]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/riscv/riscv.h
builtins.c (get_memory_rtx): Fix comment.
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
CommitLineData
09cae750 1/* Definition of RISC-V target for GNU compiler.
a5544970 2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
09cae750
PD
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#ifndef GCC_RISCV_H
23#define GCC_RISCV_H
24
25#include "config/riscv/riscv-opts.h"
26
27/* Target CPU builtins. */
28#define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
29
b4c522fa
IB
30/* Target CPU versions for D. */
31#define TARGET_D_CPU_VERSIONS riscv_d_target_versions
32
09cae750
PD
33/* Default target_flags if no switches are specified */
34
35#ifndef TARGET_DEFAULT
36#define TARGET_DEFAULT 0
37#endif
38
39#ifndef RISCV_TUNE_STRING_DEFAULT
40#define RISCV_TUNE_STRING_DEFAULT "rocket"
41#endif
42
43/* Support for a compile-time default CPU, et cetera. The rules are:
44 --with-arch is ignored if -march is specified.
45 --with-abi is ignored if -mabi is specified.
46 --with-tune is ignored if -mtune is specified. */
47#define OPTION_DEFAULT_SPECS \
48 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
49 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
50 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
51
52#ifdef IN_LIBGCC2
53#undef TARGET_64BIT
54/* Make this compile time constant for libgcc2 */
55#define TARGET_64BIT (__riscv_xlen == 64)
56#endif /* IN_LIBGCC2 */
57
58#undef ASM_SPEC
59#define ASM_SPEC "\
60%(subtarget_asm_debugging_spec) \
61%{" FPIE_OR_FPIC_SPEC ":-fpic} \
62%{march=*} \
63%{mabi=*} \
64%(subtarget_asm_spec)"
65
66#define TARGET_DEFAULT_CMODEL CM_MEDLOW
67
68#define LOCAL_LABEL_PREFIX "."
69#define USER_LABEL_PREFIX ""
70
71/* Offsets recorded in opcodes are a multiple of this alignment factor.
72 The default for this in 64-bit mode is 8, which causes problems with
73 SFmode register saves. */
74#define DWARF_CIE_DATA_ALIGNMENT -4
75
76/* The mapping from gcc register number to DWARF 2 CFA column number. */
77#define DWARF_FRAME_REGNUM(REGNO) \
78 (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
79
80/* The DWARF 2 CFA column which tracks the return address. */
81#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
82#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
83
84/* Describe how we implement __builtin_eh_return. */
85#define EH_RETURN_DATA_REGNO(N) \
86 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
87
88#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
89
90/* Target machine storage layout */
91
92#define BITS_BIG_ENDIAN 0
93#define BYTES_BIG_ENDIAN 0
94#define WORDS_BIG_ENDIAN 0
95
96#define MAX_BITS_PER_WORD 64
97
98/* Width of a word, in units (bytes). */
99#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
100#ifndef IN_LIBGCC2
101#define MIN_UNITS_PER_WORD 4
102#endif
103
104/* The `Q' extension is not yet supported. */
105#define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
106
107/* The largest type that can be passed in floating-point registers. */
09baee1a
KC
108#define UNITS_PER_FP_ARG \
109 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
110 || riscv_abi == ABI_LP64) \
111 ? 0 \
112 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
09cae750
PD
113
114/* Set the sizes of the core types. */
115#define SHORT_TYPE_SIZE 16
116#define INT_TYPE_SIZE 32
117#define LONG_LONG_TYPE_SIZE 64
118#define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
119#define LONG_TYPE_SIZE POINTER_SIZE
120
121#define FLOAT_TYPE_SIZE 32
122#define DOUBLE_TYPE_SIZE 64
123#define LONG_DOUBLE_TYPE_SIZE 128
124
125/* Allocation boundary (in *bits*) for storing arguments in argument list. */
126#define PARM_BOUNDARY BITS_PER_WORD
127
128/* Allocation boundary (in *bits*) for the code of a function. */
129#define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
130
0ce42fe1 131/* The smallest supported stack boundary the calling convention supports. */
75902396
JW
132#define STACK_BOUNDARY \
133 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
0ce42fe1
AW
134
135/* The ABI stack alignment. */
75902396 136#define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
0ce42fe1 137
09cae750 138/* There is no point aligning anything to a rounder boundary than this. */
c0d3d1b6 139#define BIGGEST_ALIGNMENT 128
09cae750 140
82285692
AW
141/* The user-level ISA permits unaligned accesses, but they are not required
142 of the privileged architecture. */
143#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
144
09cae750
PD
145/* Define this if you wish to imitate the way many other C compilers
146 handle alignment of bitfields and the structures that contain
147 them.
