]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/riscv/riscv.h
testsuite: Rename a test
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
CommitLineData
09cae750 1/* Definition of RISC-V target for GNU compiler.
6441eb6d 2 Copyright (C) 2011-2025 Free Software Foundation, Inc.
09cae750
PD
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#ifndef GCC_RISCV_H
23#define GCC_RISCV_H
24
94a4b932 25#include <stdbool.h>
09cae750
PD
26#include "config/riscv/riscv-opts.h"
27
5f110561
KC
28#define SWITCHABLE_TARGET 1
29
09cae750
PD
30/* Target CPU builtins. */
31#define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
32
cd1e2f63
MC
33#ifdef TARGET_BIG_ENDIAN_DEFAULT
34#define DEFAULT_ENDIAN_SPEC "b"
35#else
36#define DEFAULT_ENDIAN_SPEC "l"
37#endif
38
09cae750
PD
39/* Default target_flags if no switches are specified */
40
41#ifndef TARGET_DEFAULT
42#define TARGET_DEFAULT 0
43#endif
44
45#ifndef RISCV_TUNE_STRING_DEFAULT
20f59301 46#define RISCV_TUNE_STRING_DEFAULT "generic"
09cae750
PD
47#endif
48
f908b69c 49extern const char *riscv_expand_arch (int argc, const char **argv);
72eb8335
KC
50extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv);
51extern const char *riscv_default_mtune (int argc, const char **argv);
d72ca12b 52extern const char *riscv_multi_lib_check (int argc, const char **argv);
7af0f1e1 53extern const char *riscv_arch_help (int argc, const char **argv);
f908b69c
KC
54
55# define EXTRA_SPEC_FUNCTIONS \
72eb8335
KC
56 { "riscv_expand_arch", riscv_expand_arch }, \
57 { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \
d72ca12b 58 { "riscv_default_mtune", riscv_default_mtune }, \
7af0f1e1
KC
59 { "riscv_multi_lib_check", riscv_multi_lib_check }, \
60 { "riscv_arch_help", riscv_arch_help },
f908b69c 61
09cae750 62/* Support for a compile-time default CPU, et cetera. The rules are:
72eb8335 63 --with-arch is ignored if -march or -mcpu is specified.
09cae750 64 --with-abi is ignored if -mabi is specified.
72eb8335 65 --with-tune is ignored if -mtune or -mcpu is specified.
06e32a5e 66 --with-isa-spec is ignored if -misa-spec is specified.
97069657 67 --with-tls is ignored if -mtls-dialect is specified.
72eb8335
KC
68
69 But using default -march/-mtune value if -mcpu don't have valid option. */
09cae750 70#define OPTION_DEFAULT_SPECS \
72eb8335
KC
71 {"tune", "%{!mtune=*:" \
72 " %{!mcpu=*:-mtune=%(VALUE)}" \
73 " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \
74 {"arch", "%{!march=*:" \
75 " %{!mcpu=*:-march=%(VALUE)}" \
76 " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \
97069657
TI
77 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
78 {"isa_spec", "%{!misa-spec=*:-misa-spec=%(VALUE)}" }, \
79 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"}, \
09cae750
PD
80
81#ifdef IN_LIBGCC2
82#undef TARGET_64BIT
83/* Make this compile time constant for libgcc2 */
84#define TARGET_64BIT (__riscv_xlen == 64)
85#endif /* IN_LIBGCC2 */
86
4b815282
KC
87#ifdef HAVE_AS_MISA_SPEC
88#define ASM_MISA_SPEC "%{misa-spec=*}"
89#else
90#define ASM_MISA_SPEC ""
91#endif
92
a5ad5d5c
KC
93/* Reference:
94 https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing */
95#define STRINGIZING(s) __STRINGIZING(s)
96#define __STRINGIZING(s) #s
97
98#define MULTILIB_DEFAULTS \
99 {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \
100 "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) }
101
09cae750
PD
102#undef ASM_SPEC
103#define ASM_SPEC "\
104%(subtarget_asm_debugging_spec) \
105%{" FPIE_OR_FPIC_SPEC ":-fpic} \
f4670347 106%{march=*} \
09cae750 107%{mabi=*} \
3b0a7d62 108%{mno-relax} \
a9604fcb
MC
109%{mbig-endian} \
110%{mlittle-endian} \
4b815282
KC
111%(subtarget_asm_spec)" \
112ASM_MISA_SPEC
09cae750 113
f4670347 114#undef DRIVER_SELF_SPECS
72eb8335 115#define DRIVER_SELF_SPECS \
7af0f1e1
KC
116"%{march=help:%:riscv_arch_help()} " \
117"%{print-supported-extensions:%:riscv_arch_help()} " \
118"%{-print-supported-extensions:%:riscv_arch_help()} " \
72eb8335
KC
119"%{march=*:%:riscv_expand_arch(%*)} " \
120"%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
f4670347 121
09cae750
PD
122#define LOCAL_LABEL_PREFIX "."
123#define USER_LABEL_PREFIX ""
124
125/* Offsets recorded in opcodes are a multiple of this alignment factor.
126 The default for this in 64-bit mode is 8, which causes problems with
127 SFmode register saves. */
128#define DWARF_CIE_DATA_ALIGNMENT -4
129
130/* The mapping from gcc register number to DWARF 2 CFA column number. */
31380d4b 131#define DWARF_FRAME_REGNUM(REGNO) \
8cd140d3
JZ
132 (FRM_REG_P (REGNO) ? RISCV_DWARF_FRM \
133 : VXRM_REG_P (REGNO) ? RISCV_DWARF_VXRM \
134 : VL_REG_P (REGNO) ? RISCV_DWARF_VL \
31380d4b 135 : VTYPE_REG_P (REGNO) \
136 ? RISCV_DWARF_VTYPE \
137 : (GP_REG_P (REGNO) || FP_REG_P (REGNO) || V_REG_P (REGNO) \
138 ? REGNO \
139 : INVALID_REGNUM))
09cae750
PD
140
141/* The DWARF 2 CFA column which tracks the return address. */
142#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
143#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
144
145/* Describe how we implement __builtin_eh_return. */
146#define EH_RETURN_DATA_REGNO(N) \
147 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
148
149#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
150
151/* Target machine storage layout */
152
153#define BITS_BIG_ENDIAN 0
a9604fcb
MC
154#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
155#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
09cae750
PD
156
157#define MAX_BITS_PER_WORD 64
158
159/* Width of a word, in units (bytes). */
160#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
a99dc11f 161#define BITS_PER_WORD (BITS_PER_UNIT * UNITS_PER_WORD)
09cae750
PD
162#ifndef IN_LIBGCC2
163#define MIN_UNITS_PER_WORD 4
164#endif
165
e53b6e56 166/* Allows SImode op in builtin overflow pattern, see internal-fn.cc. */
6efd040c
L
167#undef TARGET_MIN_ARITHMETIC_PRECISION
168#define TARGET_MIN_ARITHMETIC_PRECISION riscv_min_arithmetic_precision
169
09cae750
PD
170/* The `Q' extension is not yet supported. */
171#define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
e9f827d7 172/* Size per vector register. For VLEN = 32, size = poly (4, 4). Otherwise, size = poly (8, 8). */
31380d4b 173#define UNITS_PER_V_REG (riscv_vector_chunks * riscv_bytes_per_vector_chunk)
09cae750
PD
174
175/* The largest type that can be passed in floating-point registers. */
09baee1a
KC
176#define UNITS_PER_FP_ARG \
177 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
006e90e1 178 || riscv_abi == ABI_LP64 || riscv_abi == ABI_LP64E) \
09baee1a
KC
179 ? 0 \
180 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
09cae750
PD
181
182/* Set the sizes of the core types. */
183#define SHORT_TYPE_SIZE 16
184#define INT_TYPE_SIZE 32
185#define LONG_LONG_TYPE_SIZE 64
186#define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
187#define LONG_TYPE_SIZE POINTER_SIZE
188
09cae750
PD
189/* Allocation boundary (in *bits*) for storing arguments in argument list. */
190#define PARM_BOUNDARY BITS_PER_WORD
191
