]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/riscv/riscv.h
Daily bump.
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
CommitLineData
09cae750 1/* Definition of RISC-V target for GNU compiler.
a945c346 2 Copyright (C) 2011-2024 Free Software Foundation, Inc.
09cae750
PD
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#ifndef GCC_RISCV_H
23#define GCC_RISCV_H
24
94a4b932 25#include <stdbool.h>
09cae750
PD
26#include "config/riscv/riscv-opts.h"
27
5f110561
KC
28#define SWITCHABLE_TARGET 1
29
09cae750
PD
30/* Target CPU builtins. */
31#define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
32
cd1e2f63
MC
33#ifdef TARGET_BIG_ENDIAN_DEFAULT
34#define DEFAULT_ENDIAN_SPEC "b"
35#else
36#define DEFAULT_ENDIAN_SPEC "l"
37#endif
38
09cae750
PD
39/* Default target_flags if no switches are specified */
40
41#ifndef TARGET_DEFAULT
42#define TARGET_DEFAULT 0
43#endif
44
45#ifndef RISCV_TUNE_STRING_DEFAULT
46#define RISCV_TUNE_STRING_DEFAULT "rocket"
47#endif
48
f908b69c 49extern const char *riscv_expand_arch (int argc, const char **argv);
72eb8335
KC
50extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv);
51extern const char *riscv_default_mtune (int argc, const char **argv);
d72ca12b 52extern const char *riscv_multi_lib_check (int argc, const char **argv);
7af0f1e1 53extern const char *riscv_arch_help (int argc, const char **argv);
f908b69c
KC
54
55# define EXTRA_SPEC_FUNCTIONS \
72eb8335
KC
56 { "riscv_expand_arch", riscv_expand_arch }, \
57 { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \
d72ca12b 58 { "riscv_default_mtune", riscv_default_mtune }, \
7af0f1e1
KC
59 { "riscv_multi_lib_check", riscv_multi_lib_check }, \
60 { "riscv_arch_help", riscv_arch_help },
f908b69c 61
09cae750 62/* Support for a compile-time default CPU, et cetera. The rules are:
72eb8335 63 --with-arch is ignored if -march or -mcpu is specified.
09cae750 64 --with-abi is ignored if -mabi is specified.
72eb8335 65 --with-tune is ignored if -mtune or -mcpu is specified.
06e32a5e 66 --with-isa-spec is ignored if -misa-spec is specified.
97069657 67 --with-tls is ignored if -mtls-dialect is specified.
72eb8335
KC
68
69 But using default -march/-mtune value if -mcpu don't have valid option. */
09cae750 70#define OPTION_DEFAULT_SPECS \
72eb8335
KC
71 {"tune", "%{!mtune=*:" \
72 " %{!mcpu=*:-mtune=%(VALUE)}" \
73 " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \
74 {"arch", "%{!march=*:" \
75 " %{!mcpu=*:-march=%(VALUE)}" \
76 " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \
97069657
TI
77 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
78 {"isa_spec", "%{!misa-spec=*:-misa-spec=%(VALUE)}" }, \
79 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"}, \
09cae750
PD
80
81#ifdef IN_LIBGCC2
82#undef TARGET_64BIT
83/* Make this compile time constant for libgcc2 */
84#define TARGET_64BIT (__riscv_xlen == 64)
85#endif /* IN_LIBGCC2 */
86
4b815282
KC
87#ifdef HAVE_AS_MISA_SPEC
88#define ASM_MISA_SPEC "%{misa-spec=*}"
89#else
90#define ASM_MISA_SPEC ""
91#endif
92
a5ad5d5c
KC
93/* Reference:
94 https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing */
95#define STRINGIZING(s) __STRINGIZING(s)
96#define __STRINGIZING(s) #s
97
98#define MULTILIB_DEFAULTS \
99 {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \
100 "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) }
101
09cae750
PD
102#undef ASM_SPEC
103#define ASM_SPEC "\
104%(subtarget_asm_debugging_spec) \
105%{" FPIE_OR_FPIC_SPEC ":-fpic} \
f4670347 106%{march=*} \
09cae750 107%{mabi=*} \
3b0a7d62 108%{mno-relax} \
a9604fcb
MC
109%{mbig-endian} \
110%{mlittle-endian} \
4b815282
KC
111%(subtarget_asm_spec)" \
112ASM_MISA_SPEC
09cae750 113
f4670347 114#undef DRIVER_SELF_SPECS
72eb8335 115#define DRIVER_SELF_SPECS \
7af0f1e1
KC
116"%{march=help:%:riscv_arch_help()} " \
117"%{print-supported-extensions:%:riscv_arch_help()} " \
118"%{-print-supported-extensions:%:riscv_arch_help()} " \
72eb8335
KC
119"%{march=*:%:riscv_expand_arch(%*)} " \
120"%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
f4670347 121
09cae750
PD
122#define TARGET_DEFAULT_CMODEL CM_MEDLOW
123
124#define LOCAL_LABEL_PREFIX "."
125#define USER_LABEL_PREFIX ""
126
127/* Offsets recorded in opcodes are a multiple of this alignment factor.
