiling a function entry. */
425#define PROFILE_HOOK(LABEL) \
426 { \
427 rtx fun, ra; \
428 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
429 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
db69559b 430 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
09cae750
PD
431 }
432
433/* All the work done in PROFILE_HOOK, but still required. */
434#define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
435
436/* Define this macro if it is as good or better to call a constant
437 function address than to call an address kept in a register. */
438#define NO_FUNCTION_CSE 1
439
440/* Define the classes of registers for register constraints in the
441 machine description. Also define ranges of constants.
442
443 One of the classes must always be named ALL_REGS and include all hard regs.
444 If there is more than one class, another class must be named NO_REGS
445 and contain no registers.
446
447 The name GENERAL_REGS must be the name of a class (or an alias for
448 another name such as ALL_REGS). This is the class of registers
449 that is allowed by "g" or "r" in a register constraint.
450 Also, registers outside this class are allocated only when
451 instructions express preferences for them.
452
453 The classes must be numbered in nondecreasing order; that is,
454 a larger-numbered class must never be contained completely
455 in a smaller-numbered class.
456
457 For any two classes, it is very desirable that there be another
458 class that represents their union. */
459
460enum reg_class
461{
462 NO_REGS, /* no registers in set */
463 SIBCALL_REGS, /* registers used by indirect sibcalls */
464 JALR_REGS, /* registers used by indirect calls */
465 GR_REGS, /* integer registers */
466 FP_REGS, /* floating-point registers */
467 FRAME_REGS, /* arg pointer and frame pointer */
31380d4b 468 VM_REGS, /* v0.t registers */
469 VD_REGS, /* vector registers except v0.t */
470 V_REGS, /* vector registers */
09cae750
PD
471 ALL_REGS, /* all registers */
472 LIM_REG_CLASSES /* max value + 1 */
473};
474
475#define N_REG_CLASSES (int) LIM_REG_CLASSES
476
477#define GENERAL_REGS GR_REGS
478
479/* An initializer containing the names of the register classes as C
480 string constants. These names are used in writing some of the
481 debugging dumps. */
482
483#define REG_CLASS_NAMES \
484{ \
485 "NO_REGS", \
486 "SIBCALL_REGS", \
487 "JALR_REGS", \
488 "GR_REGS", \
489 "FP_REGS", \
490 "FRAME_REGS", \
31380d4b 491 "VM_REGS", \
492 "VD_REGS", \
493 "V_REGS", \
09cae750
PD
494 "ALL_REGS" \
495}
496
497/* An initializer containing the contents of the register classes,
498 as integers which are bit masks. The Nth integer specifies the
499 contents of class N. The way the integer MASK is interpreted is
500 that register R is in the class if `MASK & (1 << R)' is 1.
501
502 When the machine has more than 32 registers, an integer does not
503 suffice. Then the integers are replaced by sub-initializers,
504 braced groupings containing several integers. Each
505 sub-initializer must be suitable as an initializer for the type
506 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
507
508#define REG_CLASS_CONTENTS \
509{ \
31380d4b 510 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
511 { 0xf003fcc0, 0x00000000, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
512 { 0xffffffc0, 0x00000000, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
513 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
514 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FP_REGS */ \
515 { 0x00000000, 0x00000000, 0x00000003, 0x00000000 }, /* FRAME_REGS */ \
31380d4b 516 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, /* V0_REGS */ \
517 { 0x00000000, 0x00000000, 0x00000000, 0xfffffffe }, /* VNoV0_REGS */ \
518 { 0x00000000, 0x00000000, 0x00000000, 0xffffffff }, /* V_REGS */ \
167b04b9 519 { 0xffffffff, 0xffffffff, 0x00000003, 0xffffffff } /* ALL_REGS */ \
09cae750
PD
520}
521
522/* A C expression whose value is a register class containing hard
523 register REGNO. In general there is more that one such class;
524 choose a class which is "minimal", meaning that no smaller class
525 also contains the register. */
526
527#define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
528
529/* A macro whose definition is the name of the class to which a
530 valid base register must belong. A base register is one used in
531 an address which is the register value plus a displacement. */
532
533#define BASE_REG_CLASS GR_REGS
534
535/* A macro whose definition is the name of the class to which a
536 valid index register must belong. An index register is one used
537 in an address where its value is either multiplied by a scale
538 factor or added to another register (as well as added to a