192/* Allocation boundary (in *bits*) for the code of a function. */
805a052d 193#define FUNCTION_BOUNDARY \
59a869d7 194 (((TARGET_RVC || TARGET_ZCA) && !is_zicfilp_p ()) ? 16 : 32)
09cae750 195
0ce42fe1 196/* The smallest supported stack boundary the calling convention supports. */
75902396 197#define STACK_BOUNDARY \
006e90e1
TO
198 (riscv_abi == ABI_ILP32E || riscv_abi == ABI_LP64E \
199 ? BITS_PER_WORD \
200 : 2 * BITS_PER_WORD)
0ce42fe1
AW
201
202/* The ABI stack alignment. */
006e90e1
TO
203#define ABI_STACK_BOUNDARY \
204 (riscv_abi == ABI_ILP32E || riscv_abi == ABI_LP64E \
205 ? BITS_PER_WORD \
206 : 128)
0ce42fe1 207
09cae750 208/* There is no point aligning anything to a rounder boundary than this. */
c0d3d1b6 209#define BIGGEST_ALIGNMENT 128
09cae750 210
82285692
AW
211/* The user-level ISA permits unaligned accesses, but they are not required
212 of the privileged architecture. */
213#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
214
09cae750
PD
215/* Define this if you wish to imitate the way many other C compilers
216 handle alignment of bitfields and the structures that contain
217 them.
218
219 The behavior is that the type written for a bit-field (`int',
220 `short', or other integer type) imposes an alignment for the
221 entire structure, as if the structure really did contain an
222 ordinary field of that type. In addition, the bit-field is placed
223 within the structure so that it would fit within such a field,
224 not crossing a boundary for it.
225
226 Thus, on most machines, a bit-field whose type is written as `int'
227 would not cross a four-byte boundary, and would force four-byte
228 alignment for the whole structure. (The alignment used may not
229 be four bytes; it is controlled by the other alignment
230 parameters.)
231
232 If the macro is defined, its definition should be a C expression;
233 a nonzero value for the expression enables this behavior. */
234
235#define PCC_BITFIELD_TYPE_MATTERS 1
236
d3f952c5
JW
237/* An integer expression for the size in bits of the largest integer machine
238 mode that should actually be used. We allow pairs of registers. */
239#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
240
ffbb9818
ID
241/* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
242#define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
243 (((COND) && ((ALIGN) < BITS_PER_WORD) \
244 && (TREE_CODE (TYPE) == ARRAY_TYPE \
245 || TREE_CODE (TYPE) == UNION_TYPE \
246 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
247
09cae750
PD
248/* If defined, a C expression to compute the alignment for a static
249 variable. TYPE is the data type, and ALIGN is the alignment that
250 the object would ordinarily have. The value of this macro is used
251 instead of that alignment to align the object.
252
253 If this macro is not defined, then ALIGN is used.
254
255 One use of this macro is to increase alignment of medium-size
256 data to make it all fit in fewer cache lines. Another is to
257 cause character arrays to be word-aligned so that `strcpy' calls
258 that copy constants to character arrays can be done inline. */
259
ffbb9818
ID
260#define DATA_ALIGNMENT(TYPE, ALIGN) \
261 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
262 TYPE, ALIGN)
09cae750
PD
263
264/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
265 character arrays to be word-aligned so that `strcpy' calls that copy
266 constants to character arrays can be done inline, and 'strcmp' can be
267 optimised to use word loads. */
268#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
ffbb9818 269 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
09cae750
PD
270
271/* Define if operations between registers always perform the operation
272 on the full register even if a narrower mode is specified. */
273#define WORD_REGISTER_OPERATIONS 1
274
275/* When in 64-bit mode, move insns will sign extend SImode and CCmode
276 moves. All other references are zero extended. */
277#define LOAD_EXTEND_OP(MODE) \
278 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
279
280/* Define this macro if it is advisable to hold scalars in registers
281 in a wider mode than that declared by the program. In such cases,
282 the value is constrained to be within the bounds of the declared
283 type, but kept valid in the wider mode. The signedness of the
284 extension may differ from that of the type. */
285
286#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
287 if (GET_MODE_CLASS (MODE) == MODE_INT \
288 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
289 { \
290 if ((MODE) == SImode) \
291 (UNSIGNEDP) = 0; \
292 (MODE) = word_mode; \
293 }
294
295/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
296 Extensions of pointers to word_mode must be signed. */
297#define POINTERS_EXTEND_UNSIGNED false
298
09cae750
PD
299/* Define if loading short immediate values into registers sign extends. */
300#define SHORT_IMMEDIATES_SIGN_EXTEND 1
301
302/* Standard register usage. */
303
304/* Number of hardware registers. We have:
305
306 - 32 integer registers
307 - 32 floating point registers
308 - 2 fake registers:
309 - ARG_POINTER_REGNUM
31380d4b 310 - FRAME_POINTER_REGNUM
311 - 1 vl register
312 - 1 vtype register
467ca4a1 313 - 28 unused registers for future expansion
31380d4b 314 - 32 vector registers */
09cae750 315
31380d4b 316#define FIRST_PSEUDO_REGISTER 128
09cae750 317
79a3d3da 318/* x0, ra, sp, gp, and tp are fixed. */
09cae750
PD
319
320#define FIXED_REGISTERS \
321{ /* General registers. */ \
71f90649 322 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
09cae750
PD
323 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
324 /* Floating-point registers. */ \
325 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
326 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
327 /* Others. */ \
a035d133 328 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
31380d4b 329 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
330 /* Vector registers. */ \
331 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
332 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
09cae750
PD
333}
334
f3abed16 335/* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
09cae750
PD
336 The call RTLs themselves clobber ra. */
337
338#define CALL_USED_REGISTERS \
339{ /* General registers. */ \
71f90649 340 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
09cae750
PD
341 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
342 /* Floating-point registers. */ \
343 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
344 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
345 /* Others. */ \
31380d4b 346 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
347 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
348 /* Vector registers. */ \
349 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
350 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
09cae750
PD
351}
352
b780f68e
JW
353/* Select a register mode required for caller save of hard regno REGNO.