148
149 The behavior is that the type written for a bit-field (`int',
150 `short', or other integer type) imposes an alignment for the
151 entire structure, as if the structure really did contain an
152 ordinary field of that type. In addition, the bit-field is placed
153 within the structure so that it would fit within such a field,
154 not crossing a boundary for it.
155
156 Thus, on most machines, a bit-field whose type is written as `int'
157 would not cross a four-byte boundary, and would force four-byte
158 alignment for the whole structure. (The alignment used may not
159 be four bytes; it is controlled by the other alignment
160 parameters.)
161
162 If the macro is defined, its definition should be a C expression;
163 a nonzero value for the expression enables this behavior. */
164
165#define PCC_BITFIELD_TYPE_MATTERS 1
166
d3f952c5
JW
167/* An integer expression for the size in bits of the largest integer machine
168 mode that should actually be used. We allow pairs of registers. */
169#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
170
09cae750
PD
171/* If defined, a C expression to compute the alignment for a static
172 variable. TYPE is the data type, and ALIGN is the alignment that
173 the object would ordinarily have. The value of this macro is used
174 instead of that alignment to align the object.
175
176 If this macro is not defined, then ALIGN is used.
177
178 One use of this macro is to increase alignment of medium-size
179 data to make it all fit in fewer cache lines. Another is to
180 cause character arrays to be word-aligned so that `strcpy' calls
181 that copy constants to character arrays can be done inline. */
182
183#define DATA_ALIGNMENT(TYPE, ALIGN) \
184 ((((ALIGN) < BITS_PER_WORD) \
185 && (TREE_CODE (TYPE) == ARRAY_TYPE \
186 || TREE_CODE (TYPE) == UNION_TYPE \
187 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
188
189/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
190 character arrays to be word-aligned so that `strcpy' calls that copy
191 constants to character arrays can be done inline, and 'strcmp' can be
192 optimised to use word loads. */
193#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
194 DATA_ALIGNMENT (TYPE, ALIGN)
195
196/* Define if operations between registers always perform the operation
197 on the full register even if a narrower mode is specified. */
198#define WORD_REGISTER_OPERATIONS 1
199
200/* When in 64-bit mode, move insns will sign extend SImode and CCmode
201 moves. All other references are zero extended. */
202#define LOAD_EXTEND_OP(MODE) \
203 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
204
205/* Define this macro if it is advisable to hold scalars in registers
206 in a wider mode than that declared by the program. In such cases,
207 the value is constrained to be within the bounds of the declared
208 type, but kept valid in the wider mode. The signedness of the
209 extension may differ from that of the type. */
210
211#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
212 if (GET_MODE_CLASS (MODE) == MODE_INT \
213 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
214 { \
215 if ((MODE) == SImode) \
216 (UNSIGNEDP) = 0; \
217 (MODE) = word_mode; \
218 }
219
220/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
221 Extensions of pointers to word_mode must be signed. */
222#define POINTERS_EXTEND_UNSIGNED false
223
09cae750
PD
224/* Define if loading short immediate values into registers sign extends. */
225#define SHORT_IMMEDIATES_SIGN_EXTEND 1
226
227/* Standard register usage. */
228
229/* Number of hardware registers. We have:
230
231 - 32 integer registers
232 - 32 floating point registers
233 - 2 fake registers:
234 - ARG_POINTER_REGNUM
235 - FRAME_POINTER_REGNUM */
236
237#define FIRST_PSEUDO_REGISTER 66
238
239/* x0, sp, gp, and tp are fixed. */
240
241#define FIXED_REGISTERS \
242{ /* General registers. */ \
243 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
244 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
245 /* Floating-point registers. */ \
