]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/riscv/riscv.h
tree-optimization/108724 - vectorized code getting piecewise expanded
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
CommitLineData
09cae750 1/* Definition of RISC-V target for GNU compiler.
aeee4812 2 Copyright (C) 2011-2023 Free Software Foundation, Inc.
09cae750
PD
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#ifndef GCC_RISCV_H
23#define GCC_RISCV_H
24
25#include "config/riscv/riscv-opts.h"
26
27/* Target CPU builtins. */
28#define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
29
cd1e2f63
MC
30#ifdef TARGET_BIG_ENDIAN_DEFAULT
31#define DEFAULT_ENDIAN_SPEC "b"
32#else
33#define DEFAULT_ENDIAN_SPEC "l"
34#endif
35
09cae750
PD
36/* Default target_flags if no switches are specified */
37
38#ifndef TARGET_DEFAULT
39#define TARGET_DEFAULT 0
40#endif
41
42#ifndef RISCV_TUNE_STRING_DEFAULT
43#define RISCV_TUNE_STRING_DEFAULT "rocket"
44#endif
45
f908b69c 46extern const char *riscv_expand_arch (int argc, const char **argv);
72eb8335
KC
47extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv);
48extern const char *riscv_default_mtune (int argc, const char **argv);
d72ca12b 49extern const char *riscv_multi_lib_check (int argc, const char **argv);
f908b69c
KC
50
51# define EXTRA_SPEC_FUNCTIONS \
72eb8335
KC
52 { "riscv_expand_arch", riscv_expand_arch }, \
53 { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \
d72ca12b
KC
54 { "riscv_default_mtune", riscv_default_mtune }, \
55 { "riscv_multi_lib_check", riscv_multi_lib_check },
f908b69c 56
09cae750 57/* Support for a compile-time default CPU, et cetera. The rules are:
72eb8335 58 --with-arch is ignored if -march or -mcpu is specified.
09cae750 59 --with-abi is ignored if -mabi is specified.
72eb8335 60 --with-tune is ignored if -mtune or -mcpu is specified.
06e32a5e 61 --with-isa-spec is ignored if -misa-spec is specified.
72eb8335
KC
62
63 But using default -march/-mtune value if -mcpu don't have valid option. */
09cae750 64#define OPTION_DEFAULT_SPECS \
72eb8335
KC
65 {"tune", "%{!mtune=*:" \
66 " %{!mcpu=*:-mtune=%(VALUE)}" \
67 " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \
68 {"arch", "%{!march=*:" \
69 " %{!mcpu=*:-march=%(VALUE)}" \
70 " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \
09cae750 71 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
06e32a5e 72 {"isa_spec", "%{!misa-spec=*:-misa-spec=%(VALUE)}" }, \
09cae750
PD
73
74#ifdef IN_LIBGCC2
75#undef TARGET_64BIT
76/* Make this compile time constant for libgcc2 */
77#define TARGET_64BIT (__riscv_xlen == 64)
78#endif /* IN_LIBGCC2 */
79
4b815282
KC
80#ifdef HAVE_AS_MISA_SPEC
81#define ASM_MISA_SPEC "%{misa-spec=*}"
82#else
83#define ASM_MISA_SPEC ""
84#endif
85
a5ad5d5c
KC
86/* Reference:
87 https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing */
88#define STRINGIZING(s) __STRINGIZING(s)
89#define __STRINGIZING(s) #s
90
91#define MULTILIB_DEFAULTS \
92 {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \
93 "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) }
94
09cae750
PD
95#undef ASM_SPEC
96#define ASM_SPEC "\
97%(subtarget_asm_debugging_spec) \
98%{" FPIE_OR_FPIC_SPEC ":-fpic} \
f4670347 99%{march=*} \
09cae750 100%{mabi=*} \
3b0a7d62 101%{mno-relax} \
a9604fcb
MC
102%{mbig-endian} \
103%{mlittle-endian} \
4b815282
KC
104%(subtarget_asm_spec)" \
105ASM_MISA_SPEC
09cae750 106
f4670347 107#undef DRIVER_SELF_SPECS
72eb8335
KC
108#define DRIVER_SELF_SPECS \
109"%{march=*:%:riscv_expand_arch(%*)} " \
110"%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
f4670347 111
09cae750
PD
112#define TARGET_DEFAULT_CMODEL CM_MEDLOW
113
114#define LOCAL_LABEL_PREFIX "."
115#define USER_LABEL_PREFIX ""
116
117/* Offsets recorded in opcodes are a multiple of this alignment factor.
