]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/romp/romp.h
Merge in gcc2-ss-010999
[thirdparty/gcc.git] / gcc / config / romp / romp.h
CommitLineData
b124ac04 1/* Definitions of target machine for GNU compiler, for ROMP chip.
c5c76735 2 Copyright (C) 1989, 91, 93, 95, 96, 98, 1999 Free Software Foundation, Inc.
b124ac04
RK
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
d2492158
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
b124ac04
RK
21
22
23/* Names to predefine in the preprocessor for this target machine. */
24
65c42379 25#define CPP_PREDEFINES "-Dibm032 -Dunix -Asystem(unix) -Asystem(bsd) -Acpu(ibm032) -Amachine(ibm032)"
b124ac04
RK
26
27/* Print subsidiary information on the compiler version in use. */
28#define TARGET_VERSION ;
29
30/* Add -lfp_p when running with -p or -pg. */
31#define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
32
33/* Run-time compilation parameters selecting different hardware subsets. */
34
35/* Flag to generate all multiplies as an in-line sequence of multiply-step
36 insns instead of calling a library routine. */
37#define TARGET_IN_LINE_MUL (target_flags & 1)
38
39/* Flag to generate padded floating-point data blocks. Otherwise, we generate
40 them the minimum size. This trades off execution speed against size. */
41#define TARGET_FULL_FP_BLOCKS (target_flags & 2)
42
43/* Flag to pass and return floating point values in floating point registers.
44 Since this violates the linkage convention, we feel free to destroy fr2
45 and fr3 on function calls.
46 fr1-fr3 are used to pass the arguments. */
47#define TARGET_FP_REGS (target_flags & 4)
48
49/* Flag to return structures of more than one word in memory. This is for
50 compatibility with the MetaWare HighC (hc) compiler. */
51#define TARGET_HC_STRUCT_RETURN (target_flags & 010)
52
53extern int target_flags;
54
55/* Macro to define tables used to set the flags.
56 This is a list in braces of pairs in braces,
57 each pair being { "NAME", VALUE }
58 where VALUE is the bits to set or minus the bits to clear.
59 An empty string NAME is used to identify the default VALUE. */
60
61#define TARGET_SWITCHES \
62 { {"in-line-mul", 1}, \
63 {"call-lib-mul", -1}, \
64 {"full-fp-blocks", 2}, \
65 {"minimum-fp-blocks", -2}, \
66 {"fp-arg-in-fpregs", 4}, \
67 {"fp-arg-in-gregs", -4}, \
68 {"hc-struct-return", 010}, \
69 {"nohc-struct-return", - 010}, \
70 { "", TARGET_DEFAULT}}
71
72#define TARGET_DEFAULT 3
b124ac04
RK
73\f
74/* target machine storage layout */
75
76/* Define this if most significant bit is lowest numbered
77 in instructions that operate on numbered bit-fields. */
78/* That is true on ROMP. */
79#define BITS_BIG_ENDIAN 1
80
81/* Define this if most significant byte of a word is the lowest numbered. */
82/* That is true on ROMP. */
83#define BYTES_BIG_ENDIAN 1
84
85/* Define this if most significant word of a multiword number is lowest
86 numbered.
87
88 For ROMP we can decide arbitrarily since there are no machine instructions
89 for them. Might as well be consistent with bits and bytes. */
90#define WORDS_BIG_ENDIAN 1
91
b4ac57ab 92/* number of bits in an addressable storage unit */
b124ac04
RK
93#define BITS_PER_UNIT 8
94
95/* Width in bits of a "word", which is the contents of a machine register.
96 Note that this is not necessarily the width of data type `int';
97 if using 16-bit ints on a 68000, this would still be 32.
98 But on a machine with 16-bit registers, this would be 16. */
99#define BITS_PER_WORD 32
100
101/* Width of a word, in units (bytes). */
102#define UNITS_PER_WORD 4
103
104/* Width in bits of a pointer.
105 See also the macro `Pmode' defined below. */
106#define POINTER_SIZE 32
107
108/* Allocation boundary (in *bits*) for storing arguments in argument list. */
109#define PARM_BOUNDARY 32
110
111/* Boundary (in *bits*) on which stack pointer should be aligned. */
112#define STACK_BOUNDARY 32
113
114/* Allocation boundary (in *bits*) for the code of a function. */
115#define FUNCTION_BOUNDARY 16
116
117/* No data type wants to be aligned rounder than this. */
118#define BIGGEST_ALIGNMENT 32
119
120/* Alignment of field after `int : 0' in a structure. */
121#define EMPTY_FIELD_BOUNDARY 32
122
123/* Every structure's size must be a multiple of this. */
124#define STRUCTURE_SIZE_BOUNDARY 8
125
126/* A bitfield declared as `int' forces `int' alignment for the struct. */
127#define PCC_BITFIELD_TYPE_MATTERS 1
128
129/* Make strings word-aligned so strcpy from constants will be faster. */
130#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
131 (TREE_CODE (EXP) == STRING_CST \
132 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
133
134/* Make arrays of chars word-aligned for the same reasons. */
135#define DATA_ALIGNMENT(TYPE, ALIGN) \
136 (TREE_CODE (TYPE) == ARRAY_TYPE \
137 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
138 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
139
b4ac57ab 140/* Set this nonzero if move instructions will actually fail to work
b124ac04 141 when given unaligned data. */
b4ac57ab 142#define STRICT_ALIGNMENT 1
b124ac04
RK
143\f
144/* Standard register usage. */
145
146/* Number of actual hardware registers.
147 The hardware registers are assigned numbers for the compiler
148 from 0 to just below FIRST_PSEUDO_REGISTER.
149 All registers that the compiler knows about must be given numbers,
150 even those that are not normally considered general registers.
151
152 ROMP has 16 fullword registers and 8 floating point registers.
153
154 In addition, the difference between the frame and argument pointers is
155 a function of the number of registers saved, so we need to have a register
156 to use for AP that will later be eliminated in favor of sp or fp. This is
157 a normal register, but it is fixed. */
158
159#define FIRST_PSEUDO_REGISTER 25
160
161/* 1 for registers that have pervasive standard uses
162 and are not available for the register allocator.
163
164 On ROMP, r1 is used for the stack and r14 is used for a
165 data area pointer.
166
167 HACK WARNING: On the RT, there is a bug in code generation for
168 the MC68881 when the first and third operands are the same floating-point
169 register. See the definition of the FINAL_PRESCAN_INSN macro for details.
170 Here we need to reserve fr0 for this purpose. */
171#define FIXED_REGISTERS \
172 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
173 1, \
174 1, 0, 0, 0, 0, 0, 0, 0}
175
176/* 1 for registers not available across function calls.
177 These must include the FIXED_REGISTERS and also any
178 registers that can be used without being saved.
179 The latter must include the registers where values are returned
180 and the register where structure-value addresses are passed.
181 Aside from that, you can include as many other registers as you like. */
182#define CALL_USED_REGISTERS \
183 {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
184 1, \
185 1, 1, 0, 0, 0, 0, 0, 0}
186
187/* List the order in which to allocate registers. Each register must be
188 listed once, even those in FIXED_REGISTERS.
189
190 We allocate in the following order:
191 fr0, fr1 (not saved)
192 fr2 ... fr6
193 fr7 (more expensive for some FPA's)
194 r0 (not saved and won't conflict with parameter register)
195 r4, r3, r2 (not saved, highest used first to make less conflict)
196 r5 (not saved, but forces r6 to be saved if DI/DFmode)
197 r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
198 r1, ap */
199
200#define REG_ALLOC_ORDER \
201 {17, 18, \
202 19, 20, 21, 22, 23, \
203 24, \
204 0, \
205 4, 3, 2, \
206 5, \
207 15, 14, 13, 12, 11, 10, \
208 9, 8, 7, 6, \
209 1, 16}
210
211/* True if register is floating-point. */
212#define FP_REGNO_P(N) ((N) >= 17)
213
214/* Return number of consecutive hard regs needed starting at reg REGNO
215 to hold something of mode MODE.