128 The default for this in 64-bit mode is 8, which causes problems with
129 SFmode register saves. */
130#define DWARF_CIE_DATA_ALIGNMENT -4
131
132/* The mapping from gcc register number to DWARF 2 CFA column number. */
31380d4b 133#define DWARF_FRAME_REGNUM(REGNO) \
8cd140d3
JZ
134 (FRM_REG_P (REGNO) ? RISCV_DWARF_FRM \
135 : VXRM_REG_P (REGNO) ? RISCV_DWARF_VXRM \
136 : VL_REG_P (REGNO) ? RISCV_DWARF_VL \
31380d4b 137 : VTYPE_REG_P (REGNO) \
138 ? RISCV_DWARF_VTYPE \
139 : (GP_REG_P (REGNO) || FP_REG_P (REGNO) || V_REG_P (REGNO) \
140 ? REGNO \
141 : INVALID_REGNUM))
09cae750
PD
142
143/* The DWARF 2 CFA column which tracks the return address. */
144#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
145#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
146
147/* Describe how we implement __builtin_eh_return. */
148#define EH_RETURN_DATA_REGNO(N) \
149 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
150
151#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
152
153/* Target machine storage layout */
154
155#define BITS_BIG_ENDIAN 0
a9604fcb
MC
156#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
157#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
09cae750
PD
158
159#define MAX_BITS_PER_WORD 64
160
161/* Width of a word, in units (bytes). */
162#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
a99dc11f 163#define BITS_PER_WORD (BITS_PER_UNIT * UNITS_PER_WORD)
09cae750
PD
164#ifndef IN_LIBGCC2
165#define MIN_UNITS_PER_WORD 4
166#endif
167
e53b6e56 168/* Allows SImode op in builtin overflow pattern, see internal-fn.cc. */
6efd040c
L
169#undef TARGET_MIN_ARITHMETIC_PRECISION
170#define TARGET_MIN_ARITHMETIC_PRECISION riscv_min_arithmetic_precision
171
09cae750
PD
172/* The `Q' extension is not yet supported. */
173#define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
e9f827d7 174/* Size per vector register. For VLEN = 32, size = poly (4, 4). Otherwise, size = poly (8, 8). */
31380d4b 175#define UNITS_PER_V_REG (riscv_vector_chunks * riscv_bytes_per_vector_chunk)
09cae750
PD
176
177/* The largest type that can be passed in floating-point registers. */
09baee1a
KC
178#define UNITS_PER_FP_ARG \
179 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
006e90e1 180 || riscv_abi == ABI_LP64 || riscv_abi == ABI_LP64E) \
09baee1a
KC
181 ? 0 \
182 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
09cae750
PD
183
184/* Set the sizes of the core types. */
185#define SHORT_TYPE_SIZE 16
186#define INT_TYPE_SIZE 32
187#define LONG_LONG_TYPE_SIZE 64
188#define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
189#define LONG_TYPE_SIZE POINTER_SIZE
190
191#define FLOAT_TYPE_SIZE 32
192#define DOUBLE_TYPE_SIZE 64
193#define LONG_DOUBLE_TYPE_SIZE 128
194
195/* Allocation boundary (in *bits*) for storing arguments in argument list. */
196#define PARM_BOUNDARY BITS_PER_WORD
197
198/* Allocation boundary (in *bits*) for the code of a function. */
6e46fcdf 199#define FUNCTION_BOUNDARY ((TARGET_RVC || TARGET_ZCA) ? 16 : 32)
09cae750 200
0ce42fe1 201/* The smallest supported stack boundary the calling convention supports. */
75902396 202#define STACK_BOUNDARY \
006e90e1
TO
203 (riscv_abi == ABI_ILP32E || riscv_abi == ABI_LP64E \
204 ? BITS_PER_WORD \
205 : 2 * BITS_PER_WORD)
0ce42fe1
AW
206
207/* The ABI stack alignment. */
006e90e1
TO
208#define ABI_STACK_BOUNDARY \
209 (riscv_abi == ABI_ILP32E || riscv_abi == ABI_LP64E \
210 ? BITS_PER_WORD \
211 : 128)
0ce42fe1 212
09cae750 213/* There is no point aligning anything to a rounder boundary than this. */
c0d3d1b6 214#define BIGGEST_ALIGNMENT 128
09cae750 215
82285692
AW
216/* The user-level ISA permits unaligned accesses, but they are not required
217 of the privileged architecture. */
218#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
219
09cae750
PD
220/* Define this if you wish to imitate the way many other C compilers
221 handle alignment of bitfields and the structures that contain
222 them.
223
224 The behavior is that the type written for a bit-field (`int',
225 `short', or other integer type) imposes an alignment for the
226 entire structure, as if the structure really did contain an
227 ordinary field of that type. In addition, the bit-field is placed
228 within the structure so that it would fit within such a field,
229 not crossing a boundary for it.
230
231 Thus, on most machines, a bit-field whose type is written as `int'
232 would not cross a four-byte boundary, and would force four-byte
233 alignment for the whole structure. (The alignment used may not
234 be four bytes; it is controlled by the other alignment
235 parameters.)
236
237 If the macro is defined, its definition should be a C expression;
238 a nonzero value for the expression enables this behavior. */
239
240#define PCC_BITFIELD_TYPE_MATTERS 1
241
d3f952c5
JW
242/* An integer expression for the size in bits of the largest integer machine
243 mode that should actually be used. We allow pairs of registers. */
244#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
245
ffbb9818
ID
246/* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
247#define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
248 (((COND) && ((ALIGN) < BITS_PER_WORD) \
249 && (TREE_CODE (TYPE) == ARRAY_TYPE \
250 || TREE_CODE (TYPE) == UNION_TYPE \
251 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
252
09cae750
PD
253/* If defined, a C expression to compute the alignment for a static
254 variable. TYPE is the data type, and ALIGN is the alignment that
255 the object would ordinarily have. The value of this macro is used
256 instead of that alignment to align the object.
257
258 If this macro is not defined, then ALIGN is used.
259
260 One use of this macro is to increase alignment of medium-size
261 data to make it all fit in fewer cache lines. Another is to
262 cause character arrays to be word-aligned so that `strcpy' calls
263 that copy constants to character arrays can be done inline. */
264
ffbb9818
ID
265#define DATA_ALIGNMENT(TYPE, ALIGN) \
266 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
267 TYPE, ALIGN)
09cae750
PD
268
269/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
270 character arrays to be word-aligned so that `strcpy' calls that copy
271 constants to character arrays can be done inline, and 'strcmp' can be
272 optimised to use word loads. */
273#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
ffbb9818 274 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
09cae750
PD
275
276/* Define if operations between registers always perform the operation
277 on the full register even if a narrower mode is specified. */
278#define WORD_REGISTER_OPERATIONS 1
279
280/* When in 64-bit mode, move insns will sign extend SImode and CCmode
281 moves. All other references are zero extended. */
282#define LOAD_EXTEND_OP(MODE) \
283 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
284
285/* Define this macro if it is advisable to hold scalars in registers
286 in a wider mode than that declared by the program. In such cases,
287 the value is constrained to be within the bounds of the declared
288 type, but kept valid in the wider mode. The signedness of the
289 extension may differ from that of the type. */
290
291#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
292 if (GET_MODE_CLASS (MODE) == MODE_INT \
293 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
294 { \
295 if ((MODE) == SImode) \
296 (UNSIGNEDP) = 0; \
297 (MODE) = word_mode; \
298 }
299
300/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
301 Extensions of pointers to word_mode must be signed. */
302#define POINTERS_EXTEND_UNSIGNED false
303
09cae750
PD
304/* Define if loading short immediate values into registers sign extends. */
305#define SHORT_IMMEDIATES_SIGN_EXTEND 1
306
307/* Standard register usage. */
308
309/* Number of hardware registers. We have:
310
311 - 32 integer registers
312 - 32 floating point registers
313 - 2 fake registers:
314 - ARG_POINTER_REGNUM
31380d4b 315 - FRAME_POINTER_REGNUM
316 - 1 vl register
317 - 1 vtype register
467ca4a1 318 - 28 unused registers for future expansion
31380d4b 319 - 32 vector registers */
09cae750 320
31380d4b 321#define FIRST_PSEUDO_REGISTER 128
09cae750
PD
322
323/* x0, sp, gp, and tp are fixed. */
324
325#define FIXED_REGISTERS \
326{ /* General registers. */ \
71f90649 327 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
09cae750
PD
328 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
329 /* Floating-point registers. */ \
330 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
331 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
332 /* Others. */ \
a035d133 333 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
31380d4b 334 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
335 /* Vector registers. */ \
336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
337 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
09cae750
PD
338}
339
f3abed16 340/* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
09cae750
PD
341 The call RTLs themselves clobber ra. */
342
343#define CALL_USED_REGISTERS \
344{ /* General registers. */ \
71f90649 345 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
09cae750
PD
346 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
347 /* Floating-point registers. */ \
348 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
349 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
350 /* Others. */ \
31380d4b 351 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
352 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
353 /* Vector registers. */ \
354 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
355 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
09cae750
PD
356}
357
b780f68e
JW
358/* Select a register mode required for caller save of hard regno REGNO.