118 The default for this in 64-bit mode is 8, which causes problems with
119 SFmode register saves. */
120#define DWARF_CIE_DATA_ALIGNMENT -4
121
122/* The mapping from gcc register number to DWARF 2 CFA column number. */
31380d4b 123#define DWARF_FRAME_REGNUM(REGNO) \
124 (VL_REG_P (REGNO) ? RISCV_DWARF_VL \
125 : VTYPE_REG_P (REGNO) \
126 ? RISCV_DWARF_VTYPE \
127 : (GP_REG_P (REGNO) || FP_REG_P (REGNO) || V_REG_P (REGNO) \
128 ? REGNO \
129 : INVALID_REGNUM))
09cae750
PD
130
131/* The DWARF 2 CFA column which tracks the return address. */
132#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
133#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
134
135/* Describe how we implement __builtin_eh_return. */
136#define EH_RETURN_DATA_REGNO(N) \
137 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
138
139#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
140
141/* Target machine storage layout */
142
143#define BITS_BIG_ENDIAN 0
a9604fcb
MC
144#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
145#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
09cae750
PD
146
147#define MAX_BITS_PER_WORD 64
148
149/* Width of a word, in units (bytes). */
150#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
151#ifndef IN_LIBGCC2
152#define MIN_UNITS_PER_WORD 4
153#endif
154
e53b6e56 155/* Allows SImode op in builtin overflow pattern, see internal-fn.cc. */
6efd040c
L
156#undef TARGET_MIN_ARITHMETIC_PRECISION
157#define TARGET_MIN_ARITHMETIC_PRECISION riscv_min_arithmetic_precision
158
09cae750
PD
159/* The `Q' extension is not yet supported. */
160#define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
e9f827d7 161/* Size per vector register. For VLEN = 32, size = poly (4, 4). Otherwise, size = poly (8, 8). */
31380d4b 162#define UNITS_PER_V_REG (riscv_vector_chunks * riscv_bytes_per_vector_chunk)
09cae750
PD
163
164/* The largest type that can be passed in floating-point registers. */
09baee1a
KC
165#define UNITS_PER_FP_ARG \
166 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
167 || riscv_abi == ABI_LP64) \
168 ? 0 \
169 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
09cae750
PD
170
171/* Set the sizes of the core types. */
172#define SHORT_TYPE_SIZE 16
173#define INT_TYPE_SIZE 32
174#define LONG_LONG_TYPE_SIZE 64
175#define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
176#define LONG_TYPE_SIZE POINTER_SIZE
177
178#define FLOAT_TYPE_SIZE 32
179#define DOUBLE_TYPE_SIZE 64
180#define LONG_DOUBLE_TYPE_SIZE 128
181
182/* Allocation boundary (in *bits*) for storing arguments in argument list. */
183#define PARM_BOUNDARY BITS_PER_WORD
184
185/* Allocation boundary (in *bits*) for the code of a function. */
186#define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
187
0ce42fe1 188/* The smallest supported stack boundary the calling convention supports. */
75902396
JW
189#define STACK_BOUNDARY \
190 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
0ce42fe1
AW
191
192/* The ABI stack alignment. */
75902396 193#define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
0ce42fe1 194
09cae750 195/* There is no point aligning anything to a rounder boundary than this. */
c0d3d1b6 196#define BIGGEST_ALIGNMENT 128
09cae750 197
82285692
AW
198/* The user-level ISA permits unaligned accesses, but they are not required
199 of the privileged architecture. */
200#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
201
09cae750
PD
202/* Define this if you wish to imitate the way many other C compilers
203 handle alignment of bitfields and the structures that contain
204 them.
205
206 The behavior is that the type written for a bit-field (`int',
207 `short', or other integer type) imposes an alignment for the
208 entire structure, as if the structure really did contain an
209 ordinary field of that type. In addition, the bit-field is placed
210 within the structure so that it would fit within such a field,
211 not crossing a boundary for it.
212
213 Thus, on most machines, a bit-field whose type is written as `int'
214 would not cross a four-byte boundary, and would force four-byte
215 alignment for the whole structure. (The alignment used may not
216 be four bytes; it is controlled by the other alignment
217 parameters.)
218
219 If the macro is defined, its definition should be a C expression;
220 a nonzero value for the expression enables this behavior. */
221
222#define PCC_BITFIELD_TYPE_MATTERS 1
223
d3f952c5
JW
224/* An integer expression for the size in bits of the largest integer machine
225 mode that should actually be used. We allow pairs of registers. */
226#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
227
ffbb9818
ID
228/* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
229#define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
230 (((COND) && ((ALIGN) < BITS_PER_WORD) \
231 && (TREE_CODE (TYPE) == ARRAY_TYPE \
232 || TREE_CODE (TYPE) == UNION_TYPE \
233 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
234
09cae750
PD
235/* If defined, a C expression to compute the alignment for a static
236 variable. TYPE is the data type, and ALIGN is the alignment that
237 the object would ordinarily have. The value of this macro is used
238 instead of that alignment to align the object.
