]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.c
hashtab.h: Update GTY annotations to new syntax
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.c
CommitLineData
9878760c 1/* Subroutines used for code generation on IBM RS/6000.
f676971a 2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
66647d44 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
337bde91 4 Free Software Foundation, Inc.
fab3bcc3 5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
9878760c 6
5de601cf 7 This file is part of GCC.
9878760c 8
5de601cf
NC
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
2f83c7d6 11 by the Free Software Foundation; either version 3, or (at your
5de601cf 12 option) any later version.
9878760c 13
5de601cf
NC
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
9878760c 18
5de601cf 19 You should have received a copy of the GNU General Public License
2f83c7d6
NC
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
9878760c 22
956d6950 23#include "config.h"
c4d38ccb 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
9878760c
RK
27#include "rtl.h"
28#include "regs.h"
29#include "hard-reg-set.h"
30#include "real.h"
31#include "insn-config.h"
32#include "conditions.h"
9878760c
RK
33#include "insn-attr.h"
34#include "flags.h"
35#include "recog.h"
9878760c 36#include "obstack.h"
9b30bae2 37#include "tree.h"
dfafc897 38#include "expr.h"
2fc1c679 39#include "optabs.h"
2a430ec1 40#include "except.h"
a7df97e6 41#include "function.h"
296b8152 42#include "output.h"
d5fa86ba 43#include "basic-block.h"
d0101753 44#include "integrate.h"
296b8152 45#include "toplev.h"
c8023011 46#include "ggc.h"
9ebbca7d
GK
47#include "hashtab.h"
48#include "tm_p.h"
672a6f42
NB
49#include "target.h"
50#include "target-def.h"
3ac88239 51#include "langhooks.h"
24ea750e 52#include "reload.h"
117dca74 53#include "cfglayout.h"
79ae11c4 54#include "sched-int.h"
726a989a 55#include "gimple.h"
e41b2a33 56#include "tree-flow.h"
4d3e6fae 57#include "intl.h"
59d6560b 58#include "params.h"
279bb624 59#include "tm-constrs.h"
1bc7c5b6
ZW
60#if TARGET_XCOFF
61#include "xcoffout.h" /* get declarations of xcoff_*_section_name */
62#endif
93a27b7b
ZW
63#if TARGET_MACHO
64#include "gstab.h" /* for N_SLINE */
65#endif
9b30bae2 66
7509c759
MM
67#ifndef TARGET_NO_PROTOTYPE
68#define TARGET_NO_PROTOTYPE 0
69#endif
70
9878760c
RK
71#define min(A,B) ((A) < (B) ? (A) : (B))
72#define max(A,B) ((A) > (B) ? (A) : (B))
73
d1d0c603
JJ
74/* Structure used to define the rs6000 stack */
75typedef struct rs6000_stack {
76 int first_gp_reg_save; /* first callee saved GP register used */
77 int first_fp_reg_save; /* first callee saved FP register used */
78 int first_altivec_reg_save; /* first callee saved AltiVec register used */
79 int lr_save_p; /* true if the link reg needs to be saved */
80 int cr_save_p; /* true if the CR reg needs to be saved */
81 unsigned int vrsave_mask; /* mask of vec registers to save */
d1d0c603
JJ
82 int push_p; /* true if we need to allocate stack space */
83 int calls_p; /* true if the function makes any calls */
c4ad648e 84 int world_save_p; /* true if we're saving *everything*:
d62294f5 85 r13-r31, cr, f14-f31, vrsave, v20-v31 */
d1d0c603
JJ
86 enum rs6000_abi abi; /* which ABI to use */
87 int gp_save_offset; /* offset to save GP regs from initial SP */
88 int fp_save_offset; /* offset to save FP regs from initial SP */
89 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
90 int lr_save_offset; /* offset to save LR from initial SP */
91 int cr_save_offset; /* offset to save CR from initial SP */
92 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
93 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
d1d0c603
JJ
94 int varargs_save_offset; /* offset to save the varargs registers */
95 int ehrd_offset; /* offset to EH return data */
96 int reg_size; /* register size (4 or 8) */
d1d0c603
JJ
97 HOST_WIDE_INT vars_size; /* variable save area size */
98 int parm_size; /* outgoing parameter size */
99 int save_size; /* save area size */
100 int fixed_size; /* fixed size of stack frame */
101 int gp_size; /* size of saved GP registers */
102 int fp_size; /* size of saved FP registers */
103 int altivec_size; /* size of saved AltiVec registers */
104 int cr_size; /* size to hold CR if not in save_size */
d1d0c603
JJ
105 int vrsave_size; /* size to hold VRSAVE if not in save_size */
106 int altivec_padding_size; /* size of altivec alignment padding if
107 not in save_size */
108 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
109 int spe_padding_size;
d1d0c603
JJ
110 HOST_WIDE_INT total_size; /* total bytes allocated for stack */
111 int spe_64bit_regs_used;
112} rs6000_stack_t;
113
5b667039
JJ
114/* A C structure for machine-specific, per-function data.
115 This is added to the cfun structure. */
d1b38208 116typedef struct GTY(()) machine_function
5b667039
JJ
117{
118 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
119 int ra_needs_full_frame;
120 /* Some local-dynamic symbol. */
121 const char *some_ld_name;
122 /* Whether the instruction chain has been scanned already. */
123 int insn_chain_scanned_p;
124 /* Flags if __builtin_return_address (0) was used. */
125 int ra_need_lr;
126 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
127 varargs save area. */
128 HOST_WIDE_INT varargs_save_offset;
e41b2a33
PB
129 /* Temporary stack slot to use for SDmode copies. This slot is
130 64-bits wide and is allocated early enough so that the offset
131 does not overflow the 16-bit load/store offset field. */
132 rtx sdmode_stack_slot;
5b667039
JJ
133} machine_function;
134
5248c961
RK
135/* Target cpu type */
136
137enum processor_type rs6000_cpu;
8e3f41e7
MM
138struct rs6000_cpu_select rs6000_select[3] =
139{
815cdc52
MM
140 /* switch name, tune arch */
141 { (const char *)0, "--with-cpu=", 1, 1 },
142 { (const char *)0, "-mcpu=", 1, 1 },
143 { (const char *)0, "-mtune=", 1, 0 },
8e3f41e7 144};
5248c961 145
ec507f2d
DE
146/* Always emit branch hint bits. */
147static GTY(()) bool rs6000_always_hint;
148
149/* Schedule instructions for group formation. */
150static GTY(()) bool rs6000_sched_groups;
151
44cd321e
PS
152/* Align branch targets. */
153static GTY(()) bool rs6000_align_branch_targets;
154
569fa502
DN
155/* Support for -msched-costly-dep option. */
156const char *rs6000_sched_costly_dep_str;
157enum rs6000_dependence_cost rs6000_sched_costly_dep;
158
cbe26ab8
DN
159/* Support for -minsert-sched-nops option. */
160const char *rs6000_sched_insert_nops_str;
161enum rs6000_nop_insertion rs6000_sched_insert_nops;
162
7ccf35ed 163/* Support targetm.vectorize.builtin_mask_for_load. */
13c62176 164static GTY(()) tree altivec_builtin_mask_for_load;
7ccf35ed 165
602ea4d3 166/* Size of long double. */
6fa3f289
ZW
167int rs6000_long_double_type_size;
168
602ea4d3
JJ
169/* IEEE quad extended precision long double. */
170int rs6000_ieeequad;
171
a2db2771 172/* Nonzero to use AltiVec ABI. */
6fa3f289
ZW
173int rs6000_altivec_abi;
174
94f4765c
NF
175/* Nonzero if we want SPE SIMD instructions. */
176int rs6000_spe;
177
a3170dc6
AH
178/* Nonzero if we want SPE ABI extensions. */
179int rs6000_spe_abi;
180
94f4765c
NF
181/* Nonzero to use isel instructions. */
182int rs6000_isel;
183
5da702b1
AH
184/* Nonzero if floating point operations are done in the GPRs. */
185int rs6000_float_gprs = 0;
186
594a51fe
SS
187/* Nonzero if we want Darwin's struct-by-value-in-regs ABI. */
188int rs6000_darwin64_abi;
189
a0ab749a 190/* Set to nonzero once AIX common-mode calls have been defined. */
bbfb86aa 191static GTY(()) int common_mode_defined;
c81bebd7 192
9878760c
RK
193/* Save information from a "cmpxx" operation until the branch or scc is
194 emitted. */
9878760c
RK
195rtx rs6000_compare_op0, rs6000_compare_op1;
196int rs6000_compare_fp_p;
874a0744 197
874a0744
MM
198/* Label number of label created for -mrelocatable, to call to so we can
199 get the address of the GOT section */
200int rs6000_pic_labelno;
c81bebd7 201
b91da81f 202#ifdef USING_ELFOS_H
c81bebd7 203/* Which abi to adhere to */
9739c90c 204const char *rs6000_abi_name;
d9407988
MM
205
206/* Semantics of the small data area */
207enum rs6000_sdata_type rs6000_sdata = SDATA_DATA;
208
209/* Which small data model to use */
815cdc52 210const char *rs6000_sdata_name = (char *)0;
9ebbca7d
GK
211
212/* Counter for labels which are to be placed in .fixup. */
213int fixuplabelno = 0;
874a0744 214#endif
4697a36c 215
c4501e62
JJ
216/* Bit size of immediate TLS offsets and string from which it is decoded. */
217int rs6000_tls_size = 32;
218const char *rs6000_tls_size_string;
219
b6c9286a
MM
220/* ABI enumeration available for subtarget to use. */
221enum rs6000_abi rs6000_current_abi;
222
85b776df
AM
223/* Whether to use variant of AIX ABI for PowerPC64 Linux. */
224int dot_symbols;
225
38c1f2d7 226/* Debug flags */
815cdc52 227const char *rs6000_debug_name;
38c1f2d7
MM
228int rs6000_debug_stack; /* debug stack applications */
229int rs6000_debug_arg; /* debug argument handling */
230
aabcd309 231/* Value is TRUE if register/mode pair is acceptable. */
0d1fbc8c
AH
232bool rs6000_hard_regno_mode_ok_p[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
233
58646b77
PB
234/* Built in types. */
235
236tree rs6000_builtin_types[RS6000_BTI_MAX];
237tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
8bb418a3 238
57ac7be9
AM
239const char *rs6000_traceback_name;
240static enum {
241 traceback_default = 0,
242 traceback_none,
243 traceback_part,
244 traceback_full
245} rs6000_traceback;
246
38c1f2d7
MM
247/* Flag to say the TOC is initialized */
248int toc_initialized;
9ebbca7d 249char toc_label_name[10];
38c1f2d7 250
44cd321e
PS
251/* Cached value of rs6000_variable_issue. This is cached in
252 rs6000_variable_issue hook and returned from rs6000_sched_reorder2. */
253static short cached_can_issue_more;
254
d6b5193b
RS
255static GTY(()) section *read_only_data_section;
256static GTY(()) section *private_data_section;
257static GTY(()) section *read_only_private_data_section;
258static GTY(()) section *sdata2_section;
259static GTY(()) section *toc_section;
260
a3c9585f
KH
261/* Control alignment for fields within structures. */
262/* String from -malign-XXXXX. */
025d9908
KH
263int rs6000_alignment_flags;
264
78f5898b
AH
265/* True for any options that were explicitly set. */
266struct {
df01da37 267 bool aix_struct_ret; /* True if -maix-struct-ret was used. */
78f5898b 268 bool alignment; /* True if -malign- was used. */
a2db2771
JJ
269 bool spe_abi; /* True if -mabi=spe/no-spe was used. */
270 bool altivec_abi; /* True if -mabi=altivec/no-altivec used. */
78f5898b
AH
271 bool spe; /* True if -mspe= was used. */
272 bool float_gprs; /* True if -mfloat-gprs= was used. */
273 bool isel; /* True if -misel was used. */
274 bool long_double; /* True if -mlong-double- was used. */
d3603e8c 275 bool ieee; /* True if -mabi=ieee/ibmlongdouble used. */
a2db2771 276 bool vrsave; /* True if -mvrsave was used. */
78f5898b
AH
277} rs6000_explicit_options;
278
a3170dc6
AH
279struct builtin_description
280{
281 /* mask is not const because we're going to alter it below. This
282 nonsense will go away when we rewrite the -march infrastructure
283 to give us more target flag bits. */
284 unsigned int mask;
285 const enum insn_code icode;
286 const char *const name;
287 const enum rs6000_builtins code;
288};
8b897cfa
RS
289\f
290/* Target cpu costs. */
291
292struct processor_costs {
c4ad648e 293 const int mulsi; /* cost of SImode multiplication. */
8b897cfa
RS
294 const int mulsi_const; /* cost of SImode multiplication by constant. */
295 const int mulsi_const9; /* cost of SImode mult by short constant. */
c4ad648e
AM
296 const int muldi; /* cost of DImode multiplication. */
297 const int divsi; /* cost of SImode division. */
298 const int divdi; /* cost of DImode division. */
299 const int fp; /* cost of simple SFmode and DFmode insns. */
300 const int dmul; /* cost of DFmode multiplication (and fmadd). */
301 const int sdiv; /* cost of SFmode division (fdivs). */
302 const int ddiv; /* cost of DFmode division (fdiv). */
5f732aba
DE
303 const int cache_line_size; /* cache line size in bytes. */
304 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
305 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
0b11da67
DE
306 const int simultaneous_prefetches; /* number of parallel prefetch
307 operations. */
8b897cfa
RS
308};
309
310const struct processor_costs *rs6000_cost;
311
312/* Processor costs (relative to an add) */
313
314/* Instruction size costs on 32bit processors. */
315static const
316struct processor_costs size32_cost = {
06a67bdd
RS
317 COSTS_N_INSNS (1), /* mulsi */
318 COSTS_N_INSNS (1), /* mulsi_const */
319 COSTS_N_INSNS (1), /* mulsi_const9 */
320 COSTS_N_INSNS (1), /* muldi */
321 COSTS_N_INSNS (1), /* divsi */
322 COSTS_N_INSNS (1), /* divdi */
323 COSTS_N_INSNS (1), /* fp */
324 COSTS_N_INSNS (1), /* dmul */
325 COSTS_N_INSNS (1), /* sdiv */
326 COSTS_N_INSNS (1), /* ddiv */
0b11da67
DE
327 32,
328 0,
329 0,
5f732aba 330 0,
8b897cfa
RS
331};
332
333/* Instruction size costs on 64bit processors. */
334static const
335struct processor_costs size64_cost = {
06a67bdd
RS
336 COSTS_N_INSNS (1), /* mulsi */
337 COSTS_N_INSNS (1), /* mulsi_const */
338 COSTS_N_INSNS (1), /* mulsi_const9 */
339 COSTS_N_INSNS (1), /* muldi */
340 COSTS_N_INSNS (1), /* divsi */
341 COSTS_N_INSNS (1), /* divdi */
342 COSTS_N_INSNS (1), /* fp */
343 COSTS_N_INSNS (1), /* dmul */
344 COSTS_N_INSNS (1), /* sdiv */
345 COSTS_N_INSNS (1), /* ddiv */
0b11da67
DE
346 128,
347 0,
348 0,
5f732aba 349 0,
8b897cfa
RS
350};
351
352/* Instruction costs on RIOS1 processors. */
353static const
354struct processor_costs rios1_cost = {
06a67bdd
RS
355 COSTS_N_INSNS (5), /* mulsi */
356 COSTS_N_INSNS (4), /* mulsi_const */
357 COSTS_N_INSNS (3), /* mulsi_const9 */
358 COSTS_N_INSNS (5), /* muldi */
359 COSTS_N_INSNS (19), /* divsi */
360 COSTS_N_INSNS (19), /* divdi */
361 COSTS_N_INSNS (2), /* fp */
362 COSTS_N_INSNS (2), /* dmul */
363 COSTS_N_INSNS (19), /* sdiv */
364 COSTS_N_INSNS (19), /* ddiv */
0d158b6e 365 128, /* cache line size */
5f732aba
DE
366 64, /* l1 cache */
367 512, /* l2 cache */
0b11da67 368 0, /* streams */
8b897cfa
RS
369};
370
371/* Instruction costs on RIOS2 processors. */
372static const
373struct processor_costs rios2_cost = {
06a67bdd
RS
374 COSTS_N_INSNS (2), /* mulsi */
375 COSTS_N_INSNS (2), /* mulsi_const */
376 COSTS_N_INSNS (2), /* mulsi_const9 */
377 COSTS_N_INSNS (2), /* muldi */
378 COSTS_N_INSNS (13), /* divsi */
379 COSTS_N_INSNS (13), /* divdi */
380 COSTS_N_INSNS (2), /* fp */
381 COSTS_N_INSNS (2), /* dmul */
382 COSTS_N_INSNS (17), /* sdiv */
383 COSTS_N_INSNS (17), /* ddiv */
0d158b6e 384 256, /* cache line size */
5f732aba
DE
385 256, /* l1 cache */
386 1024, /* l2 cache */
0b11da67 387 0, /* streams */
8b897cfa
RS
388};
389
390/* Instruction costs on RS64A processors. */
391static const
392struct processor_costs rs64a_cost = {
06a67bdd
RS
393 COSTS_N_INSNS (20), /* mulsi */
394 COSTS_N_INSNS (12), /* mulsi_const */
395 COSTS_N_INSNS (8), /* mulsi_const9 */
396 COSTS_N_INSNS (34), /* muldi */
397 COSTS_N_INSNS (65), /* divsi */
398 COSTS_N_INSNS (67), /* divdi */
399 COSTS_N_INSNS (4), /* fp */
400 COSTS_N_INSNS (4), /* dmul */
401 COSTS_N_INSNS (31), /* sdiv */
402 COSTS_N_INSNS (31), /* ddiv */
0d158b6e 403 128, /* cache line size */
5f732aba
DE
404 128, /* l1 cache */
405 2048, /* l2 cache */
0b11da67 406 1, /* streams */
8b897cfa
RS
407};
408
409/* Instruction costs on MPCCORE processors. */
410static const
411struct processor_costs mpccore_cost = {
06a67bdd
RS
412 COSTS_N_INSNS (2), /* mulsi */
413 COSTS_N_INSNS (2), /* mulsi_const */
414 COSTS_N_INSNS (2), /* mulsi_const9 */
415 COSTS_N_INSNS (2), /* muldi */
416 COSTS_N_INSNS (6), /* divsi */
417 COSTS_N_INSNS (6), /* divdi */
418 COSTS_N_INSNS (4), /* fp */
419 COSTS_N_INSNS (5), /* dmul */
420 COSTS_N_INSNS (10), /* sdiv */
421 COSTS_N_INSNS (17), /* ddiv */
0d158b6e 422 32, /* cache line size */
5f732aba
DE
423 4, /* l1 cache */
424 16, /* l2 cache */
0b11da67 425 1, /* streams */
8b897cfa
RS
426};
427
428/* Instruction costs on PPC403 processors. */
429static const
430struct processor_costs ppc403_cost = {
06a67bdd
RS
431 COSTS_N_INSNS (4), /* mulsi */
432 COSTS_N_INSNS (4), /* mulsi_const */
433 COSTS_N_INSNS (4), /* mulsi_const9 */
434 COSTS_N_INSNS (4), /* muldi */
435 COSTS_N_INSNS (33), /* divsi */
436 COSTS_N_INSNS (33), /* divdi */
437 COSTS_N_INSNS (11), /* fp */
438 COSTS_N_INSNS (11), /* dmul */
439 COSTS_N_INSNS (11), /* sdiv */
440 COSTS_N_INSNS (11), /* ddiv */
0d158b6e 441 32, /* cache line size */
5f732aba
DE
442 4, /* l1 cache */
443 16, /* l2 cache */
0b11da67 444 1, /* streams */
8b897cfa
RS
445};
446
447/* Instruction costs on PPC405 processors. */
448static const
449struct processor_costs ppc405_cost = {
06a67bdd
RS
450 COSTS_N_INSNS (5), /* mulsi */
451 COSTS_N_INSNS (4), /* mulsi_const */
452 COSTS_N_INSNS (3), /* mulsi_const9 */
453 COSTS_N_INSNS (5), /* muldi */
454 COSTS_N_INSNS (35), /* divsi */
455 COSTS_N_INSNS (35), /* divdi */
456 COSTS_N_INSNS (11), /* fp */
457 COSTS_N_INSNS (11), /* dmul */
458 COSTS_N_INSNS (11), /* sdiv */
459 COSTS_N_INSNS (11), /* ddiv */
0d158b6e 460 32, /* cache line size */
5f732aba
DE
461 16, /* l1 cache */
462 128, /* l2 cache */
0b11da67 463 1, /* streams */
8b897cfa
RS
464};
465
466/* Instruction costs on PPC440 processors. */
467static const
468struct processor_costs ppc440_cost = {
06a67bdd
RS
469 COSTS_N_INSNS (3), /* mulsi */
470 COSTS_N_INSNS (2), /* mulsi_const */
471 COSTS_N_INSNS (2), /* mulsi_const9 */
472 COSTS_N_INSNS (3), /* muldi */
473 COSTS_N_INSNS (34), /* divsi */
474 COSTS_N_INSNS (34), /* divdi */
475 COSTS_N_INSNS (5), /* fp */
476 COSTS_N_INSNS (5), /* dmul */
477 COSTS_N_INSNS (19), /* sdiv */
478 COSTS_N_INSNS (33), /* ddiv */
0d158b6e 479 32, /* cache line size */
5f732aba
DE
480 32, /* l1 cache */
481 256, /* l2 cache */
0b11da67 482 1, /* streams */
8b897cfa
RS
483};
484
485/* Instruction costs on PPC601 processors. */
486static const
487struct processor_costs ppc601_cost = {
06a67bdd
RS
488 COSTS_N_INSNS (5), /* mulsi */
489 COSTS_N_INSNS (5), /* mulsi_const */
490 COSTS_N_INSNS (5), /* mulsi_const9 */
491 COSTS_N_INSNS (5), /* muldi */
492 COSTS_N_INSNS (36), /* divsi */
493 COSTS_N_INSNS (36), /* divdi */
494 COSTS_N_INSNS (4), /* fp */
495 COSTS_N_INSNS (5), /* dmul */
496 COSTS_N_INSNS (17), /* sdiv */
497 COSTS_N_INSNS (31), /* ddiv */
0d158b6e 498 32, /* cache line size */
5f732aba
DE
499 32, /* l1 cache */
500 256, /* l2 cache */
0b11da67 501 1, /* streams */
8b897cfa
RS
502};
503
504/* Instruction costs on PPC603 processors. */
505static const
506struct processor_costs ppc603_cost = {
06a67bdd
RS
507 COSTS_N_INSNS (5), /* mulsi */
508 COSTS_N_INSNS (3), /* mulsi_const */
509 COSTS_N_INSNS (2), /* mulsi_const9 */
510 COSTS_N_INSNS (5), /* muldi */
511 COSTS_N_INSNS (37), /* divsi */
512 COSTS_N_INSNS (37), /* divdi */
513 COSTS_N_INSNS (3), /* fp */
514 COSTS_N_INSNS (4), /* dmul */
515 COSTS_N_INSNS (18), /* sdiv */
516 COSTS_N_INSNS (33), /* ddiv */
0d158b6e 517 32, /* cache line size */
5f732aba
DE
518 8, /* l1 cache */
519 64, /* l2 cache */
0b11da67 520 1, /* streams */
8b897cfa
RS
521};
522
523/* Instruction costs on PPC604 processors. */
524static const
525struct processor_costs ppc604_cost = {
06a67bdd
RS
526 COSTS_N_INSNS (4), /* mulsi */
527 COSTS_N_INSNS (4), /* mulsi_const */
528 COSTS_N_INSNS (4), /* mulsi_const9 */
529 COSTS_N_INSNS (4), /* muldi */
530 COSTS_N_INSNS (20), /* divsi */
531 COSTS_N_INSNS (20), /* divdi */
532 COSTS_N_INSNS (3), /* fp */
533 COSTS_N_INSNS (3), /* dmul */
534 COSTS_N_INSNS (18), /* sdiv */
535 COSTS_N_INSNS (32), /* ddiv */
0d158b6e 536 32, /* cache line size */
5f732aba
DE
537 16, /* l1 cache */
538 512, /* l2 cache */
0b11da67 539 1, /* streams */
8b897cfa
RS
540};
541
542/* Instruction costs on PPC604e processors. */
543static const
544struct processor_costs ppc604e_cost = {
06a67bdd
RS
545 COSTS_N_INSNS (2), /* mulsi */
546 COSTS_N_INSNS (2), /* mulsi_const */
547 COSTS_N_INSNS (2), /* mulsi_const9 */
548 COSTS_N_INSNS (2), /* muldi */
549 COSTS_N_INSNS (20), /* divsi */
550 COSTS_N_INSNS (20), /* divdi */
551 COSTS_N_INSNS (3), /* fp */
552 COSTS_N_INSNS (3), /* dmul */
553 COSTS_N_INSNS (18), /* sdiv */
554 COSTS_N_INSNS (32), /* ddiv */
0d158b6e 555 32, /* cache line size */
5f732aba
DE
556 32, /* l1 cache */
557 1024, /* l2 cache */
0b11da67 558 1, /* streams */
8b897cfa
RS
559};
560
f0517163 561/* Instruction costs on PPC620 processors. */
8b897cfa
RS
562static const
563struct processor_costs ppc620_cost = {
06a67bdd
RS
564 COSTS_N_INSNS (5), /* mulsi */
565 COSTS_N_INSNS (4), /* mulsi_const */
566 COSTS_N_INSNS (3), /* mulsi_const9 */
567 COSTS_N_INSNS (7), /* muldi */
568 COSTS_N_INSNS (21), /* divsi */
569 COSTS_N_INSNS (37), /* divdi */
570 COSTS_N_INSNS (3), /* fp */
571 COSTS_N_INSNS (3), /* dmul */
572 COSTS_N_INSNS (18), /* sdiv */
573 COSTS_N_INSNS (32), /* ddiv */
0d158b6e 574 128, /* cache line size */
5f732aba
DE
575 32, /* l1 cache */
576 1024, /* l2 cache */
0b11da67 577 1, /* streams */
f0517163
RS
578};
579
580/* Instruction costs on PPC630 processors. */
581static const
582struct processor_costs ppc630_cost = {
06a67bdd
RS
583 COSTS_N_INSNS (5), /* mulsi */
584 COSTS_N_INSNS (4), /* mulsi_const */
585 COSTS_N_INSNS (3), /* mulsi_const9 */
586 COSTS_N_INSNS (7), /* muldi */
587 COSTS_N_INSNS (21), /* divsi */
588 COSTS_N_INSNS (37), /* divdi */
589 COSTS_N_INSNS (3), /* fp */
590 COSTS_N_INSNS (3), /* dmul */
591 COSTS_N_INSNS (17), /* sdiv */
592 COSTS_N_INSNS (21), /* ddiv */
0d158b6e 593 128, /* cache line size */
5f732aba
DE
594 64, /* l1 cache */
595 1024, /* l2 cache */
0b11da67 596 1, /* streams */
8b897cfa
RS
597};
598
d296e02e
AP
599/* Instruction costs on Cell processor. */
600/* COSTS_N_INSNS (1) ~ one add. */
601static const
602struct processor_costs ppccell_cost = {
603 COSTS_N_INSNS (9/2)+2, /* mulsi */
604 COSTS_N_INSNS (6/2), /* mulsi_const */
605 COSTS_N_INSNS (6/2), /* mulsi_const9 */
606 COSTS_N_INSNS (15/2)+2, /* muldi */
607 COSTS_N_INSNS (38/2), /* divsi */
608 COSTS_N_INSNS (70/2), /* divdi */
609 COSTS_N_INSNS (10/2), /* fp */
610 COSTS_N_INSNS (10/2), /* dmul */
611 COSTS_N_INSNS (74/2), /* sdiv */
612 COSTS_N_INSNS (74/2), /* ddiv */
0d158b6e 613 128, /* cache line size */
5f732aba
DE
614 32, /* l1 cache */
615 512, /* l2 cache */
616 6, /* streams */
d296e02e
AP
617};
618
8b897cfa
RS
619/* Instruction costs on PPC750 and PPC7400 processors. */
620static const
621struct processor_costs ppc750_cost = {
06a67bdd
RS
622 COSTS_N_INSNS (5), /* mulsi */
623 COSTS_N_INSNS (3), /* mulsi_const */
624 COSTS_N_INSNS (2), /* mulsi_const9 */
625 COSTS_N_INSNS (5), /* muldi */
626 COSTS_N_INSNS (17), /* divsi */
627 COSTS_N_INSNS (17), /* divdi */
628 COSTS_N_INSNS (3), /* fp */
629 COSTS_N_INSNS (3), /* dmul */
630 COSTS_N_INSNS (17), /* sdiv */
631 COSTS_N_INSNS (31), /* ddiv */
0d158b6e 632 32, /* cache line size */
5f732aba
DE
633 32, /* l1 cache */
634 512, /* l2 cache */
0b11da67 635 1, /* streams */
8b897cfa
RS
636};
637
638/* Instruction costs on PPC7450 processors. */
639static const
640struct processor_costs ppc7450_cost = {
06a67bdd
RS
641 COSTS_N_INSNS (4), /* mulsi */
642 COSTS_N_INSNS (3), /* mulsi_const */
643 COSTS_N_INSNS (3), /* mulsi_const9 */
644 COSTS_N_INSNS (4), /* muldi */
645 COSTS_N_INSNS (23), /* divsi */
646 COSTS_N_INSNS (23), /* divdi */
647 COSTS_N_INSNS (5), /* fp */
648 COSTS_N_INSNS (5), /* dmul */
649 COSTS_N_INSNS (21), /* sdiv */
650 COSTS_N_INSNS (35), /* ddiv */
0d158b6e 651 32, /* cache line size */
5f732aba
DE
652 32, /* l1 cache */
653 1024, /* l2 cache */
0b11da67 654 1, /* streams */
8b897cfa 655};
a3170dc6 656
8b897cfa
RS
657/* Instruction costs on PPC8540 processors. */
658static const
659struct processor_costs ppc8540_cost = {
06a67bdd
RS
660 COSTS_N_INSNS (4), /* mulsi */
661 COSTS_N_INSNS (4), /* mulsi_const */
662 COSTS_N_INSNS (4), /* mulsi_const9 */
663 COSTS_N_INSNS (4), /* muldi */
664 COSTS_N_INSNS (19), /* divsi */
665 COSTS_N_INSNS (19), /* divdi */
666 COSTS_N_INSNS (4), /* fp */
667 COSTS_N_INSNS (4), /* dmul */
668 COSTS_N_INSNS (29), /* sdiv */
669 COSTS_N_INSNS (29), /* ddiv */
0d158b6e 670 32, /* cache line size */
5f732aba
DE
671 32, /* l1 cache */
672 256, /* l2 cache */
0b11da67 673 1, /* prefetch streams /*/
8b897cfa
RS
674};
675
fa41c305
EW
676/* Instruction costs on E300C2 and E300C3 cores. */
677static const
678struct processor_costs ppce300c2c3_cost = {
679 COSTS_N_INSNS (4), /* mulsi */
680 COSTS_N_INSNS (4), /* mulsi_const */
681 COSTS_N_INSNS (4), /* mulsi_const9 */
682 COSTS_N_INSNS (4), /* muldi */
683 COSTS_N_INSNS (19), /* divsi */
684 COSTS_N_INSNS (19), /* divdi */
685 COSTS_N_INSNS (3), /* fp */
686 COSTS_N_INSNS (4), /* dmul */
687 COSTS_N_INSNS (18), /* sdiv */
688 COSTS_N_INSNS (33), /* ddiv */
642639ce 689 32,
a19b7d46
EW
690 16, /* l1 cache */
691 16, /* l2 cache */
642639ce 692 1, /* prefetch streams /*/
fa41c305
EW
693};
694
edae5fe3
DE
695/* Instruction costs on PPCE500MC processors. */
696static const
697struct processor_costs ppce500mc_cost = {
698 COSTS_N_INSNS (4), /* mulsi */
699 COSTS_N_INSNS (4), /* mulsi_const */
700 COSTS_N_INSNS (4), /* mulsi_const9 */
701 COSTS_N_INSNS (4), /* muldi */
702 COSTS_N_INSNS (14), /* divsi */
703 COSTS_N_INSNS (14), /* divdi */
704 COSTS_N_INSNS (8), /* fp */
705 COSTS_N_INSNS (10), /* dmul */
706 COSTS_N_INSNS (36), /* sdiv */
707 COSTS_N_INSNS (66), /* ddiv */
708 64, /* cache line size */
709 32, /* l1 cache */
710 128, /* l2 cache */
711 1, /* prefetch streams /*/
712};
713
8b897cfa
RS
714/* Instruction costs on POWER4 and POWER5 processors. */
715static const
716struct processor_costs power4_cost = {
06a67bdd
RS
717 COSTS_N_INSNS (3), /* mulsi */
718 COSTS_N_INSNS (2), /* mulsi_const */
719 COSTS_N_INSNS (2), /* mulsi_const9 */
720 COSTS_N_INSNS (4), /* muldi */
721 COSTS_N_INSNS (18), /* divsi */
722 COSTS_N_INSNS (34), /* divdi */
723 COSTS_N_INSNS (3), /* fp */
724 COSTS_N_INSNS (3), /* dmul */
725 COSTS_N_INSNS (17), /* sdiv */
726 COSTS_N_INSNS (17), /* ddiv */
0d158b6e 727 128, /* cache line size */
5f732aba
DE
728 32, /* l1 cache */
729 1024, /* l2 cache */
0b11da67 730 8, /* prefetch streams /*/
8b897cfa
RS
731};
732
44cd321e
PS
733/* Instruction costs on POWER6 processors. */
734static const
735struct processor_costs power6_cost = {
736 COSTS_N_INSNS (8), /* mulsi */
737 COSTS_N_INSNS (8), /* mulsi_const */
738 COSTS_N_INSNS (8), /* mulsi_const9 */
739 COSTS_N_INSNS (8), /* muldi */
740 COSTS_N_INSNS (22), /* divsi */
741 COSTS_N_INSNS (28), /* divdi */
742 COSTS_N_INSNS (3), /* fp */
743 COSTS_N_INSNS (3), /* dmul */
744 COSTS_N_INSNS (13), /* sdiv */
745 COSTS_N_INSNS (16), /* ddiv */
0d158b6e 746 128, /* cache line size */
5f732aba
DE
747 64, /* l1 cache */
748 2048, /* l2 cache */
0b11da67 749 16, /* prefetch streams */
44cd321e
PS
750};
751
8b897cfa 752\f
a2369ed3 753static bool rs6000_function_ok_for_sibcall (tree, tree);
3101faab 754static const char *rs6000_invalid_within_doloop (const_rtx);
a2369ed3 755static rtx rs6000_generate_compare (enum rtx_code);
a2369ed3
DJ
756static void rs6000_emit_stack_tie (void);
757static void rs6000_frame_related (rtx, rtx, HOST_WIDE_INT, rtx, rtx);
a2369ed3 758static bool spe_func_has_64bit_regs_p (void);
b20a9cca 759static void emit_frame_save (rtx, rtx, enum machine_mode, unsigned int,
d1d0c603 760 int, HOST_WIDE_INT);
a2369ed3 761static rtx gen_frame_mem_offset (enum machine_mode, rtx, int);
f78c3290 762static void rs6000_emit_allocate_stack (HOST_WIDE_INT, int, int);
a2369ed3
DJ
763static unsigned rs6000_hash_constant (rtx);
764static unsigned toc_hash_function (const void *);
765static int toc_hash_eq (const void *, const void *);
a2369ed3 766static bool constant_pool_expr_p (rtx);
d04b6e6e 767static bool legitimate_small_data_p (enum machine_mode, rtx);
a2369ed3
DJ
768static bool legitimate_lo_sum_address_p (enum machine_mode, rtx, int);
769static struct machine_function * rs6000_init_machine_status (void);
770static bool rs6000_assemble_integer (rtx, unsigned int, int);
f78c3290 771static bool no_global_regs_above (int, bool);
5add3202 772#ifdef HAVE_GAS_HIDDEN
a2369ed3 773static void rs6000_assemble_visibility (tree, int);
5add3202 774#endif
a2369ed3
DJ
775static int rs6000_ra_ever_killed (void);
776static tree rs6000_handle_longcall_attribute (tree *, tree, tree, int, bool *);
8bb418a3 777static tree rs6000_handle_altivec_attribute (tree *, tree, tree, int, bool *);
3101faab 778static bool rs6000_ms_bitfield_layout_p (const_tree);
77ccdfed 779static tree rs6000_handle_struct_attribute (tree *, tree, tree, int, bool *);
76d2b81d 780static void rs6000_eliminate_indexed_memrefs (rtx operands[2]);
3101faab 781static const char *rs6000_mangle_type (const_tree);
b86fe7b4 782extern const struct attribute_spec rs6000_attribute_table[];
a2369ed3 783static void rs6000_set_default_type_attributes (tree);
f78c3290
NF
784static rtx rs6000_savres_routine_sym (rs6000_stack_t *, bool, bool, bool);
785static void rs6000_emit_stack_reset (rs6000_stack_t *, rtx, rtx, int, bool);
786static rtx rs6000_make_savres_rtx (rs6000_stack_t *, rtx, int,
787 enum machine_mode, bool, bool, bool);
52ff33d0 788static bool rs6000_reg_live_or_pic_offset_p (int);
f78c3290
NF
789static int rs6000_savres_strategy (rs6000_stack_t *, bool, int, int);
790static void rs6000_restore_saved_cr (rtx, int);
a2369ed3
DJ
791static void rs6000_output_function_prologue (FILE *, HOST_WIDE_INT);
792static void rs6000_output_function_epilogue (FILE *, HOST_WIDE_INT);
b20a9cca
AM
793static void rs6000_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
794 tree);
a2369ed3 795static rtx rs6000_emit_set_long_const (rtx, HOST_WIDE_INT, HOST_WIDE_INT);
586de218 796static bool rs6000_return_in_memory (const_tree, const_tree);
a2369ed3 797static void rs6000_file_start (void);
7c262518 798#if TARGET_ELF
9b580a0b 799static int rs6000_elf_reloc_rw_mask (void);
a2369ed3
DJ
800static void rs6000_elf_asm_out_constructor (rtx, int);
801static void rs6000_elf_asm_out_destructor (rtx, int);
1334b570 802static void rs6000_elf_end_indicate_exec_stack (void) ATTRIBUTE_UNUSED;
d6b5193b 803static void rs6000_elf_asm_init_sections (void);
d6b5193b
RS
804static section *rs6000_elf_select_rtx_section (enum machine_mode, rtx,
805 unsigned HOST_WIDE_INT);
a56d7372 806static void rs6000_elf_encode_section_info (tree, rtx, int)
0e5dbd9b 807 ATTRIBUTE_UNUSED;
7c262518 808#endif
3101faab 809static bool rs6000_use_blocks_for_constant_p (enum machine_mode, const_rtx);
e41b2a33
PB
810static void rs6000_alloc_sdmode_stack_slot (void);
811static void rs6000_instantiate_decls (void);
cbaaba19 812#if TARGET_XCOFF
0d5817b2 813static void rs6000_xcoff_asm_output_anchor (rtx);
a2369ed3 814static void rs6000_xcoff_asm_globalize_label (FILE *, const char *);
d6b5193b 815static void rs6000_xcoff_asm_init_sections (void);
9b580a0b 816static int rs6000_xcoff_reloc_rw_mask (void);
8210e4c4 817static void rs6000_xcoff_asm_named_section (const char *, unsigned int, tree);
d6b5193b 818static section *rs6000_xcoff_select_section (tree, int,
b20a9cca 819 unsigned HOST_WIDE_INT);
d6b5193b
RS
820static void rs6000_xcoff_unique_section (tree, int);
821static section *rs6000_xcoff_select_rtx_section
822 (enum machine_mode, rtx, unsigned HOST_WIDE_INT);
a2369ed3
DJ
823static const char * rs6000_xcoff_strip_name_encoding (const char *);
824static unsigned int rs6000_xcoff_section_type_flags (tree, const char *, int);
825static void rs6000_xcoff_file_start (void);
826static void rs6000_xcoff_file_end (void);
f1384257 827#endif
a2369ed3 828static int rs6000_variable_issue (FILE *, int, rtx, int);
f40751dd 829static bool rs6000_rtx_costs (rtx, int, int, int *, bool);
a2369ed3 830static int rs6000_adjust_cost (rtx, rtx, rtx, int);
44cd321e 831static void rs6000_sched_init (FILE *, int, int);
cbe26ab8 832static bool is_microcoded_insn (rtx);
d296e02e 833static bool is_nonpipeline_insn (rtx);
cbe26ab8
DN
834static bool is_cracked_insn (rtx);
835static bool is_branch_slot_insn (rtx);
44cd321e 836static bool is_load_insn (rtx);
e3a0e200 837static rtx get_store_dest (rtx pat);
44cd321e
PS
838static bool is_store_insn (rtx);
839static bool set_to_load_agen (rtx,rtx);
982afe02 840static bool adjacent_mem_locations (rtx,rtx);
a2369ed3
DJ
841static int rs6000_adjust_priority (rtx, int);
842static int rs6000_issue_rate (void);
b198261f 843static bool rs6000_is_costly_dependence (dep_t, int, int);
cbe26ab8
DN
844static rtx get_next_active_insn (rtx, rtx);
845static bool insn_terminates_group_p (rtx , enum group_termination);
44cd321e
PS
846static bool insn_must_be_first_in_group (rtx);
847static bool insn_must_be_last_in_group (rtx);
cbe26ab8
DN
848static bool is_costly_group (rtx *, rtx);
849static int force_new_group (int, FILE *, rtx *, rtx, bool *, int, int *);
850static int redefine_groups (FILE *, int, rtx, rtx);
851static int pad_groups (FILE *, int, rtx, rtx);
852static void rs6000_sched_finish (FILE *, int);
44cd321e
PS
853static int rs6000_sched_reorder (FILE *, int, rtx *, int *, int);
854static int rs6000_sched_reorder2 (FILE *, int, rtx *, int *, int);
a2369ed3 855static int rs6000_use_sched_lookahead (void);
d296e02e 856static int rs6000_use_sched_lookahead_guard (rtx);
e855c69d
AB
857static void * rs6000_alloc_sched_context (void);
858static void rs6000_init_sched_context (void *, bool);
859static void rs6000_set_sched_context (void *);
860static void rs6000_free_sched_context (void *);
9c78b944 861static tree rs6000_builtin_reciprocal (unsigned int, bool, bool);
7ccf35ed 862static tree rs6000_builtin_mask_for_load (void);
89d67cca
DN
863static tree rs6000_builtin_mul_widen_even (tree);
864static tree rs6000_builtin_mul_widen_odd (tree);
f57d17f1 865static tree rs6000_builtin_conversion (enum tree_code, tree);
0fca40f5 866static tree rs6000_builtin_vec_perm (tree, tree *);
a2369ed3 867
58646b77 868static void def_builtin (int, const char *, tree, int);
3101faab 869static bool rs6000_vector_alignment_reachable (const_tree, bool);
a2369ed3
DJ
870static void rs6000_init_builtins (void);
871static rtx rs6000_expand_unop_builtin (enum insn_code, tree, rtx);
872static rtx rs6000_expand_binop_builtin (enum insn_code, tree, rtx);
873static rtx rs6000_expand_ternop_builtin (enum insn_code, tree, rtx);
874static rtx rs6000_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
875static void altivec_init_builtins (void);
876static void rs6000_common_init_builtins (void);
c15c90bb 877static void rs6000_init_libfuncs (void);
a2369ed3 878
96038623
DE
879static void paired_init_builtins (void);
880static rtx paired_expand_builtin (tree, rtx, bool *);
881static rtx paired_expand_lv_builtin (enum insn_code, tree, rtx);
882static rtx paired_expand_stv_builtin (enum insn_code, tree);
883static rtx paired_expand_predicate_builtin (enum insn_code, tree, rtx);
884
b20a9cca
AM
885static void enable_mask_for_builtins (struct builtin_description *, int,
886 enum rs6000_builtins,
887 enum rs6000_builtins);
a2369ed3
DJ
888static void spe_init_builtins (void);
889static rtx spe_expand_builtin (tree, rtx, bool *);
61bea3b0 890static rtx spe_expand_stv_builtin (enum insn_code, tree);
a2369ed3
DJ
891static rtx spe_expand_predicate_builtin (enum insn_code, tree, rtx);
892static rtx spe_expand_evsel_builtin (enum insn_code, tree, rtx);
893static int rs6000_emit_int_cmove (rtx, rtx, rtx, rtx);
d1d0c603
JJ
894static rs6000_stack_t *rs6000_stack_info (void);
895static void debug_stack_info (rs6000_stack_t *);
a2369ed3
DJ
896
897static rtx altivec_expand_builtin (tree, rtx, bool *);
898static rtx altivec_expand_ld_builtin (tree, rtx, bool *);
899static rtx altivec_expand_st_builtin (tree, rtx, bool *);
900static rtx altivec_expand_dst_builtin (tree, rtx, bool *);
901static rtx altivec_expand_abs_builtin (enum insn_code, tree, rtx);
f676971a 902static rtx altivec_expand_predicate_builtin (enum insn_code,
c4ad648e 903 const char *, tree, rtx);
a2369ed3 904static rtx altivec_expand_stv_builtin (enum insn_code, tree);
7a4eca66
DE
905static rtx altivec_expand_vec_init_builtin (tree, tree, rtx);
906static rtx altivec_expand_vec_set_builtin (tree);
907static rtx altivec_expand_vec_ext_builtin (tree, rtx);
908static int get_element_number (tree, tree);
78f5898b 909static bool rs6000_handle_option (size_t, const char *, int);
a2369ed3 910static void rs6000_parse_tls_size_option (void);
5da702b1 911static void rs6000_parse_yes_no_option (const char *, const char *, int *);
a2369ed3
DJ
912static int first_altivec_reg_to_save (void);
913static unsigned int compute_vrsave_mask (void);
9390387d 914static void compute_save_world_info (rs6000_stack_t *info_ptr);
a2369ed3
DJ
915static void is_altivec_return_reg (rtx, void *);
916static rtx generate_set_vrsave (rtx, rs6000_stack_t *, int);
917int easy_vector_constant (rtx, enum machine_mode);
a2369ed3 918static rtx rs6000_dwarf_register_span (rtx);
37ea0b7e 919static void rs6000_init_dwarf_reg_sizes_extra (tree);
a2369ed3 920static rtx rs6000_legitimize_tls_address (rtx, enum tls_model);
fdbe66f2 921static void rs6000_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
a2369ed3
DJ
922static rtx rs6000_tls_get_addr (void);
923static rtx rs6000_got_sym (void);
9390387d 924static int rs6000_tls_symbol_ref_1 (rtx *, void *);
a2369ed3
DJ
925static const char *rs6000_get_some_local_dynamic_name (void);
926static int rs6000_get_some_local_dynamic_name_1 (rtx *, void *);
ded9bf77 927static rtx rs6000_complex_function_value (enum machine_mode);
b20a9cca 928static rtx rs6000_spe_function_arg (CUMULATIVE_ARGS *,
a2369ed3 929 enum machine_mode, tree);
0b5383eb
DJ
930static void rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *,
931 HOST_WIDE_INT);
932static void rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *,
933 tree, HOST_WIDE_INT);
934static void rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *,
935 HOST_WIDE_INT,
936 rtx[], int *);
937static void rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *,
586de218
KG
938 const_tree, HOST_WIDE_INT,
939 rtx[], int *);
940static rtx rs6000_darwin64_record_arg (CUMULATIVE_ARGS *, const_tree, int, bool);
ec6376ab 941static rtx rs6000_mixed_function_arg (enum machine_mode, tree, int);
b1917422 942static void rs6000_move_block_from_reg (int regno, rtx x, int nregs);
c6e8c921
GK
943static void setup_incoming_varargs (CUMULATIVE_ARGS *,
944 enum machine_mode, tree,
945 int *, int);
8cd5a4e0 946static bool rs6000_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
586de218 947 const_tree, bool);
78a52f11
RH
948static int rs6000_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
949 tree, bool);
3101faab 950static const char *invalid_arg_for_unprototyped_fn (const_tree, const_tree, const_tree);
efdba735
SH
951#if TARGET_MACHO
952static void macho_branch_islands (void);
efdba735
SH
953static int no_previous_def (tree function_name);
954static tree get_prev_label (tree function_name);
c4e18b1c 955static void rs6000_darwin_file_start (void);
efdba735
SH
956#endif
957
c35d187f 958static tree rs6000_build_builtin_va_list (void);
d7bd8aeb 959static void rs6000_va_start (tree, rtx);
726a989a 960static tree rs6000_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *);
586de218 961static bool rs6000_must_pass_in_stack (enum machine_mode, const_tree);
00b79d54 962static bool rs6000_scalar_mode_supported_p (enum machine_mode);
f676971a 963static bool rs6000_vector_mode_supported_p (enum machine_mode);
94ff898d 964static int get_vec_cmp_insn (enum rtx_code, enum machine_mode,
21213b4c 965 enum machine_mode);
94ff898d 966static rtx rs6000_emit_vector_compare (enum rtx_code, rtx, rtx,
21213b4c
DP
967 enum machine_mode);
968static int get_vsel_insn (enum machine_mode);
969static void rs6000_emit_vector_select (rtx, rtx, rtx, rtx);
3aebbe5f 970static tree rs6000_stack_protect_fail (void);
21213b4c
DP
971
972const int INSN_NOT_AVAILABLE = -1;
93f90be6
FJ
973static enum machine_mode rs6000_eh_return_filter_mode (void);
974
17211ab5
GK
975/* Hash table stuff for keeping track of TOC entries. */
976
d1b38208 977struct GTY(()) toc_hash_struct
17211ab5
GK
978{
979 /* `key' will satisfy CONSTANT_P; in fact, it will satisfy
980 ASM_OUTPUT_SPECIAL_POOL_ENTRY_P. */
981 rtx key;
982 enum machine_mode key_mode;
983 int labelno;
984};
985
986static GTY ((param_is (struct toc_hash_struct))) htab_t toc_hash_table;
c81bebd7
MM
987\f
988/* Default register names. */
989char rs6000_reg_names[][8] =
990{
802a0058
MM
991 "0", "1", "2", "3", "4", "5", "6", "7",
992 "8", "9", "10", "11", "12", "13", "14", "15",
993 "16", "17", "18", "19", "20", "21", "22", "23",
994 "24", "25", "26", "27", "28", "29", "30", "31",
995 "0", "1", "2", "3", "4", "5", "6", "7",
996 "8", "9", "10", "11", "12", "13", "14", "15",
997 "16", "17", "18", "19", "20", "21", "22", "23",
998 "24", "25", "26", "27", "28", "29", "30", "31",
999 "mq", "lr", "ctr","ap",
1000 "0", "1", "2", "3", "4", "5", "6", "7",
0ac081f6
AH
1001 "xer",
1002 /* AltiVec registers. */
0cd5e3a1
AH
1003 "0", "1", "2", "3", "4", "5", "6", "7",
1004 "8", "9", "10", "11", "12", "13", "14", "15",
1005 "16", "17", "18", "19", "20", "21", "22", "23",
1006 "24", "25", "26", "27", "28", "29", "30", "31",
59a4c851
AH
1007 "vrsave", "vscr",
1008 /* SPE registers. */
7d5175e1
JJ
1009 "spe_acc", "spefscr",
1010 /* Soft frame pointer. */
1011 "sfp"
c81bebd7
MM
1012};
1013
1014#ifdef TARGET_REGNAMES
8b60264b 1015static const char alt_reg_names[][8] =
c81bebd7 1016{
802a0058
MM
1017 "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
1018 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
1019 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
1020 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
1021 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
1022 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
1023 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
1024 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
1025 "mq", "lr", "ctr", "ap",
1026 "%cr0", "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
0ac081f6 1027 "xer",
59a4c851 1028 /* AltiVec registers. */
0ac081f6 1029 "%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7",
59a4c851
AH
1030 "%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
1031 "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
1032 "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
1033 "vrsave", "vscr",
1034 /* SPE registers. */
7d5175e1
JJ
1035 "spe_acc", "spefscr",
1036 /* Soft frame pointer. */
1037 "sfp"
c81bebd7
MM
1038};
1039#endif
9878760c 1040\f
daf11973
MM
1041#ifndef MASK_STRICT_ALIGN
1042#define MASK_STRICT_ALIGN 0
1043#endif
ffcfcb5f
AM
1044#ifndef TARGET_PROFILE_KERNEL
1045#define TARGET_PROFILE_KERNEL 0
1046#endif
3961e8fe
RH
1047
1048/* The VRSAVE bitmask puts bit %v0 as the most significant bit. */
1049#define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO))
672a6f42
NB
1050\f
1051/* Initialize the GCC target structure. */
91d231cb
JM
1052#undef TARGET_ATTRIBUTE_TABLE
1053#define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table
a5c76ee6
ZW
1054#undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
1055#define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes
daf11973 1056
301d03af
RS
1057#undef TARGET_ASM_ALIGNED_DI_OP
1058#define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP
1059
1060/* Default unaligned ops are only provided for ELF. Find the ops needed
1061 for non-ELF systems. */
1062#ifndef OBJECT_FORMAT_ELF
cbaaba19 1063#if TARGET_XCOFF
ae6c1efd 1064/* For XCOFF. rs6000_assemble_integer will handle unaligned DIs on
301d03af
RS
1065 64-bit targets. */
1066#undef TARGET_ASM_UNALIGNED_HI_OP
1067#define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2,"
1068#undef TARGET_ASM_UNALIGNED_SI_OP
1069#define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4,"
1070#undef TARGET_ASM_UNALIGNED_DI_OP
1071#define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8,"
1072#else
1073/* For Darwin. */
1074#undef TARGET_ASM_UNALIGNED_HI_OP
1075#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
1076#undef TARGET_ASM_UNALIGNED_SI_OP
1077#define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
49bd1d27
SS
1078#undef TARGET_ASM_UNALIGNED_DI_OP
1079#define TARGET_ASM_UNALIGNED_DI_OP "\t.quad\t"
1080#undef TARGET_ASM_ALIGNED_DI_OP
1081#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
301d03af
RS
1082#endif
1083#endif
1084
1085/* This hook deals with fixups for relocatable code and DI-mode objects
1086 in 64-bit code. */
1087#undef TARGET_ASM_INTEGER
1088#define TARGET_ASM_INTEGER rs6000_assemble_integer
1089
93638d7a
AM
1090#ifdef HAVE_GAS_HIDDEN
1091#undef TARGET_ASM_ASSEMBLE_VISIBILITY
1092#define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility
1093#endif
1094
c4501e62
JJ
1095#undef TARGET_HAVE_TLS
1096#define TARGET_HAVE_TLS HAVE_AS_TLS
1097
1098#undef TARGET_CANNOT_FORCE_CONST_MEM
a7e0b075 1099#define TARGET_CANNOT_FORCE_CONST_MEM rs6000_tls_referenced_p
c4501e62 1100
08c148a8
NB
1101#undef TARGET_ASM_FUNCTION_PROLOGUE
1102#define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue
1103#undef TARGET_ASM_FUNCTION_EPILOGUE
1104#define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue
1105
b54cf83a
DE
1106#undef TARGET_SCHED_VARIABLE_ISSUE
1107#define TARGET_SCHED_VARIABLE_ISSUE rs6000_variable_issue
1108
c237e94a
ZW
1109#undef TARGET_SCHED_ISSUE_RATE
1110#define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate
1111#undef TARGET_SCHED_ADJUST_COST
1112#define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost
1113#undef TARGET_SCHED_ADJUST_PRIORITY
1114#define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority
f676971a 1115#undef TARGET_SCHED_IS_COSTLY_DEPENDENCE
569fa502 1116#define TARGET_SCHED_IS_COSTLY_DEPENDENCE rs6000_is_costly_dependence
44cd321e
PS
1117#undef TARGET_SCHED_INIT
1118#define TARGET_SCHED_INIT rs6000_sched_init
cbe26ab8
DN
1119#undef TARGET_SCHED_FINISH
1120#define TARGET_SCHED_FINISH rs6000_sched_finish
44cd321e
PS
1121#undef TARGET_SCHED_REORDER
1122#define TARGET_SCHED_REORDER rs6000_sched_reorder
1123#undef TARGET_SCHED_REORDER2
1124#define TARGET_SCHED_REORDER2 rs6000_sched_reorder2
c237e94a 1125
be12c2b0
VM
1126#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
1127#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD rs6000_use_sched_lookahead
1128
d296e02e
AP
1129#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
1130#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD rs6000_use_sched_lookahead_guard
1131
e855c69d
AB
1132#undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
1133#define TARGET_SCHED_ALLOC_SCHED_CONTEXT rs6000_alloc_sched_context
1134#undef TARGET_SCHED_INIT_SCHED_CONTEXT
1135#define TARGET_SCHED_INIT_SCHED_CONTEXT rs6000_init_sched_context
1136#undef TARGET_SCHED_SET_SCHED_CONTEXT
1137#define TARGET_SCHED_SET_SCHED_CONTEXT rs6000_set_sched_context
1138#undef TARGET_SCHED_FREE_SCHED_CONTEXT
1139#define TARGET_SCHED_FREE_SCHED_CONTEXT rs6000_free_sched_context
1140
7ccf35ed
DN
1141#undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
1142#define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD rs6000_builtin_mask_for_load
89d67cca
DN
1143#undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN
1144#define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN rs6000_builtin_mul_widen_even
1145#undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD
1146#define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD rs6000_builtin_mul_widen_odd
f57d17f1
TM
1147#undef TARGET_VECTORIZE_BUILTIN_CONVERSION
1148#define TARGET_VECTORIZE_BUILTIN_CONVERSION rs6000_builtin_conversion
0fca40f5
IR
1149#undef TARGET_VECTORIZE_BUILTIN_VEC_PERM
1150#define TARGET_VECTORIZE_BUILTIN_VEC_PERM rs6000_builtin_vec_perm
7ccf35ed 1151
5b900a4c
DN
1152#undef TARGET_VECTOR_ALIGNMENT_REACHABLE
1153#define TARGET_VECTOR_ALIGNMENT_REACHABLE rs6000_vector_alignment_reachable
1154
0ac081f6
AH
1155#undef TARGET_INIT_BUILTINS
1156#define TARGET_INIT_BUILTINS rs6000_init_builtins
1157
1158#undef TARGET_EXPAND_BUILTIN
1159#define TARGET_EXPAND_BUILTIN rs6000_expand_builtin
1160
608063c3
JB
1161#undef TARGET_MANGLE_TYPE
1162#define TARGET_MANGLE_TYPE rs6000_mangle_type
f18eca82 1163
c15c90bb
ZW
1164#undef TARGET_INIT_LIBFUNCS
1165#define TARGET_INIT_LIBFUNCS rs6000_init_libfuncs
1166
f1384257 1167#if TARGET_MACHO
0e5dbd9b 1168#undef TARGET_BINDS_LOCAL_P
31920d83 1169#define TARGET_BINDS_LOCAL_P darwin_binds_local_p
f1384257 1170#endif
0e5dbd9b 1171
77ccdfed
EC
1172#undef TARGET_MS_BITFIELD_LAYOUT_P
1173#define TARGET_MS_BITFIELD_LAYOUT_P rs6000_ms_bitfield_layout_p
1174
3961e8fe
RH
1175#undef TARGET_ASM_OUTPUT_MI_THUNK
1176#define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk
1177
3961e8fe 1178#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
3101faab 1179#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
00b960c7 1180
4977bab6
ZW
1181#undef TARGET_FUNCTION_OK_FOR_SIBCALL
1182#define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall
1183
2e3f0db6
DJ
1184#undef TARGET_INVALID_WITHIN_DOLOOP
1185#define TARGET_INVALID_WITHIN_DOLOOP rs6000_invalid_within_doloop
9419649c 1186
3c50106f
RH
1187#undef TARGET_RTX_COSTS
1188#define TARGET_RTX_COSTS rs6000_rtx_costs
dcefdf67 1189#undef TARGET_ADDRESS_COST
f40751dd 1190#define TARGET_ADDRESS_COST hook_int_rtx_bool_0
3c50106f 1191
96714395
AH
1192#undef TARGET_DWARF_REGISTER_SPAN
1193#define TARGET_DWARF_REGISTER_SPAN rs6000_dwarf_register_span
1194
37ea0b7e
JM
1195#undef TARGET_INIT_DWARF_REG_SIZES_EXTRA
1196#define TARGET_INIT_DWARF_REG_SIZES_EXTRA rs6000_init_dwarf_reg_sizes_extra
1197
c6e8c921
GK
1198/* On rs6000, function arguments are promoted, as are function return
1199 values. */
1200#undef TARGET_PROMOTE_FUNCTION_ARGS
586de218 1201#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
c6e8c921 1202#undef TARGET_PROMOTE_FUNCTION_RETURN
586de218 1203#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
c6e8c921 1204
c6e8c921
GK
1205#undef TARGET_RETURN_IN_MEMORY
1206#define TARGET_RETURN_IN_MEMORY rs6000_return_in_memory
1207
1208#undef TARGET_SETUP_INCOMING_VARARGS
1209#define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs
1210
1211/* Always strict argument naming on rs6000. */
1212#undef TARGET_STRICT_ARGUMENT_NAMING
1213#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
1214#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
1215#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
42ba5130 1216#undef TARGET_SPLIT_COMPLEX_ARG
3101faab 1217#define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
fe984136
RH
1218#undef TARGET_MUST_PASS_IN_STACK
1219#define TARGET_MUST_PASS_IN_STACK rs6000_must_pass_in_stack
8cd5a4e0
RH
1220#undef TARGET_PASS_BY_REFERENCE
1221#define TARGET_PASS_BY_REFERENCE rs6000_pass_by_reference
78a52f11
RH
1222#undef TARGET_ARG_PARTIAL_BYTES
1223#define TARGET_ARG_PARTIAL_BYTES rs6000_arg_partial_bytes
c6e8c921 1224
c35d187f
RH
1225#undef TARGET_BUILD_BUILTIN_VA_LIST
1226#define TARGET_BUILD_BUILTIN_VA_LIST rs6000_build_builtin_va_list
1227
d7bd8aeb
JJ
1228#undef TARGET_EXPAND_BUILTIN_VA_START
1229#define TARGET_EXPAND_BUILTIN_VA_START rs6000_va_start
1230
cd3ce9b4
JM
1231#undef TARGET_GIMPLIFY_VA_ARG_EXPR
1232#define TARGET_GIMPLIFY_VA_ARG_EXPR rs6000_gimplify_va_arg
1233
93f90be6
FJ
1234#undef TARGET_EH_RETURN_FILTER_MODE
1235#define TARGET_EH_RETURN_FILTER_MODE rs6000_eh_return_filter_mode
1236
00b79d54
BE
1237#undef TARGET_SCALAR_MODE_SUPPORTED_P
1238#define TARGET_SCALAR_MODE_SUPPORTED_P rs6000_scalar_mode_supported_p
1239
f676971a
EC
1240#undef TARGET_VECTOR_MODE_SUPPORTED_P
1241#define TARGET_VECTOR_MODE_SUPPORTED_P rs6000_vector_mode_supported_p
1242
4d3e6fae
FJ
1243#undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
1244#define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN invalid_arg_for_unprototyped_fn
1245
78f5898b
AH
1246#undef TARGET_HANDLE_OPTION
1247#define TARGET_HANDLE_OPTION rs6000_handle_option
1248
1249#undef TARGET_DEFAULT_TARGET_FLAGS
1250#define TARGET_DEFAULT_TARGET_FLAGS \
716019c0 1251 (TARGET_DEFAULT)
78f5898b 1252
3aebbe5f
JJ
1253#undef TARGET_STACK_PROTECT_FAIL
1254#define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail
1255
445cf5eb
JM
1256/* MPC604EUM 3.5.2 Weak Consistency between Multiple Processors
1257 The PowerPC architecture requires only weak consistency among
1258 processors--that is, memory accesses between processors need not be
1259 sequentially consistent and memory accesses among processors can occur
1260 in any order. The ability to order memory accesses weakly provides
1261 opportunities for more efficient use of the system bus. Unless a
1262 dependency exists, the 604e allows read operations to precede store
1263 operations. */
1264#undef TARGET_RELAXED_ORDERING
1265#define TARGET_RELAXED_ORDERING true
1266
fdbe66f2
EB
1267#ifdef HAVE_AS_TLS
1268#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
1269#define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
1270#endif
1271
aacd3885
RS
1272/* Use a 32-bit anchor range. This leads to sequences like:
1273
1274 addis tmp,anchor,high
1275 add dest,tmp,low
1276
1277 where tmp itself acts as an anchor, and can be shared between
1278 accesses to the same 64k page. */
1279#undef TARGET_MIN_ANCHOR_OFFSET
1280#define TARGET_MIN_ANCHOR_OFFSET -0x7fffffff - 1
1281#undef TARGET_MAX_ANCHOR_OFFSET
1282#define TARGET_MAX_ANCHOR_OFFSET 0x7fffffff
1283#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
1284#define TARGET_USE_BLOCKS_FOR_CONSTANT_P rs6000_use_blocks_for_constant_p
1285
9c78b944
DE
1286#undef TARGET_BUILTIN_RECIPROCAL
1287#define TARGET_BUILTIN_RECIPROCAL rs6000_builtin_reciprocal
1288
e41b2a33
PB
1289#undef TARGET_EXPAND_TO_RTL_HOOK
1290#define TARGET_EXPAND_TO_RTL_HOOK rs6000_alloc_sdmode_stack_slot
1291
1292#undef TARGET_INSTANTIATE_DECLS
1293#define TARGET_INSTANTIATE_DECLS rs6000_instantiate_decls
1294
f6897b10 1295struct gcc_target targetm = TARGET_INITIALIZER;
672a6f42 1296\f
0d1fbc8c
AH
1297
1298/* Value is 1 if hard register REGNO can hold a value of machine-mode
1299 MODE. */
1300static int
1301rs6000_hard_regno_mode_ok (int regno, enum machine_mode mode)
1302{
1303 /* The GPRs can hold any mode, but values bigger than one register
1304 cannot go past R31. */
1305 if (INT_REGNO_P (regno))
1306 return INT_REGNO_P (regno + HARD_REGNO_NREGS (regno, mode) - 1);
1307
a5a97921 1308 /* The float registers can only hold floating modes and DImode.
7393f7f8 1309 This excludes the 32-bit decimal float mode for now. */
0d1fbc8c
AH
1310 if (FP_REGNO_P (regno))
1311 return
96038623 1312 ((SCALAR_FLOAT_MODE_P (mode)
c092b045 1313 && (mode != TDmode || (regno % 2) == 0)
0d1fbc8c
AH
1314 && FP_REGNO_P (regno + HARD_REGNO_NREGS (regno, mode) - 1))
1315 || (GET_MODE_CLASS (mode) == MODE_INT
96038623
DE
1316 && GET_MODE_SIZE (mode) == UNITS_PER_FP_WORD)
1317 || (PAIRED_SIMD_REGNO_P (regno) && TARGET_PAIRED_FLOAT
1318 && PAIRED_VECTOR_MODE (mode)));
0d1fbc8c
AH
1319
1320 /* The CR register can only hold CC modes. */
1321 if (CR_REGNO_P (regno))
1322 return GET_MODE_CLASS (mode) == MODE_CC;
1323
1324 if (XER_REGNO_P (regno))
1325 return mode == PSImode;
1326
1327 /* AltiVec only in AldyVec registers. */
1328 if (ALTIVEC_REGNO_P (regno))
1329 return ALTIVEC_VECTOR_MODE (mode);
1330
1331 /* ...but GPRs can hold SIMD data on the SPE in one register. */
1332 if (SPE_SIMD_REGNO_P (regno) && TARGET_SPE && SPE_VECTOR_MODE (mode))
1333 return 1;
1334
1335 /* We cannot put TImode anywhere except general register and it must be
1336 able to fit within the register set. */
1337
1338 return GET_MODE_SIZE (mode) <= UNITS_PER_WORD;
1339}
1340
1341/* Initialize rs6000_hard_regno_mode_ok_p table. */
1342static void
1343rs6000_init_hard_regno_mode_ok (void)
1344{
1345 int r, m;
1346
1347 for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
1348 for (m = 0; m < NUM_MACHINE_MODES; ++m)
bbbbb16a 1349 if (rs6000_hard_regno_mode_ok (r, (enum machine_mode) m))
0d1fbc8c
AH
1350 rs6000_hard_regno_mode_ok_p[m][r] = true;
1351}
1352
e4cad568
GK
1353#if TARGET_MACHO
1354/* The Darwin version of SUBTARGET_OVERRIDE_OPTIONS. */
1355
1356static void
1357darwin_rs6000_override_options (void)
1358{
1359 /* The Darwin ABI always includes AltiVec, can't be (validly) turned
1360 off. */
1361 rs6000_altivec_abi = 1;
1362 TARGET_ALTIVEC_VRSAVE = 1;
1363 if (DEFAULT_ABI == ABI_DARWIN)
1364 {
1365 if (MACHO_DYNAMIC_NO_PIC_P)
1366 {
1367 if (flag_pic)
1368 warning (0, "-mdynamic-no-pic overrides -fpic or -fPIC");
1369 flag_pic = 0;
1370 }
1371 else if (flag_pic == 1)
1372 {
1373 flag_pic = 2;
1374 }
1375 }
1376 if (TARGET_64BIT && ! TARGET_POWERPC64)
1377 {
1378 target_flags |= MASK_POWERPC64;
1379 warning (0, "-m64 requires PowerPC64 architecture, enabling");
1380 }
1381 if (flag_mkernel)
1382 {
1383 rs6000_default_long_calls = 1;
1384 target_flags |= MASK_SOFT_FLOAT;
1385 }
1386
1387 /* Make -m64 imply -maltivec. Darwin's 64-bit ABI includes
1388 Altivec. */
1389 if (!flag_mkernel && !flag_apple_kext
1390 && TARGET_64BIT
1391 && ! (target_flags_explicit & MASK_ALTIVEC))
1392 target_flags |= MASK_ALTIVEC;
1393
1394 /* Unless the user (not the configurer) has explicitly overridden
1395 it with -mcpu=G3 or -mno-altivec, then 10.5+ targets default to
1396 G4 unless targetting the kernel. */
1397 if (!flag_mkernel
1398 && !flag_apple_kext
1399 && strverscmp (darwin_macosx_version_min, "10.5") >= 0
1400 && ! (target_flags_explicit & MASK_ALTIVEC)
1401 && ! rs6000_select[1].string)
1402 {
1403 target_flags |= MASK_ALTIVEC;
1404 }
1405}
1406#endif
1407
c1e55850
GK
1408/* If not otherwise specified by a target, make 'long double' equivalent to
1409 'double'. */
1410
1411#ifndef RS6000_DEFAULT_LONG_DOUBLE_SIZE
1412#define RS6000_DEFAULT_LONG_DOUBLE_SIZE 64
1413#endif
1414
5248c961
RK
1415/* Override command line options. Mostly we process the processor
1416 type and sometimes adjust other TARGET_ options. */
1417
1418void
d779d0dc 1419rs6000_override_options (const char *default_cpu)
5248c961 1420{
c4d38ccb 1421 size_t i, j;
8e3f41e7 1422 struct rs6000_cpu_select *ptr;
66188a7e 1423 int set_masks;
5248c961 1424
66188a7e 1425 /* Simplifications for entries below. */
85638c0d 1426
66188a7e
GK
1427 enum {
1428 POWERPC_BASE_MASK = MASK_POWERPC | MASK_NEW_MNEMONICS,
1429 POWERPC_7400_MASK = POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_ALTIVEC
1430 };
85638c0d 1431
66188a7e
GK
1432 /* This table occasionally claims that a processor does not support
1433 a particular feature even though it does, but the feature is slower
1434 than the alternative. Thus, it shouldn't be relied on as a
f676971a 1435 complete description of the processor's support.
66188a7e
GK
1436
1437 Please keep this list in order, and don't forget to update the
1438 documentation in invoke.texi when adding a new processor or
1439 flag. */
5248c961
RK
1440 static struct ptt
1441 {
8b60264b
KG
1442 const char *const name; /* Canonical processor name. */
1443 const enum processor_type processor; /* Processor type enum value. */
1444 const int target_enable; /* Target flags to enable. */
8b60264b 1445 } const processor_target_table[]
66188a7e 1446 = {{"401", PROCESSOR_PPC403, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
49a0b204 1447 {"403", PROCESSOR_PPC403,
66188a7e 1448 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_STRICT_ALIGN},
131aeb82 1449 {"405", PROCESSOR_PPC405,
716019c0
JM
1450 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
1451 {"405fp", PROCESSOR_PPC405,
1452 POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
131aeb82 1453 {"440", PROCESSOR_PPC440,
716019c0
JM
1454 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
1455 {"440fp", PROCESSOR_PPC440,
1456 POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
4adf8008
PB
1457 {"464", PROCESSOR_PPC440,
1458 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
1459 {"464fp", PROCESSOR_PPC440,
1460 POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
66188a7e 1461 {"505", PROCESSOR_MPCCORE, POWERPC_BASE_MASK},
5248c961 1462 {"601", PROCESSOR_PPC601,
66188a7e
GK
1463 MASK_POWER | POWERPC_BASE_MASK | MASK_MULTIPLE | MASK_STRING},
1464 {"602", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1465 {"603", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1466 {"603e", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1467 {"604", PROCESSOR_PPC604, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1468 {"604e", PROCESSOR_PPC604e, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
7ddb6568
AM
1469 {"620", PROCESSOR_PPC620,
1470 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1471 {"630", PROCESSOR_PPC630,
1472 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
66188a7e
GK
1473 {"740", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1474 {"7400", PROCESSOR_PPC7400, POWERPC_7400_MASK},
1475 {"7450", PROCESSOR_PPC7450, POWERPC_7400_MASK},
1476 {"750", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1477 {"801", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1478 {"821", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1479 {"823", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
a45bce6e 1480 {"8540", PROCESSOR_PPC8540, POWERPC_BASE_MASK | MASK_STRICT_ALIGN},
4d4cbc0e 1481 /* 8548 has a dummy entry for now. */
a45bce6e 1482 {"8548", PROCESSOR_PPC8540, POWERPC_BASE_MASK | MASK_STRICT_ALIGN},
fa41c305
EW
1483 {"e300c2", PROCESSOR_PPCE300C2, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1484 {"e300c3", PROCESSOR_PPCE300C3, POWERPC_BASE_MASK},
edae5fe3 1485 {"e500mc", PROCESSOR_PPCE500MC, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
66188a7e 1486 {"860", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
7177e720 1487 {"970", PROCESSOR_POWER4,
66188a7e 1488 POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
d296e02e
AP
1489 {"cell", PROCESSOR_CELL,
1490 POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
66188a7e
GK
1491 {"common", PROCESSOR_COMMON, MASK_NEW_MNEMONICS},
1492 {"ec603e", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1493 {"G3", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1494 {"G4", PROCESSOR_PPC7450, POWERPC_7400_MASK},
49ffe578 1495 {"G5", PROCESSOR_POWER4,
66188a7e
GK
1496 POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
1497 {"power", PROCESSOR_POWER, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1498 {"power2", PROCESSOR_POWER,
1499 MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING},
7ddb6568
AM
1500 {"power3", PROCESSOR_PPC630,
1501 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1502 {"power4", PROCESSOR_POWER4,
9a8d7941 1503 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1bc39d2f 1504 | MASK_MFCRF},
ec507f2d 1505 {"power5", PROCESSOR_POWER5,
9a8d7941 1506 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
432218ba 1507 | MASK_MFCRF | MASK_POPCNTB},
9719f3b7 1508 {"power5+", PROCESSOR_POWER5,
9a8d7941 1509 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
9719f3b7 1510 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND},
44cd321e 1511 {"power6", PROCESSOR_POWER6,
0783d48d
DE
1512 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1513 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP},
44cd321e 1514 {"power6x", PROCESSOR_POWER6,
0783d48d
DE
1515 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1516 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP
1517 | MASK_MFPGPR},
d40c9e33
PB
1518 {"power7", PROCESSOR_POWER5,
1519 POWERPC_7400_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_MFCRF
1520 | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP},
66188a7e
GK
1521 {"powerpc", PROCESSOR_POWERPC, POWERPC_BASE_MASK},
1522 {"powerpc64", PROCESSOR_POWERPC64,
98c41d98 1523 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
66188a7e
GK
1524 {"rios", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1525 {"rios1", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1526 {"rios2", PROCESSOR_RIOS2,
1527 MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING},
1528 {"rsc", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1529 {"rsc1", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
98c41d98
DE
1530 {"rs64", PROCESSOR_RS64A,
1531 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64}
66188a7e 1532 };
5248c961 1533
ca7558fc 1534 const size_t ptt_size = ARRAY_SIZE (processor_target_table);
5248c961 1535
66188a7e
GK
1536 /* Some OSs don't support saving the high part of 64-bit registers on
1537 context switch. Other OSs don't support saving Altivec registers.
1538 On those OSs, we don't touch the MASK_POWERPC64 or MASK_ALTIVEC
1539 settings; if the user wants either, the user must explicitly specify
1540 them and we won't interfere with the user's specification. */
1541
1542 enum {
1543 POWER_MASKS = MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING,
db2675d3 1544 POWERPC_MASKS = (POWERPC_BASE_MASK | MASK_PPC_GPOPT | MASK_STRICT_ALIGN
66188a7e 1545 | MASK_PPC_GFXOPT | MASK_POWERPC64 | MASK_ALTIVEC
716019c0 1546 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_MULHW
b639c3c2 1547 | MASK_DLMZB | MASK_CMPB | MASK_MFPGPR | MASK_DFP)
66188a7e 1548 };
0d1fbc8c 1549
c4ad648e 1550 set_masks = POWER_MASKS | POWERPC_MASKS | MASK_SOFT_FLOAT;
66188a7e
GK
1551#ifdef OS_MISSING_POWERPC64
1552 if (OS_MISSING_POWERPC64)
1553 set_masks &= ~MASK_POWERPC64;
1554#endif
1555#ifdef OS_MISSING_ALTIVEC
1556 if (OS_MISSING_ALTIVEC)
1557 set_masks &= ~MASK_ALTIVEC;
1558#endif
1559
768875a8
AM
1560 /* Don't override by the processor default if given explicitly. */
1561 set_masks &= ~target_flags_explicit;
957211c3 1562
a4f6c312 1563 /* Identify the processor type. */
8e3f41e7 1564 rs6000_select[0].string = default_cpu;
3cb999d8 1565 rs6000_cpu = TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT;
8e3f41e7 1566
b6a1cbae 1567 for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
5248c961 1568 {
8e3f41e7
MM
1569 ptr = &rs6000_select[i];
1570 if (ptr->string != (char *)0 && ptr->string[0] != '\0')
5248c961 1571 {
8e3f41e7
MM
1572 for (j = 0; j < ptt_size; j++)
1573 if (! strcmp (ptr->string, processor_target_table[j].name))
1574 {
1575 if (ptr->set_tune_p)
1576 rs6000_cpu = processor_target_table[j].processor;
1577
1578 if (ptr->set_arch_p)
1579 {
66188a7e
GK
1580 target_flags &= ~set_masks;
1581 target_flags |= (processor_target_table[j].target_enable
1582 & set_masks);
8e3f41e7
MM
1583 }
1584 break;
1585 }
1586
4406229e 1587 if (j == ptt_size)
8e3f41e7 1588 error ("bad value (%s) for %s switch", ptr->string, ptr->name);
5248c961
RK
1589 }
1590 }
8a61d227 1591
edae5fe3
DE
1592 if ((TARGET_E500 || rs6000_cpu == PROCESSOR_PPCE500MC)
1593 && !rs6000_explicit_options.isel)
a3170dc6
AH
1594 rs6000_isel = 1;
1595
edae5fe3
DE
1596 if (rs6000_cpu == PROCESSOR_PPCE300C2 || rs6000_cpu == PROCESSOR_PPCE300C3
1597 || rs6000_cpu == PROCESSOR_PPCE500MC)
fa41c305
EW
1598 {
1599 if (TARGET_ALTIVEC)
1600 error ("AltiVec not supported in this target");
1601 if (TARGET_SPE)
1602 error ("Spe not supported in this target");
1603 }
1604
25696a75 1605 /* Disable Cell microcode if we are optimizing for the Cell
c921bad8
AP
1606 and not optimizing for size. */
1607 if (rs6000_gen_cell_microcode == -1)
1608 rs6000_gen_cell_microcode = !(rs6000_cpu == PROCESSOR_CELL
1609 && !optimize_size);
1610
dff9f1b6 1611 /* If we are optimizing big endian systems for space, use the load/store
c921bad8
AP
1612 multiple and string instructions unless we are not generating
1613 Cell microcode. */
1614 if (BYTES_BIG_ENDIAN && optimize_size && !rs6000_gen_cell_microcode)
957211c3 1615 target_flags |= ~target_flags_explicit & (MASK_MULTIPLE | MASK_STRING);
938937d8 1616
a4f6c312
SS
1617 /* Don't allow -mmultiple or -mstring on little endian systems
1618 unless the cpu is a 750, because the hardware doesn't support the
1619 instructions used in little endian mode, and causes an alignment
1620 trap. The 750 does not cause an alignment trap (except when the
1621 target is unaligned). */
bef84347 1622
b21fb038 1623 if (!BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750)
7e69e155
MM
1624 {
1625 if (TARGET_MULTIPLE)
1626 {
1627 target_flags &= ~MASK_MULTIPLE;
b21fb038 1628 if ((target_flags_explicit & MASK_MULTIPLE) != 0)
d4ee4d25 1629 warning (0, "-mmultiple is not supported on little endian systems");
7e69e155
MM
1630 }
1631
1632 if (TARGET_STRING)
1633 {
1634 target_flags &= ~MASK_STRING;
b21fb038 1635 if ((target_flags_explicit & MASK_STRING) != 0)
d4ee4d25 1636 warning (0, "-mstring is not supported on little endian systems");
7e69e155
MM
1637 }
1638 }
3933e0e1 1639
38c1f2d7
MM
1640 /* Set debug flags */
1641 if (rs6000_debug_name)
1642 {
bfc79d3b 1643 if (! strcmp (rs6000_debug_name, "all"))
38c1f2d7 1644 rs6000_debug_stack = rs6000_debug_arg = 1;
bfc79d3b 1645 else if (! strcmp (rs6000_debug_name, "stack"))
38c1f2d7 1646 rs6000_debug_stack = 1;
bfc79d3b 1647 else if (! strcmp (rs6000_debug_name, "arg"))
38c1f2d7
MM
1648 rs6000_debug_arg = 1;
1649 else
c725bd79 1650 error ("unknown -mdebug-%s switch", rs6000_debug_name);
38c1f2d7
MM
1651 }
1652
57ac7be9
AM
1653 if (rs6000_traceback_name)
1654 {
1655 if (! strncmp (rs6000_traceback_name, "full", 4))
1656 rs6000_traceback = traceback_full;
1657 else if (! strncmp (rs6000_traceback_name, "part", 4))
1658 rs6000_traceback = traceback_part;
1659 else if (! strncmp (rs6000_traceback_name, "no", 2))
1660 rs6000_traceback = traceback_none;
1661 else
9e637a26 1662 error ("unknown -mtraceback arg %qs; expecting %<full%>, %<partial%> or %<none%>",
57ac7be9
AM
1663 rs6000_traceback_name);
1664 }
1665
78f5898b
AH
1666 if (!rs6000_explicit_options.long_double)
1667 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
6fa3f289 1668
602ea4d3 1669#ifndef POWERPC_LINUX
d3603e8c 1670 if (!rs6000_explicit_options.ieee)
602ea4d3
JJ
1671 rs6000_ieeequad = 1;
1672#endif
1673
0db747be
DE
1674 /* Enable Altivec ABI for AIX -maltivec. */
1675 if (TARGET_XCOFF && TARGET_ALTIVEC)
1676 rs6000_altivec_abi = 1;
1677
a2db2771
JJ
1678 /* The AltiVec ABI is the default for PowerPC-64 GNU/Linux. For
1679 PowerPC-32 GNU/Linux, -maltivec implies the AltiVec ABI. It can
1680 be explicitly overridden in either case. */
1681 if (TARGET_ELF)
6d0ef01e 1682 {
a2db2771
JJ
1683 if (!rs6000_explicit_options.altivec_abi
1684 && (TARGET_64BIT || TARGET_ALTIVEC))
1685 rs6000_altivec_abi = 1;
1686
1687 /* Enable VRSAVE for AltiVec ABI, unless explicitly overridden. */
1688 if (!rs6000_explicit_options.vrsave)
1689 TARGET_ALTIVEC_VRSAVE = rs6000_altivec_abi;
6d0ef01e
HP
1690 }
1691
594a51fe
SS
1692 /* Set the Darwin64 ABI as default for 64-bit Darwin. */
1693 if (DEFAULT_ABI == ABI_DARWIN && TARGET_64BIT)
1694 {
1695 rs6000_darwin64_abi = 1;
9c7956fd 1696#if TARGET_MACHO
6ac49599 1697 darwin_one_byte_bool = 1;
9c7956fd 1698#endif
d9168963
SS
1699 /* Default to natural alignment, for better performance. */
1700 rs6000_alignment_flags = MASK_ALIGN_NATURAL;
594a51fe
SS
1701 }
1702
194c524a
DE
1703 /* Place FP constants in the constant pool instead of TOC
1704 if section anchors enabled. */
1705 if (flag_section_anchors)
1706 TARGET_NO_FP_IN_TOC = 1;
1707
c4501e62
JJ
1708 /* Handle -mtls-size option. */
1709 rs6000_parse_tls_size_option ();
1710
a7ae18e2
AH
1711#ifdef SUBTARGET_OVERRIDE_OPTIONS
1712 SUBTARGET_OVERRIDE_OPTIONS;
1713#endif
1714#ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
1715 SUBSUBTARGET_OVERRIDE_OPTIONS;
1716#endif
4d4cbc0e
AH
1717#ifdef SUB3TARGET_OVERRIDE_OPTIONS
1718 SUB3TARGET_OVERRIDE_OPTIONS;
1719#endif
a7ae18e2 1720
edae5fe3 1721 if (TARGET_E500 || rs6000_cpu == PROCESSOR_PPCE500MC)
5da702b1 1722 {
edae5fe3 1723 /* The e500 and e500mc do not have string instructions, and we set
5da702b1
AH
1724 MASK_STRING above when optimizing for size. */
1725 if ((target_flags & MASK_STRING) != 0)
1726 target_flags = target_flags & ~MASK_STRING;
1727 }
1728 else if (rs6000_select[1].string != NULL)
1729 {
1730 /* For the powerpc-eabispe configuration, we set all these by
1731 default, so let's unset them if we manually set another
1732 CPU that is not the E500. */
a2db2771 1733 if (!rs6000_explicit_options.spe_abi)
5da702b1 1734 rs6000_spe_abi = 0;
78f5898b 1735 if (!rs6000_explicit_options.spe)
5da702b1 1736 rs6000_spe = 0;
78f5898b 1737 if (!rs6000_explicit_options.float_gprs)
5da702b1 1738 rs6000_float_gprs = 0;
78f5898b 1739 if (!rs6000_explicit_options.isel)
5da702b1
AH
1740 rs6000_isel = 0;
1741 }
b5044283 1742
eca0d5e8
JM
1743 /* Detect invalid option combinations with E500. */
1744 CHECK_E500_OPTIONS;
1745
ec507f2d 1746 rs6000_always_hint = (rs6000_cpu != PROCESSOR_POWER4
44cd321e 1747 && rs6000_cpu != PROCESSOR_POWER5
d296e02e
AP
1748 && rs6000_cpu != PROCESSOR_POWER6
1749 && rs6000_cpu != PROCESSOR_CELL);
ec507f2d
DE
1750 rs6000_sched_groups = (rs6000_cpu == PROCESSOR_POWER4
1751 || rs6000_cpu == PROCESSOR_POWER5);
44cd321e
PS
1752 rs6000_align_branch_targets = (rs6000_cpu == PROCESSOR_POWER4
1753 || rs6000_cpu == PROCESSOR_POWER5
1754 || rs6000_cpu == PROCESSOR_POWER6);
ec507f2d 1755
ec507f2d
DE
1756 rs6000_sched_restricted_insns_priority
1757 = (rs6000_sched_groups ? 1 : 0);
79ae11c4 1758
569fa502 1759 /* Handle -msched-costly-dep option. */
ec507f2d
DE
1760 rs6000_sched_costly_dep
1761 = (rs6000_sched_groups ? store_to_load_dep_costly : no_dep_costly);
432218ba 1762
569fa502
DN
1763 if (rs6000_sched_costly_dep_str)
1764 {
f676971a 1765 if (! strcmp (rs6000_sched_costly_dep_str, "no"))
c4ad648e 1766 rs6000_sched_costly_dep = no_dep_costly;
569fa502 1767 else if (! strcmp (rs6000_sched_costly_dep_str, "all"))
c4ad648e 1768 rs6000_sched_costly_dep = all_deps_costly;
569fa502 1769 else if (! strcmp (rs6000_sched_costly_dep_str, "true_store_to_load"))
c4ad648e 1770 rs6000_sched_costly_dep = true_store_to_load_dep_costly;
569fa502 1771 else if (! strcmp (rs6000_sched_costly_dep_str, "store_to_load"))
c4ad648e 1772 rs6000_sched_costly_dep = store_to_load_dep_costly;
f676971a 1773 else
c4ad648e 1774 rs6000_sched_costly_dep = atoi (rs6000_sched_costly_dep_str);
cbe26ab8
DN
1775 }
1776
1777 /* Handle -minsert-sched-nops option. */
ec507f2d
DE
1778 rs6000_sched_insert_nops
1779 = (rs6000_sched_groups ? sched_finish_regroup_exact : sched_finish_none);
432218ba 1780
cbe26ab8
DN
1781 if (rs6000_sched_insert_nops_str)
1782 {
1783 if (! strcmp (rs6000_sched_insert_nops_str, "no"))
c4ad648e 1784 rs6000_sched_insert_nops = sched_finish_none;
cbe26ab8 1785 else if (! strcmp (rs6000_sched_insert_nops_str, "pad"))
c4ad648e 1786 rs6000_sched_insert_nops = sched_finish_pad_groups;
cbe26ab8 1787 else if (! strcmp (rs6000_sched_insert_nops_str, "regroup_exact"))
c4ad648e 1788 rs6000_sched_insert_nops = sched_finish_regroup_exact;
cbe26ab8 1789 else
c4ad648e 1790 rs6000_sched_insert_nops = atoi (rs6000_sched_insert_nops_str);
569fa502
DN
1791 }
1792
c81bebd7 1793#ifdef TARGET_REGNAMES
a4f6c312
SS
1794 /* If the user desires alternate register names, copy in the
1795 alternate names now. */
c81bebd7 1796 if (TARGET_REGNAMES)
4e135bdd 1797 memcpy (rs6000_reg_names, alt_reg_names, sizeof (rs6000_reg_names));
c81bebd7
MM
1798#endif
1799
df01da37 1800 /* Set aix_struct_return last, after the ABI is determined.
6fa3f289
ZW
1801 If -maix-struct-return or -msvr4-struct-return was explicitly
1802 used, don't override with the ABI default. */
df01da37
DE
1803 if (!rs6000_explicit_options.aix_struct_ret)
1804 aix_struct_return = (DEFAULT_ABI != ABI_V4 || DRAFT_V4_STRUCT_RET);
6fa3f289 1805
602ea4d3 1806 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
70a01792 1807 REAL_MODE_FORMAT (TFmode) = &ibm_extended_format;
fcce224d 1808
f676971a 1809 if (TARGET_TOC)
9ebbca7d 1810 ASM_GENERATE_INTERNAL_LABEL (toc_label_name, "LCTOC", 1);
71f123ca 1811
301d03af
RS
1812 /* We can only guarantee the availability of DI pseudo-ops when
1813 assembling for 64-bit targets. */
ae6c1efd 1814 if (!TARGET_64BIT)
301d03af
RS
1815 {
1816 targetm.asm_out.aligned_op.di = NULL;
1817 targetm.asm_out.unaligned_op.di = NULL;
1818 }
1819
1494c534
DE
1820 /* Set branch target alignment, if not optimizing for size. */
1821 if (!optimize_size)
1822 {
d296e02e
AP
1823 /* Cell wants to be aligned 8byte for dual issue. */
1824 if (rs6000_cpu == PROCESSOR_CELL)
1825 {
1826 if (align_functions <= 0)
1827 align_functions = 8;
1828 if (align_jumps <= 0)
1829 align_jumps = 8;
1830 if (align_loops <= 0)
1831 align_loops = 8;
1832 }
44cd321e 1833 if (rs6000_align_branch_targets)
1494c534
DE
1834 {
1835 if (align_functions <= 0)
1836 align_functions = 16;
1837 if (align_jumps <= 0)
1838 align_jumps = 16;
1839 if (align_loops <= 0)
1840 align_loops = 16;
1841 }
1842 if (align_jumps_max_skip <= 0)
1843 align_jumps_max_skip = 15;
1844 if (align_loops_max_skip <= 0)
1845 align_loops_max_skip = 15;
1846 }
2792d578 1847
71f123ca
FS
1848 /* Arrange to save and restore machine status around nested functions. */
1849 init_machine_status = rs6000_init_machine_status;
42ba5130
RH
1850
1851 /* We should always be splitting complex arguments, but we can't break
1852 Linux and Darwin ABIs at the moment. For now, only AIX is fixed. */
18f63bfa 1853 if (DEFAULT_ABI != ABI_AIX)
42ba5130 1854 targetm.calls.split_complex_arg = NULL;
8b897cfa
RS
1855
1856 /* Initialize rs6000_cost with the appropriate target costs. */
1857 if (optimize_size)
1858 rs6000_cost = TARGET_POWERPC64 ? &size64_cost : &size32_cost;
1859 else
1860 switch (rs6000_cpu)
1861 {
1862 case PROCESSOR_RIOS1:
1863 rs6000_cost = &rios1_cost;
1864 break;
1865
1866 case PROCESSOR_RIOS2:
1867 rs6000_cost = &rios2_cost;
1868 break;
1869
1870 case PROCESSOR_RS64A:
1871 rs6000_cost = &rs64a_cost;
1872 break;
1873
1874 case PROCESSOR_MPCCORE:
1875 rs6000_cost = &mpccore_cost;
1876 break;
1877
1878 case PROCESSOR_PPC403:
1879 rs6000_cost = &ppc403_cost;
1880 break;
1881
1882 case PROCESSOR_PPC405:
1883 rs6000_cost = &ppc405_cost;
1884 break;
1885
1886 case PROCESSOR_PPC440:
1887 rs6000_cost = &ppc440_cost;
1888 break;
1889
1890 case PROCESSOR_PPC601:
1891 rs6000_cost = &ppc601_cost;
1892 break;
1893
1894 case PROCESSOR_PPC603:
1895 rs6000_cost = &ppc603_cost;
1896 break;
1897
1898 case PROCESSOR_PPC604:
1899 rs6000_cost = &ppc604_cost;
1900 break;
1901
1902 case PROCESSOR_PPC604e:
1903 rs6000_cost = &ppc604e_cost;
1904 break;
1905
1906 case PROCESSOR_PPC620:
8b897cfa
RS
1907 rs6000_cost = &ppc620_cost;
1908 break;
1909
f0517163
RS
1910 case PROCESSOR_PPC630:
1911 rs6000_cost = &ppc630_cost;
1912 break;
1913
982afe02 1914 case PROCESSOR_CELL:
d296e02e
AP
1915 rs6000_cost = &ppccell_cost;
1916 break;
1917
8b897cfa
RS
1918 case PROCESSOR_PPC750:
1919 case PROCESSOR_PPC7400:
1920 rs6000_cost = &ppc750_cost;
1921 break;
1922
1923 case PROCESSOR_PPC7450:
1924 rs6000_cost = &ppc7450_cost;
1925 break;
1926
1927 case PROCESSOR_PPC8540:
1928 rs6000_cost = &ppc8540_cost;
1929 break;
1930
fa41c305
EW
1931 case PROCESSOR_PPCE300C2:
1932 case PROCESSOR_PPCE300C3:
1933 rs6000_cost = &ppce300c2c3_cost;
1934 break;
1935
edae5fe3
DE
1936 case PROCESSOR_PPCE500MC:
1937 rs6000_cost = &ppce500mc_cost;
1938 break;
1939
8b897cfa
RS
1940 case PROCESSOR_POWER4:
1941 case PROCESSOR_POWER5:
1942 rs6000_cost = &power4_cost;
1943 break;
1944
44cd321e
PS
1945 case PROCESSOR_POWER6:
1946 rs6000_cost = &power6_cost;
1947 break;
1948
8b897cfa 1949 default:
37409796 1950 gcc_unreachable ();
8b897cfa 1951 }
0b11da67
DE
1952
1953 if (!PARAM_SET_P (PARAM_SIMULTANEOUS_PREFETCHES))
1954 set_param_value ("simultaneous-prefetches",
1955 rs6000_cost->simultaneous_prefetches);
1956 if (!PARAM_SET_P (PARAM_L1_CACHE_SIZE))
5f732aba 1957 set_param_value ("l1-cache-size", rs6000_cost->l1_cache_size);
0b11da67
DE
1958 if (!PARAM_SET_P (PARAM_L1_CACHE_LINE_SIZE))
1959 set_param_value ("l1-cache-line-size", rs6000_cost->cache_line_size);
5f732aba
DE
1960 if (!PARAM_SET_P (PARAM_L2_CACHE_SIZE))
1961 set_param_value ("l2-cache-size", rs6000_cost->l2_cache_size);
d7bd8aeb
JJ
1962
1963 /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0)
1964 can be optimized to ap = __builtin_next_arg (0). */
1965 if (DEFAULT_ABI != ABI_V4)
1966 targetm.expand_builtin_va_start = NULL;
696e45ba
ME
1967
1968 /* Set up single/double float flags.
1969 If TARGET_HARD_FLOAT is set, but neither single or double is set,
1970 then set both flags. */
1971 if (TARGET_HARD_FLOAT && TARGET_FPRS
1972 && rs6000_single_float == 0 && rs6000_double_float == 0)
1973 rs6000_single_float = rs6000_double_float = 1;
1974
1975 /* Reset single and double FP flags if target is E500. */
1976 if (TARGET_E500)
1977 {
1978 rs6000_single_float = rs6000_double_float = 0;
1979 if (TARGET_E500_SINGLE)
1980 rs6000_single_float = 1;
1981 if (TARGET_E500_DOUBLE)
1982 rs6000_single_float = rs6000_double_float = 1;
1983 }
1984
001b9eb6
PH
1985 /* If not explicitly specified via option, decide whether to generate indexed
1986 load/store instructions. */
1987 if (TARGET_AVOID_XFORM == -1)
1988 /* Avoid indexed addressing when targeting Power6 in order to avoid
1989 the DERAT mispredict penalty. */
1990 TARGET_AVOID_XFORM = (rs6000_cpu == PROCESSOR_POWER6 && TARGET_CMPB);
1991
696e45ba 1992 rs6000_init_hard_regno_mode_ok ();
5248c961 1993}
5accd822 1994
7ccf35ed
DN
1995/* Implement targetm.vectorize.builtin_mask_for_load. */
1996static tree
1997rs6000_builtin_mask_for_load (void)
1998{
1999 if (TARGET_ALTIVEC)
2000 return altivec_builtin_mask_for_load;
2001 else
2002 return 0;
2003}
2004
7910ae0c
DN
2005/* Implement targetm.vectorize.builtin_conversion.
2006 Returns a decl of a function that implements conversion of an integer vector
2007 into a floating-point vector, or vice-versa. TYPE is the type of the integer
2008 side of the conversion.
2009 Return NULL_TREE if it is not available. */
f57d17f1
TM
2010static tree
2011rs6000_builtin_conversion (enum tree_code code, tree type)
2012{
2013 if (!TARGET_ALTIVEC)
2014 return NULL_TREE;
982afe02 2015
f57d17f1
TM
2016 switch (code)
2017 {
7910ae0c
DN
2018 case FIX_TRUNC_EXPR:
2019 switch (TYPE_MODE (type))
2020 {
2021 case V4SImode:
2022 return TYPE_UNSIGNED (type)
2023 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VCTUXS]
2024 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VCTSXS];
2025 default:
2026 return NULL_TREE;
2027 }
2028
f57d17f1
TM
2029 case FLOAT_EXPR:
2030 switch (TYPE_MODE (type))
2031 {
2032 case V4SImode:
7910ae0c
DN
2033 return TYPE_UNSIGNED (type)
2034 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VCFUX]
2035 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VCFSX];
f57d17f1
TM
2036 default:
2037 return NULL_TREE;
2038 }
7910ae0c 2039
f57d17f1
TM
2040 default:
2041 return NULL_TREE;
2042 }
2043}
2044
89d67cca
DN
2045/* Implement targetm.vectorize.builtin_mul_widen_even. */
2046static tree
2047rs6000_builtin_mul_widen_even (tree type)
2048{
2049 if (!TARGET_ALTIVEC)
2050 return NULL_TREE;
2051
2052 switch (TYPE_MODE (type))
2053 {
2054 case V8HImode:
7910ae0c
DN
2055 return TYPE_UNSIGNED (type)
2056 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULEUH]
2057 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULESH];
89d67cca
DN
2058
2059 case V16QImode:
7910ae0c
DN
2060 return TYPE_UNSIGNED (type)
2061 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULEUB]
2062 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULESB];
89d67cca
DN
2063 default:
2064 return NULL_TREE;
2065 }
2066}
2067
2068/* Implement targetm.vectorize.builtin_mul_widen_odd. */
2069static tree
2070rs6000_builtin_mul_widen_odd (tree type)
2071{
2072 if (!TARGET_ALTIVEC)
2073 return NULL_TREE;
2074
2075 switch (TYPE_MODE (type))
2076 {
2077 case V8HImode:
7910ae0c
DN
2078 return TYPE_UNSIGNED (type)
2079 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOUH]
2080 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOSH];
89d67cca
DN
2081
2082 case V16QImode:
7910ae0c
DN
2083 return TYPE_UNSIGNED (type)
2084 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOUB]
2085 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOSB];
89d67cca
DN
2086 default:
2087 return NULL_TREE;
2088 }
2089}
2090
5b900a4c
DN
2091
2092/* Return true iff, data reference of TYPE can reach vector alignment (16)
2093 after applying N number of iterations. This routine does not determine
2094 how may iterations are required to reach desired alignment. */
2095
2096static bool
3101faab 2097rs6000_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
5b900a4c
DN
2098{
2099 if (is_packed)
2100 return false;
2101
2102 if (TARGET_32BIT)
2103 {
2104 if (rs6000_alignment_flags == MASK_ALIGN_NATURAL)
2105 return true;
2106
2107 if (rs6000_alignment_flags == MASK_ALIGN_POWER)
2108 return true;
2109
2110 return false;
2111 }
2112 else
2113 {
2114 if (TARGET_MACHO)
2115 return false;
2116
2117 /* Assuming that all other types are naturally aligned. CHECKME! */
2118 return true;
2119 }
2120}
2121
0fca40f5
IR
2122/* Implement targetm.vectorize.builtin_vec_perm. */
2123tree
2124rs6000_builtin_vec_perm (tree type, tree *mask_element_type)
2125{
2126 tree d;
2127
2128 *mask_element_type = unsigned_char_type_node;
2129
2130 switch (TYPE_MODE (type))
2131 {
2132 case V16QImode:
2133 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_16QI];
2134 break;
2135
2136 case V8HImode:
2137 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_8HI];
2138 break;
2139
2140 case V4SImode:
2141 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_4SI];
2142 break;
2143
2144 case V4SFmode:
2145 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_4SF];
2146 break;
2147
2148 default:
2149 return NULL_TREE;
2150 }
2151
2152 gcc_assert (d);
2153 return d;
2154}
2155
5da702b1
AH
2156/* Handle generic options of the form -mfoo=yes/no.
2157 NAME is the option name.
2158 VALUE is the option value.
2159 FLAG is the pointer to the flag where to store a 1 or 0, depending on
2160 whether the option value is 'yes' or 'no' respectively. */
993f19a8 2161static void
5da702b1 2162rs6000_parse_yes_no_option (const char *name, const char *value, int *flag)
993f19a8 2163{
5da702b1 2164 if (value == 0)
993f19a8 2165 return;
5da702b1
AH
2166 else if (!strcmp (value, "yes"))
2167 *flag = 1;
2168 else if (!strcmp (value, "no"))
2169 *flag = 0;
08b57fb3 2170 else
5da702b1 2171 error ("unknown -m%s= option specified: '%s'", name, value);
08b57fb3
AH
2172}
2173
c4501e62
JJ
2174/* Validate and record the size specified with the -mtls-size option. */
2175
2176static void
863d938c 2177rs6000_parse_tls_size_option (void)
c4501e62
JJ
2178{
2179 if (rs6000_tls_size_string == 0)
2180 return;
2181 else if (strcmp (rs6000_tls_size_string, "16") == 0)
2182 rs6000_tls_size = 16;
2183 else if (strcmp (rs6000_tls_size_string, "32") == 0)
2184 rs6000_tls_size = 32;
2185 else if (strcmp (rs6000_tls_size_string, "64") == 0)
2186 rs6000_tls_size = 64;
2187 else
9e637a26 2188 error ("bad value %qs for -mtls-size switch", rs6000_tls_size_string);
c4501e62
JJ
2189}
2190
5accd822 2191void
a2369ed3 2192optimization_options (int level ATTRIBUTE_UNUSED, int size ATTRIBUTE_UNUSED)
5accd822 2193{
2e3f0db6
DJ
2194 if (DEFAULT_ABI == ABI_DARWIN)
2195 /* The Darwin libraries never set errno, so we might as well
2196 avoid calling them when that's the only reason we would. */
2197 flag_errno_math = 0;
59d6560b
DE
2198
2199 /* Double growth factor to counter reduced min jump length. */
2200 set_param_value ("max-grow-copy-bb-insns", 16);
194c524a
DE
2201
2202 /* Enable section anchors by default.
2203 Skip section anchors for Objective C and Objective C++
2f3b0d4a
ST
2204 until front-ends fixed. */
2205 if (!TARGET_MACHO && lang_hooks.name[4] != 'O')
d6cc6ec9 2206 flag_section_anchors = 2;
5accd822 2207}
78f5898b 2208
0bb7b92e
ME
2209static enum fpu_type_t
2210rs6000_parse_fpu_option (const char *option)
2211{
2212 if (!strcmp("none", option)) return FPU_NONE;
2213 if (!strcmp("sp_lite", option)) return FPU_SF_LITE;
2214 if (!strcmp("dp_lite", option)) return FPU_DF_LITE;
2215 if (!strcmp("sp_full", option)) return FPU_SF_FULL;
2216 if (!strcmp("dp_full", option)) return FPU_DF_FULL;
2217 error("unknown value %s for -mfpu", option);
2218 return FPU_NONE;
2219}
2220
78f5898b
AH
2221/* Implement TARGET_HANDLE_OPTION. */
2222
2223static bool
2224rs6000_handle_option (size_t code, const char *arg, int value)
2225{
0bb7b92e
ME
2226 enum fpu_type_t fpu_type = FPU_NONE;
2227
78f5898b
AH
2228 switch (code)
2229 {
2230 case OPT_mno_power:
2231 target_flags &= ~(MASK_POWER | MASK_POWER2
2232 | MASK_MULTIPLE | MASK_STRING);
c2dba4ab
AH
2233 target_flags_explicit |= (MASK_POWER | MASK_POWER2
2234 | MASK_MULTIPLE | MASK_STRING);
78f5898b
AH
2235 break;
2236 case OPT_mno_powerpc:
2237 target_flags &= ~(MASK_POWERPC | MASK_PPC_GPOPT
2238 | MASK_PPC_GFXOPT | MASK_POWERPC64);
c2dba4ab
AH
2239 target_flags_explicit |= (MASK_POWERPC | MASK_PPC_GPOPT
2240 | MASK_PPC_GFXOPT | MASK_POWERPC64);
78f5898b
AH
2241 break;
2242 case OPT_mfull_toc:
d2894ab5
DE
2243 target_flags &= ~MASK_MINIMAL_TOC;
2244 TARGET_NO_FP_IN_TOC = 0;
2245 TARGET_NO_SUM_IN_TOC = 0;
2246 target_flags_explicit |= MASK_MINIMAL_TOC;
78f5898b
AH
2247#ifdef TARGET_USES_SYSV4_OPT
2248 /* Note, V.4 no longer uses a normal TOC, so make -mfull-toc, be
2249 just the same as -mminimal-toc. */
2250 target_flags |= MASK_MINIMAL_TOC;
c2dba4ab 2251 target_flags_explicit |= MASK_MINIMAL_TOC;
78f5898b
AH
2252#endif
2253 break;
2254
2255#ifdef TARGET_USES_SYSV4_OPT
2256 case OPT_mtoc:
2257 /* Make -mtoc behave like -mminimal-toc. */
2258 target_flags |= MASK_MINIMAL_TOC;
c2dba4ab 2259 target_flags_explicit |= MASK_MINIMAL_TOC;
78f5898b
AH
2260 break;
2261#endif
2262
2263#ifdef TARGET_USES_AIX64_OPT
2264 case OPT_maix64:
2265#else
2266 case OPT_m64:
2267#endif
2c9c9afd
AM
2268 target_flags |= MASK_POWERPC64 | MASK_POWERPC;
2269 target_flags |= ~target_flags_explicit & MASK_PPC_GFXOPT;
2270 target_flags_explicit |= MASK_POWERPC64 | MASK_POWERPC;
78f5898b
AH
2271 break;
2272
2273#ifdef TARGET_USES_AIX64_OPT
2274 case OPT_maix32:
2275#else
2276 case OPT_m32:
2277#endif
2278 target_flags &= ~MASK_POWERPC64;
c2dba4ab 2279 target_flags_explicit |= MASK_POWERPC64;
78f5898b
AH
2280 break;
2281
2282 case OPT_minsert_sched_nops_:
2283 rs6000_sched_insert_nops_str = arg;
2284 break;
2285
2286 case OPT_mminimal_toc:
2287 if (value == 1)
2288 {
d2894ab5
DE
2289 TARGET_NO_FP_IN_TOC = 0;
2290 TARGET_NO_SUM_IN_TOC = 0;
78f5898b
AH
2291 }
2292 break;
2293
2294 case OPT_mpower:
2295 if (value == 1)
c2dba4ab
AH
2296 {
2297 target_flags |= (MASK_MULTIPLE | MASK_STRING);
2298 target_flags_explicit |= (MASK_MULTIPLE | MASK_STRING);
2299 }
78f5898b
AH
2300 break;
2301
2302 case OPT_mpower2:
2303 if (value == 1)
c2dba4ab
AH
2304 {
2305 target_flags |= (MASK_POWER | MASK_MULTIPLE | MASK_STRING);
2306 target_flags_explicit |= (MASK_POWER | MASK_MULTIPLE | MASK_STRING);
2307 }
78f5898b
AH
2308 break;
2309
2310 case OPT_mpowerpc_gpopt:
2311 case OPT_mpowerpc_gfxopt:
2312 if (value == 1)
c2dba4ab
AH
2313 {
2314 target_flags |= MASK_POWERPC;
2315 target_flags_explicit |= MASK_POWERPC;
2316 }
78f5898b
AH
2317 break;
2318
df01da37
DE
2319 case OPT_maix_struct_return:
2320 case OPT_msvr4_struct_return:
2321 rs6000_explicit_options.aix_struct_ret = true;
2322 break;
2323
b5e3caf2
BE
2324 case OPT_mvrsave:
2325 rs6000_explicit_options.vrsave = true;
2326 TARGET_ALTIVEC_VRSAVE = value;
2327 break;
2328
78f5898b 2329 case OPT_mvrsave_:
a2db2771 2330 rs6000_explicit_options.vrsave = true;
78f5898b
AH
2331 rs6000_parse_yes_no_option ("vrsave", arg, &(TARGET_ALTIVEC_VRSAVE));
2332 break;
78f5898b 2333
94f4765c
NF
2334 case OPT_misel:
2335 rs6000_explicit_options.isel = true;
2336 rs6000_isel = value;
2337 break;
2338
78f5898b
AH
2339 case OPT_misel_:
2340 rs6000_explicit_options.isel = true;
2341 rs6000_parse_yes_no_option ("isel", arg, &(rs6000_isel));
2342 break;
2343
94f4765c
NF
2344 case OPT_mspe:
2345 rs6000_explicit_options.spe = true;
2346 rs6000_spe = value;
2347 break;
2348
78f5898b
AH
2349 case OPT_mspe_:
2350 rs6000_explicit_options.spe = true;
2351 rs6000_parse_yes_no_option ("spe", arg, &(rs6000_spe));
78f5898b
AH
2352 break;
2353
2354 case OPT_mdebug_:
2355 rs6000_debug_name = arg;
2356 break;
2357
2358#ifdef TARGET_USES_SYSV4_OPT
2359 case OPT_mcall_:
2360 rs6000_abi_name = arg;
2361 break;
2362
2363 case OPT_msdata_:
2364 rs6000_sdata_name = arg;
2365 break;
2366
2367 case OPT_mtls_size_:
2368 rs6000_tls_size_string = arg;
2369 break;
2370
2371 case OPT_mrelocatable:
2372 if (value == 1)
c2dba4ab 2373 {
e0bf274f
AM
2374 target_flags |= MASK_MINIMAL_TOC;
2375 target_flags_explicit |= MASK_MINIMAL_TOC;
2376 TARGET_NO_FP_IN_TOC = 1;
c2dba4ab 2377 }
78f5898b
AH
2378 break;
2379
2380 case OPT_mrelocatable_lib:
2381 if (value == 1)
c2dba4ab 2382 {
e0bf274f
AM
2383 target_flags |= MASK_RELOCATABLE | MASK_MINIMAL_TOC;
2384 target_flags_explicit |= MASK_RELOCATABLE | MASK_MINIMAL_TOC;
2385 TARGET_NO_FP_IN_TOC = 1;
c2dba4ab 2386 }
78f5898b 2387 else
c2dba4ab
AH
2388 {
2389 target_flags &= ~MASK_RELOCATABLE;
2390 target_flags_explicit |= MASK_RELOCATABLE;
2391 }
78f5898b
AH
2392 break;
2393#endif
2394
2395 case OPT_mabi_:
78f5898b
AH
2396 if (!strcmp (arg, "altivec"))
2397 {
a2db2771 2398 rs6000_explicit_options.altivec_abi = true;
78f5898b 2399 rs6000_altivec_abi = 1;
a2db2771
JJ
2400
2401 /* Enabling the AltiVec ABI turns off the SPE ABI. */
78f5898b
AH
2402 rs6000_spe_abi = 0;
2403 }
2404 else if (! strcmp (arg, "no-altivec"))
d3603e8c 2405 {
a2db2771 2406 rs6000_explicit_options.altivec_abi = true;
d3603e8c
AM
2407 rs6000_altivec_abi = 0;
2408 }
78f5898b
AH
2409 else if (! strcmp (arg, "spe"))
2410 {
a2db2771 2411 rs6000_explicit_options.spe_abi = true;
78f5898b
AH
2412 rs6000_spe_abi = 1;
2413 rs6000_altivec_abi = 0;
2414 if (!TARGET_SPE_ABI)
2415 error ("not configured for ABI: '%s'", arg);
2416 }
2417 else if (! strcmp (arg, "no-spe"))
d3603e8c 2418 {
a2db2771 2419 rs6000_explicit_options.spe_abi = true;
d3603e8c
AM
2420 rs6000_spe_abi = 0;
2421 }
78f5898b
AH
2422
2423 /* These are here for testing during development only, do not
2424 document in the manual please. */
2425 else if (! strcmp (arg, "d64"))
2426 {
2427 rs6000_darwin64_abi = 1;
2428 warning (0, "Using darwin64 ABI");
2429 }
2430 else if (! strcmp (arg, "d32"))
2431 {
2432 rs6000_darwin64_abi = 0;
2433 warning (0, "Using old darwin ABI");
2434 }
2435
602ea4d3
JJ
2436 else if (! strcmp (arg, "ibmlongdouble"))
2437 {
d3603e8c 2438 rs6000_explicit_options.ieee = true;
602ea4d3
JJ
2439 rs6000_ieeequad = 0;
2440 warning (0, "Using IBM extended precision long double");
2441 }
2442 else if (! strcmp (arg, "ieeelongdouble"))
2443 {
d3603e8c 2444 rs6000_explicit_options.ieee = true;
602ea4d3
JJ
2445 rs6000_ieeequad = 1;
2446 warning (0, "Using IEEE extended precision long double");
2447 }
2448
78f5898b
AH
2449 else
2450 {
2451 error ("unknown ABI specified: '%s'", arg);
2452 return false;
2453 }
2454 break;
2455
2456 case OPT_mcpu_:
2457 rs6000_select[1].string = arg;
2458 break;
2459
2460 case OPT_mtune_:
2461 rs6000_select[2].string = arg;
2462 break;
2463
2464 case OPT_mtraceback_:
2465 rs6000_traceback_name = arg;
2466 break;
2467
2468 case OPT_mfloat_gprs_:
2469 rs6000_explicit_options.float_gprs = true;
2470 if (! strcmp (arg, "yes") || ! strcmp (arg, "single"))
2471 rs6000_float_gprs = 1;
2472 else if (! strcmp (arg, "double"))
2473 rs6000_float_gprs = 2;
2474 else if (! strcmp (arg, "no"))
2475 rs6000_float_gprs = 0;
2476 else
2477 {
2478 error ("invalid option for -mfloat-gprs: '%s'", arg);
2479 return false;
2480 }
2481 break;
2482
2483 case OPT_mlong_double_:
2484 rs6000_explicit_options.long_double = true;
2485 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
2486 if (value != 64 && value != 128)
2487 {
2488 error ("Unknown switch -mlong-double-%s", arg);
2489 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
2490 return false;
2491 }
2492 else
2493 rs6000_long_double_type_size = value;
2494 break;
2495
2496 case OPT_msched_costly_dep_:
2497 rs6000_sched_costly_dep_str = arg;
2498 break;
2499
2500 case OPT_malign_:
2501 rs6000_explicit_options.alignment = true;
2502 if (! strcmp (arg, "power"))
2503 {
2504 /* On 64-bit Darwin, power alignment is ABI-incompatible with
2505 some C library functions, so warn about it. The flag may be
2506 useful for performance studies from time to time though, so
2507 don't disable it entirely. */
2508 if (DEFAULT_ABI == ABI_DARWIN && TARGET_64BIT)
2509 warning (0, "-malign-power is not supported for 64-bit Darwin;"
2510 " it is incompatible with the installed C and C++ libraries");
2511 rs6000_alignment_flags = MASK_ALIGN_POWER;
2512 }
2513 else if (! strcmp (arg, "natural"))
2514 rs6000_alignment_flags = MASK_ALIGN_NATURAL;
2515 else
2516 {
2517 error ("unknown -malign-XXXXX option specified: '%s'", arg);
2518 return false;
2519 }
2520 break;
696e45ba
ME
2521
2522 case OPT_msingle_float:
2523 if (!TARGET_SINGLE_FPU)
2524 warning (0, "-msingle-float option equivalent to -mhard-float");
2525 /* -msingle-float implies -mno-double-float and TARGET_HARD_FLOAT. */
2526 rs6000_double_float = 0;
2527 target_flags &= ~MASK_SOFT_FLOAT;
2528 target_flags_explicit |= MASK_SOFT_FLOAT;
2529 break;
2530
2531 case OPT_mdouble_float:
2532 /* -mdouble-float implies -msingle-float and TARGET_HARD_FLOAT. */
2533 rs6000_single_float = 1;
2534 target_flags &= ~MASK_SOFT_FLOAT;
2535 target_flags_explicit |= MASK_SOFT_FLOAT;
2536 break;
2537
2538 case OPT_msimple_fpu:
2539 if (!TARGET_SINGLE_FPU)
2540 warning (0, "-msimple-fpu option ignored");
2541 break;
2542
2543 case OPT_mhard_float:
2544 /* -mhard_float implies -msingle-float and -mdouble-float. */
2545 rs6000_single_float = rs6000_double_float = 1;
2546 break;
2547
2548 case OPT_msoft_float:
2549 /* -msoft_float implies -mnosingle-float and -mnodouble-float. */
2550 rs6000_single_float = rs6000_double_float = 0;
2551 break;
0bb7b92e
ME
2552
2553 case OPT_mfpu_:
2554 fpu_type = rs6000_parse_fpu_option(arg);
2555 if (fpu_type != FPU_NONE)
2556 /* If -mfpu is not none, then turn off SOFT_FLOAT, turn on HARD_FLOAT. */
2557 {
2558 target_flags &= ~MASK_SOFT_FLOAT;
2559 target_flags_explicit |= MASK_SOFT_FLOAT;
2560 rs6000_xilinx_fpu = 1;
2561 if (fpu_type == FPU_SF_LITE || fpu_type == FPU_SF_FULL)
2562 rs6000_single_float = 1;
2563 if (fpu_type == FPU_DF_LITE || fpu_type == FPU_DF_FULL)
2564 rs6000_single_float = rs6000_double_float = 1;
2565 if (fpu_type == FPU_SF_LITE || fpu_type == FPU_DF_LITE)
2566 rs6000_simple_fpu = 1;
2567 }
2568 else
2569 {
2570 /* -mfpu=none is equivalent to -msoft-float */
2571 target_flags |= MASK_SOFT_FLOAT;
2572 target_flags_explicit |= MASK_SOFT_FLOAT;
2573 rs6000_single_float = rs6000_double_float = 0;
2574 }
2575 break;
78f5898b
AH
2576 }
2577 return true;
2578}
3cfa4909
MM
2579\f
2580/* Do anything needed at the start of the asm file. */
2581
1bc7c5b6 2582static void
863d938c 2583rs6000_file_start (void)
3cfa4909 2584{
c4d38ccb 2585 size_t i;
3cfa4909 2586 char buffer[80];
d330fd93 2587 const char *start = buffer;
3cfa4909 2588 struct rs6000_cpu_select *ptr;
1bc7c5b6
ZW
2589 const char *default_cpu = TARGET_CPU_DEFAULT;
2590 FILE *file = asm_out_file;
2591
2592 default_file_start ();
2593
2594#ifdef TARGET_BI_ARCH
2595 if ((TARGET_DEFAULT ^ target_flags) & MASK_64BIT)
2596 default_cpu = 0;
2597#endif
3cfa4909
MM
2598
2599 if (flag_verbose_asm)
2600 {
2601 sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START);
2602 rs6000_select[0].string = default_cpu;
2603
b6a1cbae 2604 for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
3cfa4909
MM
2605 {
2606 ptr = &rs6000_select[i];
2607 if (ptr->string != (char *)0 && ptr->string[0] != '\0')
2608 {
2609 fprintf (file, "%s %s%s", start, ptr->name, ptr->string);
2610 start = "";
2611 }
2612 }
2613
9c6b4ed9 2614 if (PPC405_ERRATUM77)
b0bfee6e 2615 {
9c6b4ed9 2616 fprintf (file, "%s PPC405CR_ERRATUM77", start);
b0bfee6e
DE
2617 start = "";
2618 }
b0bfee6e 2619
b91da81f 2620#ifdef USING_ELFOS_H
3cfa4909
MM
2621 switch (rs6000_sdata)
2622 {
2623 case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break;
2624 case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break;
2625 case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break;
2626 case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break;
2627 }
2628
2629 if (rs6000_sdata && g_switch_value)
2630 {
307b599c
MK
2631 fprintf (file, "%s -G " HOST_WIDE_INT_PRINT_UNSIGNED, start,
2632 g_switch_value);
3cfa4909
MM
2633 start = "";
2634 }
2635#endif
2636
2637 if (*start == '\0')
949ea356 2638 putc ('\n', file);
3cfa4909 2639 }
b723e82f 2640
e51917ae
JM
2641#ifdef HAVE_AS_GNU_ATTRIBUTE
2642 if (TARGET_32BIT && DEFAULT_ABI == ABI_V4)
aaa42494
DJ
2643 {
2644 fprintf (file, "\t.gnu_attribute 4, %d\n",
696e45ba
ME
2645 ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT) ? 1
2646 : (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_SINGLE_FLOAT) ? 3
2647 : 2));
aaa42494
DJ
2648 fprintf (file, "\t.gnu_attribute 8, %d\n",
2649 (TARGET_ALTIVEC_ABI ? 2
2650 : TARGET_SPE_ABI ? 3
2651 : 1));
f9fd1e77
NF
2652 fprintf (file, "\t.gnu_attribute 12, %d\n",
2653 aix_struct_return ? 2 : 1);
2654
aaa42494 2655 }
e51917ae
JM
2656#endif
2657
b723e82f
JJ
2658 if (DEFAULT_ABI == ABI_AIX || (TARGET_ELF && flag_pic == 2))
2659 {
d6b5193b
RS
2660 switch_to_section (toc_section);
2661 switch_to_section (text_section);
b723e82f 2662 }
3cfa4909 2663}
c4e18b1c 2664
5248c961 2665\f
a0ab749a 2666/* Return nonzero if this function is known to have a null epilogue. */
9878760c
RK
2667
2668int
863d938c 2669direct_return (void)
9878760c 2670{
4697a36c
MM
2671 if (reload_completed)
2672 {
2673 rs6000_stack_t *info = rs6000_stack_info ();
2674
2675 if (info->first_gp_reg_save == 32
2676 && info->first_fp_reg_save == 64
00b960c7 2677 && info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1
c81fc13e
DE
2678 && ! info->lr_save_p
2679 && ! info->cr_save_p
00b960c7 2680 && info->vrsave_mask == 0
c81fc13e 2681 && ! info->push_p)
4697a36c
MM
2682 return 1;
2683 }
2684
2685 return 0;
9878760c
RK
2686}
2687
4e74d8ec
MM
2688/* Return the number of instructions it takes to form a constant in an
2689 integer register. */
2690
48d72335 2691int
a2369ed3 2692num_insns_constant_wide (HOST_WIDE_INT value)
4e74d8ec
MM
2693{
2694 /* signed constant loadable with {cal|addi} */
547b216d 2695 if ((unsigned HOST_WIDE_INT) (value + 0x8000) < 0x10000)
0865c631
GK
2696 return 1;
2697
4e74d8ec 2698 /* constant loadable with {cau|addis} */
547b216d
DE
2699 else if ((value & 0xffff) == 0
2700 && (value >> 31 == -1 || value >> 31 == 0))
4e74d8ec
MM
2701 return 1;
2702
5f59ecb7 2703#if HOST_BITS_PER_WIDE_INT == 64
c81fc13e 2704 else if (TARGET_POWERPC64)
4e74d8ec 2705 {
a65c591c
DE
2706 HOST_WIDE_INT low = ((value & 0xffffffff) ^ 0x80000000) - 0x80000000;
2707 HOST_WIDE_INT high = value >> 31;
4e74d8ec 2708
a65c591c 2709 if (high == 0 || high == -1)
4e74d8ec
MM
2710 return 2;
2711
a65c591c 2712 high >>= 1;
4e74d8ec 2713
a65c591c 2714 if (low == 0)
4e74d8ec 2715 return num_insns_constant_wide (high) + 1;
4e74d8ec
MM
2716 else
2717 return (num_insns_constant_wide (high)
e396202a 2718 + num_insns_constant_wide (low) + 1);
4e74d8ec
MM
2719 }
2720#endif
2721
2722 else
2723 return 2;
2724}
2725
2726int
a2369ed3 2727num_insns_constant (rtx op, enum machine_mode mode)
4e74d8ec 2728{
37409796 2729 HOST_WIDE_INT low, high;
bb8df8a6 2730
37409796 2731 switch (GET_CODE (op))
0d30d435 2732 {
37409796 2733 case CONST_INT:
0d30d435 2734#if HOST_BITS_PER_WIDE_INT == 64
4e2c1c44 2735 if ((INTVAL (op) >> 31) != 0 && (INTVAL (op) >> 31) != -1
1990cd79 2736 && mask64_operand (op, mode))
c4ad648e 2737 return 2;
0d30d435
DE
2738 else
2739#endif
2740 return num_insns_constant_wide (INTVAL (op));
4e74d8ec 2741
37409796 2742 case CONST_DOUBLE:
e41b2a33 2743 if (mode == SFmode || mode == SDmode)
37409796
NS
2744 {
2745 long l;
2746 REAL_VALUE_TYPE rv;
bb8df8a6 2747
37409796 2748 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
e41b2a33
PB
2749 if (DECIMAL_FLOAT_MODE_P (mode))
2750 REAL_VALUE_TO_TARGET_DECIMAL32 (rv, l);
2751 else
2752 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
37409796
NS
2753 return num_insns_constant_wide ((HOST_WIDE_INT) l);
2754 }
a260abc9 2755
37409796
NS
2756 if (mode == VOIDmode || mode == DImode)
2757 {
2758 high = CONST_DOUBLE_HIGH (op);
2759 low = CONST_DOUBLE_LOW (op);
2760 }
2761 else
2762 {
2763 long l[2];
2764 REAL_VALUE_TYPE rv;
bb8df8a6 2765
37409796 2766 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
7393f7f8
BE
2767 if (DECIMAL_FLOAT_MODE_P (mode))
2768 REAL_VALUE_TO_TARGET_DECIMAL64 (rv, l);
2769 else
2770 REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
37409796
NS
2771 high = l[WORDS_BIG_ENDIAN == 0];
2772 low = l[WORDS_BIG_ENDIAN != 0];
2773 }
47ad8c61 2774
37409796
NS
2775 if (TARGET_32BIT)
2776 return (num_insns_constant_wide (low)
2777 + num_insns_constant_wide (high));
2778 else
2779 {
2780 if ((high == 0 && low >= 0)
2781 || (high == -1 && low < 0))
2782 return num_insns_constant_wide (low);
bb8df8a6 2783
1990cd79 2784 else if (mask64_operand (op, mode))
37409796 2785 return 2;
bb8df8a6 2786
37409796
NS
2787 else if (low == 0)
2788 return num_insns_constant_wide (high) + 1;
bb8df8a6 2789
37409796
NS
2790 else
2791 return (num_insns_constant_wide (high)
2792 + num_insns_constant_wide (low) + 1);
2793 }
bb8df8a6 2794
37409796
NS
2795 default:
2796 gcc_unreachable ();
4e74d8ec 2797 }
4e74d8ec
MM
2798}
2799
0972012c
RS
2800/* Interpret element ELT of the CONST_VECTOR OP as an integer value.