216 This is ordinarily the length in words of a value of mode MODE
217 but can be less for certain modes in special long registers.
218
219 On ROMP, ordinary registers hold 32 bits worth;
220 a single floating point register is always enough for
221 anything that can be stored in them at all. */
222#define HARD_REGNO_NREGS(REGNO, MODE) \
223 (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \
224 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
225
226/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
227 On ROMP, the cpu registers can hold any mode but the float registers
228 can hold only floating point. */
229#define HARD_REGNO_MODE_OK(REGNO, MODE) \
230 (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \
231 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
232
233/* Value is 1 if it is a good idea to tie two pseudo registers
234 when one has mode MODE1 and one has mode MODE2.
235 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
236 for any hard reg, then this must be 0 for correct output. */
237#define MODES_TIEABLE_P(MODE1, MODE2) \
238 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
239 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
240 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
241 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
242
243/* A C expression returning the cost of moving data from a register of class
244 CLASS1 to one of CLASS2.
245
246 On the ROMP, access to floating-point registers is expensive (even between
247 two FP regs.) */
248#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
249 (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
250
251/* Specify the registers used for certain standard purposes.
252 The values of these macros are register numbers. */
253
254/* ROMP pc isn't overloaded on a register that the compiler knows about. */
255/* #define PC_REGNUM */
256
257/* Register to use for pushing function arguments. */
258#define STACK_POINTER_REGNUM 1
259
260/* Base register for access to local variables of the function. */
261#define FRAME_POINTER_REGNUM 13
262
263/* Value should be nonzero if functions must have frame pointers.
264 Zero means the frame pointer need not be set up (and parms
265 may be accessed via the stack pointer) in functions that seem suitable.
266 This is computed in `reload', in reload1.c. */
267#define FRAME_POINTER_REQUIRED 0
268
269/* Base register for access to arguments of the function. */
270#define ARG_POINTER_REGNUM 16
271
272/* Place to put static chain when calling a function that requires it. */
273#define STATIC_CHAIN \
c5c76735 274 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -36))
b124ac04
RK
275
276/* Place where static chain is found upon entry to routine. */
277#define STATIC_CHAIN_INCOMING \
c5c76735 278 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -20))
b124ac04
RK
279
280/* Place that structure value return address is placed.
281
282 On the ROMP, it is passed as an extra parameter. */
283#define STRUCT_VALUE 0
284\f
285/* Define the classes of registers for register constraints in the
286 machine description. Also define ranges of constants.
287
288 One of the classes must always be named ALL_REGS and include all hard regs.
289 If there is more than one class, another class must be named NO_REGS
290 and contain no registers.
291
292 The name GENERAL_REGS must be the name of a class (or an alias for
293 another name such as ALL_REGS). This is the class of registers
294 that is allowed by "g" or "r" in a register constraint.
295 Also, registers outside this class are allocated only when
296 instructions express preferences for them.
297
298 The classes must be numbered in nondecreasing order; that is,
299 a larger-numbered class must never be contained completely
300 in a smaller-numbered class.
301
302 For any two classes, it is very desirable that there be another
303 class that represents their union. */
304
305/* The ROMP has two types of registers, general and floating-point.
306
307 However, r0 is special in that it cannot be used as a base register.
308 So make a class for registers valid as base registers.
309
310 For floating-point support, add classes that just consist of r0 and
311 r15, respectively. */
312
313enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
314 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
315
316#define N_REG_CLASSES (int) LIM_REG_CLASSES
317
318/* Give names of register classes as strings for dump file. */
319
320#define REG_CLASS_NAMES \
321 {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
322 "FP_REGS", "ALL_REGS" }
323
324/* Define which registers fit in which classes.
325 This is an initializer for a vector of HARD_REG_SET
326 of length N_REG_CLASSES. */
327
328#define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \
329 0x1fe0000, 0x1ffffff }
330
331/* The same information, inverted:
332 Return the class number of the smallest class containing
333 reg number REGNO. This could be a conditional expression
334 or could index an array. */
335
336#define REGNO_REG_CLASS(REGNO) \
337 ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
338
339/* The class value for index registers, and the one for base regs. */
340#define INDEX_REG_CLASS BASE_REGS
341#define BASE_REG_CLASS BASE_REGS
342
343/* Get reg_class from a letter such as appears in the machine description. */
344
345#define REG_CLASS_FROM_LETTER(C) \
346 ((C) == 'f' ? FP_REGS \
347 : (C) == 'b' ? BASE_REGS \
348 : (C) == 'z' ? R0_REGS \
349 : (C) == 't' ? R15_REGS \
350 : NO_REGS)
351
352/* The letters I, J, K, L, M, N, and P in a register constraint string
353 can be used to stand for particular ranges of immediate operands.
354 This macro defines what the ranges are.
355 C is the letter, and VALUE is a constant value.
356 Return 1 if VALUE is in the range specified by C.
357
358 `I' is constants less than 16
359 `J' is negative constants greater than -16
360 `K' is the range for a normal D insn.
361 `L' is a constant with only the low-order 16 bits set
362 `M' is a constant with only the high-order 16 bits set
363 `N' is a single-bit constant
364 `O' is a constant with either the high-order or low-order 16 bits all ones
365 `P' is the complement of a single-bit constant
366 */
367
368#define CONST_OK_FOR_LETTER_P(VALUE, C) \
369 ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \
370 : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \
371 : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
372 : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \
373 : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \
374 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
375 : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \
376 || ((VALUE) & 0xffff0000) == 0xffff0000 \
377 : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \
378 : 0)
379
380/* Similar, but for floating constants, and defining letters G and H.
381 Here VALUE is the CONST_DOUBLE rtx itself.
382 No floating-point constants on ROMP. */
383
384#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
385
386/* Optional extra constraints for this machine.
387
388 For the ROMP, `Q' means that this is a memory operand but not a symbolic
389 memory operand. Note that an unassigned pseudo register is such a
390 memory operand. If register allocation has not been done, we reject
391 pseudos, since we assume (hope) that they will get hard registers.
392
393 `R' means that this is a constant pool reference to the current function.
394 This is just r14 and so can be treated as a register. We bother with this
395 just in move insns as that is the only place it is likely to occur.
396
397 `S' means that this is the address of a constant pool location. This is
398 equal to r14 plus a constant. We also only check for this in move insns. */
399
400#define EXTRA_CONSTRAINT(OP, C) \
401 ((C) == 'Q' ? \
402 ((GET_CODE (OP) == REG \
403 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
404 && reg_renumber != 0 \
405 && reg_renumber[REGNO (OP)] < 0) \
36d51583 406 || (GET_CODE (OP) == MEM \
b124ac04
RK
407 && ! symbolic_memory_operand (OP, VOIDmode))) \
408 : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
409 : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
410 : 0)
411
412/* Given an rtx X being reloaded into a reg required to be
413 in class CLASS, return the class of reg to actually use.
414 In general this is just CLASS; but on some machines
415 in some cases it is preferable to use a more restrictive class.
416
417 For the ROMP, if X is a memory reference that involves a symbol,
418 we must use a BASE_REGS register instead of GENERAL_REGS
419 to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
420 to be valid, so we assume that this is the case.