359 Contrary to what is documented, the default is not the smallest suitable
360 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
361 it quickly creates paradoxical subregs that can be problematic. */
362#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
363 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
364
09cae750
PD
365/* Internal macros to classify an ISA register's type. */
366
367#define GP_REG_FIRST 0
09baee1a 368#define GP_REG_LAST (TARGET_RVE ? 15 : 31)
09cae750
PD
369#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
370
371#define FP_REG_FIRST 32
372#define FP_REG_LAST 63
373#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
374
31380d4b 375#define V_REG_FIRST 96
376#define V_REG_LAST 127
377#define V_REG_NUM (V_REG_LAST - V_REG_FIRST + 1)
378
09cae750
PD
379/* The DWARF 2 CFA column which tracks the return address from a
380 signal handler context. This means that to maintain backwards
381 compatibility, no hard register can be assigned this column if it
382 would need to be handled by the DWARF unwinder. */
383#define DWARF_ALT_FRAME_RETURN_COLUMN 64
384
385#define GP_REG_P(REGNO) \
386 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
387#define FP_REG_P(REGNO) \
388 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
60d6c63d
CM
389#define HARDFP_REG_P(REGNO) \
390 ((REGNO) >= FP_REG_FIRST && (REGNO) <= FP_REG_LAST)
31380d4b 391#define V_REG_P(REGNO) \
392 ((unsigned int) ((int) (REGNO) - V_REG_FIRST) < V_REG_NUM)
393#define VL_REG_P(REGNO) ((REGNO) == VL_REGNUM)
394#define VTYPE_REG_P(REGNO) ((REGNO) == VTYPE_REGNUM)
5ed88078 395#define VXRM_REG_P(REGNO) ((REGNO) == VXRM_REGNUM)
8cd140d3 396#define FRM_REG_P(REGNO) ((REGNO) == FRM_REGNUM)
09cae750 397
e18a6d14
AB
398/* True when REGNO is in SIBCALL_REGS set. */
399#define SIBCALL_REG_P(REGNO) \
400 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
401
09cae750
PD
402#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
403
09cae750
PD
404/* Use s0 as the frame pointer if it is so requested. */
405#define HARD_FRAME_POINTER_REGNUM 8
406#define STACK_POINTER_REGNUM 2
407#define THREAD_POINTER_REGNUM 4
408
409/* These two registers don't really exist: they get eliminated to either
410 the stack or hard frame pointer. */
411#define ARG_POINTER_REGNUM 64
412#define FRAME_POINTER_REGNUM 65
413
31380d4b 414/* Define Dwarf for RVV. */
8cd140d3 415#define RISCV_DWARF_FRM (4096 + 0x003)
5ed88078 416#define RISCV_DWARF_VXRM (4096 + 0x00a)
31380d4b 417#define RISCV_DWARF_VL (4096 + 0xc20)
418#define RISCV_DWARF_VTYPE (4096 + 0xc21)
5576518a 419#define RISCV_DWARF_VLENB (4096 + 0xc22)
31380d4b 420
09cae750
PD
421/* Register in which static-chain is passed to a function. */
422#define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
423
424/* Registers used as temporaries in prologue/epilogue code.
425
426 The prologue registers mustn't conflict with any
427 incoming arguments, the static chain pointer, or the frame pointer.
428 The epilogue temporary mustn't conflict with the return registers,
429 the frame pointer, the EH stack adjustment, or the EH data registers. */
430
207de839 431#define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
09cae750 432#define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
5576518a
JZZ
433#define RISCV_PROLOGUE_TEMP2_REGNUM (GP_TEMP_FIRST + 1)
434#define RISCV_PROLOGUE_TEMP2(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP2_REGNUM)
09cae750 435
207de839
MC
436#define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
437#define RISCV_CALL_ADDRESS_TEMP(MODE) \
438 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
439
3d1d3132
FG
440#define RETURN_ADDR_MASK (1 << RETURN_ADDR_REGNUM)
441#define S0_MASK (1 << S0_REGNUM)
442#define S1_MASK (1 << S1_REGNUM)
443#define S2_MASK (1 << S2_REGNUM)
444#define S3_MASK (1 << S3_REGNUM)
445#define S4_MASK (1 << S4_REGNUM)
446#define S5_MASK (1 << S5_REGNUM)
447#define S6_MASK (1 << S6_REGNUM)
448#define S7_MASK (1 << S7_REGNUM)
449#define S8_MASK (1 << S8_REGNUM)
450#define S9_MASK (1 << S9_REGNUM)
451#define S10_MASK (1 << S10_REGNUM)
452#define S11_MASK (1 << S11_REGNUM)
453
454#define MULTI_PUSH_GPR_MASK \
455 (RETURN_ADDR_MASK | S0_MASK | S1_MASK | S2_MASK | S3_MASK | S4_MASK \
456 | S5_MASK | S6_MASK | S7_MASK | S8_MASK | S9_MASK | S10_MASK | S11_MASK)
457#define ZCMP_MAX_SPIMM 3
458#define ZCMP_SP_INC_STEP 16
459#define ZCMP_INVALID_S0S10_SREGS_COUNTS 11
460#define ZCMP_S0S11_SREGS_COUNTS 12
461#define ZCMP_MAX_GRP_SLOTS 13
462
09cae750
PD
463#define MCOUNT_NAME "_mcount"
464
465#define NO_PROFILE_COUNTERS 1
466
467/* Emit rtl for profiling. Output assembler code to FILE
468 to call "_mcount" for profiling a function entry. */
469#define PROFILE_HOOK(LABEL) \
470 { \
471 rtx fun, ra; \
472 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
473 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
db69559b 474 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
09cae750
PD
475 }
476
477/* All the work done in PROFILE_HOOK, but still required. */
478#define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
479
480/* Define this macro if it is as good or better to call a constant
481 function address than to call an address kept in a register. */
482#define NO_FUNCTION_CSE 1
483
484/* Define the classes of registers for register constraints in the
485 machine description. Also define ranges of constants.