246 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
247 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
248 /* Others. */ \
249 1, 1 \
250}
251
f3abed16 252/* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
09cae750
PD
253 The call RTLs themselves clobber ra. */
254
255#define CALL_USED_REGISTERS \
256{ /* General registers. */ \
257 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
258 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
259 /* Floating-point registers. */ \
260 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
261 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
262 /* Others. */ \
263 1, 1 \
264}
265
266/* Internal macros to classify an ISA register's type. */
267
268#define GP_REG_FIRST 0
09baee1a 269#define GP_REG_LAST (TARGET_RVE ? 15 : 31)
09cae750
PD
270#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
271
272#define FP_REG_FIRST 32
273#define FP_REG_LAST 63
274#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
275
276/* The DWARF 2 CFA column which tracks the return address from a
277 signal handler context. This means that to maintain backwards
278 compatibility, no hard register can be assigned this column if it
279 would need to be handled by the DWARF unwinder. */
280#define DWARF_ALT_FRAME_RETURN_COLUMN 64
281
282#define GP_REG_P(REGNO) \
283 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
284#define FP_REG_P(REGNO) \
285 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
286
287#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
288
09cae750
PD
289/* Use s0 as the frame pointer if it is so requested. */
290#define HARD_FRAME_POINTER_REGNUM 8
291#define STACK_POINTER_REGNUM 2
292#define THREAD_POINTER_REGNUM 4
293
294/* These two registers don't really exist: they get eliminated to either
295 the stack or hard frame pointer. */
296#define ARG_POINTER_REGNUM 64
297#define FRAME_POINTER_REGNUM 65
298
299/* Register in which static-chain is passed to a function. */
300#define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
301
302/* Registers used as temporaries in prologue/epilogue code.
303
304 The prologue registers mustn't conflict with any
305 incoming arguments, the static chain pointer, or the frame pointer.
306 The epilogue temporary mustn't conflict with the return registers,
307 the frame pointer, the EH stack adjustment, or the EH data registers. */
308
309#define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST + 1)
310#define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
311
312#define MCOUNT_NAME "_mcount"
313
314#define NO_PROFILE_COUNTERS 1
315
316/* Emit rtl for profiling. Output assembler code to FILE
317 to call "_mcount" for profiling a function entry. */
318#define PROFILE_HOOK(LABEL) \
319 { \
320 rtx fun, ra; \
321 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
322 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
db69559b 323 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
09cae750
PD
324 }
325
326/* All the work done in PROFILE_HOOK, but still required. */
327#define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
328
329/* Define this macro if it is as good or better to call a constant
330 function address than to call an address kept in a register. */
331#define NO_FUNCTION_CSE 1
332
333/* Define the classes of registers for register constraints in the
334 machine description. Also define ranges of constants.
335
336 One of the classes must always be named ALL_REGS and include all hard regs.
337 If there is more than one class, another class must be named NO_REGS
338 and contain no registers.
339
340 The name GENERAL_REGS must be the name of a class (or an alias for
341 another name such as ALL_REGS). This is the class of registers
342 that is allowed by "g" or "r" in a register constraint.
343 Also, registers outside this class are allocated only when
344 instructions express preferences for them.
345
346 The classes must be numbered in nondecreasing order; that is,
347 a larger-numbered class must never be contained completely
348 in a smaller-numbered class.