239
240 If this macro is not defined, then ALIGN is used.
241
242 One use of this macro is to increase alignment of medium-size
243 data to make it all fit in fewer cache lines. Another is to
244 cause character arrays to be word-aligned so that `strcpy' calls
245 that copy constants to character arrays can be done inline. */
246
ffbb9818
ID
247#define DATA_ALIGNMENT(TYPE, ALIGN) \
248 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
249 TYPE, ALIGN)
09cae750
PD
250
251/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
252 character arrays to be word-aligned so that `strcpy' calls that copy
253 constants to character arrays can be done inline, and 'strcmp' can be
254 optimised to use word loads. */
255#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
ffbb9818 256 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
09cae750
PD
257
258/* Define if operations between registers always perform the operation
259 on the full register even if a narrower mode is specified. */
260#define WORD_REGISTER_OPERATIONS 1
261
262/* When in 64-bit mode, move insns will sign extend SImode and CCmode
263 moves. All other references are zero extended. */
264#define LOAD_EXTEND_OP(MODE) \
265 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
266
267/* Define this macro if it is advisable to hold scalars in registers
268 in a wider mode than that declared by the program. In such cases,
269 the value is constrained to be within the bounds of the declared
270 type, but kept valid in the wider mode. The signedness of the
271 extension may differ from that of the type. */
272
273#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
274 if (GET_MODE_CLASS (MODE) == MODE_INT \
275 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
276 { \
277 if ((MODE) == SImode) \
278 (UNSIGNEDP) = 0; \
279 (MODE) = word_mode; \
280 }
281
282/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
283 Extensions of pointers to word_mode must be signed. */
284#define POINTERS_EXTEND_UNSIGNED false
285
09cae750
PD
286/* Define if loading short immediate values into registers sign extends. */
287#define SHORT_IMMEDIATES_SIGN_EXTEND 1
288
289/* Standard register usage. */
290
291/* Number of hardware registers. We have:
292
293 - 32 integer registers
294 - 32 floating point registers
295 - 2 fake registers:
296 - ARG_POINTER_REGNUM
31380d4b 297 - FRAME_POINTER_REGNUM
298 - 1 vl register
299 - 1 vtype register
300 - 30 unused registers for future expansion
301 - 32 vector registers */
09cae750 302
31380d4b 303#define FIRST_PSEUDO_REGISTER 128
09cae750
PD
304
305/* x0, sp, gp, and tp are fixed. */
306
307#define FIXED_REGISTERS \
308{ /* General registers. */ \
309 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
310 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
311 /* Floating-point registers. */ \
312 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
313 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
314 /* Others. */ \
31380d4b 315 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
316 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
317 /* Vector registers. */ \
318 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
319 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
09cae750
PD
320}
321
f3abed16 322/* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
09cae750
PD
323 The call RTLs themselves clobber ra. */
324
325#define CALL_USED_REGISTERS \
326{ /* General registers. */ \
327 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
328 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
329 /* Floating-point registers. */ \
330 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
331 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
332 /* Others. */ \
31380d4b 333 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
334 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
335 /* Vector registers. */ \
336 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
337 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
09cae750
PD
338}
339
b780f68e
JW
340/* Select a register mode required for caller save of hard regno REGNO.
341 Contrary to what is documented, the default is not the smallest suitable
342 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
343 it quickly creates paradoxical subregs that can be problematic. */
344#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
345 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
346
09cae750
PD
347/* Internal macros to classify an ISA register's type. */
348
349#define GP_REG_FIRST 0
09baee1a 350#define GP_REG_LAST (TARGET_RVE ? 15 : 31)
09cae750
PD
351#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
352
353#define FP_REG_FIRST 32
354#define FP_REG_LAST 63
355#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
356
31380d4b 357#define V_REG_FIRST 96
358#define V_REG_LAST 127
359#define V_REG_NUM (V_REG_LAST - V_REG_FIRST + 1)
360
09cae750
PD
361/* The DWARF 2 CFA column which tracks the return address from a
362 signal handler context. This means that to maintain backwards
363 compatibility, no hard register can be assigned this column if it
364 would need to be handled by the DWARF unwinder. */
365#define DWARF_ALT_FRAME_RETURN_COLUMN 64
366
367#define GP_REG_P(REGNO) \
368 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
369#define FP_REG_P(REGNO) \
370 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
31380d4b 371#define V_REG_P(REGNO) \
372 ((unsigned int) ((int) (REGNO) - V_REG_FIRST) < V_REG_NUM)
373#define VL_REG_P(REGNO) ((REGNO) == VL_REGNUM)
374#define VTYPE_REG_P(REGNO) ((REGNO) == VTYPE_REGNUM)
09cae750 375
e18a6d14
AB
376/* True when REGNO is in SIBCALL_REGS set. */
377#define SIBCALL_REG_P(REGNO) \
378 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
379
09cae750
PD
380#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
381
09cae750
PD
382/* Use s0 as the frame pointer if it is so requested. */
383#define HARD_FRAME_POINTER_REGNUM 8
384#define STACK_POINTER_REGNUM 2
385#define THREAD_POINTER_REGNUM 4
386
387/* These two registers don't really exist: they get eliminated to either
388 the stack or hard frame pointer. */
389#define ARG_POINTER_REGNUM 64
390#define FRAME_POINTER_REGNUM 65
391
31380d4b 392/* Define Dwarf for RVV. */
393#define RISCV_DWARF_VL (4096 + 0xc20)
394#define RISCV_DWARF_VTYPE (4096 + 0xc21)
5576518a 395#define RISCV_DWARF_VLENB (4096 + 0xc22)
31380d4b 396
09cae750
PD
397/* Register in which static-chain is passed to a function. */
398#define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
399
400/* Registers used as temporaries in prologue/epilogue code.
401
402 The prologue registers mustn't conflict with any
403 incoming arguments, the static chain pointer, or the frame pointer.