486
487 One of the classes must always be named ALL_REGS and include all hard regs.
488 If there is more than one class, another class must be named NO_REGS
489 and contain no registers.
490
491 The name GENERAL_REGS must be the name of a class (or an alias for
492 another name such as ALL_REGS). This is the class of registers
493 that is allowed by "g" or "r" in a register constraint.
494 Also, registers outside this class are allocated only when
495 instructions express preferences for them.
496
497 The classes must be numbered in nondecreasing order; that is,
498 a larger-numbered class must never be contained completely
499 in a smaller-numbered class.
500
501 For any two classes, it is very desirable that there be another
502 class that represents their union. */
503
504enum reg_class
505{
506 NO_REGS, /* no registers in set */
507 SIBCALL_REGS, /* registers used by indirect sibcalls */
508 JALR_REGS, /* registers used by indirect calls */
509 GR_REGS, /* integer registers */
510 FP_REGS, /* floating-point registers */
511 FRAME_REGS, /* arg pointer and frame pointer */
31380d4b 512 VM_REGS, /* v0.t registers */
513 VD_REGS, /* vector registers except v0.t */
514 V_REGS, /* vector registers */
09cae750
PD
515 ALL_REGS, /* all registers */
516 LIM_REG_CLASSES /* max value + 1 */
517};
518
519#define N_REG_CLASSES (int) LIM_REG_CLASSES
520
521#define GENERAL_REGS GR_REGS
522
523/* An initializer containing the names of the register classes as C
524 string constants. These names are used in writing some of the
525 debugging dumps. */
526
527#define REG_CLASS_NAMES \
528{ \
529 "NO_REGS", \
530 "SIBCALL_REGS", \
531 "JALR_REGS", \
532 "GR_REGS", \
533 "FP_REGS", \
534 "FRAME_REGS", \
31380d4b 535 "VM_REGS", \
536 "VD_REGS", \
537 "V_REGS", \
09cae750
PD
538 "ALL_REGS" \
539}
540
541/* An initializer containing the contents of the register classes,
542 as integers which are bit masks. The Nth integer specifies the
543 contents of class N. The way the integer MASK is interpreted is
544 that register R is in the class if `MASK & (1 << R)' is 1.
545
546 When the machine has more than 32 registers, an integer does not
547 suffice. Then the integers are replaced by sub-initializers,
548 braced groupings containing several integers. Each
549 sub-initializer must be suitable as an initializer for the type
550 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
551
552#define REG_CLASS_CONTENTS \
553{ \
31380d4b 554 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
555 { 0xf003fcc0, 0x00000000, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
556 { 0xffffffc0, 0x00000000, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
557 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
558 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FP_REGS */ \
559 { 0x00000000, 0x00000000, 0x00000003, 0x00000000 }, /* FRAME_REGS */ \
31380d4b 560 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, /* V0_REGS */ \
561 { 0x00000000, 0x00000000, 0x00000000, 0xfffffffe }, /* VNoV0_REGS */ \
562 { 0x00000000, 0x00000000, 0x00000000, 0xffffffff }, /* V_REGS */ \
167b04b9 563 { 0xffffffff, 0xffffffff, 0x00000003, 0xffffffff } /* ALL_REGS */ \
09cae750
PD
564}
565
566/* A C expression whose value is a register class containing hard
567 register REGNO. In general there is more that one such class;
568 choose a class which is "minimal", meaning that no smaller class
569 also contains the register. */
570
571#define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
572
573/* A macro whose definition is the name of the class to which a
574 valid base register must belong. A base register is one used in
575 an address which is the register value plus a displacement. */
576
577#define BASE_REG_CLASS GR_REGS
578
579/* A macro whose definition is the name of the class to which a
580 valid index register must belong. An index register is one used
581 in an address where its value is either multiplied by a scale
582 factor or added to another register (as well as added to a
583 displacement). */
584
42360427 585#define INDEX_REG_CLASS riscv_index_reg_class()
09cae750
PD
586
587/* We generally want to put call-clobbered registers ahead of
588 call-saved ones. (IRA expects this.) */
589
590#define REG_ALLOC_ORDER \
591{ \
592 /* Call-clobbered GPRs. */ \
593 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
594 /* Call-saved GPRs. */ \
595 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
596 /* GPRs that can never be exposed to the register allocator. */ \
597 0, 2, 3, 4, \
598 /* Call-clobbered FPRs. */ \
599 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
600 60, 61, 62, 63, \
601 /* Call-saved FPRs. */ \
602 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
7b206ae7
JZ
603 /* v1 ~ v31 vector registers. */ \
604 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, \
605 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, \
606 124, 125, 126, 127, \
607 /* The vector mask register. */ \
608 96, \
09cae750
PD
609 /* None of the remaining classes have defined call-saved \
610 registers. */ \
31380d4b 611 64, 65, 66, 67 \
09cae750
PD
612}
613
614/* True if VALUE is a signed 12-bit number. */
615
616#define SMALL_OPERAND(VALUE) \
617 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
618
3496ca4e 619#define POLY_SMALL_OPERAND_P(POLY_VALUE) \
620 (POLY_VALUE.is_constant () ? \
621 SMALL_OPERAND (POLY_VALUE.to_constant ()) : false)
7b0073c6 622
09cae750
PD
623/* True if VALUE can be loaded into a register using LUI. */
624
625#define LUI_OPERAND(VALUE) \
626 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
627 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
628
4bfc4585
VG
629/* True if a VALUE (constant) can be expressed as sum of two S12 constants
630 (in range -2048 to 2047).