539 displacement). */
540
541#define INDEX_REG_CLASS NO_REGS
542
543/* We generally want to put call-clobbered registers ahead of
544 call-saved ones. (IRA expects this.) */
545
546#define REG_ALLOC_ORDER \
547{ \
548 /* Call-clobbered GPRs. */ \
549 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
550 /* Call-saved GPRs. */ \
551 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
552 /* GPRs that can never be exposed to the register allocator. */ \
553 0, 2, 3, 4, \
554 /* Call-clobbered FPRs. */ \
555 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
556 60, 61, 62, 63, \
557 /* Call-saved FPRs. */ \
558 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
7b206ae7
JZ
559 /* v1 ~ v31 vector registers. */ \
560 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, \
561 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, \
562 124, 125, 126, 127, \
563 /* The vector mask register. */ \
564 96, \
09cae750
PD
565 /* None of the remaining classes have defined call-saved \
566 registers. */ \
31380d4b 567 64, 65, 66, 67 \
09cae750
PD
568}
569
570/* True if VALUE is a signed 12-bit number. */
571
572#define SMALL_OPERAND(VALUE) \
573 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
574
3496ca4e 575#define POLY_SMALL_OPERAND_P(POLY_VALUE) \
576 (POLY_VALUE.is_constant () ? \
577 SMALL_OPERAND (POLY_VALUE.to_constant ()) : false)
578
09cae750
PD
579/* True if VALUE can be loaded into a register using LUI. */
580
581#define LUI_OPERAND(VALUE) \
582 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
583 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
584
4e72ccad
PT
585/* If this is a single bit mask, then we can load it with bseti. Special
586 handling of SImode 0x80000000 on RV64 is done in riscv_build_integer_1. */
587#define SINGLE_BIT_MASK_OPERAND(VALUE) \
2c721ea9
AP
588 (pow2p_hwi (TARGET_64BIT \
589 ? (VALUE) \
590 : ((VALUE) & ((HOST_WIDE_INT_1U << 32)-1))))
4e1e0d79 591
bc6beecb
PT
592/* True if VALUE can be represented as an immediate with 1 extra bit
593 set: we check that it is not a SMALL_OPERAND (as this would be true
594 for all small operands) unmodified and turns into a small operand
595 once we clear the top bit. */
596#define UIMM_EXTRA_BIT_OPERAND(VALUE) \
597 (!SMALL_OPERAND (VALUE) \
598 && SMALL_OPERAND (VALUE & ~(HOST_WIDE_INT_1U << floor_log2 (VALUE))))
599
09cae750
PD
600/* Stack layout; function entry, exit and calling. */
601
602#define STACK_GROWS_DOWNWARD 1
603
604#define FRAME_GROWS_DOWNWARD 1
605
09cae750
PD
606#define RETURN_ADDR_RTX riscv_return_addr
607
608#define ELIMINABLE_REGS \
609{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
610 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
611 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
612 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
613
614#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
615 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
616
617/* Allocate stack space for arguments at the beginning of each function. */
618#define ACCUMULATE_OUTGOING_ARGS 1
619
620/* The argument pointer always points to the first argument. */
621#define FIRST_PARM_OFFSET(FNDECL) 0
622
623#define REG_PARM_STACK_SPACE(FNDECL) 0
624
625/* Define this if it is the responsibility of the caller to
626 allocate the area reserved for arguments passed in registers.
627 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
628 of this macro is to determine whether the space is included in
629 `crtl->outgoing_args_size'. */
630#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
631
c0d3d1b6 632#define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
0ce42fe1 633
09cae750
PD
634/* Symbolic macros for the registers used to return integer and floating
635 point values. */
636
637#define GP_RETURN GP_ARG_FIRST
638#define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
639
75902396 640#define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
09cae750
PD
641
642/* Symbolic macros for the first/last argument registers. */
643
644#define GP_ARG_FIRST (GP_REG_FIRST + 10)
645#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
646#define GP_TEMP_FIRST (GP_REG_FIRST + 5)
647#define FP_ARG_FIRST (FP_REG_FIRST + 10)
648#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
649
650#define CALLEE_SAVED_REG_NUMBER(REGNO) \
651 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
652 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
653
654#define LIBCALL_VALUE(MODE) \
655 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
656
657#define FUNCTION_VALUE(VALTYPE, FUNC) \
658 riscv_function_value (VALTYPE, FUNC, VOIDmode)
659
660#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
661
662/* 1 if N is a possible register number for function argument passing.