349
350 For any two classes, it is very desirable that there be another
351 class that represents their union. */
352
353enum reg_class
354{
355 NO_REGS, /* no registers in set */
356 SIBCALL_REGS, /* registers used by indirect sibcalls */
357 JALR_REGS, /* registers used by indirect calls */
358 GR_REGS, /* integer registers */
359 FP_REGS, /* floating-point registers */
360 FRAME_REGS, /* arg pointer and frame pointer */
361 ALL_REGS, /* all registers */
362 LIM_REG_CLASSES /* max value + 1 */
363};
364
365#define N_REG_CLASSES (int) LIM_REG_CLASSES
366
367#define GENERAL_REGS GR_REGS
368
369/* An initializer containing the names of the register classes as C
370 string constants. These names are used in writing some of the
371 debugging dumps. */
372
373#define REG_CLASS_NAMES \
374{ \
375 "NO_REGS", \
376 "SIBCALL_REGS", \
377 "JALR_REGS", \
378 "GR_REGS", \
379 "FP_REGS", \
380 "FRAME_REGS", \
381 "ALL_REGS" \
382}
383
384/* An initializer containing the contents of the register classes,
385 as integers which are bit masks. The Nth integer specifies the
386 contents of class N. The way the integer MASK is interpreted is
387 that register R is in the class if `MASK & (1 << R)' is 1.
388
389 When the machine has more than 32 registers, an integer does not
390 suffice. Then the integers are replaced by sub-initializers,
391 braced groupings containing several integers. Each
392 sub-initializer must be suitable as an initializer for the type
393 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
394
395#define REG_CLASS_CONTENTS \
396{ \
397 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
398 { 0xf00000c0, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
399 { 0xffffffc0, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
400 { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \
401 { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
402 { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \
403 { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \
404}
405
406/* A C expression whose value is a register class containing hard
407 register REGNO. In general there is more that one such class;
408 choose a class which is "minimal", meaning that no smaller class
409 also contains the register. */
410
411#define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
412
413/* A macro whose definition is the name of the class to which a
414 valid base register must belong. A base register is one used in
415 an address which is the register value plus a displacement. */
416
417#define BASE_REG_CLASS GR_REGS
418
419/* A macro whose definition is the name of the class to which a
420 valid index register must belong. An index register is one used
421 in an address where its value is either multiplied by a scale
422 factor or added to another register (as well as added to a
423 displacement). */
424
425#define INDEX_REG_CLASS NO_REGS
426
427/* We generally want to put call-clobbered registers ahead of
428 call-saved ones. (IRA expects this.) */
429
430#define REG_ALLOC_ORDER \
431{ \
432 /* Call-clobbered GPRs. */ \
433 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
434 /* Call-saved GPRs. */ \
435 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
436 /* GPRs that can never be exposed to the register allocator. */ \
437 0, 2, 3, 4, \
438 /* Call-clobbered FPRs. */ \
439 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
440 60, 61, 62, 63, \
441 /* Call-saved FPRs. */ \
442 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
443 /* None of the remaining classes have defined call-saved \
444 registers. */ \
445 64, 65 \
446}
447
448/* True if VALUE is a signed 12-bit number. */
449
450#define SMALL_OPERAND(VALUE) \
451 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
452
453/* True if VALUE can be loaded into a register using LUI. */
454
455#define LUI_OPERAND(VALUE) \
456 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
457 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
458
09cae750
PD
459/* Stack layout; function entry, exit and calling. */
460
461#define STACK_GROWS_DOWNWARD 1
462
463#define FRAME_GROWS_DOWNWARD 1
464
09cae750
PD
465#define RETURN_ADDR_RTX riscv_return_addr
466
467#define ELIMINABLE_REGS \
468{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
469 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
470 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
471 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
472
473#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
474 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
475
476/* Allocate stack space for arguments at the beginning of each function. */
477#define ACCUMULATE_OUTGOING_ARGS 1
478
479/* The argument pointer always points to the first argument. */
480#define FIRST_PARM_OFFSET(FNDECL) 0
481
482#define REG_PARM_STACK_SPACE(FNDECL) 0
483
484/* Define this if it is the responsibility of the caller to
485 allocate the area reserved for arguments passed in registers.