631 Range check logic:
632 from: min S12 + 1 (or -1 depending on what side of zero)
633 to: two times the min S12 value (to max out S12 bits). */
634
635#define SUM_OF_TWO_S12_N(VALUE) \
636 (((VALUE) >= (-2048 * 2)) && ((VALUE) <= (-2048 - 1)))
637
638#define SUM_OF_TWO_S12_P(VALUE) \
639 (((VALUE) >= (2047 + 1)) && ((VALUE) <= (2047 * 2)))
640
641#define SUM_OF_TWO_S12(VALUE) \
642 (SUM_OF_TWO_S12_N (VALUE) || SUM_OF_TWO_S12_P (VALUE))
643
f9cfc192
VG
644/* Variant with first value 8 byte aligned if involving stack regs. */
645#define SUM_OF_TWO_S12_P_ALGN(VALUE) \
646 (((VALUE) >= (2032 + 1)) && ((VALUE) <= (2032 * 2)))
647
648#define SUM_OF_TWO_S12_ALGN(VALUE) \
649 (SUM_OF_TWO_S12_N (VALUE) || SUM_OF_TWO_S12_P_ALGN (VALUE))
650
4e72ccad
PT
651/* If this is a single bit mask, then we can load it with bseti. Special
652 handling of SImode 0x80000000 on RV64 is done in riscv_build_integer_1. */
653#define SINGLE_BIT_MASK_OPERAND(VALUE) \
2c721ea9
AP
654 (pow2p_hwi (TARGET_64BIT \
655 ? (VALUE) \
656 : ((VALUE) & ((HOST_WIDE_INT_1U << 32)-1))))
4e1e0d79 657
bc6beecb
PT
658/* True if VALUE can be represented as an immediate with 1 extra bit
659 set: we check that it is not a SMALL_OPERAND (as this would be true
660 for all small operands) unmodified and turns into a small operand
661 once we clear the top bit. */
662#define UIMM_EXTRA_BIT_OPERAND(VALUE) \
663 (!SMALL_OPERAND (VALUE) \
664 && SMALL_OPERAND (VALUE & ~(HOST_WIDE_INT_1U << floor_log2 (VALUE))))
665
52e809d5
JM
666/* True if bit BIT is set in VALUE. */
667#define BITSET_P(VALUE, BIT) (((VALUE) & (1ULL << (BIT))) != 0)
668
09cae750
PD
669/* Stack layout; function entry, exit and calling. */
670
671#define STACK_GROWS_DOWNWARD 1
672
673#define FRAME_GROWS_DOWNWARD 1
674
09cae750
PD
675#define RETURN_ADDR_RTX riscv_return_addr
676
677#define ELIMINABLE_REGS \
678{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
679 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
680 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
681 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
682
683#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
684 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
685
686/* Allocate stack space for arguments at the beginning of each function. */
687#define ACCUMULATE_OUTGOING_ARGS 1
688
689/* The argument pointer always points to the first argument. */
690#define FIRST_PARM_OFFSET(FNDECL) 0
691
692#define REG_PARM_STACK_SPACE(FNDECL) 0
693
694/* Define this if it is the responsibility of the caller to
695 allocate the area reserved for arguments passed in registers.
696 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
697 of this macro is to determine whether the space is included in
698 `crtl->outgoing_args_size'. */
699#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
700
c0d3d1b6 701#define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
0ce42fe1 702
09cae750
PD
703/* Symbolic macros for the registers used to return integer and floating
704 point values. */
705
706#define GP_RETURN GP_ARG_FIRST
707#define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
e40a3d86
PL
708#define V_RETURN V_REG_FIRST
709
710#define GP_RETURN_FIRST GP_ARG_FIRST
711#define GP_RETURN_LAST GP_ARG_FIRST + 1
712#define FP_RETURN_FIRST FP_RETURN
713#define FP_RETURN_LAST FP_RETURN + 1
09cae750 714
006e90e1
TO
715#define MAX_ARGS_IN_REGISTERS \
716 (riscv_abi == ABI_ILP32E || riscv_abi == ABI_LP64E \
717 ? 6 \
718 : 8)
09cae750 719
94a4b932
LD
720#define MAX_ARGS_IN_VECTOR_REGISTERS (16)
721#define MAX_ARGS_IN_MASK_REGISTERS (1)
722
09cae750
PD
723/* Symbolic macros for the first/last argument registers. */
724
725#define GP_ARG_FIRST (GP_REG_FIRST + 10)
726#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
727#define GP_TEMP_FIRST (GP_REG_FIRST + 5)
728#define FP_ARG_FIRST (FP_REG_FIRST + 10)
729#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
94a4b932
LD
730#define V_ARG_FIRST (V_REG_FIRST + 8)
731#define V_ARG_LAST (V_ARG_FIRST + MAX_ARGS_IN_VECTOR_REGISTERS - 1)
09cae750
PD
732
733#define CALLEE_SAVED_REG_NUMBER(REGNO) \
734 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
735 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
736
3d1d3132
FG
737#define CALLEE_SAVED_FREG_NUMBER(REGNO) CALLEE_SAVED_REG_NUMBER (REGNO - 32)
738
09cae750
PD
739#define LIBCALL_VALUE(MODE) \
740 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
741
742#define FUNCTION_VALUE(VALTYPE, FUNC) \
743 riscv_function_value (VALTYPE, FUNC, VOIDmode)
744
09cae750 745/* 1 if N is a possible register number for function argument passing.
1fb157cc 746 We have no FP argument registers when soft-float. */
09cae750
PD
747
748/* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
749#define FUNCTION_ARG_REGNO_P(N) \
750 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
751 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
752
94a4b932
LD
753/* Define the standard RISC-V calling convention and variants. */
754
755enum riscv_cc
756{
757 RISCV_CC_BASE = 0, /* Base standard RISC-V ABI. */
758 RISCV_CC_V, /* For functions that pass or return values in V registers. */
759 RISCV_CC_UNKNOWN
760};
761
09cae750 762typedef struct {
94a4b932
LD
763 /* The calling convention that current function used. */
764 enum riscv_cc variant_cc;
765
09cae750
PD
766 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
767 unsigned int num_gprs;
768
769 /* Number of floating-point registers used so far, likewise. */
770 unsigned int num_fprs;
1d4d302a 771
94a4b932
LD
772 /* Number of mask registers used so far, up to MAX_ARGS_IN_MASK_REGISTERS. */
773 unsigned int num_mrs;
774
775 /* The used state of args in vector registers, true for used by prev arg,
776 initial to false. */
777 bool used_vrs[MAX_ARGS_IN_VECTOR_REGISTERS];
09cae750
PD
778} CUMULATIVE_ARGS;
779
fdd59c0f
LD
780/* Return riscv calling convention of call_insn. */
781extern enum riscv_cc get_riscv_cc (const rtx use);
782
09cae750
PD
783/* Initialize a variable CUM of type CUMULATIVE_ARGS
784 for a call to a function whose data type is FNTYPE.
785 For a library call, FNTYPE is 0. */
786
787#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1d4d302a
YW
788 riscv_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (INDIRECT), \
789 (N_NAMED_ARGS) != -1)
09cae750 790
d0ebdd9f 791#define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
09cae750 792
0ce42fe1
AW
793/* Align based on stack boundary, which might have been set by the user. */
794#define RISCV_STACK_ALIGN(LOC) \
c0d3d1b6 795 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
09cae750
PD
796
797/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
798 the stack pointer does not matter. The value is tested only in
799 functions that have frame pointers.