354 Contrary to what is documented, the default is not the smallest suitable
355 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
356 it quickly creates paradoxical subregs that can be problematic. */
357#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
358 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
359
09cae750
PD
360/* Internal macros to classify an ISA register's type. */
361
362#define GP_REG_FIRST 0
09baee1a 363#define GP_REG_LAST (TARGET_RVE ? 15 : 31)
09cae750
PD
364#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
365
366#define FP_REG_FIRST 32
367#define FP_REG_LAST 63
368#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
369
31380d4b 370#define V_REG_FIRST 96
371#define V_REG_LAST 127
372#define V_REG_NUM (V_REG_LAST - V_REG_FIRST + 1)
373
09cae750
PD
374/* The DWARF 2 CFA column which tracks the return address from a
375 signal handler context. This means that to maintain backwards
376 compatibility, no hard register can be assigned this column if it
377 would need to be handled by the DWARF unwinder. */
378#define DWARF_ALT_FRAME_RETURN_COLUMN 64
379
380#define GP_REG_P(REGNO) \
381 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
382#define FP_REG_P(REGNO) \
383 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
60d6c63d
CM
384#define HARDFP_REG_P(REGNO) \
385 ((REGNO) >= FP_REG_FIRST && (REGNO) <= FP_REG_LAST)
31380d4b 386#define V_REG_P(REGNO) \
387 ((unsigned int) ((int) (REGNO) - V_REG_FIRST) < V_REG_NUM)
388#define VL_REG_P(REGNO) ((REGNO) == VL_REGNUM)
389#define VTYPE_REG_P(REGNO) ((REGNO) == VTYPE_REGNUM)
5ed88078 390#define VXRM_REG_P(REGNO) ((REGNO) == VXRM_REGNUM)
8cd140d3 391#define FRM_REG_P(REGNO) ((REGNO) == FRM_REGNUM)
09cae750 392
e18a6d14
AB
393/* True when REGNO is in SIBCALL_REGS set. */
394#define SIBCALL_REG_P(REGNO) \
395 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
396
09cae750
PD
397#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
398
09cae750
PD
399/* Use s0 as the frame pointer if it is so requested. */
400#define HARD_FRAME_POINTER_REGNUM 8
401#define STACK_POINTER_REGNUM 2
402#define THREAD_POINTER_REGNUM 4
403
404/* These two registers don't really exist: they get eliminated to either
405 the stack or hard frame pointer. */
406#define ARG_POINTER_REGNUM 64
407#define FRAME_POINTER_REGNUM 65
408
31380d4b 409/* Define Dwarf for RVV. */
8cd140d3 410#define RISCV_DWARF_FRM (4096 + 0x003)
5ed88078 411#define RISCV_DWARF_VXRM (4096 + 0x00a)
31380d4b 412#define RISCV_DWARF_VL (4096 + 0xc20)
413#define RISCV_DWARF_VTYPE (4096 + 0xc21)
5576518a 414#define RISCV_DWARF_VLENB (4096 + 0xc22)
31380d4b 415
09cae750 416/* Register in which static-chain is passed to a function. */
805a052d 417#define STATIC_CHAIN_REGNUM \
59a869d7 418 ((is_zicfilp_p ()) ? (GP_TEMP_FIRST + 23) : (GP_TEMP_FIRST + 2))
09cae750
PD
419
420/* Registers used as temporaries in prologue/epilogue code.
421
422 The prologue registers mustn't conflict with any
423 incoming arguments, the static chain pointer, or the frame pointer.
424 The epilogue temporary mustn't conflict with the return registers,
425 the frame pointer, the EH stack adjustment, or the EH data registers. */
426
207de839 427#define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
09cae750 428#define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
5576518a
JZZ
429#define RISCV_PROLOGUE_TEMP2_REGNUM (GP_TEMP_FIRST + 1)
430#define RISCV_PROLOGUE_TEMP2(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP2_REGNUM)
09cae750 431
2862d99b
RMZ
432/* Both prologue temp registers are used in the vector probe loop for when
433 stack-clash protection is enabled, so we need to copy SP to a new register
434 and set it as CFA during the loop, we are using T3 for that. */
435#define RISCV_STACK_CLASH_VECTOR_CFA_REGNUM (GP_TEMP_FIRST + 23)
436
207de839
MC
437#define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
438#define RISCV_CALL_ADDRESS_TEMP(MODE) \
439 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
440
805a052d
MC
441#define RISCV_CALL_ADDRESS_LPAD_REGNUM (GP_TEMP_FIRST + 2)
442#define RISCV_CALL_ADDRESS_LPAD(MODE) \
443 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_LPAD_REGNUM)
444
3d1d3132
FG
445#define RETURN_ADDR_MASK (1 << RETURN_ADDR_REGNUM)
446#define S0_MASK (1 << S0_REGNUM)
447#define S1_MASK (1 << S1_REGNUM)
448#define S2_MASK (1 << S2_REGNUM)
449#define S3_MASK (1 << S3_REGNUM)
450#define S4_MASK (1 << S4_REGNUM)
451#define S5_MASK (1 << S5_REGNUM)
452#define S6_MASK (1 << S6_REGNUM)
453#define S7_MASK (1 << S7_REGNUM)
454#define S8_MASK (1 << S8_REGNUM)
455#define S9_MASK (1 << S9_REGNUM)
456#define S10_MASK (1 << S10_REGNUM)
457#define S11_MASK (1 << S11_REGNUM)
458
459#define MULTI_PUSH_GPR_MASK \
460 (RETURN_ADDR_MASK | S0_MASK | S1_MASK | S2_MASK | S3_MASK | S4_MASK \
461 | S5_MASK | S6_MASK | S7_MASK | S8_MASK | S9_MASK | S10_MASK | S11_MASK)
462#define ZCMP_MAX_SPIMM 3
463#define ZCMP_SP_INC_STEP 16
464#define ZCMP_INVALID_S0S10_SREGS_COUNTS 11
465#define ZCMP_S0S11_SREGS_COUNTS 12
466#define ZCMP_MAX_GRP_SLOTS 13
467
09cae750
PD
468#define MCOUNT_NAME "_mcount"
469
470#define NO_PROFILE_COUNTERS 1
471
472/* Emit rtl for profiling. Output assembler code to FILE
473 to call "_mcount" for profiling a function entry. */
474#define PROFILE_HOOK(LABEL) \
475 { \
476 rtx fun, ra; \
477 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
478 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
db69559b 479 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
09cae750
PD
480 }
481
482/* All the work done in PROFILE_HOOK, but still required. */
483#define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
484
485/* Define this macro if it is as good or better to call a constant
486 function address than to call an address kept in a register. */
487#define NO_FUNCTION_CSE 1
488
489/* Define the classes of registers for register constraints in the
490 machine description. Also define ranges of constants.
491
492 One of the classes must always be named ALL_REGS and include all hard regs.
493 If there is more than one class, another class must be named NO_REGS
494 and contain no registers.
495
496 The name GENERAL_REGS must be the name of a class (or an alias for
497 another name such as ALL_REGS). This is the class of registers
498 that is allowed by "g" or "r" in a register constraint.
499 Also, registers outside this class are allocated only when
500 instructions express preferences for them.
501
502 The classes must be numbered in nondecreasing order; that is,
503 a larger-numbered class must never be contained completely
504 in a smaller-numbered class.