404 The epilogue temporary mustn't conflict with the return registers,
405 the frame pointer, the EH stack adjustment, or the EH data registers. */
406
207de839 407#define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
09cae750 408#define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
5576518a
JZZ
409#define RISCV_PROLOGUE_TEMP2_REGNUM (GP_TEMP_FIRST + 1)
410#define RISCV_PROLOGUE_TEMP2(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP2_REGNUM)
09cae750 411
207de839
MC
412#define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
413#define RISCV_CALL_ADDRESS_TEMP(MODE) \
414 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
415
09cae750
PD
416#define MCOUNT_NAME "_mcount"
417
418#define NO_PROFILE_COUNTERS 1
419
420/* Emit rtl for profiling. Output assembler code to FILE
421 to call "_mcount" for profiling a function entry. */
422#define PROFILE_HOOK(LABEL) \
423 { \
424 rtx fun, ra; \
425 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
426 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
db69559b 427 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
09cae750
PD
428 }
429
430/* All the work done in PROFILE_HOOK, but still required. */
431#define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
432
433/* Define this macro if it is as good or better to call a constant
434 function address than to call an address kept in a register. */
435#define NO_FUNCTION_CSE 1
436
437/* Define the classes of registers for register constraints in the
438 machine description. Also define ranges of constants.
439
440 One of the classes must always be named ALL_REGS and include all hard regs.
441 If there is more than one class, another class must be named NO_REGS
442 and contain no registers.
443
444 The name GENERAL_REGS must be the name of a class (or an alias for
445 another name such as ALL_REGS). This is the class of registers
446 that is allowed by "g" or "r" in a register constraint.
447 Also, registers outside this class are allocated only when
448 instructions express preferences for them.
449
450 The classes must be numbered in nondecreasing order; that is,
451 a larger-numbered class must never be contained completely
452 in a smaller-numbered class.
453
454 For any two classes, it is very desirable that there be another
455 class that represents their union. */
456
457enum reg_class
458{
459 NO_REGS, /* no registers in set */
460 SIBCALL_REGS, /* registers used by indirect sibcalls */
461 JALR_REGS, /* registers used by indirect calls */
462 GR_REGS, /* integer registers */
463 FP_REGS, /* floating-point registers */
464 FRAME_REGS, /* arg pointer and frame pointer */
31380d4b 465 VM_REGS, /* v0.t registers */
466 VD_REGS, /* vector registers except v0.t */
467 V_REGS, /* vector registers */
09cae750
PD
468 ALL_REGS, /* all registers */
469 LIM_REG_CLASSES /* max value + 1 */
470};
471
472#define N_REG_CLASSES (int) LIM_REG_CLASSES
473
474#define GENERAL_REGS GR_REGS
475
476/* An initializer containing the names of the register classes as C
477 string constants. These names are used in writing some of the
478 debugging dumps. */
479
480#define REG_CLASS_NAMES \
481{ \
482 "NO_REGS", \
483 "SIBCALL_REGS", \
484 "JALR_REGS", \
485 "GR_REGS", \
486 "FP_REGS", \
487 "FRAME_REGS", \
31380d4b 488 "VM_REGS", \
489 "VD_REGS", \
490 "V_REGS", \
09cae750
PD
491 "ALL_REGS" \
492}
493
494/* An initializer containing the contents of the register classes,
495 as integers which are bit masks. The Nth integer specifies the
496 contents of class N. The way the integer MASK is interpreted is
497 that register R is in the class if `MASK & (1 << R)' is 1.
498
499 When the machine has more than 32 registers, an integer does not
500 suffice. Then the integers are replaced by sub-initializers,
501 braced groupings containing several integers. Each
502 sub-initializer must be suitable as an initializer for the type
503 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
504
505#define REG_CLASS_CONTENTS \
506{ \
31380d4b 507 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
508 { 0xf003fcc0, 0x00000000, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
509 { 0xffffffc0, 0x00000000, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
510 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
511 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FP_REGS */ \
512 { 0x00000000, 0x00000000, 0x00000003, 0x00000000 }, /* FRAME_REGS */ \
31380d4b 513 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, /* V0_REGS */ \
514 { 0x00000000, 0x00000000, 0x00000000, 0xfffffffe }, /* VNoV0_REGS */ \
515 { 0x00000000, 0x00000000, 0x00000000, 0xffffffff }, /* V_REGS */ \
167b04b9 516 { 0xffffffff, 0xffffffff, 0x00000003, 0xffffffff } /* ALL_REGS */ \
09cae750
PD
517}
518
519/* A C expression whose value is a register class containing hard
520 register REGNO. In general there is more that one such class;
521 choose a class which is "minimal", meaning that no smaller class
522 also contains the register. */
523
524#define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
525
526/* A macro whose definition is the name of the class to which a
527 valid base register must belong. A base register is one used in
528 an address which is the register value plus a displacement. */
529
530#define BASE_REG_CLASS GR_REGS
531
532/* A macro whose definition is the name of the class to which a
533 valid index register must belong. An index register is one used
534 in an address where its value is either multiplied by a scale
535 factor or added to another register (as well as added to a
536 displacement). */
537
538#define INDEX_REG_CLASS NO_REGS
539
540/* We generally want to put call-clobbered registers ahead of
541 call-saved ones. (IRA expects this.) */
542
543#define REG_ALLOC_ORDER \
544{ \
545 /* Call-clobbered GPRs. */ \
546 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