1fb157cc 663 We have no FP argument registers when soft-float. */
09cae750
PD
664
665/* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
666#define FUNCTION_ARG_REGNO_P(N) \
667 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
668 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
669
670typedef struct {
671 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
672 unsigned int num_gprs;
673
674 /* Number of floating-point registers used so far, likewise. */
675 unsigned int num_fprs;
676} CUMULATIVE_ARGS;
677
678/* Initialize a variable CUM of type CUMULATIVE_ARGS
679 for a call to a function whose data type is FNTYPE.
680 For a library call, FNTYPE is 0. */
681
682#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
683 memset (&(CUM), 0, sizeof (CUM))
684
d0ebdd9f 685#define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
09cae750 686
0ce42fe1
AW
687/* Align based on stack boundary, which might have been set by the user. */
688#define RISCV_STACK_ALIGN(LOC) \
c0d3d1b6 689 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
09cae750
PD
690
691/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
692 the stack pointer does not matter. The value is tested only in
693 functions that have frame pointers.
694 No definition is equivalent to always zero. */
695
696#define EXIT_IGNORE_STACK 1
697
698
699/* Trampolines are a block of code followed by two pointers. */
700
701#define TRAMPOLINE_CODE_SIZE 16
702#define TRAMPOLINE_SIZE \
703 ((Pmode == SImode) \
704 ? TRAMPOLINE_CODE_SIZE \
705 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
706#define TRAMPOLINE_ALIGNMENT POINTER_SIZE
707
708/* Addressing modes, and classification of registers for them. */
709
710#define REGNO_OK_FOR_INDEX_P(REGNO) 0
711#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
712 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
713
714/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
715 and check its validity for a certain class.
716 We have two alternate definitions for each of them.
717 The usual definition accepts all pseudo regs; the other rejects them all.
718 The symbol REG_OK_STRICT causes the latter definition to be used.
719
720 Most source files want to accept pseudo regs in the hope that
721 they will get allocated to the class that the insn wants them to be in.
722 Some source files that are used after register allocation
723 need to be strict. */
724
725#ifndef REG_OK_STRICT
726#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
727 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
728#else
729#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
730 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
731#endif
732
733#define REG_OK_FOR_INDEX_P(X) 0
734
735/* Maximum number of registers that can appear in a valid memory address. */
736
737#define MAX_REGS_PER_ADDRESS 1
738
739#define CONSTANT_ADDRESS_P(X) \
740 (CONSTANT_P (X) && memory_address_p (SImode, X))
741
742/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
743 'the start of the function that this code is output in'. */
744
2041a23a
TV
745#define ASM_OUTPUT_LABELREF(FILE,NAME) \
746 do { \
747 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
748 asm_fprintf ((FILE), "%U%s", \
749 XSTR (XEXP (DECL_RTL (current_function_decl), \
750 0), 0)); \
751 else \
752 asm_fprintf ((FILE), "%U%s", (NAME)); \
753 } while (0)
09cae750
PD
754
755#define JUMP_TABLES_IN_TEXT_SECTION 0
756#define CASE_VECTOR_MODE SImode
757#define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
758
7d4df630
VG
759#define LOCAL_SYM_P(sym) \
760 ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
761 || ((GET_CODE (sym) == CONST) \
762 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
763 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))
764
09cae750
PD
765/* The load-address macro is used for PC-relative addressing of symbols
766 that bind locally. Don't use it for symbols that should be addressed
767 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
768 currently results in more opportunities for linker relaxation. */
769#define USE_LOAD_ADDRESS_MACRO(sym) \
770 (!TARGET_EXPLICIT_RELOCS && \
7d4df630 771 ((flag_pic && LOCAL_SYM_P (sym)) || riscv_cmodel == CM_MEDANY))
09cae750
PD
772
773/* Define this as 1 if `char' should by default be signed; else as 0. */
774#define DEFAULT_SIGNED_CHAR 0
775
776#define MOVE_MAX UNITS_PER_WORD
777#define MAX_MOVE_MAX 8
778
ecc82a8d
AW
779/* The SPARC port says:
780 Nonzero if access to memory by bytes is slow and undesirable.
781 For RISC chips, it means that access to memory by bytes is no
782 better than access by words when possible, so grab a whole word
783 and maybe make use of that. */
784#define SLOW_BYTE_ACCESS 1
09cae750 785
b7ef9225
JW
786/* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
787 in the md file instead. */
788#define SHIFT_COUNT_TRUNCATED 0
09cae750 789
09cae750
PD
790/* Specify the machine mode that pointers have.