505
506 For any two classes, it is very desirable that there be another
507 class that represents their union. */
508
509enum reg_class
510{
511 NO_REGS, /* no registers in set */
512 SIBCALL_REGS, /* registers used by indirect sibcalls */
46888571 513 RVC_GR_REGS, /* RVC general registers */
09cae750
PD
514 JALR_REGS, /* registers used by indirect calls */
515 GR_REGS, /* integer registers */
46888571 516 RVC_FP_REGS, /* RVC floating-point registers */
09cae750
PD
517 FP_REGS, /* floating-point registers */
518 FRAME_REGS, /* arg pointer and frame pointer */
31380d4b 519 VM_REGS, /* v0.t registers */
520 VD_REGS, /* vector registers except v0.t */
521 V_REGS, /* vector registers */
09cae750
PD
522 ALL_REGS, /* all registers */
523 LIM_REG_CLASSES /* max value + 1 */
524};
525
526#define N_REG_CLASSES (int) LIM_REG_CLASSES
527
528#define GENERAL_REGS GR_REGS
529
530/* An initializer containing the names of the register classes as C
531 string constants. These names are used in writing some of the
532 debugging dumps. */
533
534#define REG_CLASS_NAMES \
535{ \
536 "NO_REGS", \
537 "SIBCALL_REGS", \
46888571 538 "RVC_GR_REGS", \
09cae750
PD
539 "JALR_REGS", \
540 "GR_REGS", \
46888571 541 "RVC_FP_REGS", \
09cae750
PD
542 "FP_REGS", \
543 "FRAME_REGS", \
31380d4b 544 "VM_REGS", \
545 "VD_REGS", \
546 "V_REGS", \
09cae750
PD
547 "ALL_REGS" \
548}
549
550/* An initializer containing the contents of the register classes,
551 as integers which are bit masks. The Nth integer specifies the
552 contents of class N. The way the integer MASK is interpreted is
553 that register R is in the class if `MASK & (1 << R)' is 1.
554
555 When the machine has more than 32 registers, an integer does not
556 suffice. Then the integers are replaced by sub-initializers,
557 braced groupings containing several integers. Each
558 sub-initializer must be suitable as an initializer for the type
559 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
560
561#define REG_CLASS_CONTENTS \
562{ \
31380d4b 563 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
564 { 0xf003fcc0, 0x00000000, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
46888571 565 { 0x0000ff00, 0x00000000, 0x00000000, 0x00000000 }, /* RVC_GR_REGS */ \
31380d4b 566 { 0xffffffc0, 0x00000000, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
567 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
46888571 568 { 0x00000000, 0x0000ff00, 0x00000000, 0x00000000 }, /* RVC_FP_REGS */ \
31380d4b 569 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FP_REGS */ \
570 { 0x00000000, 0x00000000, 0x00000003, 0x00000000 }, /* FRAME_REGS */ \
31380d4b 571 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, /* V0_REGS */ \
572 { 0x00000000, 0x00000000, 0x00000000, 0xfffffffe }, /* VNoV0_REGS */ \
573 { 0x00000000, 0x00000000, 0x00000000, 0xffffffff }, /* V_REGS */ \
167b04b9 574 { 0xffffffff, 0xffffffff, 0x00000003, 0xffffffff } /* ALL_REGS */ \
09cae750
PD
575}
576
577/* A C expression whose value is a register class containing hard
578 register REGNO. In general there is more that one such class;
579 choose a class which is "minimal", meaning that no smaller class
580 also contains the register. */
581
582#define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
583
584/* A macro whose definition is the name of the class to which a
585 valid base register must belong. A base register is one used in
586 an address which is the register value plus a displacement. */
587
588#define BASE_REG_CLASS GR_REGS
589
590/* A macro whose definition is the name of the class to which a
591 valid index register must belong. An index register is one used
592 in an address where its value is either multiplied by a scale
593 factor or added to another register (as well as added to a
594 displacement). */
595
42360427 596#define INDEX_REG_CLASS riscv_index_reg_class()
09cae750
PD
597
598/* We generally want to put call-clobbered registers ahead of
599 call-saved ones. (IRA expects this.) */
600
601#define REG_ALLOC_ORDER \
602{ \
603 /* Call-clobbered GPRs. */ \
604 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
605 /* Call-saved GPRs. */ \
606 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
607 /* GPRs that can never be exposed to the register allocator. */ \
608 0, 2, 3, 4, \
609 /* Call-clobbered FPRs. */ \
610 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
611 60, 61, 62, 63, \
612 /* Call-saved FPRs. */ \
613 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
7b206ae7
JZ
614 /* v1 ~ v31 vector registers. */ \
615 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, \
616 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, \
617 124, 125, 126, 127, \
618 /* The vector mask register. */ \
619 96, \
09cae750
PD
620 /* None of the remaining classes have defined call-saved \
621 registers. */ \
31380d4b 622 64, 65, 66, 67 \
09cae750
PD
623}
624
625/* True if VALUE is a signed 12-bit number. */
626
627#define SMALL_OPERAND(VALUE) \
628 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
629
3496ca4e 630#define POLY_SMALL_OPERAND_P(POLY_VALUE) \
631 (POLY_VALUE.is_constant () ? \
632 SMALL_OPERAND (POLY_VALUE.to_constant ()) : false)
7b0073c6 633
09cae750
PD
634/* True if VALUE can be loaded into a register using LUI. */
635
636#define LUI_OPERAND(VALUE) \
637 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
638 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
639
4bfc4585
VG
640/* True if a VALUE (constant) can be expressed as sum of two S12 constants
641 (in range -2048 to 2047).