547 /* Call-saved GPRs. */ \
548 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
549 /* GPRs that can never be exposed to the register allocator. */ \
550 0, 2, 3, 4, \
551 /* Call-clobbered FPRs. */ \
552 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
553 60, 61, 62, 63, \
554 /* Call-saved FPRs. */ \
555 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
31380d4b 556 /* V24 ~ V31. */ \
557 120, 121, 122, 123, 124, 125, 126, 127, \
558 /* V8 ~ V23. */ \
559 104, 105, 106, 107, 108, 109, 110, 111, \
560 112, 113, 114, 115, 116, 117, 118, 119, \
561 /* V0 ~ V7. */ \
562 96, 97, 98, 99, 100, 101, 102, 103, \
09cae750
PD
563 /* None of the remaining classes have defined call-saved \
564 registers. */ \
31380d4b 565 64, 65, 66, 67 \
09cae750
PD
566}
567
568/* True if VALUE is a signed 12-bit number. */
569
570#define SMALL_OPERAND(VALUE) \
571 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
572
3496ca4e 573#define POLY_SMALL_OPERAND_P(POLY_VALUE) \
574 (POLY_VALUE.is_constant () ? \
575 SMALL_OPERAND (POLY_VALUE.to_constant ()) : false)
576
09cae750
PD
577/* True if VALUE can be loaded into a register using LUI. */
578
579#define LUI_OPERAND(VALUE) \
580 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
581 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
582
4e72ccad
PT
583/* If this is a single bit mask, then we can load it with bseti. Special
584 handling of SImode 0x80000000 on RV64 is done in riscv_build_integer_1. */
585#define SINGLE_BIT_MASK_OPERAND(VALUE) \
2c721ea9
AP
586 (pow2p_hwi (TARGET_64BIT \
587 ? (VALUE) \
588 : ((VALUE) & ((HOST_WIDE_INT_1U << 32)-1))))
4e1e0d79 589
bc6beecb
PT
590/* True if VALUE can be represented as an immediate with 1 extra bit
591 set: we check that it is not a SMALL_OPERAND (as this would be true
592 for all small operands) unmodified and turns into a small operand
593 once we clear the top bit. */
594#define UIMM_EXTRA_BIT_OPERAND(VALUE) \
595 (!SMALL_OPERAND (VALUE) \
596 && SMALL_OPERAND (VALUE & ~(HOST_WIDE_INT_1U << floor_log2 (VALUE))))
597
09cae750
PD
598/* Stack layout; function entry, exit and calling. */
599
600#define STACK_GROWS_DOWNWARD 1
601
602#define FRAME_GROWS_DOWNWARD 1
603
09cae750
PD
604#define RETURN_ADDR_RTX riscv_return_addr
605
606#define ELIMINABLE_REGS \
607{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
608 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
609 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
610 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
611
612#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
613 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
614
615/* Allocate stack space for arguments at the beginning of each function. */
616#define ACCUMULATE_OUTGOING_ARGS 1
617
618/* The argument pointer always points to the first argument. */
619#define FIRST_PARM_OFFSET(FNDECL) 0
620
621#define REG_PARM_STACK_SPACE(FNDECL) 0
622
623/* Define this if it is the responsibility of the caller to
624 allocate the area reserved for arguments passed in registers.
625 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
626 of this macro is to determine whether the space is included in
627 `crtl->outgoing_args_size'. */
628#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
629
c0d3d1b6 630#define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
0ce42fe1 631
09cae750
PD
632/* Symbolic macros for the registers used to return integer and floating
633 point values. */
634
635#define GP_RETURN GP_ARG_FIRST
636#define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
637
75902396 638#define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
09cae750
PD
639
640/* Symbolic macros for the first/last argument registers. */
641
642#define GP_ARG_FIRST (GP_REG_FIRST + 10)
643#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
644#define GP_TEMP_FIRST (GP_REG_FIRST + 5)
645#define FP_ARG_FIRST (FP_REG_FIRST + 10)
646#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
647
fa144175
JZZ
648/* Helper macro for RVV vsetvl instruction generation. */
649#define X0_REGNUM GP_REG_FIRST
650
09cae750
PD
651#define CALLEE_SAVED_REG_NUMBER(REGNO) \
652 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
653 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
654
655#define LIBCALL_VALUE(MODE) \
656 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
657
658#define FUNCTION_VALUE(VALTYPE, FUNC) \
659 riscv_function_value (VALTYPE, FUNC, VOIDmode)
660
661#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
662
663/* 1 if N is a possible register number for function argument passing.
1fb157cc 664 We have no FP argument registers when soft-float. */
09cae750
PD
665
666/* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
667#define FUNCTION_ARG_REGNO_P(N) \
668 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
669 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
670
671typedef struct {
672 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
673 unsigned int num_gprs;
674
675 /* Number of floating-point registers used so far, likewise. */
676 unsigned int num_fprs;
677} CUMULATIVE_ARGS;
678
679/* Initialize a variable CUM of type CUMULATIVE_ARGS
680 for a call to a function whose data type is FNTYPE.
681 For a library call, FNTYPE is 0. */
682
683#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
684 memset (&(CUM), 0, sizeof (CUM))
685
d0ebdd9f 686#define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
09cae750 687
0ce42fe1
AW
688/* Align based on stack boundary, which might have been set by the user. */
689#define RISCV_STACK_ALIGN(LOC) \
c0d3d1b6 690 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
09cae750
PD
691
692/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
693 the stack pointer does not matter. The value is tested only in
694 functions that have frame pointers.