791 After generation of rtl, the compiler makes no further distinction
792 between pointers and any other objects of this machine mode. */
793
794#define Pmode word_mode
795
796/* Give call MEMs SImode since it is the "most permissive" mode
797 for both 32-bit and 64-bit targets. */
798
799#define FUNCTION_MODE SImode
800
801/* A C expression for the cost of a branch instruction. A value of 2
802 seems to minimize code size. */
803
804#define BRANCH_COST(speed_p, predictable_p) \
805 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
806
4f475391
AW
807/* True if the target optimizes short forward branches around integer
808 arithmetic instructions into predicated operations, e.g., for
809 conditional-move operations. The macro assumes that all branch
810 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
811 support this feature. The macro further assumes that any integer
812 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
813 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
814 counterparts, including C.MV and C.LI) can be in the branch shadow. */
815
816#define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
817
09cae750
PD
818#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
819
820/* Control the assembler format that we output. */
821
822/* Output to assembler file text saying following lines
823 may contain character constants, extra white space, comments, etc. */
824
825#ifndef ASM_APP_ON
826#define ASM_APP_ON " #APP\n"
827#endif
828
829/* Output to assembler file text saying following lines
830 no longer contain unusual constructs. */
831
832#ifndef ASM_APP_OFF
833#define ASM_APP_OFF " #NO_APP\n"
834#endif
835
836#define REGISTER_NAMES \
837{ "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
838 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
839 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
840 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
841 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
842 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
843 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
844 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
31380d4b 845 "arg", "frame", "vl", "vtype", "N/A", "N/A", "N/A", "N/A", \
846 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
847 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
848 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
849 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
850 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
851 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
852 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",}
09cae750
PD
853
854#define ADDITIONAL_REGISTER_NAMES \
855{ \
856 { "x0", 0 + GP_REG_FIRST }, \
857 { "x1", 1 + GP_REG_FIRST }, \
858 { "x2", 2 + GP_REG_FIRST }, \
859 { "x3", 3 + GP_REG_FIRST }, \
860 { "x4", 4 + GP_REG_FIRST }, \
861 { "x5", 5 + GP_REG_FIRST }, \
862 { "x6", 6 + GP_REG_FIRST }, \
863 { "x7", 7 + GP_REG_FIRST }, \
864 { "x8", 8 + GP_REG_FIRST }, \
865 { "x9", 9 + GP_REG_FIRST }, \
866 { "x10", 10 + GP_REG_FIRST }, \
867 { "x11", 11 + GP_REG_FIRST }, \
868 { "x12", 12 + GP_REG_FIRST }, \
869 { "x13", 13 + GP_REG_FIRST }, \
870 { "x14", 14 + GP_REG_FIRST }, \
871 { "x15", 15 + GP_REG_FIRST }, \
872 { "x16", 16 + GP_REG_FIRST }, \
873 { "x17", 17 + GP_REG_FIRST }, \
874 { "x18", 18 + GP_REG_FIRST }, \
875 { "x19", 19 + GP_REG_FIRST }, \
876 { "x20", 20 + GP_REG_FIRST }, \
877 { "x21", 21 + GP_REG_FIRST }, \
878 { "x22", 22 + GP_REG_FIRST }, \
879 { "x23", 23 + GP_REG_FIRST }, \
880 { "x24", 24 + GP_REG_FIRST }, \
881 { "x25", 25 + GP_REG_FIRST }, \
882 { "x26", 26 + GP_REG_FIRST }, \
883 { "x27", 27 + GP_REG_FIRST }, \
884 { "x28", 28 + GP_REG_FIRST }, \
885 { "x29", 29 + GP_REG_FIRST }, \
886 { "x30", 30 + GP_REG_FIRST }, \
887 { "x31", 31 + GP_REG_FIRST }, \
888 { "f0", 0 + FP_REG_FIRST }, \
889 { "f1", 1 + FP_REG_FIRST }, \
890 { "f2", 2 + FP_REG_FIRST }, \
891 { "f3", 3 + FP_REG_FIRST }, \