421
422 Also, if X is an integer class, ensure that floating-point registers
423 aren't used. */
424
425#define PREFERRED_RELOAD_CLASS(X,CLASS) \
426 ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
427 ? GENERAL_REGS : \
428 (CLASS) != GENERAL_REGS ? (CLASS) : \
429 GET_CODE (X) != MEM ? GENERAL_REGS : \
430 GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \
431 GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \
432 GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \
433 GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \
434 GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \
435 GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \
436 GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \
437 GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
438
439/* Return the register class of a scratch register needed to store into
440 OUT from a register of class CLASS in MODE.
441
442 On the ROMP, we cannot store into a symbolic memory address from an
443 integer register; we need a BASE_REGS register as a scratch to do it. */
444
445#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
446 (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
447 ? BASE_REGS : NO_REGS)
448
449/* Return the maximum number of consecutive registers
450 needed to represent mode MODE in a register of class CLASS.
451
452 On ROMP, this is the size of MODE in words,
453 except in the FP regs, where a single reg is always enough. */
454#define CLASS_MAX_NREGS(CLASS, MODE) \
455 ((CLASS) == FP_REGS ? 1 \
456 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
457\f
458/* Stack layout; function entry, exit and calling. */
459
460/* Define this if pushing a word on the stack
461 makes the stack pointer a smaller address. */
462#define STACK_GROWS_DOWNWARD
463
464/* Define this if the nominal address of the stack frame
465 is at the high-address end of the local variables;
466 that is, each additional local variable allocated
467 goes at a more negative offset in the frame. */
468#define FRAME_GROWS_DOWNWARD
469
470/* Offset within stack frame to start allocating local variables at.
471 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
472 first local allocated. Otherwise, it is the offset to the BEGINNING
473 of the first local allocated.
474 On the ROMP, if we set the frame pointer to 15 words below the highest
475 address of the highest local variable, the first 16 words will be
476 addressable via D-short insns. */
477#define STARTING_FRAME_OFFSET 64
478
479/* If we generate an insn to push BYTES bytes,
480 this says how many the stack pointer really advances by.
481 On ROMP, don't define this because there are no push insns. */
482/* #define PUSH_ROUNDING(BYTES) */
483
484/* Offset of first parameter from the argument pointer register value.
485 On the ROMP, we define the argument pointer to the start of the argument
486 area. */
487#define FIRST_PARM_OFFSET(FNDECL) 0
488
489/* Define this if stack space is still allocated for a parameter passed
490 in a register. The value is the number of bytes. */
491#define REG_PARM_STACK_SPACE(FNDECL) 16
492
493/* This is the difference between the logical top of stack and the actual sp.
494
495 For the ROMP, sp points past the words allocated for the first four outgoing
496 arguments (they are part of the callee's frame). */
497#define STACK_POINTER_OFFSET -16
498
499/* Define this if the maximum size of all the outgoing args is to be
500 accumulated and pushed during the prologue. The amount can be
501 found in the variable current_function_outgoing_args_size. */
502#define ACCUMULATE_OUTGOING_ARGS
503
504/* Value is the number of bytes of arguments automatically
505 popped when returning from a subroutine call.
8b109b37 506 FUNDECL is the declaration node of the function (as a tree),
b124ac04
RK
507 FUNTYPE is the data type of the function (as a tree),
508 or for a library call it is an identifier node for the subroutine name.
509 SIZE is the number of bytes of arguments passed on the stack. */
510
8b109b37 511#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
b124ac04
RK
512
513/* Define how to find the value returned by a function.
514 VALTYPE is the data type of the value (as a tree).
515 If the precise function being called is known, FUNC is its FUNCTION_DECL;
516 otherwise, FUNC is 0.
517
518 On ROMP the value is found in r2, unless the machine specific option
519 fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
520
c5c76735
JL
521#define FUNCTION_VALUE(VALTYPE, FUNC) \
522 gen_rtx_REG (TYPE_MODE (VALTYPE), \
523 (TARGET_FP_REG \
524 && GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) \
525 ? 18 : 2)
b124ac04
RK
526
527/* Define how to find the value returned by a library function
528 assuming the value has mode MODE. */
529
c5c76735 530#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 2)
b124ac04
RK
531
532/* The definition of this macro implies that there are cases where
533 a scalar value cannot be returned in registers.
534
535 For the ROMP, if compatibility with HC is required, anything of
536 type DImode is returned in memory. */
537
538#define RETURN_IN_MEMORY(type) \
e14fa9c4
DE
539 (TYPE_MODE (type) == BLKmode \
540 || (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode))
b124ac04
RK
541
542/* 1 if N is a possible register number for a function value
543 as seen by the caller.
544
545 On ROMP, r2 is the only register thus used unless fp values are to be
546 returned in fp regs, in which case fr1 is also used. */
547
548#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
549
550/* 1 if N is a possible register number for function argument passing.
551 On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */
552
553#define FUNCTION_ARG_REGNO_P(N) \
554 (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
555\f
556/* Define a data type for recording info about an argument list
557 during the scan of that argument list. This data type should
558 hold all necessary information about the function itself
559 and about the args processed so far, enough to enable macros
560 such as FUNCTION_ARG to determine where the next arg should go.
561
562 On the ROMP, this is a structure. The first word is the number of
563 words of (integer only if -mfp-arg-in-fpregs is specified) arguments
564 scanned so far (including the invisible argument, if any, which holds
565 the structure-value-address). The second word hold the corresponding
566 value for floating-point arguments, except that both single and double
567 count as one register. */
568
569struct rt_cargs {int gregs, fregs; };
570#define CUMULATIVE_ARGS struct rt_cargs
571
572#define USE_FP_REG(MODE,CUM) \
573 (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \
574 && (CUM).fregs < 3)
575
576/* Define intermediate macro to compute the size (in registers) of an argument
577 for the ROMP. */
578
579#define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \
580(! (NAMED) ? 0 \
581 : (MODE) != BLKmode \
582 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
583 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584
585/* Initialize a variable CUM of type CUMULATIVE_ARGS
586 for a call to a function whose data type is FNTYPE.
587 For a library call, FNTYPE is 0.
588
589 On ROMP, the offset normally starts at 0, but starts at 4 bytes
590 when the function gets a structure-value-address as an
591 invisible first argument. */
592
2c7ee1a6 593#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
b124ac04
RK
594 (CUM).gregs = 0, \
595 (CUM).fregs = 0
596
597/* Update the data in CUM to advance over an argument
598 of mode MODE and data type TYPE.
599 (TYPE is null for libcalls where that information may not be available.) */
600
601#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
602{ if (NAMED) \
603 { \
604 if (USE_FP_REG(MODE, CUM)) \
605 (CUM).fregs++; \
606 else \
607 (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
608 } \
609}
610
611/* Determine where to put an argument to a function.
612 Value is zero to push the argument on the stack,
613 or a hard register in which to store the argument.
614
615 MODE is the argument's machine mode.
616 TYPE is the data type of the argument (as a tree).
617 This is null for libcalls where that information may
618 not be available.
619 CUM is a variable of type CUMULATIVE_ARGS which gives info about
620 the preceding args and about the function being called.
621 NAMED is nonzero if this argument is a named parameter
622 (otherwise it is an extra parameter matching an ellipsis).
623
624 On ROMP the first four words of args are normally in registers
625 and the rest are pushed. */
626
627#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
628 (! (NAMED) ? 0 \
38bd31fc 629 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
c5c76735
JL
630 : USE_FP_REG(MODE,CUM) ? gen_rtx_REG ((MODE), (CUM.fregs) + 17) \
631 : (CUM).gregs < 4 ? gen_rtx_REG ((MODE), 2 + (CUM).gregs) : 0)
b124ac04
RK
632
633/* For an arg passed partly in registers and partly in memory,
634 this is the number of registers used.