2801 If the mode of OP is MODE_VECTOR_INT, this simply returns the
2802 corresponding element of the vector, but for V4SFmode and V2SFmode,
2803 the corresponding "float" is interpreted as an SImode integer. */
2804
847535b6 2805HOST_WIDE_INT
0972012c
RS
2806const_vector_elt_as_int (rtx op, unsigned int elt)
2807{
2808 rtx tmp = CONST_VECTOR_ELT (op, elt);
2809 if (GET_MODE (op) == V4SFmode
2810 || GET_MODE (op) == V2SFmode)
2811 tmp = gen_lowpart (SImode, tmp);
2812 return INTVAL (tmp);
2813}
452a7d36 2814
77ccdfed 2815/* Return true if OP can be synthesized with a particular vspltisb, vspltish
66180ff3
PB
2816 or vspltisw instruction. OP is a CONST_VECTOR. Which instruction is used
2817 depends on STEP and COPIES, one of which will be 1. If COPIES > 1,
2818 all items are set to the same value and contain COPIES replicas of the
2819 vsplt's operand; if STEP > 1, one in STEP elements is set to the vsplt's
2820 operand and the others are set to the value of the operand's msb. */
2821
2822static bool
2823vspltis_constant (rtx op, unsigned step, unsigned copies)
452a7d36 2824{
66180ff3
PB
2825 enum machine_mode mode = GET_MODE (op);
2826 enum machine_mode inner = GET_MODE_INNER (mode);
2827
2828 unsigned i;
2829 unsigned nunits = GET_MODE_NUNITS (mode);
2830 unsigned bitsize = GET_MODE_BITSIZE (inner);
2831 unsigned mask = GET_MODE_MASK (inner);
2832
0972012c 2833 HOST_WIDE_INT val = const_vector_elt_as_int (op, nunits - 1);
66180ff3
PB
2834 HOST_WIDE_INT splat_val = val;
2835 HOST_WIDE_INT msb_val = val > 0 ? 0 : -1;
2836
2837 /* Construct the value to be splatted, if possible. If not, return 0. */
2838 for (i = 2; i <= copies; i *= 2)
452a7d36 2839 {
66180ff3
PB
2840 HOST_WIDE_INT small_val;
2841 bitsize /= 2;
2842 small_val = splat_val >> bitsize;
2843 mask >>= bitsize;
2844 if (splat_val != ((small_val << bitsize) | (small_val & mask)))
2845 return false;
2846 splat_val = small_val;
2847 }
c4ad648e 2848
66180ff3
PB
2849 /* Check if SPLAT_VAL can really be the operand of a vspltis[bhw]. */
2850 if (EASY_VECTOR_15 (splat_val))
2851 ;
2852
2853 /* Also check if we can splat, and then add the result to itself. Do so if
2854 the value is positive, of if the splat instruction is using OP's mode;
2855 for splat_val < 0, the splat and the add should use the same mode. */
2856 else if (EASY_VECTOR_15_ADD_SELF (splat_val)
2857 && (splat_val >= 0 || (step == 1 && copies == 1)))
2858 ;
2859
2860 else
2861 return false;
2862
2863 /* Check if VAL is present in every STEP-th element, and the
2864 other elements are filled with its most significant bit. */
2865 for (i = 0; i < nunits - 1; ++i)
2866 {
2867 HOST_WIDE_INT desired_val;
2868 if (((i + 1) & (step - 1)) == 0)
2869 desired_val = val;
2870 else
2871 desired_val = msb_val;
2872
0972012c 2873 if (desired_val != const_vector_elt_as_int (op, i))
66180ff3 2874 return false;
452a7d36 2875 }
66180ff3
PB
2876
2877 return true;
452a7d36
HP
2878}
2879
69ef87e2 2880
77ccdfed 2881/* Return true if OP is of the given MODE and can be synthesized
66180ff3
PB
2882 with a vspltisb, vspltish or vspltisw. */
2883
2884bool
2885easy_altivec_constant (rtx op, enum machine_mode mode)
d744e06e 2886{
66180ff3 2887 unsigned step, copies;
d744e06e 2888
66180ff3
PB
2889 if (mode == VOIDmode)
2890 mode = GET_MODE (op);
2891 else if (mode != GET_MODE (op))
2892 return false;
d744e06e 2893
66180ff3
PB
2894 /* Start with a vspltisw. */
2895 step = GET_MODE_NUNITS (mode) / 4;
2896 copies = 1;
2897
2898 if (vspltis_constant (op, step, copies))
2899 return true;
2900
2901 /* Then try with a vspltish. */
2902 if (step == 1)
2903 copies <<= 1;
2904 else
2905 step >>= 1;
2906
2907 if (vspltis_constant (op, step, copies))
2908 return true;
2909
2910 /* And finally a vspltisb. */
2911 if (step == 1)
2912 copies <<= 1;
2913 else
2914 step >>= 1;
2915
2916 if (vspltis_constant (op, step, copies))
2917 return true;
2918
2919 return false;
d744e06e
AH
2920}
2921
66180ff3
PB
2922/* Generate a VEC_DUPLICATE representing a vspltis[bhw] instruction whose
2923 result is OP. Abort if it is not possible. */
d744e06e 2924
f676971a 2925rtx
66180ff3 2926gen_easy_altivec_constant (rtx op)
452a7d36 2927{
66180ff3
PB
2928 enum machine_mode mode = GET_MODE (op);
2929 int nunits = GET_MODE_NUNITS (mode);
2930 rtx last = CONST_VECTOR_ELT (op, nunits - 1);
2931 unsigned step = nunits / 4;
2932 unsigned copies = 1;
2933
2934 /* Start with a vspltisw. */
2935 if (vspltis_constant (op, step, copies))
2936 return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, last));
2937
2938 /* Then try with a vspltish. */
2939 if (step == 1)
2940 copies <<= 1;
2941 else
2942 step >>= 1;
2943
2944 if (vspltis_constant (op, step, copies))
2945 return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, last));
2946
2947 /* And finally a vspltisb. */
2948 if (step == 1)
2949 copies <<= 1;
2950 else
2951 step >>= 1;
2952
2953 if (vspltis_constant (op, step, copies))
2954 return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, last));
2955
2956 gcc_unreachable ();
d744e06e
AH
2957}
2958
2959const char *
a2369ed3 2960output_vec_const_move (rtx *operands)
d744e06e
AH
2961{
2962 int cst, cst2;
2963 enum machine_mode mode;
2964 rtx dest, vec;
2965
2966 dest = operands[0];
2967 vec = operands[1];
d744e06e 2968 mode = GET_MODE (dest);
69ef87e2 2969
d744e06e
AH
2970 if (TARGET_ALTIVEC)
2971 {
66180ff3 2972 rtx splat_vec;
d744e06e
AH
2973 if (zero_constant (vec, mode))
2974 return "vxor %0,%0,%0";
37409796 2975
66180ff3
PB
2976 splat_vec = gen_easy_altivec_constant (vec);
2977 gcc_assert (GET_CODE (splat_vec) == VEC_DUPLICATE);
2978 operands[1] = XEXP (splat_vec, 0);
2979 if (!EASY_VECTOR_15 (INTVAL (operands[1])))
2980 return "#";
bb8df8a6 2981
66180ff3 2982 switch (GET_MODE (splat_vec))
98ef3137 2983 {
37409796 2984 case V4SImode:
66180ff3 2985 return "vspltisw %0,%1";
c4ad648e 2986
37409796 2987 case V8HImode:
66180ff3 2988 return "vspltish %0,%1";
c4ad648e 2989
37409796 2990 case V16QImode:
66180ff3 2991 return "vspltisb %0,%1";
bb8df8a6 2992
37409796
NS
2993 default:
2994 gcc_unreachable ();
98ef3137 2995 }
69ef87e2
AH
2996 }
2997
37409796 2998 gcc_assert (TARGET_SPE);
bb8df8a6 2999
37409796
NS
3000 /* Vector constant 0 is handled as a splitter of V2SI, and in the
3001 pattern of V1DI, V4HI, and V2SF.
3002
3003 FIXME: We should probably return # and add post reload
3004 splitters for these, but this way is so easy ;-). */
e20dcbef
PB
3005 cst = INTVAL (CONST_VECTOR_ELT (vec, 0));
3006 cst2 = INTVAL (CONST_VECTOR_ELT (vec, 1));
3007 operands[1] = CONST_VECTOR_ELT (vec, 0);
3008 operands[2] = CONST_VECTOR_ELT (vec, 1);
37409796
NS
3009 if (cst == cst2)
3010 return "li %0,%1\n\tevmergelo %0,%0,%0";
3011 else
3012 return "li %0,%1\n\tevmergelo %0,%0,%0\n\tli %0,%2";
69ef87e2
AH
3013}
3014
f5027409
RE
3015/* Initialize TARGET of vector PAIRED to VALS. */
3016
3017void
3018paired_expand_vector_init (rtx target, rtx vals)
3019{
3020 enum machine_mode mode = GET_MODE (target);
3021 int n_elts = GET_MODE_NUNITS (mode);
3022 int n_var = 0;
0a2aaacc 3023 rtx x, new_rtx, tmp, constant_op, op1, op2;
f5027409
RE
3024 int i;
3025
3026 for (i = 0; i < n_elts; ++i)
3027 {
3028 x = XVECEXP (vals, 0, i);
3029 if (!CONSTANT_P (x))
3030 ++n_var;
3031 }
3032 if (n_var == 0)
3033 {
3034 /* Load from constant pool. */
3035 emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
3036 return;
3037 }
3038
3039 if (n_var == 2)
3040 {
3041 /* The vector is initialized only with non-constants. */
0a2aaacc 3042 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, XVECEXP (vals, 0, 0),
f5027409
RE
3043 XVECEXP (vals, 0, 1));
3044
0a2aaacc 3045 emit_move_insn (target, new_rtx);
f5027409
RE
3046 return;
3047 }
3048
3049 /* One field is non-constant and the other one is a constant. Load the
3050 constant from the constant pool and use ps_merge instruction to
3051 construct the whole vector. */
3052 op1 = XVECEXP (vals, 0, 0);
3053 op2 = XVECEXP (vals, 0, 1);
3054
3055 constant_op = (CONSTANT_P (op1)) ? op1 : op2;
3056
3057 tmp = gen_reg_rtx (GET_MODE (constant_op));
3058 emit_move_insn (tmp, constant_op);
3059
3060 if (CONSTANT_P (op1))
0a2aaacc 3061 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, tmp, op2);
f5027409 3062 else
0a2aaacc 3063 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, op1, tmp);
f5027409 3064
0a2aaacc 3065 emit_move_insn (target, new_rtx);
f5027409
RE
3066}
3067
e2e95f45
RE
3068void
3069paired_expand_vector_move (rtx operands[])
3070{
3071 rtx op0 = operands[0], op1 = operands[1];
3072
3073 emit_move_insn (op0, op1);
3074}
3075
3076/* Emit vector compare for code RCODE. DEST is destination, OP1 and
3077 OP2 are two VEC_COND_EXPR operands, CC_OP0 and CC_OP1 are the two
3078 operands for the relation operation COND. This is a recursive
3079 function. */
3080
3081static void
3082paired_emit_vector_compare (enum rtx_code rcode,
3083 rtx dest, rtx op0, rtx op1,
3084 rtx cc_op0, rtx cc_op1)
3085{
3086 rtx tmp = gen_reg_rtx (V2SFmode);
3087 rtx tmp1, max, min, equal_zero;
3088
3089 gcc_assert (TARGET_PAIRED_FLOAT);
3090 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
3091
3092 switch (rcode)
3093 {
3094 case LT:
3095 case LTU:
3096 paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
3097 return;
3098 case GE:
3099 case GEU:
3100 emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
3101 emit_insn (gen_selv2sf4 (dest, tmp, op0, op1, CONST0_RTX (SFmode)));
3102 return;
3103 case LE:
3104 case LEU:
3105 paired_emit_vector_compare (GE, dest, op0, op1, cc_op1, cc_op0);
3106 return;
3107 case GT:
3108 paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
3109 return;
3110 case EQ:
3111 tmp1 = gen_reg_rtx (V2SFmode);
3112 max = gen_reg_rtx (V2SFmode);
3113 min = gen_reg_rtx (V2SFmode);
3114 equal_zero = gen_reg_rtx (V2SFmode);
3115
3116 emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
3117 emit_insn (gen_selv2sf4
3118 (max, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
3119 emit_insn (gen_subv2sf3 (tmp, cc_op1, cc_op0));
3120 emit_insn (gen_selv2sf4
3121 (min, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
3122 emit_insn (gen_subv2sf3 (tmp1, min, max));
3123 emit_insn (gen_selv2sf4 (dest, tmp1, op0, op1, CONST0_RTX (SFmode)));
3124 return;
3125 case NE:
3126 paired_emit_vector_compare (EQ, dest, op1, op0, cc_op0, cc_op1);
3127 return;
3128 case UNLE:
3129 paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
3130 return;
3131 case UNLT:
3132 paired_emit_vector_compare (LT, dest, op1, op0, cc_op0, cc_op1);
3133 return;
3134 case UNGE:
3135 paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
3136 return;
3137 case UNGT:
3138 paired_emit_vector_compare (GT, dest, op1, op0, cc_op0, cc_op1);
3139 return;
3140 default:
3141 gcc_unreachable ();
3142 }
3143
3144 return;
3145}
3146
3147/* Emit vector conditional expression.
3148 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
3149 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
3150
3151int
3152paired_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
3153 rtx cond, rtx cc_op0, rtx cc_op1)
3154{
3155 enum rtx_code rcode = GET_CODE (cond);
3156
3157 if (!TARGET_PAIRED_FLOAT)
3158 return 0;
3159
3160 paired_emit_vector_compare (rcode, dest, op1, op2, cc_op0, cc_op1);
3161
3162 return 1;
3163}
3164
7a4eca66
DE
3165/* Initialize vector TARGET to VALS. */
3166
3167void
3168rs6000_expand_vector_init (rtx target, rtx vals)
3169{
3170 enum machine_mode mode = GET_MODE (target);
3171 enum machine_mode inner_mode = GET_MODE_INNER (mode);
3172 int n_elts = GET_MODE_NUNITS (mode);
3173 int n_var = 0, one_var = -1;
3174 bool all_same = true, all_const_zero = true;
3175 rtx x, mem;
3176 int i;
3177
3178 for (i = 0; i < n_elts; ++i)
3179 {
3180 x = XVECEXP (vals, 0, i);
3181 if (!CONSTANT_P (x))
3182 ++n_var, one_var = i;
3183 else if (x != CONST0_RTX (inner_mode))
3184 all_const_zero = false;
3185
3186 if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
3187 all_same = false;
3188 }
3189
3190 if (n_var == 0)
3191 {
501fb355 3192 rtx const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
7a4eca66
DE
3193 if (mode != V4SFmode && all_const_zero)
3194 {
3195 /* Zero register. */
3196 emit_insn (gen_rtx_SET (VOIDmode, target,
3197 gen_rtx_XOR (mode, target, target)));
3198 return;
3199 }
501fb355 3200 else if (mode != V4SFmode && easy_vector_constant (const_vec, mode))
7a4eca66
DE
3201 {
3202 /* Splat immediate. */
501fb355 3203 emit_insn (gen_rtx_SET (VOIDmode, target, const_vec));
7a4eca66
DE
3204 return;
3205 }
3206 else if (all_same)
3207 ; /* Splat vector element. */
3208 else
3209 {
3210 /* Load from constant pool. */
501fb355 3211 emit_move_insn (target, const_vec);
7a4eca66
DE
3212 return;
3213 }
3214 }
3215
3216 /* Store value to stack temp. Load vector element. Splat. */
3217 if (all_same)
3218 {
3219 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode), 0);
3220 emit_move_insn (adjust_address_nv (mem, inner_mode, 0),
3221 XVECEXP (vals, 0, 0));
3222 x = gen_rtx_UNSPEC (VOIDmode,
3223 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
3224 emit_insn (gen_rtx_PARALLEL (VOIDmode,
3225 gen_rtvec (2,
3226 gen_rtx_SET (VOIDmode,
3227 target, mem),
3228 x)));
3229 x = gen_rtx_VEC_SELECT (inner_mode, target,
3230 gen_rtx_PARALLEL (VOIDmode,
3231 gen_rtvec (1, const0_rtx)));
3232 emit_insn (gen_rtx_SET (VOIDmode, target,
3233 gen_rtx_VEC_DUPLICATE (mode, x)));
3234 return;
3235 }
3236
3237 /* One field is non-constant. Load constant then overwrite
3238 varying field. */
3239 if (n_var == 1)
3240 {
3241 rtx copy = copy_rtx (vals);
3242
57b51d4d 3243 /* Load constant part of vector, substitute neighboring value for
7a4eca66
DE
3244 varying element. */
3245 XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
3246 rs6000_expand_vector_init (target, copy);
3247
3248 /* Insert variable. */
3249 rs6000_expand_vector_set (target, XVECEXP (vals, 0, one_var), one_var);
3250 return;
3251 }
3252
3253 /* Construct the vector in memory one field at a time
3254 and load the whole vector. */
3255 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
3256 for (i = 0; i < n_elts; i++)
3257 emit_move_insn (adjust_address_nv (mem, inner_mode,
3258 i * GET_MODE_SIZE (inner_mode)),
3259 XVECEXP (vals, 0, i));
3260 emit_move_insn (target, mem);
3261}
3262
3263/* Set field ELT of TARGET to VAL. */
3264
3265void
3266rs6000_expand_vector_set (rtx target, rtx val, int elt)
3267{
3268 enum machine_mode mode = GET_MODE (target);
3269 enum machine_mode inner_mode = GET_MODE_INNER (mode);
3270 rtx reg = gen_reg_rtx (mode);
3271 rtx mask, mem, x;
3272 int width = GET_MODE_SIZE (inner_mode);
3273 int i;
3274
3275 /* Load single variable value. */
3276 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode), 0);
3277 emit_move_insn (adjust_address_nv (mem, inner_mode, 0), val);
3278 x = gen_rtx_UNSPEC (VOIDmode,
3279 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
3280 emit_insn (gen_rtx_PARALLEL (VOIDmode,
3281 gen_rtvec (2,
3282 gen_rtx_SET (VOIDmode,
3283 reg, mem),
3284 x)));
3285
3286 /* Linear sequence. */
3287 mask = gen_rtx_PARALLEL (V16QImode, rtvec_alloc (16));
3288 for (i = 0; i < 16; ++i)
3289 XVECEXP (mask, 0, i) = GEN_INT (i);
3290
3291 /* Set permute mask to insert element into target. */
3292 for (i = 0; i < width; ++i)
3293 XVECEXP (mask, 0, elt*width + i)
3294 = GEN_INT (i + 0x10);
3295 x = gen_rtx_CONST_VECTOR (V16QImode, XVEC (mask, 0));
3296 x = gen_rtx_UNSPEC (mode,
3297 gen_rtvec (3, target, reg,
3298 force_reg (V16QImode, x)),
3299 UNSPEC_VPERM);
3300 emit_insn (gen_rtx_SET (VOIDmode, target, x));
3301}
3302
3303/* Extract field ELT from VEC into TARGET. */
3304
3305void
3306rs6000_expand_vector_extract (rtx target, rtx vec, int elt)
3307{
3308 enum machine_mode mode = GET_MODE (vec);
3309 enum machine_mode inner_mode = GET_MODE_INNER (mode);
3310 rtx mem, x;
3311
3312 /* Allocate mode-sized buffer. */
3313 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
3314
3315 /* Add offset to field within buffer matching vector element. */
3316 mem = adjust_address_nv (mem, mode, elt * GET_MODE_SIZE (inner_mode));
3317
3318 /* Store single field into mode-sized buffer. */
3319 x = gen_rtx_UNSPEC (VOIDmode,
3320 gen_rtvec (1, const0_rtx), UNSPEC_STVE);
3321 emit_insn (gen_rtx_PARALLEL (VOIDmode,
3322 gen_rtvec (2,
3323 gen_rtx_SET (VOIDmode,
3324 mem, vec),
3325 x)));
3326 emit_move_insn (target, adjust_address_nv (mem, inner_mode, 0));
3327}
3328
0ba1b2ff
AM
3329/* Generates shifts and masks for a pair of rldicl or rldicr insns to
3330 implement ANDing by the mask IN. */
3331void
a2369ed3 3332build_mask64_2_operands (rtx in, rtx *out)
0ba1b2ff
AM
3333{
3334#if HOST_BITS_PER_WIDE_INT >= 64
3335 unsigned HOST_WIDE_INT c, lsb, m1, m2;
3336 int shift;
3337
37409796 3338 gcc_assert (GET_CODE (in) == CONST_INT);
0ba1b2ff
AM
3339
3340 c = INTVAL (in);
3341 if (c & 1)
3342 {
3343 /* Assume c initially something like 0x00fff000000fffff. The idea
3344 is to rotate the word so that the middle ^^^^^^ group of zeros
3345 is at the MS end and can be cleared with an rldicl mask. We then
3346 rotate back and clear off the MS ^^ group of zeros with a
3347 second rldicl. */
3348 c = ~c; /* c == 0xff000ffffff00000 */
3349 lsb = c & -c; /* lsb == 0x0000000000100000 */
3350 m1 = -lsb; /* m1 == 0xfffffffffff00000 */
3351 c = ~c; /* c == 0x00fff000000fffff */
3352 c &= -lsb; /* c == 0x00fff00000000000 */
3353 lsb = c & -c; /* lsb == 0x0000100000000000 */
3354 c = ~c; /* c == 0xff000fffffffffff */
3355 c &= -lsb; /* c == 0xff00000000000000 */
3356 shift = 0;
3357 while ((lsb >>= 1) != 0)
3358 shift++; /* shift == 44 on exit from loop */
3359 m1 <<= 64 - shift; /* m1 == 0xffffff0000000000 */
3360 m1 = ~m1; /* m1 == 0x000000ffffffffff */
3361 m2 = ~c; /* m2 == 0x00ffffffffffffff */
a260abc9
DE
3362 }
3363 else
0ba1b2ff
AM
3364 {
3365 /* Assume c initially something like 0xff000f0000000000. The idea
3366 is to rotate the word so that the ^^^ middle group of zeros
3367 is at the LS end and can be cleared with an rldicr mask. We then
3368 rotate back and clear off the LS group of ^^^^^^^^^^ zeros with
3369 a second rldicr. */
3370 lsb = c & -c; /* lsb == 0x0000010000000000 */
3371 m2 = -lsb; /* m2 == 0xffffff0000000000 */
3372 c = ~c; /* c == 0x00fff0ffffffffff */
3373 c &= -lsb; /* c == 0x00fff00000000000 */
3374 lsb = c & -c; /* lsb == 0x0000100000000000 */
3375 c = ~c; /* c == 0xff000fffffffffff */
3376 c &= -lsb; /* c == 0xff00000000000000 */
3377 shift = 0;
3378 while ((lsb >>= 1) != 0)
3379 shift++; /* shift == 44 on exit from loop */
3380 m1 = ~c; /* m1 == 0x00ffffffffffffff */
3381 m1 >>= shift; /* m1 == 0x0000000000000fff */
3382 m1 = ~m1; /* m1 == 0xfffffffffffff000 */
3383 }
3384
3385 /* Note that when we only have two 0->1 and 1->0 transitions, one of the
3386 masks will be all 1's. We are guaranteed more than one transition. */
3387 out[0] = GEN_INT (64 - shift);
3388 out[1] = GEN_INT (m1);
3389 out[2] = GEN_INT (shift);
3390 out[3] = GEN_INT (m2);
3391#else
045572c7
GK
3392 (void)in;
3393 (void)out;
37409796 3394 gcc_unreachable ();
0ba1b2ff 3395#endif
a260abc9
DE
3396}
3397
54b695e7 3398/* Return TRUE if OP is an invalid SUBREG operation on the e500. */
48d72335
DE
3399
3400bool
54b695e7
AH
3401invalid_e500_subreg (rtx op, enum machine_mode mode)
3402{
61c76239
JM
3403 if (TARGET_E500_DOUBLE)
3404 {
17caeff2 3405 /* Reject (subreg:SI (reg:DF)); likewise with subreg:DI or
4f011e1e
JM
3406 subreg:TI and reg:TF. Decimal float modes are like integer
3407 modes (only low part of each register used) for this
3408 purpose. */
61c76239 3409 if (GET_CODE (op) == SUBREG
4f011e1e
JM
3410 && (mode == SImode || mode == DImode || mode == TImode
3411 || mode == DDmode || mode == TDmode)
61c76239 3412 && REG_P (SUBREG_REG (op))
17caeff2 3413 && (GET_MODE (SUBREG_REG (op)) == DFmode
4f011e1e 3414 || GET_MODE (SUBREG_REG (op)) == TFmode))
61c76239
JM
3415 return true;
3416
17caeff2
JM
3417 /* Reject (subreg:DF (reg:DI)); likewise with subreg:TF and
3418 reg:TI. */
61c76239 3419 if (GET_CODE (op) == SUBREG
4f011e1e 3420 && (mode == DFmode || mode == TFmode)
61c76239 3421 && REG_P (SUBREG_REG (op))
17caeff2 3422 && (GET_MODE (SUBREG_REG (op)) == DImode
4f011e1e
JM
3423 || GET_MODE (SUBREG_REG (op)) == TImode
3424 || GET_MODE (SUBREG_REG (op)) == DDmode
3425 || GET_MODE (SUBREG_REG (op)) == TDmode))
61c76239
JM
3426 return true;
3427 }
54b695e7 3428
61c76239
JM
3429 if (TARGET_SPE
3430 && GET_CODE (op) == SUBREG
3431 && mode == SImode
54b695e7 3432 && REG_P (SUBREG_REG (op))
14502dad 3433 && SPE_VECTOR_MODE (GET_MODE (SUBREG_REG (op))))
54b695e7
AH
3434 return true;
3435
3436 return false;
3437}
3438
58182de3 3439/* AIX increases natural record alignment to doubleword if the first
95727fb8
AP
3440 field is an FP double while the FP fields remain word aligned. */
3441
19d66194 3442unsigned int
fa5b0972
AM
3443rs6000_special_round_type_align (tree type, unsigned int computed,
3444 unsigned int specified)
95727fb8 3445{
fa5b0972 3446 unsigned int align = MAX (computed, specified);
95727fb8 3447 tree field = TYPE_FIELDS (type);
95727fb8 3448
bb8df8a6 3449 /* Skip all non field decls */
85962ac8 3450 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
95727fb8
AP
3451 field = TREE_CHAIN (field);
3452
fa5b0972
AM
3453 if (field != NULL && field != type)
3454 {
3455 type = TREE_TYPE (field);
3456 while (TREE_CODE (type) == ARRAY_TYPE)
3457 type = TREE_TYPE (type);
3458
3459 if (type != error_mark_node && TYPE_MODE (type) == DFmode)
3460 align = MAX (align, 64);
3461 }
95727fb8 3462
fa5b0972 3463 return align;
95727fb8
AP
3464}
3465
58182de3
GK
3466/* Darwin increases record alignment to the natural alignment of
3467 the first field. */
3468
3469unsigned int
3470darwin_rs6000_special_round_type_align (tree type, unsigned int computed,
3471 unsigned int specified)
3472{
3473 unsigned int align = MAX (computed, specified);
3474
3475 if (TYPE_PACKED (type))
3476 return align;
3477
3478 /* Find the first field, looking down into aggregates. */
3479 do {
3480 tree field = TYPE_FIELDS (type);
3481 /* Skip all non field decls */
3482 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
3483 field = TREE_CHAIN (field);
3484 if (! field)
3485 break;
3486 type = TREE_TYPE (field);
3487 while (TREE_CODE (type) == ARRAY_TYPE)
3488 type = TREE_TYPE (type);
3489 } while (AGGREGATE_TYPE_P (type));
3490
3491 if (! AGGREGATE_TYPE_P (type) && type != error_mark_node)
3492 align = MAX (align, TYPE_ALIGN (type));
3493
3494 return align;
3495}
3496
a4f6c312 3497/* Return 1 for an operand in small memory on V.4/eabi. */
7509c759
MM
3498
3499int
f676971a 3500small_data_operand (rtx op ATTRIBUTE_UNUSED,
a2369ed3 3501 enum machine_mode mode ATTRIBUTE_UNUSED)
7509c759 3502{
38c1f2d7 3503#if TARGET_ELF
5f59ecb7 3504 rtx sym_ref;
7509c759 3505
d9407988 3506 if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA)
a54d04b7 3507 return 0;
a54d04b7 3508
f607bc57 3509 if (DEFAULT_ABI != ABI_V4)
7509c759
MM
3510 return 0;
3511
2aa42e6e
NF
3512 /* Vector and float memory instructions have a limited offset on the
3513 SPE, so using a vector or float variable directly as an operand is
3514 not useful. */
3515 if (TARGET_SPE
3516 && (SPE_VECTOR_MODE (mode) || FLOAT_MODE_P (mode)))
3517 return 0;
3518
88228c4b
MM
3519 if (GET_CODE (op) == SYMBOL_REF)
3520 sym_ref = op;
3521
3522 else if (GET_CODE (op) != CONST
3523 || GET_CODE (XEXP (op, 0)) != PLUS
3524 || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF
3525 || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT)
7509c759
MM
3526 return 0;
3527
88228c4b 3528 else
dbf55e53
MM
3529 {
3530 rtx sum = XEXP (op, 0);
3531 HOST_WIDE_INT summand;
3532
3533 /* We have to be careful here, because it is the referenced address
c4ad648e 3534 that must be 32k from _SDA_BASE_, not just the symbol. */
dbf55e53 3535 summand = INTVAL (XEXP (sum, 1));
307b599c 3536 if (summand < 0 || (unsigned HOST_WIDE_INT) summand > g_switch_value)
9390387d 3537 return 0;
dbf55e53
MM
3538
3539 sym_ref = XEXP (sum, 0);
3540 }
88228c4b 3541
20bfcd69 3542 return SYMBOL_REF_SMALL_P (sym_ref);
d9407988
MM
3543#else
3544 return 0;
3545#endif
7509c759 3546}
46c07df8 3547
3a1f863f 3548/* Return true if either operand is a general purpose register. */
46c07df8 3549
3a1f863f
DE
3550bool
3551gpr_or_gpr_p (rtx op0, rtx op1)
46c07df8 3552{
3a1f863f
DE
3553 return ((REG_P (op0) && INT_REGNO_P (REGNO (op0)))
3554 || (REG_P (op1) && INT_REGNO_P (REGNO (op1))));
46c07df8
HP
3555}
3556
9ebbca7d 3557\f
4d588c14
RH
3558/* Subroutines of rs6000_legitimize_address and rs6000_legitimate_address. */
3559
4d588c14 3560static bool
a2369ed3 3561constant_pool_expr_p (rtx op)
9ebbca7d 3562{
2e4316da
RS
3563 rtx base, offset;
3564
3565 split_const (op, &base, &offset);
3566 return (GET_CODE (base) == SYMBOL_REF
3567 && CONSTANT_POOL_ADDRESS_P (base)
3568 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (base), Pmode));
9ebbca7d
GK
3569}
3570
48d72335 3571bool
a2369ed3 3572toc_relative_expr_p (rtx op)
9ebbca7d 3573{
2e4316da
RS
3574 rtx base, offset;
3575
3576 if (GET_CODE (op) != CONST)
3577 return false;
3578
3579 split_const (op, &base, &offset);
3580 return (GET_CODE (base) == UNSPEC
3581 && XINT (base, 1) == UNSPEC_TOCREL);
4d588c14
RH
3582}
3583
4d588c14 3584bool
a2369ed3 3585legitimate_constant_pool_address_p (rtx x)
4d588c14
RH
3586{
3587 return (TARGET_TOC
3588 && GET_CODE (x) == PLUS
3589 && GET_CODE (XEXP (x, 0)) == REG
3590 && (TARGET_MINIMAL_TOC || REGNO (XEXP (x, 0)) == TOC_REGISTER)
2e4316da 3591 && toc_relative_expr_p (XEXP (x, 1)));
4d588c14
RH
3592}
3593
d04b6e6e
EB
3594static bool
3595legitimate_small_data_p (enum machine_mode mode, rtx x)
4d588c14
RH
3596{
3597 return (DEFAULT_ABI == ABI_V4
3598 && !flag_pic && !TARGET_TOC
3599 && (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST)
3600 && small_data_operand (x, mode));
3601}
3602
60cdabab
DE
3603/* SPE offset addressing is limited to 5-bits worth of double words. */
3604#define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
3605
76d2b81d
DJ
3606bool
3607rs6000_legitimate_offset_address_p (enum machine_mode mode, rtx x, int strict)
4d588c14
RH
3608{
3609 unsigned HOST_WIDE_INT offset, extra;
3610
3611 if (GET_CODE (x) != PLUS)
3612 return false;
3613 if (GET_CODE (XEXP (x, 0)) != REG)
3614 return false;
3615 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
3616 return false;
60cdabab
DE
3617 if (legitimate_constant_pool_address_p (x))
3618 return true;
4d588c14
RH
3619 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
3620 return false;
3621
3622 offset = INTVAL (XEXP (x, 1));
3623 extra = 0;
3624 switch (mode)
3625 {
3626 case V16QImode:
3627 case V8HImode:
3628 case V4SFmode:
3629 case V4SImode:
7a4eca66 3630 /* AltiVec vector modes. Only reg+reg addressing is valid and
1a23970d
DE
3631 constant offset zero should not occur due to canonicalization. */
3632 return false;
4d588c14
RH
3633
3634 case V4HImode:
3635 case V2SImode:
3636 case V1DImode:
3637 case V2SFmode:
d42a3bae 3638 /* Paired vector modes. Only reg+reg addressing is valid and
1a23970d 3639 constant offset zero should not occur due to canonicalization. */
d42a3bae 3640 if (TARGET_PAIRED_FLOAT)
1a23970d 3641 return false;
4d588c14
RH
3642 /* SPE vector modes. */
3643 return SPE_CONST_OFFSET_OK (offset);
3644
3645 case DFmode:
4d4cbc0e
AH
3646 if (TARGET_E500_DOUBLE)
3647 return SPE_CONST_OFFSET_OK (offset);
3648
4f011e1e 3649 case DDmode:
4d588c14 3650 case DImode:
54b695e7
AH
3651 /* On e500v2, we may have:
3652
3653 (subreg:DF (mem:DI (plus (reg) (const_int))) 0).
3654
3655 Which gets addressed with evldd instructions. */
3656 if (TARGET_E500_DOUBLE)
3657 return SPE_CONST_OFFSET_OK (offset);
3658
7393f7f8 3659 if (mode == DFmode || mode == DDmode || !TARGET_POWERPC64)
4d588c14
RH
3660 extra = 4;
3661 else if (offset & 3)
3662 return false;
3663 break;
3664
3665 case TFmode:
17caeff2
JM
3666 if (TARGET_E500_DOUBLE)
3667 return (SPE_CONST_OFFSET_OK (offset)
3668 && SPE_CONST_OFFSET_OK (offset + 8));
3669
4f011e1e 3670 case TDmode:
4d588c14 3671 case TImode:
7393f7f8 3672 if (mode == TFmode || mode == TDmode || !TARGET_POWERPC64)
4d588c14
RH
3673 extra = 12;
3674 else if (offset & 3)
3675 return false;
3676 else
3677 extra = 8;
3678 break;
3679
3680 default:
3681 break;
3682 }
3683
b1917422
AM
3684 offset += 0x8000;
3685 return (offset < 0x10000) && (offset + extra < 0x10000);
4d588c14
RH
3686}
3687
6fb5fa3c 3688bool
a2369ed3 3689legitimate_indexed_address_p (rtx x, int strict)
4d588c14
RH
3690{
3691 rtx op0, op1;
3692
3693 if (GET_CODE (x) != PLUS)
3694 return false;
850e8d3d 3695
4d588c14
RH
3696 op0 = XEXP (x, 0);
3697 op1 = XEXP (x, 1);
3698
bf00cc0f 3699 /* Recognize the rtl generated by reload which we know will later be
9024f4b8
AM
3700 replaced with proper base and index regs. */
3701 if (!strict
3702 && reload_in_progress
3703 && (REG_P (op0) || GET_CODE (op0) == PLUS)
3704 && REG_P (op1))
3705 return true;
3706
3707 return (REG_P (op0) && REG_P (op1)
3708 && ((INT_REG_OK_FOR_BASE_P (op0, strict)
3709 && INT_REG_OK_FOR_INDEX_P (op1, strict))
3710 || (INT_REG_OK_FOR_BASE_P (op1, strict)
3711 && INT_REG_OK_FOR_INDEX_P (op0, strict))));
9ebbca7d
GK
3712}
3713
001b9eb6
PH
3714bool
3715avoiding_indexed_address_p (enum machine_mode mode)
3716{
3717 /* Avoid indexed addressing for modes that have non-indexed
3718 load/store instruction forms. */
3719 return TARGET_AVOID_XFORM && !ALTIVEC_VECTOR_MODE (mode);
3720}
3721
48d72335 3722inline bool
a2369ed3 3723legitimate_indirect_address_p (rtx x, int strict)
4d588c14
RH
3724{
3725 return GET_CODE (x) == REG && INT_REG_OK_FOR_BASE_P (x, strict);
3726}
3727
48d72335 3728bool
4c81e946
FJ
3729macho_lo_sum_memory_operand (rtx x, enum machine_mode mode)
3730{
c4ad648e 3731 if (!TARGET_MACHO || !flag_pic
9390387d 3732 || mode != SImode || GET_CODE (x) != MEM)
c4ad648e
AM
3733 return false;
3734 x = XEXP (x, 0);
4c81e946
FJ
3735
3736 if (GET_CODE (x) != LO_SUM)
3737 return false;
3738 if (GET_CODE (XEXP (x, 0)) != REG)
3739 return false;
3740 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 0))
3741 return false;
3742 x = XEXP (x, 1);
3743
3744 return CONSTANT_P (x);
3745}
3746
4d588c14 3747static bool
a2369ed3 3748legitimate_lo_sum_address_p (enum machine_mode mode, rtx x, int strict)
4d588c14
RH
3749{
3750 if (GET_CODE (x) != LO_SUM)
3751 return false;
3752 if (GET_CODE (XEXP (x, 0)) != REG)
3753 return false;
3754 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
3755 return false;
54b695e7 3756 /* Restrict addressing for DI because of our SUBREG hackery. */
17caeff2 3757 if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
4d4447b5 3758 || mode == DDmode || mode == TDmode
17caeff2 3759 || mode == DImode))
f82f556d 3760 return false;
4d588c14
RH
3761 x = XEXP (x, 1);
3762
8622e235 3763 if (TARGET_ELF || TARGET_MACHO)
4d588c14 3764 {
a29077da 3765 if (DEFAULT_ABI != ABI_AIX && DEFAULT_ABI != ABI_DARWIN && flag_pic)
4d588c14
RH
3766 return false;
3767 if (TARGET_TOC)
3768 return false;
3769 if (GET_MODE_NUNITS (mode) != 1)
3770 return false;
5e5f01b9 3771 if (GET_MODE_BITSIZE (mode) > 64
3c028f65 3772 || (GET_MODE_BITSIZE (mode) > 32 && !TARGET_POWERPC64
696e45ba 3773 && !(TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT
4d4447b5 3774 && (mode == DFmode || mode == DDmode))))
4d588c14
RH
3775 return false;
3776
3777 return CONSTANT_P (x);
3778 }
3779
3780 return false;
3781}
3782
3783
9ebbca7d
GK
3784/* Try machine-dependent ways of modifying an illegitimate address
3785 to be legitimate. If we find one, return the new, valid address.
3786 This is used from only one place: `memory_address' in explow.c.
3787
a4f6c312
SS
3788 OLDX is the address as it was before break_out_memory_refs was
3789 called. In some cases it is useful to look at this to decide what
3790 needs to be done.
9ebbca7d 3791
a4f6c312 3792 MODE is passed so that this function can use GO_IF_LEGITIMATE_ADDRESS.
9ebbca7d 3793
a4f6c312
SS
3794 It is always safe for this function to do nothing. It exists to
3795 recognize opportunities to optimize the output.
9ebbca7d
GK
3796
3797 On RS/6000, first check for the sum of a register with a constant
3798 integer that is out of range. If so, generate code to add the
3799 constant with the low-order 16 bits masked to the register and force
3800 this result into another register (this can be done with `cau').
3801 Then generate an address of REG+(CONST&0xffff), allowing for the
3802 possibility of bit 16 being a one.
3803
3804 Then check for the sum of a register and something not constant, try to
3805 load the other things into a register and return the sum. */
4d588c14 3806
9ebbca7d 3807rtx
a2369ed3
DJ
3808rs6000_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
3809 enum machine_mode mode)
0ac081f6 3810{
c4501e62
JJ
3811 if (GET_CODE (x) == SYMBOL_REF)
3812 {
3813 enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
3814 if (model != 0)
3815 return rs6000_legitimize_tls_address (x, model);
3816 }
3817
f676971a 3818 if (GET_CODE (x) == PLUS
9ebbca7d
GK
3819 && GET_CODE (XEXP (x, 0)) == REG
3820 && GET_CODE (XEXP (x, 1)) == CONST_INT
3c1eb9eb 3821 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 1)) + 0x8000) >= 0x10000
7da13f1d
NF
3822 && !((TARGET_POWERPC64
3823 && (mode == DImode || mode == TImode)
3824 && (INTVAL (XEXP (x, 1)) & 3) != 0)
3825 || SPE_VECTOR_MODE (mode)
efc05e3c 3826 || ALTIVEC_VECTOR_MODE (mode)
3c1eb9eb 3827 || (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
4f011e1e
JM
3828 || mode == DImode || mode == DDmode
3829 || mode == TDmode))))
f676971a 3830 {
9ebbca7d
GK
3831 HOST_WIDE_INT high_int, low_int;
3832 rtx sum;
a65c591c
DE
3833 low_int = ((INTVAL (XEXP (x, 1)) & 0xffff) ^ 0x8000) - 0x8000;
3834 high_int = INTVAL (XEXP (x, 1)) - low_int;
9ebbca7d
GK
3835 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (x, 0),
3836 GEN_INT (high_int)), 0);
3837 return gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int));
3838 }
f676971a 3839 else if (GET_CODE (x) == PLUS
9ebbca7d
GK
3840 && GET_CODE (XEXP (x, 0)) == REG
3841 && GET_CODE (XEXP (x, 1)) != CONST_INT
6ac7bf2c 3842 && GET_MODE_NUNITS (mode) == 1
696e45ba 3843 && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
a3170dc6 3844 || TARGET_POWERPC64
efc05e3c 3845 || ((mode != DImode && mode != DFmode && mode != DDmode)
4f011e1e 3846 || (TARGET_E500_DOUBLE && mode != DDmode)))
9ebbca7d 3847 && (TARGET_POWERPC64 || mode != DImode)
001b9eb6 3848 && !avoiding_indexed_address_p (mode)
efc05e3c
PB
3849 && mode != TImode
3850 && mode != TFmode
3851 && mode != TDmode)
9ebbca7d
GK
3852 {
3853 return gen_rtx_PLUS (Pmode, XEXP (x, 0),
3854 force_reg (Pmode, force_operand (XEXP (x, 1), 0)));
3855 }
0ac081f6
AH
3856 else if (ALTIVEC_VECTOR_MODE (mode))
3857 {
3858 rtx reg;
3859
3860 /* Make sure both operands are registers. */
3861 if (GET_CODE (x) == PLUS)
9f85ed45 3862 return gen_rtx_PLUS (Pmode, force_reg (Pmode, XEXP (x, 0)),
0ac081f6
AH
3863 force_reg (Pmode, XEXP (x, 1)));
3864
3865 reg = force_reg (Pmode, x);
3866 return reg;
3867 }
4d4cbc0e 3868 else if (SPE_VECTOR_MODE (mode)
17caeff2 3869 || (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
7393f7f8 3870 || mode == DDmode || mode == TDmode
54b695e7 3871 || mode == DImode)))
a3170dc6 3872 {
54b695e7
AH
3873 if (mode == DImode)
3874 return NULL_RTX;
a3170dc6
AH
3875 /* We accept [reg + reg] and [reg + OFFSET]. */
3876
3877 if (GET_CODE (x) == PLUS)
61dd226f
NF
3878 {
3879 rtx op1 = XEXP (x, 0);
3880 rtx op2 = XEXP (x, 1);
3881 rtx y;
3882
3883 op1 = force_reg (Pmode, op1);
3884
3885 if (GET_CODE (op2) != REG
3886 && (GET_CODE (op2) != CONST_INT
3887 || !SPE_CONST_OFFSET_OK (INTVAL (op2))
3888 || (GET_MODE_SIZE (mode) > 8
3889 && !SPE_CONST_OFFSET_OK (INTVAL (op2) + 8))))
3890 op2 = force_reg (Pmode, op2);
3891
3892 /* We can't always do [reg + reg] for these, because [reg +
3893 reg + offset] is not a legitimate addressing mode. */
3894 y = gen_rtx_PLUS (Pmode, op1, op2);
3895
4f011e1e 3896 if ((GET_MODE_SIZE (mode) > 8 || mode == DDmode) && REG_P (op2))
61dd226f
NF
3897 return force_reg (Pmode, y);
3898 else
3899 return y;
3900 }
a3170dc6
AH
3901
3902 return force_reg (Pmode, x);
3903 }
f1384257
AM
3904 else if (TARGET_ELF
3905 && TARGET_32BIT
3906 && TARGET_NO_TOC
3907 && ! flag_pic
9ebbca7d 3908 && GET_CODE (x) != CONST_INT
f676971a 3909 && GET_CODE (x) != CONST_DOUBLE
9ebbca7d 3910 && CONSTANT_P (x)
6ac7bf2c
GK
3911 && GET_MODE_NUNITS (mode) == 1
3912 && (GET_MODE_BITSIZE (mode) <= 32
696e45ba 3913 || ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
4d4447b5 3914 && (mode == DFmode || mode == DDmode))))
9ebbca7d
GK
3915 {
3916 rtx reg = gen_reg_rtx (Pmode);
8a1977f3
GK
3917 emit_insn (gen_elf_high (reg, x));
3918 return gen_rtx_LO_SUM (Pmode, reg, x);
9ebbca7d 3919 }
ee890fe2
SS
3920 else if (TARGET_MACHO && TARGET_32BIT && TARGET_NO_TOC
3921 && ! flag_pic
ab82a49f
AP
3922#if TARGET_MACHO
3923 && ! MACHO_DYNAMIC_NO_PIC_P
3924#endif
ee890fe2 3925 && GET_CODE (x) != CONST_INT
f676971a 3926 && GET_CODE (x) != CONST_DOUBLE
ee890fe2 3927 && CONSTANT_P (x)
506a7bc8 3928 && GET_MODE_NUNITS (mode) == 1
696e45ba 3929 && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
4d4447b5 3930 || (mode != DFmode && mode != DDmode))
f676971a 3931 && mode != DImode
ee890fe2
SS
3932 && mode != TImode)
3933 {
3934 rtx reg = gen_reg_rtx (Pmode);
8a1977f3
GK
3935 emit_insn (gen_macho_high (reg, x));
3936 return gen_rtx_LO_SUM (Pmode, reg, x);
ee890fe2 3937 }
f676971a 3938 else if (TARGET_TOC
0cdc04e8 3939 && GET_CODE (x) == SYMBOL_REF
4d588c14 3940 && constant_pool_expr_p (x)
a9098fd0 3941 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), Pmode))
9ebbca7d
GK
3942 {
3943 return create_TOC_reference (x);
3944 }
3945 else
3946 return NULL_RTX;
3947}
258bfae2 3948
fdbe66f2 3949/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
c973d557
JJ
3950 We need to emit DTP-relative relocations. */
3951
fdbe66f2 3952static void
c973d557
JJ
3953rs6000_output_dwarf_dtprel (FILE *file, int size, rtx x)
3954{
3955 switch (size)
3956 {
3957 case 4:
3958 fputs ("\t.long\t", file);
3959 break;
3960 case 8:
3961 fputs (DOUBLE_INT_ASM_OP, file);
3962 break;
3963 default:
37409796 3964 gcc_unreachable ();
c973d557
JJ
3965 }
3966 output_addr_const (file, x);
3967 fputs ("@dtprel+0x8000", file);
3968}
3969
c4501e62
JJ
3970/* Construct the SYMBOL_REF for the tls_get_addr function. */
3971
3972static GTY(()) rtx rs6000_tls_symbol;
3973static rtx
863d938c 3974rs6000_tls_get_addr (void)
c4501e62
JJ
3975{
3976 if (!rs6000_tls_symbol)
3977 rs6000_tls_symbol = init_one_libfunc ("__tls_get_addr");
3978
3979 return rs6000_tls_symbol;
3980}
3981
3982/* Construct the SYMBOL_REF for TLS GOT references. */
3983
3984static GTY(()) rtx rs6000_got_symbol;
3985static rtx
863d938c 3986rs6000_got_sym (void)
c4501e62
JJ
3987{
3988 if (!rs6000_got_symbol)
3989 {
3990 rs6000_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
3991 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_LOCAL;
3992 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_EXTERNAL;
f676971a 3993 }
c4501e62
JJ
3994
3995 return rs6000_got_symbol;
3996}
3997
3998/* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
3999 this (thread-local) address. */
4000
4001static rtx
a2369ed3 4002rs6000_legitimize_tls_address (rtx addr, enum tls_model model)
c4501e62
JJ
4003{
4004 rtx dest, insn;
4005
4006 dest = gen_reg_rtx (Pmode);
4007 if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 16)
4008 {
4009 rtx tlsreg;
4010
4011 if (TARGET_64BIT)
4012 {
4013 tlsreg = gen_rtx_REG (Pmode, 13);
4014 insn = gen_tls_tprel_64 (dest, tlsreg, addr);
4015 }
4016 else
4017 {
4018 tlsreg = gen_rtx_REG (Pmode, 2);
4019 insn = gen_tls_tprel_32 (dest, tlsreg, addr);
4020 }
4021 emit_insn (insn);
4022 }
4023 else if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 32)
4024 {
4025 rtx tlsreg, tmp;
4026
4027 tmp = gen_reg_rtx (Pmode);
4028 if (TARGET_64BIT)
4029 {
4030 tlsreg = gen_rtx_REG (Pmode, 13);
4031 insn = gen_tls_tprel_ha_64 (tmp, tlsreg, addr);
4032 }
4033 else
4034 {
4035 tlsreg = gen_rtx_REG (Pmode, 2);
4036 insn = gen_tls_tprel_ha_32 (tmp, tlsreg, addr);
4037 }
4038 emit_insn (insn);
4039 if (TARGET_64BIT)
4040 insn = gen_tls_tprel_lo_64 (dest, tmp, addr);
4041 else
4042 insn = gen_tls_tprel_lo_32 (dest, tmp, addr);
4043 emit_insn (insn);
4044 }
4045 else
4046 {
4047 rtx r3, got, tga, tmp1, tmp2, eqv;
4048
4fed8f8f
AM
4049 /* We currently use relocations like @got@tlsgd for tls, which
4050 means the linker will handle allocation of tls entries, placing
4051 them in the .got section. So use a pointer to the .got section,
4052 not one to secondary TOC sections used by 64-bit -mminimal-toc,
4053 or to secondary GOT sections used by 32-bit -fPIC. */
c4501e62 4054 if (TARGET_64BIT)
972f427b 4055 got = gen_rtx_REG (Pmode, 2);
c4501e62
JJ
4056 else
4057 {
4058 if (flag_pic == 1)
4059 got = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
4060 else
4061 {
4062 rtx gsym = rs6000_got_sym ();
4063 got = gen_reg_rtx (Pmode);
4064 if (flag_pic == 0)
4065 rs6000_emit_move (got, gsym, Pmode);
4066 else
4067 {
e65a3857 4068 rtx tmp3, mem;
c4501e62
JJ
4069 rtx first, last;
4070
c4501e62
JJ
4071 tmp1 = gen_reg_rtx (Pmode);
4072 tmp2 = gen_reg_rtx (Pmode);
4073 tmp3 = gen_reg_rtx (Pmode);
542a8afa 4074 mem = gen_const_mem (Pmode, tmp1);
c4501e62 4075
e65a3857
DE
4076 first = emit_insn (gen_load_toc_v4_PIC_1b (gsym));
4077 emit_move_insn (tmp1,
1de43f85 4078 gen_rtx_REG (Pmode, LR_REGNO));
c4501e62
JJ
4079 emit_move_insn (tmp2, mem);
4080 emit_insn (gen_addsi3 (tmp3, tmp1, tmp2));
4081 last = emit_move_insn (got, tmp3);
bd94cb6e 4082 set_unique_reg_note (last, REG_EQUAL, gsym);
c4501e62
JJ
4083 }
4084 }
4085 }
4086
4087 if (model == TLS_MODEL_GLOBAL_DYNAMIC)
4088 {
4089 r3 = gen_rtx_REG (Pmode, 3);
02135bc1
SB
4090 tga = rs6000_tls_get_addr ();
4091
4092 if (DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
4093 insn = gen_tls_gd_aix64 (r3, got, addr, tga, const0_rtx);
4094 else if (DEFAULT_ABI == ABI_AIX && !TARGET_64BIT)
4095 insn = gen_tls_gd_aix32 (r3, got, addr, tga, const0_rtx);
4096 else if (DEFAULT_ABI == ABI_V4)
4097 insn = gen_tls_gd_sysvsi (r3, got, addr, tga, const0_rtx);
c4501e62 4098 else
02135bc1
SB
4099 gcc_unreachable ();
4100
c4501e62 4101 start_sequence ();
c4501e62 4102 insn = emit_call_insn (insn);
becfd6e5 4103 RTL_CONST_CALL_P (insn) = 1;
c4501e62 4104 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r3);
d161cb2d
AM
4105 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
4106 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
c4501e62
JJ
4107 insn = get_insns ();
4108 end_sequence ();
4109 emit_libcall_block (insn, dest, r3, addr);
4110 }
4111 else if (model == TLS_MODEL_LOCAL_DYNAMIC)
4112 {
4113 r3 = gen_rtx_REG (Pmode, 3);
02135bc1
SB
4114 tga = rs6000_tls_get_addr ();
4115
4116 if (DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
4117 insn = gen_tls_ld_aix64 (r3, got, tga, const0_rtx);
4118 else if (DEFAULT_ABI == ABI_AIX && !TARGET_64BIT)
4119 insn = gen_tls_ld_aix32 (r3, got, tga, const0_rtx);
4120 else if (DEFAULT_ABI == ABI_V4)
4121 insn = gen_tls_ld_sysvsi (r3, got, tga, const0_rtx);
c4501e62 4122 else
02135bc1
SB
4123 gcc_unreachable ();
4124
c4501e62 4125 start_sequence ();
c4501e62 4126 insn = emit_call_insn (insn);
becfd6e5 4127 RTL_CONST_CALL_P (insn) = 1;
c4501e62 4128 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r3);
d161cb2d
AM
4129 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
4130 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
c4501e62
JJ
4131 insn = get_insns ();
4132 end_sequence ();
4133 tmp1 = gen_reg_rtx (Pmode);
4134 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
4135 UNSPEC_TLSLD);
4136 emit_libcall_block (insn, tmp1, r3, eqv);
4137 if (rs6000_tls_size == 16)
4138 {
4139 if (TARGET_64BIT)
4140 insn = gen_tls_dtprel_64 (dest, tmp1, addr);
4141 else
4142 insn = gen_tls_dtprel_32 (dest, tmp1, addr);
4143 }
4144 else if (rs6000_tls_size == 32)
4145 {
4146 tmp2 = gen_reg_rtx (Pmode);
4147 if (TARGET_64BIT)
4148 insn = gen_tls_dtprel_ha_64 (tmp2, tmp1, addr);
4149 else
4150 insn = gen_tls_dtprel_ha_32 (tmp2, tmp1, addr);
4151 emit_insn (insn);
4152 if (TARGET_64BIT)
4153 insn = gen_tls_dtprel_lo_64 (dest, tmp2, addr);
4154 else
4155 insn = gen_tls_dtprel_lo_32 (dest, tmp2, addr);
4156 }
4157 else
4158 {
4159 tmp2 = gen_reg_rtx (Pmode);
4160 if (TARGET_64BIT)
4161 insn = gen_tls_got_dtprel_64 (tmp2, got, addr);
4162 else
4163 insn = gen_tls_got_dtprel_32 (tmp2, got, addr);
4164 emit_insn (insn);
4165 insn = gen_rtx_SET (Pmode, dest,
4166 gen_rtx_PLUS (Pmode, tmp2, tmp1));
4167 }
4168 emit_insn (insn);
4169 }
4170 else
4171 {
a7b376ee 4172 /* IE, or 64-bit offset LE. */
c4501e62
JJ
4173 tmp2 = gen_reg_rtx (Pmode);
4174 if (TARGET_64BIT)
4175 insn = gen_tls_got_tprel_64 (tmp2, got, addr);
4176 else
4177 insn = gen_tls_got_tprel_32 (tmp2, got, addr);
4178 emit_insn (insn);
4179 if (TARGET_64BIT)
4180 insn = gen_tls_tls_64 (dest, tmp2, addr);
4181 else
4182 insn = gen_tls_tls_32 (dest, tmp2, addr);
4183 emit_insn (insn);
4184 }
4185 }
4186
4187 return dest;
4188}
4189
c4501e62
JJ
4190/* Return 1 if X contains a thread-local symbol. */
4191
4192bool
a2369ed3 4193rs6000_tls_referenced_p (rtx x)
c4501e62 4194{
cd413cab
AP
4195 if (! TARGET_HAVE_TLS)
4196 return false;
4197
c4501e62
JJ
4198 return for_each_rtx (&x, &rs6000_tls_symbol_ref_1, 0);
4199}
4200
4201/* Return 1 if *X is a thread-local symbol. This is the same as
4202 rs6000_tls_symbol_ref except for the type of the unused argument. */
4203
9390387d 4204static int
a2369ed3 4205rs6000_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
c4501e62
JJ
4206{
4207 return RS6000_SYMBOL_REF_TLS_P (*x);
4208}
4209
24ea750e
DJ
4210/* The convention appears to be to define this wherever it is used.
4211 With legitimize_reload_address now defined here, REG_MODE_OK_FOR_BASE_P
4212 is now used here. */
4213#ifndef REG_MODE_OK_FOR_BASE_P
4214#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
4215#endif
4216
4217/* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to
4218 replace the input X, or the original X if no replacement is called for.
4219 The output parameter *WIN is 1 if the calling macro should goto WIN,
4220 0 if it should not.
4221
4222 For RS/6000, we wish to handle large displacements off a base
4223 register by splitting the addend across an addiu/addis and the mem insn.
4224 This cuts number of extra insns needed from 3 to 1.
4225
4226 On Darwin, we use this to generate code for floating point constants.
4227 A movsf_low is generated so we wind up with 2 instructions rather than 3.
08a6a74b
RS
4228 The Darwin code is inside #if TARGET_MACHO because only then are the
4229 machopic_* functions defined. */
24ea750e 4230rtx
f676971a 4231rs6000_legitimize_reload_address (rtx x, enum machine_mode mode,
c4ad648e
AM
4232 int opnum, int type,
4233 int ind_levels ATTRIBUTE_UNUSED, int *win)
24ea750e 4234{
f676971a 4235 /* We must recognize output that we have already generated ourselves. */
24ea750e
DJ
4236 if (GET_CODE (x) == PLUS
4237 && GET_CODE (XEXP (x, 0)) == PLUS
4238 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
4239 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4240 && GET_CODE (XEXP (x, 1)) == CONST_INT)
4241 {
4242 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
c4ad648e
AM
4243 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
4244 opnum, (enum reload_type)type);
24ea750e
DJ
4245 *win = 1;
4246 return x;
4247 }
3deb2758 4248
24ea750e
DJ
4249#if TARGET_MACHO
4250 if (DEFAULT_ABI == ABI_DARWIN && flag_pic
4251 && GET_CODE (x) == LO_SUM
4252 && GET_CODE (XEXP (x, 0)) == PLUS
4253 && XEXP (XEXP (x, 0), 0) == pic_offset_table_rtx
4254 && GET_CODE (XEXP (XEXP (x, 0), 1)) == HIGH
24ea750e 4255 && XEXP (XEXP (XEXP (x, 0), 1), 0) == XEXP (x, 1)
08a6a74b 4256 && machopic_operand_p (XEXP (x, 1)))
24ea750e
DJ
4257 {
4258 /* Result of previous invocation of this function on Darwin
6f317ef3 4259 floating point constant. */
24ea750e 4260 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
c4ad648e
AM
4261 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
4262 opnum, (enum reload_type)type);
24ea750e
DJ
4263 *win = 1;
4264 return x;
4265 }
4266#endif
4937d02d
DE
4267
4268 /* Force ld/std non-word aligned offset into base register by wrapping
4269 in offset 0. */
4270 if (GET_CODE (x) == PLUS
4271 && GET_CODE (XEXP (x, 0)) == REG
4272 && REGNO (XEXP (x, 0)) < 32
4273 && REG_MODE_OK_FOR_BASE_P (XEXP (x, 0), mode)
4274 && GET_CODE (XEXP (x, 1)) == CONST_INT
4275 && (INTVAL (XEXP (x, 1)) & 3) != 0
78796ad5 4276 && !ALTIVEC_VECTOR_MODE (mode)
4937d02d
DE
4277 && GET_MODE_SIZE (mode) >= UNITS_PER_WORD
4278 && TARGET_POWERPC64)
4279 {
4280 x = gen_rtx_PLUS (GET_MODE (x), x, GEN_INT (0));
4281 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4282 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
4283 opnum, (enum reload_type) type);
4284 *win = 1;
4285 return x;
4286 }
4287
24ea750e
DJ
4288 if (GET_CODE (x) == PLUS
4289 && GET_CODE (XEXP (x, 0)) == REG
4290 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
4291 && REG_MODE_OK_FOR_BASE_P (XEXP (x, 0), mode)
78c875e8 4292 && GET_CODE (XEXP (x, 1)) == CONST_INT
93638d7a 4293 && !SPE_VECTOR_MODE (mode)
17caeff2 4294 && !(TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
4d4447b5 4295 || mode == DDmode || mode == TDmode
54b695e7 4296 || mode == DImode))
78c875e8 4297 && !ALTIVEC_VECTOR_MODE (mode))
24ea750e
DJ
4298 {
4299 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
4300 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
4301 HOST_WIDE_INT high
c4ad648e 4302 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
24ea750e
DJ
4303
4304 /* Check for 32-bit overflow. */
4305 if (high + low != val)
c4ad648e 4306 {
24ea750e
DJ
4307 *win = 0;
4308 return x;
4309 }
4310
4311 /* Reload the high part into a base reg; leave the low part
c4ad648e 4312 in the mem directly. */
24ea750e
DJ
4313
4314 x = gen_rtx_PLUS (GET_MODE (x),
c4ad648e
AM
4315 gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
4316 GEN_INT (high)),
4317 GEN_INT (low));
24ea750e
DJ
4318
4319 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
c4ad648e
AM
4320 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
4321 opnum, (enum reload_type)type);
24ea750e
DJ
4322 *win = 1;
4323 return x;
4324 }
4937d02d 4325
24ea750e 4326 if (GET_CODE (x) == SYMBOL_REF
69ef87e2 4327 && !ALTIVEC_VECTOR_MODE (mode)
1650e3f5 4328 && !SPE_VECTOR_MODE (mode)
8308679f
DE
4329#if TARGET_MACHO
4330 && DEFAULT_ABI == ABI_DARWIN
a29077da 4331 && (flag_pic || MACHO_DYNAMIC_NO_PIC_P)
8308679f
DE
4332#else
4333 && DEFAULT_ABI == ABI_V4
4334 && !flag_pic
4335#endif
7393f7f8 4336 /* Don't do this for TFmode or TDmode, since the result isn't offsettable.
4d4447b5 4337 The same goes for DImode without 64-bit gprs and DFmode and DDmode
7b5d92b2 4338 without fprs. */
0d8c1c97 4339 && mode != TFmode
7393f7f8 4340 && mode != TDmode
7b5d92b2 4341 && (mode != DImode || TARGET_POWERPC64)
4d4447b5 4342 && ((mode != DFmode && mode != DDmode) || TARGET_POWERPC64
696e45ba 4343 || (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)))
24ea750e 4344 {
8308679f 4345#if TARGET_MACHO
a29077da
GK
4346 if (flag_pic)
4347 {
08a6a74b 4348 rtx offset = machopic_gen_offset (x);
a29077da
GK
4349 x = gen_rtx_LO_SUM (GET_MODE (x),
4350 gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
4351 gen_rtx_HIGH (Pmode, offset)), offset);
4352 }
4353 else
8308679f 4354#endif
a29077da 4355 x = gen_rtx_LO_SUM (GET_MODE (x),
c4ad648e 4356 gen_rtx_HIGH (Pmode, x), x);
a29077da 4357
24ea750e 4358 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
a29077da
GK
4359 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
4360 opnum, (enum reload_type)type);
24ea750e
DJ
4361 *win = 1;
4362 return x;
4363 }
4937d02d 4364
dec1f3aa
DE
4365 /* Reload an offset address wrapped by an AND that represents the
4366 masking of the lower bits. Strip the outer AND and let reload
4367 convert the offset address into an indirect address. */
4368 if (TARGET_ALTIVEC
4369 && ALTIVEC_VECTOR_MODE (mode)
4370 && GET_CODE (x) == AND
4371 && GET_CODE (XEXP (x, 0)) == PLUS
4372 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
4373 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4374 && GET_CODE (XEXP (x, 1)) == CONST_INT
4375 && INTVAL (XEXP (x, 1)) == -16)
4376 {
4377 x = XEXP (x, 0);
4378 *win = 1;
4379 return x;
4380 }
4381
24ea750e 4382 if (TARGET_TOC
0cdc04e8 4383 && GET_CODE (x) == SYMBOL_REF
4d588c14 4384 && constant_pool_expr_p (x)
c1f11548 4385 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), mode))
24ea750e 4386 {
194c524a 4387 x = create_TOC_reference (x);
24ea750e
DJ
4388 *win = 1;
4389 return x;
4390 }
4391 *win = 0;
4392 return x;
f676971a 4393}
24ea750e 4394
258bfae2
FS
4395/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
4396 that is a valid memory address for an instruction.
4397 The MODE argument is the machine mode for the MEM expression
4398 that wants to use this address.
4399
4400 On the RS/6000, there are four valid address: a SYMBOL_REF that
4401 refers to a constant pool entry of an address (or the sum of it
4402 plus a constant), a short (16-bit signed) constant plus a register,
4403 the sum of two registers, or a register indirect, possibly with an
4d4447b5
PB
4404 auto-increment. For DFmode, DDmode and DImode with a constant plus
4405 register, we must ensure that both words are addressable or PowerPC64
4406 with offset word aligned.
258bfae2 4407
4d4447b5 4408 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
7393f7f8
BE
4409 32-bit DImode, TImode, TFmode, TDmode), indexed addressing cannot be used
4410 because adjacent memory cells are accessed by adding word-sized offsets
258bfae2
FS
4411 during assembly output. */
4412int
a2369ed3 4413rs6000_legitimate_address (enum machine_mode mode, rtx x, int reg_ok_strict)
258bfae2 4414{
850e8d3d
DN
4415 /* If this is an unaligned stvx/ldvx type address, discard the outer AND. */
4416 if (TARGET_ALTIVEC
4417 && ALTIVEC_VECTOR_MODE (mode)
4418 && GET_CODE (x) == AND
4419 && GET_CODE (XEXP (x, 1)) == CONST_INT
4420 && INTVAL (XEXP (x, 1)) == -16)
4421 x = XEXP (x, 0);
4422
c4501e62
JJ
4423 if (RS6000_SYMBOL_REF_TLS_P (x))
4424 return 0;
4d588c14 4425 if (legitimate_indirect_address_p (x, reg_ok_strict))
258bfae2
FS
4426 return 1;
4427 if ((GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC)
0d6d6892 4428 && !ALTIVEC_VECTOR_MODE (mode)
a3170dc6 4429 && !SPE_VECTOR_MODE (mode)
429ec7dc 4430 && mode != TFmode
7393f7f8 4431 && mode != TDmode
54b695e7 4432 /* Restrict addressing for DI because of our SUBREG hackery. */
4d4447b5
PB
4433 && !(TARGET_E500_DOUBLE
4434 && (mode == DFmode || mode == DDmode || mode == DImode))
258bfae2 4435 && TARGET_UPDATE
4d588c14 4436 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict))
258bfae2 4437 return 1;
d04b6e6e 4438 if (legitimate_small_data_p (mode, x))
258bfae2 4439 return 1;
4d588c14 4440 if (legitimate_constant_pool_address_p (x))
258bfae2
FS
4441 return 1;
4442 /* If not REG_OK_STRICT (before reload) let pass any stack offset. */
4443 if (! reg_ok_strict
4444 && GET_CODE (x) == PLUS
4445 && GET_CODE (XEXP (x, 0)) == REG
708d2456 4446 && (XEXP (x, 0) == virtual_stack_vars_rtx
c4ad648e 4447 || XEXP (x, 0) == arg_pointer_rtx)
258bfae2
FS
4448 && GET_CODE (XEXP (x, 1)) == CONST_INT)
4449 return 1;
76d2b81d 4450 if (rs6000_legitimate_offset_address_p (mode, x, reg_ok_strict))
258bfae2
FS
4451 return 1;
4452 if (mode != TImode
76d2b81d 4453 && mode != TFmode
7393f7f8 4454 && mode != TDmode
a3170dc6
AH
4455 && ((TARGET_HARD_FLOAT && TARGET_FPRS)
4456 || TARGET_POWERPC64
4f011e1e
JM
4457 || (mode != DFmode && mode != DDmode)
4458 || (TARGET_E500_DOUBLE && mode != DDmode))
258bfae2 4459 && (TARGET_POWERPC64 || mode != DImode)
001b9eb6 4460 && !avoiding_indexed_address_p (mode)
4d588c14 4461 && legitimate_indexed_address_p (x, reg_ok_strict))
258bfae2 4462 return 1;
6fb5fa3c
DB
4463 if (GET_CODE (x) == PRE_MODIFY
4464 && mode != TImode
4465 && mode != TFmode
4466 && mode != TDmode
696e45ba 4467 && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
6fb5fa3c 4468 || TARGET_POWERPC64
4d4447b5 4469 || ((mode != DFmode && mode != DDmode) || TARGET_E500_DOUBLE))
6fb5fa3c
DB
4470 && (TARGET_POWERPC64 || mode != DImode)
4471 && !ALTIVEC_VECTOR_MODE (mode)
4472 && !SPE_VECTOR_MODE (mode)
4473 /* Restrict addressing for DI because of our SUBREG hackery. */
4d4447b5
PB
4474 && !(TARGET_E500_DOUBLE
4475 && (mode == DFmode || mode == DDmode || mode == DImode))
6fb5fa3c
DB
4476 && TARGET_UPDATE
4477 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict)
4478 && (rs6000_legitimate_offset_address_p (mode, XEXP (x, 1), reg_ok_strict)
001b9eb6
PH
4479 || (!avoiding_indexed_address_p (mode)
4480 && legitimate_indexed_address_p (XEXP (x, 1), reg_ok_strict)))
6fb5fa3c
DB
4481 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4482 return 1;
4d588c14 4483 if (legitimate_lo_sum_address_p (mode, x, reg_ok_strict))
258bfae2
FS
4484 return 1;
4485 return 0;
4486}
4d588c14
RH
4487
4488/* Go to LABEL if ADDR (a legitimate address expression)
4489 has an effect that depends on the machine mode it is used for.
4490
4491 On the RS/6000 this is true of all integral offsets (since AltiVec
4492 modes don't allow them) or is a pre-increment or decrement.
4493
4494 ??? Except that due to conceptual problems in offsettable_address_p
4495 we can't really report the problems of integral offsets. So leave
f676971a 4496 this assuming that the adjustable offset must be valid for the
4d588c14
RH
4497 sub-words of a TFmode operand, which is what we had before. */
4498
4499bool
a2369ed3 4500rs6000_mode_dependent_address (rtx addr)
4d588c14
RH
4501{
4502 switch (GET_CODE (addr))
4503 {
4504 case PLUS:
4505 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
4506 {
4507 unsigned HOST_WIDE_INT val = INTVAL (XEXP (addr, 1));
4508 return val + 12 + 0x8000 >= 0x10000;
4509 }
4510 break;
4511
4512 case LO_SUM:
4513 return true;
4514
619fe064 4515 /* Auto-increment cases are now treated generically in recog.c. */
6fb5fa3c
DB
4516 case PRE_MODIFY:
4517 return TARGET_UPDATE;
4d588c14
RH
4518
4519 default:
4520 break;
4521 }
4522
4523 return false;
4524}
d8ecbcdb 4525
944258eb
RS
4526/* Implement FIND_BASE_TERM. */
4527
4528rtx
4529rs6000_find_base_term (rtx op)
4530{
4531 rtx base, offset;
4532
4533 split_const (op, &base, &offset);
4534 if (GET_CODE (base) == UNSPEC)
4535 switch (XINT (base, 1))
4536 {
4537 case UNSPEC_TOCREL:
4538 case UNSPEC_MACHOPIC_OFFSET:
4539 /* OP represents SYM [+ OFFSET] - ANCHOR. SYM is the base term
4540 for aliasing purposes. */
4541 return XVECEXP (base, 0, 0);
4542 }
4543
4544 return op;
4545}
4546
d04b6e6e
EB
4547/* More elaborate version of recog's offsettable_memref_p predicate
4548 that works around the ??? note of rs6000_mode_dependent_address.
4549 In particular it accepts
4550
4551 (mem:DI (plus:SI (reg/f:SI 31 31) (const_int 32760 [0x7ff8])))
4552
4553 in 32-bit mode, that the recog predicate rejects. */
4554
4555bool
4556rs6000_offsettable_memref_p (rtx op)
4557{
4558 if (!MEM_P (op))
4559 return false;
4560
4561 /* First mimic offsettable_memref_p. */
4562 if (offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)))
4563 return true;
4564
4565 /* offsettable_address_p invokes rs6000_mode_dependent_address, but
4566 the latter predicate knows nothing about the mode of the memory
4567 reference and, therefore, assumes that it is the largest supported
4568 mode (TFmode). As a consequence, legitimate offsettable memory
4569 references are rejected. rs6000_legitimate_offset_address_p contains
4570 the correct logic for the PLUS case of rs6000_mode_dependent_address. */
4571 return rs6000_legitimate_offset_address_p (GET_MODE (op), XEXP (op, 0), 1);
4572}
4573
d8ecbcdb
AH
4574/* Return number of consecutive hard regs needed starting at reg REGNO
4575 to hold something of mode MODE.
4576 This is ordinarily the length in words of a value of mode MODE
4577 but can be less for certain modes in special long registers.
4578
4579 For the SPE, GPRs are 64 bits but only 32 bits are visible in
4580 scalar instructions. The upper 32 bits are only available to the
4581 SIMD instructions.
4582
4583 POWER and PowerPC GPRs hold 32 bits worth;
4584 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
4585
4586int
4587rs6000_hard_regno_nregs (int regno, enum machine_mode mode)
4588{
4589 if (FP_REGNO_P (regno))
4590 return (GET_MODE_SIZE (mode) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD;
4591
4592 if (SPE_SIMD_REGNO_P (regno) && TARGET_SPE && SPE_VECTOR_MODE (mode))
4593 return (GET_MODE_SIZE (mode) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD;
4594
4595 if (ALTIVEC_REGNO_P (regno))
4596 return
4597 (GET_MODE_SIZE (mode) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD;
4598
8521c414
JM
4599 /* The value returned for SCmode in the E500 double case is 2 for
4600 ABI compatibility; storing an SCmode value in a single register
4601 would require function_arg and rs6000_spe_function_arg to handle
4602 SCmode so as to pass the value correctly in a pair of
4603 registers. */
4f011e1e
JM
4604 if (TARGET_E500_DOUBLE && FLOAT_MODE_P (mode) && mode != SCmode
4605 && !DECIMAL_FLOAT_MODE_P (mode))
8521c414
JM
4606 return (GET_MODE_SIZE (mode) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD;
4607
d8ecbcdb
AH
4608 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
4609}
2aa4498c
AH
4610
4611/* Change register usage conditional on target flags. */
4612void
4613rs6000_conditional_register_usage (void)
4614{
4615 int i;
4616
4617 /* Set MQ register fixed (already call_used) if not POWER
4618 architecture (RIOS1, RIOS2, RSC, and PPC601) so that it will not
4619 be allocated. */
4620 if (! TARGET_POWER)
4621 fixed_regs[64] = 1;
4622
7c9ac5c0 4623 /* 64-bit AIX and Linux reserve GPR13 for thread-private data. */
2aa4498c
AH
4624 if (TARGET_64BIT)
4625 fixed_regs[13] = call_used_regs[13]
4626 = call_really_used_regs[13] = 1;
4627
4628 /* Conditionally disable FPRs. */
4629 if (TARGET_SOFT_FLOAT || !TARGET_FPRS)
4630 for (i = 32; i < 64; i++)
4631 fixed_regs[i] = call_used_regs[i]
c4ad648e 4632 = call_really_used_regs[i] = 1;
2aa4498c 4633
7c9ac5c0
PH
4634 /* The TOC register is not killed across calls in a way that is
4635 visible to the compiler. */
4636 if (DEFAULT_ABI == ABI_AIX)
4637 call_really_used_regs[2] = 0;
4638
2aa4498c
AH
4639 if (DEFAULT_ABI == ABI_V4
4640 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
4641 && flag_pic == 2)
4642 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4643
4644 if (DEFAULT_ABI == ABI_V4
4645 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
4646 && flag_pic == 1)
4647 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4648 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4649 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4650
4651 if (DEFAULT_ABI == ABI_DARWIN
4652 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6d0a8091 4653 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
2aa4498c
AH
4654 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4655 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4656
b4db40bf
JJ
4657 if (TARGET_TOC && TARGET_MINIMAL_TOC)
4658 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4659 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4660
2aa4498c
AH
4661 if (TARGET_SPE)
4662 {
4663 global_regs[SPEFSCR_REGNO] = 1;
52ff33d0
NF
4664 /* We used to use r14 as FIXED_SCRATCH to address SPE 64-bit
4665 registers in prologues and epilogues. We no longer use r14
4666 for FIXED_SCRATCH, but we're keeping r14 out of the allocation
4667 pool for link-compatibility with older versions of GCC. Once
4668 "old" code has died out, we can return r14 to the allocation
4669 pool. */
4670 fixed_regs[14]
4671 = call_used_regs[14]
4672 = call_really_used_regs[14] = 1;
2aa4498c
AH
4673 }
4674
0db747be 4675 if (!TARGET_ALTIVEC)
2aa4498c
AH
4676 {
4677 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
4678 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
4679 call_really_used_regs[VRSAVE_REGNO] = 1;
4680 }
4681
0db747be
DE
4682 if (TARGET_ALTIVEC)
4683 global_regs[VSCR_REGNO] = 1;
4684
2aa4498c 4685 if (TARGET_ALTIVEC_ABI)
0db747be
DE
4686 {
4687 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)
4688 call_used_regs[i] = call_really_used_regs[i] = 1;
4689
4690 /* AIX reserves VR20:31 in non-extended ABI mode. */
4691 if (TARGET_XCOFF)
4692 for (i = FIRST_ALTIVEC_REGNO + 20; i < FIRST_ALTIVEC_REGNO + 32; ++i)
4693 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
4694 }
2aa4498c 4695}
fb4d4348 4696\f
a4f6c312
SS
4697/* Try to output insns to set TARGET equal to the constant C if it can
4698 be done in less than N insns. Do all computations in MODE.
4699 Returns the place where the output has been placed if it can be
4700 done and the insns have been emitted. If it would take more than N
4701 insns, zero is returned and no insns and emitted. */
2bfcf297
DB
4702
4703rtx
f676971a 4704rs6000_emit_set_const (rtx dest, enum machine_mode mode,
a2369ed3 4705 rtx source, int n ATTRIBUTE_UNUSED)
2bfcf297 4706{
af8cb5c5 4707 rtx result, insn, set;
2bfcf297
DB
4708 HOST_WIDE_INT c0, c1;
4709
37409796 4710 switch (mode)
2bfcf297 4711 {
37409796
NS
4712 case QImode:
4713 case HImode:
2bfcf297 4714 if (dest == NULL)
c4ad648e 4715 dest = gen_reg_rtx (mode);
2bfcf297
DB
4716 emit_insn (gen_rtx_SET (VOIDmode, dest, source));
4717 return dest;
bb8df8a6 4718
37409796 4719 case SImode:
b3a13419 4720 result = !can_create_pseudo_p () ? dest : gen_reg_rtx (SImode);
bb8df8a6 4721
d448860e 4722 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (result),
af8cb5c5
DE
4723 GEN_INT (INTVAL (source)
4724 & (~ (HOST_WIDE_INT) 0xffff))));
4725 emit_insn (gen_rtx_SET (VOIDmode, dest,
d448860e 4726 gen_rtx_IOR (SImode, copy_rtx (result),
af8cb5c5
DE
4727 GEN_INT (INTVAL (source) & 0xffff))));
4728 result = dest;
37409796
NS
4729 break;
4730
4731 case DImode:
4732 switch (GET_CODE (source))
af8cb5c5 4733 {
37409796 4734 case CONST_INT:
af8cb5c5
DE
4735 c0 = INTVAL (source);
4736 c1 = -(c0 < 0);
37409796 4737 break;
bb8df8a6 4738
37409796 4739 case CONST_DOUBLE:
2bfcf297 4740#if HOST_BITS_PER_WIDE_INT >= 64
af8cb5c5
DE
4741 c0 = CONST_DOUBLE_LOW (source);
4742 c1 = -(c0 < 0);
2bfcf297 4743#else
af8cb5c5
DE
4744 c0 = CONST_DOUBLE_LOW (source);
4745 c1 = CONST_DOUBLE_HIGH (source);
2bfcf297 4746#endif
37409796
NS
4747 break;
4748
4749 default:
4750 gcc_unreachable ();
af8cb5c5 4751 }
af8cb5c5
DE
4752
4753 result = rs6000_emit_set_long_const (dest, c0, c1);
37409796
NS
4754 break;
4755
4756 default:
4757 gcc_unreachable ();
2bfcf297 4758 }
2bfcf297 4759
af8cb5c5
DE
4760 insn = get_last_insn ();
4761 set = single_set (insn);
4762 if (! CONSTANT_P (SET_SRC (set)))
4763 set_unique_reg_note (insn, REG_EQUAL, source);
4764
4765 return result;
2bfcf297
DB
4766}
4767
4768/* Having failed to find a 3 insn sequence in rs6000_emit_set_const,
4769 fall back to a straight forward decomposition. We do this to avoid
4770 exponential run times encountered when looking for longer sequences
4771 with rs6000_emit_set_const. */
4772static rtx
a2369ed3 4773rs6000_emit_set_long_const (rtx dest, HOST_WIDE_INT c1, HOST_WIDE_INT c2)
2bfcf297
DB
4774{
4775 if (!TARGET_POWERPC64)
4776 {
4777 rtx operand1, operand2;
4778
4779 operand1 = operand_subword_force (dest, WORDS_BIG_ENDIAN == 0,
4780 DImode);
d448860e 4781 operand2 = operand_subword_force (copy_rtx (dest), WORDS_BIG_ENDIAN != 0,
2bfcf297
DB
4782 DImode);
4783 emit_move_insn (operand1, GEN_INT (c1));
4784 emit_move_insn (operand2, GEN_INT (c2));
4785 }
4786 else
4787 {
bc06712d 4788 HOST_WIDE_INT ud1, ud2, ud3, ud4;
252b88f7 4789
bc06712d 4790 ud1 = c1 & 0xffff;
f921c9c9 4791 ud2 = (c1 & 0xffff0000) >> 16;
2bfcf297 4792#if HOST_BITS_PER_WIDE_INT >= 64
bc06712d 4793 c2 = c1 >> 32;
2bfcf297 4794#endif
bc06712d 4795 ud3 = c2 & 0xffff;
f921c9c9 4796 ud4 = (c2 & 0xffff0000) >> 16;
2bfcf297 4797
f676971a 4798 if ((ud4 == 0xffff && ud3 == 0xffff && ud2 == 0xffff && (ud1 & 0x8000))
bc06712d 4799 || (ud4 == 0 && ud3 == 0 && ud2 == 0 && ! (ud1 & 0x8000)))
2bfcf297 4800 {
bc06712d 4801 if (ud1 & 0x8000)
b78d48dd 4802 emit_move_insn (dest, GEN_INT (((ud1 ^ 0x8000) - 0x8000)));
bc06712d
TR
4803 else
4804 emit_move_insn (dest, GEN_INT (ud1));
2bfcf297 4805 }
2bfcf297 4806
f676971a 4807 else if ((ud4 == 0xffff && ud3 == 0xffff && (ud2 & 0x8000))
bc06712d 4808 || (ud4 == 0 && ud3 == 0 && ! (ud2 & 0x8000)))
252b88f7 4809 {
bc06712d 4810 if (ud2 & 0x8000)
f676971a 4811 emit_move_insn (dest, GEN_INT (((ud2 << 16) ^ 0x80000000)
bc06712d 4812 - 0x80000000));
252b88f7 4813 else
bc06712d
TR
4814 emit_move_insn (dest, GEN_INT (ud2 << 16));
4815 if (ud1 != 0)
d448860e
JH
4816 emit_move_insn (copy_rtx (dest),
4817 gen_rtx_IOR (DImode, copy_rtx (dest),
4818 GEN_INT (ud1)));
252b88f7 4819 }
f676971a 4820 else if ((ud4 == 0xffff && (ud3 & 0x8000))
bc06712d
TR
4821 || (ud4 == 0 && ! (ud3 & 0x8000)))
4822 {
4823 if (ud3 & 0x8000)
f676971a 4824 emit_move_insn (dest, GEN_INT (((ud3 << 16) ^ 0x80000000)
bc06712d
TR
4825 - 0x80000000));
4826 else
4827 emit_move_insn (dest, GEN_INT (ud3 << 16));
4828
4829 if (ud2 != 0)
d448860e
JH
4830 emit_move_insn (copy_rtx (dest),
4831 gen_rtx_IOR (DImode, copy_rtx (dest),
4832 GEN_INT (ud2)));
4833 emit_move_insn (copy_rtx (dest),
4834 gen_rtx_ASHIFT (DImode, copy_rtx (dest),
4835 GEN_INT (16)));
bc06712d 4836 if (ud1 != 0)
d448860e
JH
4837 emit_move_insn (copy_rtx (dest),
4838 gen_rtx_IOR (DImode, copy_rtx (dest),
4839 GEN_INT (ud1)));
bc06712d 4840 }
f676971a 4841 else
bc06712d
TR
4842 {
4843 if (ud4 & 0x8000)
f676971a 4844 emit_move_insn (dest, GEN_INT (((ud4 << 16) ^ 0x80000000)
bc06712d
TR
4845 - 0x80000000));
4846 else
4847 emit_move_insn (dest, GEN_INT (ud4 << 16));
4848
4849 if (ud3 != 0)
d448860e
JH
4850 emit_move_insn (copy_rtx (dest),
4851 gen_rtx_IOR (DImode, copy_rtx (dest),
4852 GEN_INT (ud3)));
2bfcf297 4853
d448860e
JH
4854 emit_move_insn (copy_rtx (dest),
4855 gen_rtx_ASHIFT (DImode, copy_rtx (dest),
4856 GEN_INT (32)));
bc06712d 4857 if (ud2 != 0)
d448860e
JH
4858 emit_move_insn (copy_rtx (dest),
4859 gen_rtx_IOR (DImode, copy_rtx (dest),
4860 GEN_INT (ud2 << 16)));
bc06712d 4861 if (ud1 != 0)
d448860e
JH
4862 emit_move_insn (copy_rtx (dest),
4863 gen_rtx_IOR (DImode, copy_rtx (dest), GEN_INT (ud1)));
bc06712d
TR
4864 }
4865 }
2bfcf297
DB
4866 return dest;
4867}
4868
76d2b81d 4869/* Helper for the following. Get rid of [r+r] memory refs
7393f7f8 4870 in cases where it won't work (TImode, TFmode, TDmode). */
76d2b81d
DJ
4871
4872static void
4873rs6000_eliminate_indexed_memrefs (rtx operands[2])
4874{
4875 if (GET_CODE (operands[0]) == MEM
4876 && GET_CODE (XEXP (operands[0], 0)) != REG
55aa0757 4877 && ! legitimate_constant_pool_address_p (XEXP (operands[0], 0))
76d2b81d
DJ
4878 && ! reload_in_progress)
4879 operands[0]
4880 = replace_equiv_address (operands[0],
4881 copy_addr_to_reg (XEXP (operands[0], 0)));
4882
4883 if (GET_CODE (operands[1]) == MEM
4884 && GET_CODE (XEXP (operands[1], 0)) != REG
55aa0757 4885 && ! legitimate_constant_pool_address_p (XEXP (operands[1], 0))
76d2b81d
DJ
4886 && ! reload_in_progress)
4887 operands[1]
4888 = replace_equiv_address (operands[1],
4889 copy_addr_to_reg (XEXP (operands[1], 0)));
4890}
4891
fb4d4348
GK
4892/* Emit a move from SOURCE to DEST in mode MODE. */
4893void
a2369ed3 4894rs6000_emit_move (rtx dest, rtx source, enum machine_mode mode)
fb4d4348
GK
4895{
4896 rtx operands[2];
4897 operands[0] = dest;
4898 operands[1] = source;
f676971a 4899
fb4d4348
GK
4900 /* Sanity checks. Check that we get CONST_DOUBLE only when we should. */
4901 if (GET_CODE (operands[1]) == CONST_DOUBLE
4902 && ! FLOAT_MODE_P (mode)
4903 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4904 {
4905 /* FIXME. This should never happen. */
4906 /* Since it seems that it does, do the safe thing and convert
4907 to a CONST_INT. */
2496c7bd 4908 operands[1] = gen_int_mode (CONST_DOUBLE_LOW (operands[1]), mode);
fb4d4348 4909 }
37409796
NS
4910 gcc_assert (GET_CODE (operands[1]) != CONST_DOUBLE
4911 || FLOAT_MODE_P (mode)
4912 || ((CONST_DOUBLE_HIGH (operands[1]) != 0
4913 || CONST_DOUBLE_LOW (operands[1]) < 0)
4914 && (CONST_DOUBLE_HIGH (operands[1]) != -1
4915 || CONST_DOUBLE_LOW (operands[1]) >= 0)));
bb8df8a6 4916
c9e8cb32
DD
4917 /* Check if GCC is setting up a block move that will end up using FP
4918 registers as temporaries. We must make sure this is acceptable. */
4919 if (GET_CODE (operands[0]) == MEM
4920 && GET_CODE (operands[1]) == MEM
4921 && mode == DImode
41543739
GK
4922 && (SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[0]))
4923 || SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[1])))
4924 && ! (SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[0]) > 32
4925 ? 32 : MEM_ALIGN (operands[0])))
4926 || SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[1]) > 32
f676971a 4927 ? 32
41543739
GK
4928 : MEM_ALIGN (operands[1]))))
4929 && ! MEM_VOLATILE_P (operands [0])
4930 && ! MEM_VOLATILE_P (operands [1]))
c9e8cb32 4931 {
41543739
GK
4932 emit_move_insn (adjust_address (operands[0], SImode, 0),
4933 adjust_address (operands[1], SImode, 0));
d448860e
JH
4934 emit_move_insn (adjust_address (copy_rtx (operands[0]), SImode, 4),
4935 adjust_address (copy_rtx (operands[1]), SImode, 4));
c9e8cb32
DD
4936 return;
4937 }
630d42a0 4938
b3a13419 4939 if (can_create_pseudo_p () && GET_CODE (operands[0]) == MEM
c9dbf840 4940 && !gpc_reg_operand (operands[1], mode))
f6219a5e 4941 operands[1] = force_reg (mode, operands[1]);
a9098fd0 4942
a3170dc6 4943 if (mode == SFmode && ! TARGET_POWERPC
696e45ba 4944 && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT
ffc14f31 4945 && GET_CODE (operands[0]) == MEM)
fb4d4348 4946 {
ffc14f31
GK
4947 int regnum;
4948
4949 if (reload_in_progress || reload_completed)
4950 regnum = true_regnum (operands[1]);
4951 else if (GET_CODE (operands[1]) == REG)
4952 regnum = REGNO (operands[1]);
4953 else
4954 regnum = -1;
f676971a 4955
fb4d4348
GK
4956 /* If operands[1] is a register, on POWER it may have
4957 double-precision data in it, so truncate it to single
4958 precision. */
4959 if (FP_REGNO_P (regnum) || regnum >= FIRST_PSEUDO_REGISTER)
4960 {
4961 rtx newreg;
b3a13419 4962 newreg = (!can_create_pseudo_p () ? copy_rtx (operands[1])
d448860e 4963 : gen_reg_rtx (mode));
fb4d4348
GK
4964 emit_insn (gen_aux_truncdfsf2 (newreg, operands[1]));
4965 operands[1] = newreg;
4966 }
4967 }
4968
c4501e62
JJ
4969 /* Recognize the case where operand[1] is a reference to thread-local
4970 data and load its address to a register. */
84f52ebd 4971 if (rs6000_tls_referenced_p (operands[1]))
c4501e62 4972 {
84f52ebd
RH
4973 enum tls_model model;
4974 rtx tmp = operands[1];
4975 rtx addend = NULL;
4976
4977 if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
4978 {
4979 addend = XEXP (XEXP (tmp, 0), 1);
4980 tmp = XEXP (XEXP (tmp, 0), 0);
4981 }
4982
4983 gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
4984 model = SYMBOL_REF_TLS_MODEL (tmp);
4985 gcc_assert (model != 0);
4986
4987 tmp = rs6000_legitimize_tls_address (tmp, model);
4988 if (addend)
4989 {
4990 tmp = gen_rtx_PLUS (mode, tmp, addend);
4991 tmp = force_operand (tmp, operands[0]);
4992 }
4993 operands[1] = tmp;
c4501e62
JJ
4994 }
4995
8f4e6caf
RH
4996 /* Handle the case where reload calls us with an invalid address. */
4997 if (reload_in_progress && mode == Pmode
69ef87e2 4998 && (! general_operand (operands[1], mode)
8f4e6caf
RH
4999 || ! nonimmediate_operand (operands[0], mode)))
5000 goto emit_set;
5001
a9baceb1
GK
5002 /* 128-bit constant floating-point values on Darwin should really be
5003 loaded as two parts. */
8521c414 5004 if (!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
a9baceb1
GK
5005 && mode == TFmode && GET_CODE (operands[1]) == CONST_DOUBLE)
5006 {
5007 /* DImode is used, not DFmode, because simplify_gen_subreg doesn't
5008 know how to get a DFmode SUBREG of a TFmode. */
17caeff2
JM
5009 enum machine_mode imode = (TARGET_E500_DOUBLE ? DFmode : DImode);
5010 rs6000_emit_move (simplify_gen_subreg (imode, operands[0], mode, 0),
5011 simplify_gen_subreg (imode, operands[1], mode, 0),
5012 imode);
5013 rs6000_emit_move (simplify_gen_subreg (imode, operands[0], mode,
5014 GET_MODE_SIZE (imode)),
5015 simplify_gen_subreg (imode, operands[1], mode,
5016 GET_MODE_SIZE (imode)),
5017 imode);
a9baceb1
GK
5018 return;
5019 }
5020
e41b2a33
PB
5021 if (reload_in_progress && cfun->machine->sdmode_stack_slot != NULL_RTX)
5022 cfun->machine->sdmode_stack_slot =
5023 eliminate_regs (cfun->machine->sdmode_stack_slot, VOIDmode, NULL_RTX);
5024
5025 if (reload_in_progress
5026 && mode == SDmode
5027 && MEM_P (operands[0])
5028 && rtx_equal_p (operands[0], cfun->machine->sdmode_stack_slot)
5029 && REG_P (operands[1]))
5030 {
5031 if (FP_REGNO_P (REGNO (operands[1])))
5032 {
5033 rtx mem = adjust_address_nv (operands[0], DDmode, 0);
5034 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5035 emit_insn (gen_movsd_store (mem, operands[1]));
5036 }
5037 else if (INT_REGNO_P (REGNO (operands[1])))
5038 {
5039 rtx mem = adjust_address_nv (operands[0], mode, 4);
5040 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5041 emit_insn (gen_movsd_hardfloat (mem, operands[1]));
5042 }
5043 else
5044 gcc_unreachable();
5045 return;
5046 }
5047 if (reload_in_progress
5048 && mode == SDmode
5049 && REG_P (operands[0])
5050 && MEM_P (operands[1])
5051 && rtx_equal_p (operands[1], cfun->machine->sdmode_stack_slot))
5052 {
5053 if (FP_REGNO_P (REGNO (operands[0])))
5054 {
5055 rtx mem = adjust_address_nv (operands[1], DDmode, 0);
5056 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5057 emit_insn (gen_movsd_load (operands[0], mem));
5058 }
5059 else if (INT_REGNO_P (REGNO (operands[0])))
5060 {
5061 rtx mem = adjust_address_nv (operands[1], mode, 4);
5062 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5063 emit_insn (gen_movsd_hardfloat (operands[0], mem));
5064 }
5065 else
5066 gcc_unreachable();
5067 return;
5068 }
5069
fb4d4348
GK
5070 /* FIXME: In the long term, this switch statement should go away
5071 and be replaced by a sequence of tests based on things like
5072 mode == Pmode. */
5073 switch (mode)
5074 {
5075 case HImode:
5076 case QImode:
5077 if (CONSTANT_P (operands[1])
5078 && GET_CODE (operands[1]) != CONST_INT)
a9098fd0 5079 operands[1] = force_const_mem (mode, operands[1]);
fb4d4348
GK
5080 break;
5081
06f4e019 5082 case TFmode:
7393f7f8 5083 case TDmode:
76d2b81d
DJ
5084 rs6000_eliminate_indexed_memrefs (operands);
5085 /* fall through */
5086
fb4d4348 5087 case DFmode:
7393f7f8 5088 case DDmode:
fb4d4348 5089 case SFmode:
e41b2a33 5090 case SDmode:
f676971a 5091 if (CONSTANT_P (operands[1])
fb4d4348 5092 && ! easy_fp_constant (operands[1], mode))
a9098fd0 5093 operands[1] = force_const_mem (mode, operands[1]);
fb4d4348 5094 break;
f676971a 5095
0ac081f6
AH
5096 case V16QImode:
5097 case V8HImode:
5098 case V4SFmode:
5099 case V4SImode:
a3170dc6
AH
5100 case V4HImode:
5101 case V2SFmode:
5102 case V2SImode:
00a892b8 5103 case V1DImode:
69ef87e2 5104 if (CONSTANT_P (operands[1])
d744e06e 5105 && !easy_vector_constant (operands[1], mode))
0ac081f6
AH
5106 operands[1] = force_const_mem (mode, operands[1]);
5107 break;
f676971a 5108
fb4d4348 5109 case SImode:
a9098fd0 5110 case DImode:
fb4d4348
GK
5111 /* Use default pattern for address of ELF small data */
5112 if (TARGET_ELF
a9098fd0 5113 && mode == Pmode
f607bc57 5114 && DEFAULT_ABI == ABI_V4
f676971a 5115 && (GET_CODE (operands[1]) == SYMBOL_REF
a9098fd0
GK
5116 || GET_CODE (operands[1]) == CONST)
5117 && small_data_operand (operands[1], mode))
fb4d4348
GK
5118 {
5119 emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
5120 return;
5121 }
5122
f607bc57 5123 if (DEFAULT_ABI == ABI_V4
a9098fd0
GK
5124 && mode == Pmode && mode == SImode
5125 && flag_pic == 1 && got_operand (operands[1], mode))
fb4d4348
GK
5126 {
5127 emit_insn (gen_movsi_got (operands[0], operands[1]));
5128 return;
5129 }
5130
ee890fe2 5131 if ((TARGET_ELF || DEFAULT_ABI == ABI_DARWIN)
f1384257
AM
5132 && TARGET_NO_TOC
5133 && ! flag_pic
a9098fd0 5134 && mode == Pmode
fb4d4348
GK
5135 && CONSTANT_P (operands[1])
5136 && GET_CODE (operands[1]) != HIGH
5137 && GET_CODE (operands[1]) != CONST_INT)
5138 {
b3a13419
ILT
5139 rtx target = (!can_create_pseudo_p ()
5140 ? operands[0]
5141 : gen_reg_rtx (mode));
fb4d4348
GK
5142
5143 /* If this is a function address on -mcall-aixdesc,
5144 convert it to the address of the descriptor. */
5145 if (DEFAULT_ABI == ABI_AIX
5146 && GET_CODE (operands[1]) == SYMBOL_REF
5147 && XSTR (operands[1], 0)[0] == '.')
5148 {
5149 const char *name = XSTR (operands[1], 0);
5150 rtx new_ref;
5151 while (*name == '.')
5152 name++;
5153 new_ref = gen_rtx_SYMBOL_REF (Pmode, name);
5154 CONSTANT_POOL_ADDRESS_P (new_ref)
5155 = CONSTANT_POOL_ADDRESS_P (operands[1]);
d1908feb 5156 SYMBOL_REF_FLAGS (new_ref) = SYMBOL_REF_FLAGS (operands[1]);
fb4d4348 5157 SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]);
c185c797 5158 SYMBOL_REF_DATA (new_ref) = SYMBOL_REF_DATA (operands[1]);
fb4d4348
GK
5159 operands[1] = new_ref;
5160 }
7509c759 5161
ee890fe2
SS
5162 if (DEFAULT_ABI == ABI_DARWIN)
5163 {
ab82a49f
AP
5164#if TARGET_MACHO
5165 if (MACHO_DYNAMIC_NO_PIC_P)
5166 {
5167 /* Take care of any required data indirection. */
5168 operands[1] = rs6000_machopic_legitimize_pic_address (
5169 operands[1], mode, operands[0]);
5170 if (operands[0] != operands[1])
5171 emit_insn (gen_rtx_SET (VOIDmode,
c4ad648e 5172 operands[0], operands[1]));
ab82a49f
AP
5173 return;
5174 }
5175#endif
b8a55285
AP
5176 emit_insn (gen_macho_high (target, operands[1]));
5177 emit_insn (gen_macho_low (operands[0], target, operands[1]));
ee890fe2
SS
5178 return;
5179 }
5180
fb4d4348
GK
5181 emit_insn (gen_elf_high (target, operands[1]));
5182 emit_insn (gen_elf_low (operands[0], target, operands[1]));
5183 return;
5184 }
5185
a9098fd0
GK
5186 /* If this is a SYMBOL_REF that refers to a constant pool entry,
5187 and we have put it in the TOC, we just need to make a TOC-relative
5188 reference to it. */
5189 if (TARGET_TOC
5190 && GET_CODE (operands[1]) == SYMBOL_REF
4d588c14 5191 && constant_pool_expr_p (operands[1])
a9098fd0
GK
5192 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (operands[1]),
5193 get_pool_mode (operands[1])))
fb4d4348 5194 {
a9098fd0 5195 operands[1] = create_TOC_reference (operands[1]);
fb4d4348 5196 }
a9098fd0
GK
5197 else if (mode == Pmode
5198 && CONSTANT_P (operands[1])
38886f37
AO
5199 && ((GET_CODE (operands[1]) != CONST_INT
5200 && ! easy_fp_constant (operands[1], mode))
5201 || (GET_CODE (operands[1]) == CONST_INT
5202 && num_insns_constant (operands[1], mode) > 2)
5203 || (GET_CODE (operands[0]) == REG
5204 && FP_REGNO_P (REGNO (operands[0]))))
a9098fd0 5205 && GET_CODE (operands[1]) != HIGH
4d588c14
RH
5206 && ! legitimate_constant_pool_address_p (operands[1])
5207 && ! toc_relative_expr_p (operands[1]))
fb4d4348
GK
5208 {
5209 /* Emit a USE operation so that the constant isn't deleted if
5210 expensive optimizations are turned on because nobody
5211 references it. This should only be done for operands that
5212 contain SYMBOL_REFs with CONSTANT_POOL_ADDRESS_P set.
5213 This should not be done for operands that contain LABEL_REFs.
5214 For now, we just handle the obvious case. */
5215 if (GET_CODE (operands[1]) != LABEL_REF)
c41c1387 5216 emit_use (operands[1]);
fb4d4348 5217
c859cda6 5218#if TARGET_MACHO
ee890fe2 5219 /* Darwin uses a special PIC legitimizer. */
ab82a49f 5220 if (DEFAULT_ABI == ABI_DARWIN && MACHOPIC_INDIRECT)
ee890fe2 5221 {
ee890fe2
SS
5222 operands[1] =
5223 rs6000_machopic_legitimize_pic_address (operands[1], mode,
c859cda6
DJ
5224 operands[0]);
5225 if (operands[0] != operands[1])
5226 emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
ee890fe2
SS
5227 return;
5228 }
c859cda6 5229#endif
ee890fe2 5230
fb4d4348
GK
5231 /* If we are to limit the number of things we put in the TOC and
5232 this is a symbol plus a constant we can add in one insn,
5233 just put the symbol in the TOC and add the constant. Don't do
5234 this if reload is in progress. */
5235 if (GET_CODE (operands[1]) == CONST
5236 && TARGET_NO_SUM_IN_TOC && ! reload_in_progress
5237 && GET_CODE (XEXP (operands[1], 0)) == PLUS
a9098fd0 5238 && add_operand (XEXP (XEXP (operands[1], 0), 1), mode)
fb4d4348
GK
5239 && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
5240 || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
5241 && ! side_effects_p (operands[0]))
5242 {
a4f6c312
SS
5243 rtx sym =
5244 force_const_mem (mode, XEXP (XEXP (operands[1], 0), 0));
fb4d4348
GK
5245 rtx other = XEXP (XEXP (operands[1], 0), 1);
5246
a9098fd0
GK
5247 sym = force_reg (mode, sym);
5248 if (mode == SImode)
5249 emit_insn (gen_addsi3 (operands[0], sym, other));
5250 else
5251 emit_insn (gen_adddi3 (operands[0], sym, other));
fb4d4348
GK
5252 return;
5253 }
5254
a9098fd0 5255 operands[1] = force_const_mem (mode, operands[1]);
fb4d4348 5256
f676971a 5257 if (TARGET_TOC
0cdc04e8 5258 && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
4d588c14 5259 && constant_pool_expr_p (XEXP (operands[1], 0))
d34c5b80
DE
5260 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (
5261 get_pool_constant (XEXP (operands[1], 0)),
5262 get_pool_mode (XEXP (operands[1], 0))))
a9098fd0 5263 {
ba4828e0 5264 operands[1]
542a8afa 5265 = gen_const_mem (mode,
c4ad648e 5266 create_TOC_reference (XEXP (operands[1], 0)));
ba4828e0 5267 set_mem_alias_set (operands[1], get_TOC_alias_set ());
a9098fd0 5268 }
fb4d4348
GK
5269 }
5270 break;
a9098fd0 5271
fb4d4348 5272 case TImode:
76d2b81d
DJ
5273 rs6000_eliminate_indexed_memrefs (operands);
5274
27dc0551
DE
5275 if (TARGET_POWER)
5276 {
5277 emit_insn (gen_rtx_PARALLEL (VOIDmode,
5278 gen_rtvec (2,
5279 gen_rtx_SET (VOIDmode,
5280 operands[0], operands[1]),
5281 gen_rtx_CLOBBER (VOIDmode,
5282 gen_rtx_SCRATCH (SImode)))));
5283 return;
5284 }
fb4d4348
GK
5285 break;
5286
5287 default:
37409796 5288 gcc_unreachable ();
fb4d4348
GK
5289 }
5290
a9098fd0
GK
5291 /* Above, we may have called force_const_mem which may have returned
5292 an invalid address. If we can, fix this up; otherwise, reload will
5293 have to deal with it. */
8f4e6caf
RH
5294 if (GET_CODE (operands[1]) == MEM && ! reload_in_progress)
5295 operands[1] = validize_mem (operands[1]);
a9098fd0 5296
8f4e6caf 5297 emit_set:
fb4d4348
GK
5298 emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
5299}
4697a36c 5300\f
2858f73a
GK
5301/* Nonzero if we can use a floating-point register to pass this arg. */
5302#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
ebb109ad 5303 (SCALAR_FLOAT_MODE_P (MODE) \
2858f73a 5304 && (CUM)->fregno <= FP_ARG_MAX_REG \
56f4cc04 5305 && TARGET_HARD_FLOAT && TARGET_FPRS)
2858f73a
GK
5306
5307/* Nonzero if we can use an AltiVec register to pass this arg. */
5308#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE,NAMED) \
5309 (ALTIVEC_VECTOR_MODE (MODE) \
5310 && (CUM)->vregno <= ALTIVEC_ARG_MAX_REG \
5311 && TARGET_ALTIVEC_ABI \
83953138 5312 && (NAMED))
2858f73a 5313
c6e8c921
GK
5314/* Return a nonzero value to say to return the function value in
5315 memory, just as large structures are always returned. TYPE will be
5316 the data type of the value, and FNTYPE will be the type of the
5317 function doing the returning, or @code{NULL} for libcalls.
5318
5319 The AIX ABI for the RS/6000 specifies that all structures are
5320 returned in memory. The Darwin ABI does the same. The SVR4 ABI
5321 specifies that structures <= 8 bytes are returned in r3/r4, but a
5322 draft put them in memory, and GCC used to implement the draft
df01da37 5323 instead of the final standard. Therefore, aix_struct_return
c6e8c921
GK
5324 controls this instead of DEFAULT_ABI; V.4 targets needing backward
5325 compatibility can change DRAFT_V4_STRUCT_RET to override the
5326 default, and -m switches get the final word. See
5327 rs6000_override_options for more details.
5328
5329 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
5330 long double support is enabled. These values are returned in memory.
5331
5332 int_size_in_bytes returns -1 for variable size objects, which go in
5333 memory always. The cast to unsigned makes -1 > 8. */
5334
5335static bool
586de218 5336rs6000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
c6e8c921 5337{
594a51fe
SS
5338 /* In the darwin64 abi, try to use registers for larger structs
5339 if possible. */
0b5383eb 5340 if (rs6000_darwin64_abi
594a51fe 5341 && TREE_CODE (type) == RECORD_TYPE
0b5383eb
DJ
5342 && int_size_in_bytes (type) > 0)
5343 {
5344 CUMULATIVE_ARGS valcum;
5345 rtx valret;
5346
5347 valcum.words = 0;
5348 valcum.fregno = FP_ARG_MIN_REG;
5349 valcum.vregno = ALTIVEC_ARG_MIN_REG;
5350 /* Do a trial code generation as if this were going to be passed
5351 as an argument; if any part goes in memory, we return NULL. */
5352 valret = rs6000_darwin64_record_arg (&valcum, type, 1, true);
5353 if (valret)
5354 return false;
5355 /* Otherwise fall through to more conventional ABI rules. */
5356 }
594a51fe 5357
c6e8c921 5358 if (AGGREGATE_TYPE_P (type)
df01da37 5359 && (aix_struct_return
c6e8c921
GK
5360 || (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8))
5361 return true;
b693336b 5362
bada2eb8
DE
5363 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
5364 modes only exist for GCC vector types if -maltivec. */
5365 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI
5366 && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
5367 return false;
5368
b693336b
PB
5369 /* Return synthetic vectors in memory. */
5370 if (TREE_CODE (type) == VECTOR_TYPE
ad630bef 5371 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
b693336b
PB
5372 {
5373 static bool warned_for_return_big_vectors = false;
5374 if (!warned_for_return_big_vectors)
5375 {
d4ee4d25 5376 warning (0, "GCC vector returned by reference: "
b693336b
PB
5377 "non-standard ABI extension with no compatibility guarantee");
5378 warned_for_return_big_vectors = true;
5379 }
5380 return true;
5381 }
5382
602ea4d3 5383 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD && TYPE_MODE (type) == TFmode)
c6e8c921 5384 return true;
ad630bef 5385
c6e8c921
GK
5386 return false;
5387}
5388
4697a36c
MM
5389/* Initialize a variable CUM of type CUMULATIVE_ARGS
5390 for a call to a function whose data type is FNTYPE.
5391 For a library call, FNTYPE is 0.
5392
5393 For incoming args we set the number of arguments in the prototype large
1c20ae99 5394 so we never return a PARALLEL. */
4697a36c
MM
5395
5396void
f676971a 5397init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
0f6937fe
AM
5398 rtx libname ATTRIBUTE_UNUSED, int incoming,
5399 int libcall, int n_named_args)
4697a36c
MM
5400{
5401 static CUMULATIVE_ARGS zero_cumulative;
5402
5403 *cum = zero_cumulative;
5404 cum->words = 0;
5405 cum->fregno = FP_ARG_MIN_REG;
0ac081f6 5406 cum->vregno = ALTIVEC_ARG_MIN_REG;
4697a36c 5407 cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
ddcc8263
DE
5408 cum->call_cookie = ((DEFAULT_ABI == ABI_V4 && libcall)
5409 ? CALL_LIBCALL : CALL_NORMAL);
4cc833b7 5410 cum->sysv_gregno = GP_ARG_MIN_REG;
a6c9bed4
AH
5411 cum->stdarg = fntype
5412 && (TYPE_ARG_TYPES (fntype) != 0
5413 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
5414 != void_type_node));
4697a36c 5415
0f6937fe
AM
5416 cum->nargs_prototype = 0;
5417 if (incoming || cum->prototype)
5418 cum->nargs_prototype = n_named_args;
4697a36c 5419
a5c76ee6 5420 /* Check for a longcall attribute. */
3eb4e360
AM
5421 if ((!fntype && rs6000_default_long_calls)
5422 || (fntype
5423 && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype))
5424 && !lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype))))
5425 cum->call_cookie |= CALL_LONG;
6a4cee5f 5426
4697a36c
MM
5427 if (TARGET_DEBUG_ARG)
5428 {
5429 fprintf (stderr, "\ninit_cumulative_args:");
5430 if (fntype)
5431 {
5432 tree ret_type = TREE_TYPE (fntype);
5433 fprintf (stderr, " ret code = %s,",
5434 tree_code_name[ (int)TREE_CODE (ret_type) ]);
5435 }
5436
6a4cee5f
MM
5437 if (cum->call_cookie & CALL_LONG)
5438 fprintf (stderr, " longcall,");
5439
4697a36c
MM
5440 fprintf (stderr, " proto = %d, nargs = %d\n",
5441 cum->prototype, cum->nargs_prototype);
5442 }
f676971a 5443
c4ad648e
AM
5444 if (fntype
5445 && !TARGET_ALTIVEC
5446 && TARGET_ALTIVEC_ABI
5447 && ALTIVEC_VECTOR_MODE (TYPE_MODE (TREE_TYPE (fntype))))
5448 {
c85ce869 5449 error ("cannot return value in vector register because"
c4ad648e 5450 " altivec instructions are disabled, use -maltivec"
c85ce869 5451 " to enable them");
c4ad648e 5452 }
4697a36c
MM
5453}
5454\f
fe984136
RH
5455/* Return true if TYPE must be passed on the stack and not in registers. */
5456
5457static bool
586de218 5458rs6000_must_pass_in_stack (enum machine_mode mode, const_tree type)
fe984136
RH
5459{
5460 if (DEFAULT_ABI == ABI_AIX || TARGET_64BIT)
5461 return must_pass_in_stack_var_size (mode, type);
5462 else
5463 return must_pass_in_stack_var_size_or_pad (mode, type);
5464}
5465
c229cba9
DE
5466/* If defined, a C expression which determines whether, and in which
5467 direction, to pad out an argument with extra space. The value
5468 should be of type `enum direction': either `upward' to pad above
5469 the argument, `downward' to pad below, or `none' to inhibit
5470 padding.