892 { "f4", 4 + FP_REG_FIRST }, \
893 { "f5", 5 + FP_REG_FIRST }, \
894 { "f6", 6 + FP_REG_FIRST }, \
895 { "f7", 7 + FP_REG_FIRST }, \
896 { "f8", 8 + FP_REG_FIRST }, \
897 { "f9", 9 + FP_REG_FIRST }, \
898 { "f10", 10 + FP_REG_FIRST }, \
899 { "f11", 11 + FP_REG_FIRST }, \
900 { "f12", 12 + FP_REG_FIRST }, \
901 { "f13", 13 + FP_REG_FIRST }, \
902 { "f14", 14 + FP_REG_FIRST }, \
903 { "f15", 15 + FP_REG_FIRST }, \
904 { "f16", 16 + FP_REG_FIRST }, \
905 { "f17", 17 + FP_REG_FIRST }, \
906 { "f18", 18 + FP_REG_FIRST }, \
907 { "f19", 19 + FP_REG_FIRST }, \
908 { "f20", 20 + FP_REG_FIRST }, \
909 { "f21", 21 + FP_REG_FIRST }, \
910 { "f22", 22 + FP_REG_FIRST }, \
911 { "f23", 23 + FP_REG_FIRST }, \
912 { "f24", 24 + FP_REG_FIRST }, \
913 { "f25", 25 + FP_REG_FIRST }, \
914 { "f26", 26 + FP_REG_FIRST }, \
915 { "f27", 27 + FP_REG_FIRST }, \
916 { "f28", 28 + FP_REG_FIRST }, \
917 { "f29", 29 + FP_REG_FIRST }, \
918 { "f30", 30 + FP_REG_FIRST }, \
919 { "f31", 31 + FP_REG_FIRST }, \
920}
921
922/* Globalizing directive for a label. */
923#define GLOBAL_ASM_OP "\t.globl\t"
924
925/* This is how to store into the string LABEL
926 the symbol_ref name of an internal numbered label where
927 PREFIX is the class of label and NUM is the number within the class.
928 This is suitable for output with `assemble_name'. */
929
930#undef ASM_GENERATE_INTERNAL_LABEL
931#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
932 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
933
934/* This is how to output an element of a case-vector that is absolute. */
935
936#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
937 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
938
939/* This is how to output an element of a PIC case-vector. */
940
941#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
942 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
943 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
944
945/* This is how to output an assembler line
946 that says to advance the location counter
947 to a multiple of 2**LOG bytes. */
948
949#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
950 fprintf (STREAM, "\t.align\t%d\n", (LOG))
951
952/* Define the strings to put out for each section in the object file. */
953#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
954#define DATA_SECTION_ASM_OP "\t.data" /* large data */
955#define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
956#define BSS_SECTION_ASM_OP "\t.bss"
957#define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
958#define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
959
960#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
961do \
962 { \
963 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
964 reg_names[STACK_POINTER_REGNUM], \
965 reg_names[STACK_POINTER_REGNUM], \
966 TARGET_64BIT ? "sd" : "sw", \
967 reg_names[REGNO], \
968 reg_names[STACK_POINTER_REGNUM]); \
969 } \
970while (0)
971
972#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
973do \
974 { \
975 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
976 TARGET_64BIT ? "ld" : "lw", \
977 reg_names[REGNO], \
978 reg_names[STACK_POINTER_REGNUM], \
979 reg_names[STACK_POINTER_REGNUM], \
980 reg_names[STACK_POINTER_REGNUM]); \
981 } \
982while (0)
983
984#define ASM_COMMENT_START "#"
985
986#undef SIZE_TYPE
987#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
988
989#undef PTRDIFF_TYPE
990#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
991
76715c32 992/* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
6ed01e6b
AW
993
994#define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
995
996/* The maximum number of bytes that can be copied by a straight-line
76715c32 997 cpymemsi implementation. */
09cae750 998
6ed01e6b
AW
999#define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
1000
1001/* If a memory-to-memory move would take MOVE_RATIO or more simple
76715c32 1002 move-instruction pairs, we will do a cpymem or libcall instead.