642 Range check logic:
643 from: min S12 + 1 (or -1 depending on what side of zero)
644 to: two times the min S12 value (to max out S12 bits). */
645
646#define SUM_OF_TWO_S12_N(VALUE) \
647 (((VALUE) >= (-2048 * 2)) && ((VALUE) <= (-2048 - 1)))
648
649#define SUM_OF_TWO_S12_P(VALUE) \
650 (((VALUE) >= (2047 + 1)) && ((VALUE) <= (2047 * 2)))
651
652#define SUM_OF_TWO_S12(VALUE) \
653 (SUM_OF_TWO_S12_N (VALUE) || SUM_OF_TWO_S12_P (VALUE))
654
f9cfc192
VG
655/* Variant with first value 8 byte aligned if involving stack regs. */
656#define SUM_OF_TWO_S12_P_ALGN(VALUE) \
657 (((VALUE) >= (2032 + 1)) && ((VALUE) <= (2032 * 2)))
658
659#define SUM_OF_TWO_S12_ALGN(VALUE) \
660 (SUM_OF_TWO_S12_N (VALUE) || SUM_OF_TWO_S12_P_ALGN (VALUE))
661
4e72ccad
PT
662/* If this is a single bit mask, then we can load it with bseti. Special
663 handling of SImode 0x80000000 on RV64 is done in riscv_build_integer_1. */
664#define SINGLE_BIT_MASK_OPERAND(VALUE) \
2c721ea9
AP
665 (pow2p_hwi (TARGET_64BIT \
666 ? (VALUE) \
667 : ((VALUE) & ((HOST_WIDE_INT_1U << 32)-1))))
4e1e0d79 668
bc6beecb
PT
669/* True if VALUE can be represented as an immediate with 1 extra bit
670 set: we check that it is not a SMALL_OPERAND (as this would be true
671 for all small operands) unmodified and turns into a small operand
672 once we clear the top bit. */
673#define UIMM_EXTRA_BIT_OPERAND(VALUE) \
674 (!SMALL_OPERAND (VALUE) \
675 && SMALL_OPERAND (VALUE & ~(HOST_WIDE_INT_1U << floor_log2 (VALUE))))
676
52e809d5
JM
677/* True if bit BIT is set in VALUE. */
678#define BITSET_P(VALUE, BIT) (((VALUE) & (1ULL << (BIT))) != 0)
679
c8957c87
JV
680/* Returns the smaller (common) number of trailing zeros for VAL1 and VAL2. */
681#define COMMON_TRAILING_ZEROS(VAL1, VAL2) \
682 (ctz_hwi (VAL1) < ctz_hwi (VAL2) \
683 ? ctz_hwi (VAL1) \
684 : ctz_hwi (VAL2))
685
686/* Returns true if both VAL1 and VAL2 are SMALL_OPERANDs after shifting by
687 the common number of trailing zeros. */
688#define SMALL_AFTER_COMMON_TRAILING_SHIFT(VAL1, VAL2) \
689 (SMALL_OPERAND ((VAL1) >> COMMON_TRAILING_ZEROS (VAL1, VAL2)) \
690 && SMALL_OPERAND ((VAL2) >> COMMON_TRAILING_ZEROS (VAL1, VAL2)))
691
09cae750
PD
692/* Stack layout; function entry, exit and calling. */
693
694#define STACK_GROWS_DOWNWARD 1
695
696#define FRAME_GROWS_DOWNWARD 1
697
09cae750
PD
698#define RETURN_ADDR_RTX riscv_return_addr
699
700#define ELIMINABLE_REGS \
701{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
702 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
703 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
704 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
705
706#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
707 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
708
709/* Allocate stack space for arguments at the beginning of each function. */
710#define ACCUMULATE_OUTGOING_ARGS 1
711
712/* The argument pointer always points to the first argument. */
713#define FIRST_PARM_OFFSET(FNDECL) 0
714
715#define REG_PARM_STACK_SPACE(FNDECL) 0
716
717/* Define this if it is the responsibility of the caller to
718 allocate the area reserved for arguments passed in registers.
719 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
720 of this macro is to determine whether the space is included in
721 `crtl->outgoing_args_size'. */
722#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
723
c0d3d1b6 724#define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
0ce42fe1 725
09cae750
PD
726/* Symbolic macros for the registers used to return integer and floating
727 point values. */
728
729#define GP_RETURN GP_ARG_FIRST
730#define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
e40a3d86
PL
731#define V_RETURN V_REG_FIRST
732
733#define GP_RETURN_FIRST GP_ARG_FIRST
734#define GP_RETURN_LAST GP_ARG_FIRST + 1
735#define FP_RETURN_FIRST FP_RETURN
736#define FP_RETURN_LAST FP_RETURN + 1
09cae750 737
006e90e1
TO
738#define MAX_ARGS_IN_REGISTERS \
739 (riscv_abi == ABI_ILP32E || riscv_abi == ABI_LP64E \
740 ? 6 \
741 : 8)
09cae750 742
94a4b932
LD
743#define MAX_ARGS_IN_VECTOR_REGISTERS (16)
744#define MAX_ARGS_IN_MASK_REGISTERS (1)
745
09cae750
PD
746/* Symbolic macros for the first/last argument registers. */
747
748#define GP_ARG_FIRST (GP_REG_FIRST + 10)
749#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
750#define GP_TEMP_FIRST (GP_REG_FIRST + 5)
751#define FP_ARG_FIRST (FP_REG_FIRST + 10)
752#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
94a4b932
LD
753#define V_ARG_FIRST (V_REG_FIRST + 8)
754#define V_ARG_LAST (V_ARG_FIRST + MAX_ARGS_IN_VECTOR_REGISTERS - 1)
09cae750
PD
755
756#define CALLEE_SAVED_REG_NUMBER(REGNO) \
757 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
758 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
759
3d1d3132
FG
760#define CALLEE_SAVED_FREG_NUMBER(REGNO) CALLEE_SAVED_REG_NUMBER (REGNO - 32)
761
09cae750
PD
762#define LIBCALL_VALUE(MODE) \
763 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
764
765#define FUNCTION_VALUE(VALTYPE, FUNC) \
766 riscv_function_value (VALTYPE, FUNC, VOIDmode)
767
09cae750 768/* 1 if N is a possible register number for function argument passing.
1fb157cc 769 We have no FP argument registers when soft-float. */
09cae750
PD
770
771/* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
772#define FUNCTION_ARG_REGNO_P(N) \
773 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
774 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
775
94a4b932
LD
776/* Define the standard RISC-V calling convention and variants. */
777
778enum riscv_cc
779{
780 RISCV_CC_BASE = 0, /* Base standard RISC-V ABI. */
781 RISCV_CC_V, /* For functions that pass or return values in V registers. */
782 RISCV_CC_UNKNOWN
783};
784
09cae750 785typedef struct {
94a4b932
LD
786 /* The calling convention that current function used. */
787 enum riscv_cc variant_cc;
788
09cae750
PD
789 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
790 unsigned int num_gprs;
791
792 /* Number of floating-point registers used so far, likewise. */
793 unsigned int num_fprs;
1d4d302a 794
94a4b932
LD
795 /* Number of mask registers used so far, up to MAX_ARGS_IN_MASK_REGISTERS. */
796 unsigned int num_mrs;
797
798 /* The used state of args in vector registers, true for used by prev arg,
799 initial to false. */
800 bool used_vrs[MAX_ARGS_IN_VECTOR_REGISTERS];
09cae750
PD
801} CUMULATIVE_ARGS;
802
fdd59c0f
LD
803/* Return riscv calling convention of call_insn. */
804extern enum riscv_cc get_riscv_cc (const rtx use);
805
09cae750
PD
806/* Initialize a variable CUM of type CUMULATIVE_ARGS
807 for a call to a function whose data type is FNTYPE.
808 For a library call, FNTYPE is 0. */
809
810#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1d4d302a
YW
811 riscv_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (INDIRECT), \
812 (N_NAMED_ARGS) != -1)
09cae750 813
d0ebdd9f 814#define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
09cae750 815
0ce42fe1
AW
816/* Align based on stack boundary, which might have been set by the user. */
817#define RISCV_STACK_ALIGN(LOC) \
c0d3d1b6 818 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
09cae750
PD
819
820/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
821 the stack pointer does not matter. The value is tested only in
822 functions that have frame pointers.
823 No definition is equivalent to always zero. */
824
825#define EXIT_IGNORE_STACK 1
826
827
828/* Trampolines are a block of code followed by two pointers. */
829
59a869d7 830#define TRAMPOLINE_CODE_SIZE ((is_zicfilp_p ()) ? 24 : 16)
805a052d 831
09cae750
PD
832#define TRAMPOLINE_SIZE \
833 ((Pmode == SImode) \
834 ? TRAMPOLINE_CODE_SIZE \
835 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
836#define TRAMPOLINE_ALIGNMENT POINTER_SIZE
837
838/* Addressing modes, and classification of registers for them. */
839
42360427
CM
840#define REGNO_OK_FOR_INDEX_P(REGNO) \
841 riscv_regno_ok_for_index_p (REGNO)
842
09cae750
PD
843#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
844 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
845
846/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
847 and check its validity for a certain class.