5471
5472 For the AIX ABI structs are always stored left shifted in their
5473 argument slot. */
5474
9ebbca7d 5475enum direction
586de218 5476function_arg_padding (enum machine_mode mode, const_tree type)
c229cba9 5477{
6e985040
AM
5478#ifndef AGGREGATE_PADDING_FIXED
5479#define AGGREGATE_PADDING_FIXED 0
5480#endif
5481#ifndef AGGREGATES_PAD_UPWARD_ALWAYS
5482#define AGGREGATES_PAD_UPWARD_ALWAYS 0
5483#endif
5484
5485 if (!AGGREGATE_PADDING_FIXED)
5486 {
5487 /* GCC used to pass structures of the same size as integer types as
5488 if they were in fact integers, ignoring FUNCTION_ARG_PADDING.
19525b57 5489 i.e. Structures of size 1 or 2 (or 4 when TARGET_64BIT) were
6e985040
AM
5490 passed padded downward, except that -mstrict-align further
5491 muddied the water in that multi-component structures of 2 and 4
5492 bytes in size were passed padded upward.
5493
5494 The following arranges for best compatibility with previous
5495 versions of gcc, but removes the -mstrict-align dependency. */
5496 if (BYTES_BIG_ENDIAN)
5497 {
5498 HOST_WIDE_INT size = 0;
5499
5500 if (mode == BLKmode)
5501 {
5502 if (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
5503 size = int_size_in_bytes (type);
5504 }
5505 else
5506 size = GET_MODE_SIZE (mode);
5507
5508 if (size == 1 || size == 2 || size == 4)
5509 return downward;
5510 }
5511 return upward;
5512 }
5513
5514 if (AGGREGATES_PAD_UPWARD_ALWAYS)
5515 {
5516 if (type != 0 && AGGREGATE_TYPE_P (type))
5517 return upward;
5518 }
c229cba9 5519
d3704c46
KH
5520 /* Fall back to the default. */
5521 return DEFAULT_FUNCTION_ARG_PADDING (mode, type);
c229cba9
DE
5522}
5523
b6c9286a 5524/* If defined, a C expression that gives the alignment boundary, in bits,
f676971a 5525 of an argument with the specified mode and type. If it is not defined,
b6c9286a 5526 PARM_BOUNDARY is used for all arguments.
f676971a 5527
84e9ad15
AM
5528 V.4 wants long longs and doubles to be double word aligned. Just
5529 testing the mode size is a boneheaded way to do this as it means
5530 that other types such as complex int are also double word aligned.
5531 However, we're stuck with this because changing the ABI might break
5532 existing library interfaces.
5533
b693336b
PB
5534 Doubleword align SPE vectors.
5535 Quadword align Altivec vectors.
5536 Quadword align large synthetic vector types. */
b6c9286a
MM
5537
5538int
b693336b 5539function_arg_boundary (enum machine_mode mode, tree type)
b6c9286a 5540{
84e9ad15
AM
5541 if (DEFAULT_ABI == ABI_V4
5542 && (GET_MODE_SIZE (mode) == 8
5543 || (TARGET_HARD_FLOAT
5544 && TARGET_FPRS
7393f7f8 5545 && (mode == TFmode || mode == TDmode))))
4ed78545 5546 return 64;
ad630bef
DE
5547 else if (SPE_VECTOR_MODE (mode)
5548 || (type && TREE_CODE (type) == VECTOR_TYPE
5549 && int_size_in_bytes (type) >= 8
5550 && int_size_in_bytes (type) < 16))
e1f83b4d 5551 return 64;
ad630bef
DE
5552 else if (ALTIVEC_VECTOR_MODE (mode)
5553 || (type && TREE_CODE (type) == VECTOR_TYPE
5554 && int_size_in_bytes (type) >= 16))
0ac081f6 5555 return 128;
0b5383eb
DJ
5556 else if (rs6000_darwin64_abi && mode == BLKmode
5557 && type && TYPE_ALIGN (type) > 64)
5558 return 128;
9ebbca7d 5559 else
b6c9286a 5560 return PARM_BOUNDARY;
b6c9286a 5561}
c53bdcf5 5562
294bd182
AM
5563/* For a function parm of MODE and TYPE, return the starting word in
5564 the parameter area. NWORDS of the parameter area are already used. */
5565
5566static unsigned int
5567rs6000_parm_start (enum machine_mode mode, tree type, unsigned int nwords)
5568{
5569 unsigned int align;
5570 unsigned int parm_offset;
5571
5572 align = function_arg_boundary (mode, type) / PARM_BOUNDARY - 1;
5573 parm_offset = DEFAULT_ABI == ABI_V4 ? 2 : 6;
5574 return nwords + (-(parm_offset + nwords) & align);
5575}
5576
c53bdcf5
AM
5577/* Compute the size (in words) of a function argument. */
5578
5579static unsigned long
5580rs6000_arg_size (enum machine_mode mode, tree type)
5581{
5582 unsigned long size;
5583
5584 if (mode != BLKmode)
5585 size = GET_MODE_SIZE (mode);
5586 else
5587 size = int_size_in_bytes (type);
5588
5589 if (TARGET_32BIT)
5590 return (size + 3) >> 2;
5591 else
5592 return (size + 7) >> 3;
5593}
b6c9286a 5594\f
0b5383eb 5595/* Use this to flush pending int fields. */
594a51fe
SS
5596
5597static void
0b5383eb
DJ
5598rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *cum,
5599 HOST_WIDE_INT bitpos)
594a51fe 5600{
0b5383eb
DJ
5601 unsigned int startbit, endbit;
5602 int intregs, intoffset;
5603 enum machine_mode mode;
594a51fe 5604
0b5383eb
DJ
5605 if (cum->intoffset == -1)
5606 return;
594a51fe 5607
0b5383eb
DJ
5608 intoffset = cum->intoffset;
5609 cum->intoffset = -1;
5610
5611 if (intoffset % BITS_PER_WORD != 0)
5612 {
5613 mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD,
5614 MODE_INT, 0);
5615 if (mode == BLKmode)
594a51fe 5616 {
0b5383eb
DJ
5617 /* We couldn't find an appropriate mode, which happens,
5618 e.g., in packed structs when there are 3 bytes to load.
5619 Back intoffset back to the beginning of the word in this
5620 case. */
5621 intoffset = intoffset & -BITS_PER_WORD;
594a51fe 5622 }
594a51fe 5623 }
0b5383eb
DJ
5624
5625 startbit = intoffset & -BITS_PER_WORD;
5626 endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
5627 intregs = (endbit - startbit) / BITS_PER_WORD;
5628 cum->words += intregs;
5629}
5630
5631/* The darwin64 ABI calls for us to recurse down through structs,
5632 looking for elements passed in registers. Unfortunately, we have
5633 to track int register count here also because of misalignments
5634 in powerpc alignment mode. */
5635
5636static void
5637rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *cum,
5638 tree type,
5639 HOST_WIDE_INT startbitpos)
5640{
5641 tree f;
5642
5643 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5644 if (TREE_CODE (f) == FIELD_DECL)
5645 {
5646 HOST_WIDE_INT bitpos = startbitpos;
5647 tree ftype = TREE_TYPE (f);
70fb00df
AP
5648 enum machine_mode mode;
5649 if (ftype == error_mark_node)
5650 continue;
5651 mode = TYPE_MODE (ftype);
0b5383eb
DJ
5652
5653 if (DECL_SIZE (f) != 0
5654 && host_integerp (bit_position (f), 1))
5655 bitpos += int_bit_position (f);
5656
5657 /* ??? FIXME: else assume zero offset. */
5658
5659 if (TREE_CODE (ftype) == RECORD_TYPE)
5660 rs6000_darwin64_record_arg_advance_recurse (cum, ftype, bitpos);
5661 else if (USE_FP_FOR_ARG_P (cum, mode, ftype))
5662 {
5663 rs6000_darwin64_record_arg_advance_flush (cum, bitpos);
5664 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
5665 cum->words += (GET_MODE_SIZE (mode) + 7) >> 3;
5666 }
5667 else if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, 1))
5668 {
5669 rs6000_darwin64_record_arg_advance_flush (cum, bitpos);
5670 cum->vregno++;
5671 cum->words += 2;
5672 }
5673 else if (cum->intoffset == -1)
5674 cum->intoffset = bitpos;
5675 }
594a51fe
SS
5676}
5677
4697a36c
MM
5678/* Update the data in CUM to advance over an argument
5679 of mode MODE and data type TYPE.
b2d04ecf
AM
5680 (TYPE is null for libcalls where that information may not be available.)
5681
5682 Note that for args passed by reference, function_arg will be called
5683 with MODE and TYPE set to that of the pointer to the arg, not the arg
5684 itself. */
4697a36c
MM
5685
5686void
f676971a 5687function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
594a51fe 5688 tree type, int named, int depth)
4697a36c 5689{
0b5383eb
DJ
5690 int size;
5691
594a51fe
SS
5692 /* Only tick off an argument if we're not recursing. */
5693 if (depth == 0)
5694 cum->nargs_prototype--;
4697a36c 5695
ad630bef
DE
5696 if (TARGET_ALTIVEC_ABI
5697 && (ALTIVEC_VECTOR_MODE (mode)
5698 || (type && TREE_CODE (type) == VECTOR_TYPE
5699 && int_size_in_bytes (type) == 16)))
0ac081f6 5700 {
4ed78545
AM
5701 bool stack = false;
5702
2858f73a 5703 if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named))
c4ad648e 5704 {
6d0ef01e
HP
5705 cum->vregno++;
5706 if (!TARGET_ALTIVEC)
c85ce869 5707 error ("cannot pass argument in vector register because"
6d0ef01e 5708 " altivec instructions are disabled, use -maltivec"
c85ce869 5709 " to enable them");
4ed78545
AM
5710
5711 /* PowerPC64 Linux and AIX allocate GPRs for a vector argument
f676971a 5712 even if it is going to be passed in a vector register.
4ed78545
AM
5713 Darwin does the same for variable-argument functions. */
5714 if ((DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
5715 || (cum->stdarg && DEFAULT_ABI != ABI_V4))
5716 stack = true;
6d0ef01e 5717 }
4ed78545
AM
5718 else
5719 stack = true;
5720
5721 if (stack)
c4ad648e 5722 {
a594a19c 5723 int align;
f676971a 5724
2858f73a
GK
5725 /* Vector parameters must be 16-byte aligned. This places
5726 them at 2 mod 4 in terms of words in 32-bit mode, since
5727 the parameter save area starts at offset 24 from the
5728 stack. In 64-bit mode, they just have to start on an
5729 even word, since the parameter save area is 16-byte
5730 aligned. Space for GPRs is reserved even if the argument
5731 will be passed in memory. */
5732 if (TARGET_32BIT)
4ed78545 5733 align = (2 - cum->words) & 3;
2858f73a
GK
5734 else
5735 align = cum->words & 1;
c53bdcf5 5736 cum->words += align + rs6000_arg_size (mode, type);
f676971a 5737
a594a19c
GK
5738 if (TARGET_DEBUG_ARG)
5739 {
f676971a 5740 fprintf (stderr, "function_adv: words = %2d, align=%d, ",
a594a19c
GK
5741 cum->words, align);
5742 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s\n",
f676971a 5743 cum->nargs_prototype, cum->prototype,
2858f73a 5744 GET_MODE_NAME (mode));
a594a19c
GK
5745 }
5746 }
0ac081f6 5747 }
a4b0320c 5748 else if (TARGET_SPE_ABI && TARGET_SPE && SPE_VECTOR_MODE (mode)
a6c9bed4
AH
5749 && !cum->stdarg
5750 && cum->sysv_gregno <= GP_ARG_MAX_REG)
a4b0320c 5751 cum->sysv_gregno++;
594a51fe
SS
5752
5753 else if (rs6000_darwin64_abi
5754 && mode == BLKmode
0b5383eb
DJ
5755 && TREE_CODE (type) == RECORD_TYPE
5756 && (size = int_size_in_bytes (type)) > 0)
5757 {
5758 /* Variable sized types have size == -1 and are
5759 treated as if consisting entirely of ints.
5760 Pad to 16 byte boundary if needed. */
5761 if (TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
5762 && (cum->words % 2) != 0)
5763 cum->words++;
5764 /* For varargs, we can just go up by the size of the struct. */
5765 if (!named)
5766 cum->words += (size + 7) / 8;
5767 else
5768 {
5769 /* It is tempting to say int register count just goes up by
5770 sizeof(type)/8, but this is wrong in a case such as
5771 { int; double; int; } [powerpc alignment]. We have to
5772 grovel through the fields for these too. */
5773 cum->intoffset = 0;
5774 rs6000_darwin64_record_arg_advance_recurse (cum, type, 0);
bb8df8a6 5775 rs6000_darwin64_record_arg_advance_flush (cum,
0b5383eb
DJ
5776 size * BITS_PER_UNIT);
5777 }
5778 }
f607bc57 5779 else if (DEFAULT_ABI == ABI_V4)
4697a36c 5780 {
a3170dc6 5781 if (TARGET_HARD_FLOAT && TARGET_FPRS
56f4cc04
DE
5782 && ((TARGET_SINGLE_FLOAT && mode == SFmode)
5783 || (TARGET_DOUBLE_FLOAT && mode == DFmode)
5784 || (mode == TFmode && !TARGET_IEEEQUAD)
5785 || mode == SDmode || mode == DDmode || mode == TDmode))
4697a36c 5786 {
2d83f070
JJ
5787 /* _Decimal128 must use an even/odd register pair. This assumes
5788 that the register number is odd when fregno is odd. */
5789 if (mode == TDmode && (cum->fregno % 2) == 1)
7393f7f8
BE
5790 cum->fregno++;
5791
5792 if (cum->fregno + (mode == TFmode || mode == TDmode ? 1 : 0)
5793 <= FP_ARG_V4_MAX_REG)
602ea4d3 5794 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
4cc833b7
RH
5795 else
5796 {
602ea4d3 5797 cum->fregno = FP_ARG_V4_MAX_REG + 1;
4d4447b5
PB
5798 if (mode == DFmode || mode == TFmode
5799 || mode == DDmode || mode == TDmode)
c4ad648e 5800 cum->words += cum->words & 1;
c53bdcf5 5801 cum->words += rs6000_arg_size (mode, type);
4cc833b7 5802 }
4697a36c 5803 }
4cc833b7
RH
5804 else
5805 {
b2d04ecf 5806 int n_words = rs6000_arg_size (mode, type);
4cc833b7
RH
5807 int gregno = cum->sysv_gregno;
5808
4ed78545
AM
5809 /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
5810 (r7,r8) or (r9,r10). As does any other 2 word item such
5811 as complex int due to a historical mistake. */
5812 if (n_words == 2)
5813 gregno += (1 - gregno) & 1;
4cc833b7 5814
4ed78545 5815 /* Multi-reg args are not split between registers and stack. */
4cc833b7
RH
5816 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
5817 {
4ed78545
AM
5818 /* Long long and SPE vectors are aligned on the stack.
5819 So are other 2 word items such as complex int due to
5820 a historical mistake. */
4cc833b7
RH
5821 if (n_words == 2)
5822 cum->words += cum->words & 1;
5823 cum->words += n_words;
5824 }
4697a36c 5825
4cc833b7
RH
5826 /* Note: continuing to accumulate gregno past when we've started
5827 spilling to the stack indicates the fact that we've started
5828 spilling to the stack to expand_builtin_saveregs. */
5829 cum->sysv_gregno = gregno + n_words;
5830 }
4697a36c 5831
4cc833b7
RH
5832 if (TARGET_DEBUG_ARG)
5833 {
5834 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
5835 cum->words, cum->fregno);
5836 fprintf (stderr, "gregno = %2d, nargs = %4d, proto = %d, ",
5837 cum->sysv_gregno, cum->nargs_prototype, cum->prototype);
5838 fprintf (stderr, "mode = %4s, named = %d\n",
5839 GET_MODE_NAME (mode), named);
5840 }
4697a36c
MM
5841 }
5842 else
4cc833b7 5843 {
b2d04ecf 5844 int n_words = rs6000_arg_size (mode, type);
294bd182
AM
5845 int start_words = cum->words;
5846 int align_words = rs6000_parm_start (mode, type, start_words);
a4f6c312 5847
294bd182 5848 cum->words = align_words + n_words;
4697a36c 5849
ebb109ad 5850 if (SCALAR_FLOAT_MODE_P (mode)
56f4cc04 5851 && TARGET_HARD_FLOAT && TARGET_FPRS)
2d83f070
JJ
5852 {
5853 /* _Decimal128 must be passed in an even/odd float register pair.
5854 This assumes that the register number is odd when fregno is
5855 odd. */
5856 if (mode == TDmode && (cum->fregno % 2) == 1)
5857 cum->fregno++;
5858 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
5859 }
4cc833b7
RH
5860
5861 if (TARGET_DEBUG_ARG)
5862 {
5863 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
5864 cum->words, cum->fregno);
5865 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s, ",
5866 cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode));
594a51fe 5867 fprintf (stderr, "named = %d, align = %d, depth = %d\n",
294bd182 5868 named, align_words - start_words, depth);
4cc833b7
RH
5869 }
5870 }
4697a36c 5871}
a6c9bed4 5872
f82f556d
AH
5873static rtx
5874spe_build_register_parallel (enum machine_mode mode, int gregno)
5875{
17caeff2 5876 rtx r1, r3, r5, r7;
f82f556d 5877
37409796 5878 switch (mode)
f82f556d 5879 {
37409796 5880 case DFmode:
54b695e7
AH
5881 r1 = gen_rtx_REG (DImode, gregno);
5882 r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
5883 return gen_rtx_PARALLEL (mode, gen_rtvec (1, r1));
37409796
NS
5884
5885 case DCmode:
17caeff2 5886 case TFmode:
54b695e7
AH
5887 r1 = gen_rtx_REG (DImode, gregno);
5888 r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
5889 r3 = gen_rtx_REG (DImode, gregno + 2);
5890 r3 = gen_rtx_EXPR_LIST (VOIDmode, r3, GEN_INT (8));
5891 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r3));
37409796 5892
17caeff2
JM
5893 case TCmode:
5894 r1 = gen_rtx_REG (DImode, gregno);
5895 r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
5896 r3 = gen_rtx_REG (DImode, gregno + 2);
5897 r3 = gen_rtx_EXPR_LIST (VOIDmode, r3, GEN_INT (8));
5898 r5 = gen_rtx_REG (DImode, gregno + 4);
5899 r5 = gen_rtx_EXPR_LIST (VOIDmode, r5, GEN_INT (16));
5900 r7 = gen_rtx_REG (DImode, gregno + 6);
5901 r7 = gen_rtx_EXPR_LIST (VOIDmode, r7, GEN_INT (24));
5902 return gen_rtx_PARALLEL (mode, gen_rtvec (4, r1, r3, r5, r7));
5903
37409796
NS
5904 default:
5905 gcc_unreachable ();
f82f556d 5906 }
f82f556d 5907}
b78d48dd 5908
f82f556d 5909/* Determine where to put a SIMD argument on the SPE. */
a6c9bed4 5910static rtx
f676971a 5911rs6000_spe_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
a2369ed3 5912 tree type)
a6c9bed4 5913{
f82f556d
AH
5914 int gregno = cum->sysv_gregno;
5915
5916 /* On E500 v2, double arithmetic is done on the full 64-bit GPR, but
600e1f95 5917 are passed and returned in a pair of GPRs for ABI compatibility. */
4d4447b5 5918 if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
4d4447b5 5919 || mode == DCmode || mode == TCmode))
f82f556d 5920 {
b5870bee
AH
5921 int n_words = rs6000_arg_size (mode, type);
5922
f82f556d 5923 /* Doubles go in an odd/even register pair (r5/r6, etc). */
4f011e1e 5924 if (mode == DFmode)
b5870bee 5925 gregno += (1 - gregno) & 1;
f82f556d 5926
b5870bee
AH
5927 /* Multi-reg args are not split between registers and stack. */
5928 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
f82f556d
AH
5929 return NULL_RTX;
5930
5931 return spe_build_register_parallel (mode, gregno);
5932 }
a6c9bed4
AH
5933 if (cum->stdarg)
5934 {
c53bdcf5 5935 int n_words = rs6000_arg_size (mode, type);
a6c9bed4
AH
5936
5937 /* SPE vectors are put in odd registers. */
5938 if (n_words == 2 && (gregno & 1) == 0)
5939 gregno += 1;
5940
5941 if (gregno + n_words - 1 <= GP_ARG_MAX_REG)
5942 {
5943 rtx r1, r2;
5944 enum machine_mode m = SImode;
5945
5946 r1 = gen_rtx_REG (m, gregno);
5947 r1 = gen_rtx_EXPR_LIST (m, r1, const0_rtx);
5948 r2 = gen_rtx_REG (m, gregno + 1);
5949 r2 = gen_rtx_EXPR_LIST (m, r2, GEN_INT (4));
5950 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
5951 }
5952 else
b78d48dd 5953 return NULL_RTX;
a6c9bed4
AH
5954 }
5955 else
5956 {
f82f556d
AH
5957 if (gregno <= GP_ARG_MAX_REG)
5958 return gen_rtx_REG (mode, gregno);
a6c9bed4 5959 else
b78d48dd 5960 return NULL_RTX;
a6c9bed4
AH
5961 }
5962}
5963
0b5383eb
DJ
5964/* A subroutine of rs6000_darwin64_record_arg. Assign the bits of the
5965 structure between cum->intoffset and bitpos to integer registers. */
594a51fe 5966
0b5383eb 5967static void
bb8df8a6 5968rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *cum,
0b5383eb 5969 HOST_WIDE_INT bitpos, rtx rvec[], int *k)
594a51fe 5970{
0b5383eb
DJ
5971 enum machine_mode mode;
5972 unsigned int regno;
5973 unsigned int startbit, endbit;
5974 int this_regno, intregs, intoffset;
5975 rtx reg;
594a51fe 5976
0b5383eb
DJ
5977 if (cum->intoffset == -1)
5978 return;
5979
5980 intoffset = cum->intoffset;
5981 cum->intoffset = -1;
5982
5983 /* If this is the trailing part of a word, try to only load that
5984 much into the register. Otherwise load the whole register. Note
5985 that in the latter case we may pick up unwanted bits. It's not a
5986 problem at the moment but may wish to revisit. */
5987
5988 if (intoffset % BITS_PER_WORD != 0)
594a51fe 5989 {
0b5383eb
DJ
5990 mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD,
5991 MODE_INT, 0);
5992 if (mode == BLKmode)
5993 {
5994 /* We couldn't find an appropriate mode, which happens,
5995 e.g., in packed structs when there are 3 bytes to load.
5996 Back intoffset back to the beginning of the word in this
5997 case. */
5998 intoffset = intoffset & -BITS_PER_WORD;
5999 mode = word_mode;
6000 }
6001 }
6002 else
6003 mode = word_mode;
6004
6005 startbit = intoffset & -BITS_PER_WORD;
6006 endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
6007 intregs = (endbit - startbit) / BITS_PER_WORD;
6008 this_regno = cum->words + intoffset / BITS_PER_WORD;
6009
6010 if (intregs > 0 && intregs > GP_ARG_NUM_REG - this_regno)
6011 cum->use_stack = 1;
bb8df8a6 6012
0b5383eb
DJ
6013 intregs = MIN (intregs, GP_ARG_NUM_REG - this_regno);
6014 if (intregs <= 0)
6015 return;
6016
6017 intoffset /= BITS_PER_UNIT;
6018 do
6019 {
6020 regno = GP_ARG_MIN_REG + this_regno;
6021 reg = gen_rtx_REG (mode, regno);
6022 rvec[(*k)++] =
6023 gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
6024
6025 this_regno += 1;
6026 intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1;
6027 mode = word_mode;
6028 intregs -= 1;
6029 }
6030 while (intregs > 0);
6031}
6032
6033/* Recursive workhorse for the following. */
6034
6035static void
586de218 6036rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *cum, const_tree type,
0b5383eb
DJ
6037 HOST_WIDE_INT startbitpos, rtx rvec[],
6038 int *k)
6039{
6040 tree f;
6041
6042 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
6043 if (TREE_CODE (f) == FIELD_DECL)
6044 {
6045 HOST_WIDE_INT bitpos = startbitpos;
6046 tree ftype = TREE_TYPE (f);
70fb00df
AP
6047 enum machine_mode mode;
6048 if (ftype == error_mark_node)
6049 continue;
6050 mode = TYPE_MODE (ftype);
0b5383eb
DJ
6051
6052 if (DECL_SIZE (f) != 0
6053 && host_integerp (bit_position (f), 1))
6054 bitpos += int_bit_position (f);
6055
6056 /* ??? FIXME: else assume zero offset. */
6057
6058 if (TREE_CODE (ftype) == RECORD_TYPE)
6059 rs6000_darwin64_record_arg_recurse (cum, ftype, bitpos, rvec, k);
6060 else if (cum->named && USE_FP_FOR_ARG_P (cum, mode, ftype))
594a51fe 6061 {
0b5383eb
DJ
6062#if 0
6063 switch (mode)
594a51fe 6064 {
0b5383eb
DJ
6065 case SCmode: mode = SFmode; break;
6066 case DCmode: mode = DFmode; break;
6067 case TCmode: mode = TFmode; break;
6068 default: break;
594a51fe 6069 }
0b5383eb
DJ
6070#endif
6071 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
6072 rvec[(*k)++]
bb8df8a6 6073 = gen_rtx_EXPR_LIST (VOIDmode,
0b5383eb
DJ
6074 gen_rtx_REG (mode, cum->fregno++),
6075 GEN_INT (bitpos / BITS_PER_UNIT));
7393f7f8 6076 if (mode == TFmode || mode == TDmode)
0b5383eb 6077 cum->fregno++;
594a51fe 6078 }
0b5383eb
DJ
6079 else if (cum->named && USE_ALTIVEC_FOR_ARG_P (cum, mode, ftype, 1))
6080 {
6081 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
6082 rvec[(*k)++]
bb8df8a6
EC
6083 = gen_rtx_EXPR_LIST (VOIDmode,
6084 gen_rtx_REG (mode, cum->vregno++),
0b5383eb
DJ
6085 GEN_INT (bitpos / BITS_PER_UNIT));
6086 }
6087 else if (cum->intoffset == -1)
6088 cum->intoffset = bitpos;
6089 }
6090}
594a51fe 6091
0b5383eb
DJ
6092/* For the darwin64 ABI, we want to construct a PARALLEL consisting of
6093 the register(s) to be used for each field and subfield of a struct
6094 being passed by value, along with the offset of where the
6095 register's value may be found in the block. FP fields go in FP
6096 register, vector fields go in vector registers, and everything
bb8df8a6 6097 else goes in int registers, packed as in memory.
8ff40a74 6098
0b5383eb
DJ
6099 This code is also used for function return values. RETVAL indicates
6100 whether this is the case.
8ff40a74 6101
a4d05547 6102 Much of this is taken from the SPARC V9 port, which has a similar
0b5383eb 6103 calling convention. */
594a51fe 6104
0b5383eb 6105static rtx
586de218 6106rs6000_darwin64_record_arg (CUMULATIVE_ARGS *orig_cum, const_tree type,
0b5383eb
DJ
6107 int named, bool retval)
6108{
6109 rtx rvec[FIRST_PSEUDO_REGISTER];
6110 int k = 1, kbase = 1;
6111 HOST_WIDE_INT typesize = int_size_in_bytes (type);
6112 /* This is a copy; modifications are not visible to our caller. */
6113 CUMULATIVE_ARGS copy_cum = *orig_cum;
6114 CUMULATIVE_ARGS *cum = &copy_cum;
6115
6116 /* Pad to 16 byte boundary if needed. */
6117 if (!retval && TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
6118 && (cum->words % 2) != 0)
6119 cum->words++;
6120
6121 cum->intoffset = 0;
6122 cum->use_stack = 0;
6123 cum->named = named;
6124
6125 /* Put entries into rvec[] for individual FP and vector fields, and
6126 for the chunks of memory that go in int regs. Note we start at
6127 element 1; 0 is reserved for an indication of using memory, and
6128 may or may not be filled in below. */
6129 rs6000_darwin64_record_arg_recurse (cum, type, 0, rvec, &k);
6130 rs6000_darwin64_record_arg_flush (cum, typesize * BITS_PER_UNIT, rvec, &k);
6131
6132 /* If any part of the struct went on the stack put all of it there.
6133 This hack is because the generic code for
6134 FUNCTION_ARG_PARTIAL_NREGS cannot handle cases where the register
6135 parts of the struct are not at the beginning. */
6136 if (cum->use_stack)
6137 {
6138 if (retval)
6139 return NULL_RTX; /* doesn't go in registers at all */
6140 kbase = 0;
6141 rvec[0] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
6142 }
6143 if (k > 1 || cum->use_stack)
6144 return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (k - kbase, &rvec[kbase]));
594a51fe
SS
6145 else
6146 return NULL_RTX;
6147}
6148
b78d48dd
FJ
6149/* Determine where to place an argument in 64-bit mode with 32-bit ABI. */
6150
6151static rtx
ec6376ab 6152rs6000_mixed_function_arg (enum machine_mode mode, tree type, int align_words)
b78d48dd 6153{
ec6376ab
AM
6154 int n_units;
6155 int i, k;
6156 rtx rvec[GP_ARG_NUM_REG + 1];
6157
6158 if (align_words >= GP_ARG_NUM_REG)
6159 return NULL_RTX;
6160
6161 n_units = rs6000_arg_size (mode, type);
6162
6163 /* Optimize the simple case where the arg fits in one gpr, except in
6164 the case of BLKmode due to assign_parms assuming that registers are
6165 BITS_PER_WORD wide. */
6166 if (n_units == 0
6167 || (n_units == 1 && mode != BLKmode))
6168 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6169
6170 k = 0;
6171 if (align_words + n_units > GP_ARG_NUM_REG)
6172 /* Not all of the arg fits in gprs. Say that it goes in memory too,
6173 using a magic NULL_RTX component.
79773478
AM
6174 This is not strictly correct. Only some of the arg belongs in
6175 memory, not all of it. However, the normal scheme using
6176 function_arg_partial_nregs can result in unusual subregs, eg.
6177 (subreg:SI (reg:DF) 4), which are not handled well. The code to
6178 store the whole arg to memory is often more efficient than code
6179 to store pieces, and we know that space is available in the right
6180 place for the whole arg. */
ec6376ab
AM
6181 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
6182
6183 i = 0;
6184 do
36a454e1 6185 {
ec6376ab
AM
6186 rtx r = gen_rtx_REG (SImode, GP_ARG_MIN_REG + align_words);
6187 rtx off = GEN_INT (i++ * 4);
6188 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
36a454e1 6189 }
ec6376ab
AM
6190 while (++align_words < GP_ARG_NUM_REG && --n_units != 0);
6191
6192 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
b78d48dd
FJ
6193}
6194
4697a36c
MM
6195/* Determine where to put an argument to a function.
6196 Value is zero to push the argument on the stack,
6197 or a hard register in which to store the argument.
6198
6199 MODE is the argument's machine mode.
6200 TYPE is the data type of the argument (as a tree).
6201 This is null for libcalls where that information may
6202 not be available.
6203 CUM is a variable of type CUMULATIVE_ARGS which gives info about
0b5383eb
DJ
6204 the preceding args and about the function being called. It is
6205 not modified in this routine.
4697a36c
MM
6206 NAMED is nonzero if this argument is a named parameter
6207 (otherwise it is an extra parameter matching an ellipsis).
6208
6209 On RS/6000 the first eight words of non-FP are normally in registers
6210 and the rest are pushed. Under AIX, the first 13 FP args are in registers.
6211 Under V.4, the first 8 FP args are in registers.
6212
6213 If this is floating-point and no prototype is specified, we use
6214 both an FP and integer register (or possibly FP reg and stack). Library
b9599e46 6215 functions (when CALL_LIBCALL is set) always have the proper types for args,
4697a36c 6216 so we can pass the FP value just in one register. emit_library_function
b2d04ecf
AM
6217 doesn't support PARALLEL anyway.
6218
6219 Note that for args passed by reference, function_arg will be called
6220 with MODE and TYPE set to that of the pointer to the arg, not the arg
6221 itself. */
4697a36c 6222
9390387d 6223rtx
f676971a 6224function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
a2369ed3 6225 tree type, int named)
4697a36c 6226{
4cc833b7 6227 enum rs6000_abi abi = DEFAULT_ABI;
4697a36c 6228
a4f6c312
SS
6229 /* Return a marker to indicate whether CR1 needs to set or clear the
6230 bit that V.4 uses to say fp args were passed in registers.
6231 Assume that we don't need the marker for software floating point,
6232 or compiler generated library calls. */
4697a36c
MM
6233 if (mode == VOIDmode)
6234 {
f607bc57 6235 if (abi == ABI_V4
b9599e46 6236 && (cum->call_cookie & CALL_LIBCALL) == 0
c1fa753e
AM
6237 && (cum->stdarg
6238 || (cum->nargs_prototype < 0
6239 && (cum->prototype || TARGET_NO_PROTOTYPE))))
7509c759 6240 {
a3170dc6
AH
6241 /* For the SPE, we need to crxor CR6 always. */
6242 if (TARGET_SPE_ABI)
6243 return GEN_INT (cum->call_cookie | CALL_V4_SET_FP_ARGS);
6244 else if (TARGET_HARD_FLOAT && TARGET_FPRS)
6245 return GEN_INT (cum->call_cookie
6246 | ((cum->fregno == FP_ARG_MIN_REG)
6247 ? CALL_V4_SET_FP_ARGS
6248 : CALL_V4_CLEAR_FP_ARGS));
7509c759 6249 }
4697a36c 6250
7509c759 6251 return GEN_INT (cum->call_cookie);
4697a36c
MM
6252 }
6253
0b5383eb
DJ
6254 if (rs6000_darwin64_abi && mode == BLKmode
6255 && TREE_CODE (type) == RECORD_TYPE)
8ff40a74 6256 {
0b5383eb 6257 rtx rslt = rs6000_darwin64_record_arg (cum, type, named, false);
8ff40a74
SS
6258 if (rslt != NULL_RTX)
6259 return rslt;
6260 /* Else fall through to usual handling. */
6261 }
6262
2858f73a 6263 if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named))
c72d6c26
HP
6264 if (TARGET_64BIT && ! cum->prototype)
6265 {
c4ad648e
AM
6266 /* Vector parameters get passed in vector register
6267 and also in GPRs or memory, in absence of prototype. */
6268 int align_words;
6269 rtx slot;
6270 align_words = (cum->words + 1) & ~1;
6271
6272 if (align_words >= GP_ARG_NUM_REG)
6273 {
6274 slot = NULL_RTX;
6275 }
6276 else
6277 {
6278 slot = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6279 }
6280 return gen_rtx_PARALLEL (mode,
6281 gen_rtvec (2,
6282 gen_rtx_EXPR_LIST (VOIDmode,
6283 slot, const0_rtx),
6284 gen_rtx_EXPR_LIST (VOIDmode,
6285 gen_rtx_REG (mode, cum->vregno),
6286 const0_rtx)));
c72d6c26
HP
6287 }
6288 else
6289 return gen_rtx_REG (mode, cum->vregno);
ad630bef
DE
6290 else if (TARGET_ALTIVEC_ABI
6291 && (ALTIVEC_VECTOR_MODE (mode)
6292 || (type && TREE_CODE (type) == VECTOR_TYPE
6293 && int_size_in_bytes (type) == 16)))
0ac081f6 6294 {
2858f73a 6295 if (named || abi == ABI_V4)
a594a19c 6296 return NULL_RTX;
0ac081f6 6297 else
a594a19c
GK
6298 {
6299 /* Vector parameters to varargs functions under AIX or Darwin
6300 get passed in memory and possibly also in GPRs. */
ec6376ab
AM
6301 int align, align_words, n_words;
6302 enum machine_mode part_mode;
a594a19c
GK
6303
6304 /* Vector parameters must be 16-byte aligned. This places them at
2858f73a
GK
6305 2 mod 4 in terms of words in 32-bit mode, since the parameter
6306 save area starts at offset 24 from the stack. In 64-bit mode,
6307 they just have to start on an even word, since the parameter
6308 save area is 16-byte aligned. */
6309 if (TARGET_32BIT)
4ed78545 6310 align = (2 - cum->words) & 3;
2858f73a
GK
6311 else
6312 align = cum->words & 1;
a594a19c
GK
6313 align_words = cum->words + align;
6314
6315 /* Out of registers? Memory, then. */
6316 if (align_words >= GP_ARG_NUM_REG)
6317 return NULL_RTX;
ec6376ab
AM
6318
6319 if (TARGET_32BIT && TARGET_POWERPC64)
6320 return rs6000_mixed_function_arg (mode, type, align_words);
6321
2858f73a
GK
6322 /* The vector value goes in GPRs. Only the part of the
6323 value in GPRs is reported here. */
ec6376ab
AM
6324 part_mode = mode;
6325 n_words = rs6000_arg_size (mode, type);
6326 if (align_words + n_words > GP_ARG_NUM_REG)
839a4992 6327 /* Fortunately, there are only two possibilities, the value
2858f73a
GK
6328 is either wholly in GPRs or half in GPRs and half not. */
6329 part_mode = DImode;
ec6376ab
AM
6330
6331 return gen_rtx_REG (part_mode, GP_ARG_MIN_REG + align_words);
a594a19c 6332 }
0ac081f6 6333 }
f82f556d
AH
6334 else if (TARGET_SPE_ABI && TARGET_SPE
6335 && (SPE_VECTOR_MODE (mode)
18f63bfa 6336 || (TARGET_E500_DOUBLE && (mode == DFmode
17caeff2
JM
6337 || mode == DCmode
6338 || mode == TFmode
6339 || mode == TCmode))))
a6c9bed4 6340 return rs6000_spe_function_arg (cum, mode, type);
594a51fe 6341
f607bc57 6342 else if (abi == ABI_V4)
4697a36c 6343 {
a3170dc6 6344 if (TARGET_HARD_FLOAT && TARGET_FPRS
56f4cc04
DE
6345 && ((TARGET_SINGLE_FLOAT && mode == SFmode)
6346 || (TARGET_DOUBLE_FLOAT && mode == DFmode)
cf8e1455
DE
6347 || (mode == TFmode && !TARGET_IEEEQUAD)
6348 || mode == SDmode || mode == DDmode || mode == TDmode))
4cc833b7 6349 {
2d83f070
JJ
6350 /* _Decimal128 must use an even/odd register pair. This assumes
6351 that the register number is odd when fregno is odd. */
6352 if (mode == TDmode && (cum->fregno % 2) == 1)
7393f7f8
BE
6353 cum->fregno++;
6354
6355 if (cum->fregno + (mode == TFmode || mode == TDmode ? 1 : 0)
6356 <= FP_ARG_V4_MAX_REG)
4cc833b7
RH
6357 return gen_rtx_REG (mode, cum->fregno);
6358 else
b78d48dd 6359 return NULL_RTX;
4cc833b7
RH
6360 }
6361 else
6362 {
b2d04ecf 6363 int n_words = rs6000_arg_size (mode, type);
4cc833b7
RH
6364 int gregno = cum->sysv_gregno;
6365
4ed78545
AM
6366 /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
6367 (r7,r8) or (r9,r10). As does any other 2 word item such
6368 as complex int due to a historical mistake. */
6369 if (n_words == 2)
6370 gregno += (1 - gregno) & 1;
4cc833b7 6371
4ed78545 6372 /* Multi-reg args are not split between registers and stack. */
ec6376ab 6373 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
b78d48dd 6374 return NULL_RTX;
ec6376ab
AM
6375
6376 if (TARGET_32BIT && TARGET_POWERPC64)
6377 return rs6000_mixed_function_arg (mode, type,
6378 gregno - GP_ARG_MIN_REG);
6379 return gen_rtx_REG (mode, gregno);
4cc833b7 6380 }
4697a36c 6381 }
4cc833b7
RH
6382 else
6383 {
294bd182 6384 int align_words = rs6000_parm_start (mode, type, cum->words);
b78d48dd 6385
2d83f070
JJ
6386 /* _Decimal128 must be passed in an even/odd float register pair.
6387 This assumes that the register number is odd when fregno is odd. */
6388 if (mode == TDmode && (cum->fregno % 2) == 1)
6389 cum->fregno++;
6390
2858f73a 6391 if (USE_FP_FOR_ARG_P (cum, mode, type))
4cc833b7 6392 {
ec6376ab
AM
6393 rtx rvec[GP_ARG_NUM_REG + 1];
6394 rtx r;
6395 int k;
c53bdcf5
AM
6396 bool needs_psave;
6397 enum machine_mode fmode = mode;
c53bdcf5
AM
6398 unsigned long n_fpreg = (GET_MODE_SIZE (mode) + 7) >> 3;
6399
6400 if (cum->fregno + n_fpreg > FP_ARG_MAX_REG + 1)
6401 {
c53bdcf5
AM
6402 /* Currently, we only ever need one reg here because complex
6403 doubles are split. */
7393f7f8
BE
6404 gcc_assert (cum->fregno == FP_ARG_MAX_REG
6405 && (fmode == TFmode || fmode == TDmode));
ec6376ab 6406
7393f7f8
BE
6407 /* Long double or _Decimal128 split over regs and memory. */
6408 fmode = DECIMAL_FLOAT_MODE_P (fmode) ? DDmode : DFmode;
c53bdcf5 6409 }
c53bdcf5
AM
6410
6411 /* Do we also need to pass this arg in the parameter save
6412 area? */
6413 needs_psave = (type
6414 && (cum->nargs_prototype <= 0
6415 || (DEFAULT_ABI == ABI_AIX
de17c25f 6416 && TARGET_XL_COMPAT
c53bdcf5
AM
6417 && align_words >= GP_ARG_NUM_REG)));
6418
6419 if (!needs_psave && mode == fmode)
ec6376ab 6420 return gen_rtx_REG (fmode, cum->fregno);
c53bdcf5 6421
ec6376ab 6422 k = 0;
c53bdcf5
AM
6423 if (needs_psave)
6424 {
ec6376ab 6425 /* Describe the part that goes in gprs or the stack.
c53bdcf5 6426 This piece must come first, before the fprs. */
c53bdcf5
AM
6427 if (align_words < GP_ARG_NUM_REG)
6428 {
6429 unsigned long n_words = rs6000_arg_size (mode, type);
ec6376ab
AM
6430
6431 if (align_words + n_words > GP_ARG_NUM_REG
6432 || (TARGET_32BIT && TARGET_POWERPC64))
6433 {
6434 /* If this is partially on the stack, then we only
6435 include the portion actually in registers here. */
6436 enum machine_mode rmode = TARGET_32BIT ? SImode : DImode;
6437 rtx off;
79773478
AM
6438 int i = 0;
6439 if (align_words + n_words > GP_ARG_NUM_REG)
c4ad648e
AM
6440 /* Not all of the arg fits in gprs. Say that it
6441 goes in memory too, using a magic NULL_RTX
6442 component. Also see comment in
6443 rs6000_mixed_function_arg for why the normal
6444 function_arg_partial_nregs scheme doesn't work
6445 in this case. */
6446 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX,
6447 const0_rtx);
ec6376ab
AM
6448 do
6449 {
6450 r = gen_rtx_REG (rmode,
6451 GP_ARG_MIN_REG + align_words);
2e6c9641 6452 off = GEN_INT (i++ * GET_MODE_SIZE (rmode));
ec6376ab
AM
6453 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
6454 }
6455 while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
6456 }
6457 else
6458 {
6459 /* The whole arg fits in gprs. */
6460 r = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6461 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
6462 }
c53bdcf5 6463 }
ec6376ab
AM
6464 else
6465 /* It's entirely in memory. */
6466 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
c53bdcf5
AM
6467 }
6468
ec6376ab
AM
6469 /* Describe where this piece goes in the fprs. */
6470 r = gen_rtx_REG (fmode, cum->fregno);
6471 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
6472
6473 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
4cc833b7
RH
6474 }
6475 else if (align_words < GP_ARG_NUM_REG)
b2d04ecf 6476 {
ec6376ab
AM
6477 if (TARGET_32BIT && TARGET_POWERPC64)
6478 return rs6000_mixed_function_arg (mode, type, align_words);
b2d04ecf 6479
4eeca74f
AM
6480 if (mode == BLKmode)
6481 mode = Pmode;
6482
b2d04ecf
AM
6483 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6484 }
4cc833b7
RH
6485 else
6486 return NULL_RTX;
4697a36c 6487 }
4697a36c
MM
6488}
6489\f
ec6376ab 6490/* For an arg passed partly in registers and partly in memory, this is
fb63c729
AM
6491 the number of bytes passed in registers. For args passed entirely in
6492 registers or entirely in memory, zero. When an arg is described by a
6493 PARALLEL, perhaps using more than one register type, this function
6494 returns the number of bytes used by the first element of the PARALLEL. */
4697a36c 6495
78a52f11
RH
6496static int
6497rs6000_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
6498 tree type, bool named)
4697a36c 6499{
c53bdcf5 6500 int ret = 0;
ec6376ab 6501 int align_words;
c53bdcf5 6502
f607bc57 6503 if (DEFAULT_ABI == ABI_V4)
4697a36c 6504 return 0;
4697a36c 6505
c53bdcf5
AM
6506 if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named)
6507 && cum->nargs_prototype >= 0)
6508 return 0;
6509
0b5383eb
DJ
6510 /* In this complicated case we just disable the partial_nregs code. */
6511 if (rs6000_darwin64_abi && mode == BLKmode
6512 && TREE_CODE (type) == RECORD_TYPE
6513 && int_size_in_bytes (type) > 0)
6514 return 0;
6515
294bd182 6516 align_words = rs6000_parm_start (mode, type, cum->words);
ec6376ab 6517
79773478
AM
6518 if (USE_FP_FOR_ARG_P (cum, mode, type))
6519 {
fb63c729
AM
6520 /* If we are passing this arg in the fixed parameter save area
6521 (gprs or memory) as well as fprs, then this function should
79773478
AM
6522 return the number of partial bytes passed in the parameter
6523 save area rather than partial bytes passed in fprs. */
6524 if (type
6525 && (cum->nargs_prototype <= 0
6526 || (DEFAULT_ABI == ABI_AIX
6527 && TARGET_XL_COMPAT
6528 && align_words >= GP_ARG_NUM_REG)))
6529 return 0;
6530 else if (cum->fregno + ((GET_MODE_SIZE (mode) + 7) >> 3)
6531 > FP_ARG_MAX_REG + 1)
ac7e839c 6532 ret = (FP_ARG_MAX_REG + 1 - cum->fregno) * 8;
c53bdcf5 6533 else if (cum->nargs_prototype >= 0)
4697a36c
MM
6534 return 0;
6535 }
6536
ec6376ab
AM
6537 if (align_words < GP_ARG_NUM_REG
6538 && GP_ARG_NUM_REG < align_words + rs6000_arg_size (mode, type))
ac7e839c 6539 ret = (GP_ARG_NUM_REG - align_words) * (TARGET_32BIT ? 4 : 8);
78a52f11 6540
c53bdcf5 6541 if (ret != 0 && TARGET_DEBUG_ARG)
78a52f11 6542 fprintf (stderr, "rs6000_arg_partial_bytes: %d\n", ret);
4697a36c 6543
c53bdcf5 6544 return ret;
4697a36c
MM
6545}
6546\f
6547/* A C expression that indicates when an argument must be passed by
6548 reference. If nonzero for an argument, a copy of that argument is
6549 made in memory and a pointer to the argument is passed instead of
6550 the argument itself. The pointer is passed in whatever way is
6551 appropriate for passing a pointer to that type.
6552
b2d04ecf
AM
6553 Under V.4, aggregates and long double are passed by reference.
6554
6555 As an extension to all 32-bit ABIs, AltiVec vectors are passed by
6556 reference unless the AltiVec vector extension ABI is in force.
c8c99a68
DE
6557
6558 As an extension to all ABIs, variable sized types are passed by
6559 reference. */
4697a36c 6560
8cd5a4e0 6561static bool
f676971a 6562rs6000_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
586de218 6563 enum machine_mode mode, const_tree type,
bada2eb8 6564 bool named ATTRIBUTE_UNUSED)
4697a36c 6565{
602ea4d3 6566 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD && mode == TFmode)
4697a36c
MM
6567 {
6568 if (TARGET_DEBUG_ARG)
bada2eb8
DE
6569 fprintf (stderr, "function_arg_pass_by_reference: V4 long double\n");
6570 return 1;
6571 }
6572
6573 if (!type)
6574 return 0;
4697a36c 6575
bada2eb8
DE
6576 if (DEFAULT_ABI == ABI_V4 && AGGREGATE_TYPE_P (type))
6577 {
6578 if (TARGET_DEBUG_ARG)
6579 fprintf (stderr, "function_arg_pass_by_reference: V4 aggregate\n");
6580 return 1;
6581 }
6582
6583 if (int_size_in_bytes (type) < 0)
6584 {
6585 if (TARGET_DEBUG_ARG)
6586 fprintf (stderr, "function_arg_pass_by_reference: variable size\n");
6587 return 1;
6588 }
6589
6590 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
6591 modes only exist for GCC vector types if -maltivec. */
6592 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
6593 {
6594 if (TARGET_DEBUG_ARG)
6595 fprintf (stderr, "function_arg_pass_by_reference: AltiVec\n");
4697a36c
MM
6596 return 1;
6597 }
b693336b
PB
6598
6599 /* Pass synthetic vectors in memory. */
bada2eb8 6600 if (TREE_CODE (type) == VECTOR_TYPE
ad630bef 6601 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
b693336b
PB
6602 {
6603 static bool warned_for_pass_big_vectors = false;
6604 if (TARGET_DEBUG_ARG)
6605 fprintf (stderr, "function_arg_pass_by_reference: synthetic vector\n");
6606 if (!warned_for_pass_big_vectors)
6607 {
d4ee4d25 6608 warning (0, "GCC vector passed by reference: "
b693336b
PB
6609 "non-standard ABI extension with no compatibility guarantee");
6610 warned_for_pass_big_vectors = true;
6611 }
6612 return 1;
6613 }
6614
b2d04ecf 6615 return 0;
4697a36c 6616}
5985c7a6
FJ
6617
6618static void
2d9db8eb 6619rs6000_move_block_from_reg (int regno, rtx x, int nregs)
5985c7a6
FJ
6620{
6621 int i;
6622 enum machine_mode reg_mode = TARGET_32BIT ? SImode : DImode;
6623
6624 if (nregs == 0)
6625 return;
6626
c4ad648e 6627 for (i = 0; i < nregs; i++)
5985c7a6 6628 {
9390387d 6629 rtx tem = adjust_address_nv (x, reg_mode, i * GET_MODE_SIZE (reg_mode));
5985c7a6 6630 if (reload_completed)
c4ad648e
AM
6631 {
6632 if (! strict_memory_address_p (reg_mode, XEXP (tem, 0)))
6633 tem = NULL_RTX;
6634 else
6635 tem = simplify_gen_subreg (reg_mode, x, BLKmode,
9390387d 6636 i * GET_MODE_SIZE (reg_mode));
c4ad648e 6637 }
5985c7a6
FJ
6638 else
6639 tem = replace_equiv_address (tem, XEXP (tem, 0));
6640
37409796 6641 gcc_assert (tem);
5985c7a6
FJ
6642
6643 emit_move_insn (tem, gen_rtx_REG (reg_mode, regno + i));
6644 }
6645}
4697a36c
MM
6646\f
6647/* Perform any needed actions needed for a function that is receiving a
f676971a 6648 variable number of arguments.
4697a36c
MM
6649
6650 CUM is as above.
6651
6652 MODE and TYPE are the mode and type of the current parameter.
6653
6654 PRETEND_SIZE is a variable that should be set to the amount of stack
6655 that must be pushed by the prolog to pretend that our caller pushed
6656 it.
6657
6658 Normally, this macro will push all remaining incoming registers on the
6659 stack and set PRETEND_SIZE to the length of the registers pushed. */
6660
c6e8c921 6661static void
f676971a 6662setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
c4ad648e
AM
6663 tree type, int *pretend_size ATTRIBUTE_UNUSED,
6664 int no_rtl)
4697a36c 6665{
4cc833b7
RH
6666 CUMULATIVE_ARGS next_cum;
6667 int reg_size = TARGET_32BIT ? 4 : 8;
ca5adc63 6668 rtx save_area = NULL_RTX, mem;
4862826d
ILT
6669 int first_reg_offset;
6670 alias_set_type set;
4697a36c 6671
f31bf321 6672 /* Skip the last named argument. */
d34c5b80 6673 next_cum = *cum;
594a51fe 6674 function_arg_advance (&next_cum, mode, type, 1, 0);
4cc833b7 6675
f607bc57 6676 if (DEFAULT_ABI == ABI_V4)
d34c5b80 6677 {
5b667039
JJ
6678 first_reg_offset = next_cum.sysv_gregno - GP_ARG_MIN_REG;
6679
60e2d0ca 6680 if (! no_rtl)
5b667039
JJ
6681 {
6682 int gpr_reg_num = 0, gpr_size = 0, fpr_size = 0;
6683 HOST_WIDE_INT offset = 0;
6684
6685 /* Try to optimize the size of the varargs save area.
6686 The ABI requires that ap.reg_save_area is doubleword
6687 aligned, but we don't need to allocate space for all
6688 the bytes, only those to which we actually will save
6689 anything. */
6690 if (cfun->va_list_gpr_size && first_reg_offset < GP_ARG_NUM_REG)
6691 gpr_reg_num = GP_ARG_NUM_REG - first_reg_offset;
6692 if (TARGET_HARD_FLOAT && TARGET_FPRS
6693 && next_cum.fregno <= FP_ARG_V4_MAX_REG
6694 && cfun->va_list_fpr_size)
6695 {
6696 if (gpr_reg_num)
6697 fpr_size = (next_cum.fregno - FP_ARG_MIN_REG)
6698 * UNITS_PER_FP_WORD;
6699 if (cfun->va_list_fpr_size
6700 < FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
6701 fpr_size += cfun->va_list_fpr_size * UNITS_PER_FP_WORD;
6702 else
6703 fpr_size += (FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
6704 * UNITS_PER_FP_WORD;
6705 }
6706 if (gpr_reg_num)
6707 {
6708 offset = -((first_reg_offset * reg_size) & ~7);
6709 if (!fpr_size && gpr_reg_num > cfun->va_list_gpr_size)
6710 {
6711 gpr_reg_num = cfun->va_list_gpr_size;
6712 if (reg_size == 4 && (first_reg_offset & 1))
6713 gpr_reg_num++;
6714 }
6715 gpr_size = (gpr_reg_num * reg_size + 7) & ~7;
6716 }
6717 else if (fpr_size)
6718 offset = - (int) (next_cum.fregno - FP_ARG_MIN_REG)
6719 * UNITS_PER_FP_WORD
6720 - (int) (GP_ARG_NUM_REG * reg_size);
4cc833b7 6721
5b667039
JJ
6722 if (gpr_size + fpr_size)
6723 {
6724 rtx reg_save_area
6725 = assign_stack_local (BLKmode, gpr_size + fpr_size, 64);
6726 gcc_assert (GET_CODE (reg_save_area) == MEM);
6727 reg_save_area = XEXP (reg_save_area, 0);
6728 if (GET_CODE (reg_save_area) == PLUS)
6729 {
6730 gcc_assert (XEXP (reg_save_area, 0)
6731 == virtual_stack_vars_rtx);
6732 gcc_assert (GET_CODE (XEXP (reg_save_area, 1)) == CONST_INT);
6733 offset += INTVAL (XEXP (reg_save_area, 1));
6734 }
6735 else
6736 gcc_assert (reg_save_area == virtual_stack_vars_rtx);
6737 }
6738
6739 cfun->machine->varargs_save_offset = offset;
6740 save_area = plus_constant (virtual_stack_vars_rtx, offset);
6741 }
4697a36c 6742 }
60e2d0ca 6743 else
4697a36c 6744 {
d34c5b80 6745 first_reg_offset = next_cum.words;
4cc833b7 6746 save_area = virtual_incoming_args_rtx;
4697a36c 6747
fe984136 6748 if (targetm.calls.must_pass_in_stack (mode, type))
c53bdcf5 6749 first_reg_offset += rs6000_arg_size (TYPE_MODE (type), type);
4cc833b7 6750 }
4697a36c 6751
dfafc897 6752 set = get_varargs_alias_set ();
9d30f3c1
JJ
6753 if (! no_rtl && first_reg_offset < GP_ARG_NUM_REG
6754 && cfun->va_list_gpr_size)
4cc833b7 6755 {
9d30f3c1
JJ
6756 int nregs = GP_ARG_NUM_REG - first_reg_offset;
6757
6758 if (va_list_gpr_counter_field)
6759 {
6760 /* V4 va_list_gpr_size counts number of registers needed. */
6761 if (nregs > cfun->va_list_gpr_size)
6762 nregs = cfun->va_list_gpr_size;
6763 }
6764 else
6765 {
6766 /* char * va_list instead counts number of bytes needed. */
6767 if (nregs > cfun->va_list_gpr_size / reg_size)
6768 nregs = cfun->va_list_gpr_size / reg_size;
6769 }
6770
dfafc897 6771 mem = gen_rtx_MEM (BLKmode,
c4ad648e 6772 plus_constant (save_area,
13e2e16e
DE
6773 first_reg_offset * reg_size));
6774 MEM_NOTRAP_P (mem) = 1;
ba4828e0 6775 set_mem_alias_set (mem, set);
8ac61af7 6776 set_mem_align (mem, BITS_PER_WORD);
dfafc897 6777
f676971a 6778 rs6000_move_block_from_reg (GP_ARG_MIN_REG + first_reg_offset, mem,
9d30f3c1 6779 nregs);
4697a36c
MM
6780 }
6781
4697a36c 6782 /* Save FP registers if needed. */
f607bc57 6783 if (DEFAULT_ABI == ABI_V4
a3170dc6
AH
6784 && TARGET_HARD_FLOAT && TARGET_FPRS
6785 && ! no_rtl
9d30f3c1
JJ
6786 && next_cum.fregno <= FP_ARG_V4_MAX_REG
6787 && cfun->va_list_fpr_size)
4697a36c 6788 {
9d30f3c1 6789 int fregno = next_cum.fregno, nregs;
9ebbca7d 6790 rtx cr1 = gen_rtx_REG (CCmode, CR1_REGNO);
4cc833b7 6791 rtx lab = gen_label_rtx ();
5b667039
JJ
6792 int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG)
6793 * UNITS_PER_FP_WORD);
4697a36c 6794
c4ad648e
AM
6795 emit_jump_insn
6796 (gen_rtx_SET (VOIDmode,
6797 pc_rtx,
6798 gen_rtx_IF_THEN_ELSE (VOIDmode,
4cc833b7 6799 gen_rtx_NE (VOIDmode, cr1,
c4ad648e 6800 const0_rtx),
39403d82 6801 gen_rtx_LABEL_REF (VOIDmode, lab),
4697a36c
MM
6802 pc_rtx)));
6803
9d30f3c1
JJ
6804 for (nregs = 0;
6805 fregno <= FP_ARG_V4_MAX_REG && nregs < cfun->va_list_fpr_size;
5b667039 6806 fregno++, off += UNITS_PER_FP_WORD, nregs++)
4cc833b7 6807 {
696e45ba
ME
6808 mem = gen_rtx_MEM ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
6809 ? DFmode : SFmode,
6810 plus_constant (save_area, off));
6811 MEM_NOTRAP_P (mem) = 1;
6812 set_mem_alias_set (mem, set);
6813 set_mem_align (mem, GET_MODE_ALIGNMENT (
6814 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
6815 ? DFmode : SFmode));
6816 emit_move_insn (mem, gen_rtx_REG (
6817 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
6818 ? DFmode : SFmode, fregno));
4697a36c 6819 }
4cc833b7
RH
6820
6821 emit_label (lab);
4697a36c 6822 }
4697a36c 6823}
4697a36c 6824
dfafc897 6825/* Create the va_list data type. */
2c4974b7 6826
c35d187f
RH
6827static tree
6828rs6000_build_builtin_va_list (void)
dfafc897 6829{
64c2816f 6830 tree f_gpr, f_fpr, f_res, f_ovf, f_sav, record, type_decl;
4697a36c 6831
9ebbca7d
GK
6832 /* For AIX, prefer 'char *' because that's what the system
6833 header files like. */
f607bc57 6834 if (DEFAULT_ABI != ABI_V4)
9ebbca7d 6835 return build_pointer_type (char_type_node);
dfafc897 6836
f1e639b1 6837 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
bab45a51 6838 type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
0f4fd75d 6839
f676971a 6840 f_gpr = build_decl (FIELD_DECL, get_identifier ("gpr"),
9ebbca7d 6841 unsigned_char_type_node);
f676971a 6842 f_fpr = build_decl (FIELD_DECL, get_identifier ("fpr"),
9ebbca7d 6843 unsigned_char_type_node);
64c2816f
DT
6844 /* Give the two bytes of padding a name, so that -Wpadded won't warn on
6845 every user file. */
6846 f_res = build_decl (FIELD_DECL, get_identifier ("reserved"),
6847 short_unsigned_type_node);
dfafc897
FS
6848 f_ovf = build_decl (FIELD_DECL, get_identifier ("overflow_arg_area"),
6849 ptr_type_node);
6850 f_sav = build_decl (FIELD_DECL, get_identifier ("reg_save_area"),
6851 ptr_type_node);
6852
9d30f3c1
JJ
6853 va_list_gpr_counter_field = f_gpr;
6854 va_list_fpr_counter_field = f_fpr;
6855
dfafc897
FS
6856 DECL_FIELD_CONTEXT (f_gpr) = record;
6857 DECL_FIELD_CONTEXT (f_fpr) = record;
64c2816f 6858 DECL_FIELD_CONTEXT (f_res) = record;
dfafc897
FS
6859 DECL_FIELD_CONTEXT (f_ovf) = record;
6860 DECL_FIELD_CONTEXT (f_sav) = record;
6861
bab45a51
FS
6862 TREE_CHAIN (record) = type_decl;
6863 TYPE_NAME (record) = type_decl;
dfafc897
FS
6864 TYPE_FIELDS (record) = f_gpr;
6865 TREE_CHAIN (f_gpr) = f_fpr;
64c2816f
DT
6866 TREE_CHAIN (f_fpr) = f_res;
6867 TREE_CHAIN (f_res) = f_ovf;
dfafc897
FS
6868 TREE_CHAIN (f_ovf) = f_sav;
6869
6870 layout_type (record);
6871
6872 /* The correct type is an array type of one element. */
6873 return build_array_type (record, build_index_type (size_zero_node));
6874}
6875
6876/* Implement va_start. */
6877
d7bd8aeb 6878static void
a2369ed3 6879rs6000_va_start (tree valist, rtx nextarg)
4697a36c 6880{
dfafc897 6881 HOST_WIDE_INT words, n_gpr, n_fpr;
c566f9bd 6882 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
dfafc897 6883 tree gpr, fpr, ovf, sav, t;
2c4974b7 6884
dfafc897 6885 /* Only SVR4 needs something special. */
f607bc57 6886 if (DEFAULT_ABI != ABI_V4)
dfafc897 6887 {
e5faf155 6888 std_expand_builtin_va_start (valist, nextarg);
dfafc897
FS
6889 return;
6890 }
6891
973a648b 6892 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
dfafc897 6893 f_fpr = TREE_CHAIN (f_gpr);
c566f9bd
DT
6894 f_res = TREE_CHAIN (f_fpr);
6895 f_ovf = TREE_CHAIN (f_res);
dfafc897
FS
6896 f_sav = TREE_CHAIN (f_ovf);
6897
872a65b5 6898 valist = build_va_arg_indirect_ref (valist);
47a25a46 6899 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
726a989a
RB
6900 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
6901 f_fpr, NULL_TREE);
6902 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
6903 f_ovf, NULL_TREE);
6904 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
6905 f_sav, NULL_TREE);
dfafc897
FS
6906
6907 /* Count number of gp and fp argument registers used. */
38173d38
JH
6908 words = crtl->args.info.words;
6909 n_gpr = MIN (crtl->args.info.sysv_gregno - GP_ARG_MIN_REG,
987732e0 6910 GP_ARG_NUM_REG);
38173d38 6911 n_fpr = MIN (crtl->args.info.fregno - FP_ARG_MIN_REG,
987732e0 6912 FP_ARG_NUM_REG);
dfafc897
FS
6913
6914 if (TARGET_DEBUG_ARG)
4a0a75dd
KG
6915 fprintf (stderr, "va_start: words = "HOST_WIDE_INT_PRINT_DEC", n_gpr = "
6916 HOST_WIDE_INT_PRINT_DEC", n_fpr = "HOST_WIDE_INT_PRINT_DEC"\n",
6917 words, n_gpr, n_fpr);
dfafc897 6918
9d30f3c1
JJ
6919 if (cfun->va_list_gpr_size)
6920 {
726a989a 6921 t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
47a25a46 6922 build_int_cst (NULL_TREE, n_gpr));
9d30f3c1
JJ
6923 TREE_SIDE_EFFECTS (t) = 1;
6924 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6925 }
58c8adc1 6926
9d30f3c1
JJ
6927 if (cfun->va_list_fpr_size)
6928 {
726a989a 6929 t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
47a25a46 6930 build_int_cst (NULL_TREE, n_fpr));
9d30f3c1
JJ
6931 TREE_SIDE_EFFECTS (t) = 1;
6932 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6933 }
dfafc897
FS
6934
6935 /* Find the overflow area. */
6936 t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx);
6937 if (words != 0)
5be014d5
AP
6938 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovf), t,
6939 size_int (words * UNITS_PER_WORD));
726a989a 6940 t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
dfafc897
FS
6941 TREE_SIDE_EFFECTS (t) = 1;
6942 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6943
9d30f3c1
JJ
6944 /* If there were no va_arg invocations, don't set up the register
6945 save area. */
6946 if (!cfun->va_list_gpr_size
6947 && !cfun->va_list_fpr_size
6948 && n_gpr < GP_ARG_NUM_REG
6949 && n_fpr < FP_ARG_V4_MAX_REG)
6950 return;
6951
dfafc897
FS
6952 /* Find the register save area. */
6953 t = make_tree (TREE_TYPE (sav), virtual_stack_vars_rtx);
5b667039 6954 if (cfun->machine->varargs_save_offset)
5be014d5
AP
6955 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (sav), t,
6956 size_int (cfun->machine->varargs_save_offset));
726a989a 6957 t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
dfafc897
FS
6958 TREE_SIDE_EFFECTS (t) = 1;
6959 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6960}
6961
6962/* Implement va_arg. */
6963
23a60a04 6964tree
726a989a
RB
6965rs6000_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
6966 gimple_seq *post_p)
cd3ce9b4 6967{
cd3ce9b4
JM
6968 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
6969 tree gpr, fpr, ovf, sav, reg, t, u;
08b0dc1b 6970 int size, rsize, n_reg, sav_ofs, sav_scale;
cd3ce9b4
JM
6971 tree lab_false, lab_over, addr;
6972 int align;
6973 tree ptrtype = build_pointer_type (type);
7393f7f8 6974 int regalign = 0;
726a989a 6975 gimple stmt;
cd3ce9b4 6976
08b0dc1b
RH
6977 if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
6978 {
6979 t = rs6000_gimplify_va_arg (valist, ptrtype, pre_p, post_p);
872a65b5 6980 return build_va_arg_indirect_ref (t);
08b0dc1b
RH
6981 }
6982
cd3ce9b4
JM
6983 if (DEFAULT_ABI != ABI_V4)
6984 {
08b0dc1b 6985 if (targetm.calls.split_complex_arg && TREE_CODE (type) == COMPLEX_TYPE)
cd3ce9b4
JM
6986 {
6987 tree elem_type = TREE_TYPE (type);
6988 enum machine_mode elem_mode = TYPE_MODE (elem_type);
6989 int elem_size = GET_MODE_SIZE (elem_mode);
6990
6991 if (elem_size < UNITS_PER_WORD)
6992 {
23a60a04 6993 tree real_part, imag_part;
726a989a 6994 gimple_seq post = NULL;
cd3ce9b4 6995
23a60a04
JM
6996 real_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
6997 &post);
6998 /* Copy the value into a temporary, lest the formal temporary
6999 be reused out from under us. */
7000 real_part = get_initialized_tmp_var (real_part, pre_p, &post);
726a989a 7001 gimple_seq_add_seq (pre_p, post);
cd3ce9b4 7002
23a60a04
JM
7003 imag_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
7004 post_p);
cd3ce9b4 7005
47a25a46 7006 return build2 (COMPLEX_EXPR, type, real_part, imag_part);
cd3ce9b4
JM
7007 }
7008 }
7009
23a60a04 7010 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
cd3ce9b4
JM
7011 }
7012
7013 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
7014 f_fpr = TREE_CHAIN (f_gpr);
7015 f_res = TREE_CHAIN (f_fpr);
7016 f_ovf = TREE_CHAIN (f_res);
7017 f_sav = TREE_CHAIN (f_ovf);
7018
872a65b5 7019 valist = build_va_arg_indirect_ref (valist);
47a25a46 7020 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
726a989a
RB
7021 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
7022 f_fpr, NULL_TREE);
7023 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
7024 f_ovf, NULL_TREE);
7025 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
7026 f_sav, NULL_TREE);
cd3ce9b4
JM
7027
7028 size = int_size_in_bytes (type);
7029 rsize = (size + 3) / 4;
7030 align = 1;
7031
08b0dc1b 7032 if (TARGET_HARD_FLOAT && TARGET_FPRS
696e45ba
ME
7033 && ((TARGET_SINGLE_FLOAT && TYPE_MODE (type) == SFmode)
7034 || (TARGET_DOUBLE_FLOAT
7035 && (TYPE_MODE (type) == DFmode
7036 || TYPE_MODE (type) == TFmode
7037 || TYPE_MODE (type) == SDmode
7038 || TYPE_MODE (type) == DDmode
7039 || TYPE_MODE (type) == TDmode))))
cd3ce9b4
JM
7040 {
7041 /* FP args go in FP registers, if present. */
cd3ce9b4 7042 reg = fpr;
602ea4d3 7043 n_reg = (size + 7) / 8;
696e45ba
ME
7044 sav_ofs = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4) * 4;
7045 sav_scale = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4);
e41b2a33 7046 if (TYPE_MODE (type) != SFmode && TYPE_MODE (type) != SDmode)
cd3ce9b4
JM
7047 align = 8;
7048 }
7049 else
7050 {
7051 /* Otherwise into GP registers. */
cd3ce9b4
JM
7052 reg = gpr;
7053 n_reg = rsize;
7054 sav_ofs = 0;
7055 sav_scale = 4;
7056 if (n_reg == 2)
7057 align = 8;
7058 }
7059
7060 /* Pull the value out of the saved registers.... */
7061
7062 lab_over = NULL;
7063 addr = create_tmp_var (ptr_type_node, "addr");
7064 DECL_POINTER_ALIAS_SET (addr) = get_varargs_alias_set ();
7065
7066 /* AltiVec vectors never go in registers when -mabi=altivec. */
7067 if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
7068 align = 16;
7069 else
7070 {
7071 lab_false = create_artificial_label ();
7072 lab_over = create_artificial_label ();
7073
7074 /* Long long and SPE vectors are aligned in the registers.
7075 As are any other 2 gpr item such as complex int due to a
7076 historical mistake. */
7077 u = reg;
602ea4d3 7078 if (n_reg == 2 && reg == gpr)
cd3ce9b4 7079 {
7393f7f8 7080 regalign = 1;
726a989a 7081 u = build2 (BIT_AND_EXPR, TREE_TYPE (reg), unshare_expr (reg),
8fb632eb 7082 build_int_cst (TREE_TYPE (reg), n_reg - 1));
726a989a
RB
7083 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg),
7084 unshare_expr (reg), u);
cd3ce9b4 7085 }
7393f7f8
BE
7086 /* _Decimal128 is passed in even/odd fpr pairs; the stored
7087 reg number is 0 for f1, so we want to make it odd. */
7088 else if (reg == fpr && TYPE_MODE (type) == TDmode)
7089 {
726a989a 7090 t = build2 (BIT_IOR_EXPR, TREE_TYPE (reg), unshare_expr (reg),
383e91e4 7091 build_int_cst (TREE_TYPE (reg), 1));
726a989a 7092 u = build2 (MODIFY_EXPR, void_type_node, unshare_expr (reg), t);
7393f7f8 7093 }
cd3ce9b4 7094
95674810 7095 t = fold_convert (TREE_TYPE (reg), size_int (8 - n_reg + 1));
cd3ce9b4
JM
7096 t = build2 (GE_EXPR, boolean_type_node, u, t);
7097 u = build1 (GOTO_EXPR, void_type_node, lab_false);
7098 t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE);
7099 gimplify_and_add (t, pre_p);
7100
7101 t = sav;
7102 if (sav_ofs)
5be014d5 7103 t = build2 (POINTER_PLUS_EXPR, ptr_type_node, sav, size_int (sav_ofs));
cd3ce9b4 7104
726a989a 7105 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg), unshare_expr (reg),
8fb632eb 7106 build_int_cst (TREE_TYPE (reg), n_reg));
5be014d5
AP
7107 u = fold_convert (sizetype, u);
7108 u = build2 (MULT_EXPR, sizetype, u, size_int (sav_scale));
7109 t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t, u);
cd3ce9b4 7110
e41b2a33
PB
7111 /* _Decimal32 varargs are located in the second word of the 64-bit
7112 FP register for 32-bit binaries. */
4f011e1e
JM
7113 if (!TARGET_POWERPC64
7114 && TARGET_HARD_FLOAT && TARGET_FPRS
7115 && TYPE_MODE (type) == SDmode)
e41b2a33
PB
7116 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (size));
7117
726a989a 7118 gimplify_assign (addr, t, pre_p);
cd3ce9b4 7119
726a989a 7120 gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
cd3ce9b4 7121
726a989a
RB
7122 stmt = gimple_build_label (lab_false);
7123 gimple_seq_add_stmt (pre_p, stmt);
cd3ce9b4 7124
7393f7f8 7125 if ((n_reg == 2 && !regalign) || n_reg > 2)
cd3ce9b4
JM
7126 {
7127 /* Ensure that we don't find any more args in regs.
7393f7f8 7128 Alignment has taken care of for special cases. */
726a989a 7129 gimplify_assign (reg, build_int_cst (TREE_TYPE (reg), 8), pre_p);
cd3ce9b4
JM
7130 }
7131 }
7132
7133 /* ... otherwise out of the overflow area. */
7134
7135 /* Care for on-stack alignment if needed. */
7136 t = ovf;
7137 if (align != 1)
7138 {
5be014d5
AP
7139 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (align - 1));
7140 t = fold_convert (sizetype, t);
4a90aeeb 7141 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
5be014d5
AP
7142 size_int (-align));
7143 t = fold_convert (TREE_TYPE (ovf), t);
cd3ce9b4
JM
7144 }
7145 gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
7146
726a989a 7147 gimplify_assign (unshare_expr (addr), t, pre_p);
cd3ce9b4 7148
5be014d5 7149 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (size));
726a989a 7150 gimplify_assign (unshare_expr (ovf), t, pre_p);
cd3ce9b4
JM
7151
7152 if (lab_over)
7153 {
726a989a
RB
7154 stmt = gimple_build_label (lab_over);
7155 gimple_seq_add_stmt (pre_p, stmt);
cd3ce9b4
JM
7156 }
7157
0cfbc62b
JM
7158 if (STRICT_ALIGNMENT
7159 && (TYPE_ALIGN (type)
7160 > (unsigned) BITS_PER_UNIT * (align < 4 ? 4 : align)))
7161 {
7162 /* The value (of type complex double, for example) may not be
7163 aligned in memory in the saved registers, so copy via a
7164 temporary. (This is the same code as used for SPARC.) */
7165 tree tmp = create_tmp_var (type, "va_arg_tmp");
7166 tree dest_addr = build_fold_addr_expr (tmp);
7167
5039610b
SL
7168 tree copy = build_call_expr (implicit_built_in_decls[BUILT_IN_MEMCPY],
7169 3, dest_addr, addr, size_int (rsize * 4));
0cfbc62b
JM
7170
7171 gimplify_and_add (copy, pre_p);
7172 addr = dest_addr;
7173 }
7174
08b0dc1b 7175 addr = fold_convert (ptrtype, addr);
872a65b5 7176 return build_va_arg_indirect_ref (addr);
cd3ce9b4
JM
7177}
7178
0ac081f6
AH
7179/* Builtins. */
7180
58646b77
PB
7181static void
7182def_builtin (int mask, const char *name, tree type, int code)
7183{
96038623 7184 if ((mask & target_flags) || TARGET_PAIRED_FLOAT)
58646b77
PB
7185 {
7186 if (rs6000_builtin_decls[code])
7187 abort ();
7188
7189 rs6000_builtin_decls[code] =
c79efc4d
RÁE
7190 add_builtin_function (name, type, code, BUILT_IN_MD,
7191 NULL, NULL_TREE);
58646b77
PB
7192 }
7193}
0ac081f6 7194
24408032
AH
7195/* Simple ternary operations: VECd = foo (VECa, VECb, VECc). */
7196
2212663f 7197static const struct builtin_description bdesc_3arg[] =
24408032
AH
7198{
7199 { MASK_ALTIVEC, CODE_FOR_altivec_vmaddfp, "__builtin_altivec_vmaddfp", ALTIVEC_BUILTIN_VMADDFP },
7200 { MASK_ALTIVEC, CODE_FOR_altivec_vmhaddshs, "__builtin_altivec_vmhaddshs", ALTIVEC_BUILTIN_VMHADDSHS },
7201 { MASK_ALTIVEC, CODE_FOR_altivec_vmhraddshs, "__builtin_altivec_vmhraddshs", ALTIVEC_BUILTIN_VMHRADDSHS },
7202 { MASK_ALTIVEC, CODE_FOR_altivec_vmladduhm, "__builtin_altivec_vmladduhm", ALTIVEC_BUILTIN_VMLADDUHM},
7203 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumubm, "__builtin_altivec_vmsumubm", ALTIVEC_BUILTIN_VMSUMUBM },
7204 { MASK_ALTIVEC, CODE_FOR_altivec_vmsummbm, "__builtin_altivec_vmsummbm", ALTIVEC_BUILTIN_VMSUMMBM },
7205 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhm, "__builtin_altivec_vmsumuhm", ALTIVEC_BUILTIN_VMSUMUHM },
7206 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshm, "__builtin_altivec_vmsumshm", ALTIVEC_BUILTIN_VMSUMSHM },
7207 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhs, "__builtin_altivec_vmsumuhs", ALTIVEC_BUILTIN_VMSUMUHS },
7208 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshs, "__builtin_altivec_vmsumshs", ALTIVEC_BUILTIN_VMSUMSHS },
f676971a 7209 { MASK_ALTIVEC, CODE_FOR_altivec_vnmsubfp, "__builtin_altivec_vnmsubfp", ALTIVEC_BUILTIN_VNMSUBFP },
aba5fb01
NS
7210 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v4sf, "__builtin_altivec_vperm_4sf", ALTIVEC_BUILTIN_VPERM_4SF },
7211 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v4si, "__builtin_altivec_vperm_4si", ALTIVEC_BUILTIN_VPERM_4SI },
7212 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v8hi, "__builtin_altivec_vperm_8hi", ALTIVEC_BUILTIN_VPERM_8HI },
7213 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v16qi, "__builtin_altivec_vperm_16qi", ALTIVEC_BUILTIN_VPERM_16QI },
7214 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v4sf, "__builtin_altivec_vsel_4sf", ALTIVEC_BUILTIN_VSEL_4SF },
7215 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v4si, "__builtin_altivec_vsel_4si", ALTIVEC_BUILTIN_VSEL_4SI },
7216 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v8hi, "__builtin_altivec_vsel_8hi", ALTIVEC_BUILTIN_VSEL_8HI },
7217 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v16qi, "__builtin_altivec_vsel_16qi", ALTIVEC_BUILTIN_VSEL_16QI },
7218 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v16qi, "__builtin_altivec_vsldoi_16qi", ALTIVEC_BUILTIN_VSLDOI_16QI },
7219 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v8hi, "__builtin_altivec_vsldoi_8hi", ALTIVEC_BUILTIN_VSLDOI_8HI },
7220 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v4si, "__builtin_altivec_vsldoi_4si", ALTIVEC_BUILTIN_VSLDOI_4SI },
7221 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v4sf, "__builtin_altivec_vsldoi_4sf", ALTIVEC_BUILTIN_VSLDOI_4SF },
58646b77
PB
7222
7223 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_madd", ALTIVEC_BUILTIN_VEC_MADD },
7224 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_madds", ALTIVEC_BUILTIN_VEC_MADDS },
7225 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mladd", ALTIVEC_BUILTIN_VEC_MLADD },
7226 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mradds", ALTIVEC_BUILTIN_VEC_MRADDS },
7227 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_msum", ALTIVEC_BUILTIN_VEC_MSUM },
7228 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumshm", ALTIVEC_BUILTIN_VEC_VMSUMSHM },
7229 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumuhm", ALTIVEC_BUILTIN_VEC_VMSUMUHM },
7230 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsummbm", ALTIVEC_BUILTIN_VEC_VMSUMMBM },
7231 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumubm", ALTIVEC_BUILTIN_VEC_VMSUMUBM },
7232 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_msums", ALTIVEC_BUILTIN_VEC_MSUMS },
7233 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumshs", ALTIVEC_BUILTIN_VEC_VMSUMSHS },
7234 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumuhs", ALTIVEC_BUILTIN_VEC_VMSUMUHS },
7235 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_nmsub", ALTIVEC_BUILTIN_VEC_NMSUB },
7236 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_perm", ALTIVEC_BUILTIN_VEC_PERM },
7237 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sel", ALTIVEC_BUILTIN_VEC_SEL },
96038623
DE
7238
7239 { 0, CODE_FOR_paired_msub, "__builtin_paired_msub", PAIRED_BUILTIN_MSUB },
7240 { 0, CODE_FOR_paired_madd, "__builtin_paired_madd", PAIRED_BUILTIN_MADD },
7241 { 0, CODE_FOR_paired_madds0, "__builtin_paired_madds0", PAIRED_BUILTIN_MADDS0 },
7242 { 0, CODE_FOR_paired_madds1, "__builtin_paired_madds1", PAIRED_BUILTIN_MADDS1 },
7243 { 0, CODE_FOR_paired_nmsub, "__builtin_paired_nmsub", PAIRED_BUILTIN_NMSUB },
7244 { 0, CODE_FOR_paired_nmadd, "__builtin_paired_nmadd", PAIRED_BUILTIN_NMADD },
7245 { 0, CODE_FOR_paired_sum0, "__builtin_paired_sum0", PAIRED_BUILTIN_SUM0 },
7246 { 0, CODE_FOR_paired_sum1, "__builtin_paired_sum1", PAIRED_BUILTIN_SUM1 },
49e39588 7247 { 0, CODE_FOR_selv2sf4, "__builtin_paired_selv2sf4", PAIRED_BUILTIN_SELV2SF4 },
24408032 7248};
2212663f 7249
95385cbb
AH
7250/* DST operations: void foo (void *, const int, const char). */
7251
7252static const struct builtin_description bdesc_dst[] =
7253{
7254 { MASK_ALTIVEC, CODE_FOR_altivec_dst, "__builtin_altivec_dst", ALTIVEC_BUILTIN_DST },
7255 { MASK_ALTIVEC, CODE_FOR_altivec_dstt, "__builtin_altivec_dstt", ALTIVEC_BUILTIN_DSTT },
7256 { MASK_ALTIVEC, CODE_FOR_altivec_dstst, "__builtin_altivec_dstst", ALTIVEC_BUILTIN_DSTST },
58646b77
PB
7257 { MASK_ALTIVEC, CODE_FOR_altivec_dststt, "__builtin_altivec_dststt", ALTIVEC_BUILTIN_DSTSTT },
7258
7259 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dst", ALTIVEC_BUILTIN_VEC_DST },
7260 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dstt", ALTIVEC_BUILTIN_VEC_DSTT },
7261 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dstst", ALTIVEC_BUILTIN_VEC_DSTST },
7262 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dststt", ALTIVEC_BUILTIN_VEC_DSTSTT }
95385cbb
AH
7263};
7264
2212663f 7265/* Simple binary operations: VECc = foo (VECa, VECb). */
24408032 7266
a3170dc6 7267static struct builtin_description bdesc_2arg[] =
0ac081f6 7268{
f18c054f
DB
7269 { MASK_ALTIVEC, CODE_FOR_addv16qi3, "__builtin_altivec_vaddubm", ALTIVEC_BUILTIN_VADDUBM },
7270 { MASK_ALTIVEC, CODE_FOR_addv8hi3, "__builtin_altivec_vadduhm", ALTIVEC_BUILTIN_VADDUHM },
7271 { MASK_ALTIVEC, CODE_FOR_addv4si3, "__builtin_altivec_vadduwm", ALTIVEC_BUILTIN_VADDUWM },
7272 { MASK_ALTIVEC, CODE_FOR_addv4sf3, "__builtin_altivec_vaddfp", ALTIVEC_BUILTIN_VADDFP },
0ac081f6
AH
7273 { MASK_ALTIVEC, CODE_FOR_altivec_vaddcuw, "__builtin_altivec_vaddcuw", ALTIVEC_BUILTIN_VADDCUW },
7274 { MASK_ALTIVEC, CODE_FOR_altivec_vaddubs, "__builtin_altivec_vaddubs", ALTIVEC_BUILTIN_VADDUBS },
7275 { MASK_ALTIVEC, CODE_FOR_altivec_vaddsbs, "__builtin_altivec_vaddsbs", ALTIVEC_BUILTIN_VADDSBS },
7276 { MASK_ALTIVEC, CODE_FOR_altivec_vadduhs, "__builtin_altivec_vadduhs", ALTIVEC_BUILTIN_VADDUHS },
7277 { MASK_ALTIVEC, CODE_FOR_altivec_vaddshs, "__builtin_altivec_vaddshs", ALTIVEC_BUILTIN_VADDSHS },
7278 { MASK_ALTIVEC, CODE_FOR_altivec_vadduws, "__builtin_altivec_vadduws", ALTIVEC_BUILTIN_VADDUWS },
7279 { MASK_ALTIVEC, CODE_FOR_altivec_vaddsws, "__builtin_altivec_vaddsws", ALTIVEC_BUILTIN_VADDSWS },
f18c054f 7280 { MASK_ALTIVEC, CODE_FOR_andv4si3, "__builtin_altivec_vand", ALTIVEC_BUILTIN_VAND },
aba5fb01 7281 { MASK_ALTIVEC, CODE_FOR_andcv4si3, "__builtin_altivec_vandc", ALTIVEC_BUILTIN_VANDC },
0ac081f6
AH
7282 { MASK_ALTIVEC, CODE_FOR_altivec_vavgub, "__builtin_altivec_vavgub", ALTIVEC_BUILTIN_VAVGUB },
7283 { MASK_ALTIVEC, CODE_FOR_altivec_vavgsb, "__builtin_altivec_vavgsb", ALTIVEC_BUILTIN_VAVGSB },
7284 { MASK_ALTIVEC, CODE_FOR_altivec_vavguh, "__builtin_altivec_vavguh", ALTIVEC_BUILTIN_VAVGUH },
7285 { MASK_ALTIVEC, CODE_FOR_altivec_vavgsh, "__builtin_altivec_vavgsh", ALTIVEC_BUILTIN_VAVGSH },
7286 { MASK_ALTIVEC, CODE_FOR_altivec_vavguw, "__builtin_altivec_vavguw", ALTIVEC_BUILTIN_VAVGUW },
7287 { MASK_ALTIVEC, CODE_FOR_altivec_vavgsw, "__builtin_altivec_vavgsw", ALTIVEC_BUILTIN_VAVGSW },
617e0e1d
DB
7288 { MASK_ALTIVEC, CODE_FOR_altivec_vcfux, "__builtin_altivec_vcfux", ALTIVEC_BUILTIN_VCFUX },
7289 { MASK_ALTIVEC, CODE_FOR_altivec_vcfsx, "__builtin_altivec_vcfsx", ALTIVEC_BUILTIN_VCFSX },
0ac081f6
AH
7290 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpbfp, "__builtin_altivec_vcmpbfp", ALTIVEC_BUILTIN_VCMPBFP },
7291 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequb, "__builtin_altivec_vcmpequb", ALTIVEC_BUILTIN_VCMPEQUB },
7292 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequh, "__builtin_altivec_vcmpequh", ALTIVEC_BUILTIN_VCMPEQUH },
7293 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequw, "__builtin_altivec_vcmpequw", ALTIVEC_BUILTIN_VCMPEQUW },
7294 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpeqfp, "__builtin_altivec_vcmpeqfp", ALTIVEC_BUILTIN_VCMPEQFP },
7295 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgefp, "__builtin_altivec_vcmpgefp", ALTIVEC_BUILTIN_VCMPGEFP },
7296 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtub, "__builtin_altivec_vcmpgtub", ALTIVEC_BUILTIN_VCMPGTUB },
7297 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsb, "__builtin_altivec_vcmpgtsb", ALTIVEC_BUILTIN_VCMPGTSB },
7298 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtuh, "__builtin_altivec_vcmpgtuh", ALTIVEC_BUILTIN_VCMPGTUH },
7299 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsh, "__builtin_altivec_vcmpgtsh", ALTIVEC_BUILTIN_VCMPGTSH },
7300 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtuw, "__builtin_altivec_vcmpgtuw", ALTIVEC_BUILTIN_VCMPGTUW },
7301 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsw, "__builtin_altivec_vcmpgtsw", ALTIVEC_BUILTIN_VCMPGTSW },
7302 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtfp, "__builtin_altivec_vcmpgtfp", ALTIVEC_BUILTIN_VCMPGTFP },
617e0e1d
DB
7303 { MASK_ALTIVEC, CODE_FOR_altivec_vctsxs, "__builtin_altivec_vctsxs", ALTIVEC_BUILTIN_VCTSXS },
7304 { MASK_ALTIVEC, CODE_FOR_altivec_vctuxs, "__builtin_altivec_vctuxs", ALTIVEC_BUILTIN_VCTUXS },
f18c054f
DB
7305 { MASK_ALTIVEC, CODE_FOR_umaxv16qi3, "__builtin_altivec_vmaxub", ALTIVEC_BUILTIN_VMAXUB },
7306 { MASK_ALTIVEC, CODE_FOR_smaxv16qi3, "__builtin_altivec_vmaxsb", ALTIVEC_BUILTIN_VMAXSB },
df966bff
AH
7307 { MASK_ALTIVEC, CODE_FOR_umaxv8hi3, "__builtin_altivec_vmaxuh", ALTIVEC_BUILTIN_VMAXUH },
7308 { MASK_ALTIVEC, CODE_FOR_smaxv8hi3, "__builtin_altivec_vmaxsh", ALTIVEC_BUILTIN_VMAXSH },
7309 { MASK_ALTIVEC, CODE_FOR_umaxv4si3, "__builtin_altivec_vmaxuw", ALTIVEC_BUILTIN_VMAXUW },
7310 { MASK_ALTIVEC, CODE_FOR_smaxv4si3, "__builtin_altivec_vmaxsw", ALTIVEC_BUILTIN_VMAXSW },
7311 { MASK_ALTIVEC, CODE_FOR_smaxv4sf3, "__builtin_altivec_vmaxfp", ALTIVEC_BUILTIN_VMAXFP },
0ac081f6
AH
7312 { MASK_ALTIVEC, CODE_FOR_altivec_vmrghb, "__builtin_altivec_vmrghb", ALTIVEC_BUILTIN_VMRGHB },
7313 { MASK_ALTIVEC, CODE_FOR_altivec_vmrghh, "__builtin_altivec_vmrghh", ALTIVEC_BUILTIN_VMRGHH },
7314 { MASK_ALTIVEC, CODE_FOR_altivec_vmrghw, "__builtin_altivec_vmrghw", ALTIVEC_BUILTIN_VMRGHW },
7315 { MASK_ALTIVEC, CODE_FOR_altivec_vmrglb, "__builtin_altivec_vmrglb", ALTIVEC_BUILTIN_VMRGLB },
7316 { MASK_ALTIVEC, CODE_FOR_altivec_vmrglh, "__builtin_altivec_vmrglh", ALTIVEC_BUILTIN_VMRGLH },
7317 { MASK_ALTIVEC, CODE_FOR_altivec_vmrglw, "__builtin_altivec_vmrglw", ALTIVEC_BUILTIN_VMRGLW },
f18c054f
DB
7318 { MASK_ALTIVEC, CODE_FOR_uminv16qi3, "__builtin_altivec_vminub", ALTIVEC_BUILTIN_VMINUB },
7319 { MASK_ALTIVEC, CODE_FOR_sminv16qi3, "__builtin_altivec_vminsb", ALTIVEC_BUILTIN_VMINSB },
7320 { MASK_ALTIVEC, CODE_FOR_uminv8hi3, "__builtin_altivec_vminuh", ALTIVEC_BUILTIN_VMINUH },
7321 { MASK_ALTIVEC, CODE_FOR_sminv8hi3, "__builtin_altivec_vminsh", ALTIVEC_BUILTIN_VMINSH },
7322 { MASK_ALTIVEC, CODE_FOR_uminv4si3, "__builtin_altivec_vminuw", ALTIVEC_BUILTIN_VMINUW },
7323 { MASK_ALTIVEC, CODE_FOR_sminv4si3, "__builtin_altivec_vminsw", ALTIVEC_BUILTIN_VMINSW },
7324 { MASK_ALTIVEC, CODE_FOR_sminv4sf3, "__builtin_altivec_vminfp", ALTIVEC_BUILTIN_VMINFP },
0ac081f6
AH
7325 { MASK_ALTIVEC, CODE_FOR_altivec_vmuleub, "__builtin_altivec_vmuleub", ALTIVEC_BUILTIN_VMULEUB },
7326 { MASK_ALTIVEC, CODE_FOR_altivec_vmulesb, "__builtin_altivec_vmulesb", ALTIVEC_BUILTIN_VMULESB },
7327 { MASK_ALTIVEC, CODE_FOR_altivec_vmuleuh, "__builtin_altivec_vmuleuh", ALTIVEC_BUILTIN_VMULEUH },
7328 { MASK_ALTIVEC, CODE_FOR_altivec_vmulesh, "__builtin_altivec_vmulesh", ALTIVEC_BUILTIN_VMULESH },
7329 { MASK_ALTIVEC, CODE_FOR_altivec_vmuloub, "__builtin_altivec_vmuloub", ALTIVEC_BUILTIN_VMULOUB },
7330 { MASK_ALTIVEC, CODE_FOR_altivec_vmulosb, "__builtin_altivec_vmulosb", ALTIVEC_BUILTIN_VMULOSB },
7331 { MASK_ALTIVEC, CODE_FOR_altivec_vmulouh, "__builtin_altivec_vmulouh", ALTIVEC_BUILTIN_VMULOUH },
7332 { MASK_ALTIVEC, CODE_FOR_altivec_vmulosh, "__builtin_altivec_vmulosh", ALTIVEC_BUILTIN_VMULOSH },
f96bc213 7333 { MASK_ALTIVEC, CODE_FOR_altivec_norv4si3, "__builtin_altivec_vnor", ALTIVEC_BUILTIN_VNOR },
f18c054f 7334 { MASK_ALTIVEC, CODE_FOR_iorv4si3, "__builtin_altivec_vor", ALTIVEC_BUILTIN_VOR },
0ac081f6
AH
7335 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhum, "__builtin_altivec_vpkuhum", ALTIVEC_BUILTIN_VPKUHUM },
7336 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwum, "__builtin_altivec_vpkuwum", ALTIVEC_BUILTIN_VPKUWUM },
7337 { MASK_ALTIVEC, CODE_FOR_altivec_vpkpx, "__builtin_altivec_vpkpx", ALTIVEC_BUILTIN_VPKPX },
0ac081f6 7338 { MASK_ALTIVEC, CODE_FOR_altivec_vpkshss, "__builtin_altivec_vpkshss", ALTIVEC_BUILTIN_VPKSHSS },
0ac081f6
AH
7339 { MASK_ALTIVEC, CODE_FOR_altivec_vpkswss, "__builtin_altivec_vpkswss", ALTIVEC_BUILTIN_VPKSWSS },
7340 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhus, "__builtin_altivec_vpkuhus", ALTIVEC_BUILTIN_VPKUHUS },
7341 { MASK_ALTIVEC, CODE_FOR_altivec_vpkshus, "__builtin_altivec_vpkshus", ALTIVEC_BUILTIN_VPKSHUS },
7342 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwus, "__builtin_altivec_vpkuwus", ALTIVEC_BUILTIN_VPKUWUS },
7343 { MASK_ALTIVEC, CODE_FOR_altivec_vpkswus, "__builtin_altivec_vpkswus", ALTIVEC_BUILTIN_VPKSWUS },
7344 { MASK_ALTIVEC, CODE_FOR_altivec_vrlb, "__builtin_altivec_vrlb", ALTIVEC_BUILTIN_VRLB },
7345 { MASK_ALTIVEC, CODE_FOR_altivec_vrlh, "__builtin_altivec_vrlh", ALTIVEC_BUILTIN_VRLH },
7346 { MASK_ALTIVEC, CODE_FOR_altivec_vrlw, "__builtin_altivec_vrlw", ALTIVEC_BUILTIN_VRLW },
71d46ca5
MM
7347 { MASK_ALTIVEC, CODE_FOR_vashlv16qi3, "__builtin_altivec_vslb", ALTIVEC_BUILTIN_VSLB },
7348 { MASK_ALTIVEC, CODE_FOR_vashlv8hi3, "__builtin_altivec_vslh", ALTIVEC_BUILTIN_VSLH },
7349 { MASK_ALTIVEC, CODE_FOR_vashlv4si3, "__builtin_altivec_vslw", ALTIVEC_BUILTIN_VSLW },
0ac081f6
AH
7350 { MASK_ALTIVEC, CODE_FOR_altivec_vsl, "__builtin_altivec_vsl", ALTIVEC_BUILTIN_VSL },
7351 { MASK_ALTIVEC, CODE_FOR_altivec_vslo, "__builtin_altivec_vslo", ALTIVEC_BUILTIN_VSLO },
2212663f
DB
7352 { MASK_ALTIVEC, CODE_FOR_altivec_vspltb, "__builtin_altivec_vspltb", ALTIVEC_BUILTIN_VSPLTB },
7353 { MASK_ALTIVEC, CODE_FOR_altivec_vsplth, "__builtin_altivec_vsplth", ALTIVEC_BUILTIN_VSPLTH },
7354 { MASK_ALTIVEC, CODE_FOR_altivec_vspltw, "__builtin_altivec_vspltw", ALTIVEC_BUILTIN_VSPLTW },
71d46ca5
MM
7355 { MASK_ALTIVEC, CODE_FOR_vlshrv16qi3, "__builtin_altivec_vsrb", ALTIVEC_BUILTIN_VSRB },
7356 { MASK_ALTIVEC, CODE_FOR_vlshrv8hi3, "__builtin_altivec_vsrh", ALTIVEC_BUILTIN_VSRH },
7357 { MASK_ALTIVEC, CODE_FOR_vlshrv4si3, "__builtin_altivec_vsrw", ALTIVEC_BUILTIN_VSRW },
7358 { MASK_ALTIVEC, CODE_FOR_vashrv16qi3, "__builtin_altivec_vsrab", ALTIVEC_BUILTIN_VSRAB },
7359 { MASK_ALTIVEC, CODE_FOR_vashrv8hi3, "__builtin_altivec_vsrah", ALTIVEC_BUILTIN_VSRAH },
7360 { MASK_ALTIVEC, CODE_FOR_vashrv4si3, "__builtin_altivec_vsraw", ALTIVEC_BUILTIN_VSRAW },
0ac081f6
AH
7361 { MASK_ALTIVEC, CODE_FOR_altivec_vsr, "__builtin_altivec_vsr", ALTIVEC_BUILTIN_VSR },
7362 { MASK_ALTIVEC, CODE_FOR_altivec_vsro, "__builtin_altivec_vsro", ALTIVEC_BUILTIN_VSRO },
f18c054f
DB
7363 { MASK_ALTIVEC, CODE_FOR_subv16qi3, "__builtin_altivec_vsububm", ALTIVEC_BUILTIN_VSUBUBM },
7364 { MASK_ALTIVEC, CODE_FOR_subv8hi3, "__builtin_altivec_vsubuhm", ALTIVEC_BUILTIN_VSUBUHM },
7365 { MASK_ALTIVEC, CODE_FOR_subv4si3, "__builtin_altivec_vsubuwm", ALTIVEC_BUILTIN_VSUBUWM },
7366 { MASK_ALTIVEC, CODE_FOR_subv4sf3, "__builtin_altivec_vsubfp", ALTIVEC_BUILTIN_VSUBFP },
0ac081f6
AH
7367 { MASK_ALTIVEC, CODE_FOR_altivec_vsubcuw, "__builtin_altivec_vsubcuw", ALTIVEC_BUILTIN_VSUBCUW },
7368 { MASK_ALTIVEC, CODE_FOR_altivec_vsububs, "__builtin_altivec_vsububs", ALTIVEC_BUILTIN_VSUBUBS },
7369 { MASK_ALTIVEC, CODE_FOR_altivec_vsubsbs, "__builtin_altivec_vsubsbs", ALTIVEC_BUILTIN_VSUBSBS },
7370 { MASK_ALTIVEC, CODE_FOR_altivec_vsubuhs, "__builtin_altivec_vsubuhs", ALTIVEC_BUILTIN_VSUBUHS },
7371 { MASK_ALTIVEC, CODE_FOR_altivec_vsubshs, "__builtin_altivec_vsubshs", ALTIVEC_BUILTIN_VSUBSHS },
7372 { MASK_ALTIVEC, CODE_FOR_altivec_vsubuws, "__builtin_altivec_vsubuws", ALTIVEC_BUILTIN_VSUBUWS },
7373 { MASK_ALTIVEC, CODE_FOR_altivec_vsubsws, "__builtin_altivec_vsubsws", ALTIVEC_BUILTIN_VSUBSWS },
7374 { MASK_ALTIVEC, CODE_FOR_altivec_vsum4ubs, "__builtin_altivec_vsum4ubs", ALTIVEC_BUILTIN_VSUM4UBS },
7375 { MASK_ALTIVEC, CODE_FOR_altivec_vsum4sbs, "__builtin_altivec_vsum4sbs", ALTIVEC_BUILTIN_VSUM4SBS },
7376 { MASK_ALTIVEC, CODE_FOR_altivec_vsum4shs, "__builtin_altivec_vsum4shs", ALTIVEC_BUILTIN_VSUM4SHS },
7377 { MASK_ALTIVEC, CODE_FOR_altivec_vsum2sws, "__builtin_altivec_vsum2sws", ALTIVEC_BUILTIN_VSUM2SWS },
7378 { MASK_ALTIVEC, CODE_FOR_altivec_vsumsws, "__builtin_altivec_vsumsws", ALTIVEC_BUILTIN_VSUMSWS },
f18c054f 7379 { MASK_ALTIVEC, CODE_FOR_xorv4si3, "__builtin_altivec_vxor", ALTIVEC_BUILTIN_VXOR },
a3170dc6 7380
58646b77
PB
7381 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_add", ALTIVEC_BUILTIN_VEC_ADD },
7382 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddfp", ALTIVEC_BUILTIN_VEC_VADDFP },
7383 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduwm", ALTIVEC_BUILTIN_VEC_VADDUWM },
7384 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduhm", ALTIVEC_BUILTIN_VEC_VADDUHM },
7385 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddubm", ALTIVEC_BUILTIN_VEC_VADDUBM },
7386 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_addc", ALTIVEC_BUILTIN_VEC_ADDC },
7387 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_adds", ALTIVEC_BUILTIN_VEC_ADDS },
7388 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddsws", ALTIVEC_BUILTIN_VEC_VADDSWS },
7389 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduws", ALTIVEC_BUILTIN_VEC_VADDUWS },
7390 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddshs", ALTIVEC_BUILTIN_VEC_VADDSHS },
7391 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduhs", ALTIVEC_BUILTIN_VEC_VADDUHS },
7392 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddsbs", ALTIVEC_BUILTIN_VEC_VADDSBS },
7393 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddubs", ALTIVEC_BUILTIN_VEC_VADDUBS },
7394 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_and", ALTIVEC_BUILTIN_VEC_AND },
7395 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_andc", ALTIVEC_BUILTIN_VEC_ANDC },
7396 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_avg", ALTIVEC_BUILTIN_VEC_AVG },
7397 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsw", ALTIVEC_BUILTIN_VEC_VAVGSW },
7398 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavguw", ALTIVEC_BUILTIN_VEC_VAVGUW },
7399 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsh", ALTIVEC_BUILTIN_VEC_VAVGSH },
7400 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavguh", ALTIVEC_BUILTIN_VEC_VAVGUH },
7401 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsb", ALTIVEC_BUILTIN_VEC_VAVGSB },
7402 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgub", ALTIVEC_BUILTIN_VEC_VAVGUB },
7403 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpb", ALTIVEC_BUILTIN_VEC_CMPB },
7404 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpeq", ALTIVEC_BUILTIN_VEC_CMPEQ },
7405 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpeqfp", ALTIVEC_BUILTIN_VEC_VCMPEQFP },
7406 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequw", ALTIVEC_BUILTIN_VEC_VCMPEQUW },
7407 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequh", ALTIVEC_BUILTIN_VEC_VCMPEQUH },
7408 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequb", ALTIVEC_BUILTIN_VEC_VCMPEQUB },
7409 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpge", ALTIVEC_BUILTIN_VEC_CMPGE },
7410 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpgt", ALTIVEC_BUILTIN_VEC_CMPGT },
7411 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtfp", ALTIVEC_BUILTIN_VEC_VCMPGTFP },
7412 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsw", ALTIVEC_BUILTIN_VEC_VCMPGTSW },
7413 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtuw", ALTIVEC_BUILTIN_VEC_VCMPGTUW },
7414 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsh", ALTIVEC_BUILTIN_VEC_VCMPGTSH },
7415 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtuh", ALTIVEC_BUILTIN_VEC_VCMPGTUH },
7416 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsb", ALTIVEC_BUILTIN_VEC_VCMPGTSB },
7417 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtub", ALTIVEC_BUILTIN_VEC_VCMPGTUB },
7418 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmple", ALTIVEC_BUILTIN_VEC_CMPLE },
7419 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmplt", ALTIVEC_BUILTIN_VEC_CMPLT },
7420 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_max", ALTIVEC_BUILTIN_VEC_MAX },
7421 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxfp", ALTIVEC_BUILTIN_VEC_VMAXFP },
7422 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsw", ALTIVEC_BUILTIN_VEC_VMAXSW },
7423 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxuw", ALTIVEC_BUILTIN_VEC_VMAXUW },
7424 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsh", ALTIVEC_BUILTIN_VEC_VMAXSH },
7425 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxuh", ALTIVEC_BUILTIN_VEC_VMAXUH },
7426 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsb", ALTIVEC_BUILTIN_VEC_VMAXSB },
7427 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxub", ALTIVEC_BUILTIN_VEC_VMAXUB },
7428 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mergeh", ALTIVEC_BUILTIN_VEC_MERGEH },
7429 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghw", ALTIVEC_BUILTIN_VEC_VMRGHW },
7430 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghh", ALTIVEC_BUILTIN_VEC_VMRGHH },
7431 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghb", ALTIVEC_BUILTIN_VEC_VMRGHB },
7432 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mergel", ALTIVEC_BUILTIN_VEC_MERGEL },
7433 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglw", ALTIVEC_BUILTIN_VEC_VMRGLW },
7434 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglh", ALTIVEC_BUILTIN_VEC_VMRGLH },
7435 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglb", ALTIVEC_BUILTIN_VEC_VMRGLB },
7436 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_min", ALTIVEC_BUILTIN_VEC_MIN },
7437 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminfp", ALTIVEC_BUILTIN_VEC_VMINFP },
7438 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsw", ALTIVEC_BUILTIN_VEC_VMINSW },
7439 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminuw", ALTIVEC_BUILTIN_VEC_VMINUW },
7440 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsh", ALTIVEC_BUILTIN_VEC_VMINSH },
7441 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminuh", ALTIVEC_BUILTIN_VEC_VMINUH },
7442 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsb", ALTIVEC_BUILTIN_VEC_VMINSB },
7443 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminub", ALTIVEC_BUILTIN_VEC_VMINUB },
7444 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mule", ALTIVEC_BUILTIN_VEC_MULE },
7445 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuleub", ALTIVEC_BUILTIN_VEC_VMULEUB },
7446 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulesb", ALTIVEC_BUILTIN_VEC_VMULESB },
7447 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuleuh", ALTIVEC_BUILTIN_VEC_VMULEUH },
7448 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulesh", ALTIVEC_BUILTIN_VEC_VMULESH },
7449 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mulo", ALTIVEC_BUILTIN_VEC_MULO },
7450 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulosh", ALTIVEC_BUILTIN_VEC_VMULOSH },
7451 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulouh", ALTIVEC_BUILTIN_VEC_VMULOUH },
7452 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulosb", ALTIVEC_BUILTIN_VEC_VMULOSB },
7453 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuloub", ALTIVEC_BUILTIN_VEC_VMULOUB },
7454 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_nor", ALTIVEC_BUILTIN_VEC_NOR },
7455 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_or", ALTIVEC_BUILTIN_VEC_OR },
7456 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_pack", ALTIVEC_BUILTIN_VEC_PACK },
7457 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuwum", ALTIVEC_BUILTIN_VEC_VPKUWUM },
7458 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuhum", ALTIVEC_BUILTIN_VEC_VPKUHUM },
7459 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packpx", ALTIVEC_BUILTIN_VEC_PACKPX },
7460 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packs", ALTIVEC_BUILTIN_VEC_PACKS },
7461 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkswss", ALTIVEC_BUILTIN_VEC_VPKSWSS },
7462 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuwus", ALTIVEC_BUILTIN_VEC_VPKUWUS },
7463 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkshss", ALTIVEC_BUILTIN_VEC_VPKSHSS },
7464 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuhus", ALTIVEC_BUILTIN_VEC_VPKUHUS },
7465 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packsu", ALTIVEC_BUILTIN_VEC_PACKSU },
7466 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkswus", ALTIVEC_BUILTIN_VEC_VPKSWUS },
7467 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkshus", ALTIVEC_BUILTIN_VEC_VPKSHUS },