6ed01e6b
AW
1003 Do not use move_by_pieces at all when strict alignment is not
1004 in effect but the target has slow unaligned accesses; in this
76715c32 1005 case, cpymem or libcall is more efficient. */
6ed01e6b
AW
1006
1007#define MOVE_RATIO(speed) \
fb5621b1 1008 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
6ed01e6b
AW
1009 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
1010 CLEAR_RATIO (speed) / 2)
09cae750
PD
1011
1012/* For CLEAR_RATIO, when optimizing for size, give a better estimate
1013 of the length of a memset call, but use the default otherwise. */
1014
1015#define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
1016
1017/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
1018 optimizing for size adjust the ratio to account for the overhead of
1019 loading the constant and replicating it across the word. */
1020
1021#define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
1022
1023#ifndef USED_FOR_TARGET
1024extern const enum reg_class riscv_regno_to_class[];
fb5621b1
KC
1025extern bool riscv_slow_unaligned_access_p;
1026extern unsigned riscv_stack_boundary;
3496ca4e 1027extern unsigned riscv_bytes_per_vector_chunk;
1028extern poly_uint16 riscv_vector_chunks;
7e924ba3 1029extern poly_int64 riscv_v_adjust_nunits (enum machine_mode, int);
247cacc9 1030extern poly_int64 riscv_v_adjust_precision (enum machine_mode, int);
3a982e07 1031extern poly_int64 riscv_v_adjust_bytesize (enum machine_mode, int);
3496ca4e 1032/* The number of bits and bytes in a RVV vector. */
1033#define BITS_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk * 8))
1034#define BYTES_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk))
09cae750
PD
1035#endif
1036
1037#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1038 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
1039
1040#define XLEN_SPEC \
1041 "%{march=rv32*:32}" \
1042 "%{march=rv64*:64}" \
1043
1044#define ABI_SPEC \
1045 "%{mabi=ilp32:ilp32}" \
09baee1a 1046 "%{mabi=ilp32e:ilp32e}" \
09cae750
PD
1047 "%{mabi=ilp32f:ilp32f}" \
1048 "%{mabi=ilp32d:ilp32d}" \
1049 "%{mabi=lp64:lp64}" \
1050 "%{mabi=lp64f:lp64f}" \
1051 "%{mabi=lp64d:lp64d}" \
1052
09cae750
PD
1053/* ISA constants needed for code generation. */
1054#define OPCODE_LW 0x2003
1055#define OPCODE_LD 0x3003
1056#define OPCODE_AUIPC 0x17
1057#define OPCODE_JALR 0x67
1058#define OPCODE_LUI 0x37
1059#define OPCODE_ADDI 0x13
1060#define SHIFT_RD 7
1061#define SHIFT_RS1 15
1062#define SHIFT_IMM 20
1063#define IMM_BITS 12
de6320a8 1064#define C_S_BITS 5
10789329 1065#define C_SxSP_BITS 6
09cae750
PD
1066
1067#define IMM_REACH (1LL << IMM_BITS)
1068#define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
1069#define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
1070
10789329
JW
1071#define SWSP_REACH (4LL << C_SxSP_BITS)
1072#define SDSP_REACH (8LL << C_SxSP_BITS)
1073
de6320a8
CB
1074/* This is the maximum value that can be represented in a compressed load/store
1075 offset (an unsigned 5-bit value scaled by 4). */
f95bd50b 1076#define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
de6320a8 1077
e53b6e56 1078/* Called from RISCV_REORG, this is defined in riscv-sr.cc. */
e18a6d14
AB
1079
1080extern void riscv_remove_unneeded_save_restore_calls (void);
1081
e0a5b313
KC
1082#define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
1083
16f7fcad
PT
1084#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1085 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1086#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1087 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1088
ef85d150
VG
1089#define TARGET_SUPPORTS_WIDE_INT 1
1090
7d935cdd
JZZ
1091#define REGISTER_TARGET_PRAGMAS() riscv_register_pragmas ()
1092
f556cd8b
JZZ
1093#define REGMODE_NATURAL_SIZE(MODE) riscv_regmode_natural_size (MODE)
1094
89367e79
KC
1095#define RISCV_DWARF_VLENB (4096 + 0xc22)
1096
1097#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 1 /* VLENB */)
1098
1099#define DWARF_REG_TO_UNWIND_COLUMN(REGNO) \
1100 ((REGNO == RISCV_DWARF_VLENB) ? (FIRST_PSEUDO_REGISTER + 1) : REGNO)
1101
3365956d
PL
1102/* Like s390, riscv also defined this macro for the vector comparision. Then
1103 the simplify-rtx relational_result will canonicalize the result to the
1104 CONST1_RTX for the simplification. */
1105#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1106
09cae750 1107#endif /* ! GCC_RISCV_H */