848 We have two alternate definitions for each of them.
849 The usual definition accepts all pseudo regs; the other rejects them all.
850 The symbol REG_OK_STRICT causes the latter definition to be used.
851
852 Most source files want to accept pseudo regs in the hope that
853 they will get allocated to the class that the insn wants them to be in.
854 Some source files that are used after register allocation
855 need to be strict. */
856
857#ifndef REG_OK_STRICT
858#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
859 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
860#else
861#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
862 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
863#endif
864
865#define REG_OK_FOR_INDEX_P(X) 0
866
867/* Maximum number of registers that can appear in a valid memory address. */
868
869#define MAX_REGS_PER_ADDRESS 1
870
871#define CONSTANT_ADDRESS_P(X) \
872 (CONSTANT_P (X) && memory_address_p (SImode, X))
873
874/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
875 'the start of the function that this code is output in'. */
876
2041a23a
TV
877#define ASM_OUTPUT_LABELREF(FILE,NAME) \
878 do { \
879 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
880 asm_fprintf ((FILE), "%U%s", \
881 XSTR (XEXP (DECL_RTL (current_function_decl), \
882 0), 0)); \
883 else \
884 asm_fprintf ((FILE), "%U%s", (NAME)); \
885 } while (0)
09cae750 886
9a55cc62
JSJ
887#undef ASM_OUTPUT_OPCODE
888#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
889 (PTR) = riscv_asm_output_opcode(STREAM, PTR)
890
1d9e02bb 891#define JUMP_TABLES_IN_TEXT_SECTION (riscv_cmodel == CM_LARGE)
09cae750
PD
892#define CASE_VECTOR_MODE SImode
893#define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
894
7d4df630
VG
895#define LOCAL_SYM_P(sym) \
896 ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
897 || ((GET_CODE (sym) == CONST) \
898 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
899 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))
900
09cae750
PD
901/* The load-address macro is used for PC-relative addressing of symbols
902 that bind locally. Don't use it for symbols that should be addressed
903 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
904 currently results in more opportunities for linker relaxation. */
905#define USE_LOAD_ADDRESS_MACRO(sym) \
906 (!TARGET_EXPLICIT_RELOCS && \
7d4df630 907 ((flag_pic && LOCAL_SYM_P (sym)) || riscv_cmodel == CM_MEDANY))
09cae750
PD
908
909/* Define this as 1 if `char' should by default be signed; else as 0. */
910#define DEFAULT_SIGNED_CHAR 0
911
912#define MOVE_MAX UNITS_PER_WORD
913#define MAX_MOVE_MAX 8
914
ecc82a8d
AW
915/* The SPARC port says:
916 Nonzero if access to memory by bytes is slow and undesirable.
917 For RISC chips, it means that access to memory by bytes is no
918 better than access by words when possible, so grab a whole word
919 and maybe make use of that. */
920#define SLOW_BYTE_ACCESS 1
09cae750 921
b7ef9225
JW
922/* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
923 in the md file instead. */
924#define SHIFT_COUNT_TRUNCATED 0
09cae750 925
09cae750
PD
926/* Specify the machine mode that pointers have.
927 After generation of rtl, the compiler makes no further distinction
928 between pointers and any other objects of this machine mode. */
929
930#define Pmode word_mode
931
a3480aac
CM
932/* Specify the machine mode that registers have. */
933
934#define Xmode (TARGET_64BIT ? DImode : SImode)
935
09cae750
PD
936/* Give call MEMs SImode since it is the "most permissive" mode
937 for both 32-bit and 64-bit targets. */
938
939#define FUNCTION_MODE SImode
940
941/* A C expression for the cost of a branch instruction. A value of 2
942 seems to minimize code size. */
943
944#define BRANCH_COST(speed_p, predictable_p) \
945 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
946
4f475391
AW
947/* True if the target optimizes short forward branches around integer
948 arithmetic instructions into predicated operations, e.g., for
949 conditional-move operations. The macro assumes that all branch
950 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
951 support this feature. The macro further assumes that any integer
952 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
953 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
954 counterparts, including C.MV and C.LI) can be in the branch shadow. */
955
ec217f72
MC
956#define TARGET_SFB_ALU \
957 ((riscv_microarchitecture == sifive_7) \
7c190f93 958 || (riscv_microarchitecture == sifive_p400) \
ec217f72 959 || (riscv_microarchitecture == sifive_p600))
4f475391 960
68b0742a
RD
961/* True if the target supports misaligned vector loads and stores. */
962#define TARGET_VECTOR_MISALIGN_SUPPORTED \
963 riscv_vector_unaligned_access_p
964
09cae750
PD
965/* Control the assembler format that we output. */
966
967/* Output to assembler file text saying following lines
968 may contain character constants, extra white space, comments, etc. */
969
970#ifndef ASM_APP_ON
971#define ASM_APP_ON " #APP\n"
972#endif
973
974/* Output to assembler file text saying following lines
975 no longer contain unusual constructs. */
976
977#ifndef ASM_APP_OFF
978#define ASM_APP_OFF " #NO_APP\n"
979#endif
980
981#define REGISTER_NAMES \
982{ "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
983 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
984 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
985 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
986 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
987 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
988 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
989 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
f6d7ff47 990 "arg", "frame", "vl", "vtype", "vxrm", "frm", "vxsat", "N/A", \
31380d4b 991 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
992 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
993 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
994 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
995 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
996 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
997 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",}
09cae750
PD
998
999#define ADDITIONAL_REGISTER_NAMES \