486 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
487 of this macro is to determine whether the space is included in
488 `crtl->outgoing_args_size'. */
489#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
490
c0d3d1b6 491#define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
0ce42fe1 492
09cae750
PD
493/* Symbolic macros for the registers used to return integer and floating
494 point values. */
495
496#define GP_RETURN GP_ARG_FIRST
497#define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
498
75902396 499#define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
09cae750
PD
500
501/* Symbolic macros for the first/last argument registers. */
502
503#define GP_ARG_FIRST (GP_REG_FIRST + 10)
504#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
505#define GP_TEMP_FIRST (GP_REG_FIRST + 5)
506#define FP_ARG_FIRST (FP_REG_FIRST + 10)
507#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
508
509#define CALLEE_SAVED_REG_NUMBER(REGNO) \
510 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
511 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
512
513#define LIBCALL_VALUE(MODE) \
514 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
515
516#define FUNCTION_VALUE(VALTYPE, FUNC) \
517 riscv_function_value (VALTYPE, FUNC, VOIDmode)
518
519#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
520
521/* 1 if N is a possible register number for function argument passing.
1fb157cc 522 We have no FP argument registers when soft-float. */
09cae750
PD
523
524/* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
525#define FUNCTION_ARG_REGNO_P(N) \
526 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
527 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
528
529typedef struct {
530 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
531 unsigned int num_gprs;
532
533 /* Number of floating-point registers used so far, likewise. */
534 unsigned int num_fprs;
535} CUMULATIVE_ARGS;
536
537/* Initialize a variable CUM of type CUMULATIVE_ARGS
538 for a call to a function whose data type is FNTYPE.
539 For a library call, FNTYPE is 0. */
540
541#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
542 memset (&(CUM), 0, sizeof (CUM))
543
d0ebdd9f 544#define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
09cae750 545
0ce42fe1
AW
546/* Align based on stack boundary, which might have been set by the user. */
547#define RISCV_STACK_ALIGN(LOC) \
c0d3d1b6 548 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
09cae750
PD
549
550/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
551 the stack pointer does not matter. The value is tested only in
552 functions that have frame pointers.
553 No definition is equivalent to always zero. */
554
555#define EXIT_IGNORE_STACK 1
556
557
558/* Trampolines are a block of code followed by two pointers. */
559
560#define TRAMPOLINE_CODE_SIZE 16
561#define TRAMPOLINE_SIZE \
562 ((Pmode == SImode) \
563 ? TRAMPOLINE_CODE_SIZE \
564 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
565#define TRAMPOLINE_ALIGNMENT POINTER_SIZE
566
567/* Addressing modes, and classification of registers for them. */
568
569#define REGNO_OK_FOR_INDEX_P(REGNO) 0
570#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
571 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
572
573/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
574 and check its validity for a certain class.
575 We have two alternate definitions for each of them.
576 The usual definition accepts all pseudo regs; the other rejects them all.
577 The symbol REG_OK_STRICT causes the latter definition to be used.
578
579 Most source files want to accept pseudo regs in the hope that
580 they will get allocated to the class that the insn wants them to be in.