635 For args passed entirely in registers or entirely in memory, zero. */
636
637#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
638 (! (NAMED) ? 0 \
639 : USE_FP_REG(MODE,CUM) ? 0 \
640 : (((CUM).gregs < 4 \
641 && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \
642 ? 4 - (CUM).gregs : 0))
643
644/* Perform any needed actions needed for a function that is receiving a
645 variable number of arguments.
646
647 CUM is as above.
648
649 MODE and TYPE are the mode and type of the current parameter.
650
651 PRETEND_SIZE is a variable that should be set to the amount of stack
652 that must be pushed by the prolog to pretend that our caller pushed
653 it.
654
655 Normally, this macro will push all remaining incoming registers on the
656 stack and set PRETEND_SIZE to the length of the registers pushed. */
657
658#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
659{ if (TARGET_FP_REGS) \
660 error ("can't have varargs with -mfp-arg-in-fp-regs"); \
661 else if ((CUM).gregs < 4) \
662 { \
663 int first_reg_offset = (CUM).gregs; \
664 \
665 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
666 first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
667 \
668 if (first_reg_offset > 4) \
669 first_reg_offset = 4; \
670 \
671 if (! NO_RTL && first_reg_offset != 4) \
672 move_block_from_reg \
673 (2 + first_reg_offset, \
c5c76735
JL
674 gen_rtx_MEM (BLKmode, \
675 plus_constant (virtual_incoming_args_rtx, \
676 first_reg_offset * 4)), \
02892e06 677 4 - first_reg_offset, (4 - first_reg_offset) * UNITS_PER_WORD); \
b124ac04
RK
678 PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \
679 } \
680}
681
682/* This macro produces the initial definition of a function name.
683 On the ROMP, we need to place an extra '.' in the function name. */
684
685#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
686{ if (TREE_PUBLIC(DECL)) \
687 fprintf (FILE, "\t.globl _.%s\n", NAME); \
688 fprintf (FILE, "_.%s:\n", NAME); \
689}
690
691/* This macro is used to output the start of the data area.
692
693 On the ROMP, the _name is a pointer to the data area. At that
694 location is the address of _.name, which is really the name of
695 the function. We need to set all this up here.
696
697 The global declaration of the data area, if needed, is done in
698 `assemble_function', where it thinks it is globalizing the function
699 itself. */
700
701#define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \
702{ extern int data_offset; \
703 data_section (); \
704 fprintf (FILE, "\t.align 2\n"); \
705 ASM_OUTPUT_LABEL (FILE, NAME); \
706 fprintf (FILE, "\t.long _.%s, 0, ", NAME); \
707 if (current_function_calls_alloca) \
708 fprintf (FILE, "0x%x\n", \
709 0xf6900000 + current_function_outgoing_args_size); \
710 else \
711 fprintf (FILE, "0\n"); \
712 data_offset = ((SIZE) + 12 + 3) / 4; \
713}
714
715/* Select section for constant in constant pool.
716
717 On ROMP, all constants are in the data area. */
718
719#define SELECT_RTX_SECTION(MODE, X) data_section ()
720
721/* This macro generates the assembly code for function entry.
722 FILE is a stdio stream to output the code to.
723 SIZE is an int: how many units of temporary storage to allocate.
724 Refer to the array `regs_ever_live' to determine which registers
725 to save; `regs_ever_live[I]' is nonzero if register number I
726 is ever used in the function. This macro is responsible for
727 knowing which registers should not be saved even if used. */
728
729#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
730
731/* Output assembler code to FILE to increment profiler label # LABELNO
732 for profiling a function entry. */
733
734#define FUNCTION_PROFILER(FILE, LABELNO) \
735 fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
736
737/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
738 the stack pointer does not matter. The value is tested only in
739 functions that have frame pointers.
740 No definition is equivalent to always zero. */
741/* #define EXIT_IGNORE_STACK 1 */
742
743/* This macro generates the assembly code for function exit,
744 on machines that need it. If FUNCTION_EPILOGUE is not defined
745 then individual return instructions are generated for each
746 return statement. Args are same as for FUNCTION_PROLOGUE.
747
748 The function epilogue should not depend on the current stack pointer!
749 It should use the frame pointer only. This is mandatory because
750 of alloca; we also take advantage of it to omit stack adjustments
751 before returning. */
752
753#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
754\f
755/* Output assembler code for a block containing the constant parts
756 of a trampoline, leaving space for the variable parts.
757
758 The trampoline should set the static chain pointer to value placed
759 into the trampoline and should branch to the specified routine.
760
761 On the ROMP, we have a problem. There are no free registers to use
762 to construct the static chain and function addresses. Hence we use
763 the following kludge: r15 (the return address) is first saved in mq.
764 Then we use r15 to form the function address. We then branch to the
765 function and restore r15 in the delay slot. This makes it appear that
766 the function was called directly from the caller.
767
768 (Note that the function address built is actually that of the data block.
769 This is passed in r0 and the actual routine address is loaded into r15.)
770
771 In addition, note that the address of the "called function", in this case
772 the trampoline, is actually the address of the data area. So we need to
773 make a fake data area that will contain the address of the trampoline.
774 Note that this must be defined as two half-words, since the trampoline
775 template (as opposed to the trampoline on the stack) is only half-word
776 aligned. */
777
778#define TRAMPOLINE_TEMPLATE(FILE) \
779{ \
780 fprintf (FILE, "\t.short 0,0\n"); \
781 fprintf (FILE, "\tcau r0,0(r0)\n"); \
782 fprintf (FILE, "\toil r0,r0,0\n"); \
783 fprintf (FILE, "\tmts r10,r15\n"); \
784 fprintf (FILE, "\tst r0,-36(r1)\n"); \
785 fprintf (FILE, "\tcau r15,0(r0)\n"); \
786 fprintf (FILE, "\toil r15,r15,0\n"); \
787 fprintf (FILE, "\tcas r0,r15,r0\n"); \
788 fprintf (FILE, "\tls r15,0(r15)\n"); \
789 fprintf (FILE, "\tbrx r15\n"); \
790 fprintf (FILE, "\tmfs r10,r15\n"); \
791}
792
793/* Length in units of the trampoline for entering a nested function. */
794
795#define TRAMPOLINE_SIZE 36
796
797/* Emit RTL insns to initialize the variable parts of a trampoline.
798 FNADDR is an RTX for the address of the function's pure code.
799 CXT is an RTX for the static chain value for the function.
800
801 On the RT, the static chain and function addresses are written in
802 two 16-bit sections.