800 No definition is equivalent to always zero. */
801
802#define EXIT_IGNORE_STACK 1
803
804
805/* Trampolines are a block of code followed by two pointers. */
806
807#define TRAMPOLINE_CODE_SIZE 16
808#define TRAMPOLINE_SIZE \
809 ((Pmode == SImode) \
810 ? TRAMPOLINE_CODE_SIZE \
811 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
812#define TRAMPOLINE_ALIGNMENT POINTER_SIZE
813
814/* Addressing modes, and classification of registers for them. */
815
42360427
CM
816#define REGNO_OK_FOR_INDEX_P(REGNO) \
817 riscv_regno_ok_for_index_p (REGNO)
818
09cae750
PD
819#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
820 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
821
822/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
823 and check its validity for a certain class.
824 We have two alternate definitions for each of them.
825 The usual definition accepts all pseudo regs; the other rejects them all.
826 The symbol REG_OK_STRICT causes the latter definition to be used.
827
828 Most source files want to accept pseudo regs in the hope that
829 they will get allocated to the class that the insn wants them to be in.
830 Some source files that are used after register allocation
831 need to be strict. */
832
833#ifndef REG_OK_STRICT
834#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
835 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
836#else
837#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
838 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
839#endif
840
841#define REG_OK_FOR_INDEX_P(X) 0
842
843/* Maximum number of registers that can appear in a valid memory address. */
844
845#define MAX_REGS_PER_ADDRESS 1
846
847#define CONSTANT_ADDRESS_P(X) \
848 (CONSTANT_P (X) && memory_address_p (SImode, X))
849
850/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
851 'the start of the function that this code is output in'. */
852
2041a23a
TV
853#define ASM_OUTPUT_LABELREF(FILE,NAME) \
854 do { \
855 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
856 asm_fprintf ((FILE), "%U%s", \
857 XSTR (XEXP (DECL_RTL (current_function_decl), \
858 0), 0)); \
859 else \
860 asm_fprintf ((FILE), "%U%s", (NAME)); \
861 } while (0)
09cae750 862
9a55cc62
JSJ
863#undef ASM_OUTPUT_OPCODE
864#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
865 (PTR) = riscv_asm_output_opcode(STREAM, PTR)
866
09cae750
PD
867#define JUMP_TABLES_IN_TEXT_SECTION 0
868#define CASE_VECTOR_MODE SImode
869#define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
870
7d4df630
VG
871#define LOCAL_SYM_P(sym) \
872 ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
873 || ((GET_CODE (sym) == CONST) \
874 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
875 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))
876
09cae750
PD
877/* The load-address macro is used for PC-relative addressing of symbols
878 that bind locally. Don't use it for symbols that should be addressed
879 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
880 currently results in more opportunities for linker relaxation. */
881#define USE_LOAD_ADDRESS_MACRO(sym) \
882 (!TARGET_EXPLICIT_RELOCS && \
7d4df630 883 ((flag_pic && LOCAL_SYM_P (sym)) || riscv_cmodel == CM_MEDANY))
09cae750
PD
884
885/* Define this as 1 if `char' should by default be signed; else as 0. */
886#define DEFAULT_SIGNED_CHAR 0
887
888#define MOVE_MAX UNITS_PER_WORD
889#define MAX_MOVE_MAX 8
890
ecc82a8d
AW
891/* The SPARC port says:
892 Nonzero if access to memory by bytes is slow and undesirable.
893 For RISC chips, it means that access to memory by bytes is no
894 better than access by words when possible, so grab a whole word
895 and maybe make use of that. */
896#define SLOW_BYTE_ACCESS 1
09cae750 897
b7ef9225
JW
898/* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
899 in the md file instead. */
900#define SHIFT_COUNT_TRUNCATED 0
09cae750 901
09cae750
PD
902/* Specify the machine mode that pointers have.
903 After generation of rtl, the compiler makes no further distinction
904 between pointers and any other objects of this machine mode. */
905
906#define Pmode word_mode
907
a3480aac
CM
908/* Specify the machine mode that registers have. */
909
910#define Xmode (TARGET_64BIT ? DImode : SImode)
911
09cae750
PD
912/* Give call MEMs SImode since it is the "most permissive" mode
913 for both 32-bit and 64-bit targets. */
914
915#define FUNCTION_MODE SImode
916
917/* A C expression for the cost of a branch instruction. A value of 2
918 seems to minimize code size. */
919
920#define BRANCH_COST(speed_p, predictable_p) \
921 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
922
4f475391
AW
923/* True if the target optimizes short forward branches around integer
924 arithmetic instructions into predicated operations, e.g., for
925 conditional-move operations. The macro assumes that all branch
926 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
927 support this feature. The macro further assumes that any integer
928 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
929 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
930 counterparts, including C.MV and C.LI) can be in the branch shadow. */
931
ec217f72
MC
932#define TARGET_SFB_ALU \
933 ((riscv_microarchitecture == sifive_7) \
7c190f93 934 || (riscv_microarchitecture == sifive_p400) \
ec217f72 935 || (riscv_microarchitecture == sifive_p600))
4f475391 936
68b0742a
RD
937/* True if the target supports misaligned vector loads and stores. */
938#define TARGET_VECTOR_MISALIGN_SUPPORTED \
939 riscv_vector_unaligned_access_p
940
09cae750
PD
941#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
942
943/* Control the assembler format that we output. */
944
945/* Output to assembler file text saying following lines
946 may contain character constants, extra white space, comments, etc. */
947
948#ifndef ASM_APP_ON
949#define ASM_APP_ON " #APP\n"
950#endif
951
952/* Output to assembler file text saying following lines
953 no longer contain unusual constructs. */
954
955#ifndef ASM_APP_OFF
956#define ASM_APP_OFF " #NO_APP\n"
957#endif
958
959#define REGISTER_NAMES \
960{ "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
961 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
962 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
963 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
964 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
965 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
966 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
967 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
f6d7ff47 968 "arg", "frame", "vl", "vtype", "vxrm", "frm", "vxsat", "N/A", \
31380d4b 969 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