7468 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_rl", ALTIVEC_BUILTIN_VEC_RL },
7469 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlw", ALTIVEC_BUILTIN_VEC_VRLW },
7470 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlh", ALTIVEC_BUILTIN_VEC_VRLH },
7471 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlb", ALTIVEC_BUILTIN_VEC_VRLB },
7472 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sl", ALTIVEC_BUILTIN_VEC_SL },
7473 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslw", ALTIVEC_BUILTIN_VEC_VSLW },
7474 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslh", ALTIVEC_BUILTIN_VEC_VSLH },
7475 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslb", ALTIVEC_BUILTIN_VEC_VSLB },
7476 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sll", ALTIVEC_BUILTIN_VEC_SLL },
7477 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_slo", ALTIVEC_BUILTIN_VEC_SLO },
7478 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sr", ALTIVEC_BUILTIN_VEC_SR },
7479 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrw", ALTIVEC_BUILTIN_VEC_VSRW },
7480 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrh", ALTIVEC_BUILTIN_VEC_VSRH },
7481 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrb", ALTIVEC_BUILTIN_VEC_VSRB },
7482 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sra", ALTIVEC_BUILTIN_VEC_SRA },
7483 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsraw", ALTIVEC_BUILTIN_VEC_VSRAW },
7484 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrah", ALTIVEC_BUILTIN_VEC_VSRAH },
7485 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrab", ALTIVEC_BUILTIN_VEC_VSRAB },
7486 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_srl", ALTIVEC_BUILTIN_VEC_SRL },
7487 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sro", ALTIVEC_BUILTIN_VEC_SRO },
7488 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sub", ALTIVEC_BUILTIN_VEC_SUB },
7489 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubfp", ALTIVEC_BUILTIN_VEC_VSUBFP },
7490 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuwm", ALTIVEC_BUILTIN_VEC_VSUBUWM },
7491 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuhm", ALTIVEC_BUILTIN_VEC_VSUBUHM },
7492 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsububm", ALTIVEC_BUILTIN_VEC_VSUBUBM },
7493 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_subc", ALTIVEC_BUILTIN_VEC_SUBC },
7494 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_subs", ALTIVEC_BUILTIN_VEC_SUBS },
7495 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubsws", ALTIVEC_BUILTIN_VEC_VSUBSWS },
7496 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuws", ALTIVEC_BUILTIN_VEC_VSUBUWS },
7497 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubshs", ALTIVEC_BUILTIN_VEC_VSUBSHS },
7498 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuhs", ALTIVEC_BUILTIN_VEC_VSUBUHS },
7499 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubsbs", ALTIVEC_BUILTIN_VEC_VSUBSBS },
7500 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsububs", ALTIVEC_BUILTIN_VEC_VSUBUBS },
7501 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sum4s", ALTIVEC_BUILTIN_VEC_SUM4S },
7502 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4shs", ALTIVEC_BUILTIN_VEC_VSUM4SHS },
7503 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4sbs", ALTIVEC_BUILTIN_VEC_VSUM4SBS },
7504 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4ubs", ALTIVEC_BUILTIN_VEC_VSUM4UBS },
7505 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sum2s", ALTIVEC_BUILTIN_VEC_SUM2S },
7506 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sums", ALTIVEC_BUILTIN_VEC_SUMS },
7507 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_xor", ALTIVEC_BUILTIN_VEC_XOR },
7508
96038623
DE
7509 { 0, CODE_FOR_divv2sf3, "__builtin_paired_divv2sf3", PAIRED_BUILTIN_DIVV2SF3 },
7510 { 0, CODE_FOR_addv2sf3, "__builtin_paired_addv2sf3", PAIRED_BUILTIN_ADDV2SF3 },
7511 { 0, CODE_FOR_subv2sf3, "__builtin_paired_subv2sf3", PAIRED_BUILTIN_SUBV2SF3 },
7512 { 0, CODE_FOR_mulv2sf3, "__builtin_paired_mulv2sf3", PAIRED_BUILTIN_MULV2SF3 },
7513 { 0, CODE_FOR_paired_muls0, "__builtin_paired_muls0", PAIRED_BUILTIN_MULS0 },
7514 { 0, CODE_FOR_paired_muls1, "__builtin_paired_muls1", PAIRED_BUILTIN_MULS1 },
7515 { 0, CODE_FOR_paired_merge00, "__builtin_paired_merge00", PAIRED_BUILTIN_MERGE00 },
7516 { 0, CODE_FOR_paired_merge01, "__builtin_paired_merge01", PAIRED_BUILTIN_MERGE01 },
7517 { 0, CODE_FOR_paired_merge10, "__builtin_paired_merge10", PAIRED_BUILTIN_MERGE10 },
7518 { 0, CODE_FOR_paired_merge11, "__builtin_paired_merge11", PAIRED_BUILTIN_MERGE11 },
7519
a3170dc6
AH
7520 /* Place holder, leave as first spe builtin. */
7521 { 0, CODE_FOR_spe_evaddw, "__builtin_spe_evaddw", SPE_BUILTIN_EVADDW },
7522 { 0, CODE_FOR_spe_evand, "__builtin_spe_evand", SPE_BUILTIN_EVAND },
7523 { 0, CODE_FOR_spe_evandc, "__builtin_spe_evandc", SPE_BUILTIN_EVANDC },
7524 { 0, CODE_FOR_spe_evdivws, "__builtin_spe_evdivws", SPE_BUILTIN_EVDIVWS },
7525 { 0, CODE_FOR_spe_evdivwu, "__builtin_spe_evdivwu", SPE_BUILTIN_EVDIVWU },
7526 { 0, CODE_FOR_spe_eveqv, "__builtin_spe_eveqv", SPE_BUILTIN_EVEQV },
7527 { 0, CODE_FOR_spe_evfsadd, "__builtin_spe_evfsadd", SPE_BUILTIN_EVFSADD },
7528 { 0, CODE_FOR_spe_evfsdiv, "__builtin_spe_evfsdiv", SPE_BUILTIN_EVFSDIV },
7529 { 0, CODE_FOR_spe_evfsmul, "__builtin_spe_evfsmul", SPE_BUILTIN_EVFSMUL },
7530 { 0, CODE_FOR_spe_evfssub, "__builtin_spe_evfssub", SPE_BUILTIN_EVFSSUB },
7531 { 0, CODE_FOR_spe_evmergehi, "__builtin_spe_evmergehi", SPE_BUILTIN_EVMERGEHI },
7532 { 0, CODE_FOR_spe_evmergehilo, "__builtin_spe_evmergehilo", SPE_BUILTIN_EVMERGEHILO },
7533 { 0, CODE_FOR_spe_evmergelo, "__builtin_spe_evmergelo", SPE_BUILTIN_EVMERGELO },
7534 { 0, CODE_FOR_spe_evmergelohi, "__builtin_spe_evmergelohi", SPE_BUILTIN_EVMERGELOHI },
7535 { 0, CODE_FOR_spe_evmhegsmfaa, "__builtin_spe_evmhegsmfaa", SPE_BUILTIN_EVMHEGSMFAA },
7536 { 0, CODE_FOR_spe_evmhegsmfan, "__builtin_spe_evmhegsmfan", SPE_BUILTIN_EVMHEGSMFAN },
7537 { 0, CODE_FOR_spe_evmhegsmiaa, "__builtin_spe_evmhegsmiaa", SPE_BUILTIN_EVMHEGSMIAA },
7538 { 0, CODE_FOR_spe_evmhegsmian, "__builtin_spe_evmhegsmian", SPE_BUILTIN_EVMHEGSMIAN },
7539 { 0, CODE_FOR_spe_evmhegumiaa, "__builtin_spe_evmhegumiaa", SPE_BUILTIN_EVMHEGUMIAA },
7540 { 0, CODE_FOR_spe_evmhegumian, "__builtin_spe_evmhegumian", SPE_BUILTIN_EVMHEGUMIAN },
7541 { 0, CODE_FOR_spe_evmhesmf, "__builtin_spe_evmhesmf", SPE_BUILTIN_EVMHESMF },
7542 { 0, CODE_FOR_spe_evmhesmfa, "__builtin_spe_evmhesmfa", SPE_BUILTIN_EVMHESMFA },
7543 { 0, CODE_FOR_spe_evmhesmfaaw, "__builtin_spe_evmhesmfaaw", SPE_BUILTIN_EVMHESMFAAW },
7544 { 0, CODE_FOR_spe_evmhesmfanw, "__builtin_spe_evmhesmfanw", SPE_BUILTIN_EVMHESMFANW },
7545 { 0, CODE_FOR_spe_evmhesmi, "__builtin_spe_evmhesmi", SPE_BUILTIN_EVMHESMI },
7546 { 0, CODE_FOR_spe_evmhesmia, "__builtin_spe_evmhesmia", SPE_BUILTIN_EVMHESMIA },
7547 { 0, CODE_FOR_spe_evmhesmiaaw, "__builtin_spe_evmhesmiaaw", SPE_BUILTIN_EVMHESMIAAW },
7548 { 0, CODE_FOR_spe_evmhesmianw, "__builtin_spe_evmhesmianw", SPE_BUILTIN_EVMHESMIANW },
7549 { 0, CODE_FOR_spe_evmhessf, "__builtin_spe_evmhessf", SPE_BUILTIN_EVMHESSF },
7550 { 0, CODE_FOR_spe_evmhessfa, "__builtin_spe_evmhessfa", SPE_BUILTIN_EVMHESSFA },
7551 { 0, CODE_FOR_spe_evmhessfaaw, "__builtin_spe_evmhessfaaw", SPE_BUILTIN_EVMHESSFAAW },
7552 { 0, CODE_FOR_spe_evmhessfanw, "__builtin_spe_evmhessfanw", SPE_BUILTIN_EVMHESSFANW },
7553 { 0, CODE_FOR_spe_evmhessiaaw, "__builtin_spe_evmhessiaaw", SPE_BUILTIN_EVMHESSIAAW },
7554 { 0, CODE_FOR_spe_evmhessianw, "__builtin_spe_evmhessianw", SPE_BUILTIN_EVMHESSIANW },
7555 { 0, CODE_FOR_spe_evmheumi, "__builtin_spe_evmheumi", SPE_BUILTIN_EVMHEUMI },
7556 { 0, CODE_FOR_spe_evmheumia, "__builtin_spe_evmheumia", SPE_BUILTIN_EVMHEUMIA },
7557 { 0, CODE_FOR_spe_evmheumiaaw, "__builtin_spe_evmheumiaaw", SPE_BUILTIN_EVMHEUMIAAW },
7558 { 0, CODE_FOR_spe_evmheumianw, "__builtin_spe_evmheumianw", SPE_BUILTIN_EVMHEUMIANW },
7559 { 0, CODE_FOR_spe_evmheusiaaw, "__builtin_spe_evmheusiaaw", SPE_BUILTIN_EVMHEUSIAAW },
7560 { 0, CODE_FOR_spe_evmheusianw, "__builtin_spe_evmheusianw", SPE_BUILTIN_EVMHEUSIANW },
7561 { 0, CODE_FOR_spe_evmhogsmfaa, "__builtin_spe_evmhogsmfaa", SPE_BUILTIN_EVMHOGSMFAA },
7562 { 0, CODE_FOR_spe_evmhogsmfan, "__builtin_spe_evmhogsmfan", SPE_BUILTIN_EVMHOGSMFAN },
7563 { 0, CODE_FOR_spe_evmhogsmiaa, "__builtin_spe_evmhogsmiaa", SPE_BUILTIN_EVMHOGSMIAA },
7564 { 0, CODE_FOR_spe_evmhogsmian, "__builtin_spe_evmhogsmian", SPE_BUILTIN_EVMHOGSMIAN },
7565 { 0, CODE_FOR_spe_evmhogumiaa, "__builtin_spe_evmhogumiaa", SPE_BUILTIN_EVMHOGUMIAA },
7566 { 0, CODE_FOR_spe_evmhogumian, "__builtin_spe_evmhogumian", SPE_BUILTIN_EVMHOGUMIAN },
7567 { 0, CODE_FOR_spe_evmhosmf, "__builtin_spe_evmhosmf", SPE_BUILTIN_EVMHOSMF },
7568 { 0, CODE_FOR_spe_evmhosmfa, "__builtin_spe_evmhosmfa", SPE_BUILTIN_EVMHOSMFA },
7569 { 0, CODE_FOR_spe_evmhosmfaaw, "__builtin_spe_evmhosmfaaw", SPE_BUILTIN_EVMHOSMFAAW },
7570 { 0, CODE_FOR_spe_evmhosmfanw, "__builtin_spe_evmhosmfanw", SPE_BUILTIN_EVMHOSMFANW },
7571 { 0, CODE_FOR_spe_evmhosmi, "__builtin_spe_evmhosmi", SPE_BUILTIN_EVMHOSMI },
7572 { 0, CODE_FOR_spe_evmhosmia, "__builtin_spe_evmhosmia", SPE_BUILTIN_EVMHOSMIA },
7573 { 0, CODE_FOR_spe_evmhosmiaaw, "__builtin_spe_evmhosmiaaw", SPE_BUILTIN_EVMHOSMIAAW },
7574 { 0, CODE_FOR_spe_evmhosmianw, "__builtin_spe_evmhosmianw", SPE_BUILTIN_EVMHOSMIANW },
7575 { 0, CODE_FOR_spe_evmhossf, "__builtin_spe_evmhossf", SPE_BUILTIN_EVMHOSSF },
7576 { 0, CODE_FOR_spe_evmhossfa, "__builtin_spe_evmhossfa", SPE_BUILTIN_EVMHOSSFA },
7577 { 0, CODE_FOR_spe_evmhossfaaw, "__builtin_spe_evmhossfaaw", SPE_BUILTIN_EVMHOSSFAAW },
7578 { 0, CODE_FOR_spe_evmhossfanw, "__builtin_spe_evmhossfanw", SPE_BUILTIN_EVMHOSSFANW },
7579 { 0, CODE_FOR_spe_evmhossiaaw, "__builtin_spe_evmhossiaaw", SPE_BUILTIN_EVMHOSSIAAW },
7580 { 0, CODE_FOR_spe_evmhossianw, "__builtin_spe_evmhossianw", SPE_BUILTIN_EVMHOSSIANW },
7581 { 0, CODE_FOR_spe_evmhoumi, "__builtin_spe_evmhoumi", SPE_BUILTIN_EVMHOUMI },
7582 { 0, CODE_FOR_spe_evmhoumia, "__builtin_spe_evmhoumia", SPE_BUILTIN_EVMHOUMIA },
7583 { 0, CODE_FOR_spe_evmhoumiaaw, "__builtin_spe_evmhoumiaaw", SPE_BUILTIN_EVMHOUMIAAW },
7584 { 0, CODE_FOR_spe_evmhoumianw, "__builtin_spe_evmhoumianw", SPE_BUILTIN_EVMHOUMIANW },
7585 { 0, CODE_FOR_spe_evmhousiaaw, "__builtin_spe_evmhousiaaw", SPE_BUILTIN_EVMHOUSIAAW },
7586 { 0, CODE_FOR_spe_evmhousianw, "__builtin_spe_evmhousianw", SPE_BUILTIN_EVMHOUSIANW },
7587 { 0, CODE_FOR_spe_evmwhsmf, "__builtin_spe_evmwhsmf", SPE_BUILTIN_EVMWHSMF },
7588 { 0, CODE_FOR_spe_evmwhsmfa, "__builtin_spe_evmwhsmfa", SPE_BUILTIN_EVMWHSMFA },
7589 { 0, CODE_FOR_spe_evmwhsmi, "__builtin_spe_evmwhsmi", SPE_BUILTIN_EVMWHSMI },
7590 { 0, CODE_FOR_spe_evmwhsmia, "__builtin_spe_evmwhsmia", SPE_BUILTIN_EVMWHSMIA },
7591 { 0, CODE_FOR_spe_evmwhssf, "__builtin_spe_evmwhssf", SPE_BUILTIN_EVMWHSSF },
7592 { 0, CODE_FOR_spe_evmwhssfa, "__builtin_spe_evmwhssfa", SPE_BUILTIN_EVMWHSSFA },
7593 { 0, CODE_FOR_spe_evmwhumi, "__builtin_spe_evmwhumi", SPE_BUILTIN_EVMWHUMI },
7594 { 0, CODE_FOR_spe_evmwhumia, "__builtin_spe_evmwhumia", SPE_BUILTIN_EVMWHUMIA },
a3170dc6
AH
7595 { 0, CODE_FOR_spe_evmwlsmiaaw, "__builtin_spe_evmwlsmiaaw", SPE_BUILTIN_EVMWLSMIAAW },
7596 { 0, CODE_FOR_spe_evmwlsmianw, "__builtin_spe_evmwlsmianw", SPE_BUILTIN_EVMWLSMIANW },
a3170dc6
AH
7597 { 0, CODE_FOR_spe_evmwlssiaaw, "__builtin_spe_evmwlssiaaw", SPE_BUILTIN_EVMWLSSIAAW },
7598 { 0, CODE_FOR_spe_evmwlssianw, "__builtin_spe_evmwlssianw", SPE_BUILTIN_EVMWLSSIANW },
7599 { 0, CODE_FOR_spe_evmwlumi, "__builtin_spe_evmwlumi", SPE_BUILTIN_EVMWLUMI },
7600 { 0, CODE_FOR_spe_evmwlumia, "__builtin_spe_evmwlumia", SPE_BUILTIN_EVMWLUMIA },
7601 { 0, CODE_FOR_spe_evmwlumiaaw, "__builtin_spe_evmwlumiaaw", SPE_BUILTIN_EVMWLUMIAAW },
7602 { 0, CODE_FOR_spe_evmwlumianw, "__builtin_spe_evmwlumianw", SPE_BUILTIN_EVMWLUMIANW },
7603 { 0, CODE_FOR_spe_evmwlusiaaw, "__builtin_spe_evmwlusiaaw", SPE_BUILTIN_EVMWLUSIAAW },
7604 { 0, CODE_FOR_spe_evmwlusianw, "__builtin_spe_evmwlusianw", SPE_BUILTIN_EVMWLUSIANW },
7605 { 0, CODE_FOR_spe_evmwsmf, "__builtin_spe_evmwsmf", SPE_BUILTIN_EVMWSMF },
7606 { 0, CODE_FOR_spe_evmwsmfa, "__builtin_spe_evmwsmfa", SPE_BUILTIN_EVMWSMFA },
7607 { 0, CODE_FOR_spe_evmwsmfaa, "__builtin_spe_evmwsmfaa", SPE_BUILTIN_EVMWSMFAA },
7608 { 0, CODE_FOR_spe_evmwsmfan, "__builtin_spe_evmwsmfan", SPE_BUILTIN_EVMWSMFAN },
7609 { 0, CODE_FOR_spe_evmwsmi, "__builtin_spe_evmwsmi", SPE_BUILTIN_EVMWSMI },
7610 { 0, CODE_FOR_spe_evmwsmia, "__builtin_spe_evmwsmia", SPE_BUILTIN_EVMWSMIA },
7611 { 0, CODE_FOR_spe_evmwsmiaa, "__builtin_spe_evmwsmiaa", SPE_BUILTIN_EVMWSMIAA },
7612 { 0, CODE_FOR_spe_evmwsmian, "__builtin_spe_evmwsmian", SPE_BUILTIN_EVMWSMIAN },
7613 { 0, CODE_FOR_spe_evmwssf, "__builtin_spe_evmwssf", SPE_BUILTIN_EVMWSSF },
7614 { 0, CODE_FOR_spe_evmwssfa, "__builtin_spe_evmwssfa", SPE_BUILTIN_EVMWSSFA },
7615 { 0, CODE_FOR_spe_evmwssfaa, "__builtin_spe_evmwssfaa", SPE_BUILTIN_EVMWSSFAA },
7616 { 0, CODE_FOR_spe_evmwssfan, "__builtin_spe_evmwssfan", SPE_BUILTIN_EVMWSSFAN },
7617 { 0, CODE_FOR_spe_evmwumi, "__builtin_spe_evmwumi", SPE_BUILTIN_EVMWUMI },
7618 { 0, CODE_FOR_spe_evmwumia, "__builtin_spe_evmwumia", SPE_BUILTIN_EVMWUMIA },
7619 { 0, CODE_FOR_spe_evmwumiaa, "__builtin_spe_evmwumiaa", SPE_BUILTIN_EVMWUMIAA },
7620 { 0, CODE_FOR_spe_evmwumian, "__builtin_spe_evmwumian", SPE_BUILTIN_EVMWUMIAN },
7621 { 0, CODE_FOR_spe_evnand, "__builtin_spe_evnand", SPE_BUILTIN_EVNAND },
7622 { 0, CODE_FOR_spe_evnor, "__builtin_spe_evnor", SPE_BUILTIN_EVNOR },
7623 { 0, CODE_FOR_spe_evor, "__builtin_spe_evor", SPE_BUILTIN_EVOR },
7624 { 0, CODE_FOR_spe_evorc, "__builtin_spe_evorc", SPE_BUILTIN_EVORC },
7625 { 0, CODE_FOR_spe_evrlw, "__builtin_spe_evrlw", SPE_BUILTIN_EVRLW },
7626 { 0, CODE_FOR_spe_evslw, "__builtin_spe_evslw", SPE_BUILTIN_EVSLW },
7627 { 0, CODE_FOR_spe_evsrws, "__builtin_spe_evsrws", SPE_BUILTIN_EVSRWS },
7628 { 0, CODE_FOR_spe_evsrwu, "__builtin_spe_evsrwu", SPE_BUILTIN_EVSRWU },
7629 { 0, CODE_FOR_spe_evsubfw, "__builtin_spe_evsubfw", SPE_BUILTIN_EVSUBFW },
7630
7631 /* SPE binary operations expecting a 5-bit unsigned literal. */
7632 { 0, CODE_FOR_spe_evaddiw, "__builtin_spe_evaddiw", SPE_BUILTIN_EVADDIW },
7633
7634 { 0, CODE_FOR_spe_evrlwi, "__builtin_spe_evrlwi", SPE_BUILTIN_EVRLWI },
7635 { 0, CODE_FOR_spe_evslwi, "__builtin_spe_evslwi", SPE_BUILTIN_EVSLWI },
7636 { 0, CODE_FOR_spe_evsrwis, "__builtin_spe_evsrwis", SPE_BUILTIN_EVSRWIS },
7637 { 0, CODE_FOR_spe_evsrwiu, "__builtin_spe_evsrwiu", SPE_BUILTIN_EVSRWIU },
7638 { 0, CODE_FOR_spe_evsubifw, "__builtin_spe_evsubifw", SPE_BUILTIN_EVSUBIFW },
7639 { 0, CODE_FOR_spe_evmwhssfaa, "__builtin_spe_evmwhssfaa", SPE_BUILTIN_EVMWHSSFAA },
7640 { 0, CODE_FOR_spe_evmwhssmaa, "__builtin_spe_evmwhssmaa", SPE_BUILTIN_EVMWHSSMAA },
7641 { 0, CODE_FOR_spe_evmwhsmfaa, "__builtin_spe_evmwhsmfaa", SPE_BUILTIN_EVMWHSMFAA },
7642 { 0, CODE_FOR_spe_evmwhsmiaa, "__builtin_spe_evmwhsmiaa", SPE_BUILTIN_EVMWHSMIAA },
7643 { 0, CODE_FOR_spe_evmwhusiaa, "__builtin_spe_evmwhusiaa", SPE_BUILTIN_EVMWHUSIAA },
7644 { 0, CODE_FOR_spe_evmwhumiaa, "__builtin_spe_evmwhumiaa", SPE_BUILTIN_EVMWHUMIAA },
7645 { 0, CODE_FOR_spe_evmwhssfan, "__builtin_spe_evmwhssfan", SPE_BUILTIN_EVMWHSSFAN },
7646 { 0, CODE_FOR_spe_evmwhssian, "__builtin_spe_evmwhssian", SPE_BUILTIN_EVMWHSSIAN },
7647 { 0, CODE_FOR_spe_evmwhsmfan, "__builtin_spe_evmwhsmfan", SPE_BUILTIN_EVMWHSMFAN },
7648 { 0, CODE_FOR_spe_evmwhsmian, "__builtin_spe_evmwhsmian", SPE_BUILTIN_EVMWHSMIAN },
7649 { 0, CODE_FOR_spe_evmwhusian, "__builtin_spe_evmwhusian", SPE_BUILTIN_EVMWHUSIAN },
7650 { 0, CODE_FOR_spe_evmwhumian, "__builtin_spe_evmwhumian", SPE_BUILTIN_EVMWHUMIAN },
7651 { 0, CODE_FOR_spe_evmwhgssfaa, "__builtin_spe_evmwhgssfaa", SPE_BUILTIN_EVMWHGSSFAA },
7652 { 0, CODE_FOR_spe_evmwhgsmfaa, "__builtin_spe_evmwhgsmfaa", SPE_BUILTIN_EVMWHGSMFAA },
7653 { 0, CODE_FOR_spe_evmwhgsmiaa, "__builtin_spe_evmwhgsmiaa", SPE_BUILTIN_EVMWHGSMIAA },
7654 { 0, CODE_FOR_spe_evmwhgumiaa, "__builtin_spe_evmwhgumiaa", SPE_BUILTIN_EVMWHGUMIAA },
7655 { 0, CODE_FOR_spe_evmwhgssfan, "__builtin_spe_evmwhgssfan", SPE_BUILTIN_EVMWHGSSFAN },
7656 { 0, CODE_FOR_spe_evmwhgsmfan, "__builtin_spe_evmwhgsmfan", SPE_BUILTIN_EVMWHGSMFAN },
7657 { 0, CODE_FOR_spe_evmwhgsmian, "__builtin_spe_evmwhgsmian", SPE_BUILTIN_EVMWHGSMIAN },
7658 { 0, CODE_FOR_spe_evmwhgumian, "__builtin_spe_evmwhgumian", SPE_BUILTIN_EVMWHGUMIAN },
7659 { 0, CODE_FOR_spe_brinc, "__builtin_spe_brinc", SPE_BUILTIN_BRINC },
7660
7661 /* Place-holder. Leave as last binary SPE builtin. */
58646b77 7662 { 0, CODE_FOR_xorv2si3, "__builtin_spe_evxor", SPE_BUILTIN_EVXOR }
ae4b4a02
AH
7663};
7664
7665/* AltiVec predicates. */
7666
7667struct builtin_description_predicates
7668{
7669 const unsigned int mask;
7670 const enum insn_code icode;
7671 const char *opcode;
7672 const char *const name;
7673 const enum rs6000_builtins code;
7674};
7675
7676static const struct builtin_description_predicates bdesc_altivec_preds[] =
7677{
7678 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpbfp.", "__builtin_altivec_vcmpbfp_p", ALTIVEC_BUILTIN_VCMPBFP_P },
7679 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpeqfp.", "__builtin_altivec_vcmpeqfp_p", ALTIVEC_BUILTIN_VCMPEQFP_P },
7680 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpgefp.", "__builtin_altivec_vcmpgefp_p", ALTIVEC_BUILTIN_VCMPGEFP_P },
7681 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpgtfp.", "__builtin_altivec_vcmpgtfp_p", ALTIVEC_BUILTIN_VCMPGTFP_P },
7682 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpequw.", "__builtin_altivec_vcmpequw_p", ALTIVEC_BUILTIN_VCMPEQUW_P },
7683 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpgtsw.", "__builtin_altivec_vcmpgtsw_p", ALTIVEC_BUILTIN_VCMPGTSW_P },
7684 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpgtuw.", "__builtin_altivec_vcmpgtuw_p", ALTIVEC_BUILTIN_VCMPGTUW_P },
7685 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpgtuh.", "__builtin_altivec_vcmpgtuh_p", ALTIVEC_BUILTIN_VCMPGTUH_P },
7686 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpgtsh.", "__builtin_altivec_vcmpgtsh_p", ALTIVEC_BUILTIN_VCMPGTSH_P },
7687 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpequh.", "__builtin_altivec_vcmpequh_p", ALTIVEC_BUILTIN_VCMPEQUH_P },
7688 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpequb.", "__builtin_altivec_vcmpequb_p", ALTIVEC_BUILTIN_VCMPEQUB_P },
7689 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpgtsb.", "__builtin_altivec_vcmpgtsb_p", ALTIVEC_BUILTIN_VCMPGTSB_P },
58646b77
PB
7690 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpgtub.", "__builtin_altivec_vcmpgtub_p", ALTIVEC_BUILTIN_VCMPGTUB_P },
7691
7692 { MASK_ALTIVEC, 0, NULL, "__builtin_vec_vcmpeq_p", ALTIVEC_BUILTIN_VCMPEQ_P },
7693 { MASK_ALTIVEC, 0, NULL, "__builtin_vec_vcmpgt_p", ALTIVEC_BUILTIN_VCMPGT_P },
7694 { MASK_ALTIVEC, 0, NULL, "__builtin_vec_vcmpge_p", ALTIVEC_BUILTIN_VCMPGE_P }
0ac081f6 7695};
24408032 7696
a3170dc6
AH
7697/* SPE predicates. */
7698static struct builtin_description bdesc_spe_predicates[] =
7699{
7700 /* Place-holder. Leave as first. */
7701 { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evcmpeq", SPE_BUILTIN_EVCMPEQ },
7702 { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evcmpgts", SPE_BUILTIN_EVCMPGTS },
7703 { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evcmpgtu", SPE_BUILTIN_EVCMPGTU },
7704 { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evcmplts", SPE_BUILTIN_EVCMPLTS },
7705 { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evcmpltu", SPE_BUILTIN_EVCMPLTU },
7706 { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evfscmpeq", SPE_BUILTIN_EVFSCMPEQ },
7707 { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evfscmpgt", SPE_BUILTIN_EVFSCMPGT },
7708 { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evfscmplt", SPE_BUILTIN_EVFSCMPLT },
7709 { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evfststeq", SPE_BUILTIN_EVFSTSTEQ },
7710 { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evfststgt", SPE_BUILTIN_EVFSTSTGT },
7711 /* Place-holder. Leave as last. */
7712 { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evfststlt", SPE_BUILTIN_EVFSTSTLT },
7713};
7714
7715/* SPE evsel predicates. */
7716static struct builtin_description bdesc_spe_evsel[] =
7717{
7718 /* Place-holder. Leave as first. */
7719 { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evsel_gts", SPE_BUILTIN_EVSEL_CMPGTS },
7720 { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evsel_gtu", SPE_BUILTIN_EVSEL_CMPGTU },
7721 { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evsel_lts", SPE_BUILTIN_EVSEL_CMPLTS },
7722 { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evsel_ltu", SPE_BUILTIN_EVSEL_CMPLTU },
7723 { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evsel_eq", SPE_BUILTIN_EVSEL_CMPEQ },
7724 { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evsel_fsgt", SPE_BUILTIN_EVSEL_FSCMPGT },
7725 { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evsel_fslt", SPE_BUILTIN_EVSEL_FSCMPLT },
7726 { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evsel_fseq", SPE_BUILTIN_EVSEL_FSCMPEQ },
7727 { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evsel_fststgt", SPE_BUILTIN_EVSEL_FSTSTGT },
7728 { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evsel_fststlt", SPE_BUILTIN_EVSEL_FSTSTLT },
7729 /* Place-holder. Leave as last. */
7730 { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evsel_fststeq", SPE_BUILTIN_EVSEL_FSTSTEQ },
7731};
7732
96038623
DE
7733/* PAIRED predicates. */
7734static const struct builtin_description bdesc_paired_preds[] =
7735{
7736 /* Place-holder. Leave as first. */
7737 { 0, CODE_FOR_paired_cmpu0, "__builtin_paired_cmpu0", PAIRED_BUILTIN_CMPU0 },
7738 /* Place-holder. Leave as last. */
7739 { 0, CODE_FOR_paired_cmpu1, "__builtin_paired_cmpu1", PAIRED_BUILTIN_CMPU1 },
7740};
7741
b6d08ca1 7742/* ABS* operations. */
100c4561
AH
7743
7744static const struct builtin_description bdesc_abs[] =
7745{
7746 { MASK_ALTIVEC, CODE_FOR_absv4si2, "__builtin_altivec_abs_v4si", ALTIVEC_BUILTIN_ABS_V4SI },
7747 { MASK_ALTIVEC, CODE_FOR_absv8hi2, "__builtin_altivec_abs_v8hi", ALTIVEC_BUILTIN_ABS_V8HI },
7748 { MASK_ALTIVEC, CODE_FOR_absv4sf2, "__builtin_altivec_abs_v4sf", ALTIVEC_BUILTIN_ABS_V4SF },
7749 { MASK_ALTIVEC, CODE_FOR_absv16qi2, "__builtin_altivec_abs_v16qi", ALTIVEC_BUILTIN_ABS_V16QI },
7750 { MASK_ALTIVEC, CODE_FOR_altivec_abss_v4si, "__builtin_altivec_abss_v4si", ALTIVEC_BUILTIN_ABSS_V4SI },
7751 { MASK_ALTIVEC, CODE_FOR_altivec_abss_v8hi, "__builtin_altivec_abss_v8hi", ALTIVEC_BUILTIN_ABSS_V8HI },
7752 { MASK_ALTIVEC, CODE_FOR_altivec_abss_v16qi, "__builtin_altivec_abss_v16qi", ALTIVEC_BUILTIN_ABSS_V16QI }
7753};
7754
617e0e1d
DB
7755/* Simple unary operations: VECb = foo (unsigned literal) or VECb =
7756 foo (VECa). */
24408032 7757
a3170dc6 7758static struct builtin_description bdesc_1arg[] =
2212663f 7759{
617e0e1d
DB
7760 { MASK_ALTIVEC, CODE_FOR_altivec_vexptefp, "__builtin_altivec_vexptefp", ALTIVEC_BUILTIN_VEXPTEFP },
7761 { MASK_ALTIVEC, CODE_FOR_altivec_vlogefp, "__builtin_altivec_vlogefp", ALTIVEC_BUILTIN_VLOGEFP },
7762 { MASK_ALTIVEC, CODE_FOR_altivec_vrefp, "__builtin_altivec_vrefp", ALTIVEC_BUILTIN_VREFP },
7763 { MASK_ALTIVEC, CODE_FOR_altivec_vrfim, "__builtin_altivec_vrfim", ALTIVEC_BUILTIN_VRFIM },
7764 { MASK_ALTIVEC, CODE_FOR_altivec_vrfin, "__builtin_altivec_vrfin", ALTIVEC_BUILTIN_VRFIN },
7765 { MASK_ALTIVEC, CODE_FOR_altivec_vrfip, "__builtin_altivec_vrfip", ALTIVEC_BUILTIN_VRFIP },
7766 { MASK_ALTIVEC, CODE_FOR_ftruncv4sf2, "__builtin_altivec_vrfiz", ALTIVEC_BUILTIN_VRFIZ },
7767 { MASK_ALTIVEC, CODE_FOR_altivec_vrsqrtefp, "__builtin_altivec_vrsqrtefp", ALTIVEC_BUILTIN_VRSQRTEFP },
2212663f
DB
7768 { MASK_ALTIVEC, CODE_FOR_altivec_vspltisb, "__builtin_altivec_vspltisb", ALTIVEC_BUILTIN_VSPLTISB },
7769 { MASK_ALTIVEC, CODE_FOR_altivec_vspltish, "__builtin_altivec_vspltish", ALTIVEC_BUILTIN_VSPLTISH },
7770 { MASK_ALTIVEC, CODE_FOR_altivec_vspltisw, "__builtin_altivec_vspltisw", ALTIVEC_BUILTIN_VSPLTISW },
20e26713
AH
7771 { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsb, "__builtin_altivec_vupkhsb", ALTIVEC_BUILTIN_VUPKHSB },
7772 { MASK_ALTIVEC, CODE_FOR_altivec_vupkhpx, "__builtin_altivec_vupkhpx", ALTIVEC_BUILTIN_VUPKHPX },
7773 { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsh, "__builtin_altivec_vupkhsh", ALTIVEC_BUILTIN_VUPKHSH },
7774 { MASK_ALTIVEC, CODE_FOR_altivec_vupklsb, "__builtin_altivec_vupklsb", ALTIVEC_BUILTIN_VUPKLSB },
7775 { MASK_ALTIVEC, CODE_FOR_altivec_vupklpx, "__builtin_altivec_vupklpx", ALTIVEC_BUILTIN_VUPKLPX },
7776 { MASK_ALTIVEC, CODE_FOR_altivec_vupklsh, "__builtin_altivec_vupklsh", ALTIVEC_BUILTIN_VUPKLSH },
a3170dc6 7777
58646b77
PB
7778 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_abs", ALTIVEC_BUILTIN_VEC_ABS },
7779 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_abss", ALTIVEC_BUILTIN_VEC_ABSS },
7780 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_ceil", ALTIVEC_BUILTIN_VEC_CEIL },
7781 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_expte", ALTIVEC_BUILTIN_VEC_EXPTE },
7782 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_floor", ALTIVEC_BUILTIN_VEC_FLOOR },
7783 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_loge", ALTIVEC_BUILTIN_VEC_LOGE },
7784 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mtvscr", ALTIVEC_BUILTIN_VEC_MTVSCR },
7785 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_re", ALTIVEC_BUILTIN_VEC_RE },
7786 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_round", ALTIVEC_BUILTIN_VEC_ROUND },
7787 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_rsqrte", ALTIVEC_BUILTIN_VEC_RSQRTE },
7788 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_trunc", ALTIVEC_BUILTIN_VEC_TRUNC },
7789 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_unpackh", ALTIVEC_BUILTIN_VEC_UNPACKH },
7790 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhsh", ALTIVEC_BUILTIN_VEC_VUPKHSH },
7791 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhpx", ALTIVEC_BUILTIN_VEC_VUPKHPX },
7792 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhsb", ALTIVEC_BUILTIN_VEC_VUPKHSB },
7793 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_unpackl", ALTIVEC_BUILTIN_VEC_UNPACKL },
7794 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklpx", ALTIVEC_BUILTIN_VEC_VUPKLPX },
7795 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklsh", ALTIVEC_BUILTIN_VEC_VUPKLSH },
7796 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklsb", ALTIVEC_BUILTIN_VEC_VUPKLSB },
7797
a3170dc6
AH
7798 /* The SPE unary builtins must start with SPE_BUILTIN_EVABS and
7799 end with SPE_BUILTIN_EVSUBFUSIAAW. */
7800 { 0, CODE_FOR_spe_evabs, "__builtin_spe_evabs", SPE_BUILTIN_EVABS },
7801 { 0, CODE_FOR_spe_evaddsmiaaw, "__builtin_spe_evaddsmiaaw", SPE_BUILTIN_EVADDSMIAAW },
7802 { 0, CODE_FOR_spe_evaddssiaaw, "__builtin_spe_evaddssiaaw", SPE_BUILTIN_EVADDSSIAAW },
7803 { 0, CODE_FOR_spe_evaddumiaaw, "__builtin_spe_evaddumiaaw", SPE_BUILTIN_EVADDUMIAAW },
7804 { 0, CODE_FOR_spe_evaddusiaaw, "__builtin_spe_evaddusiaaw", SPE_BUILTIN_EVADDUSIAAW },
7805 { 0, CODE_FOR_spe_evcntlsw, "__builtin_spe_evcntlsw", SPE_BUILTIN_EVCNTLSW },
7806 { 0, CODE_FOR_spe_evcntlzw, "__builtin_spe_evcntlzw", SPE_BUILTIN_EVCNTLZW },
7807 { 0, CODE_FOR_spe_evextsb, "__builtin_spe_evextsb", SPE_BUILTIN_EVEXTSB },
7808 { 0, CODE_FOR_spe_evextsh, "__builtin_spe_evextsh", SPE_BUILTIN_EVEXTSH },
7809 { 0, CODE_FOR_spe_evfsabs, "__builtin_spe_evfsabs", SPE_BUILTIN_EVFSABS },
7810 { 0, CODE_FOR_spe_evfscfsf, "__builtin_spe_evfscfsf", SPE_BUILTIN_EVFSCFSF },
7811 { 0, CODE_FOR_spe_evfscfsi, "__builtin_spe_evfscfsi", SPE_BUILTIN_EVFSCFSI },
7812 { 0, CODE_FOR_spe_evfscfuf, "__builtin_spe_evfscfuf", SPE_BUILTIN_EVFSCFUF },
7813 { 0, CODE_FOR_spe_evfscfui, "__builtin_spe_evfscfui", SPE_BUILTIN_EVFSCFUI },
7814 { 0, CODE_FOR_spe_evfsctsf, "__builtin_spe_evfsctsf", SPE_BUILTIN_EVFSCTSF },
7815 { 0, CODE_FOR_spe_evfsctsi, "__builtin_spe_evfsctsi", SPE_BUILTIN_EVFSCTSI },
7816 { 0, CODE_FOR_spe_evfsctsiz, "__builtin_spe_evfsctsiz", SPE_BUILTIN_EVFSCTSIZ },
7817 { 0, CODE_FOR_spe_evfsctuf, "__builtin_spe_evfsctuf", SPE_BUILTIN_EVFSCTUF },
7818 { 0, CODE_FOR_spe_evfsctui, "__builtin_spe_evfsctui", SPE_BUILTIN_EVFSCTUI },
7819 { 0, CODE_FOR_spe_evfsctuiz, "__builtin_spe_evfsctuiz", SPE_BUILTIN_EVFSCTUIZ },
7820 { 0, CODE_FOR_spe_evfsnabs, "__builtin_spe_evfsnabs", SPE_BUILTIN_EVFSNABS },
7821 { 0, CODE_FOR_spe_evfsneg, "__builtin_spe_evfsneg", SPE_BUILTIN_EVFSNEG },
7822 { 0, CODE_FOR_spe_evmra, "__builtin_spe_evmra", SPE_BUILTIN_EVMRA },
6a599451 7823 { 0, CODE_FOR_negv2si2, "__builtin_spe_evneg", SPE_BUILTIN_EVNEG },
a3170dc6
AH
7824 { 0, CODE_FOR_spe_evrndw, "__builtin_spe_evrndw", SPE_BUILTIN_EVRNDW },
7825 { 0, CODE_FOR_spe_evsubfsmiaaw, "__builtin_spe_evsubfsmiaaw", SPE_BUILTIN_EVSUBFSMIAAW },
7826 { 0, CODE_FOR_spe_evsubfssiaaw, "__builtin_spe_evsubfssiaaw", SPE_BUILTIN_EVSUBFSSIAAW },
7827 { 0, CODE_FOR_spe_evsubfumiaaw, "__builtin_spe_evsubfumiaaw", SPE_BUILTIN_EVSUBFUMIAAW },
a3170dc6
AH
7828
7829 /* Place-holder. Leave as last unary SPE builtin. */
96038623
DE
7830 { 0, CODE_FOR_spe_evsubfusiaaw, "__builtin_spe_evsubfusiaaw", SPE_BUILTIN_EVSUBFUSIAAW },
7831
7832 { 0, CODE_FOR_absv2sf2, "__builtin_paired_absv2sf2", PAIRED_BUILTIN_ABSV2SF2 },
7833 { 0, CODE_FOR_nabsv2sf2, "__builtin_paired_nabsv2sf2", PAIRED_BUILTIN_NABSV2SF2 },
7834 { 0, CODE_FOR_negv2sf2, "__builtin_paired_negv2sf2", PAIRED_BUILTIN_NEGV2SF2 },
7835 { 0, CODE_FOR_sqrtv2sf2, "__builtin_paired_sqrtv2sf2", PAIRED_BUILTIN_SQRTV2SF2 },
7836 { 0, CODE_FOR_resv2sf2, "__builtin_paired_resv2sf2", PAIRED_BUILTIN_RESV2SF2 }
2212663f
DB
7837};
7838
7839static rtx
5039610b 7840rs6000_expand_unop_builtin (enum insn_code icode, tree exp, rtx target)
2212663f
DB
7841{
7842 rtx pat;
5039610b 7843 tree arg0 = CALL_EXPR_ARG (exp, 0);
84217346 7844 rtx op0 = expand_normal (arg0);
2212663f
DB
7845 enum machine_mode tmode = insn_data[icode].operand[0].mode;
7846 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7847
0559cc77
DE
7848 if (icode == CODE_FOR_nothing)
7849 /* Builtin not supported on this processor. */
7850 return 0;
7851
20e26713
AH
7852 /* If we got invalid arguments bail out before generating bad rtl. */
7853 if (arg0 == error_mark_node)
9a171fcd 7854 return const0_rtx;
20e26713 7855
0559cc77
DE
7856 if (icode == CODE_FOR_altivec_vspltisb
7857 || icode == CODE_FOR_altivec_vspltish
7858 || icode == CODE_FOR_altivec_vspltisw
7859 || icode == CODE_FOR_spe_evsplatfi
7860 || icode == CODE_FOR_spe_evsplati)
b44140e7
AH
7861 {
7862 /* Only allow 5-bit *signed* literals. */
b44140e7 7863 if (GET_CODE (op0) != CONST_INT
afca671b
DP
7864 || INTVAL (op0) > 15
7865 || INTVAL (op0) < -16)
b44140e7
AH
7866 {
7867 error ("argument 1 must be a 5-bit signed literal");
9a171fcd 7868 return const0_rtx;
b44140e7 7869 }
b44140e7
AH
7870 }
7871
c62f2db5 7872 if (target == 0
2212663f
DB
7873 || GET_MODE (target) != tmode
7874 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
7875 target = gen_reg_rtx (tmode);
7876
7877 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
7878 op0 = copy_to_mode_reg (mode0, op0);
7879
7880 pat = GEN_FCN (icode) (target, op0);
7881 if (! pat)
7882 return 0;
7883 emit_insn (pat);
0ac081f6 7884
2212663f
DB
7885 return target;
7886}
ae4b4a02 7887
100c4561 7888static rtx
5039610b 7889altivec_expand_abs_builtin (enum insn_code icode, tree exp, rtx target)
100c4561
AH
7890{
7891 rtx pat, scratch1, scratch2;
5039610b 7892 tree arg0 = CALL_EXPR_ARG (exp, 0);
84217346 7893 rtx op0 = expand_normal (arg0);
100c4561
AH
7894 enum machine_mode tmode = insn_data[icode].operand[0].mode;
7895 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7896
7897 /* If we have invalid arguments, bail out before generating bad rtl. */
7898 if (arg0 == error_mark_node)
9a171fcd 7899 return const0_rtx;
100c4561
AH
7900
7901 if (target == 0
7902 || GET_MODE (target) != tmode
7903 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
7904 target = gen_reg_rtx (tmode);
7905
7906 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
7907 op0 = copy_to_mode_reg (mode0, op0);
7908
7909 scratch1 = gen_reg_rtx (mode0);
7910 scratch2 = gen_reg_rtx (mode0);
7911
7912 pat = GEN_FCN (icode) (target, op0, scratch1, scratch2);
7913 if (! pat)
7914 return 0;
7915 emit_insn (pat);
7916
7917 return target;
7918}
7919
0ac081f6 7920static rtx
5039610b 7921rs6000_expand_binop_builtin (enum insn_code icode, tree exp, rtx target)
0ac081f6
AH
7922{
7923 rtx pat;
5039610b
SL
7924 tree arg0 = CALL_EXPR_ARG (exp, 0);
7925 tree arg1 = CALL_EXPR_ARG (exp, 1);
84217346
MD
7926 rtx op0 = expand_normal (arg0);
7927 rtx op1 = expand_normal (arg1);
0ac081f6
AH
7928 enum machine_mode tmode = insn_data[icode].operand[0].mode;
7929 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7930 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
7931
0559cc77
DE
7932 if (icode == CODE_FOR_nothing)
7933 /* Builtin not supported on this processor. */
7934 return 0;
7935
20e26713
AH
7936 /* If we got invalid arguments bail out before generating bad rtl. */
7937 if (arg0 == error_mark_node || arg1 == error_mark_node)
9a171fcd 7938 return const0_rtx;
20e26713 7939
0559cc77
DE
7940 if (icode == CODE_FOR_altivec_vcfux
7941 || icode == CODE_FOR_altivec_vcfsx
7942 || icode == CODE_FOR_altivec_vctsxs
7943 || icode == CODE_FOR_altivec_vctuxs
7944 || icode == CODE_FOR_altivec_vspltb
7945 || icode == CODE_FOR_altivec_vsplth
7946 || icode == CODE_FOR_altivec_vspltw
7947 || icode == CODE_FOR_spe_evaddiw
7948 || icode == CODE_FOR_spe_evldd
7949 || icode == CODE_FOR_spe_evldh
7950 || icode == CODE_FOR_spe_evldw
7951 || icode == CODE_FOR_spe_evlhhesplat
7952 || icode == CODE_FOR_spe_evlhhossplat
7953 || icode == CODE_FOR_spe_evlhhousplat
7954 || icode == CODE_FOR_spe_evlwhe
7955 || icode == CODE_FOR_spe_evlwhos
7956 || icode == CODE_FOR_spe_evlwhou
7957 || icode == CODE_FOR_spe_evlwhsplat
7958 || icode == CODE_FOR_spe_evlwwsplat
7959 || icode == CODE_FOR_spe_evrlwi
7960 || icode == CODE_FOR_spe_evslwi
7961 || icode == CODE_FOR_spe_evsrwis
f5119d10 7962 || icode == CODE_FOR_spe_evsubifw
0559cc77 7963 || icode == CODE_FOR_spe_evsrwiu)
b44140e7
AH
7964 {
7965 /* Only allow 5-bit unsigned literals. */
8bb418a3 7966 STRIP_NOPS (arg1);
b44140e7
AH
7967 if (TREE_CODE (arg1) != INTEGER_CST
7968 || TREE_INT_CST_LOW (arg1) & ~0x1f)
7969 {
7970 error ("argument 2 must be a 5-bit unsigned literal");
9a171fcd 7971 return const0_rtx;
b44140e7 7972 }
b44140e7
AH
7973 }
7974
c62f2db5 7975 if (target == 0
0ac081f6
AH
7976 || GET_MODE (target) != tmode
7977 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
7978 target = gen_reg_rtx (tmode);
7979
7980 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
7981 op0 = copy_to_mode_reg (mode0, op0);
7982 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
7983 op1 = copy_to_mode_reg (mode1, op1);
7984
7985 pat = GEN_FCN (icode) (target, op0, op1);
7986 if (! pat)
7987 return 0;
7988 emit_insn (pat);
7989
7990 return target;
7991}
6525c0e7 7992
ae4b4a02 7993static rtx
f676971a 7994altivec_expand_predicate_builtin (enum insn_code icode, const char *opcode,
5039610b 7995 tree exp, rtx target)
ae4b4a02
AH
7996{
7997 rtx pat, scratch;
5039610b
SL
7998 tree cr6_form = CALL_EXPR_ARG (exp, 0);
7999 tree arg0 = CALL_EXPR_ARG (exp, 1);
8000 tree arg1 = CALL_EXPR_ARG (exp, 2);
84217346
MD
8001 rtx op0 = expand_normal (arg0);
8002 rtx op1 = expand_normal (arg1);
ae4b4a02
AH
8003 enum machine_mode tmode = SImode;
8004 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
8005 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
8006 int cr6_form_int;
8007
8008 if (TREE_CODE (cr6_form) != INTEGER_CST)
8009 {
8010 error ("argument 1 of __builtin_altivec_predicate must be a constant");
9a171fcd 8011 return const0_rtx;
ae4b4a02
AH
8012 }
8013 else
8014 cr6_form_int = TREE_INT_CST_LOW (cr6_form);
8015
37409796 8016 gcc_assert (mode0 == mode1);
ae4b4a02
AH
8017
8018 /* If we have invalid arguments, bail out before generating bad rtl. */
8019 if (arg0 == error_mark_node || arg1 == error_mark_node)
9a171fcd 8020 return const0_rtx;
ae4b4a02
AH
8021
8022 if (target == 0
8023 || GET_MODE (target) != tmode
8024 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8025 target = gen_reg_rtx (tmode);
8026
8027 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
8028 op0 = copy_to_mode_reg (mode0, op0);
8029 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
8030 op1 = copy_to_mode_reg (mode1, op1);
8031
8032 scratch = gen_reg_rtx (mode0);
8033
8034 pat = GEN_FCN (icode) (scratch, op0, op1,
f1c25d3b 8035 gen_rtx_SYMBOL_REF (Pmode, opcode));
ae4b4a02
AH
8036 if (! pat)
8037 return 0;
8038 emit_insn (pat);
8039
8040 /* The vec_any* and vec_all* predicates use the same opcodes for two
8041 different operations, but the bits in CR6 will be different
8042 depending on what information we want. So we have to play tricks
8043 with CR6 to get the right bits out.
8044
8045 If you think this is disgusting, look at the specs for the
8046 AltiVec predicates. */
8047
c4ad648e
AM
8048 switch (cr6_form_int)
8049 {
8050 case 0:
8051 emit_insn (gen_cr6_test_for_zero (target));
8052 break;
8053 case 1:
8054 emit_insn (gen_cr6_test_for_zero_reverse (target));
8055 break;
8056 case 2:
8057 emit_insn (gen_cr6_test_for_lt (target));
8058 break;
8059 case 3:
8060 emit_insn (gen_cr6_test_for_lt_reverse (target));
8061 break;
8062 default:
8063 error ("argument 1 of __builtin_altivec_predicate is out of range");
8064 break;
8065 }
ae4b4a02
AH
8066
8067 return target;
8068}
8069
96038623
DE
8070static rtx
8071paired_expand_lv_builtin (enum insn_code icode, tree exp, rtx target)
8072{
8073 rtx pat, addr;
8074 tree arg0 = CALL_EXPR_ARG (exp, 0);
8075 tree arg1 = CALL_EXPR_ARG (exp, 1);
8076 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8077 enum machine_mode mode0 = Pmode;
8078 enum machine_mode mode1 = Pmode;
8079 rtx op0 = expand_normal (arg0);
8080 rtx op1 = expand_normal (arg1);
8081
8082 if (icode == CODE_FOR_nothing)
8083 /* Builtin not supported on this processor. */
8084 return 0;
8085
8086 /* If we got invalid arguments bail out before generating bad rtl. */
8087 if (arg0 == error_mark_node || arg1 == error_mark_node)
8088 return const0_rtx;
8089
8090 if (target == 0
8091 || GET_MODE (target) != tmode
8092 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8093 target = gen_reg_rtx (tmode);
8094
8095 op1 = copy_to_mode_reg (mode1, op1);
8096
8097 if (op0 == const0_rtx)
8098 {
8099 addr = gen_rtx_MEM (tmode, op1);
8100 }
8101 else
8102 {
8103 op0 = copy_to_mode_reg (mode0, op0);
8104 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op0, op1));
8105 }
8106
8107 pat = GEN_FCN (icode) (target, addr);
8108
8109 if (! pat)
8110 return 0;
8111 emit_insn (pat);
8112
8113 return target;
8114}
8115
b4a62fa0 8116static rtx
0b61703c 8117altivec_expand_lv_builtin (enum insn_code icode, tree exp, rtx target, bool blk)
b4a62fa0
SB
8118{
8119 rtx pat, addr;
5039610b
SL
8120 tree arg0 = CALL_EXPR_ARG (exp, 0);
8121 tree arg1 = CALL_EXPR_ARG (exp, 1);
b4a62fa0
SB
8122 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8123 enum machine_mode mode0 = Pmode;
8124 enum machine_mode mode1 = Pmode;
84217346
MD
8125 rtx op0 = expand_normal (arg0);
8126 rtx op1 = expand_normal (arg1);
b4a62fa0
SB
8127
8128 if (icode == CODE_FOR_nothing)
8129 /* Builtin not supported on this processor. */
8130 return 0;
8131
8132 /* If we got invalid arguments bail out before generating bad rtl. */
8133 if (arg0 == error_mark_node || arg1 == error_mark_node)
8134 return const0_rtx;
8135
8136 if (target == 0
8137 || GET_MODE (target) != tmode
8138 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8139 target = gen_reg_rtx (tmode);
8140
f676971a 8141 op1 = copy_to_mode_reg (mode1, op1);
b4a62fa0
SB
8142
8143 if (op0 == const0_rtx)
8144 {
0b61703c 8145 addr = gen_rtx_MEM (blk ? BLKmode : tmode, op1);
b4a62fa0
SB
8146 }
8147 else
8148 {
8149 op0 = copy_to_mode_reg (mode0, op0);
0b61703c 8150 addr = gen_rtx_MEM (blk ? BLKmode : tmode, gen_rtx_PLUS (Pmode, op0, op1));
b4a62fa0
SB
8151 }
8152
8153 pat = GEN_FCN (icode) (target, addr);
8154
8155 if (! pat)
8156 return 0;
8157 emit_insn (pat);
8158
8159 return target;
8160}
8161
61bea3b0 8162static rtx
5039610b 8163spe_expand_stv_builtin (enum insn_code icode, tree exp)
61bea3b0 8164{
5039610b
SL
8165 tree arg0 = CALL_EXPR_ARG (exp, 0);
8166 tree arg1 = CALL_EXPR_ARG (exp, 1);
8167 tree arg2 = CALL_EXPR_ARG (exp, 2);
84217346
MD
8168 rtx op0 = expand_normal (arg0);
8169 rtx op1 = expand_normal (arg1);
8170 rtx op2 = expand_normal (arg2);
61bea3b0
AH
8171 rtx pat;
8172 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
8173 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
8174 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
8175
8176 /* Invalid arguments. Bail before doing anything stoopid! */
8177 if (arg0 == error_mark_node
8178 || arg1 == error_mark_node
8179 || arg2 == error_mark_node)
8180 return const0_rtx;
8181
8182 if (! (*insn_data[icode].operand[2].predicate) (op0, mode2))
8183 op0 = copy_to_mode_reg (mode2, op0);
8184 if (! (*insn_data[icode].operand[0].predicate) (op1, mode0))
8185 op1 = copy_to_mode_reg (mode0, op1);
8186 if (! (*insn_data[icode].operand[1].predicate) (op2, mode1))
8187 op2 = copy_to_mode_reg (mode1, op2);
8188
8189 pat = GEN_FCN (icode) (op1, op2, op0);
8190 if (pat)
8191 emit_insn (pat);
8192 return NULL_RTX;
8193}
8194
96038623
DE
8195static rtx
8196paired_expand_stv_builtin (enum insn_code icode, tree exp)
8197{
8198 tree arg0 = CALL_EXPR_ARG (exp, 0);
8199 tree arg1 = CALL_EXPR_ARG (exp, 1);
8200 tree arg2 = CALL_EXPR_ARG (exp, 2);
8201 rtx op0 = expand_normal (arg0);
8202 rtx op1 = expand_normal (arg1);
8203 rtx op2 = expand_normal (arg2);
8204 rtx pat, addr;
8205 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8206 enum machine_mode mode1 = Pmode;
8207 enum machine_mode mode2 = Pmode;
8208
8209 /* Invalid arguments. Bail before doing anything stoopid! */
8210 if (arg0 == error_mark_node
8211 || arg1 == error_mark_node
8212 || arg2 == error_mark_node)
8213 return const0_rtx;
8214
8215 if (! (*insn_data[icode].operand[1].predicate) (op0, tmode))
8216 op0 = copy_to_mode_reg (tmode, op0);
8217
8218 op2 = copy_to_mode_reg (mode2, op2);
8219
8220 if (op1 == const0_rtx)
8221 {
8222 addr = gen_rtx_MEM (tmode, op2);
8223 }
8224 else
8225 {
8226 op1 = copy_to_mode_reg (mode1, op1);
8227 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op1, op2));
8228 }
8229
8230 pat = GEN_FCN (icode) (addr, op0);
8231 if (pat)
8232 emit_insn (pat);
8233 return NULL_RTX;
8234}
8235
6525c0e7 8236static rtx
5039610b 8237altivec_expand_stv_builtin (enum insn_code icode, tree exp)
6525c0e7 8238{
5039610b
SL
8239 tree arg0 = CALL_EXPR_ARG (exp, 0);
8240 tree arg1 = CALL_EXPR_ARG (exp, 1);
8241 tree arg2 = CALL_EXPR_ARG (exp, 2);
84217346
MD
8242 rtx op0 = expand_normal (arg0);
8243 rtx op1 = expand_normal (arg1);
8244 rtx op2 = expand_normal (arg2);
b4a62fa0
SB
8245 rtx pat, addr;
8246 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8247 enum machine_mode mode1 = Pmode;
8248 enum machine_mode mode2 = Pmode;
6525c0e7
AH
8249
8250 /* Invalid arguments. Bail before doing anything stoopid! */
8251 if (arg0 == error_mark_node
8252 || arg1 == error_mark_node
8253 || arg2 == error_mark_node)
9a171fcd 8254 return const0_rtx;
6525c0e7 8255
b4a62fa0
SB
8256 if (! (*insn_data[icode].operand[1].predicate) (op0, tmode))
8257 op0 = copy_to_mode_reg (tmode, op0);
8258
f676971a 8259 op2 = copy_to_mode_reg (mode2, op2);
b4a62fa0
SB
8260
8261 if (op1 == const0_rtx)
8262 {
8263 addr = gen_rtx_MEM (tmode, op2);
8264 }
8265 else
8266 {
8267 op1 = copy_to_mode_reg (mode1, op1);
8268 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op1, op2));
8269 }
6525c0e7 8270
b4a62fa0 8271 pat = GEN_FCN (icode) (addr, op0);
6525c0e7
AH
8272 if (pat)
8273 emit_insn (pat);
8274 return NULL_RTX;
8275}
8276
2212663f 8277static rtx
5039610b 8278rs6000_expand_ternop_builtin (enum insn_code icode, tree exp, rtx target)
2212663f
DB
8279{
8280 rtx pat;
5039610b
SL
8281 tree arg0 = CALL_EXPR_ARG (exp, 0);
8282 tree arg1 = CALL_EXPR_ARG (exp, 1);
8283 tree arg2 = CALL_EXPR_ARG (exp, 2);
84217346
MD
8284 rtx op0 = expand_normal (arg0);
8285 rtx op1 = expand_normal (arg1);
8286 rtx op2 = expand_normal (arg2);
2212663f
DB
8287 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8288 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
8289 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
8290 enum machine_mode mode2 = insn_data[icode].operand[3].mode;
0ac081f6 8291
774b5662
DE
8292 if (icode == CODE_FOR_nothing)
8293 /* Builtin not supported on this processor. */
8294 return 0;
8295
20e26713
AH
8296 /* If we got invalid arguments bail out before generating bad rtl. */
8297 if (arg0 == error_mark_node
8298 || arg1 == error_mark_node
8299 || arg2 == error_mark_node)
9a171fcd 8300 return const0_rtx;
20e26713 8301
aba5fb01
NS
8302 if (icode == CODE_FOR_altivec_vsldoi_v4sf
8303 || icode == CODE_FOR_altivec_vsldoi_v4si
8304 || icode == CODE_FOR_altivec_vsldoi_v8hi
8305 || icode == CODE_FOR_altivec_vsldoi_v16qi)
b44140e7
AH
8306 {
8307 /* Only allow 4-bit unsigned literals. */
8bb418a3 8308 STRIP_NOPS (arg2);
b44140e7
AH
8309 if (TREE_CODE (arg2) != INTEGER_CST
8310 || TREE_INT_CST_LOW (arg2) & ~0xf)
8311 {
8312 error ("argument 3 must be a 4-bit unsigned literal");
e3277ffb 8313 return const0_rtx;
b44140e7 8314 }
b44140e7
AH
8315 }
8316
c62f2db5 8317 if (target == 0
2212663f
DB
8318 || GET_MODE (target) != tmode
8319 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8320 target = gen_reg_rtx (tmode);
8321
8322 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
8323 op0 = copy_to_mode_reg (mode0, op0);
8324 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
8325 op1 = copy_to_mode_reg (mode1, op1);
8326 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
8327 op2 = copy_to_mode_reg (mode2, op2);
8328
49e39588
RE
8329 if (TARGET_PAIRED_FLOAT && icode == CODE_FOR_selv2sf4)
8330 pat = GEN_FCN (icode) (target, op0, op1, op2, CONST0_RTX (SFmode));
8331 else
8332 pat = GEN_FCN (icode) (target, op0, op1, op2);
2212663f
DB
8333 if (! pat)
8334 return 0;
8335 emit_insn (pat);
8336
8337 return target;
8338}
92898235 8339
3a9b8c7e 8340/* Expand the lvx builtins. */
0ac081f6 8341static rtx
a2369ed3 8342altivec_expand_ld_builtin (tree exp, rtx target, bool *expandedp)
0ac081f6 8343{
5039610b 8344 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
0ac081f6 8345 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
3a9b8c7e
AH
8346 tree arg0;
8347 enum machine_mode tmode, mode0;
7c3abc73 8348 rtx pat, op0;
3a9b8c7e 8349 enum insn_code icode;
92898235 8350
0ac081f6
AH
8351 switch (fcode)
8352 {
f18c054f 8353 case ALTIVEC_BUILTIN_LD_INTERNAL_16qi:
81466555 8354 icode = CODE_FOR_altivec_lvx_v16qi;
3a9b8c7e 8355 break;
f18c054f 8356 case ALTIVEC_BUILTIN_LD_INTERNAL_8hi:
81466555 8357 icode = CODE_FOR_altivec_lvx_v8hi;
3a9b8c7e
AH
8358 break;
8359 case ALTIVEC_BUILTIN_LD_INTERNAL_4si:
81466555 8360 icode = CODE_FOR_altivec_lvx_v4si;
3a9b8c7e
AH
8361 break;
8362 case ALTIVEC_BUILTIN_LD_INTERNAL_4sf:
81466555 8363 icode = CODE_FOR_altivec_lvx_v4sf;
3a9b8c7e
AH
8364 break;
8365 default:
8366 *expandedp = false;
8367 return NULL_RTX;
8368 }
0ac081f6 8369
3a9b8c7e 8370 *expandedp = true;
f18c054f 8371
5039610b 8372 arg0 = CALL_EXPR_ARG (exp, 0);
84217346 8373 op0 = expand_normal (arg0);
3a9b8c7e
AH
8374 tmode = insn_data[icode].operand[0].mode;
8375 mode0 = insn_data[icode].operand[1].mode;
f18c054f 8376
3a9b8c7e
AH
8377 if (target == 0
8378 || GET_MODE (target) != tmode
8379 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8380 target = gen_reg_rtx (tmode);
24408032 8381
3a9b8c7e
AH
8382 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
8383 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
f18c054f 8384
3a9b8c7e
AH
8385 pat = GEN_FCN (icode) (target, op0);
8386 if (! pat)
8387 return 0;
8388 emit_insn (pat);
8389 return target;
8390}
f18c054f 8391
3a9b8c7e
AH
8392/* Expand the stvx builtins. */
8393static rtx
f676971a 8394altivec_expand_st_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
a2369ed3 8395 bool *expandedp)
3a9b8c7e 8396{
5039610b 8397 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
3a9b8c7e
AH
8398 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8399 tree arg0, arg1;
8400 enum machine_mode mode0, mode1;
7c3abc73 8401 rtx pat, op0, op1;
3a9b8c7e 8402 enum insn_code icode;
f18c054f 8403
3a9b8c7e
AH
8404 switch (fcode)
8405 {
8406 case ALTIVEC_BUILTIN_ST_INTERNAL_16qi:
81466555 8407 icode = CODE_FOR_altivec_stvx_v16qi;
3a9b8c7e
AH
8408 break;
8409 case ALTIVEC_BUILTIN_ST_INTERNAL_8hi:
81466555 8410 icode = CODE_FOR_altivec_stvx_v8hi;
3a9b8c7e
AH
8411 break;
8412 case ALTIVEC_BUILTIN_ST_INTERNAL_4si:
81466555 8413 icode = CODE_FOR_altivec_stvx_v4si;
3a9b8c7e
AH
8414 break;
8415 case ALTIVEC_BUILTIN_ST_INTERNAL_4sf:
81466555 8416 icode = CODE_FOR_altivec_stvx_v4sf;
3a9b8c7e
AH
8417 break;
8418 default:
8419 *expandedp = false;
8420 return NULL_RTX;
8421 }
24408032 8422
5039610b
SL
8423 arg0 = CALL_EXPR_ARG (exp, 0);
8424 arg1 = CALL_EXPR_ARG (exp, 1);
84217346
MD
8425 op0 = expand_normal (arg0);
8426 op1 = expand_normal (arg1);
3a9b8c7e
AH
8427 mode0 = insn_data[icode].operand[0].mode;
8428 mode1 = insn_data[icode].operand[1].mode;
f18c054f 8429
3a9b8c7e
AH
8430 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8431 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
8432 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
8433 op1 = copy_to_mode_reg (mode1, op1);
f18c054f 8434
3a9b8c7e
AH
8435 pat = GEN_FCN (icode) (op0, op1);
8436 if (pat)
8437 emit_insn (pat);
f18c054f 8438
3a9b8c7e
AH
8439 *expandedp = true;
8440 return NULL_RTX;
8441}
f18c054f 8442
3a9b8c7e
AH
8443/* Expand the dst builtins. */
8444static rtx
f676971a 8445altivec_expand_dst_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
a2369ed3 8446 bool *expandedp)
3a9b8c7e 8447{
5039610b 8448 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
3a9b8c7e
AH
8449 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8450 tree arg0, arg1, arg2;
8451 enum machine_mode mode0, mode1, mode2;
7c3abc73 8452 rtx pat, op0, op1, op2;
586de218 8453 const struct builtin_description *d;
a3170dc6 8454 size_t i;
f18c054f 8455
3a9b8c7e 8456 *expandedp = false;
f18c054f 8457
3a9b8c7e 8458 /* Handle DST variants. */
586de218 8459 d = bdesc_dst;
3a9b8c7e
AH
8460 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
8461 if (d->code == fcode)
8462 {
5039610b
SL
8463 arg0 = CALL_EXPR_ARG (exp, 0);
8464 arg1 = CALL_EXPR_ARG (exp, 1);
8465 arg2 = CALL_EXPR_ARG (exp, 2);
84217346
MD
8466 op0 = expand_normal (arg0);
8467 op1 = expand_normal (arg1);
8468 op2 = expand_normal (arg2);
3a9b8c7e
AH
8469 mode0 = insn_data[d->icode].operand[0].mode;
8470 mode1 = insn_data[d->icode].operand[1].mode;
8471 mode2 = insn_data[d->icode].operand[2].mode;
24408032 8472
3a9b8c7e
AH
8473 /* Invalid arguments, bail out before generating bad rtl. */
8474 if (arg0 == error_mark_node
8475 || arg1 == error_mark_node
8476 || arg2 == error_mark_node)
8477 return const0_rtx;
f18c054f 8478
86e7df90 8479 *expandedp = true;
8bb418a3 8480 STRIP_NOPS (arg2);
3a9b8c7e
AH
8481 if (TREE_CODE (arg2) != INTEGER_CST
8482 || TREE_INT_CST_LOW (arg2) & ~0x3)
8483 {
9e637a26 8484 error ("argument to %qs must be a 2-bit unsigned literal", d->name);
3a9b8c7e
AH
8485 return const0_rtx;
8486 }
f18c054f 8487
3a9b8c7e 8488 if (! (*insn_data[d->icode].operand[0].predicate) (op0, mode0))
666158b9 8489 op0 = copy_to_mode_reg (Pmode, op0);
3a9b8c7e
AH
8490 if (! (*insn_data[d->icode].operand[1].predicate) (op1, mode1))
8491 op1 = copy_to_mode_reg (mode1, op1);
24408032 8492
3a9b8c7e
AH
8493 pat = GEN_FCN (d->icode) (op0, op1, op2);
8494 if (pat != 0)
8495 emit_insn (pat);
f18c054f 8496
3a9b8c7e
AH
8497 return NULL_RTX;
8498 }
f18c054f 8499
3a9b8c7e
AH
8500 return NULL_RTX;
8501}
24408032 8502
7a4eca66
DE
8503/* Expand vec_init builtin. */
8504static rtx
5039610b 8505altivec_expand_vec_init_builtin (tree type, tree exp, rtx target)
7a4eca66
DE
8506{
8507 enum machine_mode tmode = TYPE_MODE (type);
8508 enum machine_mode inner_mode = GET_MODE_INNER (tmode);
8509 int i, n_elt = GET_MODE_NUNITS (tmode);
8510 rtvec v = rtvec_alloc (n_elt);
8511
8512 gcc_assert (VECTOR_MODE_P (tmode));
5039610b 8513 gcc_assert (n_elt == call_expr_nargs (exp));
982afe02 8514
5039610b 8515 for (i = 0; i < n_elt; ++i)
7a4eca66 8516 {
5039610b 8517 rtx x = expand_normal (CALL_EXPR_ARG (exp, i));
7a4eca66
DE
8518 RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x);
8519 }
8520
7a4eca66
DE
8521 if (!target || !register_operand (target, tmode))
8522 target = gen_reg_rtx (tmode);
8523
8524 rs6000_expand_vector_init (target, gen_rtx_PARALLEL (tmode, v));
8525 return target;
8526}
8527
8528/* Return the integer constant in ARG. Constrain it to be in the range
8529 of the subparts of VEC_TYPE; issue an error if not. */
8530
8531static int
8532get_element_number (tree vec_type, tree arg)
8533{
8534 unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1;
8535
8536 if (!host_integerp (arg, 1)
8537 || (elt = tree_low_cst (arg, 1), elt > max))
8538 {
8539 error ("selector must be an integer constant in the range 0..%wi", max);
8540 return 0;
8541 }
8542
8543 return elt;
8544}
8545
8546/* Expand vec_set builtin. */
8547static rtx
5039610b 8548altivec_expand_vec_set_builtin (tree exp)
7a4eca66
DE
8549{
8550 enum machine_mode tmode, mode1;
8551 tree arg0, arg1, arg2;
8552 int elt;
8553 rtx op0, op1;
8554
5039610b
SL
8555 arg0 = CALL_EXPR_ARG (exp, 0);
8556 arg1 = CALL_EXPR_ARG (exp, 1);
8557 arg2 = CALL_EXPR_ARG (exp, 2);
7a4eca66
DE
8558
8559 tmode = TYPE_MODE (TREE_TYPE (arg0));
8560 mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
8561 gcc_assert (VECTOR_MODE_P (tmode));
8562
bbbbb16a
ILT
8563 op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL);
8564 op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL);
7a4eca66
DE
8565 elt = get_element_number (TREE_TYPE (arg0), arg2);
8566
8567 if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode)
8568 op1 = convert_modes (mode1, GET_MODE (op1), op1, true);
8569
8570 op0 = force_reg (tmode, op0);
8571 op1 = force_reg (mode1, op1);
8572
8573 rs6000_expand_vector_set (op0, op1, elt);
8574
8575 return op0;
8576}
8577
8578/* Expand vec_ext builtin. */
8579static rtx
5039610b 8580altivec_expand_vec_ext_builtin (tree exp, rtx target)
7a4eca66
DE
8581{
8582 enum machine_mode tmode, mode0;
8583 tree arg0, arg1;
8584 int elt;
8585 rtx op0;
8586
5039610b
SL
8587 arg0 = CALL_EXPR_ARG (exp, 0);
8588 arg1 = CALL_EXPR_ARG (exp, 1);
7a4eca66 8589
84217346 8590 op0 = expand_normal (arg0);
7a4eca66
DE
8591 elt = get_element_number (TREE_TYPE (arg0), arg1);
8592
8593 tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
8594 mode0 = TYPE_MODE (TREE_TYPE (arg0));
8595 gcc_assert (VECTOR_MODE_P (mode0));
8596
8597 op0 = force_reg (mode0, op0);
8598
8599 if (optimize || !target || !register_operand (target, tmode))
8600 target = gen_reg_rtx (tmode);
8601
8602 rs6000_expand_vector_extract (target, op0, elt);
8603
8604 return target;
8605}
8606
3a9b8c7e
AH
8607/* Expand the builtin in EXP and store the result in TARGET. Store
8608 true in *EXPANDEDP if we found a builtin to expand. */
8609static rtx
a2369ed3 8610altivec_expand_builtin (tree exp, rtx target, bool *expandedp)
3a9b8c7e 8611{
586de218
KG
8612 const struct builtin_description *d;
8613 const struct builtin_description_predicates *dp;
3a9b8c7e
AH
8614 size_t i;
8615 enum insn_code icode;
5039610b 8616 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
7c3abc73
AH
8617 tree arg0;
8618 rtx op0, pat;
8619 enum machine_mode tmode, mode0;
3a9b8c7e 8620 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
0ac081f6 8621
58646b77
PB
8622 if (fcode >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
8623 && fcode <= ALTIVEC_BUILTIN_OVERLOADED_LAST)
8624 {
8625 *expandedp = true;
ea40ba9c 8626 error ("unresolved overload for Altivec builtin %qF", fndecl);
58646b77
PB
8627 return const0_rtx;
8628 }
8629
3a9b8c7e
AH
8630 target = altivec_expand_ld_builtin (exp, target, expandedp);
8631 if (*expandedp)
8632 return target;
0ac081f6 8633
3a9b8c7e
AH
8634 target = altivec_expand_st_builtin (exp, target, expandedp);
8635 if (*expandedp)
8636 return target;
8637
8638 target = altivec_expand_dst_builtin (exp, target, expandedp);
8639 if (*expandedp)
8640 return target;
8641
8642 *expandedp = true;
95385cbb 8643
3a9b8c7e
AH
8644 switch (fcode)
8645 {
6525c0e7 8646 case ALTIVEC_BUILTIN_STVX:
5039610b 8647 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx, exp);
6525c0e7 8648 case ALTIVEC_BUILTIN_STVEBX:
5039610b 8649 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvebx, exp);
6525c0e7 8650 case ALTIVEC_BUILTIN_STVEHX:
5039610b 8651 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvehx, exp);
6525c0e7 8652 case ALTIVEC_BUILTIN_STVEWX:
5039610b 8653 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvewx, exp);
6525c0e7 8654 case ALTIVEC_BUILTIN_STVXL:
5039610b 8655 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl, exp);
3a9b8c7e 8656
0b61703c
AP
8657 case ALTIVEC_BUILTIN_STVLX:
8658 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlx, exp);
8659 case ALTIVEC_BUILTIN_STVLXL:
8660 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlxl, exp);
8661 case ALTIVEC_BUILTIN_STVRX:
8662 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrx, exp);
8663 case ALTIVEC_BUILTIN_STVRXL:
8664 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrxl, exp);
8665
95385cbb
AH
8666 case ALTIVEC_BUILTIN_MFVSCR:
8667 icode = CODE_FOR_altivec_mfvscr;
8668 tmode = insn_data[icode].operand[0].mode;
8669
8670 if (target == 0
8671 || GET_MODE (target) != tmode
8672 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8673 target = gen_reg_rtx (tmode);
f676971a 8674
95385cbb 8675 pat = GEN_FCN (icode) (target);
0ac081f6
AH
8676 if (! pat)
8677 return 0;
8678 emit_insn (pat);
95385cbb
AH
8679 return target;
8680
8681 case ALTIVEC_BUILTIN_MTVSCR:
8682 icode = CODE_FOR_altivec_mtvscr;
5039610b 8683 arg0 = CALL_EXPR_ARG (exp, 0);
84217346 8684 op0 = expand_normal (arg0);
95385cbb
AH
8685 mode0 = insn_data[icode].operand[0].mode;
8686
8687 /* If we got invalid arguments bail out before generating bad rtl. */
8688 if (arg0 == error_mark_node)
9a171fcd 8689 return const0_rtx;
95385cbb
AH
8690
8691 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8692 op0 = copy_to_mode_reg (mode0, op0);
8693
8694 pat = GEN_FCN (icode) (op0);
8695 if (pat)
8696 emit_insn (pat);
8697 return NULL_RTX;
3a9b8c7e 8698
95385cbb
AH
8699 case ALTIVEC_BUILTIN_DSSALL:
8700 emit_insn (gen_altivec_dssall ());
8701 return NULL_RTX;
8702
8703 case ALTIVEC_BUILTIN_DSS:
8704 icode = CODE_FOR_altivec_dss;
5039610b 8705 arg0 = CALL_EXPR_ARG (exp, 0);
8bb418a3 8706 STRIP_NOPS (arg0);
84217346 8707 op0 = expand_normal (arg0);
95385cbb
AH
8708 mode0 = insn_data[icode].operand[0].mode;
8709
8710 /* If we got invalid arguments bail out before generating bad rtl. */
8711 if (arg0 == error_mark_node)
9a171fcd 8712 return const0_rtx;
95385cbb 8713
b44140e7
AH
8714 if (TREE_CODE (arg0) != INTEGER_CST
8715 || TREE_INT_CST_LOW (arg0) & ~0x3)
8716 {
8717 error ("argument to dss must be a 2-bit unsigned literal");
9a171fcd 8718 return const0_rtx;
b44140e7
AH
8719 }
8720
95385cbb
AH
8721 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8722 op0 = copy_to_mode_reg (mode0, op0);
8723
8724 emit_insn (gen_altivec_dss (op0));
0ac081f6 8725 return NULL_RTX;
7a4eca66
DE
8726
8727 case ALTIVEC_BUILTIN_VEC_INIT_V4SI:
8728 case ALTIVEC_BUILTIN_VEC_INIT_V8HI:
8729 case ALTIVEC_BUILTIN_VEC_INIT_V16QI:
8730 case ALTIVEC_BUILTIN_VEC_INIT_V4SF:
5039610b 8731 return altivec_expand_vec_init_builtin (TREE_TYPE (exp), exp, target);
7a4eca66
DE
8732
8733 case ALTIVEC_BUILTIN_VEC_SET_V4SI:
8734 case ALTIVEC_BUILTIN_VEC_SET_V8HI:
8735 case ALTIVEC_BUILTIN_VEC_SET_V16QI:
8736 case ALTIVEC_BUILTIN_VEC_SET_V4SF:
5039610b 8737 return altivec_expand_vec_set_builtin (exp);
7a4eca66
DE
8738
8739 case ALTIVEC_BUILTIN_VEC_EXT_V4SI:
8740 case ALTIVEC_BUILTIN_VEC_EXT_V8HI:
8741 case ALTIVEC_BUILTIN_VEC_EXT_V16QI:
8742 case ALTIVEC_BUILTIN_VEC_EXT_V4SF:
5039610b 8743 return altivec_expand_vec_ext_builtin (exp, target);
7a4eca66
DE
8744
8745 default:
8746 break;
8747 /* Fall through. */
0ac081f6 8748 }
24408032 8749
100c4561 8750 /* Expand abs* operations. */
586de218 8751 d = bdesc_abs;
ca7558fc 8752 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
100c4561 8753 if (d->code == fcode)
5039610b 8754 return altivec_expand_abs_builtin (d->icode, exp, target);
100c4561 8755
ae4b4a02 8756 /* Expand the AltiVec predicates. */
586de218 8757 dp = bdesc_altivec_preds;
ca7558fc 8758 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++)
ae4b4a02 8759 if (dp->code == fcode)
c4ad648e 8760 return altivec_expand_predicate_builtin (dp->icode, dp->opcode,
5039610b 8761 exp, target);
ae4b4a02 8762
6525c0e7
AH
8763 /* LV* are funky. We initialized them differently. */
8764 switch (fcode)
8765 {
8766 case ALTIVEC_BUILTIN_LVSL:
b4a62fa0 8767 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsl,
0b61703c 8768 exp, target, false);
6525c0e7 8769 case ALTIVEC_BUILTIN_LVSR:
b4a62fa0 8770 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsr,
0b61703c 8771 exp, target, false);
6525c0e7 8772 case ALTIVEC_BUILTIN_LVEBX:
b4a62fa0 8773 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvebx,
0b61703c 8774 exp, target, false);
6525c0e7 8775 case ALTIVEC_BUILTIN_LVEHX:
b4a62fa0 8776 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvehx,
0b61703c 8777 exp, target, false);
6525c0e7 8778 case ALTIVEC_BUILTIN_LVEWX:
b4a62fa0 8779 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvewx,
0b61703c 8780 exp, target, false);
6525c0e7 8781 case ALTIVEC_BUILTIN_LVXL:
b4a62fa0 8782 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl,
0b61703c 8783 exp, target, false);
6525c0e7 8784 case ALTIVEC_BUILTIN_LVX:
b4a62fa0 8785 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx,
0b61703c
AP
8786 exp, target, false);
8787 case ALTIVEC_BUILTIN_LVLX:
8788 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlx,
8789 exp, target, true);
8790 case ALTIVEC_BUILTIN_LVLXL:
8791 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlxl,
8792 exp, target, true);
8793 case ALTIVEC_BUILTIN_LVRX:
8794 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrx,
8795 exp, target, true);
8796 case ALTIVEC_BUILTIN_LVRXL:
8797 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrxl,
8798 exp, target, true);
6525c0e7
AH
8799 default:
8800 break;
8801 /* Fall through. */
8802 }
95385cbb 8803
92898235 8804 *expandedp = false;
0ac081f6
AH
8805 return NULL_RTX;
8806}
8807
96038623
DE
8808/* Expand the builtin in EXP and store the result in TARGET. Store
8809 true in *EXPANDEDP if we found a builtin to expand. */
8810static rtx
8811paired_expand_builtin (tree exp, rtx target, bool * expandedp)
8812{
8813 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8814 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
23a651fc 8815 const struct builtin_description *d;
96038623
DE
8816 size_t i;
8817
8818 *expandedp = true;
8819
8820 switch (fcode)
8821 {
8822 case PAIRED_BUILTIN_STX:
8823 return paired_expand_stv_builtin (CODE_FOR_paired_stx, exp);
8824 case PAIRED_BUILTIN_LX:
8825 return paired_expand_lv_builtin (CODE_FOR_paired_lx, exp, target);
8826 default:
8827 break;
8828 /* Fall through. */
8829 }
8830
8831 /* Expand the paired predicates. */
23a651fc 8832 d = bdesc_paired_preds;
96038623
DE
8833 for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); i++, d++)
8834 if (d->code == fcode)
8835 return paired_expand_predicate_builtin (d->icode, exp, target);
8836
8837 *expandedp = false;
8838 return NULL_RTX;
8839}
8840
a3170dc6
AH
8841/* Binops that need to be initialized manually, but can be expanded
8842 automagically by rs6000_expand_binop_builtin. */
8843static struct builtin_description bdesc_2arg_spe[] =
8844{
8845 { 0, CODE_FOR_spe_evlddx, "__builtin_spe_evlddx", SPE_BUILTIN_EVLDDX },
8846 { 0, CODE_FOR_spe_evldwx, "__builtin_spe_evldwx", SPE_BUILTIN_EVLDWX },
8847 { 0, CODE_FOR_spe_evldhx, "__builtin_spe_evldhx", SPE_BUILTIN_EVLDHX },
8848 { 0, CODE_FOR_spe_evlwhex, "__builtin_spe_evlwhex", SPE_BUILTIN_EVLWHEX },
8849 { 0, CODE_FOR_spe_evlwhoux, "__builtin_spe_evlwhoux", SPE_BUILTIN_EVLWHOUX },
8850 { 0, CODE_FOR_spe_evlwhosx, "__builtin_spe_evlwhosx", SPE_BUILTIN_EVLWHOSX },
8851 { 0, CODE_FOR_spe_evlwwsplatx, "__builtin_spe_evlwwsplatx", SPE_BUILTIN_EVLWWSPLATX },
8852 { 0, CODE_FOR_spe_evlwhsplatx, "__builtin_spe_evlwhsplatx", SPE_BUILTIN_EVLWHSPLATX },
8853 { 0, CODE_FOR_spe_evlhhesplatx, "__builtin_spe_evlhhesplatx", SPE_BUILTIN_EVLHHESPLATX },
8854 { 0, CODE_FOR_spe_evlhhousplatx, "__builtin_spe_evlhhousplatx", SPE_BUILTIN_EVLHHOUSPLATX },
8855 { 0, CODE_FOR_spe_evlhhossplatx, "__builtin_spe_evlhhossplatx", SPE_BUILTIN_EVLHHOSSPLATX },
8856 { 0, CODE_FOR_spe_evldd, "__builtin_spe_evldd", SPE_BUILTIN_EVLDD },
8857 { 0, CODE_FOR_spe_evldw, "__builtin_spe_evldw", SPE_BUILTIN_EVLDW },
8858 { 0, CODE_FOR_spe_evldh, "__builtin_spe_evldh", SPE_BUILTIN_EVLDH },
8859 { 0, CODE_FOR_spe_evlwhe, "__builtin_spe_evlwhe", SPE_BUILTIN_EVLWHE },
8860 { 0, CODE_FOR_spe_evlwhou, "__builtin_spe_evlwhou", SPE_BUILTIN_EVLWHOU },
8861 { 0, CODE_FOR_spe_evlwhos, "__builtin_spe_evlwhos", SPE_BUILTIN_EVLWHOS },
8862 { 0, CODE_FOR_spe_evlwwsplat, "__builtin_spe_evlwwsplat", SPE_BUILTIN_EVLWWSPLAT },
8863 { 0, CODE_FOR_spe_evlwhsplat, "__builtin_spe_evlwhsplat", SPE_BUILTIN_EVLWHSPLAT },
8864 { 0, CODE_FOR_spe_evlhhesplat, "__builtin_spe_evlhhesplat", SPE_BUILTIN_EVLHHESPLAT },
8865 { 0, CODE_FOR_spe_evlhhousplat, "__builtin_spe_evlhhousplat", SPE_BUILTIN_EVLHHOUSPLAT },
8866 { 0, CODE_FOR_spe_evlhhossplat, "__builtin_spe_evlhhossplat", SPE_BUILTIN_EVLHHOSSPLAT }
8867};
8868
8869/* Expand the builtin in EXP and store the result in TARGET. Store
8870 true in *EXPANDEDP if we found a builtin to expand.
8871
8872 This expands the SPE builtins that are not simple unary and binary
8873 operations. */
8874static rtx
a2369ed3 8875spe_expand_builtin (tree exp, rtx target, bool *expandedp)
a3170dc6 8876{
5039610b 8877 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
a3170dc6
AH
8878 tree arg1, arg0;
8879 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8880 enum insn_code icode;
8881 enum machine_mode tmode, mode0;
8882 rtx pat, op0;
8883 struct builtin_description *d;
8884 size_t i;
8885
8886 *expandedp = true;
8887
8888 /* Syntax check for a 5-bit unsigned immediate. */
8889 switch (fcode)
8890 {
8891 case SPE_BUILTIN_EVSTDD:
8892 case SPE_BUILTIN_EVSTDH:
8893 case SPE_BUILTIN_EVSTDW:
8894 case SPE_BUILTIN_EVSTWHE:
8895 case SPE_BUILTIN_EVSTWHO:
8896 case SPE_BUILTIN_EVSTWWE:
8897 case SPE_BUILTIN_EVSTWWO:
5039610b 8898 arg1 = CALL_EXPR_ARG (exp, 2);
a3170dc6
AH
8899 if (TREE_CODE (arg1) != INTEGER_CST
8900 || TREE_INT_CST_LOW (arg1) & ~0x1f)
8901 {
8902 error ("argument 2 must be a 5-bit unsigned literal");
8903 return const0_rtx;
8904 }
8905 break;
8906 default:
8907 break;
8908 }
8909
00332c9f
AH
8910 /* The evsplat*i instructions are not quite generic. */
8911 switch (fcode)
8912 {
8913 case SPE_BUILTIN_EVSPLATFI:
8914 return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplatfi,
5039610b 8915 exp, target);
00332c9f
AH
8916 case SPE_BUILTIN_EVSPLATI:
8917 return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplati,
5039610b 8918 exp, target);
00332c9f
AH
8919 default:
8920 break;
8921 }
8922
a3170dc6
AH
8923 d = (struct builtin_description *) bdesc_2arg_spe;
8924 for (i = 0; i < ARRAY_SIZE (bdesc_2arg_spe); ++i, ++d)
8925 if (d->code == fcode)
5039610b 8926 return rs6000_expand_binop_builtin (d->icode, exp, target);
a3170dc6
AH
8927
8928 d = (struct builtin_description *) bdesc_spe_predicates;
8929 for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, ++d)
8930 if (d->code == fcode)
5039610b 8931 return spe_expand_predicate_builtin (d->icode, exp, target);
a3170dc6
AH
8932
8933 d = (struct builtin_description *) bdesc_spe_evsel;
8934 for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, ++d)
8935 if (d->code == fcode)
5039610b 8936 return spe_expand_evsel_builtin (d->icode, exp, target);
a3170dc6
AH
8937
8938 switch (fcode)
8939 {
8940 case SPE_BUILTIN_EVSTDDX:
5039610b 8941 return spe_expand_stv_builtin (CODE_FOR_spe_evstddx, exp);
a3170dc6 8942 case SPE_BUILTIN_EVSTDHX:
5039610b 8943 return spe_expand_stv_builtin (CODE_FOR_spe_evstdhx, exp);
a3170dc6 8944 case SPE_BUILTIN_EVSTDWX:
5039610b 8945 return spe_expand_stv_builtin (CODE_FOR_spe_evstdwx, exp);
a3170dc6 8946 case SPE_BUILTIN_EVSTWHEX:
5039610b 8947 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhex, exp);
a3170dc6 8948 case SPE_BUILTIN_EVSTWHOX:
5039610b 8949 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhox, exp);
a3170dc6 8950 case SPE_BUILTIN_EVSTWWEX:
5039610b 8951 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwex, exp);
a3170dc6 8952 case SPE_BUILTIN_EVSTWWOX:
5039610b 8953 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwox, exp);
a3170dc6 8954 case SPE_BUILTIN_EVSTDD:
5039610b 8955 return spe_expand_stv_builtin (CODE_FOR_spe_evstdd, exp);
a3170dc6 8956 case SPE_BUILTIN_EVSTDH:
5039610b 8957 return spe_expand_stv_builtin (CODE_FOR_spe_evstdh, exp);
a3170dc6 8958 case SPE_BUILTIN_EVSTDW:
5039610b 8959 return spe_expand_stv_builtin (CODE_FOR_spe_evstdw, exp);
a3170dc6 8960 case SPE_BUILTIN_EVSTWHE:
5039610b 8961 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhe, exp);
a3170dc6 8962 case SPE_BUILTIN_EVSTWHO:
5039610b 8963 return spe_expand_stv_builtin (CODE_FOR_spe_evstwho, exp);
a3170dc6 8964 case SPE_BUILTIN_EVSTWWE:
5039610b 8965 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwe, exp);
a3170dc6 8966 case SPE_BUILTIN_EVSTWWO:
5039610b 8967 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwo, exp);
a3170dc6
AH
8968 case SPE_BUILTIN_MFSPEFSCR:
8969 icode = CODE_FOR_spe_mfspefscr;
8970 tmode = insn_data[icode].operand[0].mode;
8971
8972 if (target == 0
8973 || GET_MODE (target) != tmode
8974 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8975 target = gen_reg_rtx (tmode);
f676971a 8976
a3170dc6
AH
8977 pat = GEN_FCN (icode) (target);
8978 if (! pat)
8979 return 0;
8980 emit_insn (pat);
8981 return target;
8982 case SPE_BUILTIN_MTSPEFSCR:
8983 icode = CODE_FOR_spe_mtspefscr;
5039610b 8984 arg0 = CALL_EXPR_ARG (exp, 0);
84217346 8985 op0 = expand_normal (arg0);
a3170dc6
AH
8986 mode0 = insn_data[icode].operand[0].mode;
8987
8988 if (arg0 == error_mark_node)
8989 return const0_rtx;
8990
8991 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8992 op0 = copy_to_mode_reg (mode0, op0);
8993
8994 pat = GEN_FCN (icode) (op0);
8995 if (pat)
8996 emit_insn (pat);
8997 return NULL_RTX;
8998 default:
8999 break;
9000 }
9001
9002 *expandedp = false;
9003 return NULL_RTX;
9004}
9005
96038623
DE
9006static rtx
9007paired_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
9008{
9009 rtx pat, scratch, tmp;
9010 tree form = CALL_EXPR_ARG (exp, 0);
9011 tree arg0 = CALL_EXPR_ARG (exp, 1);
9012 tree arg1 = CALL_EXPR_ARG (exp, 2);
9013 rtx op0 = expand_normal (arg0);
9014 rtx op1 = expand_normal (arg1);
9015 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
9016 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
9017 int form_int;
9018 enum rtx_code code;
9019
9020 if (TREE_CODE (form) != INTEGER_CST)
9021 {
9022 error ("argument 1 of __builtin_paired_predicate must be a constant");
9023 return const0_rtx;
9024 }
9025 else
9026 form_int = TREE_INT_CST_LOW (form);
9027
9028 gcc_assert (mode0 == mode1);
9029
9030 if (arg0 == error_mark_node || arg1 == error_mark_node)
9031 return const0_rtx;
9032
9033 if (target == 0
9034 || GET_MODE (target) != SImode
9035 || !(*insn_data[icode].operand[0].predicate) (target, SImode))
9036 target = gen_reg_rtx (SImode);
9037 if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
9038 op0 = copy_to_mode_reg (mode0, op0);
9039 if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
9040 op1 = copy_to_mode_reg (mode1, op1);
9041
9042 scratch = gen_reg_rtx (CCFPmode);
9043
9044 pat = GEN_FCN (icode) (scratch, op0, op1);
9045 if (!pat)
9046 return const0_rtx;
9047
9048 emit_insn (pat);
9049
9050 switch (form_int)
9051 {
9052 /* LT bit. */
9053 case 0:
9054 code = LT;
9055 break;
9056 /* GT bit. */
9057 case 1:
9058 code = GT;
9059 break;
9060 /* EQ bit. */
9061 case 2:
9062 code = EQ;
9063 break;
9064 /* UN bit. */
9065 case 3:
9066 emit_insn (gen_move_from_CR_ov_bit (target, scratch));
9067 return target;
9068 default:
9069 error ("argument 1 of __builtin_paired_predicate is out of range");
9070 return const0_rtx;
9071 }
9072
9073 tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx);
9074 emit_move_insn (target, tmp);
9075 return target;
9076}
9077
a3170dc6 9078static rtx
5039610b 9079spe_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
a3170dc6
AH
9080{
9081 rtx pat, scratch, tmp;
5039610b
SL
9082 tree form = CALL_EXPR_ARG (exp, 0);
9083 tree arg0 = CALL_EXPR_ARG (exp, 1);
9084 tree arg1 = CALL_EXPR_ARG (exp, 2);
84217346
MD
9085 rtx op0 = expand_normal (arg0);
9086 rtx op1 = expand_normal (arg1);
a3170dc6
AH
9087 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
9088 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
9089 int form_int;
9090 enum rtx_code code;
9091
9092 if (TREE_CODE (form) != INTEGER_CST)
9093 {
9094 error ("argument 1 of __builtin_spe_predicate must be a constant");
9095 return const0_rtx;
9096 }
9097 else
9098 form_int = TREE_INT_CST_LOW (form);
9099
37409796 9100 gcc_assert (mode0 == mode1);
a3170dc6
AH
9101
9102 if (arg0 == error_mark_node || arg1 == error_mark_node)
9103 return const0_rtx;
9104
9105 if (target == 0
9106 || GET_MODE (target) != SImode
9107 || ! (*insn_data[icode].operand[0].predicate) (target, SImode))
9108 target = gen_reg_rtx (SImode);
9109
9110 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
9111 op0 = copy_to_mode_reg (mode0, op0);
9112 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
9113 op1 = copy_to_mode_reg (mode1, op1);
9114
9115 scratch = gen_reg_rtx (CCmode);
9116
9117 pat = GEN_FCN (icode) (scratch, op0, op1);
9118 if (! pat)
9119 return const0_rtx;
9120 emit_insn (pat);
9121
9122 /* There are 4 variants for each predicate: _any_, _all_, _upper_,
9123 _lower_. We use one compare, but look in different bits of the
9124 CR for each variant.
9125
9126 There are 2 elements in each SPE simd type (upper/lower). The CR
9127 bits are set as follows:
9128
9129 BIT0 | BIT 1 | BIT 2 | BIT 3
9130 U | L | (U | L) | (U & L)
9131
9132 So, for an "all" relationship, BIT 3 would be set.
9133 For an "any" relationship, BIT 2 would be set. Etc.
9134
9135 Following traditional nomenclature, these bits map to:
9136
9137 BIT0 | BIT 1 | BIT 2 | BIT 3
9138 LT | GT | EQ | OV
9139
9140 Later, we will generate rtl to look in the LT/EQ/EQ/OV bits.
9141 */
9142
9143 switch (form_int)
9144 {
9145 /* All variant. OV bit. */
9146 case 0:
9147 /* We need to get to the OV bit, which is the ORDERED bit. We
9148 could generate (ordered:SI (reg:CC xx) (const_int 0)), but
992d08b1 9149 that's ugly and will make validate_condition_mode die.
a3170dc6
AH
9150 So let's just use another pattern. */
9151 emit_insn (gen_move_from_CR_ov_bit (target, scratch));
9152 return target;
9153 /* Any variant. EQ bit. */
9154 case 1:
9155 code = EQ;
9156 break;
9157 /* Upper variant. LT bit. */
9158 case 2:
9159 code = LT;
9160 break;
9161 /* Lower variant. GT bit. */
9162 case 3:
9163 code = GT;
9164 break;
9165 default:
9166 error ("argument 1 of __builtin_spe_predicate is out of range");
9167 return const0_rtx;
9168 }
9169
9170 tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx);
9171 emit_move_insn (target, tmp);
9172
9173 return target;
9174}
9175
9176/* The evsel builtins look like this:
9177
9178 e = __builtin_spe_evsel_OP (a, b, c, d);
9179
9180 and work like this:
9181
9182 e[upper] = a[upper] *OP* b[upper] ? c[upper] : d[upper];
9183 e[lower] = a[lower] *OP* b[lower] ? c[lower] : d[lower];
9184*/
9185
9186static rtx
5039610b 9187spe_expand_evsel_builtin (enum insn_code icode, tree exp, rtx target)
a3170dc6
AH
9188{
9189 rtx pat, scratch;
5039610b
SL
9190 tree arg0 = CALL_EXPR_ARG (exp, 0);
9191 tree arg1 = CALL_EXPR_ARG (exp, 1);
9192 tree arg2 = CALL_EXPR_ARG (exp, 2);
9193 tree arg3 = CALL_EXPR_ARG (exp, 3);
84217346
MD
9194 rtx op0 = expand_normal (arg0);
9195 rtx op1 = expand_normal (arg1);
9196 rtx op2 = expand_normal (arg2);
9197 rtx op3 = expand_normal (arg3);
a3170dc6
AH
9198 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
9199 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
9200
37409796 9201 gcc_assert (mode0 == mode1);
a3170dc6
AH
9202
9203 if (arg0 == error_mark_node || arg1 == error_mark_node
9204 || arg2 == error_mark_node || arg3 == error_mark_node)
9205 return const0_rtx;
9206
9207 if (target == 0
9208 || GET_MODE (target) != mode0
9209 || ! (*insn_data[icode].operand[0].predicate) (target, mode0))
9210 target = gen_reg_rtx (mode0);
9211
9212 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
9213 op0 = copy_to_mode_reg (mode0, op0);
9214 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
9215 op1 = copy_to_mode_reg (mode0, op1);
9216 if (! (*insn_data[icode].operand[1].predicate) (op2, mode1))
9217 op2 = copy_to_mode_reg (mode0, op2);
9218 if (! (*insn_data[icode].operand[1].predicate) (op3, mode1))
9219 op3 = copy_to_mode_reg (mode0, op3);
9220
9221 /* Generate the compare. */
9222 scratch = gen_reg_rtx (CCmode);
9223 pat = GEN_FCN (icode) (scratch, op0, op1);
9224 if (! pat)
9225 return const0_rtx;
9226 emit_insn (pat);
9227
9228 if (mode0 == V2SImode)
9229 emit_insn (gen_spe_evsel (target, op2, op3, scratch));
9230 else
9231 emit_insn (gen_spe_evsel_fs (target, op2, op3, scratch));
9232
9233 return target;
9234}
9235
0ac081f6
AH
9236/* Expand an expression EXP that calls a built-in function,
9237 with result going to TARGET if that's convenient
9238 (and in mode MODE if that's convenient).
9239 SUBTARGET may be used as the target for computing one of EXP's operands.
9240 IGNORE is nonzero if the value is to be ignored. */
9241
9242static rtx
a2369ed3 9243rs6000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
c4ad648e
AM
9244 enum machine_mode mode ATTRIBUTE_UNUSED,
9245 int ignore ATTRIBUTE_UNUSED)
0ac081f6 9246{
5039610b 9247 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
92898235 9248 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
586de218 9249 const struct builtin_description *d;
92898235
AH
9250 size_t i;
9251 rtx ret;
9252 bool success;
f676971a 9253
9c78b944
DE
9254 if (fcode == RS6000_BUILTIN_RECIP)
9255 return rs6000_expand_binop_builtin (CODE_FOR_recipdf3, exp, target);
9256
9257 if (fcode == RS6000_BUILTIN_RECIPF)
9258 return rs6000_expand_binop_builtin (CODE_FOR_recipsf3, exp, target);
9259
9260 if (fcode == RS6000_BUILTIN_RSQRTF)
9261 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtsf2, exp, target);
9262
7ccf35ed
DN
9263 if (fcode == ALTIVEC_BUILTIN_MASK_FOR_LOAD
9264 || fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
9265 {
9266 int icode = (int) CODE_FOR_altivec_lvsr;
9267 enum machine_mode tmode = insn_data[icode].operand[0].mode;
9268 enum machine_mode mode = insn_data[icode].operand[1].mode;
9269 tree arg;
9270 rtx op, addr, pat;
9271
37409796 9272 gcc_assert (TARGET_ALTIVEC);
7ccf35ed 9273
5039610b 9274 arg = CALL_EXPR_ARG (exp, 0);
37409796 9275 gcc_assert (TREE_CODE (TREE_TYPE (arg)) == POINTER_TYPE);
7ccf35ed
DN
9276 op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
9277 addr = memory_address (mode, op);
9278 if (fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
9279 op = addr;
9280 else
9281 {
9282 /* For the load case need to negate the address. */
9283 op = gen_reg_rtx (GET_MODE (addr));
9284 emit_insn (gen_rtx_SET (VOIDmode, op,
9285 gen_rtx_NEG (GET_MODE (addr), addr)));
c4ad648e 9286 }
7ccf35ed
DN
9287 op = gen_rtx_MEM (mode, op);
9288
9289 if (target == 0
9290 || GET_MODE (target) != tmode
9291 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
9292 target = gen_reg_rtx (tmode);
9293
9294 /*pat = gen_altivec_lvsr (target, op);*/
9295 pat = GEN_FCN (icode) (target, op);
9296 if (!pat)
9297 return 0;
9298 emit_insn (pat);
9299
9300 return target;
9301 }
5039610b
SL
9302
9303 /* FIXME: There's got to be a nicer way to handle this case than
9304 constructing a new CALL_EXPR. */
f57d17f1 9305 if (fcode == ALTIVEC_BUILTIN_VCFUX
7910ae0c
DN
9306 || fcode == ALTIVEC_BUILTIN_VCFSX
9307 || fcode == ALTIVEC_BUILTIN_VCTUXS
9308 || fcode == ALTIVEC_BUILTIN_VCTSXS)
f57d17f1 9309 {
5039610b
SL
9310 if (call_expr_nargs (exp) == 1)
9311 exp = build_call_nary (TREE_TYPE (exp), CALL_EXPR_FN (exp),
9312 2, CALL_EXPR_ARG (exp, 0), integer_zero_node);
982afe02 9313 }
7ccf35ed 9314
0ac081f6 9315 if (TARGET_ALTIVEC)
92898235
AH
9316 {
9317 ret = altivec_expand_builtin (exp, target, &success);
9318
a3170dc6
AH
9319 if (success)
9320 return ret;
9321 }
9322 if (TARGET_SPE)
9323 {
9324 ret = spe_expand_builtin (exp, target, &success);
9325
92898235
AH
9326 if (success)
9327 return ret;
9328 }
96038623
DE
9329 if (TARGET_PAIRED_FLOAT)
9330 {
9331 ret = paired_expand_builtin (exp, target, &success);
9332
9333 if (success)
9334 return ret;
9335 }
92898235 9336
96038623 9337 gcc_assert (TARGET_ALTIVEC || TARGET_SPE || TARGET_PAIRED_FLOAT);
bb8df8a6 9338
37409796
NS
9339 /* Handle simple unary operations. */
9340 d = (struct builtin_description *) bdesc_1arg;
9341 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
9342 if (d->code == fcode)
5039610b 9343 return rs6000_expand_unop_builtin (d->icode, exp, target);
bb8df8a6 9344
37409796
NS
9345 /* Handle simple binary operations. */
9346 d = (struct builtin_description *) bdesc_2arg;
9347 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
9348 if (d->code == fcode)
5039610b 9349 return rs6000_expand_binop_builtin (d->icode, exp, target);
0ac081f6 9350
37409796 9351 /* Handle simple ternary operations. */
586de218 9352 d = bdesc_3arg;
37409796
NS
9353 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
9354 if (d->code == fcode)
5039610b 9355 return rs6000_expand_ternop_builtin (d->icode, exp, target);
bb8df8a6 9356
37409796 9357 gcc_unreachable ();
0ac081f6
AH
9358}
9359
9360static void
863d938c 9361rs6000_init_builtins (void)
0ac081f6 9362{
5afaa917
NS
9363 tree tdecl;
9364
4a5eab38
PB
9365 V2SI_type_node = build_vector_type (intSI_type_node, 2);
9366 V2SF_type_node = build_vector_type (float_type_node, 2);
9367 V4HI_type_node = build_vector_type (intHI_type_node, 4);
9368 V4SI_type_node = build_vector_type (intSI_type_node, 4);
9369 V4SF_type_node = build_vector_type (float_type_node, 4);
7e463bda 9370 V8HI_type_node = build_vector_type (intHI_type_node, 8);
4a5eab38
PB
9371 V16QI_type_node = build_vector_type (intQI_type_node, 16);
9372
9373 unsigned_V16QI_type_node = build_vector_type (unsigned_intQI_type_node, 16);
9374 unsigned_V8HI_type_node = build_vector_type (unsigned_intHI_type_node, 8);
9375 unsigned_V4SI_type_node = build_vector_type (unsigned_intSI_type_node, 4);
9376
7c62e993
PB
9377 opaque_V2SF_type_node = build_opaque_vector_type (float_type_node, 2);
9378 opaque_V2SI_type_node = build_opaque_vector_type (intSI_type_node, 2);
6035d635 9379 opaque_p_V2SI_type_node = build_pointer_type (opaque_V2SI_type_node);
b6fc2cdb 9380 opaque_V4SI_type_node = build_opaque_vector_type (intSI_type_node, 4);
3fdaa45a 9381
8bb418a3
ZL
9382 /* The 'vector bool ...' types must be kept distinct from 'vector unsigned ...'
9383 types, especially in C++ land. Similarly, 'vector pixel' is distinct from
9384 'vector unsigned short'. */
9385
8dd16ecc
NS
9386 bool_char_type_node = build_distinct_type_copy (unsigned_intQI_type_node);
9387 bool_short_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
9388 bool_int_type_node = build_distinct_type_copy (unsigned_intSI_type_node);
9389 pixel_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
8bb418a3 9390
58646b77
PB
9391 long_integer_type_internal_node = long_integer_type_node;
9392 long_unsigned_type_internal_node = long_unsigned_type_node;
9393 intQI_type_internal_node = intQI_type_node;
9394 uintQI_type_internal_node = unsigned_intQI_type_node;
9395 intHI_type_internal_node = intHI_type_node;
9396 uintHI_type_internal_node = unsigned_intHI_type_node;
9397 intSI_type_internal_node = intSI_type_node;
9398 uintSI_type_internal_node = unsigned_intSI_type_node;
9399 float_type_internal_node = float_type_node;
9400 void_type_internal_node = void_type_node;
9401
5afaa917
NS
9402 tdecl = build_decl (TYPE_DECL, get_identifier ("__bool char"),
9403 bool_char_type_node);
9404 TYPE_NAME (bool_char_type_node) = tdecl;
9405 (*lang_hooks.decls.pushdecl) (tdecl);
9406 tdecl = build_decl (TYPE_DECL, get_identifier ("__bool short"),
9407 bool_short_type_node);
9408 TYPE_NAME (bool_short_type_node) = tdecl;
9409 (*lang_hooks.decls.pushdecl) (tdecl);
9410 tdecl = build_decl (TYPE_DECL, get_identifier ("__bool int"),
9411 bool_int_type_node);
9412 TYPE_NAME (bool_int_type_node) = tdecl;
9413 (*lang_hooks.decls.pushdecl) (tdecl);
9414 tdecl = build_decl (TYPE_DECL, get_identifier ("__pixel"),
9415 pixel_type_node);
9416 TYPE_NAME (pixel_type_node) = tdecl;
9417 (*lang_hooks.decls.pushdecl) (tdecl);
8bb418a3 9418
4a5eab38
PB
9419 bool_V16QI_type_node = build_vector_type (bool_char_type_node, 16);
9420 bool_V8HI_type_node = build_vector_type (bool_short_type_node, 8);
9421 bool_V4SI_type_node = build_vector_type (bool_int_type_node, 4);
9422 pixel_V8HI_type_node = build_vector_type (pixel_type_node, 8);
8bb418a3 9423
5afaa917
NS
9424 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector unsigned char"),
9425 unsigned_V16QI_type_node);
9426 TYPE_NAME (unsigned_V16QI_type_node) = tdecl;
9427 (*lang_hooks.decls.pushdecl) (tdecl);
9428 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector signed char"),
9429 V16QI_type_node);
9430 TYPE_NAME (V16QI_type_node) = tdecl;
9431 (*lang_hooks.decls.pushdecl) (tdecl);
9432 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector __bool char"),
9433 bool_V16QI_type_node);
9434 TYPE_NAME ( bool_V16QI_type_node) = tdecl;
9435 (*lang_hooks.decls.pushdecl) (tdecl);
9436
9437 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector unsigned short"),
9438 unsigned_V8HI_type_node);
9439 TYPE_NAME (unsigned_V8HI_type_node) = tdecl;
9440 (*lang_hooks.decls.pushdecl) (tdecl);
9441 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector signed short"),
9442 V8HI_type_node);
9443 TYPE_NAME (V8HI_type_node) = tdecl;
9444 (*lang_hooks.decls.pushdecl) (tdecl);
9445 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector __bool short"),
9446 bool_V8HI_type_node);
9447 TYPE_NAME (bool_V8HI_type_node) = tdecl;
9448 (*lang_hooks.decls.pushdecl) (tdecl);
9449
9450 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector unsigned int"),
9451 unsigned_V4SI_type_node);
9452 TYPE_NAME (unsigned_V4SI_type_node) = tdecl;
9453 (*lang_hooks.decls.pushdecl) (tdecl);
9454 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector signed int"),
9455 V4SI_type_node);
9456 TYPE_NAME (V4SI_type_node) = tdecl;
9457 (*lang_hooks.decls.pushdecl) (tdecl);
9458 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector __bool int"),
9459 bool_V4SI_type_node);
9460 TYPE_NAME (bool_V4SI_type_node) = tdecl;
9461 (*lang_hooks.decls.pushdecl) (tdecl);
9462
9463 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector float"),
9464 V4SF_type_node);
9465 TYPE_NAME (V4SF_type_node) = tdecl;
9466 (*lang_hooks.decls.pushdecl) (tdecl);
9467 tdecl = build_decl (TYPE_DECL, get_identifier ("__vector __pixel"),
9468 pixel_V8HI_type_node);
9469 TYPE_NAME (pixel_V8HI_type_node) = tdecl;
9470 (*lang_hooks.decls.pushdecl) (tdecl);
8bb418a3 9471
96038623
DE
9472 if (TARGET_PAIRED_FLOAT)
9473 paired_init_builtins ();
a3170dc6 9474 if (TARGET_SPE)
3fdaa45a 9475 spe_init_builtins ();
0ac081f6
AH
9476 if (TARGET_ALTIVEC)
9477 altivec_init_builtins ();
96038623 9478 if (TARGET_ALTIVEC || TARGET_SPE || TARGET_PAIRED_FLOAT)
0559cc77 9479 rs6000_common_init_builtins ();
9c78b944
DE
9480 if (TARGET_PPC_GFXOPT)
9481 {
9482 tree ftype = build_function_type_list (float_type_node,
9483 float_type_node,
9484 float_type_node,
9485 NULL_TREE);
9486 def_builtin (MASK_PPC_GFXOPT, "__builtin_recipdivf", ftype,
9487 RS6000_BUILTIN_RECIPF);
9488
9489 ftype = build_function_type_list (float_type_node,
9490 float_type_node,
9491 NULL_TREE);
9492 def_builtin (MASK_PPC_GFXOPT, "__builtin_rsqrtf", ftype,
9493 RS6000_BUILTIN_RSQRTF);
9494 }
9495 if (TARGET_POPCNTB)
9496 {
9497 tree ftype = build_function_type_list (double_type_node,
9498 double_type_node,
9499 double_type_node,
9500 NULL_TREE);
9501 def_builtin (MASK_POPCNTB, "__builtin_recipdiv", ftype,
9502 RS6000_BUILTIN_RECIP);
9503
9504 }
69ca3549
DE
9505
9506#if TARGET_XCOFF
9507 /* AIX libm provides clog as __clog. */
9508 if (built_in_decls [BUILT_IN_CLOG])
9509 set_user_assembler_name (built_in_decls [BUILT_IN_CLOG], "__clog");
9510#endif
fb220235
FXC
9511
9512#ifdef SUBTARGET_INIT_BUILTINS
9513 SUBTARGET_INIT_BUILTINS;
9514#endif
0ac081f6
AH
9515}
9516
a3170dc6
AH
9517/* Search through a set of builtins and enable the mask bits.