695 No definition is equivalent to always zero. */
696
697#define EXIT_IGNORE_STACK 1
698
699
700/* Trampolines are a block of code followed by two pointers. */
701
702#define TRAMPOLINE_CODE_SIZE 16
703#define TRAMPOLINE_SIZE \
704 ((Pmode == SImode) \
705 ? TRAMPOLINE_CODE_SIZE \
706 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
707#define TRAMPOLINE_ALIGNMENT POINTER_SIZE
708
709/* Addressing modes, and classification of registers for them. */
710
711#define REGNO_OK_FOR_INDEX_P(REGNO) 0
712#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
713 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
714
715/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
716 and check its validity for a certain class.
717 We have two alternate definitions for each of them.
718 The usual definition accepts all pseudo regs; the other rejects them all.
719 The symbol REG_OK_STRICT causes the latter definition to be used.
720
721 Most source files want to accept pseudo regs in the hope that
722 they will get allocated to the class that the insn wants them to be in.
723 Some source files that are used after register allocation
724 need to be strict. */
725
726#ifndef REG_OK_STRICT
727#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
728 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
729#else
730#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
731 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
732#endif
733
734#define REG_OK_FOR_INDEX_P(X) 0
735
736/* Maximum number of registers that can appear in a valid memory address. */
737
738#define MAX_REGS_PER_ADDRESS 1
739
740#define CONSTANT_ADDRESS_P(X) \
741 (CONSTANT_P (X) && memory_address_p (SImode, X))
742
743/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
744 'the start of the function that this code is output in'. */
745
2041a23a
TV
746#define ASM_OUTPUT_LABELREF(FILE,NAME) \
747 do { \
748 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
749 asm_fprintf ((FILE), "%U%s", \
750 XSTR (XEXP (DECL_RTL (current_function_decl), \
751 0), 0)); \
752 else \
753 asm_fprintf ((FILE), "%U%s", (NAME)); \
754 } while (0)
09cae750
PD
755
756#define JUMP_TABLES_IN_TEXT_SECTION 0
757#define CASE_VECTOR_MODE SImode
758#define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
759
7d4df630
VG
760#define LOCAL_SYM_P(sym) \
761 ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
762 || ((GET_CODE (sym) == CONST) \
763 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
764 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))
765
09cae750
PD
766/* The load-address macro is used for PC-relative addressing of symbols
767 that bind locally. Don't use it for symbols that should be addressed
768 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
769 currently results in more opportunities for linker relaxation. */
770#define USE_LOAD_ADDRESS_MACRO(sym) \
771 (!TARGET_EXPLICIT_RELOCS && \
7d4df630 772 ((flag_pic && LOCAL_SYM_P (sym)) || riscv_cmodel == CM_MEDANY))
09cae750
PD
773
774/* Define this as 1 if `char' should by default be signed; else as 0. */
775#define DEFAULT_SIGNED_CHAR 0
776
777#define MOVE_MAX UNITS_PER_WORD
778#define MAX_MOVE_MAX 8
779
ecc82a8d
AW
780/* The SPARC port says:
781 Nonzero if access to memory by bytes is slow and undesirable.
782 For RISC chips, it means that access to memory by bytes is no
783 better than access by words when possible, so grab a whole word
784 and maybe make use of that. */
785#define SLOW_BYTE_ACCESS 1
09cae750 786
b7ef9225
JW
787/* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
788 in the md file instead. */
789#define SHIFT_COUNT_TRUNCATED 0
09cae750 790
09cae750
PD
791/* Specify the machine mode that pointers have.