803
804 We also need to write the address of the first instruction in
805 the trampoline into the first word of the trampoline to simulate a
806 data area. */
807
808#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
809{ \
810 rtx _addr, _temp; \
811 rtx _val; \
812 \
813 _temp = expand_binop (SImode, add_optab, ADDR, \
3a598fbe 814 GEN_INT (4), \
b124ac04 815 0, 1, OPTAB_LIB_WIDEN); \
c5c76735
JL
816 emit_move_insn (gen_rtx_MEM (SImode, \
817 memory_address (SImode, ADDR)), _temp); \
b124ac04
RK
818 \
819 _val = force_reg (SImode, CXT); \
820 _addr = memory_address (HImode, plus_constant (ADDR, 10)); \
c5c76735 821 emit_move_insn (gen_rtx_MEM (HImode, _addr), \
b124ac04
RK
822 gen_lowpart (HImode, _val)); \
823 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
824 build_int_2 (16, 0), 0, 1); \
825 _addr = memory_address (HImode, plus_constant (ADDR, 6)); \
c5c76735 826 emit_move_insn (gen_rtx_MEM (HImode, _addr), \
b124ac04
RK
827 gen_lowpart (HImode, _temp)); \
828 \
829 _val = force_reg (SImode, FNADDR); \
830 _addr = memory_address (HImode, plus_constant (ADDR, 24)); \
c5c76735 831 emit_move_insn (gen_rtx_MEM (HImode, _addr), \
b124ac04
RK
832 gen_lowpart (HImode, _val)); \
833 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
834 build_int_2 (16, 0), 0, 1); \
835 _addr = memory_address (HImode, plus_constant (ADDR, 20)); \
c5c76735 836 emit_move_insn (gen_rtx_MEM (HImode, _addr), \
b124ac04
RK
837 gen_lowpart (HImode, _temp)); \
838 \
839}
840\f
841/* Definitions for register eliminations.
842
843 We have two registers that can be eliminated on the ROMP. First, the
844 frame pointer register can often be eliminated in favor of the stack
845 pointer register. Secondly, the argument pointer register can always be
846 eliminated; it is replaced with either the stack or frame pointer.
847
848 In addition, we use the elimination mechanism to see if r14 is needed.
849 Initially we assume that it isn't. If it is, we spill it. This is done
850 by making it an eliminable register. It doesn't matter what we replace
851 it with, since it will never occur in the rtl at this point. */
852
853/* This is an array of structures. Each structure initializes one pair
854 of eliminable registers. The "from" register number is given first,
855 followed by "to". Eliminations of the same "from" register are listed
856 in order of preference. */
857#define ELIMINABLE_REGS \
858{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
859 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
860 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
861 { 14, 0}}
862
863/* Given FROM and TO register numbers, say whether this elimination is allowed.
864 Frame pointer elimination is automatically handled.
865
866 For the ROMP, if frame pointer elimination is being done, we would like to
867 convert ap into fp, not sp.
868
869 We need r14 if various conditions (tested in romp_using_r14) are true.
870
871 All other eliminations are valid. */
872#define CAN_ELIMINATE(FROM, TO) \
873 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
874 ? ! frame_pointer_needed \
875 : (FROM) == 14 ? ! romp_using_r14 () \
876 : 1)
877
878/* Define the offset between two registers, one to be eliminated, and the other
879 its replacement, at the start of a routine. */
880#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
881{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
882 { \
883 if (romp_pushes_stack ()) \
884 (OFFSET) = ((get_frame_size () - 64) \
885 + current_function_outgoing_args_size); \
886 else \
887 (OFFSET) = - (romp_sa_size () + 64); \
888 } \
889 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
890 (OFFSET) = romp_sa_size () - 16 + 64; \
891 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
892 { \
893 if (romp_pushes_stack ()) \
894 (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \
895 + current_function_outgoing_args_size); \
896 else \
897 (OFFSET) = -16; \
898 } \
899 else if ((FROM) == 14) \
900 (OFFSET) = 0; \
901 else \
902 abort (); \
903}
904\f
905/* Addressing modes, and classification of registers for them. */
906
940da324
JL
907/* #define HAVE_POST_INCREMENT 0 */
908/* #define HAVE_POST_DECREMENT 0 */
b124ac04 909
940da324
JL
910/* #define HAVE_PRE_DECREMENT 0 */
911/* #define HAVE_PRE_INCREMENT 0 */
b124ac04
RK
912
913/* Macros to check register numbers against specific register classes. */
914
915/* These assume that REGNO is a hard or pseudo reg number.
916 They give nonzero only if REGNO is a hard reg of the suitable class
917 or a pseudo reg currently allocated to a suitable hard reg.
918 Since they use reg_renumber, they are safe only once reg_renumber
919 has been allocated, which happens in local-alloc.c. */
920
921#define REGNO_OK_FOR_INDEX_P(REGNO) 0
922#define REGNO_OK_FOR_BASE_P(REGNO) \
923((REGNO) < FIRST_PSEUDO_REGISTER \
924 ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \
925 : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \
926 && reg_renumber[REGNO] != 16))
927\f
928/* Maximum number of registers that can appear in a valid memory address. */
929
930#define MAX_REGS_PER_ADDRESS 1
931
932/* Recognize any constant value that is a valid address. */
933
6eff269e
BK
934#define CONSTANT_ADDRESS_P(X) \
935 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
936 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
937 || GET_CODE (X) == HIGH)
b124ac04
RK
938
939/* Nonzero if the constant value X is a legitimate general operand.
940 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
941
942 On the ROMP, there is a bit of a hack here. Basically, we wish to
943 only issue instructions that are not `as' macros. However, in the
944 case of `get', `load', and `store', if the operand is a relocatable
945 symbol (possibly +/- an integer), there is no way to express the
946 resulting split-relocation except with the macro. Therefore, allow
947 either a constant valid in a normal (sign-extended) D-format insn or
948 a relocatable expression.
949
950 Also, for DFmode and DImode, we must ensure that both words are
951 addressable.
952
953 We define two macros: The first is given an offset (0 or 4) and indicates
954 that the operand is a CONST_INT that is valid for that offset. The second
955 indicates a valid non-CONST_INT constant. */
956
957#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
958 (GET_CODE (X) == CONST_INT \
959 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
960
961#define LEGITIMATE_ADDRESS_CONSTANT_P(X) \
962 (GET_CODE (X) == SYMBOL_REF \
963 || GET_CODE (X) == LABEL_REF \
964 || (GET_CODE (X) == CONST \
965 && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
966 || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
967 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
968
969/* Include all constant integers and constant double, but exclude
970 SYMBOL_REFs that are to be obtained from the data area (see below). */
971#define LEGITIMATE_CONSTANT_P(X) \
972 ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \
973 || GET_CODE (X) == CONST_INT \
974 || GET_CODE (X) == CONST_DOUBLE) \
59a5c11b 975 && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
b124ac04
RK
976
977/* For no good reason, we do the same as the other RT compilers and load
978 the addresses of data areas for a function from our data area. That means
979 that we need to mark such SYMBOL_REFs. We do so here. */
59a5c11b 980#define ENCODE_SECTION_INFO(DECL) \
b124ac04 981 if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \
59a5c11b 982 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
b124ac04
RK
983
984/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
985 and check its validity for a certain class.
986 We have two alternate definitions for each of them.
987 The usual definition accepts all pseudo regs; the other rejects
988 them unless they have been allocated suitable hard regs.
989 The symbol REG_OK_STRICT causes the latter definition to be used.
990
991 Most source files want to accept pseudo regs in the hope that
992 they will get allocated to the class that the insn wants them to be in.
993 Source files for reload pass need to be strict.
994 After reload, it makes no difference, since pseudo regs have
995 been eliminated by then. */
996
997#ifndef REG_OK_STRICT
998
999/* Nonzero if X is a hard reg that can be used as an index
1000 or if it is a pseudo reg. */
1001#define REG_OK_FOR_INDEX_P(X) 0
1002/* Nonzero if X is a hard reg that can be used as a base reg
1003 or if it is a pseudo reg. */
1004#define REG_OK_FOR_BASE_P(X) \
1005 (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1006
1007#else
1008
1009/* Nonzero if X is a hard reg that can be used as an index. */
1010#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1011/* Nonzero if X is a hard reg that can be used as a base reg. */
1012#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1013
1014#endif
1015\f
1016/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1017 that is a valid memory address for an instruction.
1018 The MODE argument is the machine mode for the MEM expression
1019 that wants to use this address.