9518 DESC is an array of builtins.
b6d08ca1 9519 SIZE is the total number of builtins.
a3170dc6
AH
9520 START is the builtin enum at which to start.
9521 END is the builtin enum at which to end. */
0ac081f6 9522static void
a2369ed3 9523enable_mask_for_builtins (struct builtin_description *desc, int size,
f676971a 9524 enum rs6000_builtins start,
a2369ed3 9525 enum rs6000_builtins end)
a3170dc6
AH
9526{
9527 int i;
9528
9529 for (i = 0; i < size; ++i)
9530 if (desc[i].code == start)
9531 break;
9532
9533 if (i == size)
9534 return;
9535
9536 for (; i < size; ++i)
9537 {
9538 /* Flip all the bits on. */
9539 desc[i].mask = target_flags;
9540 if (desc[i].code == end)
9541 break;
9542 }
9543}
9544
9545static void
863d938c 9546spe_init_builtins (void)
0ac081f6 9547{
a3170dc6
AH
9548 tree endlink = void_list_node;
9549 tree puint_type_node = build_pointer_type (unsigned_type_node);
9550 tree pushort_type_node = build_pointer_type (short_unsigned_type_node);
ae4b4a02 9551 struct builtin_description *d;
0ac081f6
AH
9552 size_t i;
9553
a3170dc6
AH
9554 tree v2si_ftype_4_v2si
9555 = build_function_type
3fdaa45a
AH
9556 (opaque_V2SI_type_node,
9557 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9558 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9559 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9560 tree_cons (NULL_TREE, opaque_V2SI_type_node,
a3170dc6
AH
9561 endlink)))));
9562
9563 tree v2sf_ftype_4_v2sf
9564 = build_function_type
3fdaa45a
AH
9565 (opaque_V2SF_type_node,
9566 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9567 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9568 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9569 tree_cons (NULL_TREE, opaque_V2SF_type_node,
a3170dc6
AH
9570 endlink)))));
9571
9572 tree int_ftype_int_v2si_v2si
9573 = build_function_type
9574 (integer_type_node,
9575 tree_cons (NULL_TREE, integer_type_node,
3fdaa45a
AH
9576 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9577 tree_cons (NULL_TREE, opaque_V2SI_type_node,
a3170dc6
AH
9578 endlink))));
9579
9580 tree int_ftype_int_v2sf_v2sf
9581 = build_function_type
9582 (integer_type_node,
9583 tree_cons (NULL_TREE, integer_type_node,
3fdaa45a
AH
9584 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9585 tree_cons (NULL_TREE, opaque_V2SF_type_node,
a3170dc6
AH
9586 endlink))));
9587
9588 tree void_ftype_v2si_puint_int
9589 = build_function_type (void_type_node,
3fdaa45a 9590 tree_cons (NULL_TREE, opaque_V2SI_type_node,
a3170dc6
AH
9591 tree_cons (NULL_TREE, puint_type_node,
9592 tree_cons (NULL_TREE,
9593 integer_type_node,
9594 endlink))));
9595
9596 tree void_ftype_v2si_puint_char
9597 = build_function_type (void_type_node,
3fdaa45a 9598 tree_cons (NULL_TREE, opaque_V2SI_type_node,
a3170dc6
AH
9599 tree_cons (NULL_TREE, puint_type_node,
9600 tree_cons (NULL_TREE,
9601 char_type_node,
9602 endlink))));
9603
9604 tree void_ftype_v2si_pv2si_int
9605 = build_function_type (void_type_node,
3fdaa45a 9606 tree_cons (NULL_TREE, opaque_V2SI_type_node,
6035d635 9607 tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
a3170dc6
AH
9608 tree_cons (NULL_TREE,
9609 integer_type_node,
9610 endlink))));
9611
9612 tree void_ftype_v2si_pv2si_char
9613 = build_function_type (void_type_node,
3fdaa45a 9614 tree_cons (NULL_TREE, opaque_V2SI_type_node,
6035d635 9615 tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
a3170dc6
AH
9616 tree_cons (NULL_TREE,
9617 char_type_node,
9618 endlink))));
9619
9620 tree void_ftype_int
9621 = build_function_type (void_type_node,
9622 tree_cons (NULL_TREE, integer_type_node, endlink));
9623
9624 tree int_ftype_void
36e8d515 9625 = build_function_type (integer_type_node, endlink);
a3170dc6
AH
9626
9627 tree v2si_ftype_pv2si_int
3fdaa45a 9628 = build_function_type (opaque_V2SI_type_node,
6035d635 9629 tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
a3170dc6
AH
9630 tree_cons (NULL_TREE, integer_type_node,
9631 endlink)));
9632
9633 tree v2si_ftype_puint_int
3fdaa45a 9634 = build_function_type (opaque_V2SI_type_node,
a3170dc6
AH
9635 tree_cons (NULL_TREE, puint_type_node,
9636 tree_cons (NULL_TREE, integer_type_node,
9637 endlink)));
9638
9639 tree v2si_ftype_pushort_int
3fdaa45a 9640 = build_function_type (opaque_V2SI_type_node,
a3170dc6
AH
9641 tree_cons (NULL_TREE, pushort_type_node,
9642 tree_cons (NULL_TREE, integer_type_node,
9643 endlink)));
9644
00332c9f
AH
9645 tree v2si_ftype_signed_char
9646 = build_function_type (opaque_V2SI_type_node,
9647 tree_cons (NULL_TREE, signed_char_type_node,
9648 endlink));
9649
a3170dc6
AH
9650 /* The initialization of the simple binary and unary builtins is
9651 done in rs6000_common_init_builtins, but we have to enable the
9652 mask bits here manually because we have run out of `target_flags'
9653 bits. We really need to redesign this mask business. */
9654
9655 enable_mask_for_builtins ((struct builtin_description *) bdesc_2arg,
9656 ARRAY_SIZE (bdesc_2arg),
9657 SPE_BUILTIN_EVADDW,
9658 SPE_BUILTIN_EVXOR);
9659 enable_mask_for_builtins ((struct builtin_description *) bdesc_1arg,
9660 ARRAY_SIZE (bdesc_1arg),
9661 SPE_BUILTIN_EVABS,
9662 SPE_BUILTIN_EVSUBFUSIAAW);
9663 enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_predicates,
9664 ARRAY_SIZE (bdesc_spe_predicates),
9665 SPE_BUILTIN_EVCMPEQ,
9666 SPE_BUILTIN_EVFSTSTLT);
9667 enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_evsel,
9668 ARRAY_SIZE (bdesc_spe_evsel),
9669 SPE_BUILTIN_EVSEL_CMPGTS,
9670 SPE_BUILTIN_EVSEL_FSTSTEQ);
9671
36252949
AH
9672 (*lang_hooks.decls.pushdecl)
9673 (build_decl (TYPE_DECL, get_identifier ("__ev64_opaque__"),
9674 opaque_V2SI_type_node));
9675
a3170dc6 9676 /* Initialize irregular SPE builtins. */
f676971a 9677
a3170dc6
AH
9678 def_builtin (target_flags, "__builtin_spe_mtspefscr", void_ftype_int, SPE_BUILTIN_MTSPEFSCR);
9679 def_builtin (target_flags, "__builtin_spe_mfspefscr", int_ftype_void, SPE_BUILTIN_MFSPEFSCR);
9680 def_builtin (target_flags, "__builtin_spe_evstddx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDDX);
9681 def_builtin (target_flags, "__builtin_spe_evstdhx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDHX);
9682 def_builtin (target_flags, "__builtin_spe_evstdwx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDWX);
9683 def_builtin (target_flags, "__builtin_spe_evstwhex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHEX);
9684 def_builtin (target_flags, "__builtin_spe_evstwhox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHOX);
9685 def_builtin (target_flags, "__builtin_spe_evstwwex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWEX);
9686 def_builtin (target_flags, "__builtin_spe_evstwwox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWOX);
9687 def_builtin (target_flags, "__builtin_spe_evstdd", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDD);
9688 def_builtin (target_flags, "__builtin_spe_evstdh", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDH);
9689 def_builtin (target_flags, "__builtin_spe_evstdw", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDW);
9690 def_builtin (target_flags, "__builtin_spe_evstwhe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHE);
9691 def_builtin (target_flags, "__builtin_spe_evstwho", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHO);
9692 def_builtin (target_flags, "__builtin_spe_evstwwe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWE);
9693 def_builtin (target_flags, "__builtin_spe_evstwwo", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWO);
00332c9f
AH
9694 def_builtin (target_flags, "__builtin_spe_evsplatfi", v2si_ftype_signed_char, SPE_BUILTIN_EVSPLATFI);
9695 def_builtin (target_flags, "__builtin_spe_evsplati", v2si_ftype_signed_char, SPE_BUILTIN_EVSPLATI);
a3170dc6
AH
9696
9697 /* Loads. */
9698 def_builtin (target_flags, "__builtin_spe_evlddx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDDX);
9699 def_builtin (target_flags, "__builtin_spe_evldwx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDWX);
9700 def_builtin (target_flags, "__builtin_spe_evldhx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDHX);
9701 def_builtin (target_flags, "__builtin_spe_evlwhex", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHEX);
9702 def_builtin (target_flags, "__builtin_spe_evlwhoux", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOUX);
9703 def_builtin (target_flags, "__builtin_spe_evlwhosx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOSX);
9704 def_builtin (target_flags, "__builtin_spe_evlwwsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLATX);
9705 def_builtin (target_flags, "__builtin_spe_evlwhsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLATX);
9706 def_builtin (target_flags, "__builtin_spe_evlhhesplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLATX);
9707 def_builtin (target_flags, "__builtin_spe_evlhhousplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLATX);
9708 def_builtin (target_flags, "__builtin_spe_evlhhossplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLATX);
9709 def_builtin (target_flags, "__builtin_spe_evldd", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDD);
9710 def_builtin (target_flags, "__builtin_spe_evldw", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDW);
9711 def_builtin (target_flags, "__builtin_spe_evldh", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDH);
9712 def_builtin (target_flags, "__builtin_spe_evlhhesplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLAT);
9713 def_builtin (target_flags, "__builtin_spe_evlhhossplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLAT);
9714 def_builtin (target_flags, "__builtin_spe_evlhhousplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLAT);
9715 def_builtin (target_flags, "__builtin_spe_evlwhe", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHE);
9716 def_builtin (target_flags, "__builtin_spe_evlwhos", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOS);
9717 def_builtin (target_flags, "__builtin_spe_evlwhou", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOU);
9718 def_builtin (target_flags, "__builtin_spe_evlwhsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLAT);
9719 def_builtin (target_flags, "__builtin_spe_evlwwsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLAT);
9720
9721 /* Predicates. */
9722 d = (struct builtin_description *) bdesc_spe_predicates;
9723 for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, d++)
9724 {
9725 tree type;
9726
9727 switch (insn_data[d->icode].operand[1].mode)
9728 {
9729 case V2SImode:
9730 type = int_ftype_int_v2si_v2si;
9731 break;
9732 case V2SFmode:
9733 type = int_ftype_int_v2sf_v2sf;
9734 break;
9735 default:
37409796 9736 gcc_unreachable ();
a3170dc6
AH
9737 }
9738
9739 def_builtin (d->mask, d->name, type, d->code);
9740 }
9741
9742 /* Evsel predicates. */
9743 d = (struct builtin_description *) bdesc_spe_evsel;
9744 for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, d++)
9745 {
9746 tree type;
9747
9748 switch (insn_data[d->icode].operand[1].mode)
9749 {
9750 case V2SImode:
9751 type = v2si_ftype_4_v2si;
9752 break;
9753 case V2SFmode:
9754 type = v2sf_ftype_4_v2sf;
9755 break;
9756 default:
37409796 9757 gcc_unreachable ();
a3170dc6
AH
9758 }
9759
9760 def_builtin (d->mask, d->name, type, d->code);
9761 }
9762}
9763
96038623
DE
9764static void
9765paired_init_builtins (void)
9766{
23a651fc 9767 const struct builtin_description *d;
96038623
DE
9768 size_t i;
9769 tree endlink = void_list_node;
9770
9771 tree int_ftype_int_v2sf_v2sf
9772 = build_function_type
9773 (integer_type_node,
9774 tree_cons (NULL_TREE, integer_type_node,
9775 tree_cons (NULL_TREE, V2SF_type_node,
9776 tree_cons (NULL_TREE, V2SF_type_node,
9777 endlink))));
9778 tree pcfloat_type_node =
9779 build_pointer_type (build_qualified_type
9780 (float_type_node, TYPE_QUAL_CONST));
9781
9782 tree v2sf_ftype_long_pcfloat = build_function_type_list (V2SF_type_node,
9783 long_integer_type_node,
9784 pcfloat_type_node,
9785 NULL_TREE);
9786 tree void_ftype_v2sf_long_pcfloat =
9787 build_function_type_list (void_type_node,
9788 V2SF_type_node,
9789 long_integer_type_node,
9790 pcfloat_type_node,
9791 NULL_TREE);
9792
9793
9794 def_builtin (0, "__builtin_paired_lx", v2sf_ftype_long_pcfloat,
9795 PAIRED_BUILTIN_LX);
9796
9797
9798 def_builtin (0, "__builtin_paired_stx", void_ftype_v2sf_long_pcfloat,
9799 PAIRED_BUILTIN_STX);
9800
9801 /* Predicates. */
23a651fc 9802 d = bdesc_paired_preds;
96038623
DE
9803 for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); ++i, d++)
9804 {
9805 tree type;
9806
9807 switch (insn_data[d->icode].operand[1].mode)
9808 {
9809 case V2SFmode:
9810 type = int_ftype_int_v2sf_v2sf;
9811 break;
9812 default:
9813 gcc_unreachable ();
9814 }
9815
9816 def_builtin (d->mask, d->name, type, d->code);
9817 }
9818}
9819
a3170dc6 9820static void
863d938c 9821altivec_init_builtins (void)
a3170dc6 9822{
586de218
KG
9823 const struct builtin_description *d;
9824 const struct builtin_description_predicates *dp;
a3170dc6 9825 size_t i;
7a4eca66
DE
9826 tree ftype;
9827
a3170dc6
AH
9828 tree pfloat_type_node = build_pointer_type (float_type_node);
9829 tree pint_type_node = build_pointer_type (integer_type_node);
9830 tree pshort_type_node = build_pointer_type (short_integer_type_node);
9831 tree pchar_type_node = build_pointer_type (char_type_node);
9832
9833 tree pvoid_type_node = build_pointer_type (void_type_node);
9834
0dbc3651
ZW
9835 tree pcfloat_type_node = build_pointer_type (build_qualified_type (float_type_node, TYPE_QUAL_CONST));
9836 tree pcint_type_node = build_pointer_type (build_qualified_type (integer_type_node, TYPE_QUAL_CONST));
9837 tree pcshort_type_node = build_pointer_type (build_qualified_type (short_integer_type_node, TYPE_QUAL_CONST));
9838 tree pcchar_type_node = build_pointer_type (build_qualified_type (char_type_node, TYPE_QUAL_CONST));
9839
9840 tree pcvoid_type_node = build_pointer_type (build_qualified_type (void_type_node, TYPE_QUAL_CONST));
9841
58646b77
PB
9842 tree int_ftype_opaque
9843 = build_function_type_list (integer_type_node,
9844 opaque_V4SI_type_node, NULL_TREE);
266b4890
AP
9845 tree opaque_ftype_opaque
9846 = build_function_type (integer_type_node,
9847 NULL_TREE);
58646b77
PB
9848 tree opaque_ftype_opaque_int
9849 = build_function_type_list (opaque_V4SI_type_node,
9850 opaque_V4SI_type_node, integer_type_node, NULL_TREE);
9851 tree opaque_ftype_opaque_opaque_int
9852 = build_function_type_list (opaque_V4SI_type_node,
9853 opaque_V4SI_type_node, opaque_V4SI_type_node,
9854 integer_type_node, NULL_TREE);
9855 tree int_ftype_int_opaque_opaque
9856 = build_function_type_list (integer_type_node,
9857 integer_type_node, opaque_V4SI_type_node,
9858 opaque_V4SI_type_node, NULL_TREE);
a3170dc6
AH
9859 tree int_ftype_int_v4si_v4si
9860 = build_function_type_list (integer_type_node,
9861 integer_type_node, V4SI_type_node,
9862 V4SI_type_node, NULL_TREE);
0dbc3651
ZW
9863 tree v4sf_ftype_pcfloat
9864 = build_function_type_list (V4SF_type_node, pcfloat_type_node, NULL_TREE);
a3170dc6 9865 tree void_ftype_pfloat_v4sf
b4de2f7d 9866 = build_function_type_list (void_type_node,
a3170dc6 9867 pfloat_type_node, V4SF_type_node, NULL_TREE);
0dbc3651
ZW
9868 tree v4si_ftype_pcint
9869 = build_function_type_list (V4SI_type_node, pcint_type_node, NULL_TREE);
9870 tree void_ftype_pint_v4si
b4de2f7d
AH
9871 = build_function_type_list (void_type_node,
9872 pint_type_node, V4SI_type_node, NULL_TREE);
0dbc3651
ZW
9873 tree v8hi_ftype_pcshort
9874 = build_function_type_list (V8HI_type_node, pcshort_type_node, NULL_TREE);
f18c054f 9875 tree void_ftype_pshort_v8hi
b4de2f7d
AH
9876 = build_function_type_list (void_type_node,
9877 pshort_type_node, V8HI_type_node, NULL_TREE);
0dbc3651
ZW
9878 tree v16qi_ftype_pcchar
9879 = build_function_type_list (V16QI_type_node, pcchar_type_node, NULL_TREE);
f18c054f 9880 tree void_ftype_pchar_v16qi
b4de2f7d
AH
9881 = build_function_type_list (void_type_node,
9882 pchar_type_node, V16QI_type_node, NULL_TREE);
95385cbb 9883 tree void_ftype_v4si
b4de2f7d 9884 = build_function_type_list (void_type_node, V4SI_type_node, NULL_TREE);
a3170dc6
AH
9885 tree v8hi_ftype_void
9886 = build_function_type (V8HI_type_node, void_list_node);
9887 tree void_ftype_void
9888 = build_function_type (void_type_node, void_list_node);
e34b6648
JJ
9889 tree void_ftype_int
9890 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
0dbc3651 9891
58646b77
PB
9892 tree opaque_ftype_long_pcvoid
9893 = build_function_type_list (opaque_V4SI_type_node,
9894 long_integer_type_node, pcvoid_type_node, NULL_TREE);
b4a62fa0 9895 tree v16qi_ftype_long_pcvoid
a3170dc6 9896 = build_function_type_list (V16QI_type_node,
b4a62fa0
SB
9897 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9898 tree v8hi_ftype_long_pcvoid
a3170dc6 9899 = build_function_type_list (V8HI_type_node,
b4a62fa0
SB
9900 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9901 tree v4si_ftype_long_pcvoid
a3170dc6 9902 = build_function_type_list (V4SI_type_node,
b4a62fa0 9903 long_integer_type_node, pcvoid_type_node, NULL_TREE);
0dbc3651 9904
58646b77
PB
9905 tree void_ftype_opaque_long_pvoid
9906 = build_function_type_list (void_type_node,
9907 opaque_V4SI_type_node, long_integer_type_node,
9908 pvoid_type_node, NULL_TREE);
b4a62fa0 9909 tree void_ftype_v4si_long_pvoid
b4de2f7d 9910 = build_function_type_list (void_type_node,
b4a62fa0 9911 V4SI_type_node, long_integer_type_node,
b4de2f7d 9912 pvoid_type_node, NULL_TREE);
b4a62fa0 9913 tree void_ftype_v16qi_long_pvoid
b4de2f7d 9914 = build_function_type_list (void_type_node,
b4a62fa0 9915 V16QI_type_node, long_integer_type_node,
b4de2f7d 9916 pvoid_type_node, NULL_TREE);
b4a62fa0 9917 tree void_ftype_v8hi_long_pvoid
b4de2f7d 9918 = build_function_type_list (void_type_node,
b4a62fa0 9919 V8HI_type_node, long_integer_type_node,
b4de2f7d 9920 pvoid_type_node, NULL_TREE);
a3170dc6
AH
9921 tree int_ftype_int_v8hi_v8hi
9922 = build_function_type_list (integer_type_node,
9923 integer_type_node, V8HI_type_node,
9924 V8HI_type_node, NULL_TREE);
9925 tree int_ftype_int_v16qi_v16qi
9926 = build_function_type_list (integer_type_node,
9927 integer_type_node, V16QI_type_node,
9928 V16QI_type_node, NULL_TREE);
9929 tree int_ftype_int_v4sf_v4sf
9930 = build_function_type_list (integer_type_node,
9931 integer_type_node, V4SF_type_node,
9932 V4SF_type_node, NULL_TREE);
9933 tree v4si_ftype_v4si
9934 = build_function_type_list (V4SI_type_node, V4SI_type_node, NULL_TREE);
9935 tree v8hi_ftype_v8hi
9936 = build_function_type_list (V8HI_type_node, V8HI_type_node, NULL_TREE);
9937 tree v16qi_ftype_v16qi
9938 = build_function_type_list (V16QI_type_node, V16QI_type_node, NULL_TREE);
9939 tree v4sf_ftype_v4sf
9940 = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
8bb418a3 9941 tree void_ftype_pcvoid_int_int
a3170dc6 9942 = build_function_type_list (void_type_node,
0dbc3651 9943 pcvoid_type_node, integer_type_node,
8bb418a3 9944 integer_type_node, NULL_TREE);
8bb418a3 9945
0dbc3651
ZW
9946 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4sf", v4sf_ftype_pcfloat,
9947 ALTIVEC_BUILTIN_LD_INTERNAL_4sf);
9948 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4sf", void_ftype_pfloat_v4sf,
9949 ALTIVEC_BUILTIN_ST_INTERNAL_4sf);
9950 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4si", v4si_ftype_pcint,
9951 ALTIVEC_BUILTIN_LD_INTERNAL_4si);
9952 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4si", void_ftype_pint_v4si,
9953 ALTIVEC_BUILTIN_ST_INTERNAL_4si);
9954 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_8hi", v8hi_ftype_pcshort,
9955 ALTIVEC_BUILTIN_LD_INTERNAL_8hi);
9956 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_8hi", void_ftype_pshort_v8hi,
9957 ALTIVEC_BUILTIN_ST_INTERNAL_8hi);
9958 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_16qi", v16qi_ftype_pcchar,
9959 ALTIVEC_BUILTIN_LD_INTERNAL_16qi);
9960 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_16qi", void_ftype_pchar_v16qi,
9961 ALTIVEC_BUILTIN_ST_INTERNAL_16qi);
a3170dc6
AH
9962 def_builtin (MASK_ALTIVEC, "__builtin_altivec_mtvscr", void_ftype_v4si, ALTIVEC_BUILTIN_MTVSCR);
9963 def_builtin (MASK_ALTIVEC, "__builtin_altivec_mfvscr", v8hi_ftype_void, ALTIVEC_BUILTIN_MFVSCR);
9964 def_builtin (MASK_ALTIVEC, "__builtin_altivec_dssall", void_ftype_void, ALTIVEC_BUILTIN_DSSALL);
e34b6648 9965 def_builtin (MASK_ALTIVEC, "__builtin_altivec_dss", void_ftype_int, ALTIVEC_BUILTIN_DSS);
b4a62fa0
SB
9966 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSL);
9967 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSR);
9968 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEBX);
9969 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEHX);
9970 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEWX);
9971 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvxl", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVXL);
9972 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVX);
9973 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVX);
9974 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvewx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVEWX);
9975 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvxl", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVXL);
9976 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvebx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVEBX);
9977 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvehx", void_ftype_v8hi_long_pvoid, ALTIVEC_BUILTIN_STVEHX);
58646b77
PB
9978 def_builtin (MASK_ALTIVEC, "__builtin_vec_ld", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LD);
9979 def_builtin (MASK_ALTIVEC, "__builtin_vec_lde", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDE);
9980 def_builtin (MASK_ALTIVEC, "__builtin_vec_ldl", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDL);
9981 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSL);
9982 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSR);
9983 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEBX);
9984 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEHX);
9985 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEWX);
9986 def_builtin (MASK_ALTIVEC, "__builtin_vec_st", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_ST);
9987 def_builtin (MASK_ALTIVEC, "__builtin_vec_ste", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STE);
9988 def_builtin (MASK_ALTIVEC, "__builtin_vec_stl", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STL);
9989 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvewx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEWX);
9990 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvebx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEBX);
9991 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvehx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEHX);
9992
0b61703c
AP
9993 if (rs6000_cpu == PROCESSOR_CELL)
9994 {
9995 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLX);
9996 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLXL);
9997 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRX);
9998 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRXL);
9999
10000 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLX);
10001 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLXL);
10002 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRX);
10003 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRXL);
10004
10005 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLX);
10006 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLXL);
10007 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRX);
10008 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRXL);
10009
10010 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLX);
10011 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLXL);
10012 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRX);
10013 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRXL);
10014 }
58646b77 10015 def_builtin (MASK_ALTIVEC, "__builtin_vec_step", int_ftype_opaque, ALTIVEC_BUILTIN_VEC_STEP);
266b4890
AP
10016 def_builtin (MASK_ALTIVEC, "__builtin_vec_splats", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_SPLATS);
10017 def_builtin (MASK_ALTIVEC, "__builtin_vec_promote", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_PROMOTE);
58646b77
PB
10018
10019 def_builtin (MASK_ALTIVEC, "__builtin_vec_sld", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_SLD);
10020 def_builtin (MASK_ALTIVEC, "__builtin_vec_splat", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_SPLAT);
266b4890
AP
10021 def_builtin (MASK_ALTIVEC, "__builtin_vec_extract", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_EXTRACT);
10022 def_builtin (MASK_ALTIVEC, "__builtin_vec_insert", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_INSERT);
58646b77
PB
10023 def_builtin (MASK_ALTIVEC, "__builtin_vec_vspltw", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTW);
10024 def_builtin (MASK_ALTIVEC, "__builtin_vec_vsplth", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTH);
10025 def_builtin (MASK_ALTIVEC, "__builtin_vec_vspltb", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTB);
10026 def_builtin (MASK_ALTIVEC, "__builtin_vec_ctf", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTF);
10027 def_builtin (MASK_ALTIVEC, "__builtin_vec_vcfsx", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFSX);
10028 def_builtin (MASK_ALTIVEC, "__builtin_vec_vcfux", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFUX);
10029 def_builtin (MASK_ALTIVEC, "__builtin_vec_cts", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTS);
10030 def_builtin (MASK_ALTIVEC, "__builtin_vec_ctu", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTU);
8bb418a3 10031
a3170dc6 10032 /* Add the DST variants. */
586de218 10033 d = bdesc_dst;
a3170dc6 10034 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
8bb418a3 10035 def_builtin (d->mask, d->name, void_ftype_pcvoid_int_int, d->code);
a3170dc6
AH
10036
10037 /* Initialize the predicates. */
586de218 10038 dp = bdesc_altivec_preds;
a3170dc6
AH
10039 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++)
10040 {
10041 enum machine_mode mode1;
10042 tree type;
58646b77
PB
10043 bool is_overloaded = dp->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10044 && dp->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
a3170dc6 10045
58646b77
PB
10046 if (is_overloaded)
10047 mode1 = VOIDmode;
10048 else
10049 mode1 = insn_data[dp->icode].operand[1].mode;
a3170dc6
AH
10050
10051 switch (mode1)
10052 {
58646b77
PB
10053 case VOIDmode:
10054 type = int_ftype_int_opaque_opaque;
10055 break;
a3170dc6
AH
10056 case V4SImode:
10057 type = int_ftype_int_v4si_v4si;
10058 break;
10059 case V8HImode:
10060 type = int_ftype_int_v8hi_v8hi;
10061 break;
10062 case V16QImode:
10063 type = int_ftype_int_v16qi_v16qi;
10064 break;
10065 case V4SFmode:
10066 type = int_ftype_int_v4sf_v4sf;
10067 break;
10068 default:
37409796 10069 gcc_unreachable ();
a3170dc6 10070 }
f676971a 10071
a3170dc6
AH
10072 def_builtin (dp->mask, dp->name, type, dp->code);
10073 }
10074
10075 /* Initialize the abs* operators. */
586de218 10076 d = bdesc_abs;
a3170dc6
AH
10077 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
10078 {
10079 enum machine_mode mode0;
10080 tree type;
10081
10082 mode0 = insn_data[d->icode].operand[0].mode;
10083
10084 switch (mode0)
10085 {
10086 case V4SImode:
10087 type = v4si_ftype_v4si;
10088 break;
10089 case V8HImode:
10090 type = v8hi_ftype_v8hi;
10091 break;
10092 case V16QImode:
10093 type = v16qi_ftype_v16qi;
10094 break;
10095 case V4SFmode:
10096 type = v4sf_ftype_v4sf;
10097 break;
10098 default:
37409796 10099 gcc_unreachable ();
a3170dc6 10100 }
f676971a 10101
a3170dc6
AH
10102 def_builtin (d->mask, d->name, type, d->code);
10103 }
7ccf35ed 10104
13c62176
DN
10105 if (TARGET_ALTIVEC)
10106 {
10107 tree decl;
10108
10109 /* Initialize target builtin that implements
10110 targetm.vectorize.builtin_mask_for_load. */
10111
c79efc4d
RÁE
10112 decl = add_builtin_function ("__builtin_altivec_mask_for_load",
10113 v16qi_ftype_long_pcvoid,
10114 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
61210b72
AP
10115 BUILT_IN_MD, NULL, NULL_TREE);
10116 TREE_READONLY (decl) = 1;
13c62176
DN
10117 /* Record the decl. Will be used by rs6000_builtin_mask_for_load. */
10118 altivec_builtin_mask_for_load = decl;
13c62176 10119 }
7a4eca66
DE
10120
10121 /* Access to the vec_init patterns. */
10122 ftype = build_function_type_list (V4SI_type_node, integer_type_node,
10123 integer_type_node, integer_type_node,
10124 integer_type_node, NULL_TREE);
10125 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v4si", ftype,
10126 ALTIVEC_BUILTIN_VEC_INIT_V4SI);
10127
10128 ftype = build_function_type_list (V8HI_type_node, short_integer_type_node,
10129 short_integer_type_node,
10130 short_integer_type_node,
10131 short_integer_type_node,
10132 short_integer_type_node,
10133 short_integer_type_node,
10134 short_integer_type_node,
10135 short_integer_type_node, NULL_TREE);
10136 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v8hi", ftype,
10137 ALTIVEC_BUILTIN_VEC_INIT_V8HI);
10138
10139 ftype = build_function_type_list (V16QI_type_node, char_type_node,
10140 char_type_node, char_type_node,
10141 char_type_node, char_type_node,
10142 char_type_node, char_type_node,
10143 char_type_node, char_type_node,
10144 char_type_node, char_type_node,
10145 char_type_node, char_type_node,
10146 char_type_node, char_type_node,
10147 char_type_node, NULL_TREE);
10148 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v16qi", ftype,
10149 ALTIVEC_BUILTIN_VEC_INIT_V16QI);
10150
10151 ftype = build_function_type_list (V4SF_type_node, float_type_node,
10152 float_type_node, float_type_node,
10153 float_type_node, NULL_TREE);
10154 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v4sf", ftype,
10155 ALTIVEC_BUILTIN_VEC_INIT_V4SF);
10156
10157 /* Access to the vec_set patterns. */
10158 ftype = build_function_type_list (V4SI_type_node, V4SI_type_node,
10159 intSI_type_node,
10160 integer_type_node, NULL_TREE);
10161 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v4si", ftype,
10162 ALTIVEC_BUILTIN_VEC_SET_V4SI);
10163
10164 ftype = build_function_type_list (V8HI_type_node, V8HI_type_node,
10165 intHI_type_node,
10166 integer_type_node, NULL_TREE);
10167 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v8hi", ftype,
10168 ALTIVEC_BUILTIN_VEC_SET_V8HI);
10169
10170 ftype = build_function_type_list (V8HI_type_node, V16QI_type_node,
10171 intQI_type_node,
10172 integer_type_node, NULL_TREE);
10173 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v16qi", ftype,
10174 ALTIVEC_BUILTIN_VEC_SET_V16QI);
10175
10176 ftype = build_function_type_list (V4SF_type_node, V4SF_type_node,
10177 float_type_node,
10178 integer_type_node, NULL_TREE);
10179 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v4sf", ftype,
10180 ALTIVEC_BUILTIN_VEC_SET_V4SF);
10181
10182 /* Access to the vec_extract patterns. */
10183 ftype = build_function_type_list (intSI_type_node, V4SI_type_node,
10184 integer_type_node, NULL_TREE);
10185 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v4si", ftype,
10186 ALTIVEC_BUILTIN_VEC_EXT_V4SI);
10187
10188 ftype = build_function_type_list (intHI_type_node, V8HI_type_node,
10189 integer_type_node, NULL_TREE);
10190 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v8hi", ftype,
10191 ALTIVEC_BUILTIN_VEC_EXT_V8HI);
10192
10193 ftype = build_function_type_list (intQI_type_node, V16QI_type_node,
10194 integer_type_node, NULL_TREE);
10195 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v16qi", ftype,
10196 ALTIVEC_BUILTIN_VEC_EXT_V16QI);
10197
10198 ftype = build_function_type_list (float_type_node, V4SF_type_node,
10199 integer_type_node, NULL_TREE);
10200 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v4sf", ftype,
10201 ALTIVEC_BUILTIN_VEC_EXT_V4SF);
a3170dc6
AH
10202}
10203
10204static void
863d938c 10205rs6000_common_init_builtins (void)
a3170dc6 10206{
586de218 10207 const struct builtin_description *d;
a3170dc6
AH
10208 size_t i;
10209
96038623
DE
10210 tree v2sf_ftype_v2sf_v2sf_v2sf
10211 = build_function_type_list (V2SF_type_node,
10212 V2SF_type_node, V2SF_type_node,
10213 V2SF_type_node, NULL_TREE);
10214
a3170dc6
AH
10215 tree v4sf_ftype_v4sf_v4sf_v16qi
10216 = build_function_type_list (V4SF_type_node,
10217 V4SF_type_node, V4SF_type_node,
10218 V16QI_type_node, NULL_TREE);
10219 tree v4si_ftype_v4si_v4si_v16qi
10220 = build_function_type_list (V4SI_type_node,
10221 V4SI_type_node, V4SI_type_node,
10222 V16QI_type_node, NULL_TREE);
10223 tree v8hi_ftype_v8hi_v8hi_v16qi
10224 = build_function_type_list (V8HI_type_node,
10225 V8HI_type_node, V8HI_type_node,
10226 V16QI_type_node, NULL_TREE);
10227 tree v16qi_ftype_v16qi_v16qi_v16qi
10228 = build_function_type_list (V16QI_type_node,
10229 V16QI_type_node, V16QI_type_node,
10230 V16QI_type_node, NULL_TREE);
b9e4e5d1
ZL
10231 tree v4si_ftype_int
10232 = build_function_type_list (V4SI_type_node, integer_type_node, NULL_TREE);
10233 tree v8hi_ftype_int
10234 = build_function_type_list (V8HI_type_node, integer_type_node, NULL_TREE);
10235 tree v16qi_ftype_int
10236 = build_function_type_list (V16QI_type_node, integer_type_node, NULL_TREE);
a3170dc6
AH
10237 tree v8hi_ftype_v16qi
10238 = build_function_type_list (V8HI_type_node, V16QI_type_node, NULL_TREE);
10239 tree v4sf_ftype_v4sf
10240 = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
10241
10242 tree v2si_ftype_v2si_v2si
2abe3e28
AH
10243 = build_function_type_list (opaque_V2SI_type_node,
10244 opaque_V2SI_type_node,
10245 opaque_V2SI_type_node, NULL_TREE);
a3170dc6 10246
96038623 10247 tree v2sf_ftype_v2sf_v2sf_spe
2abe3e28
AH
10248 = build_function_type_list (opaque_V2SF_type_node,
10249 opaque_V2SF_type_node,
10250 opaque_V2SF_type_node, NULL_TREE);
a3170dc6 10251
96038623
DE
10252 tree v2sf_ftype_v2sf_v2sf
10253 = build_function_type_list (V2SF_type_node,
10254 V2SF_type_node,
10255 V2SF_type_node, NULL_TREE);
10256
10257
a3170dc6 10258 tree v2si_ftype_int_int
2abe3e28 10259 = build_function_type_list (opaque_V2SI_type_node,
a3170dc6
AH
10260 integer_type_node, integer_type_node,
10261 NULL_TREE);
10262
58646b77
PB
10263 tree opaque_ftype_opaque
10264 = build_function_type_list (opaque_V4SI_type_node,
10265 opaque_V4SI_type_node, NULL_TREE);
10266
a3170dc6 10267 tree v2si_ftype_v2si
2abe3e28
AH
10268 = build_function_type_list (opaque_V2SI_type_node,
10269 opaque_V2SI_type_node, NULL_TREE);
a3170dc6 10270
96038623 10271 tree v2sf_ftype_v2sf_spe
2abe3e28
AH
10272 = build_function_type_list (opaque_V2SF_type_node,
10273 opaque_V2SF_type_node, NULL_TREE);
f676971a 10274
96038623
DE
10275 tree v2sf_ftype_v2sf
10276 = build_function_type_list (V2SF_type_node,
10277 V2SF_type_node, NULL_TREE);
10278
a3170dc6 10279 tree v2sf_ftype_v2si
2abe3e28
AH
10280 = build_function_type_list (opaque_V2SF_type_node,
10281 opaque_V2SI_type_node, NULL_TREE);
a3170dc6
AH
10282
10283 tree v2si_ftype_v2sf
2abe3e28
AH
10284 = build_function_type_list (opaque_V2SI_type_node,
10285 opaque_V2SF_type_node, NULL_TREE);
a3170dc6
AH
10286
10287 tree v2si_ftype_v2si_char
2abe3e28
AH
10288 = build_function_type_list (opaque_V2SI_type_node,
10289 opaque_V2SI_type_node,
10290 char_type_node, NULL_TREE);
a3170dc6
AH
10291
10292 tree v2si_ftype_int_char
2abe3e28 10293 = build_function_type_list (opaque_V2SI_type_node,
a3170dc6
AH
10294 integer_type_node, char_type_node, NULL_TREE);
10295
10296 tree v2si_ftype_char
2abe3e28
AH
10297 = build_function_type_list (opaque_V2SI_type_node,
10298 char_type_node, NULL_TREE);
a3170dc6
AH
10299
10300 tree int_ftype_int_int
10301 = build_function_type_list (integer_type_node,
10302 integer_type_node, integer_type_node,
10303 NULL_TREE);
95385cbb 10304
58646b77
PB
10305 tree opaque_ftype_opaque_opaque
10306 = build_function_type_list (opaque_V4SI_type_node,
10307 opaque_V4SI_type_node, opaque_V4SI_type_node, NULL_TREE);
0ac081f6 10308 tree v4si_ftype_v4si_v4si
b4de2f7d
AH
10309 = build_function_type_list (V4SI_type_node,
10310 V4SI_type_node, V4SI_type_node, NULL_TREE);
b9e4e5d1 10311 tree v4sf_ftype_v4si_int
b4de2f7d 10312 = build_function_type_list (V4SF_type_node,
b9e4e5d1
ZL
10313 V4SI_type_node, integer_type_node, NULL_TREE);
10314 tree v4si_ftype_v4sf_int
b4de2f7d 10315 = build_function_type_list (V4SI_type_node,
b9e4e5d1
ZL
10316 V4SF_type_node, integer_type_node, NULL_TREE);
10317 tree v4si_ftype_v4si_int
b4de2f7d 10318 = build_function_type_list (V4SI_type_node,
b9e4e5d1
ZL
10319 V4SI_type_node, integer_type_node, NULL_TREE);
10320 tree v8hi_ftype_v8hi_int
b4de2f7d 10321 = build_function_type_list (V8HI_type_node,
b9e4e5d1
ZL
10322 V8HI_type_node, integer_type_node, NULL_TREE);
10323 tree v16qi_ftype_v16qi_int
b4de2f7d 10324 = build_function_type_list (V16QI_type_node,
b9e4e5d1
ZL
10325 V16QI_type_node, integer_type_node, NULL_TREE);
10326 tree v16qi_ftype_v16qi_v16qi_int
b4de2f7d
AH
10327 = build_function_type_list (V16QI_type_node,
10328 V16QI_type_node, V16QI_type_node,
b9e4e5d1
ZL
10329 integer_type_node, NULL_TREE);
10330 tree v8hi_ftype_v8hi_v8hi_int
b4de2f7d
AH
10331 = build_function_type_list (V8HI_type_node,
10332 V8HI_type_node, V8HI_type_node,
b9e4e5d1
ZL
10333 integer_type_node, NULL_TREE);
10334 tree v4si_ftype_v4si_v4si_int
b4de2f7d
AH
10335 = build_function_type_list (V4SI_type_node,
10336 V4SI_type_node, V4SI_type_node,
b9e4e5d1
ZL
10337 integer_type_node, NULL_TREE);
10338 tree v4sf_ftype_v4sf_v4sf_int
b4de2f7d
AH
10339 = build_function_type_list (V4SF_type_node,
10340 V4SF_type_node, V4SF_type_node,
b9e4e5d1 10341 integer_type_node, NULL_TREE);
0ac081f6 10342 tree v4sf_ftype_v4sf_v4sf
b4de2f7d
AH
10343 = build_function_type_list (V4SF_type_node,
10344 V4SF_type_node, V4SF_type_node, NULL_TREE);
58646b77
PB
10345 tree opaque_ftype_opaque_opaque_opaque
10346 = build_function_type_list (opaque_V4SI_type_node,
10347 opaque_V4SI_type_node, opaque_V4SI_type_node,
10348 opaque_V4SI_type_node, NULL_TREE);
617e0e1d 10349 tree v4sf_ftype_v4sf_v4sf_v4si
b4de2f7d
AH
10350 = build_function_type_list (V4SF_type_node,
10351 V4SF_type_node, V4SF_type_node,
10352 V4SI_type_node, NULL_TREE);
2212663f 10353 tree v4sf_ftype_v4sf_v4sf_v4sf
b4de2f7d
AH
10354 = build_function_type_list (V4SF_type_node,
10355 V4SF_type_node, V4SF_type_node,
10356 V4SF_type_node, NULL_TREE);
f676971a 10357 tree v4si_ftype_v4si_v4si_v4si
b4de2f7d
AH
10358 = build_function_type_list (V4SI_type_node,
10359 V4SI_type_node, V4SI_type_node,
10360 V4SI_type_node, NULL_TREE);
0ac081f6 10361 tree v8hi_ftype_v8hi_v8hi
b4de2f7d
AH
10362 = build_function_type_list (V8HI_type_node,
10363 V8HI_type_node, V8HI_type_node, NULL_TREE);
2212663f 10364 tree v8hi_ftype_v8hi_v8hi_v8hi
b4de2f7d
AH
10365 = build_function_type_list (V8HI_type_node,
10366 V8HI_type_node, V8HI_type_node,
10367 V8HI_type_node, NULL_TREE);
c4ad648e 10368 tree v4si_ftype_v8hi_v8hi_v4si
b4de2f7d
AH
10369 = build_function_type_list (V4SI_type_node,
10370 V8HI_type_node, V8HI_type_node,
10371 V4SI_type_node, NULL_TREE);
c4ad648e 10372 tree v4si_ftype_v16qi_v16qi_v4si
b4de2f7d
AH
10373 = build_function_type_list (V4SI_type_node,
10374 V16QI_type_node, V16QI_type_node,
10375 V4SI_type_node, NULL_TREE);
0ac081f6 10376 tree v16qi_ftype_v16qi_v16qi
b4de2f7d
AH
10377 = build_function_type_list (V16QI_type_node,
10378 V16QI_type_node, V16QI_type_node, NULL_TREE);
0ac081f6 10379 tree v4si_ftype_v4sf_v4sf
b4de2f7d
AH
10380 = build_function_type_list (V4SI_type_node,
10381 V4SF_type_node, V4SF_type_node, NULL_TREE);
0ac081f6 10382 tree v8hi_ftype_v16qi_v16qi
b4de2f7d
AH
10383 = build_function_type_list (V8HI_type_node,
10384 V16QI_type_node, V16QI_type_node, NULL_TREE);
0ac081f6 10385 tree v4si_ftype_v8hi_v8hi
b4de2f7d
AH
10386 = build_function_type_list (V4SI_type_node,
10387 V8HI_type_node, V8HI_type_node, NULL_TREE);
0ac081f6 10388 tree v8hi_ftype_v4si_v4si
b4de2f7d
AH
10389 = build_function_type_list (V8HI_type_node,
10390 V4SI_type_node, V4SI_type_node, NULL_TREE);
0ac081f6 10391 tree v16qi_ftype_v8hi_v8hi
b4de2f7d
AH
10392 = build_function_type_list (V16QI_type_node,
10393 V8HI_type_node, V8HI_type_node, NULL_TREE);
0ac081f6 10394 tree v4si_ftype_v16qi_v4si
b4de2f7d
AH
10395 = build_function_type_list (V4SI_type_node,
10396 V16QI_type_node, V4SI_type_node, NULL_TREE);
fa066a23 10397 tree v4si_ftype_v16qi_v16qi
b4de2f7d
AH
10398 = build_function_type_list (V4SI_type_node,
10399 V16QI_type_node, V16QI_type_node, NULL_TREE);
0ac081f6 10400 tree v4si_ftype_v8hi_v4si
b4de2f7d
AH
10401 = build_function_type_list (V4SI_type_node,
10402 V8HI_type_node, V4SI_type_node, NULL_TREE);
a3170dc6
AH
10403 tree v4si_ftype_v8hi
10404 = build_function_type_list (V4SI_type_node, V8HI_type_node, NULL_TREE);
10405 tree int_ftype_v4si_v4si
10406 = build_function_type_list (integer_type_node,
10407 V4SI_type_node, V4SI_type_node, NULL_TREE);
10408 tree int_ftype_v4sf_v4sf
10409 = build_function_type_list (integer_type_node,
10410 V4SF_type_node, V4SF_type_node, NULL_TREE);
10411 tree int_ftype_v16qi_v16qi
10412 = build_function_type_list (integer_type_node,
10413 V16QI_type_node, V16QI_type_node, NULL_TREE);
0ac081f6 10414 tree int_ftype_v8hi_v8hi
b4de2f7d
AH
10415 = build_function_type_list (integer_type_node,
10416 V8HI_type_node, V8HI_type_node, NULL_TREE);
0ac081f6 10417
6f317ef3 10418 /* Add the simple ternary operators. */
586de218 10419 d = bdesc_3arg;
ca7558fc 10420 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
2212663f 10421 {
2212663f
DB
10422 enum machine_mode mode0, mode1, mode2, mode3;
10423 tree type;
58646b77
PB
10424 bool is_overloaded = d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10425 && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
2212663f 10426
58646b77
PB
10427 if (is_overloaded)
10428 {
10429 mode0 = VOIDmode;
10430 mode1 = VOIDmode;
10431 mode2 = VOIDmode;
10432 mode3 = VOIDmode;
10433 }
10434 else
10435 {
10436 if (d->name == 0 || d->icode == CODE_FOR_nothing)
10437 continue;
f676971a 10438
58646b77
PB
10439 mode0 = insn_data[d->icode].operand[0].mode;
10440 mode1 = insn_data[d->icode].operand[1].mode;
10441 mode2 = insn_data[d->icode].operand[2].mode;
10442 mode3 = insn_data[d->icode].operand[3].mode;
10443 }
bb8df8a6 10444
2212663f
DB
10445 /* When all four are of the same mode. */
10446 if (mode0 == mode1 && mode1 == mode2 && mode2 == mode3)
10447 {
10448 switch (mode0)
10449 {
58646b77
PB
10450 case VOIDmode:
10451 type = opaque_ftype_opaque_opaque_opaque;
10452 break;
617e0e1d
DB
10453 case V4SImode:
10454 type = v4si_ftype_v4si_v4si_v4si;
10455 break;
2212663f
DB
10456 case V4SFmode:
10457 type = v4sf_ftype_v4sf_v4sf_v4sf;
10458 break;
10459 case V8HImode:
10460 type = v8hi_ftype_v8hi_v8hi_v8hi;
f676971a 10461 break;
2212663f
DB
10462 case V16QImode:
10463 type = v16qi_ftype_v16qi_v16qi_v16qi;
f676971a 10464 break;
96038623
DE
10465 case V2SFmode:
10466 type = v2sf_ftype_v2sf_v2sf_v2sf;
10467 break;
2212663f 10468 default:
37409796 10469 gcc_unreachable ();
2212663f
DB
10470 }
10471 }
10472 else if (mode0 == mode1 && mode1 == mode2 && mode3 == V16QImode)
c4ad648e 10473 {
2212663f
DB
10474 switch (mode0)
10475 {
10476 case V4SImode:
10477 type = v4si_ftype_v4si_v4si_v16qi;
10478 break;
10479 case V4SFmode:
10480 type = v4sf_ftype_v4sf_v4sf_v16qi;
10481 break;
10482 case V8HImode:
10483 type = v8hi_ftype_v8hi_v8hi_v16qi;
f676971a 10484 break;
2212663f
DB
10485 case V16QImode:
10486 type = v16qi_ftype_v16qi_v16qi_v16qi;
f676971a 10487 break;
2212663f 10488 default:
37409796 10489 gcc_unreachable ();
2212663f
DB
10490 }
10491 }
f676971a 10492 else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V16QImode
2212663f 10493 && mode3 == V4SImode)
24408032 10494 type = v4si_ftype_v16qi_v16qi_v4si;
f676971a 10495 else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V8HImode
2212663f 10496 && mode3 == V4SImode)
24408032 10497 type = v4si_ftype_v8hi_v8hi_v4si;
f676971a 10498 else if (mode0 == V4SFmode && mode1 == V4SFmode && mode2 == V4SFmode
617e0e1d 10499 && mode3 == V4SImode)
24408032
AH
10500 type = v4sf_ftype_v4sf_v4sf_v4si;
10501
a7b376ee 10502 /* vchar, vchar, vchar, 4-bit literal. */
24408032
AH
10503 else if (mode0 == V16QImode && mode1 == mode0 && mode2 == mode0
10504 && mode3 == QImode)
b9e4e5d1 10505 type = v16qi_ftype_v16qi_v16qi_int;
24408032 10506
a7b376ee 10507 /* vshort, vshort, vshort, 4-bit literal. */
24408032
AH
10508 else if (mode0 == V8HImode && mode1 == mode0 && mode2 == mode0
10509 && mode3 == QImode)
b9e4e5d1 10510 type = v8hi_ftype_v8hi_v8hi_int;
24408032 10511
a7b376ee 10512 /* vint, vint, vint, 4-bit literal. */
24408032
AH
10513 else if (mode0 == V4SImode && mode1 == mode0 && mode2 == mode0
10514 && mode3 == QImode)
b9e4e5d1 10515 type = v4si_ftype_v4si_v4si_int;
24408032 10516
a7b376ee 10517 /* vfloat, vfloat, vfloat, 4-bit literal. */
24408032
AH
10518 else if (mode0 == V4SFmode && mode1 == mode0 && mode2 == mode0
10519 && mode3 == QImode)
b9e4e5d1 10520 type = v4sf_ftype_v4sf_v4sf_int;
24408032 10521
2212663f 10522 else
37409796 10523 gcc_unreachable ();
2212663f
DB
10524
10525 def_builtin (d->mask, d->name, type, d->code);
10526 }
10527
0ac081f6 10528 /* Add the simple binary operators. */
00b960c7 10529 d = (struct builtin_description *) bdesc_2arg;
ca7558fc 10530 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
0ac081f6
AH
10531 {
10532 enum machine_mode mode0, mode1, mode2;
10533 tree type;
58646b77
PB
10534 bool is_overloaded = d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10535 && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
0ac081f6 10536
58646b77
PB
10537 if (is_overloaded)
10538 {
10539 mode0 = VOIDmode;
10540 mode1 = VOIDmode;
10541 mode2 = VOIDmode;
10542 }
10543 else
bb8df8a6 10544 {
58646b77
PB
10545 if (d->name == 0 || d->icode == CODE_FOR_nothing)
10546 continue;
f676971a 10547
58646b77
PB
10548 mode0 = insn_data[d->icode].operand[0].mode;
10549 mode1 = insn_data[d->icode].operand[1].mode;
10550 mode2 = insn_data[d->icode].operand[2].mode;
10551 }
0ac081f6
AH
10552
10553 /* When all three operands are of the same mode. */
10554 if (mode0 == mode1 && mode1 == mode2)
10555 {
10556 switch (mode0)
10557 {
58646b77
PB
10558 case VOIDmode:
10559 type = opaque_ftype_opaque_opaque;
10560 break;
0ac081f6
AH
10561 case V4SFmode:
10562 type = v4sf_ftype_v4sf_v4sf;
10563 break;
10564 case V4SImode:
10565 type = v4si_ftype_v4si_v4si;
10566 break;
10567 case V16QImode:
10568 type = v16qi_ftype_v16qi_v16qi;
10569 break;
10570 case V8HImode:
10571 type = v8hi_ftype_v8hi_v8hi;
10572 break;
a3170dc6
AH
10573 case V2SImode:
10574 type = v2si_ftype_v2si_v2si;
10575 break;
96038623
DE
10576 case V2SFmode:
10577 if (TARGET_PAIRED_FLOAT)
10578 type = v2sf_ftype_v2sf_v2sf;
10579 else
10580 type = v2sf_ftype_v2sf_v2sf_spe;
a3170dc6
AH
10581 break;
10582 case SImode:
10583 type = int_ftype_int_int;
10584 break;
0ac081f6 10585 default:
37409796 10586 gcc_unreachable ();
0ac081f6
AH
10587 }
10588 }
10589
10590 /* A few other combos we really don't want to do manually. */
10591
10592 /* vint, vfloat, vfloat. */
10593 else if (mode0 == V4SImode && mode1 == V4SFmode && mode2 == V4SFmode)
10594 type = v4si_ftype_v4sf_v4sf;
10595
10596 /* vshort, vchar, vchar. */
10597 else if (mode0 == V8HImode && mode1 == V16QImode && mode2 == V16QImode)
10598 type = v8hi_ftype_v16qi_v16qi;
10599
10600 /* vint, vshort, vshort. */
10601 else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V8HImode)
10602 type = v4si_ftype_v8hi_v8hi;
10603
10604 /* vshort, vint, vint. */
10605 else if (mode0 == V8HImode && mode1 == V4SImode && mode2 == V4SImode)
10606 type = v8hi_ftype_v4si_v4si;
10607
10608 /* vchar, vshort, vshort. */
10609 else if (mode0 == V16QImode && mode1 == V8HImode && mode2 == V8HImode)
10610 type = v16qi_ftype_v8hi_v8hi;
10611
10612 /* vint, vchar, vint. */
10613 else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V4SImode)
10614 type = v4si_ftype_v16qi_v4si;
10615
fa066a23
AH
10616 /* vint, vchar, vchar. */
10617 else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V16QImode)
10618 type = v4si_ftype_v16qi_v16qi;
10619
0ac081f6
AH
10620 /* vint, vshort, vint. */
10621 else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V4SImode)
10622 type = v4si_ftype_v8hi_v4si;
f676971a 10623
a7b376ee 10624 /* vint, vint, 5-bit literal. */
2212663f 10625 else if (mode0 == V4SImode && mode1 == V4SImode && mode2 == QImode)
b9e4e5d1 10626 type = v4si_ftype_v4si_int;
f676971a 10627
a7b376ee 10628 /* vshort, vshort, 5-bit literal. */
2212663f 10629 else if (mode0 == V8HImode && mode1 == V8HImode && mode2 == QImode)
b9e4e5d1 10630 type = v8hi_ftype_v8hi_int;
f676971a 10631
a7b376ee 10632 /* vchar, vchar, 5-bit literal. */
2212663f 10633 else if (mode0 == V16QImode && mode1 == V16QImode && mode2 == QImode)
b9e4e5d1 10634 type = v16qi_ftype_v16qi_int;
0ac081f6 10635
a7b376ee 10636 /* vfloat, vint, 5-bit literal. */
617e0e1d 10637 else if (mode0 == V4SFmode && mode1 == V4SImode && mode2 == QImode)
b9e4e5d1 10638 type = v4sf_ftype_v4si_int;
f676971a 10639
a7b376ee 10640 /* vint, vfloat, 5-bit literal. */
617e0e1d 10641 else if (mode0 == V4SImode && mode1 == V4SFmode && mode2 == QImode)
b9e4e5d1 10642 type = v4si_ftype_v4sf_int;
617e0e1d 10643
a3170dc6
AH
10644 else if (mode0 == V2SImode && mode1 == SImode && mode2 == SImode)
10645 type = v2si_ftype_int_int;
10646
10647 else if (mode0 == V2SImode && mode1 == V2SImode && mode2 == QImode)
10648 type = v2si_ftype_v2si_char;
10649
10650 else if (mode0 == V2SImode && mode1 == SImode && mode2 == QImode)
10651 type = v2si_ftype_int_char;
10652
37409796 10653 else
0ac081f6 10654 {
37409796
NS
10655 /* int, x, x. */
10656 gcc_assert (mode0 == SImode);
0ac081f6
AH
10657 switch (mode1)
10658 {
10659 case V4SImode:
10660 type = int_ftype_v4si_v4si;
10661 break;
10662 case V4SFmode:
10663 type = int_ftype_v4sf_v4sf;
10664 break;
10665 case V16QImode:
10666 type = int_ftype_v16qi_v16qi;
10667 break;
10668 case V8HImode:
10669 type = int_ftype_v8hi_v8hi;
10670 break;
10671 default:
37409796 10672 gcc_unreachable ();
0ac081f6
AH
10673 }
10674 }
10675
2212663f
DB
10676 def_builtin (d->mask, d->name, type, d->code);
10677 }
24408032 10678
2212663f
DB
10679 /* Add the simple unary operators. */
10680 d = (struct builtin_description *) bdesc_1arg;
ca7558fc 10681 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
2212663f
DB
10682 {
10683 enum machine_mode mode0, mode1;
10684 tree type;
58646b77
PB
10685 bool is_overloaded = d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10686 && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
10687
10688 if (is_overloaded)
10689 {
10690 mode0 = VOIDmode;
10691 mode1 = VOIDmode;
10692 }
10693 else
10694 {
10695 if (d->name == 0 || d->icode == CODE_FOR_nothing)
10696 continue;
bb8df8a6 10697
58646b77
PB
10698 mode0 = insn_data[d->icode].operand[0].mode;
10699 mode1 = insn_data[d->icode].operand[1].mode;
10700 }
2212663f
DB
10701
10702 if (mode0 == V4SImode && mode1 == QImode)
c4ad648e 10703 type = v4si_ftype_int;
2212663f 10704 else if (mode0 == V8HImode && mode1 == QImode)
c4ad648e 10705 type = v8hi_ftype_int;
2212663f 10706 else if (mode0 == V16QImode && mode1 == QImode)
c4ad648e 10707 type = v16qi_ftype_int;
58646b77
PB
10708 else if (mode0 == VOIDmode && mode1 == VOIDmode)
10709 type = opaque_ftype_opaque;
617e0e1d
DB
10710 else if (mode0 == V4SFmode && mode1 == V4SFmode)
10711 type = v4sf_ftype_v4sf;
20e26713
AH
10712 else if (mode0 == V8HImode && mode1 == V16QImode)
10713 type = v8hi_ftype_v16qi;
10714 else if (mode0 == V4SImode && mode1 == V8HImode)
10715 type = v4si_ftype_v8hi;
a3170dc6
AH
10716 else if (mode0 == V2SImode && mode1 == V2SImode)
10717 type = v2si_ftype_v2si;
10718 else if (mode0 == V2SFmode && mode1 == V2SFmode)
96038623
DE
10719 {
10720 if (TARGET_PAIRED_FLOAT)
10721 type = v2sf_ftype_v2sf;
10722 else
10723 type = v2sf_ftype_v2sf_spe;
10724 }
a3170dc6
AH
10725 else if (mode0 == V2SFmode && mode1 == V2SImode)
10726 type = v2sf_ftype_v2si;
10727 else if (mode0 == V2SImode && mode1 == V2SFmode)
10728 type = v2si_ftype_v2sf;
10729 else if (mode0 == V2SImode && mode1 == QImode)
10730 type = v2si_ftype_char;
2212663f 10731 else
37409796 10732 gcc_unreachable ();
2212663f 10733
0ac081f6
AH
10734 def_builtin (d->mask, d->name, type, d->code);
10735 }
10736}
10737
c15c90bb
ZW
10738static void
10739rs6000_init_libfuncs (void)
10740{
602ea4d3
JJ
10741 if (DEFAULT_ABI != ABI_V4 && TARGET_XCOFF
10742 && !TARGET_POWER2 && !TARGET_POWERPC)
c15c90bb 10743 {
602ea4d3
JJ
10744 /* AIX library routines for float->int conversion. */
10745 set_conv_libfunc (sfix_optab, SImode, DFmode, "__itrunc");
10746 set_conv_libfunc (ufix_optab, SImode, DFmode, "__uitrunc");
10747 set_conv_libfunc (sfix_optab, SImode, TFmode, "_qitrunc");
10748 set_conv_libfunc (ufix_optab, SImode, TFmode, "_quitrunc");
10749 }
c15c90bb 10750
602ea4d3 10751 if (!TARGET_IEEEQUAD)
98c41d98 10752 /* AIX/Darwin/64-bit Linux quad floating point routines. */
602ea4d3
JJ
10753 if (!TARGET_XL_COMPAT)
10754 {
10755 set_optab_libfunc (add_optab, TFmode, "__gcc_qadd");
10756 set_optab_libfunc (sub_optab, TFmode, "__gcc_qsub");
10757 set_optab_libfunc (smul_optab, TFmode, "__gcc_qmul");
10758 set_optab_libfunc (sdiv_optab, TFmode, "__gcc_qdiv");
d0768f19 10759
17caeff2 10760 if (!(TARGET_HARD_FLOAT && (TARGET_FPRS || TARGET_E500_DOUBLE)))
d0768f19
DE
10761 {
10762 set_optab_libfunc (neg_optab, TFmode, "__gcc_qneg");
10763 set_optab_libfunc (eq_optab, TFmode, "__gcc_qeq");
10764 set_optab_libfunc (ne_optab, TFmode, "__gcc_qne");
10765 set_optab_libfunc (gt_optab, TFmode, "__gcc_qgt");
10766 set_optab_libfunc (ge_optab, TFmode, "__gcc_qge");
10767 set_optab_libfunc (lt_optab, TFmode, "__gcc_qlt");
10768 set_optab_libfunc (le_optab, TFmode, "__gcc_qle");
d0768f19
DE
10769
10770 set_conv_libfunc (sext_optab, TFmode, SFmode, "__gcc_stoq");
10771 set_conv_libfunc (sext_optab, TFmode, DFmode, "__gcc_dtoq");
10772 set_conv_libfunc (trunc_optab, SFmode, TFmode, "__gcc_qtos");
10773 set_conv_libfunc (trunc_optab, DFmode, TFmode, "__gcc_qtod");
10774 set_conv_libfunc (sfix_optab, SImode, TFmode, "__gcc_qtoi");
10775 set_conv_libfunc (ufix_optab, SImode, TFmode, "__gcc_qtou");
10776 set_conv_libfunc (sfloat_optab, TFmode, SImode, "__gcc_itoq");
10777 set_conv_libfunc (ufloat_optab, TFmode, SImode, "__gcc_utoq");
10778 }
b26941b4
JM
10779
10780 if (!(TARGET_HARD_FLOAT && TARGET_FPRS))
10781 set_optab_libfunc (unord_optab, TFmode, "__gcc_qunord");
602ea4d3
JJ
10782 }
10783 else
10784 {
10785 set_optab_libfunc (add_optab, TFmode, "_xlqadd");
10786 set_optab_libfunc (sub_optab, TFmode, "_xlqsub");
10787 set_optab_libfunc (smul_optab, TFmode, "_xlqmul");
10788 set_optab_libfunc (sdiv_optab, TFmode, "_xlqdiv");
10789 }
c9034561 10790 else
c15c90bb 10791 {
c9034561 10792 /* 32-bit SVR4 quad floating point routines. */
c15c90bb
ZW
10793
10794 set_optab_libfunc (add_optab, TFmode, "_q_add");
10795 set_optab_libfunc (sub_optab, TFmode, "_q_sub");
10796 set_optab_libfunc (neg_optab, TFmode, "_q_neg");
10797 set_optab_libfunc (smul_optab, TFmode, "_q_mul");
10798 set_optab_libfunc (sdiv_optab, TFmode, "_q_div");
10799 if (TARGET_PPC_GPOPT || TARGET_POWER2)
10800 set_optab_libfunc (sqrt_optab, TFmode, "_q_sqrt");
10801
c9034561
ZW
10802 set_optab_libfunc (eq_optab, TFmode, "_q_feq");
10803 set_optab_libfunc (ne_optab, TFmode, "_q_fne");
10804 set_optab_libfunc (gt_optab, TFmode, "_q_fgt");
10805 set_optab_libfunc (ge_optab, TFmode, "_q_fge");
10806 set_optab_libfunc (lt_optab, TFmode, "_q_flt");
10807 set_optab_libfunc (le_optab, TFmode, "_q_fle");
10808
85363ca0
ZW
10809 set_conv_libfunc (sext_optab, TFmode, SFmode, "_q_stoq");
10810 set_conv_libfunc (sext_optab, TFmode, DFmode, "_q_dtoq");
10811 set_conv_libfunc (trunc_optab, SFmode, TFmode, "_q_qtos");
10812 set_conv_libfunc (trunc_optab, DFmode, TFmode, "_q_qtod");
10813 set_conv_libfunc (sfix_optab, SImode, TFmode, "_q_qtoi");
10814 set_conv_libfunc (ufix_optab, SImode, TFmode, "_q_qtou");
10815 set_conv_libfunc (sfloat_optab, TFmode, SImode, "_q_itoq");
57904aa7 10816 set_conv_libfunc (ufloat_optab, TFmode, SImode, "_q_utoq");
c15c90bb
ZW
10817 }
10818}
fba73eb1
DE
10819
10820\f
10821/* Expand a block clear operation, and return 1 if successful. Return 0
10822 if we should let the compiler generate normal code.
10823
10824 operands[0] is the destination
10825 operands[1] is the length
57e84f18 10826 operands[3] is the alignment */
fba73eb1
DE
10827
10828int
10829expand_block_clear (rtx operands[])
10830{
10831 rtx orig_dest = operands[0];
10832 rtx bytes_rtx = operands[1];
57e84f18 10833 rtx align_rtx = operands[3];
5514620a
GK
10834 bool constp = (GET_CODE (bytes_rtx) == CONST_INT);
10835 HOST_WIDE_INT align;
10836 HOST_WIDE_INT bytes;
fba73eb1
DE
10837 int offset;
10838 int clear_bytes;
5514620a 10839 int clear_step;
fba73eb1
DE
10840
10841 /* If this is not a fixed size move, just call memcpy */
10842 if (! constp)
10843 return 0;
10844
37409796
NS
10845 /* This must be a fixed size alignment */
10846 gcc_assert (GET_CODE (align_rtx) == CONST_INT);
fba73eb1
DE
10847 align = INTVAL (align_rtx) * BITS_PER_UNIT;
10848
10849 /* Anything to clear? */
10850 bytes = INTVAL (bytes_rtx);
10851 if (bytes <= 0)
10852 return 1;
10853
5514620a
GK
10854 /* Use the builtin memset after a point, to avoid huge code bloat.
10855 When optimize_size, avoid any significant code bloat; calling
10856 memset is about 4 instructions, so allow for one instruction to
10857 load zero and three to do clearing. */
10858 if (TARGET_ALTIVEC && align >= 128)
10859 clear_step = 16;
10860 else if (TARGET_POWERPC64 && align >= 32)
10861 clear_step = 8;
21d818ff
NF
10862 else if (TARGET_SPE && align >= 64)
10863 clear_step = 8;
5514620a
GK
10864 else
10865 clear_step = 4;
fba73eb1 10866
5514620a
GK
10867 if (optimize_size && bytes > 3 * clear_step)
10868 return 0;
10869 if (! optimize_size && bytes > 8 * clear_step)
fba73eb1
DE
10870 return 0;
10871
10872 for (offset = 0; bytes > 0; offset += clear_bytes, bytes -= clear_bytes)
10873 {
fba73eb1
DE
10874 enum machine_mode mode = BLKmode;
10875 rtx dest;
f676971a 10876
5514620a
GK
10877 if (bytes >= 16 && TARGET_ALTIVEC && align >= 128)
10878 {
10879 clear_bytes = 16;
10880 mode = V4SImode;
10881 }
21d818ff
NF
10882 else if (bytes >= 8 && TARGET_SPE && align >= 64)
10883 {
10884 clear_bytes = 8;
10885 mode = V2SImode;
10886 }
5514620a 10887 else if (bytes >= 8 && TARGET_POWERPC64
21d818ff
NF
10888 /* 64-bit loads and stores require word-aligned
10889 displacements. */
10890 && (align >= 64 || (!STRICT_ALIGNMENT && align >= 32)))
fba73eb1
DE
10891 {
10892 clear_bytes = 8;
10893 mode = DImode;
fba73eb1 10894 }
5514620a 10895 else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
fba73eb1
DE
10896 { /* move 4 bytes */
10897 clear_bytes = 4;
10898 mode = SImode;
fba73eb1 10899 }
ec53fc93 10900 else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
fba73eb1
DE
10901 { /* move 2 bytes */
10902 clear_bytes = 2;
10903 mode = HImode;
fba73eb1
DE
10904 }
10905 else /* move 1 byte at a time */
10906 {
10907 clear_bytes = 1;
10908 mode = QImode;
fba73eb1 10909 }
f676971a 10910
fba73eb1 10911 dest = adjust_address (orig_dest, mode, offset);
f676971a 10912
5514620a 10913 emit_move_insn (dest, CONST0_RTX (mode));
fba73eb1
DE
10914 }
10915
10916 return 1;
10917}
10918
35aff10b 10919\f
7e69e155
MM
10920/* Expand a block move operation, and return 1 if successful. Return 0
10921 if we should let the compiler generate normal code.
10922
10923 operands[0] is the destination
10924 operands[1] is the source
10925 operands[2] is the length
10926 operands[3] is the alignment */
10927
3933e0e1
MM
10928#define MAX_MOVE_REG 4
10929
7e69e155 10930int
a2369ed3 10931expand_block_move (rtx operands[])
7e69e155 10932{
b6c9286a
MM
10933 rtx orig_dest = operands[0];
10934 rtx orig_src = operands[1];
7e69e155 10935 rtx bytes_rtx = operands[2];
7e69e155 10936 rtx align_rtx = operands[3];
3933e0e1 10937 int constp = (GET_CODE (bytes_rtx) == CONST_INT);
5ee95df6 10938 int align;
3933e0e1
MM
10939 int bytes;
10940 int offset;
7e69e155 10941 int move_bytes;
cabfd258
GK
10942 rtx stores[MAX_MOVE_REG];
10943 int num_reg = 0;
7e69e155 10944
3933e0e1 10945 /* If this is not a fixed size move, just call memcpy */
cc0d9ba8 10946 if (! constp)
3933e0e1
MM
10947 return 0;
10948
37409796
NS
10949 /* This must be a fixed size alignment */
10950 gcc_assert (GET_CODE (align_rtx) == CONST_INT);
fba73eb1 10951 align = INTVAL (align_rtx) * BITS_PER_UNIT;
5ee95df6 10952
7e69e155 10953 /* Anything to move? */
3933e0e1
MM
10954 bytes = INTVAL (bytes_rtx);
10955 if (bytes <= 0)
7e69e155
MM
10956 return 1;
10957
ea9982a8 10958 /* store_one_arg depends on expand_block_move to handle at least the size of
f676971a 10959 reg_parm_stack_space. */
ea9982a8 10960 if (bytes > (TARGET_POWERPC64 ? 64 : 32))
7e69e155
MM
10961 return 0;
10962
cabfd258 10963 for (offset = 0; bytes > 0; offset += move_bytes, bytes -= move_bytes)
7e69e155 10964 {
cabfd258 10965 union {
70128ad9 10966 rtx (*movmemsi) (rtx, rtx, rtx, rtx);
a2369ed3 10967 rtx (*mov) (rtx, rtx);
cabfd258
GK
10968 } gen_func;
10969 enum machine_mode mode = BLKmode;
10970 rtx src, dest;
f676971a 10971
5514620a
GK
10972 /* Altivec first, since it will be faster than a string move
10973 when it applies, and usually not significantly larger. */
10974 if (TARGET_ALTIVEC && bytes >= 16 && align >= 128)
10975 {
10976 move_bytes = 16;
10977 mode = V4SImode;
10978 gen_func.mov = gen_movv4si;
10979 }
21d818ff
NF
10980 else if (TARGET_SPE && bytes >= 8 && align >= 64)
10981 {
10982 move_bytes = 8;
10983 mode = V2SImode;
10984 gen_func.mov = gen_movv2si;
10985 }
5514620a 10986 else if (TARGET_STRING
cabfd258
GK
10987 && bytes > 24 /* move up to 32 bytes at a time */
10988 && ! fixed_regs[5]
10989 && ! fixed_regs[6]
10990 && ! fixed_regs[7]
10991 && ! fixed_regs[8]
10992 && ! fixed_regs[9]
10993 && ! fixed_regs[10]
10994 && ! fixed_regs[11]
10995 && ! fixed_regs[12])
7e69e155 10996 {
cabfd258 10997 move_bytes = (bytes > 32) ? 32 : bytes;
70128ad9 10998 gen_func.movmemsi = gen_movmemsi_8reg;
cabfd258
GK
10999 }
11000 else if (TARGET_STRING
11001 && bytes > 16 /* move up to 24 bytes at a time */
11002 && ! fixed_regs[5]
11003 && ! fixed_regs[6]
11004 && ! fixed_regs[7]
11005 && ! fixed_regs[8]
11006 && ! fixed_regs[9]
11007 && ! fixed_regs[10])
11008 {
11009 move_bytes = (bytes > 24) ? 24 : bytes;
70128ad9 11010 gen_func.movmemsi = gen_movmemsi_6reg;
cabfd258
GK
11011 }
11012 else if (TARGET_STRING
11013 && bytes > 8 /* move up to 16 bytes at a time */
11014 && ! fixed_regs[5]
11015 && ! fixed_regs[6]
11016 && ! fixed_regs[7]
11017 && ! fixed_regs[8])
11018 {
11019 move_bytes = (bytes > 16) ? 16 : bytes;
70128ad9 11020 gen_func.movmemsi = gen_movmemsi_4reg;
cabfd258
GK
11021 }
11022 else if (bytes >= 8 && TARGET_POWERPC64
11023 /* 64-bit loads and stores require word-aligned
11024 displacements. */
fba73eb1 11025 && (align >= 64 || (!STRICT_ALIGNMENT && align >= 32)))
cabfd258
GK
11026 {
11027 move_bytes = 8;
11028 mode = DImode;
11029 gen_func.mov = gen_movdi;
11030 }
11031 else if (TARGET_STRING && bytes > 4 && !TARGET_POWERPC64)
11032 { /* move up to 8 bytes at a time */
11033 move_bytes = (bytes > 8) ? 8 : bytes;
70128ad9 11034 gen_func.movmemsi = gen_movmemsi_2reg;
cabfd258 11035 }
cd7d9ca4 11036 else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
cabfd258
GK
11037 { /* move 4 bytes */
11038 move_bytes = 4;
11039 mode = SImode;
11040 gen_func.mov = gen_movsi;
11041 }
ec53fc93 11042 else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
cabfd258
GK
11043 { /* move 2 bytes */
11044 move_bytes = 2;
11045 mode = HImode;
11046 gen_func.mov = gen_movhi;
11047 }
11048 else if (TARGET_STRING && bytes > 1)
11049 { /* move up to 4 bytes at a time */
11050 move_bytes = (bytes > 4) ? 4 : bytes;
70128ad9 11051 gen_func.movmemsi = gen_movmemsi_1reg;
cabfd258
GK
11052 }
11053 else /* move 1 byte at a time */
11054 {
11055 move_bytes = 1;
11056 mode = QImode;
11057 gen_func.mov = gen_movqi;
11058 }
f676971a 11059
cabfd258
GK
11060 src = adjust_address (orig_src, mode, offset);
11061 dest = adjust_address (orig_dest, mode, offset);
f676971a
EC
11062
11063 if (mode != BLKmode)
cabfd258
GK
11064 {
11065 rtx tmp_reg = gen_reg_rtx (mode);
f676971a 11066
cabfd258
GK
11067 emit_insn ((*gen_func.mov) (tmp_reg, src));
11068 stores[num_reg++] = (*gen_func.mov) (dest, tmp_reg);
4c64a852 11069 }
3933e0e1 11070
cabfd258
GK
11071 if (mode == BLKmode || num_reg >= MAX_MOVE_REG || bytes == move_bytes)
11072 {
11073 int i;
11074 for (i = 0; i < num_reg; i++)
11075 emit_insn (stores[i]);
11076 num_reg = 0;
11077 }
35aff10b 11078
cabfd258 11079 if (mode == BLKmode)
7e69e155 11080 {
70128ad9 11081 /* Move the address into scratch registers. The movmemsi
cabfd258
GK
11082 patterns require zero offset. */
11083 if (!REG_P (XEXP (src, 0)))
b6c9286a 11084 {
cabfd258
GK
11085 rtx src_reg = copy_addr_to_reg (XEXP (src, 0));
11086 src = replace_equiv_address (src, src_reg);
b6c9286a 11087 }
cabfd258 11088 set_mem_size (src, GEN_INT (move_bytes));
f676971a 11089
cabfd258 11090 if (!REG_P (XEXP (dest, 0)))
3933e0e1 11091 {
cabfd258
GK
11092 rtx dest_reg = copy_addr_to_reg (XEXP (dest, 0));
11093 dest = replace_equiv_address (dest, dest_reg);
7e69e155 11094 }
cabfd258 11095 set_mem_size (dest, GEN_INT (move_bytes));
f676971a 11096
70128ad9 11097 emit_insn ((*gen_func.movmemsi) (dest, src,
cabfd258
GK
11098 GEN_INT (move_bytes & 31),
11099 align_rtx));
7e69e155 11100 }
7e69e155
MM
11101 }
11102
11103 return 1;
11104}
11105
d62294f5 11106\f
9caa3eb2
DE
11107/* Return a string to perform a load_multiple operation.
11108 operands[0] is the vector.
11109 operands[1] is the source address.
11110 operands[2] is the first destination register. */
11111
11112const char *
a2369ed3 11113rs6000_output_load_multiple (rtx operands[3])
9caa3eb2
DE
11114{
11115 /* We have to handle the case where the pseudo used to contain the address
11116 is assigned to one of the output registers. */
11117 int i, j;
11118 int words = XVECLEN (operands[0], 0);
11119 rtx xop[10];
11120
11121 if (XVECLEN (operands[0], 0) == 1)
11122 return "{l|lwz} %2,0(%1)";
11123
11124 for (i = 0; i < words; i++)
11125 if (refers_to_regno_p (REGNO (operands[2]) + i,
11126 REGNO (operands[2]) + i + 1, operands[1], 0))
11127 {
11128 if (i == words-1)
11129 {
11130 xop[0] = GEN_INT (4 * (words-1));
11131 xop[1] = operands[1];
11132 xop[2] = operands[2];
11133 output_asm_insn ("{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,%0(%1)", xop);
11134 return "";
11135 }
11136 else if (i == 0)
11137 {
11138 xop[0] = GEN_INT (4 * (words-1));
11139 xop[1] = operands[1];
11140 xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
11141 output_asm_insn ("{cal %1,4(%1)|addi %1,%1,4}\n\t{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,-4(%1)", xop);
11142 return "";
11143 }
11144 else
11145 {
11146 for (j = 0; j < words; j++)
11147 if (j != i)
11148 {
11149 xop[0] = GEN_INT (j * 4);
11150 xop[1] = operands[1];
11151 xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + j);
11152 output_asm_insn ("{l|lwz} %2,%0(%1)", xop);
11153 }
11154 xop[0] = GEN_INT (i * 4);
11155 xop[1] = operands[1];
11156 output_asm_insn ("{l|lwz} %1,%0(%1)", xop);
11157 return "";
11158 }
11159 }
11160
11161 return "{lsi|lswi} %2,%1,%N0";
11162}
11163
9878760c 11164\f
a4f6c312
SS
11165/* A validation routine: say whether CODE, a condition code, and MODE
11166 match. The other alternatives either don't make sense or should
11167 never be generated. */
39a10a29 11168
48d72335 11169void
a2369ed3 11170validate_condition_mode (enum rtx_code code, enum machine_mode mode)
39a10a29 11171{
37409796
NS
11172 gcc_assert ((GET_RTX_CLASS (code) == RTX_COMPARE
11173 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
11174 && GET_MODE_CLASS (mode) == MODE_CC);
39a10a29
GK
11175
11176 /* These don't make sense. */
37409796
NS
11177 gcc_assert ((code != GT && code != LT && code != GE && code != LE)
11178 || mode != CCUNSmode);
39a10a29 11179
37409796
NS
11180 gcc_assert ((code != GTU && code != LTU && code != GEU && code != LEU)
11181 || mode == CCUNSmode);
39a10a29 11182
37409796
NS
11183 gcc_assert (mode == CCFPmode
11184 || (code != ORDERED && code != UNORDERED
11185 && code != UNEQ && code != LTGT
11186 && code != UNGT && code != UNLT
11187 && code != UNGE && code != UNLE));
f676971a
EC
11188
11189 /* These should never be generated except for
bc9ec0e0 11190 flag_finite_math_only. */
37409796
NS
11191 gcc_assert (mode != CCFPmode
11192 || flag_finite_math_only
11193 || (code != LE && code != GE
11194 && code != UNEQ && code != LTGT
11195 && code != UNGT && code != UNLT));
39a10a29
GK
11196
11197 /* These are invalid; the information is not there. */
37409796 11198 gcc_assert (mode != CCEQmode || code == EQ || code == NE);
39a10a29
GK
11199}
11200
9878760c
RK
11201\f
11202/* Return 1 if ANDOP is a mask that has no bits on that are not in the
11203 mask required to convert the result of a rotate insn into a shift
b1765bde 11204 left insn of SHIFTOP bits. Both are known to be SImode CONST_INT. */
9878760c
RK
11205
11206int
a2369ed3 11207includes_lshift_p (rtx shiftop, rtx andop)
9878760c 11208{
e2c953b6
DE
11209 unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0;
11210
11211 shift_mask <<= INTVAL (shiftop);
9878760c 11212
b1765bde 11213 return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0;
9878760c
RK
11214}
11215
11216/* Similar, but for right shift. */
11217
11218int
a2369ed3 11219includes_rshift_p (rtx shiftop, rtx andop)
9878760c 11220{
a7653a2c 11221 unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0;
9878760c
RK
11222
11223 shift_mask >>= INTVAL (shiftop);
11224
b1765bde 11225 return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0;
e2c953b6
DE
11226}
11227
c5059423
AM
11228/* Return 1 if ANDOP is a mask suitable for use with an rldic insn
11229 to perform a left shift. It must have exactly SHIFTOP least
b6d08ca1 11230 significant 0's, then one or more 1's, then zero or more 0's. */
e2c953b6
DE
11231
11232int
a2369ed3 11233includes_rldic_lshift_p (rtx shiftop, rtx andop)
e2c953b6 11234{
c5059423
AM
11235 if (GET_CODE (andop) == CONST_INT)
11236 {
02071907 11237 HOST_WIDE_INT c, lsb, shift_mask;
e2c953b6 11238
c5059423 11239 c = INTVAL (andop);
02071907 11240 if (c == 0 || c == ~0)
c5059423 11241 return 0;
e2c953b6 11242
02071907 11243 shift_mask = ~0;
c5059423
AM
11244 shift_mask <<= INTVAL (shiftop);
11245
b6d08ca1 11246 /* Find the least significant one bit. */
c5059423
AM
11247 lsb = c & -c;
11248
11249 /* It must coincide with the LSB of the shift mask. */
11250 if (-lsb != shift_mask)
11251 return 0;
e2c953b6 11252
c5059423
AM
11253 /* Invert to look for the next transition (if any). */
11254 c = ~c;
11255
11256 /* Remove the low group of ones (originally low group of zeros). */
11257 c &= -lsb;
11258
11259 /* Again find the lsb, and check we have all 1's above. */
11260 lsb = c & -c;
11261 return c == -lsb;
11262 }
11263 else if (GET_CODE (andop) == CONST_DOUBLE
11264 && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode))
11265 {
02071907
AM
11266 HOST_WIDE_INT low, high, lsb;
11267 HOST_WIDE_INT shift_mask_low, shift_mask_high;
c5059423
AM
11268
11269 low = CONST_DOUBLE_LOW (andop);
11270 if (HOST_BITS_PER_WIDE_INT < 64)
11271 high = CONST_DOUBLE_HIGH (andop);
11272
11273 if ((low == 0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == 0))
02071907 11274 || (low == ~0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0)))
c5059423
AM
11275 return 0;
11276
11277 if (HOST_BITS_PER_WIDE_INT < 64 && low == 0)
11278 {
02071907 11279 shift_mask_high = ~0;
c5059423
AM
11280 if (INTVAL (shiftop) > 32)
11281 shift_mask_high <<= INTVAL (shiftop) - 32;
11282
11283 lsb = high & -high;
11284
11285 if (-lsb != shift_mask_high || INTVAL (shiftop) < 32)
11286 return 0;
11287
11288 high = ~high;
11289 high &= -lsb;
11290
11291 lsb = high & -high;
11292 return high == -lsb;
11293 }
11294
02071907 11295 shift_mask_low = ~0;
c5059423
AM
11296 shift_mask_low <<= INTVAL (shiftop);
11297
11298 lsb = low & -low;
11299
11300 if (-lsb != shift_mask_low)
11301 return 0;
11302
11303 if (HOST_BITS_PER_WIDE_INT < 64)
11304 high = ~high;
11305 low = ~low;
11306 low &= -lsb;
11307
11308 if (HOST_BITS_PER_WIDE_INT < 64 && low == 0)
11309 {
11310 lsb = high & -high;
11311 return high == -lsb;
11312 }
11313
11314 lsb = low & -low;
11315 return low == -lsb && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0);
11316 }
11317 else
11318 return 0;
11319}
e2c953b6 11320
c5059423
AM
11321/* Return 1 if ANDOP is a mask suitable for use with an rldicr insn
11322 to perform a left shift. It must have SHIFTOP or more least
c1207243 11323 significant 0's, with the remainder of the word 1's. */
e2c953b6 11324
c5059423 11325int
a2369ed3 11326includes_rldicr_lshift_p (rtx shiftop, rtx andop)
c5059423 11327{
e2c953b6 11328 if (GET_CODE (andop) == CONST_INT)
c5059423 11329 {
02071907 11330 HOST_WIDE_INT c, lsb, shift_mask;
c5059423 11331
02071907 11332 shift_mask = ~0;
c5059423
AM
11333 shift_mask <<= INTVAL (shiftop);
11334 c = INTVAL (andop);
11335
c1207243 11336 /* Find the least significant one bit. */
c5059423
AM
11337 lsb = c & -c;
11338
11339 /* It must be covered by the shift mask.
a4f6c312 11340 This test also rejects c == 0. */
c5059423
AM
11341 if ((lsb & shift_mask) == 0)
11342 return 0;
11343
11344 /* Check we have all 1's above the transition, and reject all 1's. */
11345 return c == -lsb && lsb != 1;
11346 }
11347 else if (GET_CODE (andop) == CONST_DOUBLE
11348 && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode))
11349 {
02071907 11350 HOST_WIDE_INT low, lsb, shift_mask_low;
c5059423
AM
11351
11352 low = CONST_DOUBLE_LOW (andop);
11353
11354 if (HOST_BITS_PER_WIDE_INT < 64)
11355 {
02071907 11356 HOST_WIDE_INT high, shift_mask_high;
c5059423
AM
11357
11358 high = CONST_DOUBLE_HIGH (andop);
11359
11360 if (low == 0)
11361 {
02071907 11362 shift_mask_high = ~0;
c5059423
AM
11363 if (INTVAL (shiftop) > 32)
11364 shift_mask_high <<= INTVAL (shiftop) - 32;
11365
11366 lsb = high & -high;
11367
11368 if ((lsb & shift_mask_high) == 0)
11369 return 0;
11370
11371 return high == -lsb;
11372 }
11373 if (high != ~0)
11374 return 0;
11375 }
11376
02071907 11377 shift_mask_low = ~0;
c5059423
AM
11378 shift_mask_low <<= INTVAL (shiftop);
11379
11380 lsb = low & -low;
11381
11382 if ((lsb & shift_mask_low) == 0)
11383 return 0;
11384
11385 return low == -lsb && lsb != 1;
11386 }
e2c953b6 11387 else
c5059423 11388 return 0;
9878760c 11389}
35068b43 11390
11ac38b2
DE
11391/* Return 1 if operands will generate a valid arguments to rlwimi
11392instruction for insert with right shift in 64-bit mode. The mask may
11393not start on the first bit or stop on the last bit because wrap-around
11394effects of instruction do not correspond to semantics of RTL insn. */
11395
11396int
11397insvdi_rshift_rlwimi_p (rtx sizeop, rtx startop, rtx shiftop)
11398{
429ec7dc
DE
11399 if (INTVAL (startop) > 32
11400 && INTVAL (startop) < 64
11401 && INTVAL (sizeop) > 1
11402 && INTVAL (sizeop) + INTVAL (startop) < 64
11403 && INTVAL (shiftop) > 0
11404 && INTVAL (sizeop) + INTVAL (shiftop) < 32
11ac38b2
DE
11405 && (64 - (INTVAL (shiftop) & 63)) >= INTVAL (sizeop))
11406 return 1;
11407
11408 return 0;
11409}
11410
35068b43 11411/* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
90f81f99 11412 for lfq and stfq insns iff the registers are hard registers. */
35068b43
RK
11413
11414int
a2369ed3 11415registers_ok_for_quad_peep (rtx reg1, rtx reg2)
35068b43
RK
11416{
11417 /* We might have been passed a SUBREG. */
f676971a 11418 if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
35068b43 11419 return 0;
f676971a 11420
90f81f99
AP
11421 /* We might have been passed non floating point registers. */
11422 if (!FP_REGNO_P (REGNO (reg1))
11423 || !FP_REGNO_P (REGNO (reg2)))
11424 return 0;
35068b43
RK
11425
11426 return (REGNO (reg1) == REGNO (reg2) - 1);
11427}
11428
a4f6c312
SS
11429/* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.
11430 addr1 and addr2 must be in consecutive memory locations
11431 (addr2 == addr1 + 8). */
35068b43
RK
11432
11433int
90f81f99 11434mems_ok_for_quad_peep (rtx mem1, rtx mem2)
35068b43 11435{
90f81f99 11436 rtx addr1, addr2;
bb8df8a6
EC
11437 unsigned int reg1, reg2;
11438 int offset1, offset2;
35068b43 11439
90f81f99
AP
11440 /* The mems cannot be volatile. */
11441 if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
11442 return 0;
f676971a 11443
90f81f99
AP
11444 addr1 = XEXP (mem1, 0);
11445 addr2 = XEXP (mem2, 0);
11446
35068b43
RK
11447 /* Extract an offset (if used) from the first addr. */
11448 if (GET_CODE (addr1) == PLUS)
11449 {
11450 /* If not a REG, return zero. */
11451 if (GET_CODE (XEXP (addr1, 0)) != REG)
11452 return 0;
11453 else
11454 {
c4ad648e 11455 reg1 = REGNO (XEXP (addr1, 0));
35068b43
RK
11456 /* The offset must be constant! */
11457 if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
c4ad648e
AM
11458 return 0;
11459 offset1 = INTVAL (XEXP (addr1, 1));
35068b43
RK
11460 }
11461 }
11462 else if (GET_CODE (addr1) != REG)
11463 return 0;
11464 else
11465 {
11466 reg1 = REGNO (addr1);
11467 /* This was a simple (mem (reg)) expression. Offset is 0. */
11468 offset1 = 0;
11469 }
11470
bb8df8a6
EC
11471 /* And now for the second addr. */
11472 if (GET_CODE (addr2) == PLUS)
11473 {
11474 /* If not a REG, return zero. */
11475 if (GET_CODE (XEXP (addr2, 0)) != REG)
11476 return 0;
11477 else
11478 {
11479 reg2 = REGNO (XEXP (addr2, 0));
11480 /* The offset must be constant. */
11481 if (GET_CODE (XEXP (addr2, 1)) != CONST_INT)
11482 return 0;
11483 offset2 = INTVAL (XEXP (addr2, 1));
11484 }
11485 }
11486 else if (GET_CODE (addr2) != REG)
35068b43 11487 return 0;
bb8df8a6
EC
11488 else
11489 {
11490 reg2 = REGNO (addr2);
11491 /* This was a simple (mem (reg)) expression. Offset is 0. */
11492 offset2 = 0;
11493 }
35068b43 11494
bb8df8a6
EC
11495 /* Both of these must have the same base register. */
11496 if (reg1 != reg2)
35068b43
RK
11497 return 0;
11498
11499 /* The offset for the second addr must be 8 more than the first addr. */
bb8df8a6 11500 if (offset2 != offset1 + 8)
35068b43
RK
11501 return 0;
11502
11503 /* All the tests passed. addr1 and addr2 are valid for lfq or stfq
11504 instructions. */
11505 return 1;
11506}
9878760c 11507\f
e41b2a33
PB
11508
11509rtx
11510rs6000_secondary_memory_needed_rtx (enum machine_mode mode)
11511{
11512 static bool eliminated = false;
11513 if (mode != SDmode)
11514 return assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
11515 else
11516 {
11517 rtx mem = cfun->machine->sdmode_stack_slot;
11518 gcc_assert (mem != NULL_RTX);
11519
11520 if (!eliminated)
11521 {
11522 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
11523 cfun->machine->sdmode_stack_slot = mem;
11524 eliminated = true;
11525 }
11526 return mem;
11527 }
11528}
11529
11530static tree
11531rs6000_check_sdmode (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11532{
11533 /* Don't walk into types. */
11534 if (*tp == NULL_TREE || *tp == error_mark_node || TYPE_P (*tp))
11535 {
11536 *walk_subtrees = 0;
11537 return NULL_TREE;
11538 }
11539
11540 switch (TREE_CODE (*tp))
11541 {
11542 case VAR_DECL:
11543 case PARM_DECL:
11544 case FIELD_DECL:
11545 case RESULT_DECL:
11546 case REAL_CST:
fdf4f148 11547 case INDIRECT_REF:
a0f39282
JJ
11548 case ALIGN_INDIRECT_REF:
11549 case MISALIGNED_INDIRECT_REF:
fdf4f148 11550 case VIEW_CONVERT_EXPR:
e41b2a33
PB
11551 if (TYPE_MODE (TREE_TYPE (*tp)) == SDmode)
11552 return *tp;
11553 break;
11554 default:
11555 break;
11556 }
11557
11558 return NULL_TREE;
11559}
11560
11561
11562/* Allocate a 64-bit stack slot to be used for copying SDmode
11563 values through if this function has any SDmode references. */
11564
11565static void
11566rs6000_alloc_sdmode_stack_slot (void)
11567{
11568 tree t;
11569 basic_block bb;
726a989a 11570 gimple_stmt_iterator gsi;
e41b2a33
PB
11571
11572 gcc_assert (cfun->machine->sdmode_stack_slot == NULL_RTX);
11573
11574 FOR_EACH_BB (bb)
726a989a 11575 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
e41b2a33 11576 {
726a989a 11577 tree ret = walk_gimple_op (gsi_stmt (gsi), rs6000_check_sdmode, NULL);
e41b2a33
PB
11578 if (ret)
11579 {
11580 rtx stack = assign_stack_local (DDmode, GET_MODE_SIZE (DDmode), 0);
11581 cfun->machine->sdmode_stack_slot = adjust_address_nv (stack,
11582 SDmode, 0);
11583 return;
11584 }
11585 }
11586
11587 /* Check for any SDmode parameters of the function. */
11588 for (t = DECL_ARGUMENTS (cfun->decl); t; t = TREE_CHAIN (t))
11589 {
11590 if (TREE_TYPE (t) == error_mark_node)
11591 continue;
11592
11593 if (TYPE_MODE (TREE_TYPE (t)) == SDmode
11594 || TYPE_MODE (DECL_ARG_TYPE (t)) == SDmode)
11595 {
11596 rtx stack = assign_stack_local (DDmode, GET_MODE_SIZE (DDmode), 0);
11597 cfun->machine->sdmode_stack_slot = adjust_address_nv (stack,
11598 SDmode, 0);
11599 return;
11600 }
11601 }
11602}
11603
11604static void
11605rs6000_instantiate_decls (void)
11606{
11607 if (cfun->machine->sdmode_stack_slot != NULL_RTX)
11608 instantiate_decl_rtl (cfun->machine->sdmode_stack_slot);
11609}
11610
9878760c 11611/* Return the register class of a scratch register needed to copy IN into
0a2aaacc 11612 or out of a register in RCLASS in MODE. If it can be done directly,
9878760c
RK
11613 NO_REGS is returned. */
11614
11615enum reg_class
0a2aaacc 11616rs6000_secondary_reload_class (enum reg_class rclass,
3c4774e0
R
11617 enum machine_mode mode ATTRIBUTE_UNUSED,
11618 rtx in)
9878760c 11619{
5accd822 11620 int regno;
9878760c 11621
ab82a49f
AP
11622 if (TARGET_ELF || (DEFAULT_ABI == ABI_DARWIN
11623#if TARGET_MACHO
c4ad648e 11624 && MACHOPIC_INDIRECT
ab82a49f 11625#endif
c4ad648e 11626 ))
46fad5b7
DJ
11627 {
11628 /* We cannot copy a symbolic operand directly into anything
c4ad648e
AM
11629 other than BASE_REGS for TARGET_ELF. So indicate that a
11630 register from BASE_REGS is needed as an intermediate
11631 register.
f676971a 11632
46fad5b7
DJ
11633 On Darwin, pic addresses require a load from memory, which
11634 needs a base register. */
0a2aaacc 11635 if (rclass != BASE_REGS
c4ad648e
AM
11636 && (GET_CODE (in) == SYMBOL_REF
11637 || GET_CODE (in) == HIGH
11638 || GET_CODE (in) == LABEL_REF
11639 || GET_CODE (in) == CONST))
11640 return BASE_REGS;
46fad5b7 11641 }
e7b7998a 11642
5accd822
DE
11643 if (GET_CODE (in) == REG)
11644 {
11645 regno = REGNO (in);
11646 if (regno >= FIRST_PSEUDO_REGISTER)
11647 {
11648 regno = true_regnum (in);
11649 if (regno >= FIRST_PSEUDO_REGISTER)
11650 regno = -1;
11651 }
11652 }
11653 else if (GET_CODE (in) == SUBREG)
11654 {
11655 regno = true_regnum (in);
11656 if (regno >= FIRST_PSEUDO_REGISTER)
11657 regno = -1;
11658 }
11659 else
11660 regno = -1;
11661
9878760c
RK
11662 /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
11663 into anything. */
0a2aaacc 11664 if (rclass == GENERAL_REGS || rclass == BASE_REGS
9878760c
RK
11665 || (regno >= 0 && INT_REGNO_P (regno)))
11666 return NO_REGS;
11667
11668 /* Constants, memory, and FP registers can go into FP registers. */
11669 if ((regno == -1 || FP_REGNO_P (regno))
0a2aaacc 11670 && (rclass == FLOAT_REGS || rclass == NON_SPECIAL_REGS))
e41b2a33 11671 return (mode != SDmode) ? NO_REGS : GENERAL_REGS;
9878760c 11672
0ac081f6
AH
11673 /* Memory, and AltiVec registers can go into AltiVec registers. */
11674 if ((regno == -1 || ALTIVEC_REGNO_P (regno))
0a2aaacc 11675 && rclass == ALTIVEC_REGS)
0ac081f6
AH
11676 return NO_REGS;
11677
9878760c 11678 /* We can copy among the CR registers. */
0a2aaacc 11679 if ((rclass == CR_REGS || rclass == CR0_REGS)
9878760c
RK
11680 && regno >= 0 && CR_REGNO_P (regno))
11681 return NO_REGS;
11682
11683 /* Otherwise, we need GENERAL_REGS. */
11684 return GENERAL_REGS;
11685}
11686\f
11687/* Given a comparison operation, return the bit number in CCR to test. We
f676971a 11688 know this is a valid comparison.
9878760c
RK
11689
11690 SCC_P is 1 if this is for an scc. That means that %D will have been
11691 used instead of %C, so the bits will be in different places.
11692
b4ac57ab 11693 Return -1 if OP isn't a valid comparison for some reason. */
9878760c
RK
11694
11695int
a2369ed3 11696ccr_bit (rtx op, int scc_p)
9878760c
RK
11697{
11698 enum rtx_code code = GET_CODE (op);
11699 enum machine_mode cc_mode;
11700 int cc_regnum;
11701 int base_bit;
9ebbca7d 11702 rtx reg;
9878760c 11703
ec8e098d 11704 if (!COMPARISON_P (op))
9878760c
RK
11705 return -1;
11706
9ebbca7d
GK
11707 reg = XEXP (op, 0);
11708
37409796 11709 gcc_assert (GET_CODE (reg) == REG && CR_REGNO_P (REGNO (reg)));
9ebbca7d
GK
11710
11711 cc_mode = GET_MODE (reg);
11712 cc_regnum = REGNO (reg);
11713 base_bit = 4 * (cc_regnum - CR0_REGNO);
9878760c 11714
39a10a29 11715 validate_condition_mode (code, cc_mode);
c5defebb 11716
b7053a3f
GK
11717 /* When generating a sCOND operation, only positive conditions are
11718 allowed. */
37409796
NS
11719 gcc_assert (!scc_p
11720 || code == EQ || code == GT || code == LT || code == UNORDERED
11721 || code == GTU || code == LTU);
f676971a 11722
9878760c
RK
11723 switch (code)
11724 {
11725 case NE:
11726 return scc_p ? base_bit + 3 : base_bit + 2;
11727 case EQ:
11728 return base_bit + 2;
1c882ea4 11729 case GT: case GTU: case UNLE:
9878760c 11730 return base_bit + 1;
1c882ea4 11731 case LT: case LTU: case UNGE:
9878760c 11732 return base_bit;
1c882ea4
GK
11733 case ORDERED: case UNORDERED:
11734 return base_bit + 3;
9878760c
RK
11735
11736 case GE: case GEU:
39a10a29 11737 /* If scc, we will have done a cror to put the bit in the
9878760c
RK
11738 unordered position. So test that bit. For integer, this is ! LT
11739 unless this is an scc insn. */
39a10a29 11740 return scc_p ? base_bit + 3 : base_bit;
9878760c
RK
11741
11742 case LE: case LEU:
39a10a29 11743 return scc_p ? base_bit + 3 : base_bit + 1;
1c882ea4 11744
9878760c 11745 default:
37409796 11746 gcc_unreachable ();
9878760c
RK
11747 }
11748}
1ff7789b 11749\f
8d30c4ee 11750/* Return the GOT register. */
1ff7789b 11751
9390387d 11752rtx
a2369ed3 11753rs6000_got_register (rtx value ATTRIBUTE_UNUSED)
1ff7789b 11754{
a4f6c312
SS
11755 /* The second flow pass currently (June 1999) can't update
11756 regs_ever_live without disturbing other parts of the compiler, so
11757 update it here to make the prolog/epilogue code happy. */
b3a13419
ILT
11758 if (!can_create_pseudo_p ()
11759 && !df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))
6fb5fa3c 11760 df_set_regs_ever_live (RS6000_PIC_OFFSET_TABLE_REGNUM, true);
1ff7789b 11761
e3b5732b 11762 crtl->uses_pic_offset_table = 1;
3cb999d8 11763
1ff7789b
MM
11764 return pic_offset_table_rtx;
11765}
a7df97e6 11766\f
e2500fed
GK
11767/* Function to init struct machine_function.
11768 This will be called, via a pointer variable,
11769 from push_function_context. */
a7df97e6 11770
e2500fed 11771static struct machine_function *
863d938c 11772rs6000_init_machine_status (void)
a7df97e6 11773{
5ead67f6 11774 return GGC_CNEW (machine_function);
a7df97e6 11775}
9878760c 11776\f
0ba1b2ff
AM
11777/* These macros test for integers and extract the low-order bits. */
11778#define INT_P(X) \
11779((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE) \
11780 && GET_MODE (X) == VOIDmode)
11781
11782#define INT_LOWPART(X) \
11783 (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X))
11784
11785int
a2369ed3 11786extract_MB (rtx op)
0ba1b2ff
AM
11787{
11788 int i;
11789 unsigned long val = INT_LOWPART (op);
11790
11791 /* If the high bit is zero, the value is the first 1 bit we find
11792 from the left. */
11793 if ((val & 0x80000000) == 0)
11794 {
37409796 11795 gcc_assert (val & 0xffffffff);
0ba1b2ff
AM
11796
11797 i = 1;
11798 while (((val <<= 1) & 0x80000000) == 0)
11799 ++i;
11800 return i;
11801 }
11802
11803 /* If the high bit is set and the low bit is not, or the mask is all
11804 1's, the value is zero. */
11805 if ((val & 1) == 0 || (val & 0xffffffff) == 0xffffffff)
11806 return 0;
11807
11808 /* Otherwise we have a wrap-around mask. Look for the first 0 bit
11809 from the right. */
11810 i = 31;
11811 while (((val >>= 1) & 1) != 0)
11812 --i;
11813
11814 return i;
11815}
11816
11817int
a2369ed3 11818extract_ME (rtx op)
0ba1b2ff
AM
11819{
11820 int i;
11821 unsigned long val = INT_LOWPART (op);
11822
11823 /* If the low bit is zero, the value is the first 1 bit we find from
11824 the right. */
11825 if ((val & 1) == 0)
11826 {
37409796 11827 gcc_assert (val & 0xffffffff);
0ba1b2ff
AM
11828
11829 i = 30;
11830 while (((val >>= 1) & 1) == 0)
11831 --i;
11832
11833 return i;
11834 }
11835
11836 /* If the low bit is set and the high bit is not, or the mask is all
11837 1's, the value is 31. */
11838 if ((val & 0x80000000) == 0 || (val & 0xffffffff) == 0xffffffff)
11839 return 31;
11840
11841 /* Otherwise we have a wrap-around mask. Look for the first 0 bit
11842 from the left. */
11843 i = 0;
11844 while (((val <<= 1) & 0x80000000) != 0)
11845 ++i;
11846
11847 return i;
11848}
11849
c4501e62
JJ
11850/* Locate some local-dynamic symbol still in use by this function
11851 so that we can print its name in some tls_ld pattern. */
11852
11853static const char *
863d938c 11854rs6000_get_some_local_dynamic_name (void)
c4501e62
JJ
11855{
11856 rtx insn;
11857
11858 if (cfun->machine->some_ld_name)
11859 return cfun->machine->some_ld_name;
11860
11861 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
11862 if (INSN_P (insn)
11863 && for_each_rtx (&PATTERN (insn),
11864 rs6000_get_some_local_dynamic_name_1, 0))
11865 return cfun->machine->some_ld_name;
11866
37409796 11867 gcc_unreachable ();
c4501e62
JJ
11868}
11869
11870/* Helper function for rs6000_get_some_local_dynamic_name. */
11871
11872static int
a2369ed3 11873rs6000_get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
c4501e62
JJ
11874{
11875 rtx x = *px;
11876
11877 if (GET_CODE (x) == SYMBOL_REF)
11878 {
11879 const char *str = XSTR (x, 0);
11880 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
11881 {
11882 cfun->machine->some_ld_name = str;
11883 return 1;
11884 }
11885 }
11886
11887 return 0;
11888}
11889
85b776df
AM
11890/* Write out a function code label. */
11891
11892void
11893rs6000_output_function_entry (FILE *file, const char *fname)
11894{
11895 if (fname[0] != '.')
11896 {
11897 switch (DEFAULT_ABI)
11898 {
11899 default:
37409796 11900 gcc_unreachable ();
85b776df
AM
11901
11902 case ABI_AIX:
11903 if (DOT_SYMBOLS)
11904 putc ('.', file);
11905 else
11906 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "L.");
11907 break;
11908
11909 case ABI_V4:
11910 case ABI_DARWIN:
11911 break;
11912 }
11913 }
11914 if (TARGET_AIX)
11915 RS6000_OUTPUT_BASENAME (file, fname);
11916 else
11917 assemble_name (file, fname);
11918}
11919
9878760c
RK
11920/* Print an operand. Recognize special options, documented below. */
11921
38c1f2d7 11922#if TARGET_ELF
d9407988 11923#define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
8fbd2dc7 11924#define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
ba5e43aa
MM
11925#else
11926#define SMALL_DATA_RELOC "sda21"
8fbd2dc7 11927#define SMALL_DATA_REG 0
ba5e43aa
MM
11928#endif
11929
9878760c 11930void
a2369ed3 11931print_operand (FILE *file, rtx x, int code)
9878760c
RK
11932{
11933 int i;
a260abc9 11934 HOST_WIDE_INT val;
0ba1b2ff 11935 unsigned HOST_WIDE_INT uval;
9878760c
RK
11936
11937 switch (code)
11938 {
a8b3aeda 11939 case '.':
a85d226b
RK
11940 /* Write out an instruction after the call which may be replaced
11941 with glue code by the loader. This depends on the AIX version. */
11942 asm_fprintf (file, RS6000_CALL_GLUE);
a8b3aeda
RK
11943 return;
11944
81eace42
GK
11945 /* %a is output_address. */
11946
9854d9ed
RK
11947 case 'A':
11948 /* If X is a constant integer whose low-order 5 bits are zero,
11949 write 'l'. Otherwise, write 'r'. This is a kludge to fix a bug
76229ac8 11950 in the AIX assembler where "sri" with a zero shift count
20e26713 11951 writes a trash instruction. */
9854d9ed 11952 if (GET_CODE (x) == CONST_INT && (INTVAL (x) & 31) == 0)
76229ac8 11953 putc ('l', file);
9854d9ed 11954 else
76229ac8 11955 putc ('r', file);
9854d9ed
RK
11956 return;
11957
11958 case 'b':
e2c953b6
DE
11959 /* If constant, low-order 16 bits of constant, unsigned.
11960 Otherwise, write normally. */
11961 if (INT_P (x))
11962 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 0xffff);
11963 else
11964 print_operand (file, x, 0);
cad12a8d
RK
11965 return;
11966
a260abc9
DE
11967 case 'B':
11968 /* If the low-order bit is zero, write 'r'; otherwise, write 'l'
11969 for 64-bit mask direction. */
9390387d 11970 putc (((INT_LOWPART (x) & 1) == 0 ? 'r' : 'l'), file);
a238cd8b 11971 return;
a260abc9 11972
81eace42
GK
11973 /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise
11974 output_operand. */
11975
423c1189
AH
11976 case 'c':
11977 /* X is a CR register. Print the number of the GT bit of the CR. */
11978 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
11979 output_operand_lossage ("invalid %%E value");
11980 else
11981 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 1);
11982 return;
11983
11984 case 'D':
cef6b86c 11985 /* Like 'J' but get to the GT bit only. */
37409796 11986 gcc_assert (GET_CODE (x) == REG);
423c1189 11987
cef6b86c
EB
11988 /* Bit 1 is GT bit. */
11989 i = 4 * (REGNO (x) - CR0_REGNO) + 1;
423c1189 11990
cef6b86c
EB
11991 /* Add one for shift count in rlinm for scc. */
11992 fprintf (file, "%d", i + 1);
423c1189
AH
11993 return;
11994
9854d9ed 11995 case 'E':
39a10a29 11996 /* X is a CR register. Print the number of the EQ bit of the CR */
9854d9ed
RK
11997 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
11998 output_operand_lossage ("invalid %%E value");
78fbdbf7 11999 else
39a10a29 12000 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 2);
a85d226b 12001 return;
9854d9ed
RK
12002
12003 case 'f':
12004 /* X is a CR register. Print the shift count needed to move it
12005 to the high-order four bits. */
12006 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
12007 output_operand_lossage ("invalid %%f value");
12008 else
9ebbca7d 12009 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO));
9854d9ed
RK
12010 return;
12011
12012 case 'F':
12013 /* Similar, but print the count for the rotate in the opposite
12014 direction. */
12015 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
12016 output_operand_lossage ("invalid %%F value");
12017 else
9ebbca7d 12018 fprintf (file, "%d", 32 - 4 * (REGNO (x) - CR0_REGNO));
9854d9ed
RK
12019 return;
12020
12021 case 'G':
12022 /* X is a constant integer. If it is negative, print "m",
43aa4e05 12023 otherwise print "z". This is to make an aze or ame insn. */
9854d9ed
RK
12024 if (GET_CODE (x) != CONST_INT)
12025 output_operand_lossage ("invalid %%G value");
12026 else if (INTVAL (x) >= 0)
76229ac8 12027 putc ('z', file);
9854d9ed 12028 else
76229ac8 12029 putc ('m', file);
9854d9ed 12030 return;
e2c953b6 12031
9878760c 12032 case 'h':
a4f6c312
SS
12033 /* If constant, output low-order five bits. Otherwise, write
12034 normally. */
9878760c 12035 if (INT_P (x))
5f59ecb7 12036 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 31);
9878760c
RK
12037 else
12038 print_operand (file, x, 0);
12039 return;
12040
64305719 12041 case 'H':
a4f6c312
SS
12042 /* If constant, output low-order six bits. Otherwise, write
12043 normally. */
64305719 12044 if (INT_P (x))
5f59ecb7 12045 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 63);
64305719
DE
12046 else
12047 print_operand (file, x, 0);
12048 return;
12049
9854d9ed
RK
12050 case 'I':
12051 /* Print `i' if this is a constant, else nothing. */
9878760c 12052 if (INT_P (x))
76229ac8 12053 putc ('i', file);
9878760c
RK
12054 return;
12055
9854d9ed
RK
12056 case 'j':
12057 /* Write the bit number in CCR for jump. */
12058 i = ccr_bit (x, 0);
12059 if (i == -1)
12060 output_operand_lossage ("invalid %%j code");
9878760c 12061 else
9854d9ed 12062 fprintf (file, "%d", i);
9878760c
RK
12063 return;
12064
9854d9ed
RK
12065 case 'J':
12066 /* Similar, but add one for shift count in rlinm for scc and pass
12067 scc flag to `ccr_bit'. */
12068 i = ccr_bit (x, 1);
12069 if (i == -1)
12070 output_operand_lossage ("invalid %%J code");
12071 else
a0466a68
RK
12072 /* If we want bit 31, write a shift count of zero, not 32. */
12073 fprintf (file, "%d", i == 31 ? 0 : i + 1);
9878760c
RK
12074 return;
12075
9854d9ed
RK
12076 case 'k':
12077 /* X must be a constant. Write the 1's complement of the
12078 constant. */
9878760c 12079 if (! INT_P (x))
9854d9ed 12080 output_operand_lossage ("invalid %%k value");
e2c953b6
DE
12081 else
12082 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INT_LOWPART (x));
9878760c
RK
12083 return;
12084
81eace42 12085 case 'K':
9ebbca7d
GK
12086 /* X must be a symbolic constant on ELF. Write an
12087 expression suitable for an 'addi' that adds in the low 16
12088 bits of the MEM. */
12089 if (GET_CODE (x) != CONST)
12090 {
12091 print_operand_address (file, x);
12092 fputs ("@l", file);
12093 }
12094 else
12095 {
12096 if (GET_CODE (XEXP (x, 0)) != PLUS
12097 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
12098 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
12099 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
53cd5d6c 12100 output_operand_lossage ("invalid %%K value");
9ebbca7d
GK
12101 print_operand_address (file, XEXP (XEXP (x, 0), 0));
12102 fputs ("@l", file);
ed8d2920
MM
12103 /* For GNU as, there must be a non-alphanumeric character
12104 between 'l' and the number. The '-' is added by
12105 print_operand() already. */
12106 if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
12107 fputs ("+", file);
9ebbca7d
GK
12108 print_operand (file, XEXP (XEXP (x, 0), 1), 0);
12109 }
81eace42
GK
12110 return;
12111
12112 /* %l is output_asm_label. */
9ebbca7d 12113
9854d9ed
RK
12114 case 'L':
12115 /* Write second word of DImode or DFmode reference. Works on register
12116 or non-indexed memory only. */
12117 if (GET_CODE (x) == REG)
fb5c67a7 12118 fputs (reg_names[REGNO (x) + 1], file);
9854d9ed
RK
12119 else if (GET_CODE (x) == MEM)
12120 {
12121 /* Handle possible auto-increment. Since it is pre-increment and
1427100a 12122 we have already done it, we can just use an offset of word. */
9854d9ed
RK
12123 if (GET_CODE (XEXP (x, 0)) == PRE_INC
12124 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
ed8908e7
RK
12125 output_address (plus_constant (XEXP (XEXP (x, 0), 0),
12126 UNITS_PER_WORD));
6fb5fa3c
DB
12127 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12128 output_address (plus_constant (XEXP (XEXP (x, 0), 0),
12129 UNITS_PER_WORD));
9854d9ed 12130 else
d7624dc0
RK
12131 output_address (XEXP (adjust_address_nv (x, SImode,
12132 UNITS_PER_WORD),
12133 0));
ed8908e7 12134
ba5e43aa 12135 if (small_data_operand (x, GET_MODE (x)))
8fbd2dc7
MM
12136 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12137 reg_names[SMALL_DATA_REG]);
9854d9ed 12138 }
9878760c 12139 return;
f676971a 12140
9878760c
RK
12141 case 'm':
12142 /* MB value for a mask operand. */
b1765bde 12143 if (! mask_operand (x, SImode))
9878760c
RK
12144 output_operand_lossage ("invalid %%m value");
12145
0ba1b2ff 12146 fprintf (file, "%d", extract_MB (x));
9878760c
RK
12147 return;
12148
12149 case 'M':
12150 /* ME value for a mask operand. */
b1765bde 12151 if (! mask_operand (x, SImode))
a260abc9 12152 output_operand_lossage ("invalid %%M value");
9878760c 12153
0ba1b2ff 12154 fprintf (file, "%d", extract_ME (x));
9878760c
RK
12155 return;
12156
81eace42
GK
12157 /* %n outputs the negative of its operand. */
12158
9878760c
RK
12159 case 'N':
12160 /* Write the number of elements in the vector times 4. */
12161 if (GET_CODE (x) != PARALLEL)
12162 output_operand_lossage ("invalid %%N value");
e2c953b6
DE
12163 else
12164 fprintf (file, "%d", XVECLEN (x, 0) * 4);
9878760c
RK
12165 return;
12166
12167 case 'O':
12168 /* Similar, but subtract 1 first. */
12169 if (GET_CODE (x) != PARALLEL)
1427100a 12170 output_operand_lossage ("invalid %%O value");
e2c953b6
DE
12171 else
12172 fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
9878760c
RK
12173 return;
12174
9854d9ed
RK
12175 case 'p':
12176 /* X is a CONST_INT that is a power of two. Output the logarithm. */
12177 if (! INT_P (x)
2bfcf297 12178 || INT_LOWPART (x) < 0
9854d9ed
RK
12179 || (i = exact_log2 (INT_LOWPART (x))) < 0)
12180 output_operand_lossage ("invalid %%p value");
e2c953b6
DE
12181 else
12182 fprintf (file, "%d", i);
9854d9ed
RK
12183 return;
12184
9878760c
RK
12185 case 'P':
12186 /* The operand must be an indirect memory reference. The result
8bb418a3 12187 is the register name. */
9878760c
RK
12188 if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG
12189 || REGNO (XEXP (x, 0)) >= 32)
12190 output_operand_lossage ("invalid %%P value");
e2c953b6 12191 else
fb5c67a7 12192 fputs (reg_names[REGNO (XEXP (x, 0))], file);
9878760c
RK
12193 return;
12194
dfbdccdb
GK
12195 case 'q':
12196 /* This outputs the logical code corresponding to a boolean
12197 expression. The expression may have one or both operands
39a10a29 12198 negated (if one, only the first one). For condition register
c4ad648e
AM
12199 logical operations, it will also treat the negated
12200 CR codes as NOTs, but not handle NOTs of them. */
dfbdccdb 12201 {
63bc1d05 12202 const char *const *t = 0;
dfbdccdb
GK
12203 const char *s;
12204 enum rtx_code code = GET_CODE (x);
12205 static const char * const tbl[3][3] = {
12206 { "and", "andc", "nor" },
12207 { "or", "orc", "nand" },
12208 { "xor", "eqv", "xor" } };
12209
12210 if (code == AND)
12211 t = tbl[0];
12212 else if (code == IOR)
12213 t = tbl[1];
12214 else if (code == XOR)
12215 t = tbl[2];
12216 else
12217 output_operand_lossage ("invalid %%q value");
12218
12219 if (GET_CODE (XEXP (x, 0)) != NOT)
12220 s = t[0];
12221 else
12222 {
12223 if (GET_CODE (XEXP (x, 1)) == NOT)
12224 s = t[2];
12225 else
12226 s = t[1];
12227 }
f676971a 12228
dfbdccdb
GK
12229 fputs (s, file);
12230 }
12231 return;
12232
2c4a9cff
DE
12233 case 'Q':
12234 if (TARGET_MFCRF)
3b6ce0af 12235 fputc (',', file);
5efb1046 12236 /* FALLTHRU */
2c4a9cff
DE
12237 else
12238 return;
12239
9854d9ed
RK
12240 case 'R':
12241 /* X is a CR register. Print the mask for `mtcrf'. */
12242 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
12243 output_operand_lossage ("invalid %%R value");
12244 else
9ebbca7d 12245 fprintf (file, "%d", 128 >> (REGNO (x) - CR0_REGNO));
9878760c 12246 return;
9854d9ed
RK
12247
12248 case 's':
12249 /* Low 5 bits of 32 - value */
12250 if (! INT_P (x))
12251 output_operand_lossage ("invalid %%s value");
e2c953b6
DE
12252 else
12253 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INT_LOWPART (x)) & 31);
9878760c 12254 return;
9854d9ed 12255
a260abc9 12256 case 'S':
0ba1b2ff 12257 /* PowerPC64 mask position. All 0's is excluded.
a260abc9
DE
12258 CONST_INT 32-bit mask is considered sign-extended so any
12259 transition must occur within the CONST_INT, not on the boundary. */
1990cd79 12260 if (! mask64_operand (x, DImode))
a260abc9
DE
12261 output_operand_lossage ("invalid %%S value");
12262
0ba1b2ff 12263 uval = INT_LOWPART (x);
a260abc9 12264
0ba1b2ff 12265 if (uval & 1) /* Clear Left */
a260abc9 12266 {
f099d360
GK
12267#if HOST_BITS_PER_WIDE_INT > 64
12268 uval &= ((unsigned HOST_WIDE_INT) 1 << 64) - 1;
12269#endif
0ba1b2ff 12270 i = 64;
a260abc9 12271 }
0ba1b2ff 12272 else /* Clear Right */
a260abc9 12273 {
0ba1b2ff 12274 uval = ~uval;
f099d360
GK
12275#if HOST_BITS_PER_WIDE_INT > 64
12276 uval &= ((unsigned HOST_WIDE_INT) 1 << 64) - 1;
12277#endif
0ba1b2ff 12278 i = 63;
a260abc9 12279 }
0ba1b2ff
AM
12280 while (uval != 0)
12281 --i, uval >>= 1;
37409796 12282 gcc_assert (i >= 0);
0ba1b2ff
AM
12283 fprintf (file, "%d", i);
12284 return;
a260abc9 12285
a3170dc6
AH
12286 case 't':
12287 /* Like 'J' but get to the OVERFLOW/UNORDERED bit. */
37409796 12288 gcc_assert (GET_CODE (x) == REG && GET_MODE (x) == CCmode);
a3170dc6
AH
12289
12290 /* Bit 3 is OV bit. */
12291 i = 4 * (REGNO (x) - CR0_REGNO) + 3;
12292
12293 /* If we want bit 31, write a shift count of zero, not 32. */
12294 fprintf (file, "%d", i == 31 ? 0 : i + 1);
12295 return;
12296
cccf3bdc
DE
12297 case 'T':
12298 /* Print the symbolic name of a branch target register. */
1de43f85
DE
12299 if (GET_CODE (x) != REG || (REGNO (x) != LR_REGNO
12300 && REGNO (x) != CTR_REGNO))
cccf3bdc 12301 output_operand_lossage ("invalid %%T value");
1de43f85 12302 else if (REGNO (x) == LR_REGNO)
cccf3bdc
DE
12303 fputs (TARGET_NEW_MNEMONICS ? "lr" : "r", file);
12304 else
12305 fputs ("ctr", file);
12306 return;
12307
9854d9ed 12308 case 'u':
802a0058 12309 /* High-order 16 bits of constant for use in unsigned operand. */
9854d9ed
RK
12310 if (! INT_P (x))
12311 output_operand_lossage ("invalid %%u value");
e2c953b6 12312 else
f676971a 12313 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
e2c953b6 12314 (INT_LOWPART (x) >> 16) & 0xffff);
9878760c
RK
12315 return;
12316
802a0058
MM
12317 case 'v':
12318 /* High-order 16 bits of constant for use in signed operand. */
12319 if (! INT_P (x))
12320 output_operand_lossage ("invalid %%v value");
e2c953b6 12321 else
134c32f6
DE
12322 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
12323 (INT_LOWPART (x) >> 16) & 0xffff);
12324 return;
802a0058 12325
9854d9ed
RK
12326 case 'U':
12327 /* Print `u' if this has an auto-increment or auto-decrement. */
12328 if (GET_CODE (x) == MEM
12329 && (GET_CODE (XEXP (x, 0)) == PRE_INC
6fb5fa3c
DB
12330 || GET_CODE (XEXP (x, 0)) == PRE_DEC
12331 || GET_CODE (XEXP (x, 0)) == PRE_MODIFY))
76229ac8 12332 putc ('u', file);
9854d9ed 12333 return;
9878760c 12334
e0cd0770
JC
12335 case 'V':
12336 /* Print the trap code for this operand. */
12337 switch (GET_CODE (x))
12338 {
12339 case EQ:
12340 fputs ("eq", file); /* 4 */
12341 break;
12342 case NE:
12343 fputs ("ne", file); /* 24 */
12344 break;
12345 case LT:
12346 fputs ("lt", file); /* 16 */
12347 break;
12348 case LE:
12349 fputs ("le", file); /* 20 */
12350 break;
12351 case GT:
12352 fputs ("gt", file); /* 8 */
12353 break;
12354 case GE:
12355 fputs ("ge", file); /* 12 */
12356 break;
12357 case LTU:
12358 fputs ("llt", file); /* 2 */
12359 break;
12360 case LEU:
12361 fputs ("lle", file); /* 6 */
12362 break;
12363 case GTU:
12364 fputs ("lgt", file); /* 1 */
12365 break;
12366 case GEU:
12367 fputs ("lge", file); /* 5 */
12368 break;
12369 default:
37409796 12370 gcc_unreachable ();
e0cd0770
JC
12371 }
12372 break;
12373
9854d9ed
RK
12374 case 'w':
12375 /* If constant, low-order 16 bits of constant, signed. Otherwise, write
12376 normally. */
12377 if (INT_P (x))
f676971a 12378 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
5f59ecb7 12379 ((INT_LOWPART (x) & 0xffff) ^ 0x8000) - 0x8000);
9854d9ed
RK
12380 else
12381 print_operand (file, x, 0);
9878760c
RK
12382 return;
12383
9854d9ed 12384 case 'W':
e2c953b6 12385 /* MB value for a PowerPC64 rldic operand. */
e2c953b6
DE
12386 val = (GET_CODE (x) == CONST_INT
12387 ? INTVAL (x) : CONST_DOUBLE_HIGH (x));
12388
12389 if (val < 0)
12390 i = -1;
9854d9ed 12391 else
e2c953b6
DE
12392 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
12393 if ((val <<= 1) < 0)
12394 break;
12395
12396#if HOST_BITS_PER_WIDE_INT == 32
12397 if (GET_CODE (x) == CONST_INT && i >= 0)
12398 i += 32; /* zero-extend high-part was all 0's */
12399 else if (GET_CODE (x) == CONST_DOUBLE && i == 32)
12400 {
12401 val = CONST_DOUBLE_LOW (x);
12402
37409796
NS
12403 gcc_assert (val);
12404 if (val < 0)
e2c953b6
DE
12405 --i;
12406 else
12407 for ( ; i < 64; i++)
12408 if ((val <<= 1) < 0)
12409 break;
12410 }
12411#endif
12412
12413 fprintf (file, "%d", i + 1);
9854d9ed 12414 return;
9878760c 12415
9854d9ed
RK
12416 case 'X':
12417 if (GET_CODE (x) == MEM
6fb5fa3c
DB
12418 && (legitimate_indexed_address_p (XEXP (x, 0), 0)
12419 || (GET_CODE (XEXP (x, 0)) == PRE_MODIFY
12420 && legitimate_indexed_address_p (XEXP (XEXP (x, 0), 1), 0))))
76229ac8 12421 putc ('x', file);
9854d9ed 12422 return;
9878760c 12423
9854d9ed
RK
12424 case 'Y':
12425 /* Like 'L', for third word of TImode */
12426 if (GET_CODE (x) == REG)
fb5c67a7 12427 fputs (reg_names[REGNO (x) + 2], file);
9854d9ed 12428 else if (GET_CODE (x) == MEM)
9878760c 12429 {
9854d9ed
RK
12430 if (GET_CODE (XEXP (x, 0)) == PRE_INC
12431 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
a54d04b7 12432 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
6fb5fa3c
DB
12433 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12434 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
9854d9ed 12435 else
d7624dc0 12436 output_address (XEXP (adjust_address_nv (x, SImode, 8), 0));
ba5e43aa 12437 if (small_data_operand (x, GET_MODE (x)))
8fbd2dc7
MM
12438 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12439 reg_names[SMALL_DATA_REG]);
9878760c
RK
12440 }
12441 return;
f676971a 12442
9878760c 12443 case 'z':
b4ac57ab
RS
12444 /* X is a SYMBOL_REF. Write out the name preceded by a
12445 period and without any trailing data in brackets. Used for function
4d30c363
MM
12446 names. If we are configured for System V (or the embedded ABI) on
12447 the PowerPC, do not emit the period, since those systems do not use
12448 TOCs and the like. */
37409796 12449 gcc_assert (GET_CODE (x) == SYMBOL_REF);
9878760c 12450
c4ad648e
AM
12451 /* Mark the decl as referenced so that cgraph will output the
12452 function. */
9bf6462a 12453 if (SYMBOL_REF_DECL (x))
c4ad648e 12454 mark_decl_referenced (SYMBOL_REF_DECL (x));
9bf6462a 12455
85b776df 12456 /* For macho, check to see if we need a stub. */
f9da97f0
AP
12457 if (TARGET_MACHO)
12458 {
12459 const char *name = XSTR (x, 0);
a031e781 12460#if TARGET_MACHO
3b48085e 12461 if (MACHOPIC_INDIRECT
11abc112
MM
12462 && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
12463 name = machopic_indirection_name (x, /*stub_p=*/true);
f9da97f0
AP
12464#endif
12465 assemble_name (file, name);
12466 }
85b776df 12467 else if (!DOT_SYMBOLS)
9739c90c 12468 assemble_name (file, XSTR (x, 0));
85b776df
AM
12469 else
12470 rs6000_output_function_entry (file, XSTR (x, 0));
9878760c
RK
12471 return;
12472
9854d9ed
RK
12473 case 'Z':
12474 /* Like 'L', for last word of TImode. */
12475 if (GET_CODE (x) == REG)
fb5c67a7 12476 fputs (reg_names[REGNO (x) + 3], file);
9854d9ed
RK
12477 else if (GET_CODE (x) == MEM)
12478 {
12479 if (GET_CODE (XEXP (x, 0)) == PRE_INC
12480 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
a54d04b7 12481 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
6fb5fa3c
DB
12482 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12483 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
9854d9ed 12484 else
d7624dc0 12485 output_address (XEXP (adjust_address_nv (x, SImode, 12), 0));
ba5e43aa 12486 if (small_data_operand (x, GET_MODE (x)))
8fbd2dc7
MM
12487 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12488 reg_names[SMALL_DATA_REG]);
9854d9ed 12489 }
5c23c401 12490 return;
0ac081f6 12491
a3170dc6 12492 /* Print AltiVec or SPE memory operand. */
0ac081f6
AH
12493 case 'y':
12494 {
12495 rtx tmp;
12496
37409796 12497 gcc_assert (GET_CODE (x) == MEM);
0ac081f6
AH
12498
12499 tmp = XEXP (x, 0);
12500
90d3ff1c 12501 /* Ugly hack because %y is overloaded. */
8ef65e3d 12502 if ((TARGET_SPE || TARGET_E500_DOUBLE)
17caeff2
JM
12503 && (GET_MODE_SIZE (GET_MODE (x)) == 8
12504 || GET_MODE (x) == TFmode
12505 || GET_MODE (x) == TImode))
a3170dc6
AH
12506 {
12507 /* Handle [reg]. */
12508 if (GET_CODE (tmp) == REG)
12509 {
12510 fprintf (file, "0(%s)", reg_names[REGNO (tmp)]);
12511 break;
12512 }
12513 /* Handle [reg+UIMM]. */
12514 else if (GET_CODE (tmp) == PLUS &&
12515 GET_CODE (XEXP (tmp, 1)) == CONST_INT)
12516 {
12517 int x;
12518
37409796 12519 gcc_assert (GET_CODE (XEXP (tmp, 0)) == REG);
a3170dc6
AH
12520
12521 x = INTVAL (XEXP (tmp, 1));
12522 fprintf (file, "%d(%s)", x, reg_names[REGNO (XEXP (tmp, 0))]);
12523 break;
12524 }
12525
12526 /* Fall through. Must be [reg+reg]. */
12527 }
850e8d3d
DN
12528 if (TARGET_ALTIVEC
12529 && GET_CODE (tmp) == AND
12530 && GET_CODE (XEXP (tmp, 1)) == CONST_INT
12531 && INTVAL (XEXP (tmp, 1)) == -16)
12532 tmp = XEXP (tmp, 0);
0ac081f6 12533 if (GET_CODE (tmp) == REG)
c62f2db5 12534 fprintf (file, "0,%s", reg_names[REGNO (tmp)]);
37409796 12535 else
0ac081f6 12536 {
cb8cc791
AP
12537 if (!GET_CODE (tmp) == PLUS
12538 || !REG_P (XEXP (tmp, 0))
12539 || !REG_P (XEXP (tmp, 1)))
12540 {
12541 output_operand_lossage ("invalid %%y value, try using the 'Z' constraint");
12542 break;
12543 }
bb8df8a6 12544
0ac081f6
AH
12545 if (REGNO (XEXP (tmp, 0)) == 0)
12546 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 1)) ],
12547 reg_names[ REGNO (XEXP (tmp, 0)) ]);
12548 else
12549 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 0)) ],
12550 reg_names[ REGNO (XEXP (tmp, 1)) ]);
12551 }
0ac081f6
AH
12552 break;
12553 }
f676971a 12554
9878760c
RK
12555 case 0:
12556 if (GET_CODE (x) == REG)
12557 fprintf (file, "%s", reg_names[REGNO (x)]);
12558 else if (GET_CODE (x) == MEM)
12559 {
12560 /* We need to handle PRE_INC and PRE_DEC here, since we need to
12561 know the width from the mode. */
12562 if (GET_CODE (XEXP (x, 0)) == PRE_INC)
79ba6d34
MM
12563 fprintf (file, "%d(%s)", GET_MODE_SIZE (GET_MODE (x)),
12564 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
9878760c 12565 else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
79ba6d34
MM
12566 fprintf (file, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x)),
12567 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
6fb5fa3c
DB
12568 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12569 output_address (XEXP (XEXP (x, 0), 1));
9878760c 12570 else
a54d04b7 12571 output_address (XEXP (x, 0));
9878760c
RK
12572 }
12573 else
a54d04b7 12574 output_addr_const (file, x);
a85d226b 12575 return;
9878760c 12576
c4501e62
JJ
12577 case '&':
12578 assemble_name (file, rs6000_get_some_local_dynamic_name ());
12579 return;
12580
9878760c
RK
12581 default:
12582 output_operand_lossage ("invalid %%xn code");
12583 }
12584}
12585\f
12586/* Print the address of an operand. */
12587
12588void
a2369ed3 12589print_operand_address (FILE *file, rtx x)
9878760c
RK
12590{
12591 if (GET_CODE (x) == REG)
4697a36c 12592 fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);
9ebbca7d
GK
12593 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST
12594 || GET_CODE (x) == LABEL_REF)
9878760c
RK
12595 {
12596 output_addr_const (file, x);
ba5e43aa 12597 if (small_data_operand (x, GET_MODE (x)))
8fbd2dc7
MM
12598 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12599 reg_names[SMALL_DATA_REG]);
37409796
NS
12600 else
12601 gcc_assert (!TARGET_TOC);
9878760c
RK
12602 }
12603 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG)
12604 {
9024f4b8 12605 gcc_assert (REG_P (XEXP (x, 0)));
9878760c 12606 if (REGNO (XEXP (x, 0)) == 0)
4697a36c
MM
12607 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
12608 reg_names[ REGNO (XEXP (x, 0)) ]);
9878760c 12609 else
4697a36c
MM
12610 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
12611 reg_names[ REGNO (XEXP (x, 1)) ]);
9878760c
RK
12612 }
12613 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
4a0a75dd
KG
12614 fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
12615 INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
3cb999d8
DE
12616#if TARGET_ELF
12617 else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG
c4ad648e 12618 && CONSTANT_P (XEXP (x, 1)))
4697a36c
MM
12619 {
12620 output_addr_const (file, XEXP (x, 1));
12621 fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
12622 }
c859cda6
DJ
12623#endif
12624#if TARGET_MACHO
12625 else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG
c4ad648e 12626 && CONSTANT_P (XEXP (x, 1)))
c859cda6
DJ
12627 {
12628 fprintf (file, "lo16(");
12629 output_addr_const (file, XEXP (x, 1));
12630 fprintf (file, ")(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
12631 }
3cb999d8 12632#endif
4d588c14 12633 else if (legitimate_constant_pool_address_p (x))
9ebbca7d 12634 {
2e4316da 12635 output_addr_const (file, XEXP (x, 1));
9ebbca7d
GK
12636 fprintf (file, "(%s)", reg_names[REGNO (XEXP (x, 0))]);
12637 }
9878760c 12638 else
37409796 12639 gcc_unreachable ();
9878760c
RK
12640}
12641\f
2e4316da
RS
12642/* Implement OUTPUT_ADDR_CONST_EXTRA for address X. */
12643
12644bool
12645rs6000_output_addr_const_extra (FILE *file, rtx x)
12646{
12647 if (GET_CODE (x) == UNSPEC)
12648 switch (XINT (x, 1))
12649 {
12650 case UNSPEC_TOCREL:
12651 x = XVECEXP (x, 0, 0);
12652 gcc_assert (GET_CODE (x) == SYMBOL_REF);
12653 output_addr_const (file, x);
12654 if (!TARGET_AIX || (TARGET_ELF && TARGET_MINIMAL_TOC))
12655 {
12656 putc ('-', file);
12657 assemble_name (file, toc_label_name);
12658 }
12659 else if (TARGET_ELF)
12660 fputs ("@toc", file);
12661 return true;
08a6a74b
RS
12662
12663#if TARGET_MACHO
12664 case UNSPEC_MACHOPIC_OFFSET:
12665 output_addr_const (file, XVECEXP (x, 0, 0));
12666 putc ('-', file);
12667 machopic_output_function_base_name (file);
12668 return true;
12669#endif
2e4316da
RS
12670 }
12671 return false;
12672}
12673\f
88cad84b 12674/* Target hook for assembling integer objects. The PowerPC version has
301d03af
RS
12675 to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP
12676 is defined. It also needs to handle DI-mode objects on 64-bit
12677 targets. */
12678
12679static bool
a2369ed3 12680rs6000_assemble_integer (rtx x, unsigned int size, int aligned_p)
301d03af 12681{
f4f4921e 12682#ifdef RELOCATABLE_NEEDS_FIXUP
301d03af 12683 /* Special handling for SI values. */
84dcde01 12684 if (RELOCATABLE_NEEDS_FIXUP && size == 4 && aligned_p)
301d03af 12685 {
301d03af 12686 static int recurse = 0;
f676971a 12687
301d03af
RS
12688 /* For -mrelocatable, we mark all addresses that need to be fixed up
12689 in the .fixup section. */
12690 if (TARGET_RELOCATABLE
d6b5193b
RS
12691 && in_section != toc_section
12692 && in_section != text_section
4325ca90 12693 && !unlikely_text_section_p (in_section)
301d03af
RS
12694 && !recurse
12695 && GET_CODE (x) != CONST_INT
12696 && GET_CODE (x) != CONST_DOUBLE
12697 && CONSTANT_P (x))
12698 {
12699 char buf[256];
12700
12701 recurse = 1;
12702 ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", fixuplabelno);
12703 fixuplabelno++;
12704 ASM_OUTPUT_LABEL (asm_out_file, buf);
12705 fprintf (asm_out_file, "\t.long\t(");
12706 output_addr_const (asm_out_file, x);
12707 fprintf (asm_out_file, ")@fixup\n");
12708 fprintf (asm_out_file, "\t.section\t\".fixup\",\"aw\"\n");
12709 ASM_OUTPUT_ALIGN (asm_out_file, 2);
12710 fprintf (asm_out_file, "\t.long\t");
12711 assemble_name (asm_out_file, buf);
12712 fprintf (asm_out_file, "\n\t.previous\n");
12713 recurse = 0;
12714 return true;
12715 }
12716 /* Remove initial .'s to turn a -mcall-aixdesc function
12717 address into the address of the descriptor, not the function
12718 itself. */
12719 else if (GET_CODE (x) == SYMBOL_REF
12720 && XSTR (x, 0)[0] == '.'