1000{ \
1001 { "x0", 0 + GP_REG_FIRST }, \
1002 { "x1", 1 + GP_REG_FIRST }, \
1003 { "x2", 2 + GP_REG_FIRST }, \
1004 { "x3", 3 + GP_REG_FIRST }, \
1005 { "x4", 4 + GP_REG_FIRST }, \
1006 { "x5", 5 + GP_REG_FIRST }, \
1007 { "x6", 6 + GP_REG_FIRST }, \
1008 { "x7", 7 + GP_REG_FIRST }, \
1009 { "x8", 8 + GP_REG_FIRST }, \
1010 { "x9", 9 + GP_REG_FIRST }, \
1011 { "x10", 10 + GP_REG_FIRST }, \
1012 { "x11", 11 + GP_REG_FIRST }, \
1013 { "x12", 12 + GP_REG_FIRST }, \
1014 { "x13", 13 + GP_REG_FIRST }, \
1015 { "x14", 14 + GP_REG_FIRST }, \
1016 { "x15", 15 + GP_REG_FIRST }, \
1017 { "x16", 16 + GP_REG_FIRST }, \
1018 { "x17", 17 + GP_REG_FIRST }, \
1019 { "x18", 18 + GP_REG_FIRST }, \
1020 { "x19", 19 + GP_REG_FIRST }, \
1021 { "x20", 20 + GP_REG_FIRST }, \
1022 { "x21", 21 + GP_REG_FIRST }, \
1023 { "x22", 22 + GP_REG_FIRST }, \
1024 { "x23", 23 + GP_REG_FIRST }, \
1025 { "x24", 24 + GP_REG_FIRST }, \
1026 { "x25", 25 + GP_REG_FIRST }, \
1027 { "x26", 26 + GP_REG_FIRST }, \
1028 { "x27", 27 + GP_REG_FIRST }, \
1029 { "x28", 28 + GP_REG_FIRST }, \
1030 { "x29", 29 + GP_REG_FIRST }, \
1031 { "x30", 30 + GP_REG_FIRST }, \
1032 { "x31", 31 + GP_REG_FIRST }, \
1033 { "f0", 0 + FP_REG_FIRST }, \
1034 { "f1", 1 + FP_REG_FIRST }, \
1035 { "f2", 2 + FP_REG_FIRST }, \
1036 { "f3", 3 + FP_REG_FIRST }, \
1037 { "f4", 4 + FP_REG_FIRST }, \
1038 { "f5", 5 + FP_REG_FIRST }, \
1039 { "f6", 6 + FP_REG_FIRST }, \
1040 { "f7", 7 + FP_REG_FIRST }, \
1041 { "f8", 8 + FP_REG_FIRST }, \
1042 { "f9", 9 + FP_REG_FIRST }, \
1043 { "f10", 10 + FP_REG_FIRST }, \
1044 { "f11", 11 + FP_REG_FIRST }, \
1045 { "f12", 12 + FP_REG_FIRST }, \
1046 { "f13", 13 + FP_REG_FIRST }, \
1047 { "f14", 14 + FP_REG_FIRST }, \
1048 { "f15", 15 + FP_REG_FIRST }, \
1049 { "f16", 16 + FP_REG_FIRST }, \
1050 { "f17", 17 + FP_REG_FIRST }, \
1051 { "f18", 18 + FP_REG_FIRST }, \
1052 { "f19", 19 + FP_REG_FIRST }, \
1053 { "f20", 20 + FP_REG_FIRST }, \
1054 { "f21", 21 + FP_REG_FIRST }, \
1055 { "f22", 22 + FP_REG_FIRST }, \
1056 { "f23", 23 + FP_REG_FIRST }, \
1057 { "f24", 24 + FP_REG_FIRST }, \
1058 { "f25", 25 + FP_REG_FIRST }, \
1059 { "f26", 26 + FP_REG_FIRST }, \
1060 { "f27", 27 + FP_REG_FIRST }, \
1061 { "f28", 28 + FP_REG_FIRST }, \
1062 { "f29", 29 + FP_REG_FIRST }, \
1063 { "f30", 30 + FP_REG_FIRST }, \
1064 { "f31", 31 + FP_REG_FIRST }, \
1065}
1066
1067/* Globalizing directive for a label. */
1068#define GLOBAL_ASM_OP "\t.globl\t"
1069
1070/* This is how to store into the string LABEL
1071 the symbol_ref name of an internal numbered label where
1072 PREFIX is the class of label and NUM is the number within the class.
1073 This is suitable for output with `assemble_name'. */
1074
1075#undef ASM_GENERATE_INTERNAL_LABEL
1076#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1077 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
1078
1079/* This is how to output an element of a case-vector that is absolute. */
1080
1081#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1082 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
1083
1084/* This is how to output an element of a PIC case-vector. */
1085
1086#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1087 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
1088 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
1089
1090/* This is how to output an assembler line
1091 that says to advance the location counter
1092 to a multiple of 2**LOG bytes. */
1093
1094#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
1095 fprintf (STREAM, "\t.align\t%d\n", (LOG))
1096
1097/* Define the strings to put out for each section in the object file. */
1098#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
1099#define DATA_SECTION_ASM_OP "\t.data" /* large data */
1100#define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
1101#define BSS_SECTION_ASM_OP "\t.bss"
1102#define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
1103#define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
1104
1105#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
1106do \
1107 { \
1108 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
1109 reg_names[STACK_POINTER_REGNUM], \
1110 reg_names[STACK_POINTER_REGNUM], \
1111 TARGET_64BIT ? "sd" : "sw", \
1112 reg_names[REGNO], \
1113 reg_names[STACK_POINTER_REGNUM]); \
1114 } \
1115while (0)
1116
1117#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
1118do \
1119 { \
1120 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
1121 TARGET_64BIT ? "ld" : "lw", \
1122 reg_names[REGNO], \
1123 reg_names[STACK_POINTER_REGNUM], \
1124 reg_names[STACK_POINTER_REGNUM], \
1125 reg_names[STACK_POINTER_REGNUM]); \
1126 } \
1127while (0)
1128
1129#define ASM_COMMENT_START "#"
1130
4abcc500
LD
1131/* Add output .variant_cc directive for specific function definition. */
1132#undef ASM_DECLARE_FUNCTION_NAME
1133#define ASM_DECLARE_FUNCTION_NAME(STR, NAME, DECL) \
1134 riscv_declare_function_name (STR, NAME, DECL)
1135
5f110561
KC
1136#undef ASM_DECLARE_FUNCTION_SIZE
1137#define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1138 riscv_declare_function_size (FILE, FNAME, DECL)
1139
4abcc500
LD
1140/* Add output .variant_cc directive for specific alias definition. */
1141#undef ASM_OUTPUT_DEF_FROM_DECLS
1142#define ASM_OUTPUT_DEF_FROM_DECLS(STR, DECL, TARGET) \
1143 riscv_asm_output_alias (STR, DECL, TARGET)
1144
1145/* Add output .variant_cc directive for specific extern function. */
1146#undef ASM_OUTPUT_EXTERNAL
1147#define ASM_OUTPUT_EXTERNAL(STR, DECL, NAME) \
1148 riscv_asm_output_external (STR, DECL, NAME)
1149
09cae750
PD
1150#undef SIZE_TYPE
1151#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
1152
1153#undef PTRDIFF_TYPE
1154#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
1155
76715c32 1156/* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
6ed01e6b
AW
1157
1158#define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
1159
1160/* The maximum number of bytes that can be copied by a straight-line
76715c32 1161 cpymemsi implementation. */
09cae750 1162
6ed01e6b
AW
1163#define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
1164
1165/* If a memory-to-memory move would take MOVE_RATIO or more simple
76715c32 1166 move-instruction pairs, we will do a cpymem or libcall instead.