1020
1021 On the ROMP, a legitimate address is either a legitimate constant,
1022 a register plus a legitimate constant, or a register. See the
1023 discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */
1024#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1025{ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1026 goto ADDR; \
1027 if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \
1028 goto ADDR; \
1029 if (GET_CODE (X) == PLUS \
1030 && GET_CODE (XEXP (X, 0)) == REG \
1031 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1032 && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \
1033 goto ADDR; \
1034 if (GET_CODE (X) == PLUS \
1035 && GET_CODE (XEXP (X, 0)) == REG \
1036 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1037 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1038 && (((MODE) != DFmode && (MODE) != DImode) \
1039 || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \
1040 goto ADDR; \
1041}
1042\f
1043/* Try machine-dependent ways of modifying an illegitimate address
1044 to be legitimate. If we find one, return the new, valid address.
1045 This macro is used in only one place: `memory_address' in explow.c.
1046
1047 OLDX is the address as it was before break_out_memory_refs was called.
1048 In some cases it is useful to look at this to decide what needs to be done.
1049
1050 MODE and WIN are passed so that this macro can use
1051 GO_IF_LEGITIMATE_ADDRESS.
1052
1053 It is always safe for this macro to do nothing. It exists to recognize
1054 opportunities to optimize the output.
1055
1056 On ROMP, check for the sum of a register with a constant
1057 integer that is out of range. If so, generate code to add the
1058 constant with the low-order 16 bits masked to the register and force
1059 this result into another register (this can be done with `cau').
1060 Then generate an address of REG+(CONST&0xffff), allowing for the
1061 possibility of bit 16 being a one.
1062
1063 If the register is not OK for a base register, abort. */
1064
1065#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1066{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1067 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1068 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1069 { int high_int, low_int; \
1070 if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1071 abort (); \
1072 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1073 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1074 if (low_int & 0x8000) \
1075 high_int += 1, low_int |= 0xffff0000; \
c5c76735
JL
1076 (X) = gen_rtx_PLUS (SImode, \
1077 force_operand (plus_constant (XEXP (X, 0), \
1078 high_int << 16)), \
1079 GEN_INT (low_int)); \
b124ac04
RK
1080 } \
1081}
1082
1083/* Go to LABEL if ADDR (a legitimate address expression)
1084 has an effect that depends on the machine mode it is used for.
1085
1086 On the ROMP this is true only if the address is valid with a zero offset
1087 but not with an offset of four (this means it cannot be used as an
1088 address for DImode or DFmode). Since we know it is valid, we just check
1089 for an address that is not valid with an offset of four. */
1090
1091#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1092{ if (GET_CODE (ADDR) == PLUS \
1093 && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \
1094 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1095 goto LABEL; \
1096}
1097\f
1098/* Define this if some processing needs to be done immediately before
1099 emitting code for an insn.
1100
1101 This is used on the ROMP, to compensate for a bug in the floating-point
1102 code. When a floating-point operation is done with the first and third
1103 operands both the same floating-point register, it will generate bad code
1104 for the MC68881. So we must detect this. If it occurs, we patch the
1105 first operand to be fr0 and insert a move insn to move it to the desired
1106 destination. */
1107#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1108 { rtx op0, op1, op2, operation, tem; \
1109 if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \
1110 { \
1111 op0 = OPERANDS[0]; \
1112 operation = OPERANDS[1]; \
1113 if (float_conversion (operation, VOIDmode)) \
1114 operation = XEXP (operation, 0); \
1115 if (float_binary (operation, VOIDmode)) \
1116 { \
1117 op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \
1118 if (float_conversion (op1, VOIDmode)) \
1119 op1 = XEXP (op1, 0); \
1120 if (float_conversion (op2, VOIDmode)) \
1121 op2 = XEXP (op2, 0); \
1122 if (rtx_equal_p (op0, op2) \
1123 && (GET_CODE (operation) == PLUS \
1124 || GET_CODE (operation) == MULT)) \
1125 tem = op1, op1 = op2, op2 = tem; \
1126 if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \
1127 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \
1128 && REGNO (op0) == REGNO (op2)) \
1129 { \
c5c76735 1130 tem = gen_rtx_REG (GET_MODE (op0), 17); \
b124ac04
RK
1131 emit_insn_after (gen_move_insn (op0, tem), INSN); \
1132 SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \
1133 OPERANDS[0] = tem; \
1134 } \
1135 } \
1136 } \
1137 }
1138\f
1139/* Specify the machine mode that this machine uses
1140 for the index in the tablejump instruction. */
1141#define CASE_VECTOR_MODE SImode
1142
18543a22
ILT
1143/* Define as C expression which evaluates to nonzero if the tablejump
1144 instruction expects the table to contain offsets from the address of the
1145 table.
1146 Do not define this if the table should contain absolute addresses. */
1147/* #define CASE_VECTOR_PC_RELATIVE 1 */
b124ac04
RK
1148
1149/* Specify the tree operation to be used to convert reals to integers. */
1150#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1151
1152/* This is the kind of divide that is easiest to do in the general case. */
1153#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1154
1155/* Define this as 1 if `char' should by default be signed; else as 0. */
1156#define DEFAULT_SIGNED_CHAR 0
1157
1158/* This flag, if defined, says the same insns that convert to a signed fixnum
1159 also convert validly to an unsigned one.
1160
1161 We actually lie a bit here as overflow conditions are different. But
1162 they aren't being checked anyway. */
1163
1164#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1165
1166/* Max number of bytes we can move from memory to memory
1167 in one reasonably fast instruction. */
1168#define MOVE_MAX 4
1169
1170/* Nonzero if access to memory by bytes is no faster than for words.
1171 Also non-zero if doing byte operations (specifically shifts) in registers
1172 is undesirable. */
1173#define SLOW_BYTE_ACCESS 1
1174
9a63901f
RK
1175/* Define if operations between registers always perform the operation
1176 on the full register even if a narrower mode is specified. */
1177#define WORD_REGISTER_OPERATIONS
1178
1179/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1180 will either zero-extend or sign-extend. The value of this macro should
1181 be the code that says which one of the two operations is implicitly
1182 done, NIL if none. */
1183#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
b124ac04
RK
1184
1185/* This is BSD, so it wants DBX format. */
1186#define DBX_DEBUGGING_INFO
1187
0f21219f
RK
1188/* Define the letter code used in a stabs entry for parameters passed
1189 with the register attribute.
1190
1191 GCC's default value, 'P', is used by dbx to refers to an external
1192 procedure. The section 5 manual page for dbx implies that 'R' would be the
1193 right letter, but dbx 1.5 has a bug in it that precludes its use.
1194 Probably that is why neither hc or pcc use this. pcc puts in two
1195 stabs entries: one for the parameter location and one for the register
1196 location. The letter `r' (register)
1197 would be okay, but it loses parameter attribute of the stabs entry. */
1198#define DBX_REGPARM_STABS_LETTER 'R'
1199
1200/* A C expression for the integer offset value of an automatic variable
1201 (N_LSYM) having address X (an RTX). This gets used in .stabs entries
1202 for the local variables. Compare with the default definition. */
1203extern int romp_debugger_auto_correction();
1204#define DEBUGGER_AUTO_OFFSET(X) \
1205 (GET_CODE (X) == PLUS \
1206 ? romp_debugger_auto_correction (INTVAL (XEXP (X, 1)) ) \
1207 : 0 )
1208
1209/* A C expression for the integer offset value of an argument (N_PSYM)
1210 having address X (an RTX). The nominal offset is OFFSET. */
1211extern int romp_debugger_arg_correction();
1212#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1213 romp_debugger_arg_correction (OFFSET);
1214
b124ac04
RK
1215/* We don't have GAS for the RT yet, so don't write out special
1216 .stabs in cc1plus. */
1217
1218#define FASCIST_ASSEMBLER
1219
1220/* Do not break .stabs pseudos into continuations. */
1221#define DBX_CONTIN_LENGTH 0
1222
1223/* Don't try to use the `x' type-cross-reference character in DBX data.