12721 && DEFAULT_ABI == ABI_AIX)
12722 {
12723 const char *name = XSTR (x, 0);
12724 while (*name == '.')
12725 name++;
12726
12727 fprintf (asm_out_file, "\t.long\t%s\n", name);
12728 return true;
12729 }
12730 }
f4f4921e 12731#endif /* RELOCATABLE_NEEDS_FIXUP */
301d03af
RS
12732 return default_assemble_integer (x, size, aligned_p);
12733}
93638d7a
AM
12734
12735#ifdef HAVE_GAS_HIDDEN
12736/* Emit an assembler directive to set symbol visibility for DECL to
12737 VISIBILITY_TYPE. */
12738
5add3202 12739static void
a2369ed3 12740rs6000_assemble_visibility (tree decl, int vis)
93638d7a 12741{
93638d7a
AM
12742 /* Functions need to have their entry point symbol visibility set as
12743 well as their descriptor symbol visibility. */
85b776df
AM
12744 if (DEFAULT_ABI == ABI_AIX
12745 && DOT_SYMBOLS
12746 && TREE_CODE (decl) == FUNCTION_DECL)
93638d7a 12747 {
25fdb4dc 12748 static const char * const visibility_types[] = {
c4ad648e 12749 NULL, "internal", "hidden", "protected"
25fdb4dc
RH
12750 };
12751
12752 const char *name, *type;
93638d7a
AM
12753
12754 name = ((* targetm.strip_name_encoding)
12755 (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl))));
25fdb4dc 12756 type = visibility_types[vis];
93638d7a 12757
25fdb4dc
RH
12758 fprintf (asm_out_file, "\t.%s\t%s\n", type, name);
12759 fprintf (asm_out_file, "\t.%s\t.%s\n", type, name);
93638d7a 12760 }
25fdb4dc
RH
12761 else
12762 default_assemble_visibility (decl, vis);
93638d7a
AM
12763}
12764#endif
301d03af 12765\f
39a10a29 12766enum rtx_code
a2369ed3 12767rs6000_reverse_condition (enum machine_mode mode, enum rtx_code code)
39a10a29
GK
12768{
12769 /* Reversal of FP compares takes care -- an ordered compare
12770 becomes an unordered compare and vice versa. */
f676971a 12771 if (mode == CCFPmode
bc9ec0e0
GK
12772 && (!flag_finite_math_only
12773 || code == UNLT || code == UNLE || code == UNGT || code == UNGE
12774 || code == UNEQ || code == LTGT))
bab6226b 12775 return reverse_condition_maybe_unordered (code);
39a10a29 12776 else
bab6226b 12777 return reverse_condition (code);
39a10a29
GK
12778}
12779
39a10a29
GK
12780/* Generate a compare for CODE. Return a brand-new rtx that
12781 represents the result of the compare. */
a4f6c312 12782
39a10a29 12783static rtx
a2369ed3 12784rs6000_generate_compare (enum rtx_code code)
39a10a29
GK
12785{
12786 enum machine_mode comp_mode;
12787 rtx compare_result;
12788
12789 if (rs6000_compare_fp_p)
12790 comp_mode = CCFPmode;
12791 else if (code == GTU || code == LTU
c4ad648e 12792 || code == GEU || code == LEU)
39a10a29 12793 comp_mode = CCUNSmode;
60934f9c
NS
12794 else if ((code == EQ || code == NE)
12795 && GET_CODE (rs6000_compare_op0) == SUBREG
12796 && GET_CODE (rs6000_compare_op1) == SUBREG
12797 && SUBREG_PROMOTED_UNSIGNED_P (rs6000_compare_op0)
12798 && SUBREG_PROMOTED_UNSIGNED_P (rs6000_compare_op1))
12799 /* These are unsigned values, perhaps there will be a later
12800 ordering compare that can be shared with this one.
12801 Unfortunately we cannot detect the signedness of the operands
12802 for non-subregs. */
12803 comp_mode = CCUNSmode;
39a10a29
GK
12804 else
12805 comp_mode = CCmode;
12806
12807 /* First, the compare. */
12808 compare_result = gen_reg_rtx (comp_mode);
a3170dc6 12809
cef6b86c 12810 /* E500 FP compare instructions on the GPRs. Yuck! */
8ef65e3d 12811 if ((!TARGET_FPRS && TARGET_HARD_FLOAT)
993f19a8 12812 && rs6000_compare_fp_p)
a3170dc6 12813 {
64022b5d 12814 rtx cmp, or_result, compare_result2;
4d4cbc0e
AH
12815 enum machine_mode op_mode = GET_MODE (rs6000_compare_op0);
12816
12817 if (op_mode == VOIDmode)
12818 op_mode = GET_MODE (rs6000_compare_op1);
a3170dc6 12819
cef6b86c
EB
12820 /* The E500 FP compare instructions toggle the GT bit (CR bit 1) only.
12821 This explains the following mess. */
423c1189 12822
a3170dc6
AH
12823 switch (code)
12824 {
423c1189 12825 case EQ: case UNEQ: case NE: case LTGT:
37409796
NS
12826 switch (op_mode)
12827 {
12828 case SFmode:
1cdc0d8f 12829 cmp = (flag_finite_math_only && !flag_trapping_math)
37409796
NS
12830 ? gen_tstsfeq_gpr (compare_result, rs6000_compare_op0,
12831 rs6000_compare_op1)
12832 : gen_cmpsfeq_gpr (compare_result, rs6000_compare_op0,
12833 rs6000_compare_op1);
12834 break;
12835
12836 case DFmode:
1cdc0d8f 12837 cmp = (flag_finite_math_only && !flag_trapping_math)
37409796
NS
12838 ? gen_tstdfeq_gpr (compare_result, rs6000_compare_op0,
12839 rs6000_compare_op1)
12840 : gen_cmpdfeq_gpr (compare_result, rs6000_compare_op0,
12841 rs6000_compare_op1);
12842 break;
12843
17caeff2 12844 case TFmode:
1cdc0d8f 12845 cmp = (flag_finite_math_only && !flag_trapping_math)
17caeff2
JM
12846 ? gen_tsttfeq_gpr (compare_result, rs6000_compare_op0,
12847 rs6000_compare_op1)
12848 : gen_cmptfeq_gpr (compare_result, rs6000_compare_op0,
12849 rs6000_compare_op1);
12850 break;
12851
37409796
NS
12852 default:
12853 gcc_unreachable ();
12854 }
a3170dc6 12855 break;
bb8df8a6 12856
423c1189 12857 case GT: case GTU: case UNGT: case UNGE: case GE: case GEU:
37409796
NS
12858 switch (op_mode)
12859 {
12860 case SFmode:
1cdc0d8f 12861 cmp = (flag_finite_math_only && !flag_trapping_math)
37409796
NS
12862 ? gen_tstsfgt_gpr (compare_result, rs6000_compare_op0,
12863 rs6000_compare_op1)
12864 : gen_cmpsfgt_gpr (compare_result, rs6000_compare_op0,
12865 rs6000_compare_op1);
12866 break;
bb8df8a6 12867
37409796 12868 case DFmode:
1cdc0d8f 12869 cmp = (flag_finite_math_only && !flag_trapping_math)
37409796
NS
12870 ? gen_tstdfgt_gpr (compare_result, rs6000_compare_op0,
12871 rs6000_compare_op1)
12872 : gen_cmpdfgt_gpr (compare_result, rs6000_compare_op0,
12873 rs6000_compare_op1);
12874 break;
12875
17caeff2 12876 case TFmode:
1cdc0d8f 12877 cmp = (flag_finite_math_only && !flag_trapping_math)
17caeff2
JM
12878 ? gen_tsttfgt_gpr (compare_result, rs6000_compare_op0,
12879 rs6000_compare_op1)
12880 : gen_cmptfgt_gpr (compare_result, rs6000_compare_op0,
12881 rs6000_compare_op1);
12882 break;
12883
37409796
NS
12884 default:
12885 gcc_unreachable ();
12886 }
a3170dc6 12887 break;
bb8df8a6 12888
423c1189 12889 case LT: case LTU: case UNLT: case UNLE: case LE: case LEU:
37409796
NS
12890 switch (op_mode)
12891 {
12892 case SFmode:
1cdc0d8f 12893 cmp = (flag_finite_math_only && !flag_trapping_math)
37409796
NS
12894 ? gen_tstsflt_gpr (compare_result, rs6000_compare_op0,
12895 rs6000_compare_op1)
12896 : gen_cmpsflt_gpr (compare_result, rs6000_compare_op0,
12897 rs6000_compare_op1);
12898 break;
bb8df8a6 12899
37409796 12900 case DFmode:
1cdc0d8f 12901 cmp = (flag_finite_math_only && !flag_trapping_math)
37409796
NS
12902 ? gen_tstdflt_gpr (compare_result, rs6000_compare_op0,
12903 rs6000_compare_op1)
12904 : gen_cmpdflt_gpr (compare_result, rs6000_compare_op0,
12905 rs6000_compare_op1);
12906 break;
12907
17caeff2 12908 case TFmode:
1cdc0d8f 12909 cmp = (flag_finite_math_only && !flag_trapping_math)
17caeff2
JM
12910 ? gen_tsttflt_gpr (compare_result, rs6000_compare_op0,
12911 rs6000_compare_op1)
12912 : gen_cmptflt_gpr (compare_result, rs6000_compare_op0,
12913 rs6000_compare_op1);
12914 break;
12915
37409796
NS
12916 default:
12917 gcc_unreachable ();
12918 }
a3170dc6 12919 break;
4d4cbc0e 12920 default:
37409796 12921 gcc_unreachable ();
a3170dc6
AH
12922 }
12923
12924 /* Synthesize LE and GE from LT/GT || EQ. */
12925 if (code == LE || code == GE || code == LEU || code == GEU)
12926 {
a3170dc6
AH
12927 emit_insn (cmp);
12928
12929 switch (code)
12930 {
12931 case LE: code = LT; break;
12932 case GE: code = GT; break;
12933 case LEU: code = LT; break;
12934 case GEU: code = GT; break;
37409796 12935 default: gcc_unreachable ();
a3170dc6
AH
12936 }
12937
a3170dc6
AH
12938 compare_result2 = gen_reg_rtx (CCFPmode);
12939
12940 /* Do the EQ. */
37409796
NS
12941 switch (op_mode)
12942 {
12943 case SFmode:
1cdc0d8f 12944 cmp = (flag_finite_math_only && !flag_trapping_math)
37409796
NS
12945 ? gen_tstsfeq_gpr (compare_result2, rs6000_compare_op0,
12946 rs6000_compare_op1)
12947 : gen_cmpsfeq_gpr (compare_result2, rs6000_compare_op0,
12948 rs6000_compare_op1);
12949 break;
12950
12951 case DFmode:
1cdc0d8f 12952 cmp = (flag_finite_math_only && !flag_trapping_math)
37409796
NS
12953 ? gen_tstdfeq_gpr (compare_result2, rs6000_compare_op0,
12954 rs6000_compare_op1)
12955 : gen_cmpdfeq_gpr (compare_result2, rs6000_compare_op0,
12956 rs6000_compare_op1);
12957 break;
12958
17caeff2 12959 case TFmode:
1cdc0d8f 12960 cmp = (flag_finite_math_only && !flag_trapping_math)
17caeff2
JM
12961 ? gen_tsttfeq_gpr (compare_result2, rs6000_compare_op0,
12962 rs6000_compare_op1)
12963 : gen_cmptfeq_gpr (compare_result2, rs6000_compare_op0,
12964 rs6000_compare_op1);
12965 break;
12966
37409796
NS
12967 default:
12968 gcc_unreachable ();
12969 }
a3170dc6
AH
12970 emit_insn (cmp);
12971
a3170dc6 12972 /* OR them together. */
64022b5d
AH
12973 or_result = gen_reg_rtx (CCFPmode);
12974 cmp = gen_e500_cr_ior_compare (or_result, compare_result,
12975 compare_result2);
a3170dc6
AH
12976 compare_result = or_result;
12977 code = EQ;
12978 }
12979 else
12980 {
a3170dc6 12981 if (code == NE || code == LTGT)
a3170dc6 12982 code = NE;
423c1189
AH
12983 else
12984 code = EQ;
a3170dc6
AH
12985 }
12986
12987 emit_insn (cmp);
12988 }
12989 else
de17c25f
DE
12990 {
12991 /* Generate XLC-compatible TFmode compare as PARALLEL with extra
12992 CLOBBERs to match cmptf_internal2 pattern. */
12993 if (comp_mode == CCFPmode && TARGET_XL_COMPAT
12994 && GET_MODE (rs6000_compare_op0) == TFmode
602ea4d3 12995 && !TARGET_IEEEQUAD
de17c25f
DE
12996 && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_LONG_DOUBLE_128)
12997 emit_insn (gen_rtx_PARALLEL (VOIDmode,
12998 gen_rtvec (9,
12999 gen_rtx_SET (VOIDmode,
13000 compare_result,
13001 gen_rtx_COMPARE (comp_mode,
13002 rs6000_compare_op0,
13003 rs6000_compare_op1)),
13004 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13005 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13006 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13007 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13008 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13009 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13010 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
13011 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)))));
3aebbe5f
JJ
13012 else if (GET_CODE (rs6000_compare_op1) == UNSPEC
13013 && XINT (rs6000_compare_op1, 1) == UNSPEC_SP_TEST)
13014 {
13015 rtx op1 = XVECEXP (rs6000_compare_op1, 0, 0);
13016 comp_mode = CCEQmode;
13017 compare_result = gen_reg_rtx (CCEQmode);
13018 if (TARGET_64BIT)
13019 emit_insn (gen_stack_protect_testdi (compare_result,
13020 rs6000_compare_op0, op1));
13021 else
13022 emit_insn (gen_stack_protect_testsi (compare_result,
13023 rs6000_compare_op0, op1));
13024 }
de17c25f
DE
13025 else
13026 emit_insn (gen_rtx_SET (VOIDmode, compare_result,
13027 gen_rtx_COMPARE (comp_mode,
13028 rs6000_compare_op0,
13029 rs6000_compare_op1)));
13030 }
f676971a 13031
ca5adc63 13032 /* Some kinds of FP comparisons need an OR operation;
e7108df9 13033 under flag_finite_math_only we don't bother. */
39a10a29 13034 if (rs6000_compare_fp_p
e7108df9 13035 && !flag_finite_math_only
8ef65e3d 13036 && !(TARGET_HARD_FLOAT && !TARGET_FPRS)
39a10a29
GK
13037 && (code == LE || code == GE
13038 || code == UNEQ || code == LTGT
13039 || code == UNGT || code == UNLT))
13040 {
13041 enum rtx_code or1, or2;
13042 rtx or1_rtx, or2_rtx, compare2_rtx;
13043 rtx or_result = gen_reg_rtx (CCEQmode);
f676971a 13044
39a10a29
GK
13045 switch (code)
13046 {
13047 case LE: or1 = LT; or2 = EQ; break;
13048 case GE: or1 = GT; or2 = EQ; break;
13049 case UNEQ: or1 = UNORDERED; or2 = EQ; break;
13050 case LTGT: or1 = LT; or2 = GT; break;
13051 case UNGT: or1 = UNORDERED; or2 = GT; break;
13052 case UNLT: or1 = UNORDERED; or2 = LT; break;
37409796 13053 default: gcc_unreachable ();
39a10a29
GK
13054 }
13055 validate_condition_mode (or1, comp_mode);
13056 validate_condition_mode (or2, comp_mode);
1c563bed
KH
13057 or1_rtx = gen_rtx_fmt_ee (or1, SImode, compare_result, const0_rtx);
13058 or2_rtx = gen_rtx_fmt_ee (or2, SImode, compare_result, const0_rtx);
39a10a29
GK
13059 compare2_rtx = gen_rtx_COMPARE (CCEQmode,
13060 gen_rtx_IOR (SImode, or1_rtx, or2_rtx),
13061 const_true_rtx);
13062 emit_insn (gen_rtx_SET (VOIDmode, or_result, compare2_rtx));
13063
13064 compare_result = or_result;
13065 code = EQ;
13066 }
13067
13068 validate_condition_mode (code, GET_MODE (compare_result));
f676971a 13069
1c563bed 13070 return gen_rtx_fmt_ee (code, VOIDmode, compare_result, const0_rtx);
39a10a29
GK
13071}
13072
13073
13074/* Emit the RTL for an sCOND pattern. */
13075
13076void
a2369ed3 13077rs6000_emit_sCOND (enum rtx_code code, rtx result)
39a10a29
GK
13078{
13079 rtx condition_rtx;
13080 enum machine_mode op_mode;
b7053a3f 13081 enum rtx_code cond_code;
39a10a29
GK
13082
13083 condition_rtx = rs6000_generate_compare (code);
b7053a3f
GK
13084 cond_code = GET_CODE (condition_rtx);
13085
8ef65e3d 13086 if (rs6000_compare_fp_p
423c1189
AH
13087 && !TARGET_FPRS && TARGET_HARD_FLOAT)
13088 {
13089 rtx t;
13090
13091 PUT_MODE (condition_rtx, SImode);
13092 t = XEXP (condition_rtx, 0);
13093
37409796 13094 gcc_assert (cond_code == NE || cond_code == EQ);
423c1189
AH
13095
13096 if (cond_code == NE)
64022b5d 13097 emit_insn (gen_e500_flip_gt_bit (t, t));
423c1189 13098
64022b5d 13099 emit_insn (gen_move_from_CR_gt_bit (result, t));
423c1189
AH
13100 return;
13101 }
13102
b7053a3f
GK
13103 if (cond_code == NE
13104 || cond_code == GE || cond_code == LE
13105 || cond_code == GEU || cond_code == LEU
13106 || cond_code == ORDERED || cond_code == UNGE || cond_code == UNLE)
13107 {
13108 rtx not_result = gen_reg_rtx (CCEQmode);
13109 rtx not_op, rev_cond_rtx;
13110 enum machine_mode cc_mode;
f676971a 13111
b7053a3f
GK
13112 cc_mode = GET_MODE (XEXP (condition_rtx, 0));
13113
1c563bed 13114 rev_cond_rtx = gen_rtx_fmt_ee (rs6000_reverse_condition (cc_mode, cond_code),
0f4c242b 13115 SImode, XEXP (condition_rtx, 0), const0_rtx);
b7053a3f
GK
13116 not_op = gen_rtx_COMPARE (CCEQmode, rev_cond_rtx, const0_rtx);
13117 emit_insn (gen_rtx_SET (VOIDmode, not_result, not_op));
13118 condition_rtx = gen_rtx_EQ (VOIDmode, not_result, const0_rtx);
13119 }
39a10a29
GK
13120
13121 op_mode = GET_MODE (rs6000_compare_op0);
13122 if (op_mode == VOIDmode)
13123 op_mode = GET_MODE (rs6000_compare_op1);
13124
13125 if (TARGET_POWERPC64 && (op_mode == DImode || rs6000_compare_fp_p))
13126 {
13127 PUT_MODE (condition_rtx, DImode);
13128 convert_move (result, condition_rtx, 0);
13129 }
13130 else
13131 {
13132 PUT_MODE (condition_rtx, SImode);
13133 emit_insn (gen_rtx_SET (VOIDmode, result, condition_rtx));
13134 }
13135}
13136
39a10a29
GK
13137/* Emit a branch of kind CODE to location LOC. */
13138
13139void
a2369ed3 13140rs6000_emit_cbranch (enum rtx_code code, rtx loc)
39a10a29
GK
13141{
13142 rtx condition_rtx, loc_ref;
13143
13144 condition_rtx = rs6000_generate_compare (code);
13145 loc_ref = gen_rtx_LABEL_REF (VOIDmode, loc);
13146 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
13147 gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
13148 loc_ref, pc_rtx)));
13149}
13150
12a4e8c5
GK
13151/* Return the string to output a conditional branch to LABEL, which is
13152 the operand number of the label, or -1 if the branch is really a
f676971a 13153 conditional return.
12a4e8c5
GK
13154
13155 OP is the conditional expression. XEXP (OP, 0) is assumed to be a
13156 condition code register and its mode specifies what kind of
13157 comparison we made.
13158
a0ab749a 13159 REVERSED is nonzero if we should reverse the sense of the comparison.
12a4e8c5
GK
13160
13161 INSN is the insn. */
13162
13163char *
a2369ed3 13164output_cbranch (rtx op, const char *label, int reversed, rtx insn)
12a4e8c5
GK
13165{
13166 static char string[64];
13167 enum rtx_code code = GET_CODE (op);
13168 rtx cc_reg = XEXP (op, 0);
13169 enum machine_mode mode = GET_MODE (cc_reg);
13170 int cc_regno = REGNO (cc_reg) - CR0_REGNO;
39a10a29 13171 int need_longbranch = label != NULL && get_attr_length (insn) == 8;
12a4e8c5
GK
13172 int really_reversed = reversed ^ need_longbranch;
13173 char *s = string;
13174 const char *ccode;
13175 const char *pred;
13176 rtx note;
13177
39a10a29
GK
13178 validate_condition_mode (code, mode);
13179
13180 /* Work out which way this really branches. We could use
13181 reverse_condition_maybe_unordered here always but this
13182 makes the resulting assembler clearer. */
12a4e8c5 13183 if (really_reversed)
de40e1df
DJ
13184 {
13185 /* Reversal of FP compares takes care -- an ordered compare
13186 becomes an unordered compare and vice versa. */
13187 if (mode == CCFPmode)
13188 code = reverse_condition_maybe_unordered (code);
13189 else
13190 code = reverse_condition (code);
13191 }
12a4e8c5 13192
8ef65e3d 13193 if ((!TARGET_FPRS && TARGET_HARD_FLOAT) && mode == CCFPmode)
a3170dc6
AH
13194 {
13195 /* The efscmp/tst* instructions twiddle bit 2, which maps nicely
13196 to the GT bit. */
37409796
NS
13197 switch (code)
13198 {
13199 case EQ:
13200 /* Opposite of GT. */
13201 code = GT;
13202 break;
13203
13204 case NE:
13205 code = UNLE;
13206 break;
13207
13208 default:
13209 gcc_unreachable ();
13210 }
a3170dc6
AH
13211 }
13212
39a10a29 13213 switch (code)
12a4e8c5
GK
13214 {
13215 /* Not all of these are actually distinct opcodes, but
13216 we distinguish them for clarity of the resulting assembler. */
50a0b056
GK
13217 case NE: case LTGT:
13218 ccode = "ne"; break;
13219 case EQ: case UNEQ:
13220 ccode = "eq"; break;
f676971a 13221 case GE: case GEU:
50a0b056 13222 ccode = "ge"; break;
f676971a 13223 case GT: case GTU: case UNGT:
50a0b056 13224 ccode = "gt"; break;
f676971a 13225 case LE: case LEU:
50a0b056 13226 ccode = "le"; break;
f676971a 13227 case LT: case LTU: case UNLT:
50a0b056 13228 ccode = "lt"; break;
12a4e8c5
GK
13229 case UNORDERED: ccode = "un"; break;
13230 case ORDERED: ccode = "nu"; break;
13231 case UNGE: ccode = "nl"; break;
13232 case UNLE: ccode = "ng"; break;
13233 default:
37409796 13234 gcc_unreachable ();
12a4e8c5 13235 }
f676971a
EC
13236
13237 /* Maybe we have a guess as to how likely the branch is.
94a54f47 13238 The old mnemonics don't have a way to specify this information. */
f4857b9b 13239 pred = "";
12a4e8c5
GK
13240 note = find_reg_note (insn, REG_BR_PROB, NULL_RTX);
13241 if (note != NULL_RTX)
13242 {
13243 /* PROB is the difference from 50%. */
13244 int prob = INTVAL (XEXP (note, 0)) - REG_BR_PROB_BASE / 2;
f4857b9b
AM
13245
13246 /* Only hint for highly probable/improbable branches on newer
13247 cpus as static prediction overrides processor dynamic
13248 prediction. For older cpus we may as well always hint, but
13249 assume not taken for branches that are very close to 50% as a
13250 mispredicted taken branch is more expensive than a
f676971a 13251 mispredicted not-taken branch. */
ec507f2d 13252 if (rs6000_always_hint
2c9e13f3
JH
13253 || (abs (prob) > REG_BR_PROB_BASE / 100 * 48
13254 && br_prob_note_reliable_p (note)))
f4857b9b
AM
13255 {
13256 if (abs (prob) > REG_BR_PROB_BASE / 20
13257 && ((prob > 0) ^ need_longbranch))
c4ad648e 13258 pred = "+";
f4857b9b
AM
13259 else
13260 pred = "-";
13261 }
12a4e8c5 13262 }
12a4e8c5
GK
13263
13264 if (label == NULL)
94a54f47 13265 s += sprintf (s, "{b%sr|b%slr%s} ", ccode, ccode, pred);
12a4e8c5 13266 else
94a54f47 13267 s += sprintf (s, "{b%s|b%s%s} ", ccode, ccode, pred);
12a4e8c5 13268
37c67319 13269 /* We need to escape any '%' characters in the reg_names string.
a3c9585f 13270 Assume they'd only be the first character.... */
37c67319
GK
13271 if (reg_names[cc_regno + CR0_REGNO][0] == '%')
13272 *s++ = '%';
94a54f47 13273 s += sprintf (s, "%s", reg_names[cc_regno + CR0_REGNO]);
12a4e8c5
GK
13274
13275 if (label != NULL)
13276 {
13277 /* If the branch distance was too far, we may have to use an
13278 unconditional branch to go the distance. */
13279 if (need_longbranch)
44518ddd 13280 s += sprintf (s, ",$+8\n\tb %s", label);
12a4e8c5
GK
13281 else
13282 s += sprintf (s, ",%s", label);
13283 }
13284
13285 return string;
13286}
50a0b056 13287
64022b5d 13288/* Return the string to flip the GT bit on a CR. */
423c1189 13289char *
64022b5d 13290output_e500_flip_gt_bit (rtx dst, rtx src)
423c1189
AH
13291{
13292 static char string[64];
13293 int a, b;
13294
37409796
NS
13295 gcc_assert (GET_CODE (dst) == REG && CR_REGNO_P (REGNO (dst))
13296 && GET_CODE (src) == REG && CR_REGNO_P (REGNO (src)));
423c1189 13297
64022b5d
AH
13298 /* GT bit. */
13299 a = 4 * (REGNO (dst) - CR0_REGNO) + 1;
13300 b = 4 * (REGNO (src) - CR0_REGNO) + 1;
423c1189
AH
13301
13302 sprintf (string, "crnot %d,%d", a, b);
13303 return string;
13304}
13305
21213b4c
DP
13306/* Return insn index for the vector compare instruction for given CODE,
13307 and DEST_MODE, OP_MODE. Return INSN_NOT_AVAILABLE if valid insn is
13308 not available. */
13309
13310static int
94ff898d 13311get_vec_cmp_insn (enum rtx_code code,
21213b4c
DP
13312 enum machine_mode dest_mode,
13313 enum machine_mode op_mode)
13314{
13315 if (!TARGET_ALTIVEC)
13316 return INSN_NOT_AVAILABLE;
13317
13318 switch (code)
13319 {
13320 case EQ:
13321 if (dest_mode == V16QImode && op_mode == V16QImode)
13322 return UNSPEC_VCMPEQUB;
13323 if (dest_mode == V8HImode && op_mode == V8HImode)
13324 return UNSPEC_VCMPEQUH;
13325 if (dest_mode == V4SImode && op_mode == V4SImode)
13326 return UNSPEC_VCMPEQUW;
13327 if (dest_mode == V4SImode && op_mode == V4SFmode)
13328 return UNSPEC_VCMPEQFP;
13329 break;
13330 case GE:
13331 if (dest_mode == V4SImode && op_mode == V4SFmode)
13332 return UNSPEC_VCMPGEFP;
13333 case GT:
13334 if (dest_mode == V16QImode && op_mode == V16QImode)
13335 return UNSPEC_VCMPGTSB;
13336 if (dest_mode == V8HImode && op_mode == V8HImode)
13337 return UNSPEC_VCMPGTSH;
13338 if (dest_mode == V4SImode && op_mode == V4SImode)
13339 return UNSPEC_VCMPGTSW;
13340 if (dest_mode == V4SImode && op_mode == V4SFmode)
13341 return UNSPEC_VCMPGTFP;
13342 break;
13343 case GTU:
13344 if (dest_mode == V16QImode && op_mode == V16QImode)
13345 return UNSPEC_VCMPGTUB;
13346 if (dest_mode == V8HImode && op_mode == V8HImode)
13347 return UNSPEC_VCMPGTUH;
13348 if (dest_mode == V4SImode && op_mode == V4SImode)
13349 return UNSPEC_VCMPGTUW;
13350 break;
13351 default:
13352 break;
13353 }
13354 return INSN_NOT_AVAILABLE;
13355}
13356
13357/* Emit vector compare for operands OP0 and OP1 using code RCODE.
13358 DMODE is expected destination mode. This is a recursive function. */
13359
13360static rtx
13361rs6000_emit_vector_compare (enum rtx_code rcode,
13362 rtx op0, rtx op1,
13363 enum machine_mode dmode)
13364{
13365 int vec_cmp_insn;
13366 rtx mask;
13367 enum machine_mode dest_mode;
13368 enum machine_mode op_mode = GET_MODE (op1);
13369
37409796
NS
13370 gcc_assert (TARGET_ALTIVEC);
13371 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
21213b4c
DP
13372
13373 /* Floating point vector compare instructions uses destination V4SImode.
13374 Move destination to appropriate mode later. */
13375 if (dmode == V4SFmode)
13376 dest_mode = V4SImode;
13377 else
13378 dest_mode = dmode;
13379
13380 mask = gen_reg_rtx (dest_mode);
13381 vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
13382
13383 if (vec_cmp_insn == INSN_NOT_AVAILABLE)
13384 {
13385 bool swap_operands = false;
13386 bool try_again = false;
13387 switch (rcode)
13388 {
13389 case LT:
13390 rcode = GT;
13391 swap_operands = true;
13392 try_again = true;
13393 break;
13394 case LTU:
13395 rcode = GTU;
13396 swap_operands = true;
13397 try_again = true;
13398 break;
13399 case NE:
370df7db
JC
13400 case UNLE:
13401 case UNLT:
13402 case UNGE:
13403 case UNGT:
13404 /* Invert condition and try again.
13405 e.g., A != B becomes ~(A==B). */
21213b4c 13406 {
370df7db 13407 enum rtx_code rev_code;
21213b4c 13408 enum insn_code nor_code;
d1123cde 13409 rtx eq_rtx;
370df7db
JC
13410
13411 rev_code = reverse_condition_maybe_unordered (rcode);
d1123cde
MS
13412 eq_rtx = rs6000_emit_vector_compare (rev_code, op0, op1,
13413 dest_mode);
94ff898d 13414
166cdb08 13415 nor_code = optab_handler (one_cmpl_optab, (int)dest_mode)->insn_code;
37409796 13416 gcc_assert (nor_code != CODE_FOR_nothing);
21213b4c
DP
13417 emit_insn (GEN_FCN (nor_code) (mask, eq_rtx));
13418
13419 if (dmode != dest_mode)
13420 {
13421 rtx temp = gen_reg_rtx (dest_mode);
13422 convert_move (temp, mask, 0);
13423 return temp;
13424 }
13425 return mask;
13426 }
13427 break;
13428 case GE:
13429 case GEU:
13430 case LE:
13431 case LEU:
13432 /* Try GT/GTU/LT/LTU OR EQ */
13433 {
13434 rtx c_rtx, eq_rtx;
13435 enum insn_code ior_code;
13436 enum rtx_code new_code;
13437
37409796
NS
13438 switch (rcode)
13439 {
13440 case GE:
13441 new_code = GT;
13442 break;
13443
13444 case GEU:
13445 new_code = GTU;
13446 break;
13447
13448 case LE:
13449 new_code = LT;
13450 break;
13451
13452 case LEU:
13453 new_code = LTU;
13454 break;
13455
13456 default:
13457 gcc_unreachable ();
13458 }
21213b4c
DP
13459
13460 c_rtx = rs6000_emit_vector_compare (new_code,
13461 op0, op1, dest_mode);
13462 eq_rtx = rs6000_emit_vector_compare (EQ, op0, op1,
13463 dest_mode);
13464
166cdb08 13465 ior_code = optab_handler (ior_optab, (int)dest_mode)->insn_code;
37409796 13466 gcc_assert (ior_code != CODE_FOR_nothing);
21213b4c
DP
13467 emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
13468 if (dmode != dest_mode)
13469 {
13470 rtx temp = gen_reg_rtx (dest_mode);
13471 convert_move (temp, mask, 0);
13472 return temp;
13473 }
13474 return mask;
13475 }
13476 break;
13477 default:
37409796 13478 gcc_unreachable ();
21213b4c
DP
13479 }
13480
13481 if (try_again)
13482 {
13483 vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
37409796
NS
13484 /* You only get two chances. */
13485 gcc_assert (vec_cmp_insn != INSN_NOT_AVAILABLE);
21213b4c
DP
13486 }
13487
13488 if (swap_operands)
13489 {
13490 rtx tmp;
13491 tmp = op0;
13492 op0 = op1;
13493 op1 = tmp;
13494 }
13495 }
13496
915167f5
GK
13497 emit_insn (gen_rtx_SET (VOIDmode, mask,
13498 gen_rtx_UNSPEC (dest_mode,
13499 gen_rtvec (2, op0, op1),
13500 vec_cmp_insn)));
21213b4c
DP
13501 if (dmode != dest_mode)
13502 {
13503 rtx temp = gen_reg_rtx (dest_mode);
13504 convert_move (temp, mask, 0);
13505 return temp;
13506 }
13507 return mask;
13508}
13509
13510/* Return vector select instruction for MODE. Return INSN_NOT_AVAILABLE, if
13511 valid insn doesn exist for given mode. */
13512
13513static int
13514get_vsel_insn (enum machine_mode mode)
13515{
13516 switch (mode)
13517 {
13518 case V4SImode:
13519 return UNSPEC_VSEL4SI;
13520 break;
13521 case V4SFmode:
13522 return UNSPEC_VSEL4SF;
13523 break;
13524 case V8HImode:
13525 return UNSPEC_VSEL8HI;
13526 break;
13527 case V16QImode:
13528 return UNSPEC_VSEL16QI;
13529 break;
13530 default:
13531 return INSN_NOT_AVAILABLE;
13532 break;
13533 }
13534 return INSN_NOT_AVAILABLE;
13535}
13536
13537/* Emit vector select insn where DEST is destination using
13538 operands OP1, OP2 and MASK. */
13539
13540static void
13541rs6000_emit_vector_select (rtx dest, rtx op1, rtx op2, rtx mask)
13542{
13543 rtx t, temp;
13544 enum machine_mode dest_mode = GET_MODE (dest);
13545 int vsel_insn_index = get_vsel_insn (GET_MODE (dest));
13546
13547 temp = gen_reg_rtx (dest_mode);
94ff898d 13548
bb8df8a6 13549 /* For each vector element, select op1 when mask is 1 otherwise
19f1ebc7 13550 select op2. */
915167f5
GK
13551 t = gen_rtx_SET (VOIDmode, temp,
13552 gen_rtx_UNSPEC (dest_mode,
13553 gen_rtvec (3, op2, op1, mask),
13554 vsel_insn_index));
21213b4c
DP
13555 emit_insn (t);
13556 emit_move_insn (dest, temp);
13557 return;
13558}
13559
94ff898d 13560/* Emit vector conditional expression.
21213b4c
DP
13561 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
13562 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
13563
13564int
13565rs6000_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
13566 rtx cond, rtx cc_op0, rtx cc_op1)
13567{
13568 enum machine_mode dest_mode = GET_MODE (dest);
13569 enum rtx_code rcode = GET_CODE (cond);
13570 rtx mask;
13571
13572 if (!TARGET_ALTIVEC)
13573 return 0;
13574
13575 /* Get the vector mask for the given relational operations. */
13576 mask = rs6000_emit_vector_compare (rcode, cc_op0, cc_op1, dest_mode);
13577
13578 rs6000_emit_vector_select (dest, op1, op2, mask);
13579
13580 return 1;
13581}
13582
50a0b056
GK
13583/* Emit a conditional move: move TRUE_COND to DEST if OP of the
13584 operands of the last comparison is nonzero/true, FALSE_COND if it
13585 is zero/false. Return 0 if the hardware has no such operation. */
a4f6c312 13586
50a0b056 13587int
a2369ed3 13588rs6000_emit_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
50a0b056
GK
13589{
13590 enum rtx_code code = GET_CODE (op);
13591 rtx op0 = rs6000_compare_op0;
13592 rtx op1 = rs6000_compare_op1;
13593 REAL_VALUE_TYPE c1;
3148ad6d
DJ
13594 enum machine_mode compare_mode = GET_MODE (op0);
13595 enum machine_mode result_mode = GET_MODE (dest);
50a0b056 13596 rtx temp;
add2402e 13597 bool is_against_zero;
50a0b056 13598
a3c9585f 13599 /* These modes should always match. */
a3170dc6
AH
13600 if (GET_MODE (op1) != compare_mode
13601 /* In the isel case however, we can use a compare immediate, so
13602 op1 may be a small constant. */
13603 && (!TARGET_ISEL || !short_cint_operand (op1, VOIDmode)))
3148ad6d 13604 return 0;
178c3eff 13605 if (GET_MODE (true_cond) != result_mode)
3148ad6d 13606 return 0;
178c3eff 13607 if (GET_MODE (false_cond) != result_mode)
3148ad6d
DJ
13608 return 0;
13609
50a0b056 13610 /* First, work out if the hardware can do this at all, or
a3c9585f 13611 if it's too slow.... */
50a0b056 13612 if (! rs6000_compare_fp_p)
a3170dc6
AH
13613 {
13614 if (TARGET_ISEL)
13615 return rs6000_emit_int_cmove (dest, op, true_cond, false_cond);
13616 return 0;
13617 }
8ef65e3d 13618 else if (TARGET_HARD_FLOAT && !TARGET_FPRS
ebb109ad 13619 && SCALAR_FLOAT_MODE_P (compare_mode))
fef98bf2 13620 return 0;
50a0b056 13621
add2402e 13622 is_against_zero = op1 == CONST0_RTX (compare_mode);
94ff898d 13623
add2402e
GK
13624 /* A floating-point subtract might overflow, underflow, or produce
13625 an inexact result, thus changing the floating-point flags, so it
13626 can't be generated if we care about that. It's safe if one side
13627 of the construct is zero, since then no subtract will be
13628 generated. */
ebb109ad 13629 if (SCALAR_FLOAT_MODE_P (compare_mode)
add2402e
GK
13630 && flag_trapping_math && ! is_against_zero)
13631 return 0;
13632
50a0b056
GK
13633 /* Eliminate half of the comparisons by switching operands, this
13634 makes the remaining code simpler. */
13635 if (code == UNLT || code == UNGT || code == UNORDERED || code == NE
bc9ec0e0 13636 || code == LTGT || code == LT || code == UNLE)
50a0b056
GK
13637 {
13638 code = reverse_condition_maybe_unordered (code);
13639 temp = true_cond;
13640 true_cond = false_cond;
13641 false_cond = temp;
13642 }
13643
13644 /* UNEQ and LTGT take four instructions for a comparison with zero,
13645 it'll probably be faster to use a branch here too. */
bc9ec0e0 13646 if (code == UNEQ && HONOR_NANS (compare_mode))
50a0b056 13647 return 0;
f676971a 13648
50a0b056
GK
13649 if (GET_CODE (op1) == CONST_DOUBLE)
13650 REAL_VALUE_FROM_CONST_DOUBLE (c1, op1);
f676971a 13651
b6d08ca1 13652 /* We're going to try to implement comparisons by performing
50a0b056
GK
13653 a subtract, then comparing against zero. Unfortunately,
13654 Inf - Inf is NaN which is not zero, and so if we don't
27d30956 13655 know that the operand is finite and the comparison
50a0b056 13656 would treat EQ different to UNORDERED, we can't do it. */
bc9ec0e0 13657 if (HONOR_INFINITIES (compare_mode)
50a0b056 13658 && code != GT && code != UNGE
045572c7 13659 && (GET_CODE (op1) != CONST_DOUBLE || real_isinf (&c1))
50a0b056
GK
13660 /* Constructs of the form (a OP b ? a : b) are safe. */
13661 && ((! rtx_equal_p (op0, false_cond) && ! rtx_equal_p (op1, false_cond))
f676971a 13662 || (! rtx_equal_p (op0, true_cond)
50a0b056
GK
13663 && ! rtx_equal_p (op1, true_cond))))
13664 return 0;
add2402e 13665
50a0b056
GK
13666 /* At this point we know we can use fsel. */
13667
13668 /* Reduce the comparison to a comparison against zero. */
add2402e
GK
13669 if (! is_against_zero)
13670 {
13671 temp = gen_reg_rtx (compare_mode);
13672 emit_insn (gen_rtx_SET (VOIDmode, temp,
13673 gen_rtx_MINUS (compare_mode, op0, op1)));
13674 op0 = temp;
13675 op1 = CONST0_RTX (compare_mode);
13676 }
50a0b056
GK
13677
13678 /* If we don't care about NaNs we can reduce some of the comparisons
13679 down to faster ones. */
bc9ec0e0 13680 if (! HONOR_NANS (compare_mode))
50a0b056
GK
13681 switch (code)
13682 {
13683 case GT:
13684 code = LE;
13685 temp = true_cond;
13686 true_cond = false_cond;
13687 false_cond = temp;
13688 break;
13689 case UNGE:
13690 code = GE;
13691 break;
13692 case UNEQ:
13693 code = EQ;
13694 break;
13695 default:
13696 break;
13697 }
13698
13699 /* Now, reduce everything down to a GE. */
13700 switch (code)
13701 {
13702 case GE:
13703 break;
13704
13705 case LE:
3148ad6d
DJ
13706 temp = gen_reg_rtx (compare_mode);
13707 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
50a0b056
GK
13708 op0 = temp;
13709 break;
13710
13711 case ORDERED:
3148ad6d
DJ
13712 temp = gen_reg_rtx (compare_mode);
13713 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_ABS (compare_mode, op0)));
50a0b056
GK
13714 op0 = temp;
13715 break;
13716
13717 case EQ:
3148ad6d 13718 temp = gen_reg_rtx (compare_mode);
f676971a 13719 emit_insn (gen_rtx_SET (VOIDmode, temp,
3148ad6d
DJ
13720 gen_rtx_NEG (compare_mode,
13721 gen_rtx_ABS (compare_mode, op0))));
50a0b056
GK
13722 op0 = temp;
13723 break;
13724
13725 case UNGE:
bc9ec0e0 13726 /* a UNGE 0 <-> (a GE 0 || -a UNLT 0) */
3148ad6d 13727 temp = gen_reg_rtx (result_mode);
50a0b056 13728 emit_insn (gen_rtx_SET (VOIDmode, temp,
3148ad6d 13729 gen_rtx_IF_THEN_ELSE (result_mode,
50a0b056
GK
13730 gen_rtx_GE (VOIDmode,
13731 op0, op1),
13732 true_cond, false_cond)));
bc9ec0e0
GK
13733 false_cond = true_cond;
13734 true_cond = temp;
50a0b056 13735
3148ad6d
DJ
13736 temp = gen_reg_rtx (compare_mode);
13737 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
50a0b056
GK
13738 op0 = temp;
13739 break;
13740
13741 case GT:
bc9ec0e0 13742 /* a GT 0 <-> (a GE 0 && -a UNLT 0) */
3148ad6d 13743 temp = gen_reg_rtx (result_mode);
50a0b056 13744 emit_insn (gen_rtx_SET (VOIDmode, temp,
f676971a 13745 gen_rtx_IF_THEN_ELSE (result_mode,
50a0b056
GK
13746 gen_rtx_GE (VOIDmode,
13747 op0, op1),
13748 true_cond, false_cond)));
bc9ec0e0
GK
13749 true_cond = false_cond;
13750 false_cond = temp;
50a0b056 13751
3148ad6d
DJ
13752 temp = gen_reg_rtx (compare_mode);
13753 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
50a0b056
GK
13754 op0 = temp;
13755 break;
13756
13757 default:
37409796 13758 gcc_unreachable ();
50a0b056
GK
13759 }
13760
13761 emit_insn (gen_rtx_SET (VOIDmode, dest,
3148ad6d 13762 gen_rtx_IF_THEN_ELSE (result_mode,
50a0b056
GK
13763 gen_rtx_GE (VOIDmode,
13764 op0, op1),
13765 true_cond, false_cond)));
13766 return 1;
13767}
13768
a3170dc6
AH
13769/* Same as above, but for ints (isel). */
13770
13771static int
a2369ed3 13772rs6000_emit_int_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
a3170dc6
AH
13773{
13774 rtx condition_rtx, cr;
13775
13776 /* All isel implementations thus far are 32-bits. */
13777 if (GET_MODE (rs6000_compare_op0) != SImode)
13778 return 0;
13779
13780 /* We still have to do the compare, because isel doesn't do a
13781 compare, it just looks at the CRx bits set by a previous compare
13782 instruction. */
13783 condition_rtx = rs6000_generate_compare (GET_CODE (op));
13784 cr = XEXP (condition_rtx, 0);
13785
13786 if (GET_MODE (cr) == CCmode)
13787 emit_insn (gen_isel_signed (dest, condition_rtx,
13788 true_cond, false_cond, cr));
13789 else
13790 emit_insn (gen_isel_unsigned (dest, condition_rtx,
13791 true_cond, false_cond, cr));
13792
13793 return 1;
13794}
13795
13796const char *
a2369ed3 13797output_isel (rtx *operands)
a3170dc6
AH
13798{
13799 enum rtx_code code;
13800
13801 code = GET_CODE (operands[1]);
13802 if (code == GE || code == GEU || code == LE || code == LEU || code == NE)
13803 {
13804 PUT_CODE (operands[1], reverse_condition (code));
13805 return "isel %0,%3,%2,%j1";
13806 }
13807 else
13808 return "isel %0,%2,%3,%j1";
13809}
13810
50a0b056 13811void
a2369ed3 13812rs6000_emit_minmax (rtx dest, enum rtx_code code, rtx op0, rtx op1)
50a0b056
GK
13813{
13814 enum machine_mode mode = GET_MODE (op0);
5dc8d536 13815 enum rtx_code c;
50a0b056 13816 rtx target;
5dc8d536
AH
13817
13818 if (code == SMAX || code == SMIN)
13819 c = GE;
13820 else
13821 c = GEU;
13822
50a0b056 13823 if (code == SMAX || code == UMAX)
f676971a 13824 target = emit_conditional_move (dest, c, op0, op1, mode,
50a0b056
GK
13825 op0, op1, mode, 0);
13826 else
f676971a 13827 target = emit_conditional_move (dest, c, op0, op1, mode,
50a0b056 13828 op1, op0, mode, 0);
37409796 13829 gcc_assert (target);
50a0b056
GK
13830 if (target != dest)
13831 emit_move_insn (dest, target);
13832}
46c07df8 13833
915167f5
GK
13834/* Emit instructions to perform a load-reserved/store-conditional operation.
13835 The operation performed is an atomic
13836 (set M (CODE:MODE M OP))
13837 If not NULL, BEFORE is atomically set to M before the operation, and
13838 AFTER is set to M after the operation (that is, (CODE:MODE M OP)).
bb8df8a6 13839 If SYNC_P then a memory barrier is emitted before the operation.
915167f5
GK
13840 Either OP or M may be wrapped in a NOT operation. */
13841
13842void
13843rs6000_emit_sync (enum rtx_code code, enum machine_mode mode,
13844 rtx m, rtx op, rtx before_param, rtx after_param,
13845 bool sync_p)
13846{
13847 enum machine_mode used_mode;
13848 rtx the_op, set_before, set_after, set_atomic, cc_scratch, before, after;
13849 rtx used_m;
13850 rtvec vec;
13851 HOST_WIDE_INT imask = GET_MODE_MASK (mode);
13852 rtx shift = NULL_RTX;
bb8df8a6 13853
915167f5 13854 if (sync_p)
a3cb4b82 13855 emit_insn (gen_lwsync ());
bb8df8a6 13856
915167f5
GK
13857 used_m = m;
13858
13859 /* If this is smaller than SImode, we'll have to use SImode with
13860 adjustments. */
13861 if (mode == QImode || mode == HImode)
13862 {
13863 rtx newop, oldop;
13864
13865 if (MEM_ALIGN (used_m) >= 32)
13866 {
13867 int ishift = 0;
13868 if (BYTES_BIG_ENDIAN)
13869 ishift = GET_MODE_BITSIZE (SImode) - GET_MODE_BITSIZE (mode);
bb8df8a6 13870
915167f5 13871 shift = GEN_INT (ishift);
c75c6d11 13872 used_m = change_address (used_m, SImode, 0);
915167f5
GK
13873 }
13874 else
13875 {
13876 rtx addrSI, aligned_addr;
a9c9d3fa 13877 int shift_mask = mode == QImode ? 0x18 : 0x10;
bb8df8a6 13878
c75c6d11
JJ
13879 addrSI = gen_lowpart_common (SImode,
13880 force_reg (Pmode, XEXP (used_m, 0)));
13881 addrSI = force_reg (SImode, addrSI);
915167f5
GK
13882 shift = gen_reg_rtx (SImode);
13883
13884 emit_insn (gen_rlwinm (shift, addrSI, GEN_INT (3),
a9c9d3fa
GK
13885 GEN_INT (shift_mask)));
13886 emit_insn (gen_xorsi3 (shift, shift, GEN_INT (shift_mask)));
915167f5
GK
13887
13888 aligned_addr = expand_binop (Pmode, and_optab,
13889 XEXP (used_m, 0),
13890 GEN_INT (-4), NULL_RTX,
13891 1, OPTAB_LIB_WIDEN);
13892 used_m = change_address (used_m, SImode, aligned_addr);
13893 set_mem_align (used_m, 32);
915167f5 13894 }
c75c6d11
JJ
13895 /* It's safe to keep the old alias set of USED_M, because
13896 the operation is atomic and only affects the original
13897 USED_M. */
f66f9865 13898 m = used_m;
915167f5
GK
13899
13900 if (GET_CODE (op) == NOT)
13901 {
13902 oldop = lowpart_subreg (SImode, XEXP (op, 0), mode);
13903 oldop = gen_rtx_NOT (SImode, oldop);
13904 }
13905 else
13906 oldop = lowpart_subreg (SImode, op, mode);
9f0076e5 13907
915167f5
GK
13908 switch (code)
13909 {
13910 case IOR:
13911 case XOR:
13912 newop = expand_binop (SImode, and_optab,
13913 oldop, GEN_INT (imask), NULL_RTX,
13914 1, OPTAB_LIB_WIDEN);
13915 emit_insn (gen_ashlsi3 (newop, newop, shift));
13916 break;
13917
f66f9865
DE
13918 case NOT: /* NAND */
13919 newop = expand_binop (SImode, ior_optab,
13920 oldop, GEN_INT (~imask), NULL_RTX,
13921 1, OPTAB_LIB_WIDEN);
13922 emit_insn (gen_rotlsi3 (newop, newop, shift));
13923 break;
13924
915167f5
GK
13925 case AND:
13926 newop = expand_binop (SImode, ior_optab,
13927 oldop, GEN_INT (~imask), NULL_RTX,
13928 1, OPTAB_LIB_WIDEN);
a9c9d3fa 13929 emit_insn (gen_rotlsi3 (newop, newop, shift));
915167f5
GK
13930 break;
13931
13932 case PLUS:
9f0076e5 13933 case MINUS:
915167f5
GK
13934 {
13935 rtx mask;
bb8df8a6 13936
915167f5
GK
13937 newop = expand_binop (SImode, and_optab,
13938 oldop, GEN_INT (imask), NULL_RTX,
13939 1, OPTAB_LIB_WIDEN);
13940 emit_insn (gen_ashlsi3 (newop, newop, shift));
13941
13942 mask = gen_reg_rtx (SImode);
13943 emit_move_insn (mask, GEN_INT (imask));
13944 emit_insn (gen_ashlsi3 (mask, mask, shift));
13945
9f0076e5
DE
13946 if (code == PLUS)
13947 newop = gen_rtx_PLUS (SImode, m, newop);
13948 else
13949 newop = gen_rtx_MINUS (SImode, m, newop);
13950 newop = gen_rtx_AND (SImode, newop, mask);
915167f5
GK
13951 newop = gen_rtx_IOR (SImode, newop,
13952 gen_rtx_AND (SImode,
13953 gen_rtx_NOT (SImode, mask),
13954 m));
13955 break;
13956 }
13957
13958 default:
13959 gcc_unreachable ();
13960 }
13961
13962 op = newop;
13963 used_mode = SImode;
13964 before = gen_reg_rtx (used_mode);
13965 after = gen_reg_rtx (used_mode);
13966 }
13967 else
13968 {
13969 used_mode = mode;
13970 before = before_param;
13971 after = after_param;
13972
13973 if (before == NULL_RTX)
13974 before = gen_reg_rtx (used_mode);
13975 if (after == NULL_RTX)
13976 after = gen_reg_rtx (used_mode);
13977 }
bb8df8a6 13978
f66f9865 13979 if ((code == PLUS || code == MINUS)
9f0076e5 13980 && used_mode != mode)
915167f5
GK
13981 the_op = op; /* Computed above. */
13982 else if (GET_CODE (op) == NOT && GET_CODE (m) != NOT)
13983 the_op = gen_rtx_fmt_ee (code, used_mode, op, m);
f66f9865
DE
13984 else if (code == NOT)
13985 the_op = gen_rtx_fmt_ee (IOR, used_mode,
13986 gen_rtx_NOT (used_mode, m),
13987 gen_rtx_NOT (used_mode, op));
915167f5
GK
13988 else
13989 the_op = gen_rtx_fmt_ee (code, used_mode, m, op);
13990
13991 set_after = gen_rtx_SET (VOIDmode, after, the_op);
13992 set_before = gen_rtx_SET (VOIDmode, before, used_m);
13993 set_atomic = gen_rtx_SET (VOIDmode, used_m,
9f0076e5
DE
13994 gen_rtx_UNSPEC (used_mode,
13995 gen_rtvec (1, the_op),
13996 UNSPEC_SYNC_OP));
915167f5
GK
13997 cc_scratch = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (CCmode));
13998
9f0076e5 13999 if ((code == PLUS || code == MINUS) && used_mode != mode)
915167f5
GK
14000 vec = gen_rtvec (5, set_after, set_before, set_atomic, cc_scratch,
14001 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (SImode)));
14002 else
14003 vec = gen_rtvec (4, set_after, set_before, set_atomic, cc_scratch);
14004 emit_insn (gen_rtx_PARALLEL (VOIDmode, vec));
14005
14006 /* Shift and mask the return values properly. */
14007 if (used_mode != mode && before_param)
14008 {
14009 emit_insn (gen_lshrsi3 (before, before, shift));
14010 convert_move (before_param, before, 1);
14011 }
14012
14013 if (used_mode != mode && after_param)
14014 {
14015 emit_insn (gen_lshrsi3 (after, after, shift));
14016 convert_move (after_param, after, 1);
14017 }
14018
14019 /* The previous sequence will end with a branch that's dependent on
14020 the conditional store, so placing an isync will ensure that no
14021 other instructions (especially, no load or store instructions)
14022 can start before the atomic operation completes. */
14023 if (sync_p)
14024 emit_insn (gen_isync ());
14025}
14026
b52110d4
DE
14027/* A subroutine of the atomic operation splitters. Jump to LABEL if
14028 COND is true. Mark the jump as unlikely to be taken. */
14029
14030static void
14031emit_unlikely_jump (rtx cond, rtx label)
14032{
14033 rtx very_unlikely = GEN_INT (REG_BR_PROB_BASE / 100 - 1);
14034 rtx x;
14035
14036 x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
14037 x = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, x));
bbbbb16a 14038 add_reg_note (x, REG_BR_PROB, very_unlikely);
b52110d4
DE
14039}
14040
14041/* A subroutine of the atomic operation splitters. Emit a load-locked
14042 instruction in MODE. */
14043
14044static void
14045emit_load_locked (enum machine_mode mode, rtx reg, rtx mem)
14046{
14047 rtx (*fn) (rtx, rtx) = NULL;
14048 if (mode == SImode)
14049 fn = gen_load_locked_si;
14050 else if (mode == DImode)
14051 fn = gen_load_locked_di;
14052 emit_insn (fn (reg, mem));
14053}
14054
14055/* A subroutine of the atomic operation splitters. Emit a store-conditional
14056 instruction in MODE. */
14057
14058static void
14059emit_store_conditional (enum machine_mode mode, rtx res, rtx mem, rtx val)
14060{
14061 rtx (*fn) (rtx, rtx, rtx) = NULL;
14062 if (mode == SImode)
14063 fn = gen_store_conditional_si;
14064 else if (mode == DImode)
14065 fn = gen_store_conditional_di;
14066
9f0076e5 14067 /* Emit sync before stwcx. to address PPC405 Erratum. */
b52110d4
DE
14068 if (PPC405_ERRATUM77)
14069 emit_insn (gen_memory_barrier ());
14070
14071 emit_insn (fn (res, mem, val));
14072}
14073
ea2c620c 14074/* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
bb8df8a6 14075 to perform. MEM is the memory on which to operate. VAL is the second
9f0076e5
DE
14076 operand of the binary operator. BEFORE and AFTER are optional locations to
14077 return the value of MEM either before of after the operation. SCRATCH is
14078 a scratch register. */
14079
14080void
14081rs6000_split_atomic_op (enum rtx_code code, rtx mem, rtx val,
14082 rtx before, rtx after, rtx scratch)
14083{
14084 enum machine_mode mode = GET_MODE (mem);
14085 rtx label, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14086
a3cb4b82 14087 emit_insn (gen_lwsync ());
9f0076e5
DE
14088
14089 label = gen_label_rtx ();
14090 emit_label (label);
14091 label = gen_rtx_LABEL_REF (VOIDmode, label);
14092
14093 if (before == NULL_RTX)
14094 before = scratch;
14095 emit_load_locked (mode, before, mem);
14096
14097 if (code == NOT)
f66f9865
DE
14098 x = gen_rtx_IOR (mode,
14099 gen_rtx_NOT (mode, before),
14100 gen_rtx_NOT (mode, val));
9f0076e5
DE
14101 else if (code == AND)
14102 x = gen_rtx_UNSPEC (mode, gen_rtvec (2, before, val), UNSPEC_AND);
14103 else
14104 x = gen_rtx_fmt_ee (code, mode, before, val);
14105
14106 if (after != NULL_RTX)
14107 emit_insn (gen_rtx_SET (VOIDmode, after, copy_rtx (x)));
14108 emit_insn (gen_rtx_SET (VOIDmode, scratch, x));
14109
14110 emit_store_conditional (mode, cond, mem, scratch);
14111
14112 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14113 emit_unlikely_jump (x, label);
14114
14115 emit_insn (gen_isync ());
14116}
14117
b52110d4
DE
14118/* Expand an atomic compare and swap operation. MEM is the memory on which
14119 to operate. OLDVAL is the old value to be compared. NEWVAL is the new
14120 value to be stored. SCRATCH is a scratch GPR. */
14121
14122void
14123rs6000_split_compare_and_swap (rtx retval, rtx mem, rtx oldval, rtx newval,
14124 rtx scratch)
14125{
14126 enum machine_mode mode = GET_MODE (mem);
14127 rtx label1, label2, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14128
a3cb4b82 14129 emit_insn (gen_lwsync ());
b52110d4
DE
14130
14131 label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14132 label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14133 emit_label (XEXP (label1, 0));
14134
14135 emit_load_locked (mode, retval, mem);
14136
14137 x = gen_rtx_COMPARE (CCmode, retval, oldval);
14138 emit_insn (gen_rtx_SET (VOIDmode, cond, x));
14139
14140 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14141 emit_unlikely_jump (x, label2);
14142
14143 emit_move_insn (scratch, newval);
14144 emit_store_conditional (mode, cond, mem, scratch);
14145
14146 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14147 emit_unlikely_jump (x, label1);
14148
14149 emit_insn (gen_isync ());
14150 emit_label (XEXP (label2, 0));
14151}
14152
14153/* Expand an atomic test and set operation. MEM is the memory on which
14154 to operate. VAL is the value set. SCRATCH is a scratch GPR. */
14155
14156void
14157rs6000_split_lock_test_and_set (rtx retval, rtx mem, rtx val, rtx scratch)
14158{
14159 enum machine_mode mode = GET_MODE (mem);
14160 rtx label, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14161
b52110d4
DE
14162 label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14163 emit_label (XEXP (label, 0));
14164
14165 emit_load_locked (mode, retval, mem);
14166 emit_move_insn (scratch, val);
14167 emit_store_conditional (mode, cond, mem, scratch);
14168
14169 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14170 emit_unlikely_jump (x, label);
14171
14172 emit_insn (gen_isync ());
14173}
14174
9fc75b97
DE
14175void
14176rs6000_expand_compare_and_swapqhi (rtx dst, rtx mem, rtx oldval, rtx newval)
14177{
14178 enum machine_mode mode = GET_MODE (mem);
14179 rtx addrSI, align, wdst, shift, mask;
14180 HOST_WIDE_INT shift_mask = mode == QImode ? 0x18 : 0x10;
14181 HOST_WIDE_INT imask = GET_MODE_MASK (mode);
14182
14183 /* Shift amount for subword relative to aligned word. */
4b49d9ce
AP
14184 addrSI = force_reg (GET_MODE (XEXP (mem, 0)), XEXP (mem, 0));
14185 addrSI = force_reg (SImode, gen_lowpart_common (SImode, addrSI));
9fc75b97
DE
14186 shift = gen_reg_rtx (SImode);
14187 emit_insn (gen_rlwinm (shift, addrSI, GEN_INT (3),
14188 GEN_INT (shift_mask)));
14189 emit_insn (gen_xorsi3 (shift, shift, GEN_INT (shift_mask)));
14190
14191 /* Shift and mask old value into position within word. */
14192 oldval = convert_modes (SImode, mode, oldval, 1);
14193 oldval = expand_binop (SImode, and_optab,
14194 oldval, GEN_INT (imask), NULL_RTX,
14195 1, OPTAB_LIB_WIDEN);
14196 emit_insn (gen_ashlsi3 (oldval, oldval, shift));
14197
14198 /* Shift and mask new value into position within word. */
14199 newval = convert_modes (SImode, mode, newval, 1);
14200 newval = expand_binop (SImode, and_optab,
14201 newval, GEN_INT (imask), NULL_RTX,
14202 1, OPTAB_LIB_WIDEN);
14203 emit_insn (gen_ashlsi3 (newval, newval, shift));
14204
14205 /* Mask for insertion. */
14206 mask = gen_reg_rtx (SImode);
14207 emit_move_insn (mask, GEN_INT (imask));
14208 emit_insn (gen_ashlsi3 (mask, mask, shift));
14209
14210 /* Address of aligned word containing subword. */
14211 align = expand_binop (Pmode, and_optab, XEXP (mem, 0), GEN_INT (-4),
14212 NULL_RTX, 1, OPTAB_LIB_WIDEN);
14213 mem = change_address (mem, SImode, align);
14214 set_mem_align (mem, 32);
14215 MEM_VOLATILE_P (mem) = 1;
14216
14217 wdst = gen_reg_rtx (SImode);
14218 emit_insn (gen_sync_compare_and_swapqhi_internal (wdst, mask,
14219 oldval, newval, mem));
14220
2725b75c
JJ
14221 /* Shift the result back. */
14222 emit_insn (gen_lshrsi3 (wdst, wdst, shift));
14223
9fc75b97
DE
14224 emit_move_insn (dst, gen_lowpart (mode, wdst));
14225}
14226
14227void
14228rs6000_split_compare_and_swapqhi (rtx dest, rtx mask,
14229 rtx oldval, rtx newval, rtx mem,
14230 rtx scratch)
14231{
14232 rtx label1, label2, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14233
a3cb4b82 14234 emit_insn (gen_lwsync ());
9fc75b97
DE
14235 label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14236 label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14237 emit_label (XEXP (label1, 0));
14238
14239 emit_load_locked (SImode, scratch, mem);
14240
14241 /* Mask subword within loaded value for comparison with oldval.
14242 Use UNSPEC_AND to avoid clobber.*/
14243 emit_insn (gen_rtx_SET (SImode, dest,
14244 gen_rtx_UNSPEC (SImode,
14245 gen_rtvec (2, scratch, mask),
14246 UNSPEC_AND)));
14247
14248 x = gen_rtx_COMPARE (CCmode, dest, oldval);
14249 emit_insn (gen_rtx_SET (VOIDmode, cond, x));
14250
14251 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14252 emit_unlikely_jump (x, label2);
14253
14254 /* Clear subword within loaded value for insertion of new value. */
14255 emit_insn (gen_rtx_SET (SImode, scratch,
14256 gen_rtx_AND (SImode,
14257 gen_rtx_NOT (SImode, mask), scratch)));
14258 emit_insn (gen_iorsi3 (scratch, scratch, newval));
14259 emit_store_conditional (SImode, cond, mem, scratch);
14260
14261 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14262 emit_unlikely_jump (x, label1);
14263
14264 emit_insn (gen_isync ());
14265 emit_label (XEXP (label2, 0));
14266}
14267
14268
b52110d4 14269 /* Emit instructions to move SRC to DST. Called by splitters for
a9baceb1
GK
14270 multi-register moves. It will emit at most one instruction for
14271 each register that is accessed; that is, it won't emit li/lis pairs
14272 (or equivalent for 64-bit code). One of SRC or DST must be a hard
14273 register. */
46c07df8 14274
46c07df8 14275void
a9baceb1 14276rs6000_split_multireg_move (rtx dst, rtx src)
46c07df8 14277{
a9baceb1
GK
14278 /* The register number of the first register being moved. */
14279 int reg;
14280 /* The mode that is to be moved. */
14281 enum machine_mode mode;
14282 /* The mode that the move is being done in, and its size. */
14283 enum machine_mode reg_mode;
14284 int reg_mode_size;
14285 /* The number of registers that will be moved. */
14286 int nregs;
14287
14288 reg = REG_P (dst) ? REGNO (dst) : REGNO (src);
14289 mode = GET_MODE (dst);
c8b622ff 14290 nregs = hard_regno_nregs[reg][mode];
a9baceb1 14291 if (FP_REGNO_P (reg))
696e45ba
ME
14292 reg_mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode :
14293 ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? DFmode : SFmode);
a9baceb1
GK
14294 else if (ALTIVEC_REGNO_P (reg))
14295 reg_mode = V16QImode;
4f011e1e
JM
14296 else if (TARGET_E500_DOUBLE && mode == TFmode)
14297 reg_mode = DFmode;
a9baceb1
GK
14298 else
14299 reg_mode = word_mode;
14300 reg_mode_size = GET_MODE_SIZE (reg_mode);
f676971a 14301
37409796 14302 gcc_assert (reg_mode_size * nregs == GET_MODE_SIZE (mode));
f676971a 14303
a9baceb1
GK
14304 if (REG_P (src) && REG_P (dst) && (REGNO (src) < REGNO (dst)))
14305 {
14306 /* Move register range backwards, if we might have destructive
14307 overlap. */
14308 int i;
14309 for (i = nregs - 1; i >= 0; i--)
f676971a 14310 emit_insn (gen_rtx_SET (VOIDmode,
a9baceb1
GK
14311 simplify_gen_subreg (reg_mode, dst, mode,
14312 i * reg_mode_size),
14313 simplify_gen_subreg (reg_mode, src, mode,
14314 i * reg_mode_size)));
14315 }
46c07df8
HP
14316 else
14317 {
a9baceb1
GK
14318 int i;
14319 int j = -1;
14320 bool used_update = false;
46c07df8 14321
c1e55850 14322 if (MEM_P (src) && INT_REGNO_P (reg))
c4ad648e
AM
14323 {
14324 rtx breg;
3a1f863f 14325
a9baceb1
GK
14326 if (GET_CODE (XEXP (src, 0)) == PRE_INC
14327 || GET_CODE (XEXP (src, 0)) == PRE_DEC)
3a1f863f
DE
14328 {
14329 rtx delta_rtx;
a9baceb1 14330 breg = XEXP (XEXP (src, 0), 0);
c4ad648e
AM
14331 delta_rtx = (GET_CODE (XEXP (src, 0)) == PRE_INC
14332 ? GEN_INT (GET_MODE_SIZE (GET_MODE (src)))
14333 : GEN_INT (-GET_MODE_SIZE (GET_MODE (src))));
a9baceb1
GK
14334 emit_insn (TARGET_32BIT
14335 ? gen_addsi3 (breg, breg, delta_rtx)
14336 : gen_adddi3 (breg, breg, delta_rtx));
13e2e16e 14337 src = replace_equiv_address (src, breg);
3a1f863f 14338 }
d04b6e6e 14339 else if (! rs6000_offsettable_memref_p (src))
c1e55850 14340 {
13e2e16e 14341 rtx basereg;
c1e55850
GK
14342 basereg = gen_rtx_REG (Pmode, reg);
14343 emit_insn (gen_rtx_SET (VOIDmode, basereg, XEXP (src, 0)));
13e2e16e 14344 src = replace_equiv_address (src, basereg);
c1e55850 14345 }
3a1f863f 14346
0423421f
AM
14347 breg = XEXP (src, 0);
14348 if (GET_CODE (breg) == PLUS || GET_CODE (breg) == LO_SUM)
14349 breg = XEXP (breg, 0);
14350
14351 /* If the base register we are using to address memory is
14352 also a destination reg, then change that register last. */
14353 if (REG_P (breg)
14354 && REGNO (breg) >= REGNO (dst)
3a1f863f
DE
14355 && REGNO (breg) < REGNO (dst) + nregs)
14356 j = REGNO (breg) - REGNO (dst);
c4ad648e 14357 }
46c07df8 14358
a9baceb1 14359 if (GET_CODE (dst) == MEM && INT_REGNO_P (reg))
3a1f863f
DE
14360 {
14361 rtx breg;
14362
a9baceb1
GK
14363 if (GET_CODE (XEXP (dst, 0)) == PRE_INC
14364 || GET_CODE (XEXP (dst, 0)) == PRE_DEC)
3a1f863f
DE
14365 {
14366 rtx delta_rtx;
a9baceb1 14367 breg = XEXP (XEXP (dst, 0), 0);
c4ad648e
AM
14368 delta_rtx = (GET_CODE (XEXP (dst, 0)) == PRE_INC
14369 ? GEN_INT (GET_MODE_SIZE (GET_MODE (dst)))
14370 : GEN_INT (-GET_MODE_SIZE (GET_MODE (dst))));
3a1f863f
DE
14371
14372 /* We have to update the breg before doing the store.
14373 Use store with update, if available. */
14374
14375 if (TARGET_UPDATE)
14376 {
a9baceb1 14377 rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
c4ad648e
AM
14378 emit_insn (TARGET_32BIT
14379 ? (TARGET_POWERPC64
14380 ? gen_movdi_si_update (breg, breg, delta_rtx, nsrc)
14381 : gen_movsi_update (breg, breg, delta_rtx, nsrc))
14382 : gen_movdi_di_update (breg, breg, delta_rtx, nsrc));
a9baceb1 14383 used_update = true;
3a1f863f
DE
14384 }
14385 else
a9baceb1
GK
14386 emit_insn (TARGET_32BIT
14387 ? gen_addsi3 (breg, breg, delta_rtx)
14388 : gen_adddi3 (breg, breg, delta_rtx));
13e2e16e 14389 dst = replace_equiv_address (dst, breg);
3a1f863f 14390 }
37409796 14391 else
d04b6e6e 14392 gcc_assert (rs6000_offsettable_memref_p (dst));
3a1f863f
DE
14393 }
14394
46c07df8 14395 for (i = 0; i < nregs; i++)
f676971a 14396 {
3a1f863f
DE
14397 /* Calculate index to next subword. */
14398 ++j;
f676971a 14399 if (j == nregs)
3a1f863f 14400 j = 0;
46c07df8 14401
112cdef5 14402 /* If compiler already emitted move of first word by
a9baceb1 14403 store with update, no need to do anything. */
3a1f863f 14404 if (j == 0 && used_update)
a9baceb1 14405 continue;
f676971a 14406
a9baceb1
GK
14407 emit_insn (gen_rtx_SET (VOIDmode,
14408 simplify_gen_subreg (reg_mode, dst, mode,
14409 j * reg_mode_size),
14410 simplify_gen_subreg (reg_mode, src, mode,
14411 j * reg_mode_size)));
3a1f863f 14412 }
46c07df8
HP
14413 }
14414}
14415
12a4e8c5 14416\f
a4f6c312
SS
14417/* This page contains routines that are used to determine what the
14418 function prologue and epilogue code will do and write them out. */
9878760c 14419
a4f6c312
SS
14420/* Return the first fixed-point register that is required to be
14421 saved. 32 if none. */
9878760c
RK
14422
14423int
863d938c 14424first_reg_to_save (void)
9878760c
RK
14425{
14426 int first_reg;
14427
14428 /* Find lowest numbered live register. */
14429 for (first_reg = 13; first_reg <= 31; first_reg++)
6fb5fa3c 14430 if (df_regs_ever_live_p (first_reg)
a38d360d 14431 && (! call_used_regs[first_reg]
1db02437 14432 || (first_reg == RS6000_PIC_OFFSET_TABLE_REGNUM
14f00213 14433 && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0)
b4db40bf
JJ
14434 || (DEFAULT_ABI == ABI_DARWIN && flag_pic)
14435 || (TARGET_TOC && TARGET_MINIMAL_TOC)))))
9878760c
RK
14436 break;
14437
ee890fe2 14438#if TARGET_MACHO
93638d7a 14439 if (flag_pic
e3b5732b 14440 && crtl->uses_pic_offset_table
93638d7a 14441 && first_reg > RS6000_PIC_OFFSET_TABLE_REGNUM)
1db02437 14442 return RS6000_PIC_OFFSET_TABLE_REGNUM;
ee890fe2
SS
14443#endif
14444
9878760c
RK
14445 return first_reg;
14446}
14447
14448/* Similar, for FP regs. */
14449
14450int
863d938c 14451first_fp_reg_to_save (void)
9878760c
RK
14452{
14453 int first_reg;
14454
14455 /* Find lowest numbered live register. */
14456 for (first_reg = 14 + 32; first_reg <= 63; first_reg++)
6fb5fa3c 14457 if (df_regs_ever_live_p (first_reg))
9878760c
RK
14458 break;
14459
14460 return first_reg;
14461}
00b960c7
AH
14462
14463/* Similar, for AltiVec regs. */
14464
14465static int
863d938c 14466first_altivec_reg_to_save (void)
00b960c7
AH
14467{
14468 int i;
14469
14470 /* Stack frame remains as is unless we are in AltiVec ABI. */
14471 if (! TARGET_ALTIVEC_ABI)
14472 return LAST_ALTIVEC_REGNO + 1;
14473
22fa69da 14474 /* On Darwin, the unwind routines are compiled without
982afe02 14475 TARGET_ALTIVEC, and use save_world to save/restore the
22fa69da 14476 altivec registers when necessary. */
e3b5732b 14477 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
22fa69da
GK
14478 && ! TARGET_ALTIVEC)
14479 return FIRST_ALTIVEC_REGNO + 20;
14480
00b960c7
AH
14481 /* Find lowest numbered live register. */
14482 for (i = FIRST_ALTIVEC_REGNO + 20; i <= LAST_ALTIVEC_REGNO; ++i)
6fb5fa3c 14483 if (df_regs_ever_live_p (i))
00b960c7
AH
14484 break;
14485
14486 return i;
14487}
14488
14489/* Return a 32-bit mask of the AltiVec registers we need to set in
14490 VRSAVE. Bit n of the return value is 1 if Vn is live. The MSB in
14491 the 32-bit word is 0. */
14492
14493static unsigned int
863d938c 14494compute_vrsave_mask (void)
00b960c7
AH
14495{
14496 unsigned int i, mask = 0;
14497
22fa69da 14498 /* On Darwin, the unwind routines are compiled without
982afe02 14499 TARGET_ALTIVEC, and use save_world to save/restore the
22fa69da 14500 call-saved altivec registers when necessary. */
e3b5732b 14501 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
22fa69da
GK
14502 && ! TARGET_ALTIVEC)
14503 mask |= 0xFFF;
14504
00b960c7
AH
14505 /* First, find out if we use _any_ altivec registers. */
14506 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
6fb5fa3c 14507 if (df_regs_ever_live_p (i))
00b960c7
AH
14508 mask |= ALTIVEC_REG_BIT (i);
14509
14510 if (mask == 0)
14511 return mask;
14512
00b960c7
AH
14513 /* Next, remove the argument registers from the set. These must
14514 be in the VRSAVE mask set by the caller, so we don't need to add
14515 them in again. More importantly, the mask we compute here is
14516 used to generate CLOBBERs in the set_vrsave insn, and we do not
14517 wish the argument registers to die. */
38173d38 14518 for (i = crtl->args.info.vregno - 1; i >= ALTIVEC_ARG_MIN_REG; --i)
00b960c7
AH
14519 mask &= ~ALTIVEC_REG_BIT (i);
14520
14521 /* Similarly, remove the return value from the set. */
14522 {
14523 bool yes = false;
14524 diddle_return_value (is_altivec_return_reg, &yes);
14525 if (yes)
14526 mask &= ~ALTIVEC_REG_BIT (ALTIVEC_ARG_RETURN);
14527 }
14528
14529 return mask;
14530}
14531
d62294f5 14532/* For a very restricted set of circumstances, we can cut down the
f57fe068
AM
14533 size of prologues/epilogues by calling our own save/restore-the-world
14534 routines. */
d62294f5
FJ
14535
14536static void
f57fe068
AM
14537compute_save_world_info (rs6000_stack_t *info_ptr)
14538{
14539 info_ptr->world_save_p = 1;
14540 info_ptr->world_save_p
14541 = (WORLD_SAVE_P (info_ptr)
14542 && DEFAULT_ABI == ABI_DARWIN
e3b5732b 14543 && ! (cfun->calls_setjmp && flag_exceptions)
f57fe068
AM
14544 && info_ptr->first_fp_reg_save == FIRST_SAVED_FP_REGNO
14545 && info_ptr->first_gp_reg_save == FIRST_SAVED_GP_REGNO
14546 && info_ptr->first_altivec_reg_save == FIRST_SAVED_ALTIVEC_REGNO
14547 && info_ptr->cr_save_p);
f676971a 14548
d62294f5
FJ
14549 /* This will not work in conjunction with sibcalls. Make sure there
14550 are none. (This check is expensive, but seldom executed.) */
f57fe068 14551 if (WORLD_SAVE_P (info_ptr))
f676971a 14552 {
d62294f5
FJ
14553 rtx insn;
14554 for ( insn = get_last_insn_anywhere (); insn; insn = PREV_INSN (insn))
c4ad648e
AM
14555 if ( GET_CODE (insn) == CALL_INSN
14556 && SIBLING_CALL_P (insn))
14557 {
14558 info_ptr->world_save_p = 0;
14559 break;
14560 }
d62294f5 14561 }
f676971a 14562
f57fe068 14563 if (WORLD_SAVE_P (info_ptr))
d62294f5
FJ
14564 {
14565 /* Even if we're not touching VRsave, make sure there's room on the
14566 stack for it, if it looks like we're calling SAVE_WORLD, which
c4ad648e 14567 will attempt to save it. */
d62294f5
FJ
14568 info_ptr->vrsave_size = 4;
14569
298ac1dd
AP
14570 /* If we are going to save the world, we need to save the link register too. */
14571 info_ptr->lr_save_p = 1;
14572
d62294f5
FJ
14573 /* "Save" the VRsave register too if we're saving the world. */
14574 if (info_ptr->vrsave_mask == 0)
c4ad648e 14575 info_ptr->vrsave_mask = compute_vrsave_mask ();
d62294f5
FJ
14576
14577 /* Because the Darwin register save/restore routines only handle
c4ad648e 14578 F14 .. F31 and V20 .. V31 as per the ABI, perform a consistency
992d08b1 14579 check. */
37409796
NS
14580 gcc_assert (info_ptr->first_fp_reg_save >= FIRST_SAVED_FP_REGNO
14581 && (info_ptr->first_altivec_reg_save
14582 >= FIRST_SAVED_ALTIVEC_REGNO));
d62294f5 14583 }
f676971a 14584 return;
d62294f5
FJ
14585}
14586
14587
00b960c7 14588static void
a2369ed3 14589is_altivec_return_reg (rtx reg, void *xyes)
00b960c7
AH
14590{
14591 bool *yes = (bool *) xyes;
14592 if (REGNO (reg) == ALTIVEC_ARG_RETURN)
14593 *yes = true;
14594}
14595
4697a36c
MM
14596\f
14597/* Calculate the stack information for the current function. This is
14598 complicated by having two separate calling sequences, the AIX calling
14599 sequence and the V.4 calling sequence.
14600
592696dd 14601 AIX (and Darwin/Mac OS X) stack frames look like:
a260abc9 14602 32-bit 64-bit
4697a36c 14603 SP----> +---------------------------------------+
a260abc9 14604 | back chain to caller | 0 0
4697a36c 14605 +---------------------------------------+
a260abc9 14606 | saved CR | 4 8 (8-11)
4697a36c 14607 +---------------------------------------+
a260abc9 14608 | saved LR | 8 16
4697a36c 14609 +---------------------------------------+
a260abc9 14610 | reserved for compilers | 12 24
4697a36c 14611 +---------------------------------------+
a260abc9 14612 | reserved for binders | 16 32
4697a36c 14613 +---------------------------------------+
a260abc9 14614 | saved TOC pointer | 20 40
4697a36c 14615 +---------------------------------------+
a260abc9 14616 | Parameter save area (P) | 24 48
4697a36c 14617 +---------------------------------------+
a260abc9 14618 | Alloca space (A) | 24+P etc.
802a0058 14619 +---------------------------------------+
a7df97e6 14620 | Local variable space (L) | 24+P+A
4697a36c 14621 +---------------------------------------+
a7df97e6 14622 | Float/int conversion temporary (X) | 24+P+A+L
4697a36c 14623 +---------------------------------------+
00b960c7
AH
14624 | Save area for AltiVec registers (W) | 24+P+A+L+X
14625 +---------------------------------------+
14626 | AltiVec alignment padding (Y) | 24+P+A+L+X+W
14627 +---------------------------------------+
14628 | Save area for VRSAVE register (Z) | 24+P+A+L+X+W+Y
4697a36c 14629 +---------------------------------------+
00b960c7
AH
14630 | Save area for GP registers (G) | 24+P+A+X+L+X+W+Y+Z
14631 +---------------------------------------+
14632 | Save area for FP registers (F) | 24+P+A+X+L+X+W+Y+Z+G
4697a36c
MM
14633 +---------------------------------------+
14634 old SP->| back chain to caller's caller |
14635 +---------------------------------------+
14636
5376a30c
KR
14637 The required alignment for AIX configurations is two words (i.e., 8
14638 or 16 bytes).
14639
14640
4697a36c
MM
14641 V.4 stack frames look like:
14642
14643 SP----> +---------------------------------------+
14644 | back chain to caller | 0
14645 +---------------------------------------+
5eb387b8 14646 | caller's saved LR | 4
4697a36c
MM
14647 +---------------------------------------+
14648 | Parameter save area (P) | 8
14649 +---------------------------------------+
a7df97e6 14650 | Alloca space (A) | 8+P
f676971a 14651 +---------------------------------------+
a7df97e6 14652 | Varargs save area (V) | 8+P+A
f676971a 14653 +---------------------------------------+
a7df97e6 14654 | Local variable space (L) | 8+P+A+V
f676971a 14655 +---------------------------------------+
a7df97e6 14656 | Float/int conversion temporary (X) | 8+P+A+V+L
4697a36c 14657 +---------------------------------------+
00b960c7
AH
14658 | Save area for AltiVec registers (W) | 8+P+A+V+L+X
14659 +---------------------------------------+
14660 | AltiVec alignment padding (Y) | 8+P+A+V+L+X+W
14661 +---------------------------------------+
14662 | Save area for VRSAVE register (Z) | 8+P+A+V+L+X+W+Y
14663 +---------------------------------------+
c4ad648e
AM
14664 | SPE: area for 64-bit GP registers |
14665 +---------------------------------------+
14666 | SPE alignment padding |
14667 +---------------------------------------+
00b960c7 14668 | saved CR (C) | 8+P+A+V+L+X+W+Y+Z
f676971a 14669 +---------------------------------------+
00b960c7 14670 | Save area for GP registers (G) | 8+P+A+V+L+X+W+Y+Z+C
f676971a 14671 +---------------------------------------+
00b960c7 14672 | Save area for FP registers (F) | 8+P+A+V+L+X+W+Y+Z+C+G
4697a36c
MM
14673 +---------------------------------------+
14674 old SP->| back chain to caller's caller |
14675 +---------------------------------------+
b6c9286a 14676
5376a30c
KR
14677 The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is
14678 given. (But note below and in sysv4.h that we require only 8 and
14679 may round up the size of our stack frame anyways. The historical
14680 reason is early versions of powerpc-linux which didn't properly
14681 align the stack at program startup. A happy side-effect is that
14682 -mno-eabi libraries can be used with -meabi programs.)
14683
50d440bc 14684 The EABI configuration defaults to the V.4 layout. However,
5376a30c
KR
14685 the stack alignment requirements may differ. If -mno-eabi is not
14686 given, the required stack alignment is 8 bytes; if -mno-eabi is
14687 given, the required alignment is 16 bytes. (But see V.4 comment
14688 above.) */
4697a36c 14689
61b2fbe7
MM
14690#ifndef ABI_STACK_BOUNDARY
14691#define ABI_STACK_BOUNDARY STACK_BOUNDARY
14692#endif
14693
d1d0c603 14694static rs6000_stack_t *
863d938c 14695rs6000_stack_info (void)
4697a36c 14696{
022123e6 14697 static rs6000_stack_t info;
4697a36c 14698 rs6000_stack_t *info_ptr = &info;
327e5343 14699 int reg_size = TARGET_32BIT ? 4 : 8;
83720594 14700 int ehrd_size;
64045029 14701 int save_align;
8070c91a 14702 int first_gp;
44688022 14703 HOST_WIDE_INT non_fixed_size;
4697a36c 14704
022123e6 14705 memset (&info, 0, sizeof (info));
4697a36c 14706
c19de7aa
AH
14707 if (TARGET_SPE)
14708 {
14709 /* Cache value so we don't rescan instruction chain over and over. */
9b7b447f 14710 if (cfun->machine->insn_chain_scanned_p == 0)
b5a5beb9
AH
14711 cfun->machine->insn_chain_scanned_p
14712 = spe_func_has_64bit_regs_p () + 1;
14713 info_ptr->spe_64bit_regs_used = cfun->machine->insn_chain_scanned_p - 1;
c19de7aa
AH
14714 }
14715
a4f6c312 14716 /* Select which calling sequence. */
178274da 14717 info_ptr->abi = DEFAULT_ABI;
9878760c 14718
a4f6c312 14719 /* Calculate which registers need to be saved & save area size. */
4697a36c 14720 info_ptr->first_gp_reg_save = first_reg_to_save ();
f676971a 14721 /* Assume that we will have to save RS6000_PIC_OFFSET_TABLE_REGNUM,
8070c91a
DJ
14722 even if it currently looks like we won't. Reload may need it to
14723 get at a constant; if so, it will have already created a constant
14724 pool entry for it. */
2bfcf297 14725 if (((TARGET_TOC && TARGET_MINIMAL_TOC)
178274da
AM
14726 || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
14727 || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
e3b5732b 14728 && crtl->uses_const_pool
1db02437 14729 && info_ptr->first_gp_reg_save > RS6000_PIC_OFFSET_TABLE_REGNUM)
8070c91a 14730 first_gp = RS6000_PIC_OFFSET_TABLE_REGNUM;
906fb125 14731 else
8070c91a
DJ
14732 first_gp = info_ptr->first_gp_reg_save;
14733
14734 info_ptr->gp_size = reg_size * (32 - first_gp);
4697a36c 14735
a3170dc6
AH
14736 /* For the SPE, we have an additional upper 32-bits on each GPR.
14737 Ideally we should save the entire 64-bits only when the upper
14738 half is used in SIMD instructions. Since we only record
14739 registers live (not the size they are used in), this proves
14740 difficult because we'd have to traverse the instruction chain at
14741 the right time, taking reload into account. This is a real pain,
c19de7aa
AH
14742 so we opt to save the GPRs in 64-bits always if but one register
14743 gets used in 64-bits. Otherwise, all the registers in the frame
14744 get saved in 32-bits.
a3170dc6 14745
c19de7aa 14746 So... since when we save all GPRs (except the SP) in 64-bits, the
a3170dc6 14747 traditional GP save area will be empty. */
c19de7aa 14748 if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
a3170dc6
AH
14749 info_ptr->gp_size = 0;
14750
4697a36c
MM
14751 info_ptr->first_fp_reg_save = first_fp_reg_to_save ();
14752 info_ptr->fp_size = 8 * (64 - info_ptr->first_fp_reg_save);
14753
00b960c7
AH
14754 info_ptr->first_altivec_reg_save = first_altivec_reg_to_save ();
14755 info_ptr->altivec_size = 16 * (LAST_ALTIVEC_REGNO + 1
14756 - info_ptr->first_altivec_reg_save);
14757
592696dd 14758 /* Does this function call anything? */
71f123ca
FS
14759 info_ptr->calls_p = (! current_function_is_leaf
14760 || cfun->machine->ra_needs_full_frame);
b6c9286a 14761
a4f6c312 14762 /* Determine if we need to save the link register. */
022123e6 14763 if ((DEFAULT_ABI == ABI_AIX
e3b5732b 14764 && crtl->profile
022123e6 14765 && !TARGET_PROFILE_KERNEL)
4697a36c
MM
14766#ifdef TARGET_RELOCATABLE
14767 || (TARGET_RELOCATABLE && (get_pool_size () != 0))
14768#endif
14769 || (info_ptr->first_fp_reg_save != 64
14770 && !FP_SAVE_INLINE (info_ptr->first_fp_reg_save))
e3b5732b 14771 || (DEFAULT_ABI == ABI_V4 && cfun->calls_alloca)
022123e6
AM
14772 || info_ptr->calls_p
14773 || rs6000_ra_ever_killed ())
4697a36c
MM
14774 {
14775 info_ptr->lr_save_p = 1;
1de43f85 14776 df_set_regs_ever_live (LR_REGNO, true);
4697a36c
MM
14777 }
14778
9ebbca7d 14779 /* Determine if we need to save the condition code registers. */
6fb5fa3c
DB
14780 if (df_regs_ever_live_p (CR2_REGNO)
14781 || df_regs_ever_live_p (CR3_REGNO)
14782 || df_regs_ever_live_p (CR4_REGNO))
4697a36c
MM
14783 {
14784 info_ptr->cr_save_p = 1;
178274da 14785 if (DEFAULT_ABI == ABI_V4)
4697a36c
MM
14786 info_ptr->cr_size = reg_size;
14787 }
14788
83720594
RH
14789 /* If the current function calls __builtin_eh_return, then we need
14790 to allocate stack space for registers that will hold data for
14791 the exception handler. */
e3b5732b 14792 if (crtl->calls_eh_return)
83720594
RH
14793 {
14794 unsigned int i;
14795 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
14796 continue;
a3170dc6
AH
14797
14798 /* SPE saves EH registers in 64-bits. */
c19de7aa
AH
14799 ehrd_size = i * (TARGET_SPE_ABI
14800 && info_ptr->spe_64bit_regs_used != 0
14801 ? UNITS_PER_SPE_WORD : UNITS_PER_WORD);
83720594
RH
14802 }
14803 else
14804 ehrd_size = 0;
14805
592696dd 14806 /* Determine various sizes. */
4697a36c
MM
14807 info_ptr->reg_size = reg_size;
14808 info_ptr->fixed_size = RS6000_SAVE_AREA;
189e03e3 14809 info_ptr->vars_size = RS6000_ALIGN (get_frame_size (), 8);
38173d38 14810 info_ptr->parm_size = RS6000_ALIGN (crtl->outgoing_args_size,
03e007d7 14811 TARGET_ALTIVEC ? 16 : 8);
7d5175e1
JJ
14812 if (FRAME_GROWS_DOWNWARD)
14813 info_ptr->vars_size
5b667039
JJ
14814 += RS6000_ALIGN (info_ptr->fixed_size + info_ptr->vars_size
14815 + info_ptr->parm_size,
7d5175e1 14816 ABI_STACK_BOUNDARY / BITS_PER_UNIT)
5b667039
JJ
14817 - (info_ptr->fixed_size + info_ptr->vars_size
14818 + info_ptr->parm_size);
00b960c7 14819
c19de7aa 14820 if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
8070c91a 14821 info_ptr->spe_gp_size = 8 * (32 - first_gp);
a3170dc6
AH
14822 else
14823 info_ptr->spe_gp_size = 0;
14824
4d774ff8
HP
14825 if (TARGET_ALTIVEC_ABI)
14826 info_ptr->vrsave_mask = compute_vrsave_mask ();
00b960c7 14827 else
4d774ff8
HP
14828 info_ptr->vrsave_mask = 0;
14829
14830 if (TARGET_ALTIVEC_VRSAVE && info_ptr->vrsave_mask)
14831 info_ptr->vrsave_size = 4;
14832 else
14833 info_ptr->vrsave_size = 0;
b6c9286a 14834
d62294f5
FJ
14835 compute_save_world_info (info_ptr);
14836
592696dd 14837 /* Calculate the offsets. */
178274da 14838 switch (DEFAULT_ABI)
4697a36c 14839 {
b6c9286a 14840 case ABI_NONE:
24d304eb 14841 default:
37409796 14842 gcc_unreachable ();
b6c9286a
MM
14843
14844 case ABI_AIX:
ee890fe2 14845 case ABI_DARWIN:
b6c9286a
MM
14846 info_ptr->fp_save_offset = - info_ptr->fp_size;
14847 info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size;
00b960c7
AH
14848
14849 if (TARGET_ALTIVEC_ABI)
14850 {
14851 info_ptr->vrsave_save_offset
14852 = info_ptr->gp_save_offset - info_ptr->vrsave_size;
14853
982afe02 14854 /* Align stack so vector save area is on a quadword boundary.
9278121c 14855 The padding goes above the vectors. */
00b960c7
AH
14856 if (info_ptr->altivec_size != 0)
14857 info_ptr->altivec_padding_size
9278121c 14858 = info_ptr->vrsave_save_offset & 0xF;
00b960c7
AH
14859 else
14860 info_ptr->altivec_padding_size = 0;
14861
14862 info_ptr->altivec_save_offset
14863 = info_ptr->vrsave_save_offset
14864 - info_ptr->altivec_padding_size
14865 - info_ptr->altivec_size;
9278121c
GK
14866 gcc_assert (info_ptr->altivec_size == 0
14867 || info_ptr->altivec_save_offset % 16 == 0);
00b960c7
AH
14868
14869 /* Adjust for AltiVec case. */
14870 info_ptr->ehrd_offset = info_ptr->altivec_save_offset - ehrd_size;
14871 }
14872 else
14873 info_ptr->ehrd_offset = info_ptr->gp_save_offset - ehrd_size;
a260abc9
DE
14874 info_ptr->cr_save_offset = reg_size; /* first word when 64-bit. */
14875 info_ptr->lr_save_offset = 2*reg_size;
24d304eb
RK
14876 break;
14877
14878 case ABI_V4:
b6c9286a
MM
14879 info_ptr->fp_save_offset = - info_ptr->fp_size;
14880 info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size;
a7df97e6 14881 info_ptr->cr_save_offset = info_ptr->gp_save_offset - info_ptr->cr_size;
00b960c7 14882
c19de7aa 14883 if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
c4ad648e
AM
14884 {
14885 /* Align stack so SPE GPR save area is aligned on a
14886 double-word boundary. */
f78c3290 14887 if (info_ptr->spe_gp_size != 0 && info_ptr->cr_save_offset != 0)
c4ad648e
AM
14888 info_ptr->spe_padding_size
14889 = 8 - (-info_ptr->cr_save_offset % 8);
14890 else
14891 info_ptr->spe_padding_size = 0;
14892
14893 info_ptr->spe_gp_save_offset
14894 = info_ptr->cr_save_offset
14895 - info_ptr->spe_padding_size
14896 - info_ptr->spe_gp_size;
14897
14898 /* Adjust for SPE case. */
022123e6 14899 info_ptr->ehrd_offset = info_ptr->spe_gp_save_offset;
c4ad648e 14900 }
a3170dc6 14901 else if (TARGET_ALTIVEC_ABI)
00b960c7
AH
14902 {
14903 info_ptr->vrsave_save_offset
14904 = info_ptr->cr_save_offset - info_ptr->vrsave_size;
14905
14906 /* Align stack so vector save area is on a quadword boundary. */
14907 if (info_ptr->altivec_size != 0)
14908 info_ptr->altivec_padding_size
14909 = 16 - (-info_ptr->vrsave_save_offset % 16);
14910 else
14911 info_ptr->altivec_padding_size = 0;
14912
14913 info_ptr->altivec_save_offset
14914 = info_ptr->vrsave_save_offset
14915 - info_ptr->altivec_padding_size
14916 - info_ptr->altivec_size;
14917
14918 /* Adjust for AltiVec case. */
022123e6 14919 info_ptr->ehrd_offset = info_ptr->altivec_save_offset;
00b960c7
AH
14920 }
14921 else
022123e6
AM
14922 info_ptr->ehrd_offset = info_ptr->cr_save_offset;
14923 info_ptr->ehrd_offset -= ehrd_size;
b6c9286a
MM
14924 info_ptr->lr_save_offset = reg_size;
14925 break;
4697a36c
MM
14926 }
14927
64045029 14928 save_align = (TARGET_ALTIVEC_ABI || DEFAULT_ABI == ABI_DARWIN) ? 16 : 8;
00b960c7
AH
14929 info_ptr->save_size = RS6000_ALIGN (info_ptr->fp_size
14930 + info_ptr->gp_size
14931 + info_ptr->altivec_size
14932 + info_ptr->altivec_padding_size
a3170dc6
AH
14933 + info_ptr->spe_gp_size
14934 + info_ptr->spe_padding_size
00b960c7
AH
14935 + ehrd_size
14936 + info_ptr->cr_size
022123e6 14937 + info_ptr->vrsave_size,
64045029 14938 save_align);
00b960c7 14939
44688022 14940 non_fixed_size = (info_ptr->vars_size
ff381587 14941 + info_ptr->parm_size
5b667039 14942 + info_ptr->save_size);
ff381587 14943
44688022
AM
14944 info_ptr->total_size = RS6000_ALIGN (non_fixed_size + info_ptr->fixed_size,
14945 ABI_STACK_BOUNDARY / BITS_PER_UNIT);
ff381587
MM
14946
14947 /* Determine if we need to allocate any stack frame:
14948
a4f6c312
SS
14949 For AIX we need to push the stack if a frame pointer is needed
14950 (because the stack might be dynamically adjusted), if we are
14951 debugging, if we make calls, or if the sum of fp_save, gp_save,
14952 and local variables are more than the space needed to save all
14953 non-volatile registers: 32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8
14954 + 18*8 = 288 (GPR13 reserved).
ff381587 14955
a4f6c312
SS
14956 For V.4 we don't have the stack cushion that AIX uses, but assume
14957 that the debugger can handle stackless frames. */
ff381587
MM
14958
14959 if (info_ptr->calls_p)
14960 info_ptr->push_p = 1;
14961
178274da 14962 else if (DEFAULT_ABI == ABI_V4)
44688022 14963 info_ptr->push_p = non_fixed_size != 0;
ff381587 14964
178274da
AM
14965 else if (frame_pointer_needed)
14966 info_ptr->push_p = 1;
14967
14968 else if (TARGET_XCOFF && write_symbols != NO_DEBUG)
14969 info_ptr->push_p = 1;
14970
ff381587 14971 else
44688022 14972 info_ptr->push_p = non_fixed_size > (TARGET_32BIT ? 220 : 288);
ff381587 14973
a4f6c312 14974 /* Zero offsets if we're not saving those registers. */
8dda1a21 14975 if (info_ptr->fp_size == 0)
4697a36c
MM
14976 info_ptr->fp_save_offset = 0;
14977
8dda1a21 14978 if (info_ptr->gp_size == 0)
4697a36c
MM
14979 info_ptr->gp_save_offset = 0;
14980
00b960c7
AH
14981 if (! TARGET_ALTIVEC_ABI || info_ptr->altivec_size == 0)
14982 info_ptr->altivec_save_offset = 0;
14983
14984 if (! TARGET_ALTIVEC_ABI || info_ptr->vrsave_mask == 0)
14985 info_ptr->vrsave_save_offset = 0;
14986
c19de7aa
AH
14987 if (! TARGET_SPE_ABI
14988 || info_ptr->spe_64bit_regs_used == 0
14989 || info_ptr->spe_gp_size == 0)
a3170dc6
AH
14990 info_ptr->spe_gp_save_offset = 0;
14991
c81fc13e 14992 if (! info_ptr->lr_save_p)
4697a36c
MM
14993 info_ptr->lr_save_offset = 0;
14994
c81fc13e 14995 if (! info_ptr->cr_save_p)
4697a36c
MM
14996 info_ptr->cr_save_offset = 0;
14997
14998 return info_ptr;
14999}
15000
c19de7aa
AH
15001/* Return true if the current function uses any GPRs in 64-bit SIMD
15002 mode. */
15003
15004static bool
863d938c 15005spe_func_has_64bit_regs_p (void)
c19de7aa
AH
15006{
15007 rtx insns, insn;
15008
15009 /* Functions that save and restore all the call-saved registers will
15010 need to save/restore the registers in 64-bits. */
e3b5732b
JH
15011 if (crtl->calls_eh_return
15012 || cfun->calls_setjmp
15013 || crtl->has_nonlocal_goto)
c19de7aa
AH
15014 return true;
15015
15016 insns = get_insns ();
15017
15018 for (insn = NEXT_INSN (insns); insn != NULL_RTX; insn = NEXT_INSN (insn))
15019 {
15020 if (INSN_P (insn))
15021 {
15022 rtx i;
15023
b5a5beb9
AH
15024 /* FIXME: This should be implemented with attributes...
15025
15026 (set_attr "spe64" "true")....then,
15027 if (get_spe64(insn)) return true;
15028
15029 It's the only reliable way to do the stuff below. */
15030
c19de7aa 15031 i = PATTERN (insn);
f82f556d
AH
15032 if (GET_CODE (i) == SET)
15033 {
15034 enum machine_mode mode = GET_MODE (SET_SRC (i));
15035
15036 if (SPE_VECTOR_MODE (mode))
15037 return true;
4f011e1e 15038 if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode))
f82f556d
AH
15039 return true;
15040 }
c19de7aa
AH
15041 }
15042 }
15043
15044 return false;
15045}
15046
d1d0c603 15047static void
a2369ed3 15048debug_stack_info (rs6000_stack_t *info)
9878760c 15049{
d330fd93 15050 const char *abi_string;
24d304eb 15051
c81fc13e 15052 if (! info)
4697a36c
MM
15053 info = rs6000_stack_info ();
15054
15055 fprintf (stderr, "\nStack information for function %s:\n",
15056 ((current_function_decl && DECL_NAME (current_function_decl))
15057 ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
15058 : "<unknown>"));
15059
24d304eb
RK
15060 switch (info->abi)
15061 {
b6c9286a
MM
15062 default: abi_string = "Unknown"; break;
15063 case ABI_NONE: abi_string = "NONE"; break;
50d440bc 15064 case ABI_AIX: abi_string = "AIX"; break;
ee890fe2 15065 case ABI_DARWIN: abi_string = "Darwin"; break;
b6c9286a 15066 case ABI_V4: abi_string = "V.4"; break;
24d304eb
RK
15067 }
15068
15069 fprintf (stderr, "\tABI = %5s\n", abi_string);
15070
00b960c7
AH
15071 if (TARGET_ALTIVEC_ABI)
15072 fprintf (stderr, "\tALTIVEC ABI extensions enabled.\n");
15073
a3170dc6
AH
15074 if (TARGET_SPE_ABI)
15075 fprintf (stderr, "\tSPE ABI extensions enabled.\n");
15076
4697a36c
MM
15077 if (info->first_gp_reg_save != 32)
15078 fprintf (stderr, "\tfirst_gp_reg_save = %5d\n", info->first_gp_reg_save);
15079
15080 if (info->first_fp_reg_save != 64)
15081 fprintf (stderr, "\tfirst_fp_reg_save = %5d\n", info->first_fp_reg_save);
9878760c 15082
00b960c7
AH
15083 if (info->first_altivec_reg_save <= LAST_ALTIVEC_REGNO)
15084 fprintf (stderr, "\tfirst_altivec_reg_save = %5d\n",
15085 info->first_altivec_reg_save);
15086
4697a36c
MM
15087 if (info->lr_save_p)
15088 fprintf (stderr, "\tlr_save_p = %5d\n", info->lr_save_p);
9878760c 15089
4697a36c
MM
15090 if (info->cr_save_p)
15091 fprintf (stderr, "\tcr_save_p = %5d\n", info->cr_save_p);
15092
00b960c7
AH
15093 if (info->vrsave_mask)
15094 fprintf (stderr, "\tvrsave_mask = 0x%x\n", info->vrsave_mask);
15095
4697a36c
MM
15096 if (info->push_p)
15097 fprintf (stderr, "\tpush_p = %5d\n", info->push_p);
15098
15099 if (info->calls_p)
15100 fprintf (stderr, "\tcalls_p = %5d\n", info->calls_p);
15101
4697a36c
MM
15102 if (info->gp_save_offset)
15103 fprintf (stderr, "\tgp_save_offset = %5d\n", info->gp_save_offset);
15104
15105 if (info->fp_save_offset)
15106 fprintf (stderr, "\tfp_save_offset = %5d\n", info->fp_save_offset);
15107
00b960c7
AH
15108 if (info->altivec_save_offset)
15109 fprintf (stderr, "\taltivec_save_offset = %5d\n",
15110 info->altivec_save_offset);
15111
a3170dc6
AH
15112 if (info->spe_gp_save_offset)
15113 fprintf (stderr, "\tspe_gp_save_offset = %5d\n",
15114 info->spe_gp_save_offset);
15115
00b960c7
AH
15116 if (info->vrsave_save_offset)
15117 fprintf (stderr, "\tvrsave_save_offset = %5d\n",
15118 info->vrsave_save_offset);
15119
4697a36c
MM
15120 if (info->lr_save_offset)
15121 fprintf (stderr, "\tlr_save_offset = %5d\n", info->lr_save_offset);
15122
15123 if (info->cr_save_offset)
15124 fprintf (stderr, "\tcr_save_offset = %5d\n", info->cr_save_offset);
15125
15126 if (info->varargs_save_offset)
15127 fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset);
15128
15129 if (info->total_size)
d1d0c603
JJ
15130 fprintf (stderr, "\ttotal_size = "HOST_WIDE_INT_PRINT_DEC"\n",
15131 info->total_size);
4697a36c 15132
4697a36c 15133 if (info->vars_size)
d1d0c603
JJ
15134 fprintf (stderr, "\tvars_size = "HOST_WIDE_INT_PRINT_DEC"\n",
15135 info->vars_size);
4697a36c
MM
15136
15137 if (info->parm_size)
15138 fprintf (stderr, "\tparm_size = %5d\n", info->parm_size);
15139
15140 if (info->fixed_size)
15141 fprintf (stderr, "\tfixed_size = %5d\n", info->fixed_size);
15142
15143 if (info->gp_size)
15144 fprintf (stderr, "\tgp_size = %5d\n", info->gp_size);
15145
a3170dc6
AH
15146 if (info->spe_gp_size)
15147 fprintf (stderr, "\tspe_gp_size = %5d\n", info->spe_gp_size);
15148
4697a36c
MM
15149 if (info->fp_size)
15150 fprintf (stderr, "\tfp_size = %5d\n", info->fp_size);
15151
00b960c7
AH
15152 if (info->altivec_size)
15153 fprintf (stderr, "\taltivec_size = %5d\n", info->altivec_size);
15154
15155 if (info->vrsave_size)
15156 fprintf (stderr, "\tvrsave_size = %5d\n", info->vrsave_size);
15157
15158 if (info->altivec_padding_size)
15159 fprintf (stderr, "\taltivec_padding_size= %5d\n",
15160 info->altivec_padding_size);
15161
a3170dc6
AH
15162 if (info->spe_padding_size)
15163 fprintf (stderr, "\tspe_padding_size = %5d\n",
15164 info->spe_padding_size);
15165
4697a36c
MM
15166 if (info->cr_size)
15167 fprintf (stderr, "\tcr_size = %5d\n", info->cr_size);
15168
15169 if (info->save_size)
15170 fprintf (stderr, "\tsave_size = %5d\n", info->save_size);
15171
15172 if (info->reg_size != 4)
15173 fprintf (stderr, "\treg_size = %5d\n", info->reg_size);
15174
15175 fprintf (stderr, "\n");
9878760c 15176}
71f123ca
FS
15177
15178rtx
a2369ed3 15179rs6000_return_addr (int count, rtx frame)
71f123ca 15180{
a4f6c312
SS
15181 /* Currently we don't optimize very well between prolog and body
15182 code and for PIC code the code can be actually quite bad, so
15183 don't try to be too clever here. */
f1384257 15184 if (count != 0 || (DEFAULT_ABI != ABI_AIX && flag_pic))
71f123ca
FS
15185 {
15186 cfun->machine->ra_needs_full_frame = 1;
8ac61af7
RK
15187
15188 return
15189 gen_rtx_MEM
15190 (Pmode,
15191 memory_address
15192 (Pmode,
15193 plus_constant (copy_to_reg
15194 (gen_rtx_MEM (Pmode,
15195 memory_address (Pmode, frame))),
15196 RETURN_ADDRESS_OFFSET)));
71f123ca
FS
15197 }
15198
8c29550d 15199 cfun->machine->ra_need_lr = 1;
1de43f85 15200 return get_hard_reg_initial_val (Pmode, LR_REGNO);
71f123ca
FS
15201}
15202
5e1bf043
DJ
15203/* Say whether a function is a candidate for sibcall handling or not.
15204 We do not allow indirect calls to be optimized into sibling calls.
15205 Also, we can't do it if there are any vector parameters; there's
15206 nowhere to put the VRsave code so it works; note that functions with
15207 vector parameters are required to have a prototype, so the argument
15208 type info must be available here. (The tail recursion case can work
15209 with vector parameters, but there's no way to distinguish here.) */
4977bab6 15210static bool
a2369ed3 15211rs6000_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
5e1bf043
DJ
15212{
15213 tree type;
4977bab6 15214 if (decl)
5e1bf043
DJ
15215 {
15216 if (TARGET_ALTIVEC_VRSAVE)
c4ad648e 15217 {
4977bab6 15218 for (type = TYPE_ARG_TYPES (TREE_TYPE (decl));
5e1bf043
DJ
15219 type; type = TREE_CHAIN (type))
15220 {
c15b529f 15221 if (TREE_CODE (TREE_VALUE (type)) == VECTOR_TYPE)
4977bab6 15222 return false;
5e1bf043 15223 }
c4ad648e 15224 }
5e1bf043 15225 if (DEFAULT_ABI == ABI_DARWIN
8aa19d95
JJ
15226 || ((*targetm.binds_local_p) (decl)
15227 && (DEFAULT_ABI != ABI_AIX || !DECL_EXTERNAL (decl))))
2bcc50d0 15228 {
4977bab6 15229 tree attr_list = TYPE_ATTRIBUTES (TREE_TYPE (decl));
2bcc50d0
AM
15230
15231 if (!lookup_attribute ("longcall", attr_list)
15232 || lookup_attribute ("shortcall", attr_list))
4977bab6 15233 return true;
2bcc50d0 15234 }
5e1bf043 15235 }
4977bab6 15236 return false;
5e1bf043
DJ
15237}
15238
e7e64a25
AS
15239/* NULL if INSN insn is valid within a low-overhead loop.
15240 Otherwise return why doloop cannot be applied.
9419649c
DE
15241 PowerPC uses the COUNT register for branch on table instructions. */
15242
e7e64a25 15243static const char *
3101faab 15244rs6000_invalid_within_doloop (const_rtx insn)
9419649c
DE
15245{
15246 if (CALL_P (insn))
e7e64a25 15247 return "Function call in the loop.";
9419649c
DE
15248
15249 if (JUMP_P (insn)
15250 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
15251 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
e7e64a25 15252 return "Computed branch in the loop.";
9419649c 15253
e7e64a25 15254 return NULL;
9419649c
DE
15255}
15256
71f123ca 15257static int
863d938c 15258rs6000_ra_ever_killed (void)
71f123ca
FS
15259{
15260 rtx top;
5e1bf043
DJ
15261 rtx reg;
15262 rtx insn;
71f123ca 15263
3c072c6b 15264 if (cfun->is_thunk)
71f123ca 15265 return 0;
eb0424da 15266
36f7e964
AH
15267 /* regs_ever_live has LR marked as used if any sibcalls are present,
15268 but this should not force saving and restoring in the
15269 pro/epilogue. Likewise, reg_set_between_p thinks a sibcall
a3c9585f 15270 clobbers LR, so that is inappropriate. */
36f7e964 15271
5e1bf043
DJ
15272 /* Also, the prologue can generate a store into LR that
15273 doesn't really count, like this:
36f7e964 15274
5e1bf043
DJ
15275 move LR->R0
15276 bcl to set PIC register
15277 move LR->R31
15278 move R0->LR
36f7e964
AH
15279
15280 When we're called from the epilogue, we need to avoid counting
15281 this as a store. */
f676971a 15282
71f123ca
FS
15283 push_topmost_sequence ();
15284 top = get_insns ();
15285 pop_topmost_sequence ();
1de43f85 15286 reg = gen_rtx_REG (Pmode, LR_REGNO);
71f123ca 15287
5e1bf043
DJ
15288 for (insn = NEXT_INSN (top); insn != NULL_RTX; insn = NEXT_INSN (insn))
15289 {
15290 if (INSN_P (insn))
15291 {
022123e6
AM
15292 if (CALL_P (insn))
15293 {
15294 if (!SIBLING_CALL_P (insn))
15295 return 1;
15296 }
1de43f85 15297 else if (find_regno_note (insn, REG_INC, LR_REGNO))
5e1bf043 15298 return 1;
36f7e964
AH
15299 else if (set_of (reg, insn) != NULL_RTX
15300 && !prologue_epilogue_contains (insn))
5e1bf043
DJ
15301 return 1;
15302 }
15303 }
15304 return 0;
71f123ca 15305}
4697a36c 15306\f
9ebbca7d 15307/* Emit instructions needed to load the TOC register.
c7ca610e 15308 This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is
9ebbca7d 15309 a constant pool; or for SVR4 -fpic. */
c7ca610e
RK
15310
15311void
a2369ed3 15312rs6000_emit_load_toc_table (int fromprolog)
c7ca610e 15313{
6fb5fa3c 15314 rtx dest;
1db02437 15315 dest = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
c7ca610e 15316
7f970b70 15317 if (TARGET_ELF && TARGET_SECURE_PLT && DEFAULT_ABI != ABI_AIX && flag_pic)
20b71b17 15318 {
7f970b70 15319 char buf[30];
e65a3857 15320 rtx lab, tmp1, tmp2, got;
7f970b70
AM
15321
15322 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
15323 lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15324 if (flag_pic == 2)
15325 got = gen_rtx_SYMBOL_REF (Pmode, toc_label_name);
15326 else
15327 got = rs6000_got_sym ();
15328 tmp1 = tmp2 = dest;
15329 if (!fromprolog)
15330 {
15331 tmp1 = gen_reg_rtx (Pmode);
15332 tmp2 = gen_reg_rtx (Pmode);
15333 }
6fb5fa3c
DB
15334 emit_insn (gen_load_toc_v4_PIC_1 (lab));
15335 emit_move_insn (tmp1,
1de43f85 15336 gen_rtx_REG (Pmode, LR_REGNO));
6fb5fa3c
DB
15337 emit_insn (gen_load_toc_v4_PIC_3b (tmp2, tmp1, got, lab));
15338 emit_insn (gen_load_toc_v4_PIC_3c (dest, tmp2, got, lab));
7f970b70
AM
15339 }
15340 else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 1)
15341 {
6fb5fa3c 15342 emit_insn (gen_load_toc_v4_pic_si ());
1de43f85 15343 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
20b71b17
AM
15344 }
15345 else if (TARGET_ELF && DEFAULT_ABI != ABI_AIX && flag_pic == 2)
15346 {
15347 char buf[30];
20b71b17
AM
15348 rtx temp0 = (fromprolog
15349 ? gen_rtx_REG (Pmode, 0)
15350 : gen_reg_rtx (Pmode));
20b71b17 15351
20b71b17
AM
15352 if (fromprolog)
15353 {
ccbca5e4 15354 rtx symF, symL;
38c1f2d7 15355
20b71b17
AM
15356 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
15357 symF = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
9ebbca7d 15358
20b71b17
AM
15359 ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
15360 symL = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15361
6fb5fa3c
DB
15362 emit_insn (gen_load_toc_v4_PIC_1 (symF));
15363 emit_move_insn (dest,
1de43f85 15364 gen_rtx_REG (Pmode, LR_REGNO));
6fb5fa3c 15365 emit_insn (gen_load_toc_v4_PIC_2 (temp0, dest, symL, symF));
9ebbca7d
GK
15366 }
15367 else
20b71b17
AM
15368 {
15369 rtx tocsym;
20b71b17
AM
15370
15371 tocsym = gen_rtx_SYMBOL_REF (Pmode, toc_label_name);
e65a3857
DE
15372 emit_insn (gen_load_toc_v4_PIC_1b (tocsym));
15373 emit_move_insn (dest,
1de43f85 15374 gen_rtx_REG (Pmode, LR_REGNO));
027fbf43 15375 emit_move_insn (temp0, gen_rtx_MEM (Pmode, dest));
20b71b17 15376 }
6fb5fa3c 15377 emit_insn (gen_addsi3 (dest, temp0, dest));
9ebbca7d 15378 }
20b71b17
AM
15379 else if (TARGET_ELF && !TARGET_AIX && flag_pic == 0 && TARGET_MINIMAL_TOC)
15380 {
15381 /* This is for AIX code running in non-PIC ELF32. */
15382 char buf[30];
15383 rtx realsym;
15384 ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
15385 realsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15386
6fb5fa3c
DB
15387 emit_insn (gen_elf_high (dest, realsym));
15388 emit_insn (gen_elf_low (dest, dest, realsym));
20b71b17 15389 }
37409796 15390 else
9ebbca7d 15391 {
37409796 15392 gcc_assert (DEFAULT_ABI == ABI_AIX);
bb8df8a6 15393
9ebbca7d 15394 if (TARGET_32BIT)
6fb5fa3c 15395 emit_insn (gen_load_toc_aix_si (dest));
9ebbca7d 15396 else
6fb5fa3c 15397 emit_insn (gen_load_toc_aix_di (dest));
9ebbca7d
GK
15398 }
15399}
15400
d1d0c603
JJ
15401/* Emit instructions to restore the link register after determining where
15402 its value has been stored. */
15403
15404void
15405rs6000_emit_eh_reg_restore (rtx source, rtx scratch)
15406{
15407 rs6000_stack_t *info = rs6000_stack_info ();
15408 rtx operands[2];
15409
15410 operands[0] = source;
15411 operands[1] = scratch;
15412
15413 if (info->lr_save_p)
15414 {
15415 rtx frame_rtx = stack_pointer_rtx;
15416 HOST_WIDE_INT sp_offset = 0;
15417 rtx tmp;
15418
15419 if (frame_pointer_needed
e3b5732b 15420 || cfun->calls_alloca
d1d0c603
JJ
15421 || info->total_size > 32767)
15422 {
0be76840 15423 tmp = gen_frame_mem (Pmode, frame_rtx);
8308679f 15424 emit_move_insn (operands[1], tmp);
d1d0c603
JJ
15425 frame_rtx = operands[1];
15426 }
15427 else if (info->push_p)
15428 sp_offset = info->total_size;
15429
15430 tmp = plus_constant (frame_rtx, info->lr_save_offset + sp_offset);
0be76840 15431 tmp = gen_frame_mem (Pmode, tmp);
d1d0c603
JJ
15432 emit_move_insn (tmp, operands[0]);
15433 }
15434 else
1de43f85 15435 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO), operands[0]);
d1d0c603
JJ
15436}
15437
4862826d 15438static GTY(()) alias_set_type set = -1;
f103e34d 15439
4862826d 15440alias_set_type
863d938c 15441get_TOC_alias_set (void)
9ebbca7d 15442{
f103e34d
GK
15443 if (set == -1)
15444 set = new_alias_set ();
15445 return set;
f676971a 15446}
9ebbca7d 15447
c1207243 15448/* This returns nonzero if the current function uses the TOC. This is
3c9eb5f4
AM
15449 determined by the presence of (use (unspec ... UNSPEC_TOC)), which
15450 is generated by the ABI_V4 load_toc_* patterns. */
c954844a 15451#if TARGET_ELF
3c9eb5f4 15452static int
f676971a 15453uses_TOC (void)
9ebbca7d 15454{
c4501e62 15455 rtx insn;
38c1f2d7 15456
c4501e62
JJ
15457 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
15458 if (INSN_P (insn))
15459 {
15460 rtx pat = PATTERN (insn);
15461 int i;
9ebbca7d 15462
f676971a 15463 if (GET_CODE (pat) == PARALLEL)
c4501e62
JJ
15464 for (i = 0; i < XVECLEN (pat, 0); i++)
15465 {
15466 rtx sub = XVECEXP (pat, 0, i);
15467 if (GET_CODE (sub) == USE)
15468 {
15469 sub = XEXP (sub, 0);
15470 if (GET_CODE (sub) == UNSPEC
15471 && XINT (sub, 1) == UNSPEC_TOC)
15472 return 1;
15473 }
15474 }
15475 }
15476 return 0;
9ebbca7d 15477}
c954844a 15478#endif
38c1f2d7 15479
9ebbca7d 15480rtx
f676971a 15481create_TOC_reference (rtx symbol)
9ebbca7d 15482{
b3a13419 15483 if (!can_create_pseudo_p ())
6fb5fa3c 15484 df_set_regs_ever_live (TOC_REGISTER, true);
f676971a 15485 return gen_rtx_PLUS (Pmode,
a8a05998 15486 gen_rtx_REG (Pmode, TOC_REGISTER),
f676971a 15487 gen_rtx_CONST (Pmode,
2e4316da 15488 gen_rtx_UNSPEC (Pmode, gen_rtvec (1, symbol), UNSPEC_TOCREL)));
9ebbca7d 15489}
38c1f2d7 15490
fc4767bb
JJ
15491/* If _Unwind_* has been called from within the same module,
15492 toc register is not guaranteed to be saved to 40(1) on function
15493 entry. Save it there in that case. */
c7ca610e 15494
9ebbca7d 15495void
863d938c 15496rs6000_aix_emit_builtin_unwind_init (void)
9ebbca7d
GK
15497{
15498 rtx mem;
15499 rtx stack_top = gen_reg_rtx (Pmode);
15500 rtx opcode_addr = gen_reg_rtx (Pmode);
fc4767bb
JJ
15501 rtx opcode = gen_reg_rtx (SImode);
15502 rtx tocompare = gen_reg_rtx (SImode);
15503 rtx no_toc_save_needed = gen_label_rtx ();
9ebbca7d 15504
8308679f 15505 mem = gen_frame_mem (Pmode, hard_frame_pointer_rtx);
9ebbca7d
GK
15506 emit_move_insn (stack_top, mem);
15507
8308679f
DE
15508 mem = gen_frame_mem (Pmode,
15509 gen_rtx_PLUS (Pmode, stack_top,
15510 GEN_INT (2 * GET_MODE_SIZE (Pmode))));
9ebbca7d 15511 emit_move_insn (opcode_addr, mem);
fc4767bb
JJ
15512 emit_move_insn (opcode, gen_rtx_MEM (SImode, opcode_addr));
15513 emit_move_insn (tocompare, gen_int_mode (TARGET_32BIT ? 0x80410014
2496c7bd 15514 : 0xE8410028, SImode));
9ebbca7d 15515
fc4767bb 15516 do_compare_rtx_and_jump (opcode, tocompare, EQ, 1,
06f4e019 15517 SImode, NULL_RTX, NULL_RTX,
fc4767bb 15518 no_toc_save_needed);
9ebbca7d 15519
8308679f
DE
15520 mem = gen_frame_mem (Pmode,
15521 gen_rtx_PLUS (Pmode, stack_top,
15522 GEN_INT (5 * GET_MODE_SIZE (Pmode))));
fc4767bb
JJ
15523 emit_move_insn (mem, gen_rtx_REG (Pmode, 2));
15524 emit_label (no_toc_save_needed);
9ebbca7d 15525}
38c1f2d7 15526\f
0be76840
DE
15527/* This ties together stack memory (MEM with an alias set of frame_alias_set)
15528 and the change to the stack pointer. */
ba4828e0 15529
9ebbca7d 15530static void
863d938c 15531rs6000_emit_stack_tie (void)
9ebbca7d 15532{
0be76840
DE
15533 rtx mem = gen_frame_mem (BLKmode,
15534 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM));
ba4828e0 15535
9ebbca7d
GK
15536 emit_insn (gen_stack_tie (mem));
15537}
38c1f2d7 15538
9ebbca7d
GK
15539/* Emit the correct code for allocating stack space, as insns.