6ed01e6b
AW
1167 Do not use move_by_pieces at all when strict alignment is not
1168 in effect but the target has slow unaligned accesses; in this
76715c32 1169 case, cpymem or libcall is more efficient. */
6ed01e6b
AW
1170
1171#define MOVE_RATIO(speed) \
fb5621b1 1172 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
6ed01e6b
AW
1173 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
1174 CLEAR_RATIO (speed) / 2)
09cae750
PD
1175
1176/* For CLEAR_RATIO, when optimizing for size, give a better estimate
1177 of the length of a memset call, but use the default otherwise. */
1178
1179#define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
1180
1181/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
1182 optimizing for size adjust the ratio to account for the overhead of
1183 loading the constant and replicating it across the word. */
1184
1185#define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
1186
1187#ifndef USED_FOR_TARGET
1188extern const enum reg_class riscv_regno_to_class[];
fb5621b1 1189extern bool riscv_slow_unaligned_access_p;
68b0742a 1190extern bool riscv_vector_unaligned_access_p;
6e23440b 1191extern bool riscv_user_wants_strict_align;
fb5621b1 1192extern unsigned riscv_stack_boundary;
3496ca4e 1193extern unsigned riscv_bytes_per_vector_chunk;
1194extern poly_uint16 riscv_vector_chunks;
7e924ba3 1195extern poly_int64 riscv_v_adjust_nunits (enum machine_mode, int);
879c52c9 1196extern poly_int64 riscv_v_adjust_nunits (machine_mode, bool, int, int);
247cacc9 1197extern poly_int64 riscv_v_adjust_precision (enum machine_mode, int);
3a982e07 1198extern poly_int64 riscv_v_adjust_bytesize (enum machine_mode, int);
59a869d7
MC
1199extern bool is_zicfiss_p ();
1200extern bool is_zicfilp_p ();
dc76aa0e 1201extern bool need_shadow_stack_push_pop_p ();
3496ca4e 1202/* The number of bits and bytes in a RVV vector. */
1203#define BITS_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk * 8))
1204#define BYTES_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk))
09cae750
PD
1205#endif
1206
1207#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1208 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
1209
1210#define XLEN_SPEC \
1211 "%{march=rv32*:32}" \
1212 "%{march=rv64*:64}" \
1213
1214#define ABI_SPEC \
1215 "%{mabi=ilp32:ilp32}" \
09baee1a 1216 "%{mabi=ilp32e:ilp32e}" \
09cae750
PD
1217 "%{mabi=ilp32f:ilp32f}" \
1218 "%{mabi=ilp32d:ilp32d}" \
1219 "%{mabi=lp64:lp64}" \
006e90e1 1220 "%{mabi=lp64e:lp64e}" \
09cae750
PD
1221 "%{mabi=lp64f:lp64f}" \
1222 "%{mabi=lp64d:lp64d}" \
1223
09cae750
PD
1224/* ISA constants needed for code generation. */
1225#define OPCODE_LW 0x2003
1226#define OPCODE_LD 0x3003
1227#define OPCODE_AUIPC 0x17
1228#define OPCODE_JALR 0x67
1229#define OPCODE_LUI 0x37
1230#define OPCODE_ADDI 0x13
1231#define SHIFT_RD 7
1232#define SHIFT_RS1 15
1233#define SHIFT_IMM 20
1234#define IMM_BITS 12
de6320a8 1235#define C_S_BITS 5
10789329 1236#define C_SxSP_BITS 6
09cae750
PD
1237
1238#define IMM_REACH (1LL << IMM_BITS)
1239#define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
1240#define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
1241
10789329
JW
1242#define SWSP_REACH (4LL << C_SxSP_BITS)
1243#define SDSP_REACH (8LL << C_SxSP_BITS)
1244
de6320a8
CB
1245/* This is the maximum value that can be represented in a compressed load/store
1246 offset (an unsigned 5-bit value scaled by 4). */
f95bd50b 1247#define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
de6320a8 1248
e53b6e56 1249/* Called from RISCV_REORG, this is defined in riscv-sr.cc. */
e18a6d14
AB
1250
1251extern void riscv_remove_unneeded_save_restore_calls (void);
1252
e0a5b313
KC
1253#define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
1254
16f7fcad
PT
1255#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1256 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1257#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1258 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1259
ef85d150
VG
1260#define TARGET_SUPPORTS_WIDE_INT 1
1261
7d935cdd
JZZ
1262#define REGISTER_TARGET_PRAGMAS() riscv_register_pragmas ()
1263
f556cd8b
JZZ
1264#define REGMODE_NATURAL_SIZE(MODE) riscv_regmode_natural_size (MODE)
1265
89367e79
KC
1266#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 1 /* VLENB */)
1267
1268#define DWARF_REG_TO_UNWIND_COLUMN(REGNO) \
1269 ((REGNO == RISCV_DWARF_VLENB) ? (FIRST_PSEUDO_REGISTER + 1) : REGNO)
1270
3365956d
PL
1271/* Like s390, riscv also defined this macro for the vector comparision. Then
1272 the simplify-rtx relational_result will canonicalize the result to the
1273 CONST1_RTX for the simplification. */
1274#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1275
e682d300
JZ
1276/* Mode switching (Lazy code motion) for RVV rounding mode instructions. */
1277#define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_VECTOR)
4cede0de 1278#define NUM_MODES_FOR_MODE_SWITCHING {VXRM_MODE_NONE, riscv_vector::FRM_NONE}
e682d300 1279
0f40e59f
KC
1280/* The size difference between different RVV modes can be up to 64 times.
1281 e.g. RVVMF64BI vs RVVMF1BI on zvl512b, which is [1, 1] vs [64, 64]. */
1282#define MAX_POLY_VARIANT 64
1283
2d65622f
CM
1284#define HAVE_POST_MODIFY_DISP TARGET_XTHEADMEMIDX
1285#define HAVE_PRE_MODIFY_DISP TARGET_XTHEADMEMIDX
1286
97069657
TI
1287/* Check TLS Descriptors mechanism is selected. */
1288#define TARGET_TLSDESC (riscv_tls_dialect == TLS_DESCRIPTORS)
1289
b82d173d
RMZ
1290/* This value is the amount of bytes a caller is allowed to drop the stack
1291 before probing has to be done for stack clash protection. */
1292#define STACK_CLASH_CALLER_GUARD 1024
1293
1294/* This value controls how many pages we manually unroll the loop for when
1295 generating stack clash probes. */
1296#define STACK_CLASH_MAX_UNROLL_PAGES 4
1297
180ede35
RMZ
1298/* This value represents the minimum amount of bytes we expect the function's
1299 outgoing arguments to be when stack-clash is enabled. */
1300#define STACK_CLASH_MIN_BYTES_OUTGOING_ARGS 8
1301
1302/* Allocate a minimum of STACK_CLASH_MIN_BYTES_OUTGOING_ARGS bytes for the
1303 outgoing arguments if stack clash protection is enabled. This is essential
1304 as the extra arg space allows us to skip a check in alloca. */
1305#undef STACK_DYNAMIC_OFFSET
1306#define STACK_DYNAMIC_OFFSET(FUNDECL) \
1307 ((flag_stack_clash_protection \
1308 && cfun->calls_alloca \
1309 && known_lt (crtl->outgoing_args_size, \
1310 STACK_CLASH_MIN_BYTES_OUTGOING_ARGS)) \
1311 ? ROUND_UP (STACK_CLASH_MIN_BYTES_OUTGOING_ARGS, \
1312 STACK_BOUNDARY / BITS_PER_UNIT) \
1313 : (crtl->outgoing_args_size + STACK_POINTER_OFFSET))
1314
9bf0dbe6
YC
1315/* According to the RISC-V C API, the arch string may contains ','. To avoid
1316 the conflict with the default separator, we choose '#' as the separator for
1317 the target attribute. */
1318#define TARGET_CLONES_ATTR_SEPARATOR '#'
1319
bd975bd1
YC
1320#define TARGET_HAS_FMV_TARGET_ATTRIBUTE 0
1321
09cae750 1322#endif /* ! GCC_RISCV_H */