970 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
971 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
972 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
973 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
974 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
975 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",}
09cae750
PD
976
977#define ADDITIONAL_REGISTER_NAMES \
978{ \
979 { "x0", 0 + GP_REG_FIRST }, \
980 { "x1", 1 + GP_REG_FIRST }, \
981 { "x2", 2 + GP_REG_FIRST }, \
982 { "x3", 3 + GP_REG_FIRST }, \
983 { "x4", 4 + GP_REG_FIRST }, \
984 { "x5", 5 + GP_REG_FIRST }, \
985 { "x6", 6 + GP_REG_FIRST }, \
986 { "x7", 7 + GP_REG_FIRST }, \
987 { "x8", 8 + GP_REG_FIRST }, \
988 { "x9", 9 + GP_REG_FIRST }, \
989 { "x10", 10 + GP_REG_FIRST }, \
990 { "x11", 11 + GP_REG_FIRST }, \
991 { "x12", 12 + GP_REG_FIRST }, \
992 { "x13", 13 + GP_REG_FIRST }, \
993 { "x14", 14 + GP_REG_FIRST }, \
994 { "x15", 15 + GP_REG_FIRST }, \
995 { "x16", 16 + GP_REG_FIRST }, \
996 { "x17", 17 + GP_REG_FIRST }, \
997 { "x18", 18 + GP_REG_FIRST }, \
998 { "x19", 19 + GP_REG_FIRST }, \
999 { "x20", 20 + GP_REG_FIRST }, \
1000 { "x21", 21 + GP_REG_FIRST }, \
1001 { "x22", 22 + GP_REG_FIRST }, \
1002 { "x23", 23 + GP_REG_FIRST }, \
1003 { "x24", 24 + GP_REG_FIRST }, \
1004 { "x25", 25 + GP_REG_FIRST }, \
1005 { "x26", 26 + GP_REG_FIRST }, \
1006 { "x27", 27 + GP_REG_FIRST }, \
1007 { "x28", 28 + GP_REG_FIRST }, \
1008 { "x29", 29 + GP_REG_FIRST }, \
1009 { "x30", 30 + GP_REG_FIRST }, \
1010 { "x31", 31 + GP_REG_FIRST }, \
1011 { "f0", 0 + FP_REG_FIRST }, \
1012 { "f1", 1 + FP_REG_FIRST }, \
1013 { "f2", 2 + FP_REG_FIRST }, \
1014 { "f3", 3 + FP_REG_FIRST }, \
1015 { "f4", 4 + FP_REG_FIRST }, \
1016 { "f5", 5 + FP_REG_FIRST }, \
1017 { "f6", 6 + FP_REG_FIRST }, \
1018 { "f7", 7 + FP_REG_FIRST }, \
1019 { "f8", 8 + FP_REG_FIRST }, \
1020 { "f9", 9 + FP_REG_FIRST }, \
1021 { "f10", 10 + FP_REG_FIRST }, \
1022 { "f11", 11 + FP_REG_FIRST }, \
1023 { "f12", 12 + FP_REG_FIRST }, \
1024 { "f13", 13 + FP_REG_FIRST }, \
1025 { "f14", 14 + FP_REG_FIRST }, \
1026 { "f15", 15 + FP_REG_FIRST }, \
1027 { "f16", 16 + FP_REG_FIRST }, \
1028 { "f17", 17 + FP_REG_FIRST }, \
1029 { "f18", 18 + FP_REG_FIRST }, \
1030 { "f19", 19 + FP_REG_FIRST }, \
1031 { "f20", 20 + FP_REG_FIRST }, \
1032 { "f21", 21 + FP_REG_FIRST }, \
1033 { "f22", 22 + FP_REG_FIRST }, \
1034 { "f23", 23 + FP_REG_FIRST }, \
1035 { "f24", 24 + FP_REG_FIRST }, \
1036 { "f25", 25 + FP_REG_FIRST }, \
1037 { "f26", 26 + FP_REG_FIRST }, \
1038 { "f27", 27 + FP_REG_FIRST }, \
1039 { "f28", 28 + FP_REG_FIRST }, \
1040 { "f29", 29 + FP_REG_FIRST }, \
1041 { "f30", 30 + FP_REG_FIRST }, \
1042 { "f31", 31 + FP_REG_FIRST }, \
1043}
1044
1045/* Globalizing directive for a label. */
1046#define GLOBAL_ASM_OP "\t.globl\t"
1047
1048/* This is how to store into the string LABEL
1049 the symbol_ref name of an internal numbered label where
1050 PREFIX is the class of label and NUM is the number within the class.
1051 This is suitable for output with `assemble_name'. */
1052
1053#undef ASM_GENERATE_INTERNAL_LABEL
1054#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1055 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
1056
1057/* This is how to output an element of a case-vector that is absolute. */
1058
1059#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1060 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
1061
1062/* This is how to output an element of a PIC case-vector. */
1063
1064#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1065 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
1066 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
1067
1068/* This is how to output an assembler line
1069 that says to advance the location counter
1070 to a multiple of 2**LOG bytes. */
1071
1072#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
1073 fprintf (STREAM, "\t.align\t%d\n", (LOG))
1074
1075/* Define the strings to put out for each section in the object file. */
1076#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
1077#define DATA_SECTION_ASM_OP "\t.data" /* large data */
1078#define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
1079#define BSS_SECTION_ASM_OP "\t.bss"
1080#define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
1081#define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
1082
1083#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
1084do \
1085 { \
1086 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
1087 reg_names[STACK_POINTER_REGNUM], \
1088 reg_names[STACK_POINTER_REGNUM], \
1089 TARGET_64BIT ? "sd" : "sw", \
1090 reg_names[REGNO], \
1091 reg_names[STACK_POINTER_REGNUM]); \
1092 } \
1093while (0)
1094
1095#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
1096do \
1097 { \
1098 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
1099 TARGET_64BIT ? "ld" : "lw", \
1100 reg_names[REGNO], \
1101 reg_names[STACK_POINTER_REGNUM], \
1102 reg_names[STACK_POINTER_REGNUM], \
1103 reg_names[STACK_POINTER_REGNUM]); \
1104 } \
1105while (0)
1106
1107#define ASM_COMMENT_START "#"
1108
4abcc500
LD
1109/* Add output .variant_cc directive for specific function definition. */
1110#undef ASM_DECLARE_FUNCTION_NAME
1111#define ASM_DECLARE_FUNCTION_NAME(STR, NAME, DECL) \
1112 riscv_declare_function_name (STR, NAME, DECL)
1113
5f110561
KC
1114#undef ASM_DECLARE_FUNCTION_SIZE
1115#define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1116 riscv_declare_function_size (FILE, FNAME, DECL)
1117
4abcc500
LD
1118/* Add output .variant_cc directive for specific alias definition. */
1119#undef ASM_OUTPUT_DEF_FROM_DECLS
1120#define ASM_OUTPUT_DEF_FROM_DECLS(STR, DECL, TARGET) \
1121 riscv_asm_output_alias (STR, DECL, TARGET)
1122
1123/* Add output .variant_cc directive for specific extern function. */
1124#undef ASM_OUTPUT_EXTERNAL
1125#define ASM_OUTPUT_EXTERNAL(STR, DECL, NAME) \
1126 riscv_asm_output_external (STR, DECL, NAME)
1127
09cae750
PD
1128#undef SIZE_TYPE
1129#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
1130
1131#undef PTRDIFF_TYPE
1132#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
1133
76715c32 1134/* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
6ed01e6b
AW
1135
1136#define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
1137
1138/* The maximum number of bytes that can be copied by a straight-line
76715c32 1139 cpymemsi implementation. */
09cae750 1140
6ed01e6b
AW
1141#define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
1142
1143/* If a memory-to-memory move would take MOVE_RATIO or more simple
76715c32 1144 move-instruction pairs, we will do a cpymem or libcall instead.