15540 If COPY_R12, make sure a copy of the old frame is left in r12.
f78c3290
NF
15541 If COPY_R11, make sure a copy of the old frame is left in r11,
15542 in preference to r12 if COPY_R12.
9ebbca7d
GK
15543 The generated code may use hard register 0 as a temporary. */
15544
15545static void
f78c3290 15546rs6000_emit_allocate_stack (HOST_WIDE_INT size, int copy_r12, int copy_r11)
38c1f2d7 15547{
9ebbca7d
GK
15548 rtx insn;
15549 rtx stack_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
15550 rtx tmp_reg = gen_rtx_REG (Pmode, 0);
61168ff1 15551 rtx todec = gen_int_mode (-size, Pmode);
d4bacef0 15552 rtx par, set, mem;
61168ff1
RS
15553
15554 if (INTVAL (todec) != -size)
15555 {
d4ee4d25 15556 warning (0, "stack frame too large");
61168ff1
RS
15557 emit_insn (gen_trap ());
15558 return;
15559 }
a157febd 15560
e3b5732b 15561 if (crtl->limit_stack)
a157febd
GK
15562 {
15563 if (REG_P (stack_limit_rtx)
f676971a 15564 && REGNO (stack_limit_rtx) > 1
a157febd
GK
15565 && REGNO (stack_limit_rtx) <= 31)
15566 {
5b71a4e7 15567 emit_insn (TARGET_32BIT
9ebbca7d
GK
15568 ? gen_addsi3 (tmp_reg,
15569 stack_limit_rtx,
15570 GEN_INT (size))
15571 : gen_adddi3 (tmp_reg,
15572 stack_limit_rtx,
15573 GEN_INT (size)));
5b71a4e7 15574
9ebbca7d
GK
15575 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
15576 const0_rtx));
a157febd
GK
15577 }
15578 else if (GET_CODE (stack_limit_rtx) == SYMBOL_REF
9ebbca7d 15579 && TARGET_32BIT
f607bc57 15580 && DEFAULT_ABI == ABI_V4)
a157febd 15581 {
9ebbca7d 15582 rtx toload = gen_rtx_CONST (VOIDmode,
f676971a
EC
15583 gen_rtx_PLUS (Pmode,
15584 stack_limit_rtx,
9ebbca7d 15585 GEN_INT (size)));
5b71a4e7 15586
9ebbca7d
GK
15587 emit_insn (gen_elf_high (tmp_reg, toload));
15588 emit_insn (gen_elf_low (tmp_reg, tmp_reg, toload));
15589 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
15590 const0_rtx));
a157febd
GK
15591 }
15592 else
d4ee4d25 15593 warning (0, "stack limit expression is not supported");
a157febd
GK
15594 }
15595
d4bacef0 15596 if (copy_r12 || copy_r11)
f78c3290
NF
15597 emit_move_insn (copy_r11
15598 ? gen_rtx_REG (Pmode, 11)
15599 : gen_rtx_REG (Pmode, 12),
15600 stack_reg);
9ebbca7d 15601
d4bacef0 15602 if (size > 32767)
38c1f2d7 15603 {
d4bacef0
BE
15604 /* Need a note here so that try_split doesn't get confused. */
15605 if (get_last_insn () == NULL_RTX)
15606 emit_note (NOTE_INSN_DELETED);
15607 insn = emit_move_insn (tmp_reg, todec);
15608 try_split (PATTERN (insn), insn, 0);
15609 todec = tmp_reg;
9ebbca7d 15610 }
d4bacef0
BE
15611
15612 insn = emit_insn (TARGET_32BIT
15613 ? gen_movsi_update_stack (stack_reg, stack_reg,
15614 todec, stack_reg)
15615 : gen_movdi_di_update_stack (stack_reg, stack_reg,
15616 todec, stack_reg));
15617 /* Since we didn't use gen_frame_mem to generate the MEM, grab
15618 it now and set the alias set/attributes. The above gen_*_update
15619 calls will generate a PARALLEL with the MEM set being the first
15620 operation. */
15621 par = PATTERN (insn);
15622 gcc_assert (GET_CODE (par) == PARALLEL);
15623 set = XVECEXP (par, 0, 0);
15624 gcc_assert (GET_CODE (set) == SET);
15625 mem = SET_DEST (set);
15626 gcc_assert (MEM_P (mem));
15627 MEM_NOTRAP_P (mem) = 1;
15628 set_mem_alias_set (mem, get_frame_alias_set ());
f676971a 15629
9ebbca7d 15630 RTX_FRAME_RELATED_P (insn) = 1;
bbbbb16a
ILT
15631 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
15632 gen_rtx_SET (VOIDmode, stack_reg,
15633 gen_rtx_PLUS (Pmode, stack_reg,
15634 GEN_INT (-size))));
9ebbca7d
GK
15635}
15636
a4f6c312
SS
15637/* Add to 'insn' a note which is PATTERN (INSN) but with REG replaced
15638 with (plus:P (reg 1) VAL), and with REG2 replaced with RREG if REG2
15639 is not NULL. It would be nice if dwarf2out_frame_debug_expr could
15640 deduce these equivalences by itself so it wasn't necessary to hold
15641 its hand so much. */
9ebbca7d
GK
15642
15643static void
f676971a 15644rs6000_frame_related (rtx insn, rtx reg, HOST_WIDE_INT val,
a2369ed3 15645 rtx reg2, rtx rreg)
9ebbca7d
GK
15646{
15647 rtx real, temp;
15648
e56c4463
JL
15649 /* copy_rtx will not make unique copies of registers, so we need to
15650 ensure we don't have unwanted sharing here. */
15651 if (reg == reg2)
15652 reg = gen_raw_REG (GET_MODE (reg), REGNO (reg));
15653
15654 if (reg == rreg)
15655 reg = gen_raw_REG (GET_MODE (reg), REGNO (reg));
15656
9ebbca7d
GK
15657 real = copy_rtx (PATTERN (insn));
15658
89e7058f
AH
15659 if (reg2 != NULL_RTX)
15660 real = replace_rtx (real, reg2, rreg);
f676971a
EC
15661
15662 real = replace_rtx (real, reg,
9ebbca7d
GK
15663 gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode,
15664 STACK_POINTER_REGNUM),
15665 GEN_INT (val)));
f676971a 15666
9ebbca7d
GK
15667 /* We expect that 'real' is either a SET or a PARALLEL containing
15668 SETs (and possibly other stuff). In a PARALLEL, all the SETs
15669 are important so they all have to be marked RTX_FRAME_RELATED_P. */
15670
15671 if (GET_CODE (real) == SET)
15672 {
15673 rtx set = real;
f676971a 15674
9ebbca7d
GK
15675 temp = simplify_rtx (SET_SRC (set));
15676 if (temp)
15677 SET_SRC (set) = temp;
15678 temp = simplify_rtx (SET_DEST (set));
15679 if (temp)
15680 SET_DEST (set) = temp;
15681 if (GET_CODE (SET_DEST (set)) == MEM)
38c1f2d7 15682 {
9ebbca7d
GK
15683 temp = simplify_rtx (XEXP (SET_DEST (set), 0));
15684 if (temp)
15685 XEXP (SET_DEST (set), 0) = temp;
38c1f2d7 15686 }
38c1f2d7 15687 }
37409796 15688 else
9ebbca7d
GK
15689 {
15690 int i;
37409796
NS
15691
15692 gcc_assert (GET_CODE (real) == PARALLEL);
9ebbca7d
GK
15693 for (i = 0; i < XVECLEN (real, 0); i++)
15694 if (GET_CODE (XVECEXP (real, 0, i)) == SET)
15695 {
15696 rtx set = XVECEXP (real, 0, i);
f676971a 15697
9ebbca7d
GK
15698 temp = simplify_rtx (SET_SRC (set));
15699 if (temp)
15700 SET_SRC (set) = temp;
15701 temp = simplify_rtx (SET_DEST (set));
15702 if (temp)
15703 SET_DEST (set) = temp;
15704 if (GET_CODE (SET_DEST (set)) == MEM)
15705 {
15706 temp = simplify_rtx (XEXP (SET_DEST (set), 0));
15707 if (temp)
15708 XEXP (SET_DEST (set), 0) = temp;
15709 }
15710 RTX_FRAME_RELATED_P (set) = 1;
15711 }
15712 }
c19de7aa 15713
9ebbca7d 15714 RTX_FRAME_RELATED_P (insn) = 1;
bbbbb16a 15715 add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
38c1f2d7
MM
15716}
15717
00b960c7
AH
15718/* Returns an insn that has a vrsave set operation with the
15719 appropriate CLOBBERs. */
15720
15721static rtx
a2369ed3 15722generate_set_vrsave (rtx reg, rs6000_stack_t *info, int epiloguep)
00b960c7
AH
15723{
15724 int nclobs, i;
15725 rtx insn, clobs[TOTAL_ALTIVEC_REGS + 1];
a004eb82 15726 rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
00b960c7 15727
a004eb82
AH
15728 clobs[0]
15729 = gen_rtx_SET (VOIDmode,
15730 vrsave,
15731 gen_rtx_UNSPEC_VOLATILE (SImode,
15732 gen_rtvec (2, reg, vrsave),
3aca4bff 15733 UNSPECV_SET_VRSAVE));
00b960c7
AH
15734
15735 nclobs = 1;
15736
9aa86737
AH
15737 /* We need to clobber the registers in the mask so the scheduler
15738 does not move sets to VRSAVE before sets of AltiVec registers.
15739
15740 However, if the function receives nonlocal gotos, reload will set
15741 all call saved registers live. We will end up with:
15742
15743 (set (reg 999) (mem))
15744 (parallel [ (set (reg vrsave) (unspec blah))
15745 (clobber (reg 999))])
15746
15747 The clobber will cause the store into reg 999 to be dead, and
15748 flow will attempt to delete an epilogue insn. In this case, we
15749 need an unspec use/set of the register. */
00b960c7
AH
15750
15751 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
44688022 15752 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
9aa86737
AH
15753 {
15754 if (!epiloguep || call_used_regs [i])
15755 clobs[nclobs++] = gen_rtx_CLOBBER (VOIDmode,
15756 gen_rtx_REG (V4SImode, i));
15757 else
15758 {
15759 rtx reg = gen_rtx_REG (V4SImode, i);
9aa86737
AH
15760
15761 clobs[nclobs++]
a004eb82
AH
15762 = gen_rtx_SET (VOIDmode,
15763 reg,
15764 gen_rtx_UNSPEC (V4SImode,
15765 gen_rtvec (1, reg), 27));
9aa86737
AH
15766 }
15767 }
00b960c7
AH
15768
15769 insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nclobs));
15770
15771 for (i = 0; i < nclobs; ++i)
15772 XVECEXP (insn, 0, i) = clobs[i];
15773
15774 return insn;
15775}
15776
89e7058f
AH
15777/* Save a register into the frame, and emit RTX_FRAME_RELATED_P notes.
15778 Save REGNO into [FRAME_REG + OFFSET] in mode MODE. */
15779
15780static void
f676971a 15781emit_frame_save (rtx frame_reg, rtx frame_ptr, enum machine_mode mode,
d1d0c603 15782 unsigned int regno, int offset, HOST_WIDE_INT total_size)
89e7058f
AH
15783{
15784 rtx reg, offset_rtx, insn, mem, addr, int_rtx;
15785 rtx replacea, replaceb;
15786
15787 int_rtx = GEN_INT (offset);
15788
15789 /* Some cases that need register indexed addressing. */
15790 if ((TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
4f011e1e 15791 || (TARGET_E500_DOUBLE && mode == DFmode)
a3170dc6
AH
15792 || (TARGET_SPE_ABI
15793 && SPE_VECTOR_MODE (mode)
15794 && !SPE_CONST_OFFSET_OK (offset)))
89e7058f
AH
15795 {
15796 /* Whomever calls us must make sure r11 is available in the
c4ad648e 15797 flow path of instructions in the prologue. */
89e7058f
AH
15798 offset_rtx = gen_rtx_REG (Pmode, 11);
15799 emit_move_insn (offset_rtx, int_rtx);
15800
15801 replacea = offset_rtx;
15802 replaceb = int_rtx;
15803 }
15804 else
15805 {
15806 offset_rtx = int_rtx;
15807 replacea = NULL_RTX;
15808 replaceb = NULL_RTX;
15809 }
15810
15811 reg = gen_rtx_REG (mode, regno);
15812 addr = gen_rtx_PLUS (Pmode, frame_reg, offset_rtx);
0be76840 15813 mem = gen_frame_mem (mode, addr);
89e7058f
AH
15814
15815 insn = emit_move_insn (mem, reg);
15816
15817 rs6000_frame_related (insn, frame_ptr, total_size, replacea, replaceb);
15818}
15819
a3170dc6
AH
15820/* Emit an offset memory reference suitable for a frame store, while
15821 converting to a valid addressing mode. */
15822
15823static rtx
a2369ed3 15824gen_frame_mem_offset (enum machine_mode mode, rtx reg, int offset)
a3170dc6
AH
15825{
15826 rtx int_rtx, offset_rtx;
15827
15828 int_rtx = GEN_INT (offset);
15829
4d4cbc0e 15830 if ((TARGET_SPE_ABI && SPE_VECTOR_MODE (mode))
4f011e1e 15831 || (TARGET_E500_DOUBLE && mode == DFmode))
a3170dc6
AH
15832 {
15833 offset_rtx = gen_rtx_REG (Pmode, FIXED_SCRATCH);
15834 emit_move_insn (offset_rtx, int_rtx);
15835 }
15836 else
15837 offset_rtx = int_rtx;
15838
0be76840 15839 return gen_frame_mem (mode, gen_rtx_PLUS (Pmode, reg, offset_rtx));
a3170dc6
AH
15840}
15841
6d0a8091
DJ
15842/* Look for user-defined global regs. We should not save and restore these,
15843 and cannot use stmw/lmw if there are any in its range. */
15844
15845static bool
f78c3290 15846no_global_regs_above (int first, bool gpr)
6d0a8091
DJ
15847{
15848 int i;
e1ece9f1 15849 for (i = first; i < gpr ? 32 : 64 ; i++)
f78c3290 15850 if (global_regs[i])
6d0a8091
DJ
15851 return false;
15852 return true;
15853}
15854
699c914a
MS
15855#ifndef TARGET_FIX_AND_CONTINUE
15856#define TARGET_FIX_AND_CONTINUE 0
15857#endif
15858
f78c3290
NF
15859/* It's really GPR 13 and FPR 14, but we need the smaller of the two. */
15860#define FIRST_SAVRES_REGISTER FIRST_SAVED_GP_REGNO
15861#define LAST_SAVRES_REGISTER 31
15862#define N_SAVRES_REGISTERS (LAST_SAVRES_REGISTER - FIRST_SAVRES_REGISTER + 1)
15863
15864static GTY(()) rtx savres_routine_syms[N_SAVRES_REGISTERS][8];
15865
15866/* Return the symbol for an out-of-line register save/restore routine.
15867 We are saving/restoring GPRs if GPR is true. */
15868
15869static rtx
15870rs6000_savres_routine_sym (rs6000_stack_t *info, bool savep, bool gpr, bool exitp)
15871{
15872 int regno = gpr ? info->first_gp_reg_save : (info->first_fp_reg_save - 32);
15873 rtx sym;
15874 int select = ((savep ? 1 : 0) << 2
15875 | (gpr
15876 /* On the SPE, we never have any FPRs, but we do have
15877 32/64-bit versions of the routines. */
15878 ? (TARGET_SPE_ABI && info->spe_64bit_regs_used ? 1 : 0)
15879 : 0) << 1
15880 | (exitp ? 1: 0));
15881
15882 /* Don't generate bogus routine names. */
15883 gcc_assert (FIRST_SAVRES_REGISTER <= regno && regno <= LAST_SAVRES_REGISTER);
15884
15885 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select];
15886
15887 if (sym == NULL)
15888 {
15889 char name[30];
15890 const char *action;
15891 const char *regkind;
15892 const char *exit_suffix;
15893
15894 action = savep ? "save" : "rest";
15895
15896 /* SPE has slightly different names for its routines depending on
15897 whether we are saving 32-bit or 64-bit registers. */
15898 if (TARGET_SPE_ABI)
15899 {
15900 /* No floating point saves on the SPE. */
15901 gcc_assert (gpr);
15902
15903 regkind = info->spe_64bit_regs_used ? "64gpr" : "32gpr";
15904 }
15905 else
15906 regkind = gpr ? "gpr" : "fpr";
15907
15908 exit_suffix = exitp ? "_x" : "";
15909
15910 sprintf (name, "_%s%s_%d%s", action, regkind, regno, exit_suffix);
15911
15912 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select]
15913 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
15914 }
15915
15916 return sym;
15917}
15918
15919/* Emit a sequence of insns, including a stack tie if needed, for
15920 resetting the stack pointer. If SAVRES is true, then don't reset the
15921 stack pointer, but move the base of the frame into r11 for use by
15922 out-of-line register restore routines. */
15923
15924static void
15925rs6000_emit_stack_reset (rs6000_stack_t *info,
15926 rtx sp_reg_rtx, rtx frame_reg_rtx,
15927 int sp_offset, bool savres)
15928{
15929 /* This blockage is needed so that sched doesn't decide to move
15930 the sp change before the register restores. */
15931 if (frame_reg_rtx != sp_reg_rtx
15932 || (TARGET_SPE_ABI
15933 && info->spe_64bit_regs_used != 0
15934 && info->first_gp_reg_save != 32))
15935 rs6000_emit_stack_tie ();
15936
15937 if (frame_reg_rtx != sp_reg_rtx)
15938 {
f78c3290
NF
15939 if (sp_offset != 0)
15940 emit_insn (gen_addsi3 (sp_reg_rtx, frame_reg_rtx,
15941 GEN_INT (sp_offset)));
15942 else if (!savres)
15943 emit_move_insn (sp_reg_rtx, frame_reg_rtx);
15944 }
15945 else if (sp_offset != 0)
15946 {
15947 /* If we are restoring registers out-of-line, we will be using the
15948 "exit" variants of the restore routines, which will reset the
15949 stack for us. But we do need to point r11 into the right place
15950 for those routines. */
15951 rtx dest_reg = (savres
15952 ? gen_rtx_REG (Pmode, 11)
15953 : sp_reg_rtx);
15954
15955 emit_insn (TARGET_32BIT
15956 ? gen_addsi3 (dest_reg, sp_reg_rtx,
15957 GEN_INT (sp_offset))
15958 : gen_adddi3 (dest_reg, sp_reg_rtx,
15959 GEN_INT (sp_offset)));
15960 }
15961}
15962
15963/* Construct a parallel rtx describing the effect of a call to an
15964 out-of-line register save/restore routine. */
15965
15966static rtx
15967rs6000_make_savres_rtx (rs6000_stack_t *info,
15968 rtx frame_reg_rtx, int save_area_offset,
15969 enum machine_mode reg_mode,
15970 bool savep, bool gpr, bool exitp)
15971{
15972 int i;
15973 int offset, start_reg, end_reg, n_regs;
15974 int reg_size = GET_MODE_SIZE (reg_mode);
15975 rtx sym;
15976 rtvec p;
15977
15978 offset = 0;
15979 start_reg = (gpr
15980 ? info->first_gp_reg_save
15981 : info->first_fp_reg_save);
15982 end_reg = gpr ? 32 : 64;
15983 n_regs = end_reg - start_reg;
15984 p = rtvec_alloc ((exitp ? 4 : 3) + n_regs);
15985
15986 /* If we're saving registers, then we should never say we're exiting. */
15987 gcc_assert ((savep && !exitp) || !savep);
15988
15989 if (exitp)
15990 RTVEC_ELT (p, offset++) = gen_rtx_RETURN (VOIDmode);
15991
15992 RTVEC_ELT (p, offset++)
15993 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 65));
15994
15995 sym = rs6000_savres_routine_sym (info, savep, gpr, exitp);
15996 RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, sym);
15997 RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 11));
15998
15999 for (i = 0; i < end_reg - start_reg; i++)
16000 {
16001 rtx addr, reg, mem;
16002 reg = gen_rtx_REG (reg_mode, start_reg + i);
16003 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16004 GEN_INT (save_area_offset + reg_size*i));
16005 mem = gen_frame_mem (reg_mode, addr);
16006
16007 RTVEC_ELT (p, i + offset) = gen_rtx_SET (VOIDmode,
16008 savep ? mem : reg,
16009 savep ? reg : mem);
16010 }
16011
16012 return gen_rtx_PARALLEL (VOIDmode, p);
16013}
16014
52ff33d0
NF
16015/* Determine whether the gp REG is really used. */
16016
16017static bool
16018rs6000_reg_live_or_pic_offset_p (int reg)
16019{
6fb5fa3c 16020 return ((df_regs_ever_live_p (reg)
52ff33d0
NF
16021 && (!call_used_regs[reg]
16022 || (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
16023 && TARGET_TOC && TARGET_MINIMAL_TOC)))
16024 || (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
16025 && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0)
16026 || (DEFAULT_ABI == ABI_DARWIN && flag_pic))));
16027}
16028
f78c3290
NF
16029enum {
16030 SAVRES_MULTIPLE = 0x1,
16031 SAVRES_INLINE_FPRS = 0x2,
16032 SAVRES_INLINE_GPRS = 0x4
16033};
16034
16035/* Determine the strategy for savings/restoring registers. */
16036
16037static int
16038rs6000_savres_strategy (rs6000_stack_t *info, bool savep,
16039 int using_static_chain_p, int sibcall)
16040{
16041 bool using_multiple_p;
16042 bool common;
16043 bool savres_fprs_inline;
16044 bool savres_gprs_inline;
16045 bool noclobber_global_gprs
16046 = no_global_regs_above (info->first_gp_reg_save, /*gpr=*/true);
16047
16048 using_multiple_p = (TARGET_MULTIPLE && ! TARGET_POWERPC64
16049 && (!TARGET_SPE_ABI
16050 || info->spe_64bit_regs_used == 0)
16051 && info->first_gp_reg_save < 31
16052 && noclobber_global_gprs);
16053 /* Don't bother to try to save things out-of-line if r11 is occupied
16054 by the static chain. It would require too much fiddling and the
16055 static chain is rarely used anyway. */
16056 common = (using_static_chain_p
16057 || sibcall
16058 || crtl->calls_eh_return
16059 || !info->lr_save_p
16060 || cfun->machine->ra_need_lr
16061 || info->total_size > 32767);
16062 savres_fprs_inline = (common
16063 || info->first_fp_reg_save == 64
16064 || !no_global_regs_above (info->first_fp_reg_save,
16065 /*gpr=*/false)
16066 || FP_SAVE_INLINE (info->first_fp_reg_save));
16067 savres_gprs_inline = (common
16068 /* Saving CR interferes with the exit routines
16069 used on the SPE, so just punt here. */
16070 || (!savep
16071 && TARGET_SPE_ABI
16072 && info->spe_64bit_regs_used != 0
16073 && info->cr_save_p != 0)
16074 || info->first_gp_reg_save == 32
16075 || !noclobber_global_gprs
16076 || GP_SAVE_INLINE (info->first_gp_reg_save));
16077
16078 if (savep)
16079 /* If we are going to use store multiple, then don't even bother
16080 with the out-of-line routines, since the store-multiple instruction
16081 will always be smaller. */
16082 savres_gprs_inline = savres_gprs_inline || using_multiple_p;
16083 else
16084 {
16085 /* The situation is more complicated with load multiple. We'd
16086 prefer to use the out-of-line routines for restores, since the
16087 "exit" out-of-line routines can handle the restore of LR and
16088 the frame teardown. But we can only use the out-of-line
16089 routines if we know that we've used store multiple or
16090 out-of-line routines in the prologue, i.e. if we've saved all
16091 the registers from first_gp_reg_save. Otherwise, we risk
16092 loading garbage from the stack. Furthermore, we can only use
16093 the "exit" out-of-line gpr restore if we haven't saved any
16094 fprs. */
16095 bool saved_all = !savres_gprs_inline || using_multiple_p;
16096
16097 if (saved_all && info->first_fp_reg_save != 64)
16098 /* We can't use the exit routine; use load multiple if it's
16099 available. */
16100 savres_gprs_inline = savres_gprs_inline || using_multiple_p;
16101 }
16102
16103 return (using_multiple_p
16104 | (savres_fprs_inline << 1)
16105 | (savres_gprs_inline << 2));
16106}
16107
9ebbca7d
GK
16108/* Emit function prologue as insns. */
16109
9878760c 16110void
863d938c 16111rs6000_emit_prologue (void)
9878760c 16112{
4697a36c 16113 rs6000_stack_t *info = rs6000_stack_info ();
0e67400a 16114 enum machine_mode reg_mode = Pmode;
327e5343 16115 int reg_size = TARGET_32BIT ? 4 : 8;
9ebbca7d
GK
16116 rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
16117 rtx frame_ptr_rtx = gen_rtx_REG (Pmode, 12);
16118 rtx frame_reg_rtx = sp_reg_rtx;
b78d48dd 16119 rtx cr_save_rtx = NULL_RTX;
9ebbca7d 16120 rtx insn;
f78c3290 16121 int strategy;
9ebbca7d 16122 int saving_FPRs_inline;
f78c3290 16123 int saving_GPRs_inline;
9ebbca7d 16124 int using_store_multiple;
f78c3290
NF
16125 int using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
16126 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
e1ece9f1 16127 && !call_used_regs[STATIC_CHAIN_REGNUM]);
9ebbca7d 16128 HOST_WIDE_INT sp_offset = 0;
f676971a 16129
699c914a
MS
16130 if (TARGET_FIX_AND_CONTINUE)
16131 {
16132 /* gdb on darwin arranges to forward a function from the old
de2ab0ca 16133 address by modifying the first 5 instructions of the function
699c914a
MS
16134 to branch to the overriding function. This is necessary to
16135 permit function pointers that point to the old function to
16136 actually forward to the new function. */
16137 emit_insn (gen_nop ());
16138 emit_insn (gen_nop ());
de2ab0ca 16139 emit_insn (gen_nop ());
699c914a
MS
16140 emit_insn (gen_nop ());
16141 emit_insn (gen_nop ());
16142 }
16143
16144 if (TARGET_SPE_ABI && info->spe_64bit_regs_used != 0)
16145 {
16146 reg_mode = V2SImode;
16147 reg_size = 8;
16148 }
a3170dc6 16149
f78c3290
NF
16150 strategy = rs6000_savres_strategy (info, /*savep=*/true,
16151 /*static_chain_p=*/using_static_chain_p,
16152 /*sibcall=*/0);
16153 using_store_multiple = strategy & SAVRES_MULTIPLE;
16154 saving_FPRs_inline = strategy & SAVRES_INLINE_FPRS;
16155 saving_GPRs_inline = strategy & SAVRES_INLINE_GPRS;
9ebbca7d
GK
16156
16157 /* For V.4, update stack before we do any saving and set back pointer. */
22fa69da
GK
16158 if (! WORLD_SAVE_P (info)
16159 && info->push_p
acd0b319 16160 && (DEFAULT_ABI == ABI_V4
e3b5732b 16161 || crtl->calls_eh_return))
9ebbca7d 16162 {
f78c3290
NF
16163 bool need_r11 = (TARGET_SPE
16164 ? (!saving_GPRs_inline
16165 && info->spe_64bit_regs_used == 0)
16166 : (!saving_FPRs_inline || !saving_GPRs_inline));
9ebbca7d
GK
16167 if (info->total_size < 32767)
16168 sp_offset = info->total_size;
16169 else
f78c3290
NF
16170 frame_reg_rtx = (need_r11
16171 ? gen_rtx_REG (Pmode, 11)
16172 : frame_ptr_rtx);
f676971a 16173 rs6000_emit_allocate_stack (info->total_size,
9ebbca7d
GK
16174 (frame_reg_rtx != sp_reg_rtx
16175 && (info->cr_save_p
16176 || info->lr_save_p
16177 || info->first_fp_reg_save < 64
16178 || info->first_gp_reg_save < 32
f78c3290
NF
16179 )),
16180 need_r11);
9ebbca7d
GK
16181 if (frame_reg_rtx != sp_reg_rtx)
16182 rs6000_emit_stack_tie ();
16183 }
16184
d62294f5 16185 /* Handle world saves specially here. */
f57fe068 16186 if (WORLD_SAVE_P (info))
d62294f5
FJ
16187 {
16188 int i, j, sz;
16189 rtx treg;
16190 rtvec p;
22fa69da 16191 rtx reg0;
d62294f5
FJ
16192
16193 /* save_world expects lr in r0. */
22fa69da 16194 reg0 = gen_rtx_REG (Pmode, 0);
d62294f5 16195 if (info->lr_save_p)
c4ad648e 16196 {
22fa69da 16197 insn = emit_move_insn (reg0,
1de43f85 16198 gen_rtx_REG (Pmode, LR_REGNO));
c4ad648e
AM
16199 RTX_FRAME_RELATED_P (insn) = 1;
16200 }
d62294f5
FJ
16201
16202 /* The SAVE_WORLD and RESTORE_WORLD routines make a number of
c4ad648e 16203 assumptions about the offsets of various bits of the stack
992d08b1 16204 frame. */
37409796
NS
16205 gcc_assert (info->gp_save_offset == -220
16206 && info->fp_save_offset == -144
16207 && info->lr_save_offset == 8
16208 && info->cr_save_offset == 4
16209 && info->push_p
16210 && info->lr_save_p
e3b5732b 16211 && (!crtl->calls_eh_return
37409796
NS
16212 || info->ehrd_offset == -432)
16213 && info->vrsave_save_offset == -224
22fa69da 16214 && info->altivec_save_offset == -416);
d62294f5
FJ
16215
16216 treg = gen_rtx_REG (SImode, 11);
16217 emit_move_insn (treg, GEN_INT (-info->total_size));
16218
16219 /* SAVE_WORLD takes the caller's LR in R0 and the frame size
c4ad648e 16220 in R11. It also clobbers R12, so beware! */
d62294f5
FJ
16221
16222 /* Preserve CR2 for save_world prologues */
22fa69da 16223 sz = 5;
d62294f5
FJ
16224 sz += 32 - info->first_gp_reg_save;
16225 sz += 64 - info->first_fp_reg_save;
16226 sz += LAST_ALTIVEC_REGNO - info->first_altivec_reg_save + 1;
16227 p = rtvec_alloc (sz);
16228 j = 0;
16229 RTVEC_ELT (p, j++) = gen_rtx_CLOBBER (VOIDmode,
a5ad2017 16230 gen_rtx_REG (SImode,
1de43f85 16231 LR_REGNO));
d62294f5 16232 RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
c4ad648e
AM
16233 gen_rtx_SYMBOL_REF (Pmode,
16234 "*save_world"));
d62294f5 16235 /* We do floats first so that the instruction pattern matches
c4ad648e
AM
16236 properly. */
16237 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
16238 {
696e45ba
ME
16239 rtx reg = gen_rtx_REG (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16240 ? DFmode : SFmode),
16241 info->first_fp_reg_save + i);
c4ad648e
AM
16242 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16243 GEN_INT (info->fp_save_offset
16244 + sp_offset + 8 * i));
696e45ba
ME
16245 rtx mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16246 ? DFmode : SFmode), addr);
c4ad648e
AM
16247
16248 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16249 }
d62294f5 16250 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
c4ad648e
AM
16251 {
16252 rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
16253 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16254 GEN_INT (info->altivec_save_offset
16255 + sp_offset + 16 * i));
0be76840 16256 rtx mem = gen_frame_mem (V4SImode, addr);
c4ad648e
AM
16257
16258 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16259 }
d62294f5 16260 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
c4ad648e
AM
16261 {
16262 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16263 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16264 GEN_INT (info->gp_save_offset
16265 + sp_offset + reg_size * i));
0be76840 16266 rtx mem = gen_frame_mem (reg_mode, addr);
c4ad648e
AM
16267
16268 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16269 }
16270
16271 {
16272 /* CR register traditionally saved as CR2. */
16273 rtx reg = gen_rtx_REG (reg_mode, CR2_REGNO);
16274 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16275 GEN_INT (info->cr_save_offset
16276 + sp_offset));
0be76840 16277 rtx mem = gen_frame_mem (reg_mode, addr);
c4ad648e
AM
16278
16279 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16280 }
22fa69da
GK
16281 /* Explain about use of R0. */
16282 if (info->lr_save_p)
16283 {
16284 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16285 GEN_INT (info->lr_save_offset
16286 + sp_offset));
16287 rtx mem = gen_frame_mem (reg_mode, addr);
982afe02 16288
22fa69da
GK
16289 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg0);
16290 }
16291 /* Explain what happens to the stack pointer. */
16292 {
16293 rtx newval = gen_rtx_PLUS (Pmode, sp_reg_rtx, treg);
16294 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, sp_reg_rtx, newval);
16295 }
d62294f5
FJ
16296
16297 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
16298 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
22fa69da
GK
16299 treg, GEN_INT (-info->total_size));
16300 sp_offset = info->total_size;
d62294f5
FJ
16301 }
16302
9ebbca7d 16303 /* If we use the link register, get it into r0. */
f57fe068 16304 if (!WORLD_SAVE_P (info) && info->lr_save_p)
f8a57be8 16305 {
52ff33d0
NF
16306 rtx addr, reg, mem;
16307
f8a57be8 16308 insn = emit_move_insn (gen_rtx_REG (Pmode, 0),
1de43f85 16309 gen_rtx_REG (Pmode, LR_REGNO));
f8a57be8 16310 RTX_FRAME_RELATED_P (insn) = 1;
52ff33d0
NF
16311
16312 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16313 GEN_INT (info->lr_save_offset + sp_offset));
16314 reg = gen_rtx_REG (Pmode, 0);
16315 mem = gen_rtx_MEM (Pmode, addr);
16316 /* This should not be of rs6000_sr_alias_set, because of
16317 __builtin_return_address. */
16318
16319 insn = emit_move_insn (mem, reg);
16320 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16321 NULL_RTX, NULL_RTX);
f8a57be8 16322 }
9ebbca7d
GK
16323
16324 /* If we need to save CR, put it into r12. */
f57fe068 16325 if (!WORLD_SAVE_P (info) && info->cr_save_p && frame_reg_rtx != frame_ptr_rtx)
9ebbca7d 16326 {
f8a57be8 16327 rtx set;
f676971a 16328
9ebbca7d 16329 cr_save_rtx = gen_rtx_REG (SImode, 12);
f8a57be8
GK
16330 insn = emit_insn (gen_movesi_from_cr (cr_save_rtx));
16331 RTX_FRAME_RELATED_P (insn) = 1;
16332 /* Now, there's no way that dwarf2out_frame_debug_expr is going
16333 to understand '(unspec:SI [(reg:CC 68) ...] UNSPEC_MOVESI_FROM_CR)'.
16334 But that's OK. All we have to do is specify that _one_ condition
16335 code register is saved in this stack slot. The thrower's epilogue
16336 will then restore all the call-saved registers.
16337 We use CR2_REGNO (70) to be compatible with gcc-2.95 on Linux. */
16338 set = gen_rtx_SET (VOIDmode, cr_save_rtx,
16339 gen_rtx_REG (SImode, CR2_REGNO));
bbbbb16a 16340 add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
9ebbca7d
GK
16341 }
16342
a4f6c312
SS
16343 /* Do any required saving of fpr's. If only one or two to save, do
16344 it ourselves. Otherwise, call function. */
f57fe068 16345 if (!WORLD_SAVE_P (info) && saving_FPRs_inline)
9ebbca7d
GK
16346 {
16347 int i;
16348 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
6fb5fa3c 16349 if ((df_regs_ever_live_p (info->first_fp_reg_save+i)
9ebbca7d 16350 && ! call_used_regs[info->first_fp_reg_save+i]))
696e45ba
ME
16351 emit_frame_save (frame_reg_rtx, frame_ptr_rtx,
16352 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16353 ? DFmode : SFmode,
89e7058f
AH
16354 info->first_fp_reg_save + i,
16355 info->fp_save_offset + sp_offset + 8 * i,
16356 info->total_size);
9ebbca7d 16357 }
f57fe068 16358 else if (!WORLD_SAVE_P (info) && info->first_fp_reg_save != 64)
f78c3290
NF
16359 {
16360 rtx par;
16361
16362 par = rs6000_make_savres_rtx (info, frame_reg_rtx,
16363 info->fp_save_offset + sp_offset,
16364 DFmode,
16365 /*savep=*/true, /*gpr=*/false,
16366 /*exitp=*/false);
16367 insn = emit_insn (par);
16368 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16369 NULL_RTX, NULL_RTX);
16370 }
16371
16372 /* Save GPRs. This is done as a PARALLEL if we are using
16373 the store-multiple instructions. */
16374 if (!WORLD_SAVE_P (info)
16375 && TARGET_SPE_ABI
16376 && info->spe_64bit_regs_used != 0
16377 && info->first_gp_reg_save != 32)
9ebbca7d
GK
16378 {
16379 int i;
f78c3290
NF
16380 rtx spe_save_area_ptr;
16381
16382 /* Determine whether we can address all of the registers that need
16383 to be saved with an offset from the stack pointer that fits in
16384 the small const field for SPE memory instructions. */
16385 int spe_regs_addressable_via_sp
16386 = (SPE_CONST_OFFSET_OK(info->spe_gp_save_offset + sp_offset
16387 + (32 - info->first_gp_reg_save - 1) * reg_size)
16388 && saving_GPRs_inline);
16389 int spe_offset;
16390
16391 if (spe_regs_addressable_via_sp)
16392 {
16393 spe_save_area_ptr = frame_reg_rtx;
16394 spe_offset = info->spe_gp_save_offset + sp_offset;
16395 }
16396 else
16397 {
16398 /* Make r11 point to the start of the SPE save area. We need
16399 to be careful here if r11 is holding the static chain. If
16400 it is, then temporarily save it in r0. We would use r0 as
16401 our base register here, but using r0 as a base register in
16402 loads and stores means something different from what we
16403 would like. */
16404 int ool_adjust = (saving_GPRs_inline
16405 ? 0
16406 : (info->first_gp_reg_save
16407 - (FIRST_SAVRES_REGISTER+1))*8);
16408 HOST_WIDE_INT offset = (info->spe_gp_save_offset
16409 + sp_offset - ool_adjust);
16410
16411 if (using_static_chain_p)
16412 {
16413 rtx r0 = gen_rtx_REG (Pmode, 0);
16414 gcc_assert (info->first_gp_reg_save > 11);
16415
16416 emit_move_insn (r0, gen_rtx_REG (Pmode, 11));
16417 }
16418
16419 spe_save_area_ptr = gen_rtx_REG (Pmode, 11);
16420 insn = emit_insn (gen_addsi3 (spe_save_area_ptr,
16421 frame_reg_rtx,
16422 GEN_INT (offset)));
16423 /* We need to make sure the move to r11 gets noted for
16424 properly outputting unwind information. */
16425 if (!saving_GPRs_inline)
16426 rs6000_frame_related (insn, frame_reg_rtx, offset,
16427 NULL_RTX, NULL_RTX);
16428 spe_offset = 0;
16429 }
16430
16431 if (saving_GPRs_inline)
16432 {
16433 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16434 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
16435 {
16436 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16437 rtx offset, addr, mem;
f676971a 16438
f78c3290
NF
16439 /* We're doing all this to ensure that the offset fits into
16440 the immediate offset of 'evstdd'. */
16441 gcc_assert (SPE_CONST_OFFSET_OK (reg_size * i + spe_offset));
16442
16443 offset = GEN_INT (reg_size * i + spe_offset);
16444 addr = gen_rtx_PLUS (Pmode, spe_save_area_ptr, offset);
16445 mem = gen_rtx_MEM (V2SImode, addr);
16446
16447 insn = emit_move_insn (mem, reg);
16448
16449 rs6000_frame_related (insn, spe_save_area_ptr,
16450 info->spe_gp_save_offset
16451 + sp_offset + reg_size * i,
16452 offset, const0_rtx);
16453 }
16454 }
16455 else
9ebbca7d 16456 {
f78c3290 16457 rtx par;
9ebbca7d 16458
f78c3290
NF
16459 par = rs6000_make_savres_rtx (info, gen_rtx_REG (Pmode, 11),
16460 0, reg_mode,
16461 /*savep=*/true, /*gpr=*/true,
16462 /*exitp=*/false);
16463 insn = emit_insn (par);
16464 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16465 NULL_RTX, NULL_RTX);
9ebbca7d 16466 }
f78c3290
NF
16467
16468
16469 /* Move the static chain pointer back. */
16470 if (using_static_chain_p && !spe_regs_addressable_via_sp)
16471 emit_move_insn (gen_rtx_REG (Pmode, 11), gen_rtx_REG (Pmode, 0));
16472 }
16473 else if (!WORLD_SAVE_P (info) && !saving_GPRs_inline)
16474 {
16475 rtx par;
16476
16477 /* Need to adjust r11 if we saved any FPRs. */
16478 if (info->first_fp_reg_save != 64)
16479 {
16480 rtx r11 = gen_rtx_REG (reg_mode, 11);
16481 rtx offset = GEN_INT (info->total_size
16482 + (-8 * (64-info->first_fp_reg_save)));
16483 rtx ptr_reg = (sp_reg_rtx == frame_reg_rtx
16484 ? sp_reg_rtx : r11);
16485
16486 emit_insn (TARGET_32BIT
16487 ? gen_addsi3 (r11, ptr_reg, offset)
16488 : gen_adddi3 (r11, ptr_reg, offset));
16489 }
16490
16491 par = rs6000_make_savres_rtx (info, frame_reg_rtx,
16492 info->gp_save_offset + sp_offset,
16493 reg_mode,
16494 /*savep=*/true, /*gpr=*/true,
16495 /*exitp=*/false);
16496 insn = emit_insn (par);
f676971a 16497 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
9ebbca7d
GK
16498 NULL_RTX, NULL_RTX);
16499 }
f78c3290 16500 else if (!WORLD_SAVE_P (info) && using_store_multiple)
b6c9286a 16501 {
308c142a 16502 rtvec p;
9ebbca7d
GK
16503 int i;
16504 p = rtvec_alloc (32 - info->first_gp_reg_save);
9ebbca7d
GK
16505 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16506 {
16507 rtx addr, reg, mem;
16508 reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
f676971a
EC
16509 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16510 GEN_INT (info->gp_save_offset
16511 + sp_offset
9ebbca7d 16512 + reg_size * i));
0be76840 16513 mem = gen_frame_mem (reg_mode, addr);
9ebbca7d
GK
16514
16515 RTVEC_ELT (p, i) = gen_rtx_SET (VOIDmode, mem, reg);
16516 }
16517 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
f676971a 16518 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
9ebbca7d 16519 NULL_RTX, NULL_RTX);
b6c9286a 16520 }
f57fe068 16521 else if (!WORLD_SAVE_P (info))
b6c9286a 16522 {
9ebbca7d
GK
16523 int i;
16524 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
52ff33d0
NF
16525 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
16526 {
16527 rtx addr, reg, mem;
16528 reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
a3170dc6 16529
52ff33d0
NF
16530 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16531 GEN_INT (info->gp_save_offset
16532 + sp_offset
16533 + reg_size * i));
16534 mem = gen_frame_mem (reg_mode, addr);
a3170dc6 16535
52ff33d0
NF
16536 insn = emit_move_insn (mem, reg);
16537 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16538 NULL_RTX, NULL_RTX);
16539 }
9ebbca7d
GK
16540 }
16541
83720594
RH
16542 /* ??? There's no need to emit actual instructions here, but it's the
16543 easiest way to get the frame unwind information emitted. */
e3b5732b 16544 if (crtl->calls_eh_return)
83720594 16545 {
78e1b90d
DE
16546 unsigned int i, regno;
16547
fc4767bb
JJ
16548 /* In AIX ABI we need to pretend we save r2 here. */
16549 if (TARGET_AIX)
16550 {
16551 rtx addr, reg, mem;
16552
16553 reg = gen_rtx_REG (reg_mode, 2);
16554 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16555 GEN_INT (sp_offset + 5 * reg_size));
0be76840 16556 mem = gen_frame_mem (reg_mode, addr);
fc4767bb
JJ
16557
16558 insn = emit_move_insn (mem, reg);
f676971a 16559 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
fc4767bb
JJ
16560 NULL_RTX, NULL_RTX);
16561 PATTERN (insn) = gen_blockage ();
16562 }
16563
83720594
RH
16564 for (i = 0; ; ++i)
16565 {
83720594
RH
16566 regno = EH_RETURN_DATA_REGNO (i);
16567 if (regno == INVALID_REGNUM)
16568 break;
16569
89e7058f
AH
16570 emit_frame_save (frame_reg_rtx, frame_ptr_rtx, reg_mode, regno,
16571 info->ehrd_offset + sp_offset
16572 + reg_size * (int) i,
16573 info->total_size);
83720594
RH
16574 }
16575 }
16576
9ebbca7d 16577 /* Save CR if we use any that must be preserved. */
f57fe068 16578 if (!WORLD_SAVE_P (info) && info->cr_save_p)
9ebbca7d
GK
16579 {
16580 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16581 GEN_INT (info->cr_save_offset + sp_offset));
0be76840 16582 rtx mem = gen_frame_mem (SImode, addr);
f8a57be8
GK
16583 /* See the large comment above about why CR2_REGNO is used. */
16584 rtx magic_eh_cr_reg = gen_rtx_REG (SImode, CR2_REGNO);
ba4828e0 16585
9ebbca7d
GK
16586 /* If r12 was used to hold the original sp, copy cr into r0 now
16587 that it's free. */
16588 if (REGNO (frame_reg_rtx) == 12)
16589 {
f8a57be8
GK
16590 rtx set;
16591
9ebbca7d 16592 cr_save_rtx = gen_rtx_REG (SImode, 0);
f8a57be8
GK
16593 insn = emit_insn (gen_movesi_from_cr (cr_save_rtx));
16594 RTX_FRAME_RELATED_P (insn) = 1;
16595 set = gen_rtx_SET (VOIDmode, cr_save_rtx, magic_eh_cr_reg);
bbbbb16a 16596 add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
9ebbca7d
GK
16597 }
16598 insn = emit_move_insn (mem, cr_save_rtx);
16599
f676971a 16600 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
f8a57be8 16601 NULL_RTX, NULL_RTX);
9ebbca7d
GK
16602 }
16603
f676971a 16604 /* Update stack and set back pointer unless this is V.4,
9ebbca7d 16605 for which it was done previously. */
f57fe068 16606 if (!WORLD_SAVE_P (info) && info->push_p
e3b5732b 16607 && !(DEFAULT_ABI == ABI_V4 || crtl->calls_eh_return))
2b2c2fe5 16608 {
bcb2d701 16609 if (info->total_size < 32767)
2b2c2fe5 16610 sp_offset = info->total_size;
bcb2d701
EC
16611 else
16612 frame_reg_rtx = frame_ptr_rtx;
16613 rs6000_emit_allocate_stack (info->total_size,
16614 (frame_reg_rtx != sp_reg_rtx
16615 && ((info->altivec_size != 0)
16616 || (info->vrsave_mask != 0)
f78c3290
NF
16617 )),
16618 FALSE);
bcb2d701
EC
16619 if (frame_reg_rtx != sp_reg_rtx)
16620 rs6000_emit_stack_tie ();
2b2c2fe5 16621 }
9ebbca7d
GK
16622
16623 /* Set frame pointer, if needed. */
16624 if (frame_pointer_needed)
16625 {
7d5175e1 16626 insn = emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
9ebbca7d
GK
16627 sp_reg_rtx);
16628 RTX_FRAME_RELATED_P (insn) = 1;
b6c9286a 16629 }
9878760c 16630
2b2c2fe5
EC
16631 /* Save AltiVec registers if needed. Save here because the red zone does
16632 not include AltiVec registers. */
16633 if (!WORLD_SAVE_P (info) && TARGET_ALTIVEC_ABI && info->altivec_size != 0)
16634 {
16635 int i;
16636
16637 /* There should be a non inline version of this, for when we
16638 are saving lots of vector registers. */
16639 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
16640 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
16641 {
16642 rtx areg, savereg, mem;
16643 int offset;
16644
16645 offset = info->altivec_save_offset + sp_offset
16646 + 16 * (i - info->first_altivec_reg_save);
16647
16648 savereg = gen_rtx_REG (V4SImode, i);
16649
16650 areg = gen_rtx_REG (Pmode, 0);
16651 emit_move_insn (areg, GEN_INT (offset));
16652
16653 /* AltiVec addressing mode is [reg+reg]. */
16654 mem = gen_frame_mem (V4SImode,
16655 gen_rtx_PLUS (Pmode, frame_reg_rtx, areg));
16656
16657 insn = emit_move_insn (mem, savereg);
16658
16659 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16660 areg, GEN_INT (offset));
16661 }
16662 }
16663
16664 /* VRSAVE is a bit vector representing which AltiVec registers
16665 are used. The OS uses this to determine which vector
16666 registers to save on a context switch. We need to save
16667 VRSAVE on the stack frame, add whatever AltiVec registers we
16668 used in this function, and do the corresponding magic in the
16669 epilogue. */
16670
16671 if (TARGET_ALTIVEC && TARGET_ALTIVEC_VRSAVE
16672 && info->vrsave_mask != 0)
16673 {
16674 rtx reg, mem, vrsave;
16675 int offset;
16676
16677 /* Get VRSAVE onto a GPR. Note that ABI_V4 might be using r12
16678 as frame_reg_rtx and r11 as the static chain pointer for
16679 nested functions. */
16680 reg = gen_rtx_REG (SImode, 0);
16681 vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
16682 if (TARGET_MACHO)
16683 emit_insn (gen_get_vrsave_internal (reg));
16684 else
16685 emit_insn (gen_rtx_SET (VOIDmode, reg, vrsave));
16686
16687 if (!WORLD_SAVE_P (info))
16688 {
16689 /* Save VRSAVE. */
16690 offset = info->vrsave_save_offset + sp_offset;
16691 mem = gen_frame_mem (SImode,
16692 gen_rtx_PLUS (Pmode, frame_reg_rtx,
16693 GEN_INT (offset)));
16694 insn = emit_move_insn (mem, reg);
16695 }
16696
16697 /* Include the registers in the mask. */
16698 emit_insn (gen_iorsi3 (reg, reg, GEN_INT ((int) info->vrsave_mask)));
16699
16700 insn = emit_insn (generate_set_vrsave (reg, info, 0));
16701 }
16702
1db02437 16703 /* If we are using RS6000_PIC_OFFSET_TABLE_REGNUM, we need to set it up. */
9ebbca7d 16704 if ((TARGET_TOC && TARGET_MINIMAL_TOC && get_pool_size () != 0)
7f970b70
AM
16705 || (DEFAULT_ABI == ABI_V4
16706 && (flag_pic == 1 || (flag_pic && TARGET_SECURE_PLT))
6fb5fa3c 16707 && df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM)))
c4ad648e
AM
16708 {
16709 /* If emit_load_toc_table will use the link register, we need to save
16710 it. We use R12 for this purpose because emit_load_toc_table
16711 can use register 0. This allows us to use a plain 'blr' to return
16712 from the procedure more often. */
16713 int save_LR_around_toc_setup = (TARGET_ELF
16714 && DEFAULT_ABI != ABI_AIX
16715 && flag_pic
16716 && ! info->lr_save_p
16717 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0);
16718 if (save_LR_around_toc_setup)
16719 {
1de43f85 16720 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
f8a57be8 16721
c4ad648e 16722 insn = emit_move_insn (frame_ptr_rtx, lr);
c4ad648e 16723 RTX_FRAME_RELATED_P (insn) = 1;
f8a57be8 16724
c4ad648e 16725 rs6000_emit_load_toc_table (TRUE);
f8a57be8 16726
c4ad648e 16727 insn = emit_move_insn (lr, frame_ptr_rtx);
c4ad648e
AM
16728 RTX_FRAME_RELATED_P (insn) = 1;
16729 }
16730 else
16731 rs6000_emit_load_toc_table (TRUE);
16732 }
ee890fe2 16733
fcce224d 16734#if TARGET_MACHO
ee890fe2 16735 if (DEFAULT_ABI == ABI_DARWIN
e3b5732b 16736 && flag_pic && crtl->uses_pic_offset_table)
ee890fe2 16737 {
1de43f85 16738 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
08a6a74b 16739 rtx src = gen_rtx_SYMBOL_REF (Pmode, MACHOPIC_FUNCTION_BASE_NAME);
ee890fe2 16740
6d0a8091
DJ
16741 /* Save and restore LR locally around this call (in R0). */
16742 if (!info->lr_save_p)
6fb5fa3c 16743 emit_move_insn (gen_rtx_REG (Pmode, 0), lr);
6d0a8091 16744
6fb5fa3c 16745 emit_insn (gen_load_macho_picbase (src));
ee890fe2 16746
6fb5fa3c
DB
16747 emit_move_insn (gen_rtx_REG (Pmode,
16748 RS6000_PIC_OFFSET_TABLE_REGNUM),
16749 lr);
6d0a8091
DJ
16750
16751 if (!info->lr_save_p)
6fb5fa3c 16752 emit_move_insn (lr, gen_rtx_REG (Pmode, 0));
ee890fe2 16753 }
fcce224d 16754#endif
9ebbca7d
GK
16755}
16756
9ebbca7d 16757/* Write function prologue. */
a4f6c312 16758
08c148a8 16759static void
f676971a 16760rs6000_output_function_prologue (FILE *file,
a2369ed3 16761 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
9ebbca7d
GK
16762{
16763 rs6000_stack_t *info = rs6000_stack_info ();
16764
4697a36c
MM
16765 if (TARGET_DEBUG_STACK)
16766 debug_stack_info (info);
9878760c 16767
a4f6c312
SS
16768 /* Write .extern for any function we will call to save and restore
16769 fp values. */
16770 if (info->first_fp_reg_save < 64
16771 && !FP_SAVE_INLINE (info->first_fp_reg_save))
4d30c363 16772 fprintf (file, "\t.extern %s%d%s\n\t.extern %s%d%s\n",
4697a36c 16773 SAVE_FP_PREFIX, info->first_fp_reg_save - 32, SAVE_FP_SUFFIX,
f78c3290 16774 RESTORE_FP_PREFIX, info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX);
9878760c 16775
c764f757
RK
16776 /* Write .extern for AIX common mode routines, if needed. */
16777 if (! TARGET_POWER && ! TARGET_POWERPC && ! common_mode_defined)
16778 {
f6709c70
JW
16779 fputs ("\t.extern __mulh\n", file);
16780 fputs ("\t.extern __mull\n", file);
16781 fputs ("\t.extern __divss\n", file);
16782 fputs ("\t.extern __divus\n", file);
16783 fputs ("\t.extern __quoss\n", file);
16784 fputs ("\t.extern __quous\n", file);
c764f757
RK
16785 common_mode_defined = 1;
16786 }
9878760c 16787
9ebbca7d 16788 if (! HAVE_prologue)
979721f8 16789 {
9ebbca7d 16790 start_sequence ();
9dda4cc8 16791
a4f6c312
SS
16792 /* A NOTE_INSN_DELETED is supposed to be at the start and end of
16793 the "toplevel" insn chain. */
2e040219 16794 emit_note (NOTE_INSN_DELETED);
9ebbca7d 16795 rs6000_emit_prologue ();
2e040219 16796 emit_note (NOTE_INSN_DELETED);
178c3eff 16797
a3c9585f 16798 /* Expand INSN_ADDRESSES so final() doesn't crash. */
178c3eff
DJ
16799 {
16800 rtx insn;
16801 unsigned addr = 0;
16802 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
16803 {
16804 INSN_ADDRESSES_NEW (insn, addr);
16805 addr += 4;
16806 }
16807 }
9dda4cc8 16808
9ebbca7d 16809 if (TARGET_DEBUG_STACK)
a4f6c312 16810 debug_rtx_list (get_insns (), 100);
c9d691e9 16811 final (get_insns (), file, FALSE);
9ebbca7d 16812 end_sequence ();
979721f8
MM
16813 }
16814
9ebbca7d
GK
16815 rs6000_pic_labelno++;
16816}
f676971a 16817
1c9c5e43
AM
16818/* Non-zero if vmx regs are restored before the frame pop, zero if
16819 we restore after the pop when possible. */
16820#define ALWAYS_RESTORE_ALTIVEC_BEFORE_POP 0
16821
f78c3290
NF
16822/* Reload CR from REG. */
16823
16824static void
16825rs6000_restore_saved_cr (rtx reg, int using_mfcr_multiple)
16826{
16827 int count = 0;
16828 int i;
16829
16830 if (using_mfcr_multiple)
16831 {
16832 for (i = 0; i < 8; i++)
16833 if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
16834 count++;
16835 gcc_assert (count);
16836 }
16837
16838 if (using_mfcr_multiple && count > 1)
16839 {
16840 rtvec p;
16841 int ndx;
16842
16843 p = rtvec_alloc (count);
16844
16845 ndx = 0;
16846 for (i = 0; i < 8; i++)
16847 if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
16848 {
16849 rtvec r = rtvec_alloc (2);
16850 RTVEC_ELT (r, 0) = reg;
16851 RTVEC_ELT (r, 1) = GEN_INT (1 << (7-i));
16852 RTVEC_ELT (p, ndx) =
16853 gen_rtx_SET (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO+i),
16854 gen_rtx_UNSPEC (CCmode, r, UNSPEC_MOVESI_TO_CR));
16855 ndx++;
16856 }
16857 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
16858 gcc_assert (ndx == count);
16859 }
16860 else
16861 for (i = 0; i < 8; i++)
16862 if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
16863 {
16864 emit_insn (gen_movsi_to_cr_one (gen_rtx_REG (CCmode,
16865 CR0_REGNO+i),
16866 reg));
16867 }
16868}
16869
9ebbca7d 16870/* Emit function epilogue as insns.
9878760c 16871
9ebbca7d
GK
16872 At present, dwarf2out_frame_debug_expr doesn't understand
16873 register restores, so we don't bother setting RTX_FRAME_RELATED_P
16874 anywhere in the epilogue. Most of the insns below would in any case
16875 need special notes to explain where r11 is in relation to the stack. */
9878760c 16876
9ebbca7d 16877void
a2369ed3 16878rs6000_emit_epilogue (int sibcall)
9ebbca7d
GK
16879{
16880 rs6000_stack_t *info;
f78c3290 16881 int restoring_GPRs_inline;
9ebbca7d
GK
16882 int restoring_FPRs_inline;
16883 int using_load_multiple;
d296e02e 16884 int using_mtcr_multiple;
9ebbca7d 16885 int use_backchain_to_restore_sp;
f78c3290
NF
16886 int restore_lr;
16887 int strategy;
9ebbca7d
GK
16888 int sp_offset = 0;
16889 rtx sp_reg_rtx = gen_rtx_REG (Pmode, 1);
16890 rtx frame_reg_rtx = sp_reg_rtx;
0e67400a 16891 enum machine_mode reg_mode = Pmode;
327e5343 16892 int reg_size = TARGET_32BIT ? 4 : 8;
9ebbca7d
GK
16893 int i;
16894
c19de7aa
AH
16895 info = rs6000_stack_info ();
16896
16897 if (TARGET_SPE_ABI && info->spe_64bit_regs_used != 0)
a3170dc6
AH
16898 {
16899 reg_mode = V2SImode;
16900 reg_size = 8;
16901 }
16902
f78c3290
NF
16903 strategy = rs6000_savres_strategy (info, /*savep=*/false,
16904 /*static_chain_p=*/0, sibcall);
16905 using_load_multiple = strategy & SAVRES_MULTIPLE;
16906 restoring_FPRs_inline = strategy & SAVRES_INLINE_FPRS;
16907 restoring_GPRs_inline = strategy & SAVRES_INLINE_GPRS;
d296e02e 16908 using_mtcr_multiple = (rs6000_cpu == PROCESSOR_PPC601
9ebbca7d
GK
16909 || rs6000_cpu == PROCESSOR_PPC603
16910 || rs6000_cpu == PROCESSOR_PPC750
16911 || optimize_size);
1c9c5e43
AM
16912 /* Restore via the backchain when we have a large frame, since this
16913 is more efficient than an addis, addi pair. The second condition
16914 here will not trigger at the moment; We don't actually need a
16915 frame pointer for alloca, but the generic parts of the compiler
16916 give us one anyway. */
16917 use_backchain_to_restore_sp = (info->total_size > 32767
d2492102
AP
16918 || info->total_size
16919 + (info->lr_save_p ? info->lr_save_offset : 0)
16920 > 32767
1c9c5e43
AM
16921 || (cfun->calls_alloca
16922 && !frame_pointer_needed));
f78c3290
NF
16923 restore_lr = (info->lr_save_p
16924 && restoring_GPRs_inline
16925 && restoring_FPRs_inline);
9ebbca7d 16926
f57fe068 16927 if (WORLD_SAVE_P (info))
d62294f5
FJ
16928 {
16929 int i, j;
16930 char rname[30];
16931 const char *alloc_rname;
16932 rtvec p;
16933
16934 /* eh_rest_world_r10 will return to the location saved in the LR
c4ad648e
AM
16935 stack slot (which is not likely to be our caller.)
16936 Input: R10 -- stack adjustment. Clobbers R0, R11, R12, R7, R8.
16937 rest_world is similar, except any R10 parameter is ignored.
16938 The exception-handling stuff that was here in 2.95 is no
16939 longer necessary. */
d62294f5
FJ
16940
16941 p = rtvec_alloc (9
16942 + 1
f676971a 16943 + 32 - info->first_gp_reg_save
c4ad648e
AM
16944 + LAST_ALTIVEC_REGNO + 1 - info->first_altivec_reg_save
16945 + 63 + 1 - info->first_fp_reg_save);
d62294f5 16946
e3b5732b 16947 strcpy (rname, ((crtl->calls_eh_return) ?
c4ad648e 16948 "*eh_rest_world_r10" : "*rest_world"));
d62294f5
FJ
16949 alloc_rname = ggc_strdup (rname);
16950
16951 j = 0;
16952 RTVEC_ELT (p, j++) = gen_rtx_RETURN (VOIDmode);
16953 RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
c4ad648e 16954 gen_rtx_REG (Pmode,
1de43f85 16955 LR_REGNO));
d62294f5 16956 RTVEC_ELT (p, j++)
c4ad648e 16957 = gen_rtx_USE (VOIDmode, gen_rtx_SYMBOL_REF (Pmode, alloc_rname));
d62294f5 16958 /* The instruction pattern requires a clobber here;
c4ad648e 16959 it is shared with the restVEC helper. */
d62294f5 16960 RTVEC_ELT (p, j++)
c4ad648e 16961 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 11));
d62294f5
FJ
16962
16963 {
c4ad648e
AM
16964 /* CR register traditionally saved as CR2. */
16965 rtx reg = gen_rtx_REG (reg_mode, CR2_REGNO);
16966 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16967 GEN_INT (info->cr_save_offset));
0be76840 16968 rtx mem = gen_frame_mem (reg_mode, addr);
c4ad648e
AM
16969
16970 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
d62294f5
FJ
16971 }
16972
16973 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
c4ad648e
AM
16974 {
16975 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16976 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16977 GEN_INT (info->gp_save_offset
16978 + reg_size * i));
0be76840 16979 rtx mem = gen_frame_mem (reg_mode, addr);
c4ad648e
AM
16980
16981 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
16982 }
d62294f5 16983 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
c4ad648e
AM
16984 {
16985 rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
16986 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16987 GEN_INT (info->altivec_save_offset
16988 + 16 * i));
0be76840 16989 rtx mem = gen_frame_mem (V4SImode, addr);
c4ad648e
AM
16990
16991 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
16992 }
d62294f5 16993 for (i = 0; info->first_fp_reg_save + i <= 63; i++)
c4ad648e 16994 {
696e45ba
ME
16995 rtx reg = gen_rtx_REG (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16996 ? DFmode : SFmode),
16997 info->first_fp_reg_save + i);
c4ad648e
AM
16998 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16999 GEN_INT (info->fp_save_offset
17000 + 8 * i));
696e45ba
ME
17001 rtx mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
17002 ? DFmode : SFmode), addr);
c4ad648e
AM
17003
17004 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
17005 }
d62294f5 17006 RTVEC_ELT (p, j++)
c4ad648e 17007 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 0));
d62294f5 17008 RTVEC_ELT (p, j++)
c4ad648e 17009 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 12));
d62294f5 17010 RTVEC_ELT (p, j++)
c4ad648e 17011 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 7));
d62294f5 17012 RTVEC_ELT (p, j++)
c4ad648e 17013 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 8));
d62294f5 17014 RTVEC_ELT (p, j++)
c4ad648e 17015 = gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, 10));
d62294f5
FJ
17016 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
17017
17018 return;
17019 }
17020
45b194f8
AM
17021 /* frame_reg_rtx + sp_offset points to the top of this stack frame. */
17022 if (info->push_p)
2b2c2fe5 17023 sp_offset = info->total_size;
f676971a 17024
e6477eaa
AM
17025 /* Restore AltiVec registers if we must do so before adjusting the
17026 stack. */
17027 if (TARGET_ALTIVEC_ABI
17028 && info->altivec_size != 0
1c9c5e43
AM
17029 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17030 || (DEFAULT_ABI != ABI_V4
17031 && info->altivec_save_offset < (TARGET_32BIT ? -220 : -288))))
9aa86737
AH
17032 {
17033 int i;
17034
e6477eaa
AM
17035 if (use_backchain_to_restore_sp)
17036 {
17037 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17038 emit_move_insn (frame_reg_rtx,
17039 gen_rtx_MEM (Pmode, sp_reg_rtx));
17040 sp_offset = 0;
17041 }
1c9c5e43
AM
17042 else if (frame_pointer_needed)
17043 frame_reg_rtx = hard_frame_pointer_rtx;
e6477eaa 17044
9aa86737
AH
17045 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
17046 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
17047 {
17048 rtx addr, areg, mem;
17049
17050 areg = gen_rtx_REG (Pmode, 0);
17051 emit_move_insn
17052 (areg, GEN_INT (info->altivec_save_offset
17053 + sp_offset
17054 + 16 * (i - info->first_altivec_reg_save)));
17055
17056 /* AltiVec addressing mode is [reg+reg]. */
17057 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
0be76840 17058 mem = gen_frame_mem (V4SImode, addr);
9aa86737
AH
17059
17060 emit_move_insn (gen_rtx_REG (V4SImode, i), mem);
17061 }
17062 }
17063
e6477eaa
AM
17064 /* Restore VRSAVE if we must do so before adjusting the stack. */
17065 if (TARGET_ALTIVEC
17066 && TARGET_ALTIVEC_VRSAVE
17067 && info->vrsave_mask != 0
1c9c5e43
AM
17068 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17069 || (DEFAULT_ABI != ABI_V4
17070 && info->vrsave_save_offset < (TARGET_32BIT ? -220 : -288))))
e6477eaa
AM
17071 {
17072 rtx addr, mem, reg;
17073
1c9c5e43 17074 if (frame_reg_rtx == sp_reg_rtx)
e6477eaa 17075 {
1c9c5e43
AM
17076 if (use_backchain_to_restore_sp)
17077 {
17078 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17079 emit_move_insn (frame_reg_rtx,
17080 gen_rtx_MEM (Pmode, sp_reg_rtx));
17081 sp_offset = 0;
17082 }
17083 else if (frame_pointer_needed)
17084 frame_reg_rtx = hard_frame_pointer_rtx;
e6477eaa
AM
17085 }
17086
17087 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17088 GEN_INT (info->vrsave_save_offset + sp_offset));
17089 mem = gen_frame_mem (SImode, addr);
17090 reg = gen_rtx_REG (SImode, 12);
17091 emit_move_insn (reg, mem);
17092
17093 emit_insn (generate_set_vrsave (reg, info, 1));
17094 }
17095
1c9c5e43
AM
17096 /* If we have a large stack frame, restore the old stack pointer
17097 using the backchain. */
2b2c2fe5
EC
17098 if (use_backchain_to_restore_sp)
17099 {
1c9c5e43 17100 if (frame_reg_rtx == sp_reg_rtx)
e6477eaa
AM
17101 {
17102 /* Under V.4, don't reset the stack pointer until after we're done
17103 loading the saved registers. */
17104 if (DEFAULT_ABI == ABI_V4)
17105 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17106
17107 emit_move_insn (frame_reg_rtx,
17108 gen_rtx_MEM (Pmode, sp_reg_rtx));
17109 sp_offset = 0;
17110 }
1c9c5e43
AM
17111 else if (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17112 && DEFAULT_ABI == ABI_V4)
17113 /* frame_reg_rtx has been set up by the altivec restore. */
17114 ;
17115 else
17116 {
17117 emit_move_insn (sp_reg_rtx, frame_reg_rtx);
17118 frame_reg_rtx = sp_reg_rtx;
17119 }
17120 }
17121 /* If we have a frame pointer, we can restore the old stack pointer
17122 from it. */
17123 else if (frame_pointer_needed)
17124 {
17125 frame_reg_rtx = sp_reg_rtx;
17126 if (DEFAULT_ABI == ABI_V4)
17127 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17128
17129 emit_insn (TARGET_32BIT
17130 ? gen_addsi3 (frame_reg_rtx, hard_frame_pointer_rtx,
17131 GEN_INT (info->total_size))
17132 : gen_adddi3 (frame_reg_rtx, hard_frame_pointer_rtx,
17133 GEN_INT (info->total_size)));
17134 sp_offset = 0;
2b2c2fe5 17135 }
45b194f8
AM
17136 else if (info->push_p
17137 && DEFAULT_ABI != ABI_V4
e3b5732b 17138 && !crtl->calls_eh_return)
2b2c2fe5 17139 {
45b194f8
AM
17140 emit_insn (TARGET_32BIT
17141 ? gen_addsi3 (sp_reg_rtx, sp_reg_rtx,
17142 GEN_INT (info->total_size))
17143 : gen_adddi3 (sp_reg_rtx, sp_reg_rtx,
17144 GEN_INT (info->total_size)));
17145 sp_offset = 0;
2b2c2fe5
EC
17146 }
17147
e6477eaa 17148 /* Restore AltiVec registers if we have not done so already. */
1c9c5e43
AM
17149 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17150 && TARGET_ALTIVEC_ABI
e6477eaa
AM
17151 && info->altivec_size != 0
17152 && (DEFAULT_ABI == ABI_V4
17153 || info->altivec_save_offset >= (TARGET_32BIT ? -220 : -288)))
17154 {
17155 int i;
17156
17157 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
17158 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
17159 {
17160 rtx addr, areg, mem;
17161
17162 areg = gen_rtx_REG (Pmode, 0);
17163 emit_move_insn
17164 (areg, GEN_INT (info->altivec_save_offset
17165 + sp_offset
17166 + 16 * (i - info->first_altivec_reg_save)));
17167
17168 /* AltiVec addressing mode is [reg+reg]. */
17169 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
17170 mem = gen_frame_mem (V4SImode, addr);
17171
17172 emit_move_insn (gen_rtx_REG (V4SImode, i), mem);
17173 }
17174 }
17175
17176 /* Restore VRSAVE if we have not done so already. */
1c9c5e43
AM
17177 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17178 && TARGET_ALTIVEC
e6477eaa
AM
17179 && TARGET_ALTIVEC_VRSAVE
17180 && info->vrsave_mask != 0
17181 && (DEFAULT_ABI == ABI_V4
17182 || info->vrsave_save_offset >= (TARGET_32BIT ? -220 : -288)))
554c2941
AM
17183 {
17184 rtx addr, mem, reg;
17185
17186 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17187 GEN_INT (info->vrsave_save_offset + sp_offset));
17188 mem = gen_frame_mem (SImode, addr);
17189 reg = gen_rtx_REG (SImode, 12);
17190 emit_move_insn (reg, mem);
17191
17192 emit_insn (generate_set_vrsave (reg, info, 1));
17193 }
17194
f78c3290
NF
17195 /* Get the old lr if we saved it. If we are restoring registers
17196 out-of-line, then the out-of-line routines can do this for us. */
17197 if (restore_lr)
b6c9286a 17198 {
a3170dc6
AH
17199 rtx mem = gen_frame_mem_offset (Pmode, frame_reg_rtx,
17200 info->lr_save_offset + sp_offset);
ba4828e0 17201
9ebbca7d 17202 emit_move_insn (gen_rtx_REG (Pmode, 0), mem);
b6c9286a 17203 }
f676971a 17204
9ebbca7d
GK
17205 /* Get the old cr if we saved it. */
17206 if (info->cr_save_p)
17207 {
17208 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17209 GEN_INT (info->cr_save_offset + sp_offset));
0be76840 17210 rtx mem = gen_frame_mem (SImode, addr);
b6c9286a 17211
9ebbca7d
GK
17212 emit_move_insn (gen_rtx_REG (SImode, 12), mem);
17213 }
f676971a 17214
9ebbca7d 17215 /* Set LR here to try to overlap restores below. */
f78c3290 17216 if (restore_lr)
1de43f85 17217 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO),
9ebbca7d 17218 gen_rtx_REG (Pmode, 0));
f676971a 17219
83720594 17220 /* Load exception handler data registers, if needed. */
e3b5732b 17221 if (crtl->calls_eh_return)
83720594 17222 {
78e1b90d
DE
17223 unsigned int i, regno;
17224
fc4767bb
JJ
17225 if (TARGET_AIX)
17226 {
17227 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17228 GEN_INT (sp_offset + 5 * reg_size));
0be76840 17229 rtx mem = gen_frame_mem (reg_mode, addr);
fc4767bb
JJ
17230
17231 emit_move_insn (gen_rtx_REG (reg_mode, 2), mem);
17232 }
17233
83720594
RH
17234 for (i = 0; ; ++i)
17235 {
a3170dc6 17236 rtx mem;
83720594
RH
17237
17238 regno = EH_RETURN_DATA_REGNO (i);
17239 if (regno == INVALID_REGNUM)
17240 break;
17241
a3170dc6
AH
17242 mem = gen_frame_mem_offset (reg_mode, frame_reg_rtx,
17243 info->ehrd_offset + sp_offset
17244 + reg_size * (int) i);
83720594
RH
17245
17246 emit_move_insn (gen_rtx_REG (reg_mode, regno), mem);
17247 }
17248 }
f676971a 17249
9ebbca7d
GK
17250 /* Restore GPRs. This is done as a PARALLEL if we are using
17251 the load-multiple instructions. */
f78c3290
NF
17252 if (TARGET_SPE_ABI
17253 && info->spe_64bit_regs_used != 0
17254 && info->first_gp_reg_save != 32)
52ff33d0 17255 {
52ff33d0
NF
17256 /* Determine whether we can address all of the registers that need
17257 to be saved with an offset from the stack pointer that fits in
17258 the small const field for SPE memory instructions. */
17259 int spe_regs_addressable_via_sp
f78c3290
NF
17260 = (SPE_CONST_OFFSET_OK(info->spe_gp_save_offset + sp_offset
17261 + (32 - info->first_gp_reg_save - 1) * reg_size)
17262 && restoring_GPRs_inline);
52ff33d0
NF
17263 int spe_offset;
17264
17265 if (spe_regs_addressable_via_sp)
45b194f8 17266 spe_offset = info->spe_gp_save_offset + sp_offset;
52ff33d0
NF
17267 else
17268 {
45b194f8 17269 rtx old_frame_reg_rtx = frame_reg_rtx;
52ff33d0 17270 /* Make r11 point to the start of the SPE save area. We worried about
6ed3da00 17271 not clobbering it when we were saving registers in the prologue.
52ff33d0
NF
17272 There's no need to worry here because the static chain is passed
17273 anew to every function. */
f78c3290
NF
17274 int ool_adjust = (restoring_GPRs_inline
17275 ? 0
17276 : (info->first_gp_reg_save
17277 - (FIRST_SAVRES_REGISTER+1))*8);
17278
45b194f8
AM
17279 if (frame_reg_rtx == sp_reg_rtx)
17280 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17281 emit_insn (gen_addsi3 (frame_reg_rtx, old_frame_reg_rtx,
f78c3290
NF
17282 GEN_INT (info->spe_gp_save_offset
17283 + sp_offset
17284 - ool_adjust)));
45b194f8
AM
17285 /* Keep the invariant that frame_reg_rtx + sp_offset points
17286 at the top of the stack frame. */
17287 sp_offset = -info->spe_gp_save_offset;
52ff33d0
NF
17288
17289 spe_offset = 0;
17290 }
17291
f78c3290
NF
17292 if (restoring_GPRs_inline)
17293 {
17294 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
17295 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
17296 {
17297 rtx offset, addr, mem;
52ff33d0 17298
f78c3290
NF
17299 /* We're doing all this to ensure that the immediate offset
17300 fits into the immediate field of 'evldd'. */
17301 gcc_assert (SPE_CONST_OFFSET_OK (spe_offset + reg_size * i));
52ff33d0 17302
f78c3290
NF
17303 offset = GEN_INT (spe_offset + reg_size * i);
17304 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, offset);
17305 mem = gen_rtx_MEM (V2SImode, addr);
52ff33d0 17306
f78c3290
NF
17307 emit_move_insn (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
17308 mem);
17309 }
17310 }
17311 else
17312 {
17313 rtx par;
17314
17315 par = rs6000_make_savres_rtx (info, gen_rtx_REG (Pmode, 11),
17316 0, reg_mode,
17317 /*savep=*/false, /*gpr=*/true,
17318 /*exitp=*/true);
17319 emit_jump_insn (par);
17320
17321 /* We don't want anybody else emitting things after we jumped
17322 back. */
17323 return;
17324 }
52ff33d0 17325 }
f78c3290
NF
17326 else if (!restoring_GPRs_inline)
17327 {
17328 /* We are jumping to an out-of-line function. */
17329 bool can_use_exit = info->first_fp_reg_save == 64;
17330 rtx par;
17331
17332 /* Emit stack reset code if we need it. */
17333 if (can_use_exit)
17334 rs6000_emit_stack_reset (info, sp_reg_rtx, frame_reg_rtx,
17335 sp_offset, can_use_exit);
17336 else
17337 emit_insn (gen_addsi3 (gen_rtx_REG (Pmode, 11),
17338 sp_reg_rtx,
17339 GEN_INT (sp_offset - info->fp_size)));
17340
17341 par = rs6000_make_savres_rtx (info, frame_reg_rtx,
17342 info->gp_save_offset, reg_mode,
17343 /*savep=*/false, /*gpr=*/true,
17344 /*exitp=*/can_use_exit);
17345
17346 if (can_use_exit)
17347 {
17348 if (info->cr_save_p)
17349 rs6000_restore_saved_cr (gen_rtx_REG (SImode, 12),
17350 using_mtcr_multiple);
17351
17352 emit_jump_insn (par);
17353
17354 /* We don't want anybody else emitting things after we jumped
17355 back. */
17356 return;
17357 }
17358 else
17359 emit_insn (par);
17360 }
17361 else if (using_load_multiple)
17362 {
17363 rtvec p;
17364 p = rtvec_alloc (32 - info->first_gp_reg_save);
17365 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
9ebbca7d 17366 {
f676971a
EC
17367 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17368 GEN_INT (info->gp_save_offset
17369 + sp_offset
9ebbca7d 17370 + reg_size * i));
0be76840 17371 rtx mem = gen_frame_mem (reg_mode, addr);
ba4828e0 17372
f78c3290
NF
17373 RTVEC_ELT (p, i) =
17374 gen_rtx_SET (VOIDmode,
17375 gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
17376 mem);
9ebbca7d 17377 }
f78c3290
NF
17378 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
17379 }
17380 else
17381 {
17382 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
17383 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
17384 {
17385 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17386 GEN_INT (info->gp_save_offset
17387 + sp_offset
17388 + reg_size * i));
17389 rtx mem = gen_frame_mem (reg_mode, addr);
17390
17391 emit_move_insn (gen_rtx_REG (reg_mode,
17392 info->first_gp_reg_save + i), mem);
17393 }
17394 }
9878760c 17395
9ebbca7d
GK
17396 /* Restore fpr's if we need to do it without calling a function. */
17397 if (restoring_FPRs_inline)
17398 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
6fb5fa3c 17399 if ((df_regs_ever_live_p (info->first_fp_reg_save+i)
9ebbca7d
GK
17400 && ! call_used_regs[info->first_fp_reg_save+i]))
17401 {
17402 rtx addr, mem;
17403 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
f676971a
EC
17404 GEN_INT (info->fp_save_offset
17405 + sp_offset
a4f6c312 17406 + 8 * i));
696e45ba
ME
17407 mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
17408 ? DFmode : SFmode), addr);
9ebbca7d 17409
696e45ba
ME
17410 emit_move_insn (gen_rtx_REG (((TARGET_HARD_FLOAT
17411 && TARGET_DOUBLE_FLOAT)
17412 ? DFmode : SFmode),
9ebbca7d
GK
17413 info->first_fp_reg_save + i),
17414 mem);
17415 }
8d30c4ee 17416
9ebbca7d
GK
17417 /* If we saved cr, restore it here. Just those that were used. */
17418 if (info->cr_save_p)
f78c3290 17419 rs6000_restore_saved_cr (gen_rtx_REG (SImode, 12), using_mtcr_multiple);
979721f8 17420
9ebbca7d 17421 /* If this is V.4, unwind the stack pointer after all of the loads
022123e6 17422 have been done. */
f78c3290
NF
17423 rs6000_emit_stack_reset (info, sp_reg_rtx, frame_reg_rtx,
17424 sp_offset, !restoring_FPRs_inline);
b6c9286a 17425
e3b5732b 17426 if (crtl->calls_eh_return)
83720594
RH
17427 {
17428 rtx sa = EH_RETURN_STACKADJ_RTX;
5b71a4e7 17429 emit_insn (TARGET_32BIT
83720594
RH
17430 ? gen_addsi3 (sp_reg_rtx, sp_reg_rtx, sa)
17431 : gen_adddi3 (sp_reg_rtx, sp_reg_rtx, sa));
17432 }
17433
9ebbca7d
GK
17434 if (!sibcall)
17435 {
17436 rtvec p;
17437 if (! restoring_FPRs_inline)
f78c3290 17438 p = rtvec_alloc (4 + 64 - info->first_fp_reg_save);
9ebbca7d
GK
17439 else
17440 p = rtvec_alloc (2);
b6c9286a 17441
e35b9579 17442 RTVEC_ELT (p, 0) = gen_rtx_RETURN (VOIDmode);
f78c3290
NF
17443 RTVEC_ELT (p, 1) = (restoring_FPRs_inline
17444 ? gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 65))
17445 : gen_rtx_CLOBBER (VOIDmode,
17446 gen_rtx_REG (Pmode, 65)));
9ebbca7d
GK
17447
17448 /* If we have to restore more than two FP registers, branch to the
17449 restore function. It will return to our caller. */
17450 if (! restoring_FPRs_inline)
17451 {
17452 int i;
f78c3290
NF
17453 rtx sym;
17454
17455 sym = rs6000_savres_routine_sym (info,
17456 /*savep=*/false,
17457 /*gpr=*/false,
17458 /*exitp=*/true);
17459 RTVEC_ELT (p, 2) = gen_rtx_USE (VOIDmode, sym);
17460 RTVEC_ELT (p, 3) = gen_rtx_USE (VOIDmode,
17461 gen_rtx_REG (Pmode, 11));
9ebbca7d
GK
17462 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
17463 {
17464 rtx addr, mem;
17465 addr = gen_rtx_PLUS (Pmode, sp_reg_rtx,
17466 GEN_INT (info->fp_save_offset + 8*i));
0be76840 17467 mem = gen_frame_mem (DFmode, addr);
9ebbca7d 17468
f78c3290 17469 RTVEC_ELT (p, i+4) =
9ebbca7d
GK
17470 gen_rtx_SET (VOIDmode,
17471 gen_rtx_REG (DFmode, info->first_fp_reg_save + i),
17472 mem);
b6c9286a
MM
17473 }
17474 }
f676971a 17475
9ebbca7d 17476 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
3daf36a4 17477 }
9878760c
RK
17478}
17479
17480/* Write function epilogue. */
17481
08c148a8 17482static void
f676971a 17483rs6000_output_function_epilogue (FILE *file,
a2369ed3 17484 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
9878760c 17485{
9ebbca7d 17486 if (! HAVE_epilogue)
9878760c 17487 {
9ebbca7d
GK
17488 rtx insn = get_last_insn ();
17489 /* If the last insn was a BARRIER, we don't have to write anything except
17490 the trace table. */
17491 if (GET_CODE (insn) == NOTE)
17492 insn = prev_nonnote_insn (insn);
17493 if (insn == 0 || GET_CODE (insn) != BARRIER)
4697a36c 17494 {
9ebbca7d
GK
17495 /* This is slightly ugly, but at least we don't have two
17496 copies of the epilogue-emitting code. */
17497 start_sequence ();
17498
17499 /* A NOTE_INSN_DELETED is supposed to be at the start
17500 and end of the "toplevel" insn chain. */
2e040219 17501 emit_note (NOTE_INSN_DELETED);
9ebbca7d 17502 rs6000_emit_epilogue (FALSE);
2e040219 17503 emit_note (NOTE_INSN_DELETED);
9ebbca7d 17504
a3c9585f 17505 /* Expand INSN_ADDRESSES so final() doesn't crash. */
178c3eff
DJ
17506 {
17507 rtx insn;
17508 unsigned addr = 0;
17509 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
17510 {
17511 INSN_ADDRESSES_NEW (insn, addr);
17512 addr += 4;
17513 }
17514 }
17515
9ebbca7d 17516 if (TARGET_DEBUG_STACK)
a4f6c312 17517 debug_rtx_list (get_insns (), 100);
c9d691e9 17518 final (get_insns (), file, FALSE);
9ebbca7d 17519 end_sequence ();
4697a36c 17520 }
9878760c 17521 }
b4ac57ab 17522
efdba735
SH
17523#if TARGET_MACHO
17524 macho_branch_islands ();
0e5da0be
GK
17525 /* Mach-O doesn't support labels at the end of objects, so if
17526 it looks like we might want one, insert a NOP. */
17527 {
17528 rtx insn = get_last_insn ();
17529 while (insn
17530 && NOTE_P (insn)
a38e7aa5 17531 && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL)
0e5da0be 17532 insn = PREV_INSN (insn);
f676971a
EC
17533 if (insn
17534 && (LABEL_P (insn)
0e5da0be 17535 || (NOTE_P (insn)
a38e7aa5 17536 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL)))
0e5da0be
GK
17537 fputs ("\tnop\n", file);
17538 }
17539#endif
17540
9b30bae2 17541 /* Output a traceback table here. See /usr/include/sys/debug.h for info
314fc5a9
ILT
17542 on its format.
17543
17544 We don't output a traceback table if -finhibit-size-directive was
17545 used. The documentation for -finhibit-size-directive reads
17546 ``don't output a @code{.size} assembler directive, or anything
17547 else that would cause trouble if the function is split in the
17548 middle, and the two halves are placed at locations far apart in
17549 memory.'' The traceback table has this property, since it
17550 includes the offset from the start of the function to the
4d30c363
MM
17551 traceback table itself.
17552
17553 System V.4 Powerpc's (and the embedded ABI derived from it) use a
b6c9286a 17554 different traceback table. */
57ac7be9 17555 if (DEFAULT_ABI == ABI_AIX && ! flag_inhibit_size_directive
3c072c6b 17556 && rs6000_traceback != traceback_none && !cfun->is_thunk)
9b30bae2 17557 {
69c75916 17558 const char *fname = NULL;
3ac88239 17559 const char *language_string = lang_hooks.name;
6041bf2f 17560 int fixed_parms = 0, float_parms = 0, parm_info = 0;
314fc5a9 17561 int i;
57ac7be9 17562 int optional_tbtab;
8097c268 17563 rs6000_stack_t *info = rs6000_stack_info ();
57ac7be9
AM
17564
17565 if (rs6000_traceback == traceback_full)
17566 optional_tbtab = 1;
17567 else if (rs6000_traceback == traceback_part)
17568 optional_tbtab = 0;
17569 else
17570 optional_tbtab = !optimize_size && !TARGET_ELF;
314fc5a9 17571
69c75916
AM
17572 if (optional_tbtab)
17573 {
17574 fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
17575 while (*fname == '.') /* V.4 encodes . in the name */
17576 fname++;
17577
17578 /* Need label immediately before tbtab, so we can compute
17579 its offset from the function start. */
17580 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
17581 ASM_OUTPUT_LABEL (file, fname);
17582 }
314fc5a9
ILT
17583
17584 /* The .tbtab pseudo-op can only be used for the first eight
17585 expressions, since it can't handle the possibly variable
17586 length fields that follow. However, if you omit the optional
17587 fields, the assembler outputs zeros for all optional fields
17588 anyways, giving each variable length field is minimum length
17589 (as defined in sys/debug.h). Thus we can not use the .tbtab
17590 pseudo-op at all. */
17591
17592 /* An all-zero word flags the start of the tbtab, for debuggers
17593 that have to find it by searching forward from the entry
17594 point or from the current pc. */
19d2d16f 17595 fputs ("\t.long 0\n", file);
314fc5a9
ILT
17596
17597 /* Tbtab format type. Use format type 0. */
19d2d16f 17598 fputs ("\t.byte 0,", file);
314fc5a9 17599
5fc921c1
DE
17600 /* Language type. Unfortunately, there does not seem to be any
17601 official way to discover the language being compiled, so we
17602 use language_string.
17603 C is 0. Fortran is 1. Pascal is 2. Ada is 3. C++ is 9.
56438901
AM
17604 Java is 13. Objective-C is 14. Objective-C++ isn't assigned
17605 a number, so for now use 9. */
5fc921c1 17606 if (! strcmp (language_string, "GNU C"))
314fc5a9 17607 i = 0;
6de9cd9a 17608 else if (! strcmp (language_string, "GNU F77")
7f62878c 17609 || ! strcmp (language_string, "GNU Fortran"))
314fc5a9 17610 i = 1;
8b83775b 17611 else if (! strcmp (language_string, "GNU Pascal"))
314fc5a9 17612 i = 2;
5fc921c1
DE
17613 else if (! strcmp (language_string, "GNU Ada"))
17614 i = 3;
56438901
AM
17615 else if (! strcmp (language_string, "GNU C++")
17616 || ! strcmp (language_string, "GNU Objective-C++"))
314fc5a9 17617 i = 9;
9517ead8
AG
17618 else if (! strcmp (language_string, "GNU Java"))
17619 i = 13;
5fc921c1
DE
17620 else if (! strcmp (language_string, "GNU Objective-C"))
17621 i = 14;
314fc5a9 17622 else
37409796 17623 gcc_unreachable ();
314fc5a9
ILT
17624 fprintf (file, "%d,", i);
17625
17626 /* 8 single bit fields: global linkage (not set for C extern linkage,
17627 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
17628 from start of procedure stored in tbtab, internal function, function
17629 has controlled storage, function has no toc, function uses fp,
17630 function logs/aborts fp operations. */
17631 /* Assume that fp operations are used if any fp reg must be saved. */
6041bf2f
DE
17632 fprintf (file, "%d,",
17633 (optional_tbtab << 5) | ((info->first_fp_reg_save != 64) << 1));
314fc5a9
ILT
17634
17635 /* 6 bitfields: function is interrupt handler, name present in
17636 proc table, function calls alloca, on condition directives
17637 (controls stack walks, 3 bits), saves condition reg, saves
17638 link reg. */
17639 /* The `function calls alloca' bit seems to be set whenever reg 31 is
17640 set up as a frame pointer, even when there is no alloca call. */
17641 fprintf (file, "%d,",
6041bf2f
DE
17642 ((optional_tbtab << 6)
17643 | ((optional_tbtab & frame_pointer_needed) << 5)
17644 | (info->cr_save_p << 1)
17645 | (info->lr_save_p)));
314fc5a9 17646
6041bf2f 17647 /* 3 bitfields: saves backchain, fixup code, number of fpr saved
314fc5a9
ILT
17648 (6 bits). */
17649 fprintf (file, "%d,",
4697a36c 17650 (info->push_p << 7) | (64 - info->first_fp_reg_save));
314fc5a9
ILT
17651
17652 /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits). */
17653 fprintf (file, "%d,", (32 - first_reg_to_save ()));
17654
6041bf2f
DE
17655 if (optional_tbtab)
17656 {
17657 /* Compute the parameter info from the function decl argument
17658 list. */
17659 tree decl;
17660 int next_parm_info_bit = 31;
314fc5a9 17661
6041bf2f
DE
17662 for (decl = DECL_ARGUMENTS (current_function_decl);
17663 decl; decl = TREE_CHAIN (decl))
17664 {
17665 rtx parameter = DECL_INCOMING_RTL (decl);
17666 enum machine_mode mode = GET_MODE (parameter);
314fc5a9 17667
6041bf2f
DE
17668 if (GET_CODE (parameter) == REG)
17669 {
ebb109ad 17670 if (SCALAR_FLOAT_MODE_P (mode))
6041bf2f
DE
17671 {
17672 int bits;
17673
17674 float_parms++;
17675
37409796
NS
17676 switch (mode)
17677 {
17678 case SFmode:
e41b2a33 17679 case SDmode:
37409796
NS
17680 bits = 0x2;
17681 break;
17682
17683 case DFmode:
7393f7f8 17684 case DDmode:
37409796 17685 case TFmode:
7393f7f8 17686 case TDmode:
37409796
NS
17687 bits = 0x3;
17688 break;
17689
17690 default:
17691 gcc_unreachable ();
17692 }
6041bf2f
DE
17693
17694 /* If only one bit will fit, don't or in this entry. */
17695 if (next_parm_info_bit > 0)
17696 parm_info |= (bits << (next_parm_info_bit - 1));
17697 next_parm_info_bit -= 2;
17698 }
17699 else
17700 {
17701 fixed_parms += ((GET_MODE_SIZE (mode)
17702 + (UNITS_PER_WORD - 1))
17703 / UNITS_PER_WORD);
17704 next_parm_info_bit -= 1;
17705 }
17706 }
17707 }
17708 }
314fc5a9
ILT
17709
17710 /* Number of fixed point parameters. */
17711 /* This is actually the number of words of fixed point parameters; thus
17712 an 8 byte struct counts as 2; and thus the maximum value is 8. */
17713 fprintf (file, "%d,", fixed_parms);
17714
17715 /* 2 bitfields: number of floating point parameters (7 bits), parameters
17716 all on stack. */
17717 /* This is actually the number of fp registers that hold parameters;
17718 and thus the maximum value is 13. */
17719 /* Set parameters on stack bit if parameters are not in their original
17720 registers, regardless of whether they are on the stack? Xlc
17721 seems to set the bit when not optimizing. */
17722 fprintf (file, "%d\n", ((float_parms << 1) | (! optimize)));
17723
6041bf2f
DE
17724 if (! optional_tbtab)
17725 return;
17726
314fc5a9
ILT
17727 /* Optional fields follow. Some are variable length. */
17728
17729 /* Parameter types, left adjusted bit fields: 0 fixed, 10 single float,
17730 11 double float. */
17731 /* There is an entry for each parameter in a register, in the order that
17732 they occur in the parameter list. Any intervening arguments on the
17733 stack are ignored. If the list overflows a long (max possible length
17734 34 bits) then completely leave off all elements that don't fit. */
17735 /* Only emit this long if there was at least one parameter. */
17736 if (fixed_parms || float_parms)
17737 fprintf (file, "\t.long %d\n", parm_info);
17738
17739 /* Offset from start of code to tb table. */
19d2d16f 17740 fputs ("\t.long ", file);
314fc5a9 17741 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
85b776df
AM
17742 if (TARGET_AIX)
17743 RS6000_OUTPUT_BASENAME (file, fname);
17744 else
17745 assemble_name (file, fname);
17746 putc ('-', file);
17747 rs6000_output_function_entry (file, fname);
19d2d16f 17748 putc ('\n', file);
314fc5a9
ILT
17749
17750 /* Interrupt handler mask. */
17751 /* Omit this long, since we never set the interrupt handler bit
17752 above. */
17753
17754 /* Number of CTL (controlled storage) anchors. */
17755 /* Omit this long, since the has_ctl bit is never set above. */
17756
17757 /* Displacement into stack of each CTL anchor. */
17758 /* Omit this list of longs, because there are no CTL anchors. */
17759
17760 /* Length of function name. */
69c75916
AM
17761 if (*fname == '*')
17762 ++fname;
296b8152 17763 fprintf (file, "\t.short %d\n", (int) strlen (fname));
314fc5a9
ILT
17764
17765 /* Function name. */
17766 assemble_string (fname, strlen (fname));
17767
17768 /* Register for alloca automatic storage; this is always reg 31.
17769 Only emit this if the alloca bit was set above. */
17770 if (frame_pointer_needed)
19d2d16f 17771 fputs ("\t.byte 31\n", file);
b1765bde
DE
17772
17773 fputs ("\t.align 2\n", file);
9b30bae2 17774 }
9878760c 17775}
17167fd8 17776\f
a4f6c312
SS
17777/* A C compound statement that outputs the assembler code for a thunk
17778 function, used to implement C++ virtual function calls with
17779 multiple inheritance. The thunk acts as a wrapper around a virtual
17780 function, adjusting the implicit object parameter before handing
17781 control off to the real function.
17782
17783 First, emit code to add the integer DELTA to the location that
17784 contains the incoming first argument. Assume that this argument
17785 contains a pointer, and is the one used to pass the `this' pointer
17786 in C++. This is the incoming argument *before* the function
17787 prologue, e.g. `%o0' on a sparc. The addition must preserve the
17788 values of all other incoming arguments.
17167fd8
MM
17789
17790 After the addition, emit code to jump to FUNCTION, which is a
a4f6c312
SS
17791 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does
17792 not touch the return address. Hence returning from FUNCTION will
17793 return to whoever called the current `thunk'.
17167fd8 17794
a4f6c312
SS
17795 The effect must be as if FUNCTION had been called directly with the
17796 adjusted first argument. This macro is responsible for emitting
17797 all of the code for a thunk function; output_function_prologue()
17798 and output_function_epilogue() are not invoked.
17167fd8 17799
a4f6c312
SS
17800 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
17801 been extracted from it.) It might possibly be useful on some
17802 targets, but probably not.
17167fd8 17803
a4f6c312
SS
17804 If you do not define this macro, the target-independent code in the
17805 C++ frontend will generate a less efficient heavyweight thunk that
17806 calls FUNCTION instead of jumping to it. The generic approach does
17807 not support varargs. */
17167fd8 17808
3961e8fe 17809static void
f676971a
EC
17810rs6000_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
17811 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
a2369ed3 17812 tree function)
17167fd8 17813{
0a2aaacc 17814 rtx this_rtx, insn, funexp;
17167fd8 17815
5b71a4e7 17816 reload_completed = 1;
fe3ad572 17817 epilogue_completed = 1;
56a7189a 17818
5b71a4e7 17819 /* Mark the end of the (empty) prologue. */
2e040219 17820 emit_note (NOTE_INSN_PROLOGUE_END);
17167fd8 17821
5b71a4e7
DE
17822 /* Find the "this" pointer. If the function returns a structure,
17823 the structure return pointer is in r3. */
61f71b34 17824 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
0a2aaacc 17825 this_rtx = gen_rtx_REG (Pmode, 4);
56a7189a 17826 else
0a2aaacc 17827 this_rtx = gen_rtx_REG (Pmode, 3);
17167fd8 17828
5b71a4e7
DE
17829 /* Apply the constant offset, if required. */
17830 if (delta)
17831 {
17832 rtx delta_rtx = GEN_INT (delta);
17833 emit_insn (TARGET_32BIT
0a2aaacc
KG
17834 ? gen_addsi3 (this_rtx, this_rtx, delta_rtx)
17835 : gen_adddi3 (this_rtx, this_rtx, delta_rtx));
17167fd8
MM
17836 }
17837
5b71a4e7
DE
17838 /* Apply the offset from the vtable, if required. */
17839 if (vcall_offset)
17167fd8 17840 {
5b71a4e7
DE
17841 rtx vcall_offset_rtx = GEN_INT (vcall_offset);
17842 rtx tmp = gen_rtx_REG (Pmode, 12);
17167fd8 17843
0a2aaacc 17844 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
eeff9307
JJ
17845 if (((unsigned HOST_WIDE_INT) vcall_offset) + 0x8000 >= 0x10000)
17846 {
17847 emit_insn (TARGET_32BIT
17848 ? gen_addsi3 (tmp, tmp, vcall_offset_rtx)
17849 : gen_adddi3 (tmp, tmp, vcall_offset_rtx));
17850 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
17851 }
17852 else
17853 {
17854 rtx loc = gen_rtx_PLUS (Pmode, tmp, vcall_offset_rtx);
17855
17856 emit_move_insn (tmp, gen_rtx_MEM (Pmode, loc));
17857 }
5b71a4e7 17858 emit_insn (TARGET_32BIT
0a2aaacc
KG
17859 ? gen_addsi3 (this_rtx, this_rtx, tmp)
17860 : gen_adddi3 (this_rtx, this_rtx, tmp));
17167fd8
MM
17861 }
17862
5b71a4e7
DE
17863 /* Generate a tail call to the target function. */
17864 if (!TREE_USED (function))
17865 {
17866 assemble_external (function);
17867 TREE_USED (function) = 1;
17868 }
17869 funexp = XEXP (DECL_RTL (function), 0);
5b71a4e7 17870 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
ee890fe2
SS
17871
17872#if TARGET_MACHO
ab82a49f 17873 if (MACHOPIC_INDIRECT)
5b71a4e7 17874 funexp = machopic_indirect_call_target (funexp);
ee890fe2 17875#endif
5b71a4e7
DE
17876
17877 /* gen_sibcall expects reload to convert scratch pseudo to LR so we must
992d08b1 17878 generate sibcall RTL explicitly. */
5b71a4e7
DE
17879 insn = emit_call_insn (
17880 gen_rtx_PARALLEL (VOIDmode,
17881 gen_rtvec (4,
17882 gen_rtx_CALL (VOIDmode,
17883 funexp, const0_rtx),
17884 gen_rtx_USE (VOIDmode, const0_rtx),
17885 gen_rtx_USE (VOIDmode,
17886 gen_rtx_REG (SImode,
1de43f85 17887 LR_REGNO)),
5b71a4e7
DE
17888 gen_rtx_RETURN (VOIDmode))));
17889 SIBLING_CALL_P (insn) = 1;
17890 emit_barrier ();
17891
17892 /* Run just enough of rest_of_compilation to get the insns emitted.
17893 There's not really enough bulk here to make other passes such as
17894 instruction scheduling worth while. Note that use_thunk calls
17895 assemble_start_function and assemble_end_function. */
17896 insn = get_insns ();
55e092c4 17897 insn_locators_alloc ();
5b71a4e7
DE
17898 shorten_branches (insn);
17899 final_start_function (insn, file, 1);
c9d691e9 17900 final (insn, file, 1);
5b71a4e7 17901 final_end_function ();
d7087dd2 17902 free_after_compilation (cfun);
5b71a4e7
DE
17903
17904 reload_completed = 0;
fe3ad572 17905 epilogue_completed = 0;
9ebbca7d 17906}
9ebbca7d
GK
17907\f
17908/* A quick summary of the various types of 'constant-pool tables'
17909 under PowerPC:
17910
f676971a 17911 Target Flags Name One table per
9ebbca7d
GK
17912 AIX (none) AIX TOC object file
17913 AIX -mfull-toc AIX TOC object file
17914 AIX -mminimal-toc AIX minimal TOC translation unit
17915 SVR4/EABI (none) SVR4 SDATA object file
17916 SVR4/EABI -fpic SVR4 pic object file
17917 SVR4/EABI -fPIC SVR4 PIC translation unit
17918 SVR4/EABI -mrelocatable EABI TOC function
17919 SVR4/EABI -maix AIX TOC object file
f676971a 17920 SVR4/EABI -maix -mminimal-toc
9ebbca7d
GK
17921 AIX minimal TOC translation unit
17922
17923 Name Reg. Set by entries contains:
17924 made by addrs? fp? sum?
17925
17926 AIX TOC 2 crt0 as Y option option
17927 AIX minimal TOC 30 prolog gcc Y Y option
17928 SVR4 SDATA 13 crt0 gcc N Y N
17929 SVR4 pic 30 prolog ld Y not yet N
17930 SVR4 PIC 30 prolog gcc Y option option
17931 EABI TOC 30 prolog gcc Y option option
17932
17933*/
17934
9ebbca7d
GK
17935/* Hash functions for the hash table. */
17936
17937static unsigned
a2369ed3 17938rs6000_hash_constant (rtx k)
9ebbca7d 17939{
46b33600
RH
17940 enum rtx_code code = GET_CODE (k);
17941 enum machine_mode mode = GET_MODE (k);
17942 unsigned result = (code << 3) ^ mode;
17943 const char *format;
17944 int flen, fidx;
f676971a 17945
46b33600
RH
17946 format = GET_RTX_FORMAT (code);
17947 flen = strlen (format);
17948 fidx = 0;
9ebbca7d 17949
46b33600
RH
17950 switch (code)
17951 {
17952 case LABEL_REF:
17953 return result * 1231 + (unsigned) INSN_UID (XEXP (k, 0));
17954
17955 case CONST_DOUBLE:
17956 if (mode != VOIDmode)
17957 return real_hash (CONST_DOUBLE_REAL_VALUE (k)) * result;
17958 flen = 2;
17959 break;
17960
17961 case CODE_LABEL:
17962 fidx = 3;
17963 break;
17964
17965 default:
17966 break;
17967 }
9ebbca7d
GK
17968
17969 for (; fidx < flen; fidx++)
17970 switch (format[fidx])
17971 {
17972 case 's':
17973 {
17974 unsigned i, len;
17975 const char *str = XSTR (k, fidx);
17976 len = strlen (str);
17977 result = result * 613 + len;
17978 for (i = 0; i < len; i++)
17979 result = result * 613 + (unsigned) str[i];
17167fd8
MM
17980 break;
17981 }
9ebbca7d
GK
17982 case 'u':
17983 case 'e':
17984 result = result * 1231 + rs6000_hash_constant (XEXP (k, fidx));
17985 break;
17986 case 'i':
17987 case 'n':
17988 result = result * 613 + (unsigned) XINT (k, fidx);
17989 break;
17990 case 'w':
17991 if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT))
17992 result = result * 613 + (unsigned) XWINT (k, fidx);
17993 else
17994 {
17995 size_t i;
9390387d 17996 for (i = 0; i < sizeof (HOST_WIDE_INT) / sizeof (unsigned); i++)
9ebbca7d
GK
17997 result = result * 613 + (unsigned) (XWINT (k, fidx)
17998 >> CHAR_BIT * i);
17999 }
18000 break;
09501938
DE
18001 case '0':
18002 break;
9ebbca7d 18003 default:
37409796 18004 gcc_unreachable ();
9ebbca7d 18005 }
46b33600 18006
9ebbca7d
GK
18007 return result;
18008}
18009
18010static unsigned
a2369ed3 18011toc_hash_function (const void *hash_entry)
9ebbca7d 18012{
f676971a 18013 const struct toc_hash_struct *thc =
a9098fd0
GK
18014 (const struct toc_hash_struct *) hash_entry;
18015 return rs6000_hash_constant (thc->key) ^ thc->key_mode;
9ebbca7d
GK
18016}
18017
18018/* Compare H1 and H2 for equivalence. */
18019
18020static int
a2369ed3 18021toc_hash_eq (const void *h1, const void *h2)
9ebbca7d
GK
18022{
18023 rtx r1 = ((const struct toc_hash_struct *) h1)->key;
18024 rtx r2 = ((const struct toc_hash_struct *) h2)->key;
18025
a9098fd0
GK
18026 if (((const struct toc_hash_struct *) h1)->key_mode
18027 != ((const struct toc_hash_struct *) h2)->key_mode)
18028 return 0;
18029
5692c7bc 18030 return rtx_equal_p (r1, r2);
9ebbca7d
GK
18031}
18032
28e510bd
MM
18033/* These are the names given by the C++ front-end to vtables, and
18034 vtable-like objects. Ideally, this logic should not be here;
18035 instead, there should be some programmatic way of inquiring as
18036 to whether or not an object is a vtable. */
18037
18038#define VTABLE_NAME_P(NAME) \
9390387d 18039 (strncmp ("_vt.", name, strlen ("_vt.")) == 0 \
28e510bd
MM
18040 || strncmp ("_ZTV", name, strlen ("_ZTV")) == 0 \
18041 || strncmp ("_ZTT", name, strlen ("_ZTT")) == 0 \
26be75db 18042 || strncmp ("_ZTI", name, strlen ("_ZTI")) == 0 \
f676971a 18043 || strncmp ("_ZTC", name, strlen ("_ZTC")) == 0)
28e510bd 18044
ee06c6a5
DE
18045#ifdef NO_DOLLAR_IN_LABEL
18046/* Return a GGC-allocated character string translating dollar signs in
18047 input NAME to underscores. Used by XCOFF ASM_OUTPUT_LABELREF. */
18048
18049const char *
18050rs6000_xcoff_strip_dollar (const char *name)
18051{
18052 char *strip, *p;
18053 int len;
18054
18055 p = strchr (name, '$');
18056
18057 if (p == 0 || p == name)
18058 return name;
18059
18060 len = strlen (name);
18061 strip = (char *) alloca (len + 1);
18062 strcpy (strip, name);
18063 p = strchr (strip, '$');
18064 while (p)
18065 {
18066 *p = '_';
18067 p = strchr (p + 1, '$');
18068 }
18069
18070 return ggc_alloc_string (strip, len);
18071}
18072#endif
18073
28e510bd 18074void
a2369ed3 18075rs6000_output_symbol_ref (FILE *file, rtx x)
28e510bd
MM
18076{
18077 /* Currently C++ toc references to vtables can be emitted before it
18078 is decided whether the vtable is public or private. If this is
18079 the case, then the linker will eventually complain that there is
f676971a 18080 a reference to an unknown section. Thus, for vtables only,
28e510bd
MM
18081 we emit the TOC reference to reference the symbol and not the
18082 section. */
18083 const char *name = XSTR (x, 0);
54ee9799 18084
f676971a 18085 if (VTABLE_NAME_P (name))
54ee9799
DE
18086 {
18087 RS6000_OUTPUT_BASENAME (file, name);
18088 }
18089 else
18090 assemble_name (file, name);
28e510bd
MM
18091}
18092
a4f6c312
SS
18093/* Output a TOC entry. We derive the entry name from what is being
18094 written. */
9878760c
RK
18095
18096void
a2369ed3 18097output_toc (FILE *file, rtx x, int labelno, enum machine_mode mode)
9878760c
RK
18098{
18099 char buf[256];
3cce094d 18100 const char *name = buf;
9878760c 18101 rtx base = x;
16fdeb48 18102 HOST_WIDE_INT offset = 0;
9878760c 18103
37409796 18104 gcc_assert (!TARGET_NO_TOC);
4697a36c 18105
9ebbca7d
GK
18106 /* When the linker won't eliminate them, don't output duplicate
18107 TOC entries (this happens on AIX if there is any kind of TOC,
17211ab5
GK
18108 and on SVR4 under -fPIC or -mrelocatable). Don't do this for
18109 CODE_LABELs. */
18110 if (TARGET_TOC && GET_CODE (x) != LABEL_REF)
9ebbca7d
GK
18111 {
18112 struct toc_hash_struct *h;
18113 void * * found;
f676971a 18114
17211ab5 18115 /* Create toc_hash_table. This can't be done at OVERRIDE_OPTIONS
c4ad648e 18116 time because GGC is not initialized at that point. */
17211ab5 18117 if (toc_hash_table == NULL)
f676971a 18118 toc_hash_table = htab_create_ggc (1021, toc_hash_function,
17211ab5
GK
18119 toc_hash_eq, NULL);
18120
5ead67f6 18121 h = GGC_NEW (struct toc_hash_struct);
9ebbca7d 18122 h->key = x;
a9098fd0 18123 h->key_mode = mode;
9ebbca7d 18124 h->labelno = labelno;
f676971a 18125
bbbbb16a 18126 found = htab_find_slot (toc_hash_table, h, INSERT);
9ebbca7d
GK
18127 if (*found == NULL)
18128 *found = h;
f676971a 18129 else /* This is indeed a duplicate.
9ebbca7d
GK
18130 Set this label equal to that label. */
18131 {
18132 fputs ("\t.set ", file);
18133 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
18134 fprintf (file, "%d,", labelno);
18135 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
f676971a 18136 fprintf (file, "%d\n", ((*(const struct toc_hash_struct **)
9ebbca7d
GK
18137 found)->labelno));
18138 return;
18139 }
18140 }
18141
18142 /* If we're going to put a double constant in the TOC, make sure it's
18143 aligned properly when strict alignment is on. */
ff1720ed
RK
18144 if (GET_CODE (x) == CONST_DOUBLE
18145 && STRICT_ALIGNMENT
a9098fd0 18146 && GET_MODE_BITSIZE (mode) >= 64
ff1720ed
RK
18147 && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
18148 ASM_OUTPUT_ALIGN (file, 3);
18149 }
18150
4977bab6 18151 (*targetm.asm_out.internal_label) (file, "LC", labelno);
9878760c 18152
37c37a57
RK
18153 /* Handle FP constants specially. Note that if we have a minimal
18154 TOC, things we put here aren't actually in the TOC, so we can allow
18155 FP constants. */
00b79d54
BE
18156 if (GET_CODE (x) == CONST_DOUBLE &&
18157 (GET_MODE (x) == TFmode || GET_MODE (x) == TDmode))
fcce224d
DE
18158 {
18159 REAL_VALUE_TYPE rv;
18160 long k[4];
18161
18162 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
00b79d54
BE
18163 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
18164 REAL_VALUE_TO_TARGET_DECIMAL128 (rv, k);
18165 else
18166 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
fcce224d
DE
18167
18168 if (TARGET_64BIT)
18169 {
18170 if (TARGET_MINIMAL_TOC)
18171 fputs (DOUBLE_INT_ASM_OP, file);
18172 else
18173 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
18174 k[0] & 0xffffffff, k[1] & 0xffffffff,
18175 k[2] & 0xffffffff, k[3] & 0xffffffff);
18176 fprintf (file, "0x%lx%08lx,0x%lx%08lx\n",
18177 k[0] & 0xffffffff, k[1] & 0xffffffff,
18178 k[2] & 0xffffffff, k[3] & 0xffffffff);
18179 return;
18180 }
18181 else
18182 {
18183 if (TARGET_MINIMAL_TOC)
18184 fputs ("\t.long ", file);
18185 else
18186 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
18187 k[0] & 0xffffffff, k[1] & 0xffffffff,
18188 k[2] & 0xffffffff, k[3] & 0xffffffff);
18189 fprintf (file, "0x%lx,0x%lx,0x%lx,0x%lx\n",
18190 k[0] & 0xffffffff, k[1] & 0xffffffff,
18191 k[2] & 0xffffffff, k[3] & 0xffffffff);
18192 return;
18193 }
18194 }
00b79d54
BE
18195 else if (GET_CODE (x) == CONST_DOUBLE &&
18196 (GET_MODE (x) == DFmode || GET_MODE (x) == DDmode))
9878760c 18197 {
042259f2
DE
18198 REAL_VALUE_TYPE rv;
18199 long k[2];
0adc764e 18200
042259f2 18201 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
00b79d54
BE
18202
18203 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
18204 REAL_VALUE_TO_TARGET_DECIMAL64 (rv, k);
18205 else
18206 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
31bfaa0b 18207
13ded975
DE
18208 if (TARGET_64BIT)
18209 {
18210 if (TARGET_MINIMAL_TOC)
2bfcf297 18211 fputs (DOUBLE_INT_ASM_OP, file);
13ded975 18212 else
2f0552b6
AM
18213 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
18214 k[0] & 0xffffffff, k[1] & 0xffffffff);
18215 fprintf (file, "0x%lx%08lx\n",
18216 k[0] & 0xffffffff, k[1] & 0xffffffff);
13ded975
DE
18217 return;
18218 }
1875cc88 18219 else
13ded975
DE
18220 {
18221 if (TARGET_MINIMAL_TOC)
2bfcf297 18222 fputs ("\t.long ", file);
13ded975 18223 else
2f0552b6
AM
18224 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
18225 k[0] & 0xffffffff, k[1] & 0xffffffff);
18226 fprintf (file, "0x%lx,0x%lx\n",
18227 k[0] & 0xffffffff, k[1] & 0xffffffff);
13ded975
DE
18228 return;
18229 }
9878760c 18230 }
00b79d54
BE
18231 else if (GET_CODE (x) == CONST_DOUBLE &&
18232 (GET_MODE (x) == SFmode || GET_MODE (x) == SDmode))
9878760c 18233 {
042259f2
DE
18234 REAL_VALUE_TYPE rv;
18235 long l;
9878760c 18236
042259f2 18237 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
00b79d54
BE
18238 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
18239 REAL_VALUE_TO_TARGET_DECIMAL32 (rv, l);
18240 else
18241 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
042259f2 18242
31bfaa0b
DE
18243 if (TARGET_64BIT)
18244 {
18245 if (TARGET_MINIMAL_TOC)
2bfcf297 18246 fputs (DOUBLE_INT_ASM_OP, file);
31bfaa0b 18247 else
2f0552b6
AM
18248 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
18249 fprintf (file, "0x%lx00000000\n", l & 0xffffffff);
31bfaa0b
DE
18250 return;
18251 }
042259f2 18252 else
31bfaa0b
DE
18253 {
18254 if (TARGET_MINIMAL_TOC)
2bfcf297 18255 fputs ("\t.long ", file);
31bfaa0b 18256 else
2f0552b6
AM
18257 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
18258 fprintf (file, "0x%lx\n", l & 0xffffffff);
31bfaa0b
DE
18259 return;
18260 }
042259f2 18261 }
f176e826 18262 else if (GET_MODE (x) == VOIDmode
a9098fd0 18263 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
042259f2 18264 {
e2c953b6 18265 unsigned HOST_WIDE_INT low;
042259f2
DE
18266 HOST_WIDE_INT high;
18267
18268 if (GET_CODE (x) == CONST_DOUBLE)
18269 {
18270 low = CONST_DOUBLE_LOW (x);
18271 high = CONST_DOUBLE_HIGH (x);
18272 }
18273 else
18274#if HOST_BITS_PER_WIDE_INT == 32
18275 {
18276 low = INTVAL (x);
0858c623 18277 high = (low & 0x80000000) ? ~0 : 0;
042259f2
DE
18278 }
18279#else
18280 {
c4ad648e
AM
18281 low = INTVAL (x) & 0xffffffff;
18282 high = (HOST_WIDE_INT) INTVAL (x) >> 32;
042259f2
DE
18283 }
18284#endif
9878760c 18285
a9098fd0
GK
18286 /* TOC entries are always Pmode-sized, but since this
18287 is a bigendian machine then if we're putting smaller
18288 integer constants in the TOC we have to pad them.
18289 (This is still a win over putting the constants in
18290 a separate constant pool, because then we'd have
02a4ec28
FS
18291 to have both a TOC entry _and_ the actual constant.)