792 After generation of rtl, the compiler makes no further distinction
793 between pointers and any other objects of this machine mode. */
794
795#define Pmode word_mode
796
797/* Give call MEMs SImode since it is the "most permissive" mode
798 for both 32-bit and 64-bit targets. */
799
800#define FUNCTION_MODE SImode
801
802/* A C expression for the cost of a branch instruction. A value of 2
803 seems to minimize code size. */
804
805#define BRANCH_COST(speed_p, predictable_p) \
806 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
807
4f475391
AW
808/* True if the target optimizes short forward branches around integer
809 arithmetic instructions into predicated operations, e.g., for
810 conditional-move operations. The macro assumes that all branch
811 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
812 support this feature. The macro further assumes that any integer
813 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
814 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
815 counterparts, including C.MV and C.LI) can be in the branch shadow. */
816
817#define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
818
09cae750
PD
819#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
820
821/* Control the assembler format that we output. */
822
823/* Output to assembler file text saying following lines
824 may contain character constants, extra white space, comments, etc. */
825
826#ifndef ASM_APP_ON
827#define ASM_APP_ON " #APP\n"
828#endif
829
830/* Output to assembler file text saying following lines
831 no longer contain unusual constructs. */
832
833#ifndef ASM_APP_OFF
834#define ASM_APP_OFF " #NO_APP\n"
835#endif
836
837#define REGISTER_NAMES \
838{ "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
839 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
840 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
841 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
842 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
843 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
844 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
845 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
31380d4b 846 "arg", "frame", "vl", "vtype", "N/A", "N/A", "N/A", "N/A", \
847 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
848 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
849 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
850 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
851 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
852 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
853 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",}
09cae750
PD
854
855#define ADDITIONAL_REGISTER_NAMES \
856{ \
857 { "x0", 0 + GP_REG_FIRST }, \
858 { "x1", 1 + GP_REG_FIRST }, \
859 { "x2", 2 + GP_REG_FIRST }, \
860 { "x3", 3 + GP_REG_FIRST }, \
861 { "x4", 4 + GP_REG_FIRST }, \
862 { "x5", 5 + GP_REG_FIRST }, \
863 { "x6", 6 + GP_REG_FIRST }, \
864 { "x7", 7 + GP_REG_FIRST }, \
865 { "x8", 8 + GP_REG_FIRST }, \
866 { "x9", 9 + GP_REG_FIRST }, \
867 { "x10", 10 + GP_REG_FIRST }, \
868 { "x11", 11 + GP_REG_FIRST }, \
869 { "x12", 12 + GP_REG_FIRST }, \
870 { "x13", 13 + GP_REG_FIRST }, \
871 { "x14", 14 + GP_REG_FIRST }, \
872 { "x15", 15 + GP_REG_FIRST }, \
873 { "x16", 16 + GP_REG_FIRST }, \
874 { "x17", 17 + GP_REG_FIRST }, \
875 { "x18", 18 + GP_REG_FIRST }, \
876 { "x19", 19 + GP_REG_FIRST }, \
877 { "x20", 20 + GP_REG_FIRST }, \
878 { "x21", 21 + GP_REG_FIRST }, \
879 { "x22", 22 + GP_REG_FIRST }, \
880 { "x23", 23 + GP_REG_FIRST }, \
881 { "x24", 24 + GP_REG_FIRST }, \
882 { "x25", 25 + GP_REG_FIRST }, \
883 { "x26", 26 + GP_REG_FIRST }, \
884 { "x27", 27 + GP_REG_FIRST }, \
885 { "x28", 28 + GP_REG_FIRST }, \
886 { "x29", 29 + GP_REG_FIRST }, \
887 { "x30", 30 + GP_REG_FIRST }, \
888 { "x31", 31 + GP_REG_FIRST }, \
889 { "f0", 0 + FP_REG_FIRST }, \
890 { "f1", 1 + FP_REG_FIRST }, \
891 { "f2", 2 + FP_REG_FIRST }, \
892 { "f3", 3 + FP_REG_FIRST }, \
893 { "f4", 4 + FP_REG_FIRST }, \
894 { "f5", 5 + FP_REG_FIRST }, \
895 { "f6", 6 + FP_REG_FIRST }, \
896 { "f7", 7 + FP_REG_FIRST }, \
897 { "f8", 8 + FP_REG_FIRST }, \
898 { "f9", 9 + FP_REG_FIRST }, \
899 { "f10", 10 + FP_REG_FIRST }, \
900 { "f11", 11 + FP_REG_FIRST }, \
901 { "f12", 12 + FP_REG_FIRST }, \
902 { "f13", 13 + FP_REG_FIRST }, \
903 { "f14", 14 + FP_REG_FIRST }, \
904 { "f15", 15 + FP_REG_FIRST }, \
905 { "f16", 16 + FP_REG_FIRST }, \
906 { "f17", 17 + FP_REG_FIRST }, \
907 { "f18", 18 + FP_REG_FIRST }, \
908 { "f19", 19 + FP_REG_FIRST }, \
909 { "f20", 20 + FP_REG_FIRST }, \
910 { "f21", 21 + FP_REG_FIRST }, \
911 { "f22", 22 + FP_REG_FIRST }, \
912 { "f23", 23 + FP_REG_FIRST }, \
913 { "f24", 24 + FP_REG_FIRST }, \
914 { "f25", 25 + FP_REG_FIRST }, \
915 { "f26", 26 + FP_REG_FIRST }, \
916 { "f27", 27 + FP_REG_FIRST }, \
917 { "f28", 28 + FP_REG_FIRST }, \
918 { "f29", 29 + FP_REG_FIRST }, \
919 { "f30", 30 + FP_REG_FIRST }, \
920 { "f31", 31 + FP_REG_FIRST }, \
921}
922
923/* Globalizing directive for a label. */
924#define GLOBAL_ASM_OP "\t.globl\t"