581 Some source files that are used after register allocation
582 need to be strict. */
583
584#ifndef REG_OK_STRICT
585#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
586 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
587#else
588#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
589 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
590#endif
591
592#define REG_OK_FOR_INDEX_P(X) 0
593
594/* Maximum number of registers that can appear in a valid memory address. */
595
596#define MAX_REGS_PER_ADDRESS 1
597
598#define CONSTANT_ADDRESS_P(X) \
599 (CONSTANT_P (X) && memory_address_p (SImode, X))
600
601/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
602 'the start of the function that this code is output in'. */
603
2041a23a
TV
604#define ASM_OUTPUT_LABELREF(FILE,NAME) \
605 do { \
606 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
607 asm_fprintf ((FILE), "%U%s", \
608 XSTR (XEXP (DECL_RTL (current_function_decl), \
609 0), 0)); \
610 else \
611 asm_fprintf ((FILE), "%U%s", (NAME)); \
612 } while (0)
09cae750
PD
613
614#define JUMP_TABLES_IN_TEXT_SECTION 0
615#define CASE_VECTOR_MODE SImode
616#define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
617
618/* The load-address macro is used for PC-relative addressing of symbols
619 that bind locally. Don't use it for symbols that should be addressed
620 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
621 currently results in more opportunities for linker relaxation. */
622#define USE_LOAD_ADDRESS_MACRO(sym) \
623 (!TARGET_EXPLICIT_RELOCS && \
624 ((flag_pic \
625 && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
626 || ((GET_CODE (sym) == CONST) \
627 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
628 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \
629 || riscv_cmodel == CM_MEDANY))
630
631/* Define this as 1 if `char' should by default be signed; else as 0. */
632#define DEFAULT_SIGNED_CHAR 0
633
634#define MOVE_MAX UNITS_PER_WORD
635#define MAX_MOVE_MAX 8
636
ecc82a8d
AW
637/* The SPARC port says:
638 Nonzero if access to memory by bytes is slow and undesirable.
639 For RISC chips, it means that access to memory by bytes is no
640 better than access by words when possible, so grab a whole word
641 and maybe make use of that. */
642#define SLOW_BYTE_ACCESS 1
09cae750 643
b7ef9225
JW
644/* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
645 in the md file instead. */
646#define SHIFT_COUNT_TRUNCATED 0
09cae750 647
09cae750
PD
648/* Specify the machine mode that pointers have.
649 After generation of rtl, the compiler makes no further distinction
650 between pointers and any other objects of this machine mode. */
651
652#define Pmode word_mode
653
654/* Give call MEMs SImode since it is the "most permissive" mode
655 for both 32-bit and 64-bit targets. */
656
657#define FUNCTION_MODE SImode
658
659/* A C expression for the cost of a branch instruction. A value of 2
660 seems to minimize code size. */
661
662#define BRANCH_COST(speed_p, predictable_p) \
663 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
664
4f475391
AW
665/* True if the target optimizes short forward branches around integer
666 arithmetic instructions into predicated operations, e.g., for
667 conditional-move operations. The macro assumes that all branch
668 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
669 support this feature. The macro further assumes that any integer
670 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
671 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