1224 Also has the consequence of putting each struct, union or enum
1225 into a separate .stabs, containing only cross-refs to the others. */
1226#define DBX_NO_XREFS
1227
1228/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1229 is done just by pretending it is already truncated. */
1230#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1231
1232/* Specify the machine mode that pointers have.
1233 After generation of rtl, the compiler makes no further distinction
1234 between pointers and any other objects of this machine mode. */
1235#define Pmode SImode
1236
1237/* Mode of a function address in a call instruction (for indexing purposes).
1238
1239 Doesn't matter on ROMP. */
1240#define FUNCTION_MODE SImode
1241
1242/* Define this if addresses of constant functions
1243 shouldn't be put through pseudo regs where they can be cse'd.
1244 Desirable on machines where ordinary constants are expensive
1245 but a CALL with constant address is cheap. */
1246#define NO_FUNCTION_CSE
1247
1248/* Define this if shift instructions ignore all but the low-order
36d51583
RK
1249 few bits.
1250
1251 This is not true on the RT since it uses the low-order 6, not 5, bits.
1252 At some point, this should be extended to see how to express that. */
1253
1254/* #define SHIFT_COUNT_TRUNCATED */
b124ac04 1255
3bb22aee
RS
1256/* Compute the cost of computing a constant rtl expression RTX whose
1257 rtx-code is CODE, contained within an expression of code OUTER_CODE.
1258 The body of this macro is a portion of a switch statement. If the
1259 code is computed here, return it with a return statement. Otherwise,
1260 break from the switch. */
b124ac04 1261
3bb22aee 1262#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
b124ac04 1263 case CONST_INT: \
6c94ce67 1264 if ((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0 \
a7a975e1
RK
1265 || (OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0 \
1266 || (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS) \
3bb22aee 1267 && (unsigned int) (INTVAL (RTX) + 15) < 31) \
6c94ce67 1268 || ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\
3bb22aee 1269 return 0; \
a7a975e1
RK
1270 return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000 \
1271 || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\
b124ac04
RK
1272 case CONST: \
1273 case LABEL_REF: \
1274 case SYMBOL_REF: \
3bb22aee 1275 if (current_function_operand (RTX, Pmode)) return 0; \
a7a975e1 1276 return COSTS_N_INSNS (2); \
3bb22aee
RS
1277 case CONST_DOUBLE: \
1278 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2; \
a7a975e1
RK
1279 return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
1280 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4));
b124ac04
RK
1281
1282/* Provide the costs of a rtl expression. This is in the body of a
1283 switch on CODE.
1284
1285 References to our own data area are really references to r14, so they
1286 are very cheap. Multiples and divides are very expensive. */
1287
3bb22aee 1288#define RTX_COSTS(X,CODE,OUTER_CODE) \
b124ac04
RK
1289 case MEM: \
1290 return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \
1291 case MULT: \
3bb22aee
RS
1292 return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\
1293 ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \
b124ac04
RK
1294 case DIV: \
1295 case UDIV: \
1296 case MOD: \
1297 case UMOD: \
1298 return COSTS_N_INSNS (45);
1299
1300/* Compute the cost of an address. This is meant to approximate the size
1301 and/or execution delay of an insn using that address. If the cost is
1302 approximated by the RTL complexity, including CONST_COSTS above, as
1303 is usually the case for CISC machines, this macro should not be defined.
1304 For aggressively RISCy machines, only one insn format is allowed, so
1305 this macro should be a constant. The value of this macro only matters
1306 for valid addresses.
1307
1308 For the ROMP, everything is cost 0 except for addresses involving
1309 symbolic constants, which are cost 1. */
1310
1311#define ADDRESS_COST(RTX) \
1312 ((GET_CODE (RTX) == SYMBOL_REF \
1313 && ! CONSTANT_POOL_ADDRESS_P (RTX)) \
1314 || GET_CODE (RTX) == LABEL_REF \
1315 || (GET_CODE (RTX) == CONST \
1316 && ! constant_pool_address_operand (RTX, Pmode)) \
1317 || (GET_CODE (RTX) == PLUS \
1318 && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \
1319 && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \
1320 || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \
1321 || GET_CODE (XEXP (RTX, 1)) == CONST)))
1322
1323/* Adjust the length of an INSN. LENGTH is the currently-computed length and
1324 should be adjusted to reflect any required changes. This macro is used when
1325 there is some systematic length adjustment required that would be difficult
1326 to express in the length attribute.
1327
1328 On the ROMP, there are two adjustments: First, a 2-byte insn in the delay
1329 slot of a CALL (including floating-point operations) actually takes four
1330 bytes. Second, we have to make the worst-case alignment assumption for
1331 address vectors. */
1332
1333#define ADJUST_INSN_LENGTH(X,LENGTH) \
1334 if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \
1335 && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \
1336 && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \
1337 (LENGTH) += 2; \
1338 else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
1339 (LENGTH) += 2;
1340\f
1341/* Tell final.c how to eliminate redundant test instructions. */
1342
1343/* Here we define machine-dependent flags and fields in cc_status
1344 (see `conditions.h'). */
1345
1346/* Set if condition code (really not-Z) is stored in `test bit'. */
1347#define CC_IN_TB 01000
1348
1349/* Set if condition code is set by an unsigned compare. */
1350#define CC_UNSIGNED 02000
1351
1352/* Store in cc_status the expressions
1353 that the condition codes will describe
1354 after execution of an instruction whose pattern is EXP.
1355 Do not alter them if the instruction would not alter the cc's. */
1356
1357#define NOTICE_UPDATE_CC(BODY,INSN) \
1358 update_cc (BODY, INSN)
1359\f
1360/* Control the assembler format that we output. */
1361
1362/* Output at beginning of assembler file. */
1363
1364#define ASM_FILE_START(FILE) \
1365{ extern char *version_string; \
8c1d7353
RK
1366 char *p; \
1367 \
b124ac04 1368 fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
8c1d7353
RK
1369 fprintf (FILE, "\t.globl .oVgcc"); \
1370 for (p = version_string; *p != ' ' && *p != 0; p++) \
1371 fprintf (FILE, "%c", *p); \
1372 fprintf (FILE, "\n\t.set .oVgcc"); \
1373 for (p = version_string; *p != ' ' && *p != 0; p++) \
1374 fprintf (FILE, "%c", *p); \
1375 fprintf (FILE, ",0\n"); \
b124ac04
RK
1376}
1377
1378/* Output to assembler file text saying following lines
1379 may contain character constants, extra white space, comments, etc. */
1380
1381#define ASM_APP_ON ""
1382
1383/* Output to assembler file text saying following lines
1384 no longer contain unusual constructs. */
1385
1386#define ASM_APP_OFF ""
1387
1388/* Output before instructions and read-only data. */
1389
fdaff8ba 1390#define TEXT_SECTION_ASM_OP ".text"
b124ac04
RK
1391
1392/* Output before writable data. */
1393
fdaff8ba 1394#define DATA_SECTION_ASM_OP ".data"
b124ac04
RK
1395
1396/* How to refer to registers in assembler output.