6ed01e6b
AW
1145 Do not use move_by_pieces at all when strict alignment is not
1146 in effect but the target has slow unaligned accesses; in this
76715c32 1147 case, cpymem or libcall is more efficient. */
6ed01e6b
AW
1148
1149#define MOVE_RATIO(speed) \
fb5621b1 1150 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
6ed01e6b
AW
1151 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
1152 CLEAR_RATIO (speed) / 2)
09cae750
PD
1153
1154/* For CLEAR_RATIO, when optimizing for size, give a better estimate
1155 of the length of a memset call, but use the default otherwise. */
1156
1157#define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
1158
1159/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
1160 optimizing for size adjust the ratio to account for the overhead of
1161 loading the constant and replicating it across the word. */
1162
1163#define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
1164
1165#ifndef USED_FOR_TARGET
1166extern const enum reg_class riscv_regno_to_class[];
fb5621b1 1167extern bool riscv_slow_unaligned_access_p;
68b0742a 1168extern bool riscv_vector_unaligned_access_p;
6e23440b 1169extern bool riscv_user_wants_strict_align;
fb5621b1 1170extern unsigned riscv_stack_boundary;
3496ca4e 1171extern unsigned riscv_bytes_per_vector_chunk;
1172extern poly_uint16 riscv_vector_chunks;
7e924ba3 1173extern poly_int64 riscv_v_adjust_nunits (enum machine_mode, int);
879c52c9 1174extern poly_int64 riscv_v_adjust_nunits (machine_mode, bool, int, int);
247cacc9 1175extern poly_int64 riscv_v_adjust_precision (enum machine_mode, int);
3a982e07 1176extern poly_int64 riscv_v_adjust_bytesize (enum machine_mode, int);
3496ca4e 1177/* The number of bits and bytes in a RVV vector. */
1178#define BITS_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk * 8))
1179#define BYTES_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk))
09cae750
PD
1180#endif
1181
1182#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1183 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
1184
1185#define XLEN_SPEC \
1186 "%{march=rv32*:32}" \
1187 "%{march=rv64*:64}" \
1188
1189#define ABI_SPEC \
1190 "%{mabi=ilp32:ilp32}" \
09baee1a 1191 "%{mabi=ilp32e:ilp32e}" \
09cae750
PD
1192 "%{mabi=ilp32f:ilp32f}" \
1193 "%{mabi=ilp32d:ilp32d}" \
1194 "%{mabi=lp64:lp64}" \
006e90e1 1195 "%{mabi=lp64e:lp64e}" \
09cae750
PD
1196 "%{mabi=lp64f:lp64f}" \
1197 "%{mabi=lp64d:lp64d}" \
1198
09cae750
PD
1199/* ISA constants needed for code generation. */
1200#define OPCODE_LW 0x2003
1201#define OPCODE_LD 0x3003
1202#define OPCODE_AUIPC 0x17
1203#define OPCODE_JALR 0x67
1204#define OPCODE_LUI 0x37
1205#define OPCODE_ADDI 0x13
1206#define SHIFT_RD 7
1207#define SHIFT_RS1 15
1208#define SHIFT_IMM 20
1209#define IMM_BITS 12
de6320a8 1210#define C_S_BITS 5
10789329 1211#define C_SxSP_BITS 6
09cae750
PD
1212
1213#define IMM_REACH (1LL << IMM_BITS)
1214#define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
1215#define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
1216
10789329
JW
1217#define SWSP_REACH (4LL << C_SxSP_BITS)
1218#define SDSP_REACH (8LL << C_SxSP_BITS)
1219
de6320a8
CB
1220/* This is the maximum value that can be represented in a compressed load/store
1221 offset (an unsigned 5-bit value scaled by 4). */
f95bd50b 1222#define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
de6320a8 1223
e53b6e56 1224/* Called from RISCV_REORG, this is defined in riscv-sr.cc. */
e18a6d14
AB
1225
1226extern void riscv_remove_unneeded_save_restore_calls (void);
1227
e0a5b313
KC
1228#define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
1229
16f7fcad
PT
1230#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1231 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1232#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1233 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1234
ef85d150
VG
1235#define TARGET_SUPPORTS_WIDE_INT 1
1236
7d935cdd
JZZ
1237#define REGISTER_TARGET_PRAGMAS() riscv_register_pragmas ()
1238
f556cd8b
JZZ
1239#define REGMODE_NATURAL_SIZE(MODE) riscv_regmode_natural_size (MODE)
1240
89367e79
KC
1241#define RISCV_DWARF_VLENB (4096 + 0xc22)
1242
1243#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 1 /* VLENB */)
1244
1245#define DWARF_REG_TO_UNWIND_COLUMN(REGNO) \
1246 ((REGNO == RISCV_DWARF_VLENB) ? (FIRST_PSEUDO_REGISTER + 1) : REGNO)
1247
3365956d
PL
1248/* Like s390, riscv also defined this macro for the vector comparision. Then
1249 the simplify-rtx relational_result will canonicalize the result to the
1250 CONST1_RTX for the simplification. */
1251#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1252
e682d300
JZ
1253/* Mode switching (Lazy code motion) for RVV rounding mode instructions. */
1254#define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_VECTOR)
4cede0de 1255#define NUM_MODES_FOR_MODE_SWITCHING {VXRM_MODE_NONE, riscv_vector::FRM_NONE}
e682d300 1256
0f40e59f
KC
1257/* The size difference between different RVV modes can be up to 64 times.
1258 e.g. RVVMF64BI vs RVVMF1BI on zvl512b, which is [1, 1] vs [64, 64]. */
1259#define MAX_POLY_VARIANT 64
1260
2d65622f
CM
1261#define HAVE_POST_MODIFY_DISP TARGET_XTHEADMEMIDX
1262#define HAVE_PRE_MODIFY_DISP TARGET_XTHEADMEMIDX
1263
97069657
TI
1264/* Check TLS Descriptors mechanism is selected. */
1265#define TARGET_TLSDESC (riscv_tls_dialect == TLS_DESCRIPTORS)
1266
09cae750 1267#endif /* ! GCC_RISCV_H */