672 counterparts, including C.MV and C.LI) can be in the branch shadow. */
673
674#define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
675
09cae750
PD
676#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
677
678/* Control the assembler format that we output. */
679
680/* Output to assembler file text saying following lines
681 may contain character constants, extra white space, comments, etc. */
682
683#ifndef ASM_APP_ON
684#define ASM_APP_ON " #APP\n"
685#endif
686
687/* Output to assembler file text saying following lines
688 no longer contain unusual constructs. */
689
690#ifndef ASM_APP_OFF
691#define ASM_APP_OFF " #NO_APP\n"
692#endif
693
694#define REGISTER_NAMES \
695{ "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
696 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
697 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
698 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
699 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
700 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
701 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
702 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
703 "arg", "frame", }
704
705#define ADDITIONAL_REGISTER_NAMES \
706{ \
707 { "x0", 0 + GP_REG_FIRST }, \
708 { "x1", 1 + GP_REG_FIRST }, \
709 { "x2", 2 + GP_REG_FIRST }, \
710 { "x3", 3 + GP_REG_FIRST }, \
711 { "x4", 4 + GP_REG_FIRST }, \
712 { "x5", 5 + GP_REG_FIRST }, \
713 { "x6", 6 + GP_REG_FIRST }, \
714 { "x7", 7 + GP_REG_FIRST }, \
715 { "x8", 8 + GP_REG_FIRST }, \
716 { "x9", 9 + GP_REG_FIRST }, \
717 { "x10", 10 + GP_REG_FIRST }, \
718 { "x11", 11 + GP_REG_FIRST }, \
719 { "x12", 12 + GP_REG_FIRST }, \
720 { "x13", 13 + GP_REG_FIRST }, \
721 { "x14", 14 + GP_REG_FIRST }, \
722 { "x15", 15 + GP_REG_FIRST }, \
723 { "x16", 16 + GP_REG_FIRST }, \
724 { "x17", 17 + GP_REG_FIRST }, \
725 { "x18", 18 + GP_REG_FIRST }, \
726 { "x19", 19 + GP_REG_FIRST }, \
727 { "x20", 20 + GP_REG_FIRST }, \
728 { "x21", 21 + GP_REG_FIRST }, \
729 { "x22", 22 + GP_REG_FIRST }, \
730 { "x23", 23 + GP_REG_FIRST }, \
731 { "x24", 24 + GP_REG_FIRST }, \
732 { "x25", 25 + GP_REG_FIRST }, \
733 { "x26", 26 + GP_REG_FIRST }, \
734 { "x27", 27 + GP_REG_FIRST }, \
735 { "x28", 28 + GP_REG_FIRST }, \
736 { "x29", 29 + GP_REG_FIRST }, \
737 { "x30", 30 + GP_REG_FIRST }, \
738 { "x31", 31 + GP_REG_FIRST }, \
739 { "f0", 0 + FP_REG_FIRST }, \
740 { "f1", 1 + FP_REG_FIRST }, \
741 { "f2", 2 + FP_REG_FIRST }, \
742 { "f3", 3 + FP_REG_FIRST }, \
743 { "f4", 4 + FP_REG_FIRST }, \
744 { "f5", 5 + FP_REG_FIRST }, \
745 { "f6", 6 + FP_REG_FIRST }, \
746 { "f7", 7 + FP_REG_FIRST }, \
747 { "f8", 8 + FP_REG_FIRST }, \
748 { "f9", 9 + FP_REG_FIRST }, \
749 { "f10", 10 + FP_REG_FIRST }, \
750 { "f11", 11 + FP_REG_FIRST }, \
751 { "f12", 12 + FP_REG_FIRST }, \
752 { "f13", 13 + FP_REG_FIRST }, \
753 { "f14", 14 + FP_REG_FIRST }, \
754 { "f15", 15 + FP_REG_FIRST }, \
755 { "f16", 16 + FP_REG_FIRST }, \
756 { "f17", 17 + FP_REG_FIRST }, \
757 { "f18", 18 + FP_REG_FIRST }, \
758 { "f19", 19 + FP_REG_FIRST }, \
759 { "f20", 20 + FP_REG_FIRST }, \
760 { "f21", 21 + FP_REG_FIRST }, \
761 { "f22", 22 + FP_REG_FIRST }, \
762 { "f23", 23 + FP_REG_FIRST }, \
763 { "f24", 24 + FP_REG_FIRST }, \
764 { "f25", 25 + FP_REG_FIRST }, \
765 { "f26", 26 + FP_REG_FIRST }, \
766 { "f27", 27 + FP_REG_FIRST }, \
767 { "f28", 28 + FP_REG_FIRST }, \
768 { "f29", 29 + FP_REG_FIRST }, \
769 { "f30", 30 + FP_REG_FIRST }, \
770 { "f31", 31 + FP_REG_FIRST }, \
771}
772
773/* Globalizing directive for a label. */
774#define GLOBAL_ASM_OP "\t.globl\t"