1397 This sequence is indexed by compiler's hard-register-number (see above). */
1398
1399#define REGISTER_NAMES \
1400{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1401 "r10", "r11", "r12", "r13", "r14", "r15", "ap", \
1402 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
1403
1404/* How to renumber registers for dbx and gdb. */
1405
1406#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1407
1408/* This is how to output the definition of a user-level label named NAME,
1409 such as the label on a static function or variable NAME. */
1410
1411#define ASM_OUTPUT_LABEL(FILE,NAME) \
1412 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1413
1414/* This is how to output a command to make the user-level label named NAME
1415 defined for reference from other files. */
1416
1417#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1418 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1419
4e0c8ad2 1420/* The prefix to add to user-visible assembler symbols. */
b124ac04 1421
4e0c8ad2 1422#define USER_LABEL_PREFIX "_"
b124ac04
RK
1423
1424/* This is how to output an internal numbered label where
1425 PREFIX is the class of label and NUM is the number within the class. */
1426
1427#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1428 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1429
1430/* This is how to output a label for a jump table. Arguments are the same as
1431 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1432 passed. */
1433
1434#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1435{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1436
1437/* This is how to store into the string LABEL
1438 the symbol_ref name of an internal numbered label where
1439 PREFIX is the class of label and NUM is the number within the class.
1440 This is suitable for output with `assemble_name'. */
1441
1442#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1443 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1444
1445/* This is how to output an assembler line defining a `double' constant. */
1446
1447#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1448 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1449
1450/* This is how to output an assembler line defining a `float' constant.
1451
1452 WARNING: Believe it or not, the ROMP assembler has a bug in its
1453 handling of single-precision floating-point values making it impossible
1454 to output such values in the expected way. Therefore, it must be output
1455 in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES
1456 NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done
1457 about it short of fixing the assembler. */
1458
1459#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1460 do { union { int i; float f; } u_i_f; \
1461 u_i_f.f = (VALUE); \
1462 fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\
1463 } while (0)
1464
1465/* This is how to output an assembler line defining an `int' constant. */
1466
1467#define ASM_OUTPUT_INT(FILE,VALUE) \
1468( fprintf (FILE, "\t.long "), \
1469 output_addr_const (FILE, (VALUE)), \
1470 fprintf (FILE, "\n"))
1471
1472/* Likewise for `char' and `short' constants. */
1473
1474#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1475( fprintf (FILE, "\t.short "), \
1476 output_addr_const (FILE, (VALUE)), \
1477 fprintf (FILE, "\n"))
1478
1479#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1480( fprintf (FILE, "\t.byte "), \
1481 output_addr_const (FILE, (VALUE)), \
1482 fprintf (FILE, "\n"))
1483
1484/* This is how to output an assembler line for a numeric constant byte. */
1485
1486#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1487 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1488
1489/* This is how to output code to push a register on the stack.
1490 It need not be very fast code. */
1491
1492#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1493 fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
1494
1495/* This is how to output an insn to pop a register from the stack.
1496 It need not be very fast code. */
1497
1498#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1499 fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
1500
1501/* This is how to output an element of a case-vector that is absolute. */
1502
1503#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1504 fprintf (FILE, "\t.long L%d\n", VALUE)
1505
1506/* This is how to output an element of a case-vector that is relative.
27b6c442 1507 Don't define this if it is not supported. */
b124ac04 1508
27b6c442 1509/* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
b124ac04
RK
1510
1511/* This is how to output an assembler line
1512 that says to advance the location counter
1513 to a multiple of 2**LOG bytes. */
1514
1515#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1516 if ((LOG) != 0) \
1517 fprintf (FILE, "\t.align %d\n", (LOG))
1518
1519#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1520 fprintf (FILE, "\t.space %d\n", (SIZE))
1521
1522/* This says how to output an assembler line
1523 to define a global common symbol. */
1524
1525#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1526( fputs (".comm ", (FILE)), \
1527 assemble_name ((FILE), (NAME)), \
1528 fprintf ((FILE), ",%d\n", (SIZE)))
1529
1530/* This says how to output an assembler line
1531 to define a local common symbol. */
1532
1533#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1534( fputs (".lcomm ", (FILE)), \
1535 assemble_name ((FILE), (NAME)), \
1536 fprintf ((FILE), ",%d\n", (SIZE)))
1537
1538/* Store in OUTPUT a string (made with alloca) containing
1539 an assembler-name for a local static variable named NAME.
1540 LABELNO is an integer which is different for each call. */
1541
1542#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1543( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1544 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1545
1546/* Define the parentheses used to group arithmetic operations
1547 in assembler code. */
1548
1549#define ASM_OPEN_PAREN "("
1550#define ASM_CLOSE_PAREN ")"
1551
1552/* Define results of standard character escape sequences. */
1553#define TARGET_BELL 007
1554#define TARGET_BS 010
1555#define TARGET_TAB 011
1556#define TARGET_NEWLINE 012
1557#define TARGET_VT 013
1558#define TARGET_FF 014
1559#define TARGET_CR 015
1560
1561/* Print operand X (an rtx) in assembler syntax to file FILE.
1562 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1563 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1564
1565#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1566
1567/* Define which CODE values are valid. */
1568
1569#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1570 ((CODE) == '.' || (CODE) == '#')
1571\f
1572/* Print a memory address as an operand to reference that memory location. */
1573
1574#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1575{ register rtx addr = ADDR; \
1576 register rtx base = 0, offset = addr; \
1577 if (GET_CODE (addr) == REG) \
1578 base = addr, offset = const0_rtx; \
1579 else if (GET_CODE (addr) == PLUS \
1580 && GET_CODE (XEXP (addr, 0)) == REG) \
1581 base = XEXP (addr, 0), offset = XEXP (addr, 1); \
1582 else if (GET_CODE (addr) == SYMBOL_REF \
1583 && CONSTANT_POOL_ADDRESS_P (addr)) \
1584 { \
c5c76735
JL
1585 offset = GEN_INT (get_pool_offset (addr) + 12); \
1586 base = gen_rtx_REG (SImode, 14); \
b124ac04
RK
1587 } \
1588 else if (GET_CODE (addr) == CONST \
1589 && GET_CODE (XEXP (addr, 0)) == PLUS \
1590 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \
1591 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \
1592 && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
1593 { \
1594 offset = plus_constant (XEXP (XEXP (addr, 0), 1), \
1595 (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
1596 + 12)); \
c5c76735 1597 base = gen_rtx_REG (SImode, 14); \
b124ac04
RK
1598 } \
1599 output_addr_const (FILE, offset); \
1600 if (base) \
1601 fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \
1602}
1603
1604/* Define the codes that are matched by predicates in aux-output.c. */
1605
1606#define PREDICATE_CODES \
1607 {"zero_memory_operand", {SUBREG, MEM}}, \
1608 {"short_memory_operand", {SUBREG, MEM}}, \
1609 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1610 {"current_function_operand", {MEM}}, \
1611 {"constant_pool_address_operand", {SUBREG, CONST}}, \
1612 {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \
1613 {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
1614 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1615 {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \
1616 {"short_cint_operand", {CONST_INT}}, \
1617 {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \
1618 {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \
1619 PLUS, CONST, CONST_INT}}, \
1620 {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \
1621 {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \
1622 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1623 {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
1624 SYMBOL_REF, CONST_DOUBLE}}, \
1625 {"reg_0_operand", {REG}}, \
1626 {"reg_15_operand", {REG}}, \
1627 {"float_binary", {PLUS, MINUS, MULT, DIV}}, \
1628 {"float_unary", {NEG, ABS}}, \
1629 {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
1630
1631/* Define functions defined in aux-output.c and used in templates. */
1632
1633extern char *output_in_line_mul ();
1634extern char *output_fpop ();