925
926/* This is how to store into the string LABEL
927 the symbol_ref name of an internal numbered label where
928 PREFIX is the class of label and NUM is the number within the class.
929 This is suitable for output with `assemble_name'. */
930
931#undef ASM_GENERATE_INTERNAL_LABEL
932#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
933 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
934
935/* This is how to output an element of a case-vector that is absolute. */
936
937#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
938 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
939
940/* This is how to output an element of a PIC case-vector. */
941
942#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
943 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
944 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
945
946/* This is how to output an assembler line
947 that says to advance the location counter
948 to a multiple of 2**LOG bytes. */
949
950#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
951 fprintf (STREAM, "\t.align\t%d\n", (LOG))
952
953/* Define the strings to put out for each section in the object file. */
954#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
955#define DATA_SECTION_ASM_OP "\t.data" /* large data */
956#define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
957#define BSS_SECTION_ASM_OP "\t.bss"
958#define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
959#define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
960
961#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
962do \
963 { \
964 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
965 reg_names[STACK_POINTER_REGNUM], \
966 reg_names[STACK_POINTER_REGNUM], \
967 TARGET_64BIT ? "sd" : "sw", \
968 reg_names[REGNO], \
969 reg_names[STACK_POINTER_REGNUM]); \
970 } \
971while (0)
972
973#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
974do \
975 { \
976 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
977 TARGET_64BIT ? "ld" : "lw", \
978 reg_names[REGNO], \
979 reg_names[STACK_POINTER_REGNUM], \
980 reg_names[STACK_POINTER_REGNUM], \
981 reg_names[STACK_POINTER_REGNUM]); \
982 } \
983while (0)
984
985#define ASM_COMMENT_START "#"
986
987#undef SIZE_TYPE
988#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
989
990#undef PTRDIFF_TYPE
991#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
992
76715c32 993/* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
6ed01e6b
AW
994
995#define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
996
997/* The maximum number of bytes that can be copied by a straight-line
76715c32 998 cpymemsi implementation. */
09cae750 999
6ed01e6b
AW
1000#define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
1001
1002/* If a memory-to-memory move would take MOVE_RATIO or more simple
76715c32 1003 move-instruction pairs, we will do a cpymem or libcall instead.
6ed01e6b
AW
1004 Do not use move_by_pieces at all when strict alignment is not
1005 in effect but the target has slow unaligned accesses; in this
76715c32 1006 case, cpymem or libcall is more efficient. */
6ed01e6b
AW
1007
1008#define MOVE_RATIO(speed) \
fb5621b1 1009 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
6ed01e6b
AW
1010 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
1011 CLEAR_RATIO (speed) / 2)
09cae750
PD
1012
1013/* For CLEAR_RATIO, when optimizing for size, give a better estimate
1014 of the length of a memset call, but use the default otherwise. */
1015
1016#define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
1017
1018/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
1019 optimizing for size adjust the ratio to account for the overhead of
1020 loading the constant and replicating it across the word. */
1021
1022#define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
1023
1024#ifndef USED_FOR_TARGET
1025extern const enum reg_class riscv_regno_to_class[];
fb5621b1
KC
1026extern bool riscv_slow_unaligned_access_p;
1027extern unsigned riscv_stack_boundary;
3496ca4e 1028extern unsigned riscv_bytes_per_vector_chunk;
1029extern poly_uint16 riscv_vector_chunks;
7e924ba3 1030extern poly_int64 riscv_v_adjust_nunits (enum machine_mode, int);
3496ca4e 1031/* The number of bits and bytes in a RVV vector. */
1032#define BITS_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk * 8))
1033#define BYTES_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk))
09cae750
PD
1034#endif
1035
1036#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1037 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
1038
1039#define XLEN_SPEC \
1040 "%{march=rv32*:32}" \
1041 "%{march=rv64*:64}" \
1042
1043#define ABI_SPEC \
1044 "%{mabi=ilp32:ilp32}" \
09baee1a 1045 "%{mabi=ilp32e:ilp32e}" \
09cae750
PD
1046 "%{mabi=ilp32f:ilp32f}" \
1047 "%{mabi=ilp32d:ilp32d}" \
1048 "%{mabi=lp64:lp64}" \
1049 "%{mabi=lp64f:lp64f}" \
1050 "%{mabi=lp64d:lp64d}" \
1051
09cae750
PD
1052/* ISA constants needed for code generation. */
1053#define OPCODE_LW 0x2003
1054#define OPCODE_LD 0x3003
1055#define OPCODE_AUIPC 0x17
1056#define OPCODE_JALR 0x67
1057#define OPCODE_LUI 0x37
1058#define OPCODE_ADDI 0x13
1059#define SHIFT_RD 7
1060#define SHIFT_RS1 15
1061#define SHIFT_IMM 20
1062#define IMM_BITS 12
de6320a8 1063#define C_S_BITS 5
10789329 1064#define C_SxSP_BITS 6
09cae750
PD
1065
1066#define IMM_REACH (1LL << IMM_BITS)
1067#define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
1068#define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
1069
10789329
JW
1070#define SWSP_REACH (4LL << C_SxSP_BITS)
1071#define SDSP_REACH (8LL << C_SxSP_BITS)
1072
de6320a8
CB
1073/* This is the maximum value that can be represented in a compressed load/store
1074 offset (an unsigned 5-bit value scaled by 4). */
f95bd50b 1075#define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
de6320a8 1076
e53b6e56 1077/* Called from RISCV_REORG, this is defined in riscv-sr.cc. */
e18a6d14
AB
1078
1079extern void riscv_remove_unneeded_save_restore_calls (void);
1080
e0a5b313
KC
1081#define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
1082
16f7fcad
PT
1083#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1084 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1085#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1086 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1087
ef85d150
VG
1088#define TARGET_SUPPORTS_WIDE_INT 1
1089
7d935cdd
JZZ
1090#define REGISTER_TARGET_PRAGMAS() riscv_register_pragmas ()
1091
f556cd8b
JZZ
1092#define REGMODE_NATURAL_SIZE(MODE) riscv_regmode_natural_size (MODE)
1093
09cae750 1094#endif /* ! GCC_RISCV_H */