775
776/* This is how to store into the string LABEL
777 the symbol_ref name of an internal numbered label where
778 PREFIX is the class of label and NUM is the number within the class.
779 This is suitable for output with `assemble_name'. */
780
781#undef ASM_GENERATE_INTERNAL_LABEL
782#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
783 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
784
785/* This is how to output an element of a case-vector that is absolute. */
786
787#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
788 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
789
790/* This is how to output an element of a PIC case-vector. */
791
792#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
793 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
794 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
795
796/* This is how to output an assembler line
797 that says to advance the location counter
798 to a multiple of 2**LOG bytes. */
799
800#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
801 fprintf (STREAM, "\t.align\t%d\n", (LOG))
802
803/* Define the strings to put out for each section in the object file. */
804#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
805#define DATA_SECTION_ASM_OP "\t.data" /* large data */
806#define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
807#define BSS_SECTION_ASM_OP "\t.bss"
808#define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
809#define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
810
811#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
812do \
813 { \
814 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
815 reg_names[STACK_POINTER_REGNUM], \
816 reg_names[STACK_POINTER_REGNUM], \
817 TARGET_64BIT ? "sd" : "sw", \
818 reg_names[REGNO], \
819 reg_names[STACK_POINTER_REGNUM]); \
820 } \
821while (0)
822
823#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
824do \
825 { \
826 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
827 TARGET_64BIT ? "ld" : "lw", \
828 reg_names[REGNO], \
829 reg_names[STACK_POINTER_REGNUM], \
830 reg_names[STACK_POINTER_REGNUM], \
831 reg_names[STACK_POINTER_REGNUM]); \
832 } \
833while (0)
834
835#define ASM_COMMENT_START "#"
836
837#undef SIZE_TYPE
838#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
839
840#undef PTRDIFF_TYPE
841#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
842
76715c32 843/* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
6ed01e6b
AW
844
845#define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
846
847/* The maximum number of bytes that can be copied by a straight-line
76715c32 848 cpymemsi implementation. */
09cae750 849
6ed01e6b
AW
850#define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
851
852/* If a memory-to-memory move would take MOVE_RATIO or more simple
76715c32 853 move-instruction pairs, we will do a cpymem or libcall instead.
6ed01e6b
AW
854 Do not use move_by_pieces at all when strict alignment is not
855 in effect but the target has slow unaligned accesses; in this
76715c32 856 case, cpymem or libcall is more efficient. */
6ed01e6b
AW
857
858#define MOVE_RATIO(speed) \
fb5621b1 859 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
6ed01e6b
AW
860 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
861 CLEAR_RATIO (speed) / 2)
09cae750
PD
862
863/* For CLEAR_RATIO, when optimizing for size, give a better estimate
864 of the length of a memset call, but use the default otherwise. */
865
866#define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
867
868/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
869 optimizing for size adjust the ratio to account for the overhead of
870 loading the constant and replicating it across the word. */
871
872#define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
873
874#ifndef USED_FOR_TARGET
875extern const enum reg_class riscv_regno_to_class[];
fb5621b1
KC
876extern bool riscv_slow_unaligned_access_p;
877extern unsigned riscv_stack_boundary;
09cae750
PD
878#endif
879
880#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
881 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
882
883#define XLEN_SPEC \
884 "%{march=rv32*:32}" \
885 "%{march=rv64*:64}" \
886
887#define ABI_SPEC \
888 "%{mabi=ilp32:ilp32}" \
09baee1a 889 "%{mabi=ilp32e:ilp32e}" \
09cae750
PD
890 "%{mabi=ilp32f:ilp32f}" \
891 "%{mabi=ilp32d:ilp32d}" \
892 "%{mabi=lp64:lp64}" \
893 "%{mabi=lp64f:lp64f}" \
894 "%{mabi=lp64d:lp64d}" \
895
09cae750
PD
896/* ISA constants needed for code generation. */
897#define OPCODE_LW 0x2003
898#define OPCODE_LD 0x3003
899#define OPCODE_AUIPC 0x17
900#define OPCODE_JALR 0x67
901#define OPCODE_LUI 0x37
902#define OPCODE_ADDI 0x13
903#define SHIFT_RD 7
904#define SHIFT_RS1 15
905#define SHIFT_IMM 20
906#define IMM_BITS 12
10789329 907#define C_SxSP_BITS 6
09cae750
PD
908
909#define IMM_REACH (1LL << IMM_BITS)
910#define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
911#define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
912
10789329
JW
913#define SWSP_REACH (4LL << C_SxSP_BITS)
914#define SDSP_REACH (8LL << C_SxSP_BITS)
915
09cae750 916#endif /* ! GCC_RISCV_H */