18292
18293 For a 32-bit target, CONST_INT values are loaded and shifted
18294 entirely within `low' and can be stored in one TOC entry. */
18295
37409796
NS
18296 /* It would be easy to make this work, but it doesn't now. */
18297 gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode));
02a4ec28
FS
18298
18299 if (POINTER_SIZE > GET_MODE_BITSIZE (mode))
fb52d8de
AM
18300 {
18301#if HOST_BITS_PER_WIDE_INT == 32
18302 lshift_double (low, high, POINTER_SIZE - GET_MODE_BITSIZE (mode),
18303 POINTER_SIZE, &low, &high, 0);
18304#else
18305 low |= high << 32;
18306 low <<= POINTER_SIZE - GET_MODE_BITSIZE (mode);
18307 high = (HOST_WIDE_INT) low >> 32;
18308 low &= 0xffffffff;
18309#endif
18310 }
a9098fd0 18311
13ded975
DE
18312 if (TARGET_64BIT)
18313 {
18314 if (TARGET_MINIMAL_TOC)
2bfcf297 18315 fputs (DOUBLE_INT_ASM_OP, file);
13ded975 18316 else
2f0552b6
AM
18317 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
18318 (long) high & 0xffffffff, (long) low & 0xffffffff);
18319 fprintf (file, "0x%lx%08lx\n",
18320 (long) high & 0xffffffff, (long) low & 0xffffffff);
13ded975
DE
18321 return;
18322 }
1875cc88 18323 else
13ded975 18324 {
02a4ec28
FS
18325 if (POINTER_SIZE < GET_MODE_BITSIZE (mode))
18326 {
18327 if (TARGET_MINIMAL_TOC)
2bfcf297 18328 fputs ("\t.long ", file);
02a4ec28 18329 else
2bfcf297 18330 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
2f0552b6
AM
18331 (long) high & 0xffffffff, (long) low & 0xffffffff);
18332 fprintf (file, "0x%lx,0x%lx\n",
18333 (long) high & 0xffffffff, (long) low & 0xffffffff);
02a4ec28 18334 }
13ded975 18335 else
02a4ec28
FS
18336 {
18337 if (TARGET_MINIMAL_TOC)
2bfcf297 18338 fputs ("\t.long ", file);
02a4ec28 18339 else
2f0552b6
AM
18340 fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff);
18341 fprintf (file, "0x%lx\n", (long) low & 0xffffffff);
02a4ec28 18342 }
13ded975
DE
18343 return;
18344 }
9878760c
RK
18345 }
18346
18347 if (GET_CODE (x) == CONST)
18348 {
37409796 18349 gcc_assert (GET_CODE (XEXP (x, 0)) == PLUS);
2bfcf297 18350
9878760c
RK
18351 base = XEXP (XEXP (x, 0), 0);
18352 offset = INTVAL (XEXP (XEXP (x, 0), 1));
18353 }
f676971a 18354
37409796
NS
18355 switch (GET_CODE (base))
18356 {
18357 case SYMBOL_REF:
18358 name = XSTR (base, 0);
18359 break;
18360
18361 case LABEL_REF:
18362 ASM_GENERATE_INTERNAL_LABEL (buf, "L",
18363 CODE_LABEL_NUMBER (XEXP (base, 0)));
18364 break;
18365
18366 case CODE_LABEL:
18367 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
18368 break;
18369
18370 default:
18371 gcc_unreachable ();
18372 }
9878760c 18373
1875cc88 18374 if (TARGET_MINIMAL_TOC)
2bfcf297 18375 fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file);
1875cc88
JW
18376 else
18377 {
5773a50f
DE
18378 fputs ("\t.tc ", file);
18379 RS6000_OUTPUT_BASENAME (file, name);
9878760c 18380
1875cc88 18381 if (offset < 0)
16fdeb48 18382 fprintf (file, ".N" HOST_WIDE_INT_PRINT_UNSIGNED, - offset);
1875cc88 18383 else if (offset)
16fdeb48 18384 fprintf (file, ".P" HOST_WIDE_INT_PRINT_UNSIGNED, offset);
9878760c 18385
19d2d16f 18386 fputs ("[TC],", file);
1875cc88 18387 }
581bc4de
MM
18388
18389 /* Currently C++ toc references to vtables can be emitted before it
18390 is decided whether the vtable is public or private. If this is
18391 the case, then the linker will eventually complain that there is
18392 a TOC reference to an unknown section. Thus, for vtables only,
18393 we emit the TOC reference to reference the symbol and not the
18394 section. */
28e510bd 18395 if (VTABLE_NAME_P (name))
581bc4de 18396 {
54ee9799 18397 RS6000_OUTPUT_BASENAME (file, name);
581bc4de 18398 if (offset < 0)
16fdeb48 18399 fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
581bc4de 18400 else if (offset > 0)
16fdeb48 18401 fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
581bc4de
MM
18402 }
18403 else
18404 output_addr_const (file, x);
19d2d16f 18405 putc ('\n', file);
9878760c
RK
18406}
18407\f
18408/* Output an assembler pseudo-op to write an ASCII string of N characters
18409 starting at P to FILE.
18410
18411 On the RS/6000, we have to do this using the .byte operation and
18412 write out special characters outside the quoted string.
18413 Also, the assembler is broken; very long strings are truncated,
a4f6c312 18414 so we must artificially break them up early. */
9878760c
RK
18415
18416void
a2369ed3 18417output_ascii (FILE *file, const char *p, int n)
9878760c
RK
18418{
18419 char c;
18420 int i, count_string;
d330fd93
KG
18421 const char *for_string = "\t.byte \"";
18422 const char *for_decimal = "\t.byte ";
18423 const char *to_close = NULL;
9878760c
RK
18424
18425 count_string = 0;
18426 for (i = 0; i < n; i++)
18427 {
18428 c = *p++;
18429 if (c >= ' ' && c < 0177)
18430 {
18431 if (for_string)
18432 fputs (for_string, file);
18433 putc (c, file);
18434
18435 /* Write two quotes to get one. */
18436 if (c == '"')
18437 {
18438 putc (c, file);
18439 ++count_string;
18440 }
18441
18442 for_string = NULL;
18443 for_decimal = "\"\n\t.byte ";
18444 to_close = "\"\n";
18445 ++count_string;
18446
18447 if (count_string >= 512)
18448 {
18449 fputs (to_close, file);
18450
18451 for_string = "\t.byte \"";
18452 for_decimal = "\t.byte ";
18453 to_close = NULL;
18454 count_string = 0;
18455 }
18456 }
18457 else
18458 {
18459 if (for_decimal)
18460 fputs (for_decimal, file);
18461 fprintf (file, "%d", c);
18462
18463 for_string = "\n\t.byte \"";
18464 for_decimal = ", ";
18465 to_close = "\n";
18466 count_string = 0;
18467 }
18468 }
18469
18470 /* Now close the string if we have written one. Then end the line. */
18471 if (to_close)
9ebbca7d 18472 fputs (to_close, file);
9878760c
RK
18473}
18474\f
18475/* Generate a unique section name for FILENAME for a section type
18476 represented by SECTION_DESC. Output goes into BUF.
18477
18478 SECTION_DESC can be any string, as long as it is different for each
18479 possible section type.
18480
18481 We name the section in the same manner as xlc. The name begins with an
18482 underscore followed by the filename (after stripping any leading directory
11e5fe42
RK
18483 names) with the last period replaced by the string SECTION_DESC. If
18484 FILENAME does not contain a period, SECTION_DESC is appended to the end of
18485 the name. */
9878760c
RK
18486
18487void
f676971a 18488rs6000_gen_section_name (char **buf, const char *filename,
c4ad648e 18489 const char *section_desc)
9878760c 18490{
9ebbca7d 18491 const char *q, *after_last_slash, *last_period = 0;
9878760c
RK
18492 char *p;
18493 int len;
9878760c
RK
18494
18495 after_last_slash = filename;
18496 for (q = filename; *q; q++)
11e5fe42
RK
18497 {
18498 if (*q == '/')
18499 after_last_slash = q + 1;
18500 else if (*q == '.')
18501 last_period = q;
18502 }
9878760c 18503
11e5fe42 18504 len = strlen (after_last_slash) + strlen (section_desc) + 2;
6d9f628e 18505 *buf = (char *) xmalloc (len);
9878760c
RK
18506
18507 p = *buf;
18508 *p++ = '_';
18509
18510 for (q = after_last_slash; *q; q++)
18511 {
11e5fe42 18512 if (q == last_period)
c4ad648e 18513 {
9878760c
RK
18514 strcpy (p, section_desc);
18515 p += strlen (section_desc);
e3981aab 18516 break;
c4ad648e 18517 }
9878760c 18518
e9a780ec 18519 else if (ISALNUM (*q))
c4ad648e 18520 *p++ = *q;
9878760c
RK
18521 }
18522
11e5fe42 18523 if (last_period == 0)
9878760c
RK
18524 strcpy (p, section_desc);
18525 else
18526 *p = '\0';
18527}
e165f3f0 18528\f
a4f6c312 18529/* Emit profile function. */
411707f4 18530
411707f4 18531void
a2369ed3 18532output_profile_hook (int labelno ATTRIBUTE_UNUSED)
411707f4 18533{
858081ad
AH
18534 /* Non-standard profiling for kernels, which just saves LR then calls
18535 _mcount without worrying about arg saves. The idea is to change
18536 the function prologue as little as possible as it isn't easy to
18537 account for arg save/restore code added just for _mcount. */
ffcfcb5f
AM
18538 if (TARGET_PROFILE_KERNEL)
18539 return;
18540
8480e480
CC
18541 if (DEFAULT_ABI == ABI_AIX)
18542 {
9739c90c
JJ
18543#ifndef NO_PROFILE_COUNTERS
18544# define NO_PROFILE_COUNTERS 0
18545#endif
f676971a 18546 if (NO_PROFILE_COUNTERS)
bbbbb16a
ILT
18547 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
18548 LCT_NORMAL, VOIDmode, 0);
9739c90c
JJ
18549 else
18550 {
18551 char buf[30];
18552 const char *label_name;
18553 rtx fun;
411707f4 18554
9739c90c
JJ
18555 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
18556 label_name = (*targetm.strip_name_encoding) (ggc_strdup (buf));
18557 fun = gen_rtx_SYMBOL_REF (Pmode, label_name);
411707f4 18558
bbbbb16a
ILT
18559 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
18560 LCT_NORMAL, VOIDmode, 1, fun, Pmode);
9739c90c 18561 }
8480e480 18562 }
ee890fe2
SS
18563 else if (DEFAULT_ABI == ABI_DARWIN)
18564 {
d5fa86ba 18565 const char *mcount_name = RS6000_MCOUNT;
1de43f85 18566 int caller_addr_regno = LR_REGNO;
ee890fe2
SS
18567
18568 /* Be conservative and always set this, at least for now. */
e3b5732b 18569 crtl->uses_pic_offset_table = 1;
ee890fe2
SS
18570
18571#if TARGET_MACHO
18572 /* For PIC code, set up a stub and collect the caller's address
18573 from r0, which is where the prologue puts it. */
11abc112 18574 if (MACHOPIC_INDIRECT
e3b5732b 18575 && crtl->uses_pic_offset_table)
11abc112 18576 caller_addr_regno = 0;
ee890fe2
SS
18577#endif
18578 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mcount_name),
bbbbb16a 18579 LCT_NORMAL, VOIDmode, 1,
ee890fe2
SS
18580 gen_rtx_REG (Pmode, caller_addr_regno), Pmode);
18581 }
411707f4
CC
18582}
18583
a4f6c312 18584/* Write function profiler code. */
e165f3f0
RK
18585
18586void
a2369ed3 18587output_function_profiler (FILE *file, int labelno)
e165f3f0 18588{
3daf36a4 18589 char buf[100];
e165f3f0 18590
38c1f2d7 18591 switch (DEFAULT_ABI)
3daf36a4 18592 {
38c1f2d7 18593 default:
37409796 18594 gcc_unreachable ();
38c1f2d7
MM
18595
18596 case ABI_V4:
09eeeacb
AM
18597 if (!TARGET_32BIT)
18598 {
d4ee4d25 18599 warning (0, "no profiling of 64-bit code for this ABI");
09eeeacb
AM
18600 return;
18601 }
ffcfcb5f 18602 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
38c1f2d7 18603 fprintf (file, "\tmflr %s\n", reg_names[0]);
71625f3d
AM
18604 if (NO_PROFILE_COUNTERS)
18605 {
18606 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18607 reg_names[0], reg_names[1]);
18608 }
18609 else if (TARGET_SECURE_PLT && flag_pic)
18610 {
18611 asm_fprintf (file, "\tbcl 20,31,1f\n1:\n\t{st|stw} %s,4(%s)\n",
18612 reg_names[0], reg_names[1]);
18613 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
18614 asm_fprintf (file, "\t{cau|addis} %s,%s,",
18615 reg_names[12], reg_names[12]);
18616 assemble_name (file, buf);
18617 asm_fprintf (file, "-1b@ha\n\t{cal|la} %s,", reg_names[0]);
18618 assemble_name (file, buf);
18619 asm_fprintf (file, "-1b@l(%s)\n", reg_names[12]);
18620 }
18621 else if (flag_pic == 1)
38c1f2d7 18622 {
dfdfa60f 18623 fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
71625f3d
AM
18624 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18625 reg_names[0], reg_names[1]);
17167fd8 18626 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
dfdfa60f 18627 asm_fprintf (file, "\t{l|lwz} %s,", reg_names[0]);
38c1f2d7 18628 assemble_name (file, buf);
17167fd8 18629 asm_fprintf (file, "@got(%s)\n", reg_names[12]);
38c1f2d7 18630 }
9ebbca7d 18631 else if (flag_pic > 1)
38c1f2d7 18632 {
71625f3d
AM
18633 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18634 reg_names[0], reg_names[1]);
9ebbca7d 18635 /* Now, we need to get the address of the label. */
71625f3d 18636 fputs ("\tbcl 20,31,1f\n\t.long ", file);
034e84c4 18637 assemble_name (file, buf);
9ebbca7d
GK
18638 fputs ("-.\n1:", file);
18639 asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
f676971a 18640 asm_fprintf (file, "\t{l|lwz} %s,0(%s)\n",
9ebbca7d
GK
18641 reg_names[0], reg_names[11]);
18642 asm_fprintf (file, "\t{cax|add} %s,%s,%s\n",
18643 reg_names[0], reg_names[0], reg_names[11]);
38c1f2d7 18644 }
38c1f2d7
MM
18645 else
18646 {
17167fd8 18647 asm_fprintf (file, "\t{liu|lis} %s,", reg_names[12]);
38c1f2d7 18648 assemble_name (file, buf);
dfdfa60f 18649 fputs ("@ha\n", file);
71625f3d
AM
18650 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18651 reg_names[0], reg_names[1]);
a260abc9 18652 asm_fprintf (file, "\t{cal|la} %s,", reg_names[0]);
38c1f2d7 18653 assemble_name (file, buf);
17167fd8 18654 asm_fprintf (file, "@l(%s)\n", reg_names[12]);
38c1f2d7
MM
18655 }
18656
50d440bc 18657 /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH. */
3b6ce0af
DE
18658 fprintf (file, "\tbl %s%s\n",
18659 RS6000_MCOUNT, flag_pic ? "@plt" : "");
38c1f2d7
MM
18660 break;
18661
18662 case ABI_AIX:
ee890fe2 18663 case ABI_DARWIN:
ffcfcb5f
AM
18664 if (!TARGET_PROFILE_KERNEL)
18665 {
a3c9585f 18666 /* Don't do anything, done in output_profile_hook (). */
ffcfcb5f
AM
18667 }
18668 else
18669 {
37409796 18670 gcc_assert (!TARGET_32BIT);
ffcfcb5f
AM
18671
18672 asm_fprintf (file, "\tmflr %s\n", reg_names[0]);
18673 asm_fprintf (file, "\tstd %s,16(%s)\n", reg_names[0], reg_names[1]);
18674
6de9cd9a 18675 if (cfun->static_chain_decl != NULL)
ffcfcb5f
AM
18676 {
18677 asm_fprintf (file, "\tstd %s,24(%s)\n",
18678 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
18679 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
18680 asm_fprintf (file, "\tld %s,24(%s)\n",
18681 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
18682 }
18683 else
18684 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
18685 }
38c1f2d7
MM
18686 break;
18687 }
e165f3f0 18688}
a251ffd0 18689
b54cf83a 18690\f
44cd321e
PS
18691
18692/* The following variable value is the last issued insn. */
18693
18694static rtx last_scheduled_insn;
18695
18696/* The following variable helps to balance issuing of load and
18697 store instructions */
18698
18699static int load_store_pendulum;
18700
b54cf83a
DE
18701/* Power4 load update and store update instructions are cracked into a
18702 load or store and an integer insn which are executed in the same cycle.
18703 Branches have their own dispatch slot which does not count against the
18704 GCC issue rate, but it changes the program flow so there are no other
18705 instructions to issue in this cycle. */
18706
18707static int
f676971a
EC
18708rs6000_variable_issue (FILE *stream ATTRIBUTE_UNUSED,
18709 int verbose ATTRIBUTE_UNUSED,
a2369ed3 18710 rtx insn, int more)
b54cf83a 18711{
44cd321e 18712 last_scheduled_insn = insn;
b54cf83a
DE
18713 if (GET_CODE (PATTERN (insn)) == USE
18714 || GET_CODE (PATTERN (insn)) == CLOBBER)
44cd321e
PS
18715 {
18716 cached_can_issue_more = more;
18717 return cached_can_issue_more;
18718 }
18719
18720 if (insn_terminates_group_p (insn, current_group))
18721 {
18722 cached_can_issue_more = 0;
18723 return cached_can_issue_more;
18724 }
b54cf83a 18725
d296e02e
AP
18726 /* If no reservation, but reach here */
18727 if (recog_memoized (insn) < 0)
18728 return more;
18729
ec507f2d 18730 if (rs6000_sched_groups)
b54cf83a 18731 {
cbe26ab8 18732 if (is_microcoded_insn (insn))
44cd321e 18733 cached_can_issue_more = 0;
cbe26ab8 18734 else if (is_cracked_insn (insn))
44cd321e
PS
18735 cached_can_issue_more = more > 2 ? more - 2 : 0;
18736 else
18737 cached_can_issue_more = more - 1;
18738
18739 return cached_can_issue_more;
b54cf83a 18740 }
165b263e 18741
d296e02e
AP
18742 if (rs6000_cpu_attr == CPU_CELL && is_nonpipeline_insn (insn))
18743 return 0;
18744
44cd321e
PS
18745 cached_can_issue_more = more - 1;
18746 return cached_can_issue_more;
b54cf83a
DE
18747}
18748
a251ffd0
TG
18749/* Adjust the cost of a scheduling dependency. Return the new cost of
18750 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
18751
c237e94a 18752static int
0a4f0294 18753rs6000_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
a251ffd0 18754{
44cd321e 18755 enum attr_type attr_type;
a251ffd0 18756
44cd321e 18757 if (! recog_memoized (insn))
a251ffd0
TG
18758 return 0;
18759
44cd321e 18760 switch (REG_NOTE_KIND (link))
a251ffd0 18761 {
44cd321e
PS
18762 case REG_DEP_TRUE:
18763 {
18764 /* Data dependency; DEP_INSN writes a register that INSN reads
18765 some cycles later. */
18766
18767 /* Separate a load from a narrower, dependent store. */
18768 if (rs6000_sched_groups
18769 && GET_CODE (PATTERN (insn)) == SET
18770 && GET_CODE (PATTERN (dep_insn)) == SET
18771 && GET_CODE (XEXP (PATTERN (insn), 1)) == MEM
18772 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == MEM
18773 && (GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (insn), 1)))
18774 > GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (dep_insn), 0)))))
18775 return cost + 14;
18776
18777 attr_type = get_attr_type (insn);
18778
18779 switch (attr_type)
18780 {
18781 case TYPE_JMPREG:
18782 /* Tell the first scheduling pass about the latency between
18783 a mtctr and bctr (and mtlr and br/blr). The first
18784 scheduling pass will not know about this latency since
18785 the mtctr instruction, which has the latency associated
18786 to it, will be generated by reload. */
18787 return TARGET_POWER ? 5 : 4;
18788 case TYPE_BRANCH:
18789 /* Leave some extra cycles between a compare and its
18790 dependent branch, to inhibit expensive mispredicts. */
18791 if ((rs6000_cpu_attr == CPU_PPC603
18792 || rs6000_cpu_attr == CPU_PPC604
18793 || rs6000_cpu_attr == CPU_PPC604E
18794 || rs6000_cpu_attr == CPU_PPC620
18795 || rs6000_cpu_attr == CPU_PPC630
18796 || rs6000_cpu_attr == CPU_PPC750
18797 || rs6000_cpu_attr == CPU_PPC7400
18798 || rs6000_cpu_attr == CPU_PPC7450
18799 || rs6000_cpu_attr == CPU_POWER4
d296e02e
AP
18800 || rs6000_cpu_attr == CPU_POWER5
18801 || rs6000_cpu_attr == CPU_CELL)
44cd321e
PS
18802 && recog_memoized (dep_insn)
18803 && (INSN_CODE (dep_insn) >= 0))
982afe02 18804
44cd321e
PS
18805 switch (get_attr_type (dep_insn))
18806 {
18807 case TYPE_CMP:
18808 case TYPE_COMPARE:
18809 case TYPE_DELAYED_COMPARE:
18810 case TYPE_IMUL_COMPARE:
18811 case TYPE_LMUL_COMPARE:
18812 case TYPE_FPCOMPARE:
18813 case TYPE_CR_LOGICAL:
18814 case TYPE_DELAYED_CR:
18815 return cost + 2;
18816 default:
18817 break;
18818 }
18819 break;
18820
18821 case TYPE_STORE:
18822 case TYPE_STORE_U:
18823 case TYPE_STORE_UX:
18824 case TYPE_FPSTORE:
18825 case TYPE_FPSTORE_U:
18826 case TYPE_FPSTORE_UX:
18827 if ((rs6000_cpu == PROCESSOR_POWER6)
18828 && recog_memoized (dep_insn)
18829 && (INSN_CODE (dep_insn) >= 0))
18830 {
18831
18832 if (GET_CODE (PATTERN (insn)) != SET)
18833 /* If this happens, we have to extend this to schedule
18834 optimally. Return default for now. */
18835 return cost;
18836
18837 /* Adjust the cost for the case where the value written
18838 by a fixed point operation is used as the address
18839 gen value on a store. */
18840 switch (get_attr_type (dep_insn))
18841 {
18842 case TYPE_LOAD:
18843 case TYPE_LOAD_U:
18844 case TYPE_LOAD_UX:
18845 case TYPE_CNTLZ:
18846 {
18847 if (! store_data_bypass_p (dep_insn, insn))
18848 return 4;
18849 break;
18850 }
18851 case TYPE_LOAD_EXT:
18852 case TYPE_LOAD_EXT_U:
18853 case TYPE_LOAD_EXT_UX:
18854 case TYPE_VAR_SHIFT_ROTATE:
18855 case TYPE_VAR_DELAYED_COMPARE:
18856 {
18857 if (! store_data_bypass_p (dep_insn, insn))
18858 return 6;
18859 break;
18860 }
18861 case TYPE_INTEGER:
18862 case TYPE_COMPARE:
18863 case TYPE_FAST_COMPARE:
18864 case TYPE_EXTS:
18865 case TYPE_SHIFT:
18866 case TYPE_INSERT_WORD:
18867 case TYPE_INSERT_DWORD:
18868 case TYPE_FPLOAD_U:
18869 case TYPE_FPLOAD_UX:
18870 case TYPE_STORE_U:
18871 case TYPE_STORE_UX:
18872 case TYPE_FPSTORE_U:
18873 case TYPE_FPSTORE_UX:
18874 {
18875 if (! store_data_bypass_p (dep_insn, insn))
18876 return 3;
18877 break;
18878 }
18879 case TYPE_IMUL:
18880 case TYPE_IMUL2:
18881 case TYPE_IMUL3:
18882 case TYPE_LMUL:
18883 case TYPE_IMUL_COMPARE:
18884 case TYPE_LMUL_COMPARE:
18885 {
18886 if (! store_data_bypass_p (dep_insn, insn))
18887 return 17;
18888 break;
18889 }
18890 case TYPE_IDIV:
18891 {
18892 if (! store_data_bypass_p (dep_insn, insn))
18893 return 45;
18894 break;
18895 }
18896 case TYPE_LDIV:
18897 {
18898 if (! store_data_bypass_p (dep_insn, insn))
18899 return 57;
18900 break;
18901 }
18902 default:
18903 break;
18904 }
18905 }
18906 break;
18907
18908 case TYPE_LOAD:
18909 case TYPE_LOAD_U:
18910 case TYPE_LOAD_UX:
18911 case TYPE_LOAD_EXT:
18912 case TYPE_LOAD_EXT_U:
18913 case TYPE_LOAD_EXT_UX:
18914 if ((rs6000_cpu == PROCESSOR_POWER6)
18915 && recog_memoized (dep_insn)
18916 && (INSN_CODE (dep_insn) >= 0))
18917 {
18918
18919 /* Adjust the cost for the case where the value written
18920 by a fixed point instruction is used within the address
18921 gen portion of a subsequent load(u)(x) */
18922 switch (get_attr_type (dep_insn))
18923 {
18924 case TYPE_LOAD:
18925 case TYPE_LOAD_U:
18926 case TYPE_LOAD_UX:
18927 case TYPE_CNTLZ:
18928 {
18929 if (set_to_load_agen (dep_insn, insn))
18930 return 4;
18931 break;
18932 }
18933 case TYPE_LOAD_EXT:
18934 case TYPE_LOAD_EXT_U:
18935 case TYPE_LOAD_EXT_UX:
18936 case TYPE_VAR_SHIFT_ROTATE:
18937 case TYPE_VAR_DELAYED_COMPARE:
18938 {
18939 if (set_to_load_agen (dep_insn, insn))
18940 return 6;
18941 break;
18942 }
18943 case TYPE_INTEGER:
18944 case TYPE_COMPARE:
18945 case TYPE_FAST_COMPARE:
18946 case TYPE_EXTS:
18947 case TYPE_SHIFT:
18948 case TYPE_INSERT_WORD:
18949 case TYPE_INSERT_DWORD:
18950 case TYPE_FPLOAD_U:
18951 case TYPE_FPLOAD_UX:
18952 case TYPE_STORE_U:
18953 case TYPE_STORE_UX:
18954 case TYPE_FPSTORE_U:
18955 case TYPE_FPSTORE_UX:
18956 {
18957 if (set_to_load_agen (dep_insn, insn))
18958 return 3;
18959 break;
18960 }
18961 case TYPE_IMUL:
18962 case TYPE_IMUL2:
18963 case TYPE_IMUL3:
18964 case TYPE_LMUL:
18965 case TYPE_IMUL_COMPARE:
18966 case TYPE_LMUL_COMPARE:
18967 {
18968 if (set_to_load_agen (dep_insn, insn))
18969 return 17;
18970 break;
18971 }
18972 case TYPE_IDIV:
18973 {
18974 if (set_to_load_agen (dep_insn, insn))
18975 return 45;
18976 break;
18977 }
18978 case TYPE_LDIV:
18979 {
18980 if (set_to_load_agen (dep_insn, insn))
18981 return 57;
18982 break;
18983 }
18984 default:
18985 break;
18986 }
18987 }
18988 break;
18989
18990 case TYPE_FPLOAD:
18991 if ((rs6000_cpu == PROCESSOR_POWER6)
18992 && recog_memoized (dep_insn)
18993 && (INSN_CODE (dep_insn) >= 0)
18994 && (get_attr_type (dep_insn) == TYPE_MFFGPR))
18995 return 2;
18996
18997 default:
18998 break;
18999 }
c9dbf840 19000
a251ffd0 19001 /* Fall out to return default cost. */
44cd321e
PS
19002 }
19003 break;
19004
19005 case REG_DEP_OUTPUT:
19006 /* Output dependency; DEP_INSN writes a register that INSN writes some
19007 cycles later. */
19008 if ((rs6000_cpu == PROCESSOR_POWER6)
19009 && recog_memoized (dep_insn)
19010 && (INSN_CODE (dep_insn) >= 0))
19011 {
19012 attr_type = get_attr_type (insn);
19013
19014 switch (attr_type)
19015 {
19016 case TYPE_FP:
19017 if (get_attr_type (dep_insn) == TYPE_FP)
19018 return 1;
19019 break;
19020 case TYPE_FPLOAD:
19021 if (get_attr_type (dep_insn) == TYPE_MFFGPR)
19022 return 2;
19023 break;
19024 default:
19025 break;
19026 }
19027 }
19028 case REG_DEP_ANTI:
19029 /* Anti dependency; DEP_INSN reads a register that INSN writes some
19030 cycles later. */
19031 return 0;
19032
19033 default:
19034 gcc_unreachable ();
a251ffd0
TG
19035 }
19036
19037 return cost;
19038}
b6c9286a 19039
cbe26ab8 19040/* The function returns a true if INSN is microcoded.
839a4992 19041 Return false otherwise. */
cbe26ab8
DN
19042
19043static bool
19044is_microcoded_insn (rtx insn)
19045{
19046 if (!insn || !INSN_P (insn)
19047 || GET_CODE (PATTERN (insn)) == USE
19048 || GET_CODE (PATTERN (insn)) == CLOBBER)
19049 return false;
19050
d296e02e
AP
19051 if (rs6000_cpu_attr == CPU_CELL)
19052 return get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS;
19053
ec507f2d 19054 if (rs6000_sched_groups)
cbe26ab8
DN
19055 {
19056 enum attr_type type = get_attr_type (insn);
19057 if (type == TYPE_LOAD_EXT_U
19058 || type == TYPE_LOAD_EXT_UX
19059 || type == TYPE_LOAD_UX
19060 || type == TYPE_STORE_UX
19061 || type == TYPE_MFCR)
c4ad648e 19062 return true;
cbe26ab8
DN
19063 }
19064
19065 return false;
19066}
19067
cbe26ab8
DN
19068/* The function returns true if INSN is cracked into 2 instructions
19069 by the processor (and therefore occupies 2 issue slots). */
19070
19071static bool
19072is_cracked_insn (rtx insn)
19073{
19074 if (!insn || !INSN_P (insn)
19075 || GET_CODE (PATTERN (insn)) == USE
19076 || GET_CODE (PATTERN (insn)) == CLOBBER)
19077 return false;
19078
ec507f2d 19079 if (rs6000_sched_groups)
cbe26ab8
DN
19080 {
19081 enum attr_type type = get_attr_type (insn);
19082 if (type == TYPE_LOAD_U || type == TYPE_STORE_U
c4ad648e
AM
19083 || type == TYPE_FPLOAD_U || type == TYPE_FPSTORE_U
19084 || type == TYPE_FPLOAD_UX || type == TYPE_FPSTORE_UX
19085 || type == TYPE_LOAD_EXT || type == TYPE_DELAYED_CR
19086 || type == TYPE_COMPARE || type == TYPE_DELAYED_COMPARE
19087 || type == TYPE_IMUL_COMPARE || type == TYPE_LMUL_COMPARE
19088 || type == TYPE_IDIV || type == TYPE_LDIV
19089 || type == TYPE_INSERT_WORD)
19090 return true;
cbe26ab8
DN
19091 }
19092
19093 return false;
19094}
19095
19096/* The function returns true if INSN can be issued only from
a3c9585f 19097 the branch slot. */
cbe26ab8
DN
19098
19099static bool
19100is_branch_slot_insn (rtx insn)
19101{
19102 if (!insn || !INSN_P (insn)
19103 || GET_CODE (PATTERN (insn)) == USE
19104 || GET_CODE (PATTERN (insn)) == CLOBBER)
19105 return false;
19106
ec507f2d 19107 if (rs6000_sched_groups)
cbe26ab8
DN
19108 {
19109 enum attr_type type = get_attr_type (insn);
19110 if (type == TYPE_BRANCH || type == TYPE_JMPREG)
f676971a 19111 return true;
cbe26ab8
DN
19112 return false;
19113 }
19114
19115 return false;
19116}
79ae11c4 19117
44cd321e
PS
19118/* The function returns true if out_inst sets a value that is
19119 used in the address generation computation of in_insn */
19120static bool
19121set_to_load_agen (rtx out_insn, rtx in_insn)
19122{
19123 rtx out_set, in_set;
19124
19125 /* For performance reasons, only handle the simple case where
19126 both loads are a single_set. */
19127 out_set = single_set (out_insn);
19128 if (out_set)
19129 {
19130 in_set = single_set (in_insn);
19131 if (in_set)
19132 return reg_mentioned_p (SET_DEST (out_set), SET_SRC (in_set));
19133 }
19134
19135 return false;
19136}
19137
19138/* The function returns true if the target storage location of
19139 out_insn is adjacent to the target storage location of in_insn */
19140/* Return 1 if memory locations are adjacent. */
19141
19142static bool
19143adjacent_mem_locations (rtx insn1, rtx insn2)
19144{
19145
e3a0e200
PB
19146 rtx a = get_store_dest (PATTERN (insn1));
19147 rtx b = get_store_dest (PATTERN (insn2));
19148
44cd321e
PS
19149 if ((GET_CODE (XEXP (a, 0)) == REG
19150 || (GET_CODE (XEXP (a, 0)) == PLUS
19151 && GET_CODE (XEXP (XEXP (a, 0), 1)) == CONST_INT))
19152 && (GET_CODE (XEXP (b, 0)) == REG
19153 || (GET_CODE (XEXP (b, 0)) == PLUS
19154 && GET_CODE (XEXP (XEXP (b, 0), 1)) == CONST_INT)))
19155 {
f98e8938 19156 HOST_WIDE_INT val0 = 0, val1 = 0, val_diff;
44cd321e 19157 rtx reg0, reg1;
44cd321e
PS
19158
19159 if (GET_CODE (XEXP (a, 0)) == PLUS)
19160 {
19161 reg0 = XEXP (XEXP (a, 0), 0);
19162 val0 = INTVAL (XEXP (XEXP (a, 0), 1));
19163 }
19164 else
19165 reg0 = XEXP (a, 0);
19166
19167 if (GET_CODE (XEXP (b, 0)) == PLUS)
19168 {
19169 reg1 = XEXP (XEXP (b, 0), 0);
19170 val1 = INTVAL (XEXP (XEXP (b, 0), 1));
19171 }
19172 else
19173 reg1 = XEXP (b, 0);
19174
19175 val_diff = val1 - val0;
19176
19177 return ((REGNO (reg0) == REGNO (reg1))
f98e8938
JJ
19178 && ((MEM_SIZE (a) && val_diff == INTVAL (MEM_SIZE (a)))
19179 || (MEM_SIZE (b) && val_diff == -INTVAL (MEM_SIZE (b)))));
44cd321e
PS
19180 }
19181
19182 return false;
19183}
19184
a4f6c312 19185/* A C statement (sans semicolon) to update the integer scheduling
79ae11c4
DN
19186 priority INSN_PRIORITY (INSN). Increase the priority to execute the
19187 INSN earlier, reduce the priority to execute INSN later. Do not
a4f6c312
SS
19188 define this macro if you do not need to adjust the scheduling
19189 priorities of insns. */
bef84347 19190
c237e94a 19191static int
a2369ed3 19192rs6000_adjust_priority (rtx insn ATTRIBUTE_UNUSED, int priority)
bef84347 19193{
a4f6c312
SS
19194 /* On machines (like the 750) which have asymmetric integer units,
19195 where one integer unit can do multiply and divides and the other
19196 can't, reduce the priority of multiply/divide so it is scheduled
19197 before other integer operations. */
bef84347
VM
19198
19199#if 0
2c3c49de 19200 if (! INSN_P (insn))
bef84347
VM
19201 return priority;
19202
19203 if (GET_CODE (PATTERN (insn)) == USE)
19204 return priority;
19205
19206 switch (rs6000_cpu_attr) {
19207 case CPU_PPC750:
19208 switch (get_attr_type (insn))
19209 {
19210 default:
19211 break;
19212
19213 case TYPE_IMUL:
19214 case TYPE_IDIV:
3cb999d8
DE
19215 fprintf (stderr, "priority was %#x (%d) before adjustment\n",
19216 priority, priority);
bef84347
VM
19217 if (priority >= 0 && priority < 0x01000000)
19218 priority >>= 3;
19219 break;
19220 }
19221 }
19222#endif
19223
44cd321e 19224 if (insn_must_be_first_in_group (insn)
79ae11c4 19225 && reload_completed
f676971a 19226 && current_sched_info->sched_max_insns_priority
79ae11c4
DN
19227 && rs6000_sched_restricted_insns_priority)
19228 {
19229
c4ad648e
AM
19230 /* Prioritize insns that can be dispatched only in the first
19231 dispatch slot. */
79ae11c4 19232 if (rs6000_sched_restricted_insns_priority == 1)
f676971a
EC
19233 /* Attach highest priority to insn. This means that in
19234 haifa-sched.c:ready_sort(), dispatch-slot restriction considerations
79ae11c4 19235 precede 'priority' (critical path) considerations. */
f676971a 19236 return current_sched_info->sched_max_insns_priority;
79ae11c4 19237 else if (rs6000_sched_restricted_insns_priority == 2)
f676971a 19238 /* Increase priority of insn by a minimal amount. This means that in
c4ad648e
AM
19239 haifa-sched.c:ready_sort(), only 'priority' (critical path)
19240 considerations precede dispatch-slot restriction considerations. */
f676971a
EC
19241 return (priority + 1);
19242 }
79ae11c4 19243
44cd321e
PS
19244 if (rs6000_cpu == PROCESSOR_POWER6
19245 && ((load_store_pendulum == -2 && is_load_insn (insn))
19246 || (load_store_pendulum == 2 && is_store_insn (insn))))
19247 /* Attach highest priority to insn if the scheduler has just issued two
19248 stores and this instruction is a load, or two loads and this instruction
19249 is a store. Power6 wants loads and stores scheduled alternately
19250 when possible */
19251 return current_sched_info->sched_max_insns_priority;
19252
bef84347
VM
19253 return priority;
19254}
19255
d296e02e
AP
19256/* Return true if the instruction is nonpipelined on the Cell. */
19257static bool
19258is_nonpipeline_insn (rtx insn)
19259{
19260 enum attr_type type;
19261 if (!insn || !INSN_P (insn)
19262 || GET_CODE (PATTERN (insn)) == USE
19263 || GET_CODE (PATTERN (insn)) == CLOBBER)
19264 return false;
19265
19266 type = get_attr_type (insn);
19267 if (type == TYPE_IMUL
19268 || type == TYPE_IMUL2
19269 || type == TYPE_IMUL3
19270 || type == TYPE_LMUL
19271 || type == TYPE_IDIV
19272 || type == TYPE_LDIV
19273 || type == TYPE_SDIV
19274 || type == TYPE_DDIV
19275 || type == TYPE_SSQRT
19276 || type == TYPE_DSQRT
19277 || type == TYPE_MFCR
19278 || type == TYPE_MFCRF
19279 || type == TYPE_MFJMPR)
19280 {
19281 return true;
19282 }
19283 return false;
19284}
19285
19286
a4f6c312
SS
19287/* Return how many instructions the machine can issue per cycle. */
19288
c237e94a 19289static int
863d938c 19290rs6000_issue_rate (void)
b6c9286a 19291{
3317bab1
DE
19292 /* Use issue rate of 1 for first scheduling pass to decrease degradation. */
19293 if (!reload_completed)
19294 return 1;
19295
b6c9286a 19296 switch (rs6000_cpu_attr) {
3cb999d8
DE
19297 case CPU_RIOS1: /* ? */
19298 case CPU_RS64A:
19299 case CPU_PPC601: /* ? */
ed947a96 19300 case CPU_PPC7450:
3cb999d8 19301 return 3;
b54cf83a 19302 case CPU_PPC440:
b6c9286a 19303 case CPU_PPC603:
bef84347 19304 case CPU_PPC750:
ed947a96 19305 case CPU_PPC7400:
be12c2b0 19306 case CPU_PPC8540:
d296e02e 19307 case CPU_CELL:
fa41c305
EW
19308 case CPU_PPCE300C2:
19309 case CPU_PPCE300C3:
edae5fe3 19310 case CPU_PPCE500MC:
f676971a 19311 return 2;
3cb999d8 19312 case CPU_RIOS2:
b6c9286a 19313 case CPU_PPC604:
19684119 19314 case CPU_PPC604E:
b6c9286a 19315 case CPU_PPC620:
3cb999d8 19316 case CPU_PPC630:
b6c9286a 19317 return 4;
cbe26ab8 19318 case CPU_POWER4:
ec507f2d 19319 case CPU_POWER5:
44cd321e 19320 case CPU_POWER6:
cbe26ab8 19321 return 5;
b6c9286a
MM
19322 default:
19323 return 1;
19324 }
19325}
19326
be12c2b0
VM
19327/* Return how many instructions to look ahead for better insn
19328 scheduling. */
19329
19330static int
863d938c 19331rs6000_use_sched_lookahead (void)
be12c2b0
VM
19332{
19333 if (rs6000_cpu_attr == CPU_PPC8540)
19334 return 4;
d296e02e
AP
19335 if (rs6000_cpu_attr == CPU_CELL)
19336 return (reload_completed ? 8 : 0);
be12c2b0
VM
19337 return 0;
19338}
19339
d296e02e
AP
19340/* We are choosing insn from the ready queue. Return nonzero if INSN can be chosen. */
19341static int
19342rs6000_use_sched_lookahead_guard (rtx insn)
19343{
19344 if (rs6000_cpu_attr != CPU_CELL)
19345 return 1;
19346
19347 if (insn == NULL_RTX || !INSN_P (insn))
19348 abort ();
982afe02 19349
d296e02e
AP
19350 if (!reload_completed
19351 || is_nonpipeline_insn (insn)
19352 || is_microcoded_insn (insn))
19353 return 0;
19354
19355 return 1;
19356}
19357
569fa502
DN
19358/* Determine is PAT refers to memory. */
19359
19360static bool
19361is_mem_ref (rtx pat)
19362{
19363 const char * fmt;
19364 int i, j;
19365 bool ret = false;
19366
1de59bbd
DE
19367 /* stack_tie does not produce any real memory traffic. */
19368 if (GET_CODE (pat) == UNSPEC
19369 && XINT (pat, 1) == UNSPEC_TIE)
19370 return false;
19371
569fa502
DN
19372 if (GET_CODE (pat) == MEM)
19373 return true;
19374
19375 /* Recursively process the pattern. */
19376 fmt = GET_RTX_FORMAT (GET_CODE (pat));
19377
19378 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0 && !ret; i--)
19379 {
19380 if (fmt[i] == 'e')
19381 ret |= is_mem_ref (XEXP (pat, i));
19382 else if (fmt[i] == 'E')
19383 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
19384 ret |= is_mem_ref (XVECEXP (pat, i, j));
19385 }
19386
19387 return ret;
19388}
19389
19390/* Determine if PAT is a PATTERN of a load insn. */
f676971a 19391
569fa502
DN
19392static bool
19393is_load_insn1 (rtx pat)
19394{
19395 if (!pat || pat == NULL_RTX)
19396 return false;
19397
19398 if (GET_CODE (pat) == SET)
19399 return is_mem_ref (SET_SRC (pat));
19400
19401 if (GET_CODE (pat) == PARALLEL)
19402 {
19403 int i;
19404
19405 for (i = 0; i < XVECLEN (pat, 0); i++)
19406 if (is_load_insn1 (XVECEXP (pat, 0, i)))
19407 return true;
19408 }
19409
19410 return false;
19411}
19412
19413/* Determine if INSN loads from memory. */
19414
19415static bool
19416is_load_insn (rtx insn)
19417{
19418 if (!insn || !INSN_P (insn))
19419 return false;
19420
19421 if (GET_CODE (insn) == CALL_INSN)
19422 return false;
19423
19424 return is_load_insn1 (PATTERN (insn));
19425}
19426
19427/* Determine if PAT is a PATTERN of a store insn. */
19428
19429static bool
19430is_store_insn1 (rtx pat)
19431{
19432 if (!pat || pat == NULL_RTX)
19433 return false;
19434
19435 if (GET_CODE (pat) == SET)
19436 return is_mem_ref (SET_DEST (pat));
19437
19438 if (GET_CODE (pat) == PARALLEL)
19439 {
19440 int i;
19441
19442 for (i = 0; i < XVECLEN (pat, 0); i++)
19443 if (is_store_insn1 (XVECEXP (pat, 0, i)))
19444 return true;
19445 }
19446
19447 return false;
19448}
19449
19450/* Determine if INSN stores to memory. */
19451
19452static bool
19453is_store_insn (rtx insn)
19454{
19455 if (!insn || !INSN_P (insn))
19456 return false;
19457
19458 return is_store_insn1 (PATTERN (insn));
19459}
19460
e3a0e200
PB
19461/* Return the dest of a store insn. */
19462
19463static rtx
19464get_store_dest (rtx pat)
19465{
19466 gcc_assert (is_store_insn1 (pat));
19467
19468 if (GET_CODE (pat) == SET)
19469 return SET_DEST (pat);
19470 else if (GET_CODE (pat) == PARALLEL)
19471 {
19472 int i;
19473
19474 for (i = 0; i < XVECLEN (pat, 0); i++)
19475 {
19476 rtx inner_pat = XVECEXP (pat, 0, i);
19477 if (GET_CODE (inner_pat) == SET
19478 && is_mem_ref (SET_DEST (inner_pat)))
19479 return inner_pat;
19480 }
19481 }
19482 /* We shouldn't get here, because we should have either a simple
19483 store insn or a store with update which are covered above. */
19484 gcc_unreachable();
19485}
19486
569fa502
DN
19487/* Returns whether the dependence between INSN and NEXT is considered
19488 costly by the given target. */
19489
19490static bool
b198261f 19491rs6000_is_costly_dependence (dep_t dep, int cost, int distance)
f676971a 19492{
b198261f
MK
19493 rtx insn;
19494 rtx next;
19495
aabcd309 19496 /* If the flag is not enabled - no dependence is considered costly;
f676971a 19497 allow all dependent insns in the same group.
569fa502
DN
19498 This is the most aggressive option. */
19499 if (rs6000_sched_costly_dep == no_dep_costly)
19500 return false;
19501
f676971a 19502 /* If the flag is set to 1 - a dependence is always considered costly;
569fa502
DN
19503 do not allow dependent instructions in the same group.
19504 This is the most conservative option. */
19505 if (rs6000_sched_costly_dep == all_deps_costly)
f676971a 19506 return true;
569fa502 19507
b198261f
MK
19508 insn = DEP_PRO (dep);
19509 next = DEP_CON (dep);
19510
f676971a
EC
19511 if (rs6000_sched_costly_dep == store_to_load_dep_costly
19512 && is_load_insn (next)
569fa502
DN
19513 && is_store_insn (insn))
19514 /* Prevent load after store in the same group. */
19515 return true;
19516
19517 if (rs6000_sched_costly_dep == true_store_to_load_dep_costly
f676971a 19518 && is_load_insn (next)
569fa502 19519 && is_store_insn (insn)
e2f6ff94 19520 && DEP_TYPE (dep) == REG_DEP_TRUE)
c4ad648e
AM
19521 /* Prevent load after store in the same group if it is a true
19522 dependence. */
569fa502 19523 return true;
f676971a
EC
19524
19525 /* The flag is set to X; dependences with latency >= X are considered costly,
569fa502
DN
19526 and will not be scheduled in the same group. */
19527 if (rs6000_sched_costly_dep <= max_dep_latency
19528 && ((cost - distance) >= (int)rs6000_sched_costly_dep))
19529 return true;
19530
19531 return false;
19532}
19533
f676971a 19534/* Return the next insn after INSN that is found before TAIL is reached,
cbe26ab8
DN
19535 skipping any "non-active" insns - insns that will not actually occupy
19536 an issue slot. Return NULL_RTX if such an insn is not found. */
19537
19538static rtx
19539get_next_active_insn (rtx insn, rtx tail)
19540{
f489aff8 19541 if (insn == NULL_RTX || insn == tail)
cbe26ab8
DN
19542 return NULL_RTX;
19543
f489aff8 19544 while (1)
cbe26ab8 19545 {
f489aff8
AM
19546 insn = NEXT_INSN (insn);
19547 if (insn == NULL_RTX || insn == tail)
19548 return NULL_RTX;
cbe26ab8 19549
f489aff8
AM
19550 if (CALL_P (insn)
19551 || JUMP_P (insn)
19552 || (NONJUMP_INSN_P (insn)
19553 && GET_CODE (PATTERN (insn)) != USE
19554 && GET_CODE (PATTERN (insn)) != CLOBBER
309ebcd0 19555 && INSN_CODE (insn) != CODE_FOR_stack_tie))
f489aff8
AM
19556 break;
19557 }
19558 return insn;
cbe26ab8
DN
19559}
19560
44cd321e
PS
19561/* We are about to begin issuing insns for this clock cycle. */
19562
19563static int
19564rs6000_sched_reorder (FILE *dump ATTRIBUTE_UNUSED, int sched_verbose,
19565 rtx *ready ATTRIBUTE_UNUSED,
19566 int *pn_ready ATTRIBUTE_UNUSED,
19567 int clock_var ATTRIBUTE_UNUSED)
19568{
d296e02e
AP
19569 int n_ready = *pn_ready;
19570
44cd321e
PS
19571 if (sched_verbose)
19572 fprintf (dump, "// rs6000_sched_reorder :\n");
19573
d296e02e
AP
19574 /* Reorder the ready list, if the second to last ready insn
19575 is a nonepipeline insn. */
19576 if (rs6000_cpu_attr == CPU_CELL && n_ready > 1)
19577 {
19578 if (is_nonpipeline_insn (ready[n_ready - 1])
19579 && (recog_memoized (ready[n_ready - 2]) > 0))
19580 /* Simply swap first two insns. */
19581 {
19582 rtx tmp = ready[n_ready - 1];
19583 ready[n_ready - 1] = ready[n_ready - 2];
19584 ready[n_ready - 2] = tmp;
19585 }
19586 }
19587
44cd321e
PS
19588 if (rs6000_cpu == PROCESSOR_POWER6)
19589 load_store_pendulum = 0;
19590
19591 return rs6000_issue_rate ();
19592}
19593
19594/* Like rs6000_sched_reorder, but called after issuing each insn. */
19595
19596static int
19597rs6000_sched_reorder2 (FILE *dump, int sched_verbose, rtx *ready,
19598 int *pn_ready, int clock_var ATTRIBUTE_UNUSED)
19599{
19600 if (sched_verbose)
19601 fprintf (dump, "// rs6000_sched_reorder2 :\n");
19602
19603 /* For Power6, we need to handle some special cases to try and keep the
19604 store queue from overflowing and triggering expensive flushes.
19605
19606 This code monitors how load and store instructions are being issued
19607 and skews the ready list one way or the other to increase the likelihood
19608 that a desired instruction is issued at the proper time.
19609
19610 A couple of things are done. First, we maintain a "load_store_pendulum"
19611 to track the current state of load/store issue.
19612
19613 - If the pendulum is at zero, then no loads or stores have been
19614 issued in the current cycle so we do nothing.
19615
19616 - If the pendulum is 1, then a single load has been issued in this
19617 cycle and we attempt to locate another load in the ready list to
19618 issue with it.
19619
2f8e468b 19620 - If the pendulum is -2, then two stores have already been
44cd321e
PS
19621 issued in this cycle, so we increase the priority of the first load
19622 in the ready list to increase it's likelihood of being chosen first
19623 in the next cycle.
19624
19625 - If the pendulum is -1, then a single store has been issued in this
19626 cycle and we attempt to locate another store in the ready list to
19627 issue with it, preferring a store to an adjacent memory location to
19628 facilitate store pairing in the store queue.
19629
19630 - If the pendulum is 2, then two loads have already been
19631 issued in this cycle, so we increase the priority of the first store
19632 in the ready list to increase it's likelihood of being chosen first
19633 in the next cycle.
19634
19635 - If the pendulum < -2 or > 2, then do nothing.
19636
19637 Note: This code covers the most common scenarios. There exist non
19638 load/store instructions which make use of the LSU and which
19639 would need to be accounted for to strictly model the behavior
19640 of the machine. Those instructions are currently unaccounted
19641 for to help minimize compile time overhead of this code.
19642 */
19643 if (rs6000_cpu == PROCESSOR_POWER6 && last_scheduled_insn)
19644 {
19645 int pos;
19646 int i;
19647 rtx tmp;
19648
19649 if (is_store_insn (last_scheduled_insn))
19650 /* Issuing a store, swing the load_store_pendulum to the left */
19651 load_store_pendulum--;
19652 else if (is_load_insn (last_scheduled_insn))
19653 /* Issuing a load, swing the load_store_pendulum to the right */
19654 load_store_pendulum++;
19655 else
19656 return cached_can_issue_more;
19657
19658 /* If the pendulum is balanced, or there is only one instruction on
19659 the ready list, then all is well, so return. */
19660 if ((load_store_pendulum == 0) || (*pn_ready <= 1))
19661 return cached_can_issue_more;
19662
19663 if (load_store_pendulum == 1)
19664 {
19665 /* A load has been issued in this cycle. Scan the ready list
19666 for another load to issue with it */
19667 pos = *pn_ready-1;
19668
19669 while (pos >= 0)
19670 {
19671 if (is_load_insn (ready[pos]))
19672 {
19673 /* Found a load. Move it to the head of the ready list,
19674 and adjust it's priority so that it is more likely to
19675 stay there */
19676 tmp = ready[pos];
19677 for (i=pos; i<*pn_ready-1; i++)
19678 ready[i] = ready[i + 1];
19679 ready[*pn_ready-1] = tmp;
e855c69d
AB
19680
19681 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
44cd321e
PS
19682 INSN_PRIORITY (tmp)++;
19683 break;
19684 }
19685 pos--;
19686 }
19687 }
19688 else if (load_store_pendulum == -2)
19689 {
19690 /* Two stores have been issued in this cycle. Increase the
19691 priority of the first load in the ready list to favor it for
19692 issuing in the next cycle. */
19693 pos = *pn_ready-1;
19694
19695 while (pos >= 0)
19696 {
19697 if (is_load_insn (ready[pos])
e855c69d
AB
19698 && !sel_sched_p ()
19699 && INSN_PRIORITY_KNOWN (ready[pos]))
44cd321e
PS
19700 {
19701 INSN_PRIORITY (ready[pos])++;
19702
19703 /* Adjust the pendulum to account for the fact that a load
19704 was found and increased in priority. This is to prevent
19705 increasing the priority of multiple loads */
19706 load_store_pendulum--;
19707
19708 break;
19709 }
19710 pos--;
19711 }
19712 }
19713 else if (load_store_pendulum == -1)
19714 {
19715 /* A store has been issued in this cycle. Scan the ready list for
19716 another store to issue with it, preferring a store to an adjacent
19717 memory location */
19718 int first_store_pos = -1;
19719
19720 pos = *pn_ready-1;
19721
19722 while (pos >= 0)
19723 {
19724 if (is_store_insn (ready[pos]))
19725 {
19726 /* Maintain the index of the first store found on the
19727 list */
19728 if (first_store_pos == -1)
19729 first_store_pos = pos;
19730
19731 if (is_store_insn (last_scheduled_insn)
19732 && adjacent_mem_locations (last_scheduled_insn,ready[pos]))
19733 {
19734 /* Found an adjacent store. Move it to the head of the
19735 ready list, and adjust it's priority so that it is
19736 more likely to stay there */
19737 tmp = ready[pos];
19738 for (i=pos; i<*pn_ready-1; i++)
19739 ready[i] = ready[i + 1];
19740 ready[*pn_ready-1] = tmp;
e855c69d
AB
19741
19742 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
44cd321e 19743 INSN_PRIORITY (tmp)++;
e855c69d 19744
44cd321e
PS
19745 first_store_pos = -1;
19746
19747 break;
19748 };
19749 }
19750 pos--;
19751 }
19752
19753 if (first_store_pos >= 0)
19754 {
19755 /* An adjacent store wasn't found, but a non-adjacent store was,
19756 so move the non-adjacent store to the front of the ready
19757 list, and adjust its priority so that it is more likely to
19758 stay there. */
19759 tmp = ready[first_store_pos];
19760 for (i=first_store_pos; i<*pn_ready-1; i++)
19761 ready[i] = ready[i + 1];
19762 ready[*pn_ready-1] = tmp;
e855c69d 19763 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
44cd321e
PS
19764 INSN_PRIORITY (tmp)++;
19765 }
19766 }
19767 else if (load_store_pendulum == 2)
19768 {
19769 /* Two loads have been issued in this cycle. Increase the priority
19770 of the first store in the ready list to favor it for issuing in
19771 the next cycle. */
19772 pos = *pn_ready-1;
19773
19774 while (pos >= 0)
19775 {
19776 if (is_store_insn (ready[pos])
e855c69d
AB
19777 && !sel_sched_p ()
19778 && INSN_PRIORITY_KNOWN (ready[pos]))
44cd321e
PS
19779 {
19780 INSN_PRIORITY (ready[pos])++;
19781
19782 /* Adjust the pendulum to account for the fact that a store
19783 was found and increased in priority. This is to prevent
19784 increasing the priority of multiple stores */
19785 load_store_pendulum++;
19786
19787 break;
19788 }
19789 pos--;
19790 }
19791 }
19792 }
19793
19794 return cached_can_issue_more;
19795}
19796
839a4992 19797/* Return whether the presence of INSN causes a dispatch group termination
cbe26ab8
DN
19798 of group WHICH_GROUP.
19799
19800 If WHICH_GROUP == current_group, this function will return true if INSN
19801 causes the termination of the current group (i.e, the dispatch group to
19802 which INSN belongs). This means that INSN will be the last insn in the
19803 group it belongs to.
19804
19805 If WHICH_GROUP == previous_group, this function will return true if INSN
19806 causes the termination of the previous group (i.e, the dispatch group that
19807 precedes the group to which INSN belongs). This means that INSN will be
19808 the first insn in the group it belongs to). */
19809
19810static bool
19811insn_terminates_group_p (rtx insn, enum group_termination which_group)
19812{
44cd321e 19813 bool first, last;
cbe26ab8
DN
19814
19815 if (! insn)
19816 return false;
569fa502 19817
44cd321e
PS
19818 first = insn_must_be_first_in_group (insn);
19819 last = insn_must_be_last_in_group (insn);
cbe26ab8 19820
44cd321e 19821 if (first && last)
cbe26ab8
DN
19822 return true;
19823
19824 if (which_group == current_group)
44cd321e 19825 return last;
cbe26ab8 19826 else if (which_group == previous_group)
44cd321e
PS
19827 return first;
19828
19829 return false;
19830}
19831
19832
19833static bool
19834insn_must_be_first_in_group (rtx insn)
19835{
19836 enum attr_type type;
19837
19838 if (!insn
19839 || insn == NULL_RTX
19840 || GET_CODE (insn) == NOTE
19841 || GET_CODE (PATTERN (insn)) == USE
19842 || GET_CODE (PATTERN (insn)) == CLOBBER)
19843 return false;
19844
19845 switch (rs6000_cpu)
cbe26ab8 19846 {
44cd321e
PS
19847 case PROCESSOR_POWER5:
19848 if (is_cracked_insn (insn))
19849 return true;
19850 case PROCESSOR_POWER4:
19851 if (is_microcoded_insn (insn))
19852 return true;
19853
19854 if (!rs6000_sched_groups)
19855 return false;
19856
19857 type = get_attr_type (insn);
19858
19859 switch (type)
19860 {
19861 case TYPE_MFCR:
19862 case TYPE_MFCRF:
19863 case TYPE_MTCR:
19864 case TYPE_DELAYED_CR:
19865 case TYPE_CR_LOGICAL:
19866 case TYPE_MTJMPR:
19867 case TYPE_MFJMPR:
19868 case TYPE_IDIV:
19869 case TYPE_LDIV:
19870 case TYPE_LOAD_L:
19871 case TYPE_STORE_C:
19872 case TYPE_ISYNC:
19873 case TYPE_SYNC:
19874 return true;
19875 default:
19876 break;
19877 }
19878 break;
19879 case PROCESSOR_POWER6:
19880 type = get_attr_type (insn);
19881
19882 switch (type)
19883 {
19884 case TYPE_INSERT_DWORD:
19885 case TYPE_EXTS:
19886 case TYPE_CNTLZ:
19887 case TYPE_SHIFT:
19888 case TYPE_VAR_SHIFT_ROTATE:
19889 case TYPE_TRAP:
19890 case TYPE_IMUL:
19891 case TYPE_IMUL2:
19892 case TYPE_IMUL3:
19893 case TYPE_LMUL:
19894 case TYPE_IDIV:
19895 case TYPE_INSERT_WORD:
19896 case TYPE_DELAYED_COMPARE:
19897 case TYPE_IMUL_COMPARE:
19898 case TYPE_LMUL_COMPARE:
19899 case TYPE_FPCOMPARE:
19900 case TYPE_MFCR:
19901 case TYPE_MTCR:
19902 case TYPE_MFJMPR:
19903 case TYPE_MTJMPR:
19904 case TYPE_ISYNC:
19905 case TYPE_SYNC:
19906 case TYPE_LOAD_L:
19907 case TYPE_STORE_C:
19908 case TYPE_LOAD_U:
19909 case TYPE_LOAD_UX:
19910 case TYPE_LOAD_EXT_UX:
19911 case TYPE_STORE_U:
19912 case TYPE_STORE_UX:
19913 case TYPE_FPLOAD_U:
19914 case TYPE_FPLOAD_UX:
19915 case TYPE_FPSTORE_U:
19916 case TYPE_FPSTORE_UX:
19917 return true;
19918 default:
19919 break;
19920 }
19921 break;
19922 default:
19923 break;
19924 }
19925
19926 return false;
19927}
19928
19929static bool
19930insn_must_be_last_in_group (rtx insn)
19931{
19932 enum attr_type type;
19933
19934 if (!insn
19935 || insn == NULL_RTX
19936 || GET_CODE (insn) == NOTE
19937 || GET_CODE (PATTERN (insn)) == USE
19938 || GET_CODE (PATTERN (insn)) == CLOBBER)
19939 return false;
19940
19941 switch (rs6000_cpu) {
19942 case PROCESSOR_POWER4:
19943 case PROCESSOR_POWER5:
19944 if (is_microcoded_insn (insn))
19945 return true;
19946
19947 if (is_branch_slot_insn (insn))
19948 return true;
19949
19950 break;
19951 case PROCESSOR_POWER6:
19952 type = get_attr_type (insn);
19953
19954 switch (type)
19955 {
19956 case TYPE_EXTS:
19957 case TYPE_CNTLZ:
19958 case TYPE_SHIFT:
19959 case TYPE_VAR_SHIFT_ROTATE:
19960 case TYPE_TRAP:
19961 case TYPE_IMUL:
19962 case TYPE_IMUL2:
19963 case TYPE_IMUL3:
19964 case TYPE_LMUL:
19965 case TYPE_IDIV:
19966 case TYPE_DELAYED_COMPARE:
19967 case TYPE_IMUL_COMPARE:
19968 case TYPE_LMUL_COMPARE:
19969 case TYPE_FPCOMPARE:
19970 case TYPE_MFCR:
19971 case TYPE_MTCR:
19972 case TYPE_MFJMPR:
19973 case TYPE_MTJMPR:
19974 case TYPE_ISYNC:
19975 case TYPE_SYNC:
19976 case TYPE_LOAD_L:
19977 case TYPE_STORE_C:
19978 return true;
19979 default:
19980 break;
cbe26ab8 19981 }
44cd321e
PS
19982 break;
19983 default:
19984 break;
19985 }
cbe26ab8
DN
19986
19987 return false;
19988}
19989
839a4992 19990/* Return true if it is recommended to keep NEXT_INSN "far" (in a separate
cbe26ab8
DN
19991 dispatch group) from the insns in GROUP_INSNS. Return false otherwise. */
19992
19993static bool
19994is_costly_group (rtx *group_insns, rtx next_insn)
19995{
19996 int i;
cbe26ab8
DN
19997 int issue_rate = rs6000_issue_rate ();
19998
19999 for (i = 0; i < issue_rate; i++)
20000 {
e2f6ff94
MK
20001 sd_iterator_def sd_it;
20002 dep_t dep;
cbe26ab8 20003 rtx insn = group_insns[i];
b198261f 20004
cbe26ab8 20005 if (!insn)
c4ad648e 20006 continue;
b198261f 20007
e2f6ff94 20008 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
c4ad648e 20009 {
b198261f
MK
20010 rtx next = DEP_CON (dep);
20011
20012 if (next == next_insn
20013 && rs6000_is_costly_dependence (dep, dep_cost (dep), 0))
20014 return true;
c4ad648e 20015 }
cbe26ab8
DN
20016 }
20017
20018 return false;
20019}
20020
f676971a 20021/* Utility of the function redefine_groups.
cbe26ab8
DN
20022 Check if it is too costly to schedule NEXT_INSN together with GROUP_INSNS
20023 in the same dispatch group. If so, insert nops before NEXT_INSN, in order
20024 to keep it "far" (in a separate group) from GROUP_INSNS, following
20025 one of the following schemes, depending on the value of the flag
20026 -minsert_sched_nops = X:
20027 (1) X == sched_finish_regroup_exact: insert exactly as many nops as needed
839a4992 20028 in order to force NEXT_INSN into a separate group.
f676971a
EC
20029 (2) X < sched_finish_regroup_exact: insert exactly X nops.
20030 GROUP_END, CAN_ISSUE_MORE and GROUP_COUNT record the state after nop
cbe26ab8
DN
20031 insertion (has a group just ended, how many vacant issue slots remain in the
20032 last group, and how many dispatch groups were encountered so far). */
20033
f676971a 20034static int
c4ad648e
AM
20035force_new_group (int sched_verbose, FILE *dump, rtx *group_insns,
20036 rtx next_insn, bool *group_end, int can_issue_more,
20037 int *group_count)
cbe26ab8
DN
20038{
20039 rtx nop;
20040 bool force;
20041 int issue_rate = rs6000_issue_rate ();
20042 bool end = *group_end;
20043 int i;
20044
20045 if (next_insn == NULL_RTX)
20046 return can_issue_more;
20047
20048 if (rs6000_sched_insert_nops > sched_finish_regroup_exact)
20049 return can_issue_more;
20050
20051 force = is_costly_group (group_insns, next_insn);
20052 if (!force)
20053 return can_issue_more;
20054
20055 if (sched_verbose > 6)
20056 fprintf (dump,"force: group count = %d, can_issue_more = %d\n",
c4ad648e 20057 *group_count ,can_issue_more);
cbe26ab8
DN
20058
20059 if (rs6000_sched_insert_nops == sched_finish_regroup_exact)
20060 {
20061 if (*group_end)
c4ad648e 20062 can_issue_more = 0;
cbe26ab8
DN
20063
20064 /* Since only a branch can be issued in the last issue_slot, it is
20065 sufficient to insert 'can_issue_more - 1' nops if next_insn is not
20066 a branch. If next_insn is a branch, we insert 'can_issue_more' nops;
c4ad648e
AM
20067 in this case the last nop will start a new group and the branch
20068 will be forced to the new group. */
cbe26ab8 20069 if (can_issue_more && !is_branch_slot_insn (next_insn))
c4ad648e 20070 can_issue_more--;
cbe26ab8
DN
20071
20072 while (can_issue_more > 0)
c4ad648e 20073 {
9390387d 20074 nop = gen_nop ();
c4ad648e
AM
20075 emit_insn_before (nop, next_insn);
20076 can_issue_more--;
20077 }
cbe26ab8
DN
20078
20079 *group_end = true;
20080 return 0;
f676971a 20081 }
cbe26ab8
DN
20082
20083 if (rs6000_sched_insert_nops < sched_finish_regroup_exact)
20084 {
20085 int n_nops = rs6000_sched_insert_nops;
20086
f676971a 20087 /* Nops can't be issued from the branch slot, so the effective
c4ad648e 20088 issue_rate for nops is 'issue_rate - 1'. */
cbe26ab8 20089 if (can_issue_more == 0)
c4ad648e 20090 can_issue_more = issue_rate;
cbe26ab8
DN
20091 can_issue_more--;
20092 if (can_issue_more == 0)
c4ad648e
AM
20093 {
20094 can_issue_more = issue_rate - 1;
20095 (*group_count)++;
20096 end = true;
20097 for (i = 0; i < issue_rate; i++)
20098 {
20099 group_insns[i] = 0;
20100 }
20101 }
cbe26ab8
DN
20102
20103 while (n_nops > 0)
c4ad648e
AM
20104 {
20105 nop = gen_nop ();
20106 emit_insn_before (nop, next_insn);
20107 if (can_issue_more == issue_rate - 1) /* new group begins */
20108 end = false;
20109 can_issue_more--;
20110 if (can_issue_more == 0)
20111 {
20112 can_issue_more = issue_rate - 1;
20113 (*group_count)++;
20114 end = true;
20115 for (i = 0; i < issue_rate; i++)
20116 {
20117 group_insns[i] = 0;
20118 }
20119 }
20120 n_nops--;
20121 }
cbe26ab8
DN
20122
20123 /* Scale back relative to 'issue_rate' (instead of 'issue_rate - 1'). */
f676971a 20124 can_issue_more++;
cbe26ab8 20125
c4ad648e
AM
20126 /* Is next_insn going to start a new group? */
20127 *group_end
20128 = (end
cbe26ab8
DN
20129 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
20130 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
20131 || (can_issue_more < issue_rate &&
c4ad648e 20132 insn_terminates_group_p (next_insn, previous_group)));
cbe26ab8 20133 if (*group_end && end)
c4ad648e 20134 (*group_count)--;
cbe26ab8
DN
20135
20136 if (sched_verbose > 6)
c4ad648e
AM
20137 fprintf (dump, "done force: group count = %d, can_issue_more = %d\n",
20138 *group_count, can_issue_more);
f676971a
EC
20139 return can_issue_more;
20140 }
cbe26ab8
DN
20141
20142 return can_issue_more;
20143}
20144
20145/* This function tries to synch the dispatch groups that the compiler "sees"
f676971a 20146 with the dispatch groups that the processor dispatcher is expected to
cbe26ab8
DN
20147 form in practice. It tries to achieve this synchronization by forcing the
20148 estimated processor grouping on the compiler (as opposed to the function
20149 'pad_goups' which tries to force the scheduler's grouping on the processor).
20150
20151 The function scans the insn sequence between PREV_HEAD_INSN and TAIL and
20152 examines the (estimated) dispatch groups that will be formed by the processor
20153 dispatcher. It marks these group boundaries to reflect the estimated
20154 processor grouping, overriding the grouping that the scheduler had marked.
20155 Depending on the value of the flag '-minsert-sched-nops' this function can
20156 force certain insns into separate groups or force a certain distance between
20157 them by inserting nops, for example, if there exists a "costly dependence"
20158 between the insns.
20159
20160 The function estimates the group boundaries that the processor will form as
0fa2e4df 20161 follows: It keeps track of how many vacant issue slots are available after
cbe26ab8
DN
20162 each insn. A subsequent insn will start a new group if one of the following
20163 4 cases applies:
20164 - no more vacant issue slots remain in the current dispatch group.
20165 - only the last issue slot, which is the branch slot, is vacant, but the next
20166 insn is not a branch.
20167 - only the last 2 or less issue slots, including the branch slot, are vacant,
20168 which means that a cracked insn (which occupies two issue slots) can't be
20169 issued in this group.
f676971a 20170 - less than 'issue_rate' slots are vacant, and the next insn always needs to
cbe26ab8
DN
20171 start a new group. */
20172
20173static int
20174redefine_groups (FILE *dump, int sched_verbose, rtx prev_head_insn, rtx tail)
20175{
20176 rtx insn, next_insn;
20177 int issue_rate;
20178 int can_issue_more;
20179 int slot, i;
20180 bool group_end;
20181 int group_count = 0;
20182 rtx *group_insns;
20183
20184 /* Initialize. */
20185 issue_rate = rs6000_issue_rate ();
5ead67f6 20186 group_insns = XALLOCAVEC (rtx, issue_rate);
f676971a 20187 for (i = 0; i < issue_rate; i++)
cbe26ab8
DN
20188 {
20189 group_insns[i] = 0;
20190 }
20191 can_issue_more = issue_rate;
20192 slot = 0;
20193 insn = get_next_active_insn (prev_head_insn, tail);
20194 group_end = false;
20195
20196 while (insn != NULL_RTX)
20197 {
20198 slot = (issue_rate - can_issue_more);
20199 group_insns[slot] = insn;
20200 can_issue_more =
c4ad648e 20201 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
cbe26ab8 20202 if (insn_terminates_group_p (insn, current_group))
c4ad648e 20203 can_issue_more = 0;
cbe26ab8
DN
20204
20205 next_insn = get_next_active_insn (insn, tail);
20206 if (next_insn == NULL_RTX)
c4ad648e 20207 return group_count + 1;
cbe26ab8 20208
c4ad648e
AM
20209 /* Is next_insn going to start a new group? */
20210 group_end
20211 = (can_issue_more == 0
20212 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
20213 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
20214 || (can_issue_more < issue_rate &&
20215 insn_terminates_group_p (next_insn, previous_group)));
cbe26ab8 20216
f676971a 20217 can_issue_more = force_new_group (sched_verbose, dump, group_insns,
c4ad648e
AM
20218 next_insn, &group_end, can_issue_more,
20219 &group_count);
cbe26ab8
DN
20220
20221 if (group_end)
c4ad648e
AM
20222 {
20223 group_count++;
20224 can_issue_more = 0;
20225 for (i = 0; i < issue_rate; i++)
20226 {
20227 group_insns[i] = 0;
20228 }
20229 }
cbe26ab8
DN
20230
20231 if (GET_MODE (next_insn) == TImode && can_issue_more)
9390387d 20232 PUT_MODE (next_insn, VOIDmode);
cbe26ab8 20233 else if (!can_issue_more && GET_MODE (next_insn) != TImode)
c4ad648e 20234 PUT_MODE (next_insn, TImode);
cbe26ab8
DN
20235
20236 insn = next_insn;
20237 if (can_issue_more == 0)
c4ad648e
AM
20238 can_issue_more = issue_rate;
20239 } /* while */
cbe26ab8
DN
20240
20241 return group_count;
20242}
20243
20244/* Scan the insn sequence between PREV_HEAD_INSN and TAIL and examine the
20245 dispatch group boundaries that the scheduler had marked. Pad with nops
20246 any dispatch groups which have vacant issue slots, in order to force the
20247 scheduler's grouping on the processor dispatcher. The function
20248 returns the number of dispatch groups found. */
20249
20250static int
20251pad_groups (FILE *dump, int sched_verbose, rtx prev_head_insn, rtx tail)
20252{
20253 rtx insn, next_insn;
20254 rtx nop;
20255 int issue_rate;
20256 int can_issue_more;
20257 int group_end;
20258 int group_count = 0;
20259
20260 /* Initialize issue_rate. */
20261 issue_rate = rs6000_issue_rate ();
20262 can_issue_more = issue_rate;
20263
20264 insn = get_next_active_insn (prev_head_insn, tail);
20265 next_insn = get_next_active_insn (insn, tail);
20266
20267 while (insn != NULL_RTX)
20268 {
20269 can_issue_more =
20270 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
20271
20272 group_end = (next_insn == NULL_RTX || GET_MODE (next_insn) == TImode);
20273
20274 if (next_insn == NULL_RTX)
c4ad648e 20275 break;
cbe26ab8
DN
20276
20277 if (group_end)
c4ad648e
AM
20278 {
20279 /* If the scheduler had marked group termination at this location
e855c69d 20280 (between insn and next_insn), and neither insn nor next_insn will
c4ad648e
AM
20281 force group termination, pad the group with nops to force group
20282 termination. */
20283 if (can_issue_more
20284 && (rs6000_sched_insert_nops == sched_finish_pad_groups)
20285 && !insn_terminates_group_p (insn, current_group)
20286 && !insn_terminates_group_p (next_insn, previous_group))
20287 {
9390387d 20288 if (!is_branch_slot_insn (next_insn))
c4ad648e
AM
20289 can_issue_more--;
20290
20291 while (can_issue_more)
20292 {
20293 nop = gen_nop ();
20294 emit_insn_before (nop, next_insn);
20295 can_issue_more--;
20296 }
20297 }
20298
20299 can_issue_more = issue_rate;
20300 group_count++;
20301 }
cbe26ab8
DN
20302
20303 insn = next_insn;
20304 next_insn = get_next_active_insn (insn, tail);
20305 }
20306
20307 return group_count;
20308}
20309
44cd321e
PS
20310/* We're beginning a new block. Initialize data structures as necessary. */
20311
20312static void
20313rs6000_sched_init (FILE *dump ATTRIBUTE_UNUSED,
20314 int sched_verbose ATTRIBUTE_UNUSED,
20315 int max_ready ATTRIBUTE_UNUSED)
982afe02 20316{
44cd321e
PS
20317 last_scheduled_insn = NULL_RTX;
20318 load_store_pendulum = 0;
20319}
20320
cbe26ab8
DN
20321/* The following function is called at the end of scheduling BB.
20322 After reload, it inserts nops at insn group bundling. */
20323
20324static void
38f391a5 20325rs6000_sched_finish (FILE *dump, int sched_verbose)
cbe26ab8
DN
20326{
20327 int n_groups;
20328
20329 if (sched_verbose)
20330 fprintf (dump, "=== Finishing schedule.\n");
20331
ec507f2d 20332 if (reload_completed && rs6000_sched_groups)
cbe26ab8 20333 {
e855c69d
AB
20334 /* Do not run sched_finish hook when selective scheduling enabled. */
20335 if (sel_sched_p ())
20336 return;
20337
cbe26ab8 20338 if (rs6000_sched_insert_nops == sched_finish_none)
c4ad648e 20339 return;
cbe26ab8
DN
20340
20341 if (rs6000_sched_insert_nops == sched_finish_pad_groups)
c4ad648e
AM
20342 n_groups = pad_groups (dump, sched_verbose,
20343 current_sched_info->prev_head,
20344 current_sched_info->next_tail);
cbe26ab8 20345 else
c4ad648e
AM
20346 n_groups = redefine_groups (dump, sched_verbose,
20347 current_sched_info->prev_head,
20348 current_sched_info->next_tail);
cbe26ab8
DN
20349
20350 if (sched_verbose >= 6)
20351 {
20352 fprintf (dump, "ngroups = %d\n", n_groups);
20353 print_rtl (dump, current_sched_info->prev_head);
20354 fprintf (dump, "Done finish_sched\n");
20355 }
20356 }
20357}
e855c69d
AB
20358
20359struct _rs6000_sched_context
20360{
20361 short cached_can_issue_more;
20362 rtx last_scheduled_insn;
20363 int load_store_pendulum;
20364};
20365
20366typedef struct _rs6000_sched_context rs6000_sched_context_def;
20367typedef rs6000_sched_context_def *rs6000_sched_context_t;
20368
20369/* Allocate store for new scheduling context. */
20370static void *
20371rs6000_alloc_sched_context (void)
20372{
20373 return xmalloc (sizeof (rs6000_sched_context_def));
20374}
20375
20376/* If CLEAN_P is true then initializes _SC with clean data,
20377 and from the global context otherwise. */
20378static void
20379rs6000_init_sched_context (void *_sc, bool clean_p)
20380{
20381 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
20382
20383 if (clean_p)
20384 {
20385 sc->cached_can_issue_more = 0;
20386 sc->last_scheduled_insn = NULL_RTX;
20387 sc->load_store_pendulum = 0;
20388 }
20389 else
20390 {
20391 sc->cached_can_issue_more = cached_can_issue_more;
20392 sc->last_scheduled_insn = last_scheduled_insn;
20393 sc->load_store_pendulum = load_store_pendulum;
20394 }
20395}
20396
20397/* Sets the global scheduling context to the one pointed to by _SC. */
20398static void
20399rs6000_set_sched_context (void *_sc)
20400{
20401 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
20402
20403 gcc_assert (sc != NULL);
20404
20405 cached_can_issue_more = sc->cached_can_issue_more;
20406 last_scheduled_insn = sc->last_scheduled_insn;
20407 load_store_pendulum = sc->load_store_pendulum;
20408}
20409
20410/* Free _SC. */
20411static void
20412rs6000_free_sched_context (void *_sc)
20413{
20414 gcc_assert (_sc != NULL);
20415
20416 free (_sc);
20417}
20418
b6c9286a 20419\f
b6c9286a
MM
20420/* Length in units of the trampoline for entering a nested function. */
20421
20422int
863d938c 20423rs6000_trampoline_size (void)
b6c9286a
MM
20424{
20425 int ret = 0;
20426
20427 switch (DEFAULT_ABI)
20428 {
20429 default:
37409796 20430 gcc_unreachable ();
b6c9286a
MM
20431
20432 case ABI_AIX:
8f802bfb 20433 ret = (TARGET_32BIT) ? 12 : 24;
b6c9286a
MM
20434 break;
20435
4dabc42d 20436 case ABI_DARWIN:
b6c9286a 20437 case ABI_V4:
03a7e1a5 20438 ret = (TARGET_32BIT) ? 40 : 48;
b6c9286a 20439 break;
b6c9286a
MM
20440 }
20441
20442 return ret;
20443}
20444
20445/* Emit RTL insns to initialize the variable parts of a trampoline.
20446 FNADDR is an RTX for the address of the function's pure code.
20447 CXT is an RTX for the static chain value for the function. */
20448
20449void
a2369ed3 20450rs6000_initialize_trampoline (rtx addr, rtx fnaddr, rtx cxt)
b6c9286a 20451{
8bd04c56 20452 int regsize = (TARGET_32BIT) ? 4 : 8;
9613eaff 20453 rtx ctx_reg = force_reg (Pmode, cxt);
b6c9286a
MM
20454
20455 switch (DEFAULT_ABI)
20456 {
20457 default:
37409796 20458 gcc_unreachable ();
b6c9286a 20459
8bd04c56 20460/* Macros to shorten the code expansions below. */
9613eaff 20461#define MEM_DEREF(addr) gen_rtx_MEM (Pmode, memory_address (Pmode, addr))
c5c76735 20462#define MEM_PLUS(addr,offset) \
9613eaff 20463 gen_rtx_MEM (Pmode, memory_address (Pmode, plus_constant (addr, offset)))
7c59dc5d 20464
b6c9286a
MM
20465 /* Under AIX, just build the 3 word function descriptor */
20466 case ABI_AIX:
8bd04c56 20467 {
9613eaff
SH
20468 rtx fn_reg = gen_reg_rtx (Pmode);
20469 rtx toc_reg = gen_reg_rtx (Pmode);
8bd04c56 20470 emit_move_insn (fn_reg, MEM_DEREF (fnaddr));
1cb18e3c 20471 emit_move_insn (toc_reg, MEM_PLUS (fnaddr, regsize));
8bd04c56
MM
20472 emit_move_insn (MEM_DEREF (addr), fn_reg);
20473 emit_move_insn (MEM_PLUS (addr, regsize), toc_reg);
20474 emit_move_insn (MEM_PLUS (addr, 2*regsize), ctx_reg);
20475 }
b6c9286a
MM
20476 break;
20477
4dabc42d
TC
20478 /* Under V.4/eabi/darwin, __trampoline_setup does the real work. */
20479 case ABI_DARWIN:
b6c9286a 20480 case ABI_V4:
9613eaff 20481 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__trampoline_setup"),
bbbbb16a 20482 LCT_NORMAL, VOIDmode, 4,
9613eaff 20483 addr, Pmode,
eaf1bcf1 20484 GEN_INT (rs6000_trampoline_size ()), SImode,
9613eaff
SH
20485 fnaddr, Pmode,
20486 ctx_reg, Pmode);
b6c9286a 20487 break;
b6c9286a
MM
20488 }
20489
20490 return;
20491}
7509c759
MM
20492
20493\f
91d231cb 20494/* Table of valid machine attributes. */
a4f6c312 20495
91d231cb 20496const struct attribute_spec rs6000_attribute_table[] =
7509c759 20497{
91d231cb 20498 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
8bb418a3 20499 { "altivec", 1, 1, false, true, false, rs6000_handle_altivec_attribute },
a5c76ee6
ZW
20500 { "longcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute },
20501 { "shortcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute },
77ccdfed
EC
20502 { "ms_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute },
20503 { "gcc_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute },
005c1a13
GK
20504#ifdef SUBTARGET_ATTRIBUTE_TABLE
20505 SUBTARGET_ATTRIBUTE_TABLE,
20506#endif
a5c76ee6 20507 { NULL, 0, 0, false, false, false, NULL }
91d231cb 20508};
7509c759 20509
8bb418a3
ZL
20510/* Handle the "altivec" attribute. The attribute may have
20511 arguments as follows:
f676971a 20512
8bb418a3
ZL
20513 __attribute__((altivec(vector__)))
20514 __attribute__((altivec(pixel__))) (always followed by 'unsigned short')
20515 __attribute__((altivec(bool__))) (always followed by 'unsigned')
20516
20517 and may appear more than once (e.g., 'vector bool char') in a
20518 given declaration. */
20519
20520static tree
f90ac3f0
UP
20521rs6000_handle_altivec_attribute (tree *node,
20522 tree name ATTRIBUTE_UNUSED,
20523 tree args,
8bb418a3
ZL
20524 int flags ATTRIBUTE_UNUSED,
20525 bool *no_add_attrs)
20526{
20527 tree type = *node, result = NULL_TREE;
20528 enum machine_mode mode;
20529 int unsigned_p;
20530 char altivec_type
20531 = ((args && TREE_CODE (args) == TREE_LIST && TREE_VALUE (args)
20532 && TREE_CODE (TREE_VALUE (args)) == IDENTIFIER_NODE)
20533 ? *IDENTIFIER_POINTER (TREE_VALUE (args))
f676971a 20534 : '?');
8bb418a3
ZL
20535
20536 while (POINTER_TYPE_P (type)
20537 || TREE_CODE (type) == FUNCTION_TYPE
20538 || TREE_CODE (type) == METHOD_TYPE
20539 || TREE_CODE (type) == ARRAY_TYPE)
20540 type = TREE_TYPE (type);
20541
20542 mode = TYPE_MODE (type);
20543
f90ac3f0
UP
20544 /* Check for invalid AltiVec type qualifiers. */
20545 if (type == long_unsigned_type_node || type == long_integer_type_node)
20546 {
20547 if (TARGET_64BIT)
20548 error ("use of %<long%> in AltiVec types is invalid for 64-bit code");
20549 else if (rs6000_warn_altivec_long)
d4ee4d25 20550 warning (0, "use of %<long%> in AltiVec types is deprecated; use %<int%>");
f90ac3f0
UP
20551 }
20552 else if (type == long_long_unsigned_type_node
20553 || type == long_long_integer_type_node)
20554 error ("use of %<long long%> in AltiVec types is invalid");
20555 else if (type == double_type_node)
20556 error ("use of %<double%> in AltiVec types is invalid");
20557 else if (type == long_double_type_node)
20558 error ("use of %<long double%> in AltiVec types is invalid");
20559 else if (type == boolean_type_node)
20560 error ("use of boolean types in AltiVec types is invalid");
20561 else if (TREE_CODE (type) == COMPLEX_TYPE)
20562 error ("use of %<complex%> in AltiVec types is invalid");
00b79d54
BE
20563 else if (DECIMAL_FLOAT_MODE_P (mode))
20564 error ("use of decimal floating point types in AltiVec types is invalid");
8bb418a3
ZL
20565
20566 switch (altivec_type)
20567 {
20568 case 'v':
8df83eae 20569 unsigned_p = TYPE_UNSIGNED (type);
8bb418a3
ZL
20570 switch (mode)
20571 {
c4ad648e
AM
20572 case SImode:
20573 result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
20574 break;
20575 case HImode:
20576 result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
20577 break;
20578 case QImode:
20579 result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
20580 break;
20581 case SFmode: result = V4SF_type_node; break;
20582 /* If the user says 'vector int bool', we may be handed the 'bool'
20583 attribute _before_ the 'vector' attribute, and so select the
20584 proper type in the 'b' case below. */
20585 case V4SImode: case V8HImode: case V16QImode: case V4SFmode:
20586 result = type;
20587 default: break;
8bb418a3
ZL
20588 }
20589 break;
20590 case 'b':
20591 switch (mode)
20592 {
c4ad648e
AM
20593 case SImode: case V4SImode: result = bool_V4SI_type_node; break;
20594 case HImode: case V8HImode: result = bool_V8HI_type_node; break;
20595 case QImode: case V16QImode: result = bool_V16QI_type_node;
20596 default: break;
8bb418a3
ZL
20597 }
20598 break;
20599 case 'p':
20600 switch (mode)
20601 {
c4ad648e
AM
20602 case V8HImode: result = pixel_V8HI_type_node;
20603 default: break;
8bb418a3
ZL
20604 }
20605 default: break;
20606 }
20607
4f538d42
UW
20608 /* Propagate qualifiers attached to the element type
20609 onto the vector type. */
20610 if (result && result != type && TYPE_QUALS (type))
20611 result = build_qualified_type (result, TYPE_QUALS (type));
7958a2a6 20612
8bb418a3
ZL
20613 *no_add_attrs = true; /* No need to hang on to the attribute. */
20614
f90ac3f0 20615 if (result)
5dc11954 20616 *node = lang_hooks.types.reconstruct_complex_type (*node, result);
8bb418a3
ZL
20617
20618 return NULL_TREE;
20619}
20620
f18eca82
ZL
20621/* AltiVec defines four built-in scalar types that serve as vector
20622 elements; we must teach the compiler how to mangle them. */
20623
20624static const char *
3101faab 20625rs6000_mangle_type (const_tree type)
f18eca82 20626{
608063c3
JB
20627 type = TYPE_MAIN_VARIANT (type);
20628
20629 if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
20630 && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
20631 return NULL;
20632
f18eca82
ZL
20633 if (type == bool_char_type_node) return "U6__boolc";
20634 if (type == bool_short_type_node) return "U6__bools";
20635 if (type == pixel_type_node) return "u7__pixel";
20636 if (type == bool_int_type_node) return "U6__booli";
20637
337bde91
DE
20638 /* Mangle IBM extended float long double as `g' (__float128) on
20639 powerpc*-linux where long-double-64 previously was the default. */
20640 if (TYPE_MAIN_VARIANT (type) == long_double_type_node
20641 && TARGET_ELF
20642 && TARGET_LONG_DOUBLE_128
20643 && !TARGET_IEEEQUAD)
20644 return "g";
20645
f18eca82
ZL
20646 /* For all other types, use normal C++ mangling. */
20647 return NULL;
20648}
20649
a5c76ee6
ZW
20650/* Handle a "longcall" or "shortcall" attribute; arguments as in
20651 struct attribute_spec.handler. */
a4f6c312 20652
91d231cb 20653static tree
f676971a
EC
20654rs6000_handle_longcall_attribute (tree *node, tree name,
20655 tree args ATTRIBUTE_UNUSED,
20656 int flags ATTRIBUTE_UNUSED,
a2369ed3 20657 bool *no_add_attrs)
91d231cb
JM
20658{
20659 if (TREE_CODE (*node) != FUNCTION_TYPE
20660 && TREE_CODE (*node) != FIELD_DECL
20661 && TREE_CODE (*node) != TYPE_DECL)
20662 {
5c498b10 20663 warning (OPT_Wattributes, "%qs attribute only applies to functions",
91d231cb
JM
20664 IDENTIFIER_POINTER (name));
20665 *no_add_attrs = true;
20666 }
6a4cee5f 20667
91d231cb 20668 return NULL_TREE;
7509c759
MM
20669}
20670
a5c76ee6
ZW
20671/* Set longcall attributes on all functions declared when
20672 rs6000_default_long_calls is true. */
20673static void
a2369ed3 20674rs6000_set_default_type_attributes (tree type)
a5c76ee6
ZW
20675{
20676 if (rs6000_default_long_calls
20677 && (TREE_CODE (type) == FUNCTION_TYPE
20678 || TREE_CODE (type) == METHOD_TYPE))
20679 TYPE_ATTRIBUTES (type) = tree_cons (get_identifier ("longcall"),
20680 NULL_TREE,
20681 TYPE_ATTRIBUTES (type));
16d6f994
EC
20682
20683#if TARGET_MACHO
20684 darwin_set_default_type_attributes (type);
20685#endif
a5c76ee6
ZW
20686}
20687
3cb999d8
DE
20688/* Return a reference suitable for calling a function with the
20689 longcall attribute. */
a4f6c312 20690
9390387d 20691rtx
a2369ed3 20692rs6000_longcall_ref (rtx call_ref)
6a4cee5f 20693{
d330fd93 20694 const char *call_name;
6a4cee5f
MM
20695 tree node;
20696
20697 if (GET_CODE (call_ref) != SYMBOL_REF)
20698 return call_ref;
20699
20700 /* System V adds '.' to the internal name, so skip them. */
20701 call_name = XSTR (call_ref, 0);
20702 if (*call_name == '.')
20703 {
20704 while (*call_name == '.')
20705 call_name++;
20706
20707 node = get_identifier (call_name);
39403d82 20708 call_ref = gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node));
6a4cee5f
MM
20709 }
20710
20711 return force_reg (Pmode, call_ref);
20712}
7509c759 20713\f
77ccdfed
EC
20714#ifndef TARGET_USE_MS_BITFIELD_LAYOUT
20715#define TARGET_USE_MS_BITFIELD_LAYOUT 0
20716#endif
20717
20718/* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in
20719 struct attribute_spec.handler. */
20720static tree
20721rs6000_handle_struct_attribute (tree *node, tree name,
20722 tree args ATTRIBUTE_UNUSED,
20723 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
20724{
20725 tree *type = NULL;
20726 if (DECL_P (*node))
20727 {
20728 if (TREE_CODE (*node) == TYPE_DECL)
20729 type = &TREE_TYPE (*node);
20730 }
20731 else
20732 type = node;
20733
20734 if (!(type && (TREE_CODE (*type) == RECORD_TYPE
20735 || TREE_CODE (*type) == UNION_TYPE)))
20736 {
20737 warning (OPT_Wattributes, "%qs attribute ignored", IDENTIFIER_POINTER (name));
20738 *no_add_attrs = true;
20739 }
20740
20741 else if ((is_attribute_p ("ms_struct", name)
20742 && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type)))
20743 || ((is_attribute_p ("gcc_struct", name)
20744 && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type)))))
20745 {
20746 warning (OPT_Wattributes, "%qs incompatible attribute ignored",
20747 IDENTIFIER_POINTER (name));
20748 *no_add_attrs = true;
20749 }
20750
20751 return NULL_TREE;
20752}
20753
20754static bool
3101faab 20755rs6000_ms_bitfield_layout_p (const_tree record_type)
77ccdfed
EC
20756{
20757 return (TARGET_USE_MS_BITFIELD_LAYOUT &&
20758 !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type)))
20759 || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type));
20760}
20761\f
b64a1b53
RH
20762#ifdef USING_ELFOS_H
20763
d6b5193b 20764/* A get_unnamed_section callback, used for switching to toc_section. */
7509c759 20765
d6b5193b
RS
20766static void
20767rs6000_elf_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
20768{
20769 if (DEFAULT_ABI == ABI_AIX
20770 && TARGET_MINIMAL_TOC
20771 && !TARGET_RELOCATABLE)
20772 {
20773 if (!toc_initialized)
20774 {
20775 toc_initialized = 1;
20776 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
20777 (*targetm.asm_out.internal_label) (asm_out_file, "LCTOC", 0);
20778 fprintf (asm_out_file, "\t.tc ");
20779 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1[TC],");
20780 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
20781 fprintf (asm_out_file, "\n");
20782
20783 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
20784 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
20785 fprintf (asm_out_file, " = .+32768\n");
20786 }
20787 else
20788 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
20789 }
20790 else if (DEFAULT_ABI == ABI_AIX && !TARGET_RELOCATABLE)
20791 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
20792 else
20793 {
20794 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
20795 if (!toc_initialized)
20796 {
20797 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
20798 fprintf (asm_out_file, " = .+32768\n");
20799 toc_initialized = 1;
20800 }
20801 }
20802}
20803
20804/* Implement TARGET_ASM_INIT_SECTIONS. */
7509c759 20805
b64a1b53 20806static void
d6b5193b
RS
20807rs6000_elf_asm_init_sections (void)
20808{
20809 toc_section
20810 = get_unnamed_section (0, rs6000_elf_output_toc_section_asm_op, NULL);
20811
20812 sdata2_section
20813 = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
20814 SDATA2_SECTION_ASM_OP);
20815}
20816
20817/* Implement TARGET_SELECT_RTX_SECTION. */
20818
20819static section *
f676971a 20820rs6000_elf_select_rtx_section (enum machine_mode mode, rtx x,
a2369ed3 20821 unsigned HOST_WIDE_INT align)
7509c759 20822{
a9098fd0 20823 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
d6b5193b 20824 return toc_section;
7509c759 20825 else
d6b5193b 20826 return default_elf_select_rtx_section (mode, x, align);
7509c759 20827}
d9407988 20828\f
d1908feb
JJ
20829/* For a SYMBOL_REF, set generic flags and then perform some
20830 target-specific processing.
20831
d1908feb
JJ
20832 When the AIX ABI is requested on a non-AIX system, replace the
20833 function name with the real name (with a leading .) rather than the
20834 function descriptor name. This saves a lot of overriding code to
20835 read the prefixes. */
d9407988 20836
fb49053f 20837static void
a2369ed3 20838rs6000_elf_encode_section_info (tree decl, rtx rtl, int first)
d9407988 20839{
d1908feb 20840 default_encode_section_info (decl, rtl, first);
b2003250 20841
d1908feb
JJ
20842 if (first
20843 && TREE_CODE (decl) == FUNCTION_DECL
20844 && !TARGET_AIX
20845 && DEFAULT_ABI == ABI_AIX)
d9407988 20846 {
c6a2438a 20847 rtx sym_ref = XEXP (rtl, 0);
d1908feb 20848 size_t len = strlen (XSTR (sym_ref, 0));
5ead67f6 20849 char *str = XALLOCAVEC (char, len + 2);
d1908feb
JJ
20850 str[0] = '.';
20851 memcpy (str + 1, XSTR (sym_ref, 0), len + 1);
20852 XSTR (sym_ref, 0) = ggc_alloc_string (str, len + 1);
d9407988 20853 }
d9407988
MM
20854}
20855
21d9bb3f 20856static inline bool
0a2aaacc 20857compare_section_name (const char *section, const char *templ)
21d9bb3f
PB
20858{
20859 int len;
20860
0a2aaacc
KG
20861 len = strlen (templ);
20862 return (strncmp (section, templ, len) == 0
21d9bb3f
PB
20863 && (section[len] == 0 || section[len] == '.'));
20864}
20865
c1b7d95a 20866bool
3101faab 20867rs6000_elf_in_small_data_p (const_tree decl)
0e5dbd9b
DE
20868{
20869 if (rs6000_sdata == SDATA_NONE)
20870 return false;
20871
7482ad25
AF
20872 /* We want to merge strings, so we never consider them small data. */
20873 if (TREE_CODE (decl) == STRING_CST)
20874 return false;
20875
20876 /* Functions are never in the small data area. */
20877 if (TREE_CODE (decl) == FUNCTION_DECL)
20878 return false;
20879
0e5dbd9b
DE
20880 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl))
20881 {
20882 const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
ca2ba153
JJ
20883 if (compare_section_name (section, ".sdata")
20884 || compare_section_name (section, ".sdata2")
20885 || compare_section_name (section, ".gnu.linkonce.s")
20886 || compare_section_name (section, ".sbss")
20887 || compare_section_name (section, ".sbss2")
20888 || compare_section_name (section, ".gnu.linkonce.sb")
20bfcd69
GK
20889 || strcmp (section, ".PPC.EMB.sdata0") == 0
20890 || strcmp (section, ".PPC.EMB.sbss0") == 0)
0e5dbd9b
DE
20891 return true;
20892 }
20893 else
20894 {
20895 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
20896
20897 if (size > 0
307b599c 20898 && (unsigned HOST_WIDE_INT) size <= g_switch_value
20bfcd69
GK
20899 /* If it's not public, and we're not going to reference it there,
20900 there's no need to put it in the small data section. */
0e5dbd9b
DE
20901 && (rs6000_sdata != SDATA_DATA || TREE_PUBLIC (decl)))
20902 return true;
20903 }
20904
20905 return false;
20906}
20907
b91da81f 20908#endif /* USING_ELFOS_H */
aacd3885
RS
20909\f
20910/* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. */
000034eb 20911
aacd3885 20912static bool
3101faab 20913rs6000_use_blocks_for_constant_p (enum machine_mode mode, const_rtx x)
aacd3885
RS
20914{
20915 return !ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode);
20916}
a6c2a102 20917\f
000034eb 20918/* Return a REG that occurs in ADDR with coefficient 1.
02441cd6
JL
20919 ADDR can be effectively incremented by incrementing REG.
20920
20921 r0 is special and we must not select it as an address
20922 register by this routine since our caller will try to
20923 increment the returned register via an "la" instruction. */
000034eb 20924
9390387d 20925rtx
a2369ed3 20926find_addr_reg (rtx addr)
000034eb
DE
20927{
20928 while (GET_CODE (addr) == PLUS)
20929 {
02441cd6
JL
20930 if (GET_CODE (XEXP (addr, 0)) == REG
20931 && REGNO (XEXP (addr, 0)) != 0)
000034eb 20932 addr = XEXP (addr, 0);
02441cd6
JL
20933 else if (GET_CODE (XEXP (addr, 1)) == REG
20934 && REGNO (XEXP (addr, 1)) != 0)
000034eb
DE
20935 addr = XEXP (addr, 1);
20936 else if (CONSTANT_P (XEXP (addr, 0)))
20937 addr = XEXP (addr, 1);
20938 else if (CONSTANT_P (XEXP (addr, 1)))
20939 addr = XEXP (addr, 0);
20940 else
37409796 20941 gcc_unreachable ();
000034eb 20942 }
37409796
NS
20943 gcc_assert (GET_CODE (addr) == REG && REGNO (addr) != 0);
20944 return addr;
000034eb
DE
20945}
20946
a6c2a102 20947void
a2369ed3 20948rs6000_fatal_bad_address (rtx op)
a6c2a102
DE
20949{
20950 fatal_insn ("bad address", op);
20951}
c8023011 20952
ee890fe2
SS
20953#if TARGET_MACHO
20954
efdba735 20955static tree branch_island_list = 0;
ee890fe2 20956
efdba735
SH
20957/* Remember to generate a branch island for far calls to the given
20958 function. */
ee890fe2 20959
f676971a 20960static void
c4ad648e
AM
20961add_compiler_branch_island (tree label_name, tree function_name,
20962 int line_number)
ee890fe2 20963{
efdba735 20964 tree branch_island = build_tree_list (function_name, label_name);
7d60be94 20965 TREE_TYPE (branch_island) = build_int_cst (NULL_TREE, line_number);
efdba735
SH
20966 TREE_CHAIN (branch_island) = branch_island_list;
20967 branch_island_list = branch_island;
ee890fe2
SS
20968}
20969
efdba735
SH
20970#define BRANCH_ISLAND_LABEL_NAME(BRANCH_ISLAND) TREE_VALUE (BRANCH_ISLAND)
20971#define BRANCH_ISLAND_FUNCTION_NAME(BRANCH_ISLAND) TREE_PURPOSE (BRANCH_ISLAND)
20972#define BRANCH_ISLAND_LINE_NUMBER(BRANCH_ISLAND) \
20973 TREE_INT_CST_LOW (TREE_TYPE (BRANCH_ISLAND))
ee890fe2 20974
efdba735
SH
20975/* Generate far-jump branch islands for everything on the
20976 branch_island_list. Invoked immediately after the last instruction
20977 of the epilogue has been emitted; the branch-islands must be
20978 appended to, and contiguous with, the function body. Mach-O stubs
20979 are generated in machopic_output_stub(). */
ee890fe2 20980
efdba735
SH
20981static void
20982macho_branch_islands (void)
20983{
20984 char tmp_buf[512];
20985 tree branch_island;
20986
20987 for (branch_island = branch_island_list;
20988 branch_island;
20989 branch_island = TREE_CHAIN (branch_island))
20990 {
20991 const char *label =
20992 IDENTIFIER_POINTER (BRANCH_ISLAND_LABEL_NAME (branch_island));
20993 const char *name =
11abc112 20994 IDENTIFIER_POINTER (BRANCH_ISLAND_FUNCTION_NAME (branch_island));
efdba735
SH
20995 char name_buf[512];
20996 /* Cheap copy of the details from the Darwin ASM_OUTPUT_LABELREF(). */
20997 if (name[0] == '*' || name[0] == '&')
20998 strcpy (name_buf, name+1);
20999 else
21000 {
21001 name_buf[0] = '_';
21002 strcpy (name_buf+1, name);
21003 }
21004 strcpy (tmp_buf, "\n");
21005 strcat (tmp_buf, label);
ee890fe2 21006#if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
efdba735 21007 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
93a27b7b 21008 dbxout_stabd (N_SLINE, BRANCH_ISLAND_LINE_NUMBER (branch_island));
ee890fe2 21009#endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
efdba735
SH
21010 if (flag_pic)
21011 {
21012 strcat (tmp_buf, ":\n\tmflr r0\n\tbcl 20,31,");
21013 strcat (tmp_buf, label);
21014 strcat (tmp_buf, "_pic\n");
21015 strcat (tmp_buf, label);
21016 strcat (tmp_buf, "_pic:\n\tmflr r11\n");
f676971a 21017
efdba735
SH
21018 strcat (tmp_buf, "\taddis r11,r11,ha16(");
21019 strcat (tmp_buf, name_buf);
21020 strcat (tmp_buf, " - ");
21021 strcat (tmp_buf, label);
21022 strcat (tmp_buf, "_pic)\n");
f676971a 21023
efdba735 21024 strcat (tmp_buf, "\tmtlr r0\n");
f676971a 21025
efdba735
SH
21026 strcat (tmp_buf, "\taddi r12,r11,lo16(");
21027 strcat (tmp_buf, name_buf);
21028 strcat (tmp_buf, " - ");
21029 strcat (tmp_buf, label);
21030 strcat (tmp_buf, "_pic)\n");
f676971a 21031
efdba735
SH
21032 strcat (tmp_buf, "\tmtctr r12\n\tbctr\n");
21033 }
21034 else
21035 {
21036 strcat (tmp_buf, ":\nlis r12,hi16(");
21037 strcat (tmp_buf, name_buf);
21038 strcat (tmp_buf, ")\n\tori r12,r12,lo16(");
21039 strcat (tmp_buf, name_buf);
21040 strcat (tmp_buf, ")\n\tmtctr r12\n\tbctr");
21041 }
21042 output_asm_insn (tmp_buf, 0);
ee890fe2 21043#if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
efdba735 21044 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
93a27b7b 21045 dbxout_stabd (N_SLINE, BRANCH_ISLAND_LINE_NUMBER (branch_island));
ee890fe2 21046#endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
efdba735 21047 }
ee890fe2 21048
efdba735 21049 branch_island_list = 0;
ee890fe2
SS
21050}
21051
21052/* NO_PREVIOUS_DEF checks in the link list whether the function name is
21053 already there or not. */
21054
efdba735 21055static int
a2369ed3 21056no_previous_def (tree function_name)
ee890fe2 21057{
efdba735
SH
21058 tree branch_island;
21059 for (branch_island = branch_island_list;
21060 branch_island;
21061 branch_island = TREE_CHAIN (branch_island))
21062 if (function_name == BRANCH_ISLAND_FUNCTION_NAME (branch_island))
ee890fe2
SS
21063 return 0;
21064 return 1;
21065}
21066
21067/* GET_PREV_LABEL gets the label name from the previous definition of
21068 the function. */
21069
efdba735 21070static tree
a2369ed3 21071get_prev_label (tree function_name)
ee890fe2 21072{
efdba735
SH
21073 tree branch_island;
21074 for (branch_island = branch_island_list;
21075 branch_island;
21076 branch_island = TREE_CHAIN (branch_island))
21077 if (function_name == BRANCH_ISLAND_FUNCTION_NAME (branch_island))
21078 return BRANCH_ISLAND_LABEL_NAME (branch_island);
ee890fe2
SS
21079 return 0;
21080}
21081
75b1b789
MS
21082#ifndef DARWIN_LINKER_GENERATES_ISLANDS
21083#define DARWIN_LINKER_GENERATES_ISLANDS 0
21084#endif
21085
21086/* KEXTs still need branch islands. */
21087#define DARWIN_GENERATE_ISLANDS (!DARWIN_LINKER_GENERATES_ISLANDS \
21088 || flag_mkernel || flag_apple_kext)
21089
ee890fe2 21090/* INSN is either a function call or a millicode call. It may have an
f676971a 21091 unconditional jump in its delay slot.
ee890fe2
SS
21092
21093 CALL_DEST is the routine we are calling. */
21094
21095char *
c4ad648e
AM
21096output_call (rtx insn, rtx *operands, int dest_operand_number,
21097 int cookie_operand_number)
ee890fe2
SS
21098{
21099 static char buf[256];
75b1b789
MS
21100 if (DARWIN_GENERATE_ISLANDS
21101 && GET_CODE (operands[dest_operand_number]) == SYMBOL_REF
efdba735 21102 && (INTVAL (operands[cookie_operand_number]) & CALL_LONG))
ee890fe2
SS
21103 {
21104 tree labelname;
efdba735 21105 tree funname = get_identifier (XSTR (operands[dest_operand_number], 0));
f676971a 21106
ee890fe2
SS
21107 if (no_previous_def (funname))
21108 {
ee890fe2
SS
21109 rtx label_rtx = gen_label_rtx ();
21110 char *label_buf, temp_buf[256];
21111 ASM_GENERATE_INTERNAL_LABEL (temp_buf, "L",
21112 CODE_LABEL_NUMBER (label_rtx));
21113 label_buf = temp_buf[0] == '*' ? temp_buf + 1 : temp_buf;
21114 labelname = get_identifier (label_buf);
a38e7aa5 21115 add_compiler_branch_island (labelname, funname, insn_line (insn));
ee890fe2
SS
21116 }
21117 else
21118 labelname = get_prev_label (funname);
21119
efdba735
SH
21120 /* "jbsr foo, L42" is Mach-O for "Link as 'bl foo' if a 'bl'
21121 instruction will reach 'foo', otherwise link as 'bl L42'".
21122 "L42" should be a 'branch island', that will do a far jump to
21123 'foo'. Branch islands are generated in
21124 macho_branch_islands(). */
ee890fe2 21125 sprintf (buf, "jbsr %%z%d,%.246s",
efdba735 21126 dest_operand_number, IDENTIFIER_POINTER (labelname));
ee890fe2
SS
21127 }
21128 else
efdba735
SH
21129 sprintf (buf, "bl %%z%d", dest_operand_number);
21130 return buf;
ee890fe2
SS
21131}
21132
ee890fe2
SS
21133/* Generate PIC and indirect symbol stubs. */
21134
21135void
a2369ed3 21136machopic_output_stub (FILE *file, const char *symb, const char *stub)
ee890fe2
SS
21137{
21138 unsigned int length;
a4f6c312
SS
21139 char *symbol_name, *lazy_ptr_name;
21140 char *local_label_0;
ee890fe2
SS
21141 static int label = 0;
21142
df56a27f 21143 /* Lose our funky encoding stuff so it doesn't contaminate the stub. */
772c5265 21144 symb = (*targetm.strip_name_encoding) (symb);
df56a27f 21145
ee890fe2 21146
ee890fe2 21147 length = strlen (symb);
5ead67f6 21148 symbol_name = XALLOCAVEC (char, length + 32);
ee890fe2
SS
21149 GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length);
21150
5ead67f6 21151 lazy_ptr_name = XALLOCAVEC (char, length + 32);
ee890fe2
SS
21152 GEN_LAZY_PTR_NAME_FOR_SYMBOL (lazy_ptr_name, symb, length);
21153
ee890fe2 21154 if (flag_pic == 2)
56c779bc 21155 switch_to_section (darwin_sections[machopic_picsymbol_stub1_section]);
ee890fe2 21156 else
56c779bc 21157 switch_to_section (darwin_sections[machopic_symbol_stub1_section]);
ee890fe2
SS
21158
21159 if (flag_pic == 2)
21160 {
d974312d
DJ
21161 fprintf (file, "\t.align 5\n");
21162
21163 fprintf (file, "%s:\n", stub);
21164 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
21165
876455fa 21166 label++;
5ead67f6 21167 local_label_0 = XALLOCAVEC (char, sizeof ("\"L00000000000$spb\""));
876455fa 21168 sprintf (local_label_0, "\"L%011d$spb\"", label);
f676971a 21169
ee890fe2
SS
21170 fprintf (file, "\tmflr r0\n");
21171 fprintf (file, "\tbcl 20,31,%s\n", local_label_0);
21172 fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
21173 fprintf (file, "\taddis r11,r11,ha16(%s-%s)\n",
21174 lazy_ptr_name, local_label_0);
21175 fprintf (file, "\tmtlr r0\n");
3d0e2d58
SS
21176 fprintf (file, "\t%s r12,lo16(%s-%s)(r11)\n",
21177 (TARGET_64BIT ? "ldu" : "lwzu"),
ee890fe2
SS
21178 lazy_ptr_name, local_label_0);
21179 fprintf (file, "\tmtctr r12\n");
ee890fe2
SS
21180 fprintf (file, "\tbctr\n");
21181 }
21182 else
d974312d
DJ
21183 {
21184 fprintf (file, "\t.align 4\n");
21185
21186 fprintf (file, "%s:\n", stub);
21187 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
21188
21189 fprintf (file, "\tlis r11,ha16(%s)\n", lazy_ptr_name);
d9e4e4f5
SS
21190 fprintf (file, "\t%s r12,lo16(%s)(r11)\n",
21191 (TARGET_64BIT ? "ldu" : "lwzu"),
21192 lazy_ptr_name);
d974312d
DJ
21193 fprintf (file, "\tmtctr r12\n");
21194 fprintf (file, "\tbctr\n");
21195 }
f676971a 21196
56c779bc 21197 switch_to_section (darwin_sections[machopic_lazy_symbol_ptr_section]);
ee890fe2
SS
21198 fprintf (file, "%s:\n", lazy_ptr_name);
21199 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
49bd1d27
SS
21200 fprintf (file, "%sdyld_stub_binding_helper\n",
21201 (TARGET_64BIT ? DOUBLE_INT_ASM_OP : "\t.long\t"));
ee890fe2
SS
21202}
21203
21204/* Legitimize PIC addresses. If the address is already
21205 position-independent, we return ORIG. Newly generated
21206 position-independent addresses go into a reg. This is REG if non
21207 zero, otherwise we allocate register(s) as necessary. */
21208
4fbbe694 21209#define SMALL_INT(X) ((UINTVAL (X) + 0x8000) < 0x10000)
ee890fe2
SS
21210
21211rtx
f676971a 21212rs6000_machopic_legitimize_pic_address (rtx orig, enum machine_mode mode,
a2369ed3 21213 rtx reg)
ee890fe2
SS
21214{
21215 rtx base, offset;
21216
21217 if (reg == NULL && ! reload_in_progress && ! reload_completed)
21218 reg = gen_reg_rtx (Pmode);
21219
21220 if (GET_CODE (orig) == CONST)
21221 {
37409796
NS
21222 rtx reg_temp;
21223
ee890fe2
SS
21224 if (GET_CODE (XEXP (orig, 0)) == PLUS
21225 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
21226 return orig;
21227
37409796 21228 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
bb8df8a6 21229
37409796
NS
21230 /* Use a different reg for the intermediate value, as
21231 it will be marked UNCHANGING. */
b3a13419 21232 reg_temp = !can_create_pseudo_p () ? reg : gen_reg_rtx (Pmode);
37409796
NS
21233 base = rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 0),
21234 Pmode, reg_temp);
21235 offset =
21236 rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 1),
21237 Pmode, reg);
bb8df8a6 21238
ee890fe2
SS
21239 if (GET_CODE (offset) == CONST_INT)
21240 {
21241 if (SMALL_INT (offset))
ed8908e7 21242 return plus_constant (base, INTVAL (offset));
ee890fe2
SS
21243 else if (! reload_in_progress && ! reload_completed)
21244 offset = force_reg (Pmode, offset);
21245 else
c859cda6
DJ
21246 {
21247 rtx mem = force_const_mem (Pmode, orig);
21248 return machopic_legitimize_pic_address (mem, Pmode, reg);
21249 }
ee890fe2 21250 }
f1c25d3b 21251 return gen_rtx_PLUS (Pmode, base, offset);
ee890fe2
SS
21252 }
21253
21254 /* Fall back on generic machopic code. */
21255 return machopic_legitimize_pic_address (orig, mode, reg);
21256}
21257
c4e18b1c
GK
21258/* Output a .machine directive for the Darwin assembler, and call
21259 the generic start_file routine. */
21260
21261static void
21262rs6000_darwin_file_start (void)
21263{
94ff898d 21264 static const struct
c4e18b1c
GK
21265 {
21266 const char *arg;
21267 const char *name;
21268 int if_set;
21269 } mapping[] = {
55dbfb48 21270 { "ppc64", "ppc64", MASK_64BIT },
c4e18b1c
GK
21271 { "970", "ppc970", MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64 },
21272 { "power4", "ppc970", 0 },
21273 { "G5", "ppc970", 0 },
21274 { "7450", "ppc7450", 0 },
21275 { "7400", "ppc7400", MASK_ALTIVEC },
21276 { "G4", "ppc7400", 0 },
21277 { "750", "ppc750", 0 },
21278 { "740", "ppc750", 0 },
21279 { "G3", "ppc750", 0 },
21280 { "604e", "ppc604e", 0 },
21281 { "604", "ppc604", 0 },
21282 { "603e", "ppc603", 0 },
21283 { "603", "ppc603", 0 },
21284 { "601", "ppc601", 0 },
21285 { NULL, "ppc", 0 } };
21286 const char *cpu_id = "";
21287 size_t i;
94ff898d 21288
9390387d 21289 rs6000_file_start ();
192d0f89 21290 darwin_file_start ();
c4e18b1c
GK
21291
21292 /* Determine the argument to -mcpu=. Default to G3 if not specified. */
21293 for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
21294 if (rs6000_select[i].set_arch_p && rs6000_select[i].string
21295 && rs6000_select[i].string[0] != '\0')
21296 cpu_id = rs6000_select[i].string;
21297
21298 /* Look through the mapping array. Pick the first name that either
21299 matches the argument, has a bit set in IF_SET that is also set
21300 in the target flags, or has a NULL name. */
21301
21302 i = 0;
21303 while (mapping[i].arg != NULL
21304 && strcmp (mapping[i].arg, cpu_id) != 0
21305 && (mapping[i].if_set & target_flags) == 0)
21306 i++;
21307
21308 fprintf (asm_out_file, "\t.machine %s\n", mapping[i].name);
21309}
21310
ee890fe2 21311#endif /* TARGET_MACHO */
7c262518
RH
21312
21313#if TARGET_ELF
9b580a0b
RH
21314static int
21315rs6000_elf_reloc_rw_mask (void)
7c262518 21316{
9b580a0b
RH
21317 if (flag_pic)
21318 return 3;
21319 else if (DEFAULT_ABI == ABI_AIX)
21320 return 2;
21321 else
21322 return 0;
7c262518 21323}
d9f6800d
RH
21324
21325/* Record an element in the table of global constructors. SYMBOL is
21326 a SYMBOL_REF of the function to be called; PRIORITY is a number
21327 between 0 and MAX_INIT_PRIORITY.
21328
21329 This differs from default_named_section_asm_out_constructor in
21330 that we have special handling for -mrelocatable. */
21331
21332static void
a2369ed3 21333rs6000_elf_asm_out_constructor (rtx symbol, int priority)
d9f6800d
RH
21334{
21335 const char *section = ".ctors";
21336 char buf[16];
21337
21338 if (priority != DEFAULT_INIT_PRIORITY)
21339 {
21340 sprintf (buf, ".ctors.%.5u",
c4ad648e
AM
21341 /* Invert the numbering so the linker puts us in the proper
21342 order; constructors are run from right to left, and the
21343 linker sorts in increasing order. */
21344 MAX_INIT_PRIORITY - priority);
d9f6800d
RH
21345 section = buf;
21346 }
21347
d6b5193b 21348 switch_to_section (get_section (section, SECTION_WRITE, NULL));
715bdd29 21349 assemble_align (POINTER_SIZE);
d9f6800d
RH
21350
21351 if (TARGET_RELOCATABLE)
21352 {
21353 fputs ("\t.long (", asm_out_file);
21354 output_addr_const (asm_out_file, symbol);
21355 fputs (")@fixup\n", asm_out_file);
21356 }
21357 else
c8af3574 21358 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
d9f6800d
RH
21359}
21360
21361static void
a2369ed3 21362rs6000_elf_asm_out_destructor (rtx symbol, int priority)
d9f6800d
RH
21363{
21364 const char *section = ".dtors";
21365 char buf[16];
21366
21367 if (priority != DEFAULT_INIT_PRIORITY)
21368 {
21369 sprintf (buf, ".dtors.%.5u",
c4ad648e
AM
21370 /* Invert the numbering so the linker puts us in the proper
21371 order; constructors are run from right to left, and the
21372 linker sorts in increasing order. */
21373 MAX_INIT_PRIORITY - priority);
d9f6800d
RH
21374 section = buf;
21375 }
21376
d6b5193b 21377 switch_to_section (get_section (section, SECTION_WRITE, NULL));
715bdd29 21378 assemble_align (POINTER_SIZE);
d9f6800d
RH
21379
21380 if (TARGET_RELOCATABLE)
21381 {
21382 fputs ("\t.long (", asm_out_file);
21383 output_addr_const (asm_out_file, symbol);
21384 fputs (")@fixup\n", asm_out_file);
21385 }
21386 else
c8af3574 21387 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
d9f6800d 21388}
9739c90c
JJ
21389
21390void
a2369ed3 21391rs6000_elf_declare_function_name (FILE *file, const char *name, tree decl)
9739c90c
JJ
21392{
21393 if (TARGET_64BIT)
21394 {
21395 fputs ("\t.section\t\".opd\",\"aw\"\n\t.align 3\n", file);
21396 ASM_OUTPUT_LABEL (file, name);
21397 fputs (DOUBLE_INT_ASM_OP, file);
85b776df
AM
21398 rs6000_output_function_entry (file, name);
21399 fputs (",.TOC.@tocbase,0\n\t.previous\n", file);
21400 if (DOT_SYMBOLS)
9739c90c 21401 {
85b776df 21402 fputs ("\t.size\t", file);
9739c90c 21403 assemble_name (file, name);
85b776df
AM
21404 fputs (",24\n\t.type\t.", file);
21405 assemble_name (file, name);
21406 fputs (",@function\n", file);
21407 if (TREE_PUBLIC (decl) && ! DECL_WEAK (decl))
21408 {
21409 fputs ("\t.globl\t.", file);
21410 assemble_name (file, name);
21411 putc ('\n', file);
21412 }
9739c90c 21413 }
85b776df
AM
21414 else
21415 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
9739c90c 21416 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
85b776df
AM
21417 rs6000_output_function_entry (file, name);
21418 fputs (":\n", file);
9739c90c
JJ
21419 return;
21420 }
21421
21422 if (TARGET_RELOCATABLE
7f970b70 21423 && !TARGET_SECURE_PLT
e3b5732b 21424 && (get_pool_size () != 0 || crtl->profile)
3c9eb5f4 21425 && uses_TOC ())
9739c90c
JJ
21426 {
21427 char buf[256];
21428
21429 (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);
21430
21431 ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
21432 fprintf (file, "\t.long ");
21433 assemble_name (file, buf);
21434 putc ('-', file);
21435 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
21436 assemble_name (file, buf);
21437 putc ('\n', file);
21438 }
21439
21440 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
21441 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
21442
21443 if (DEFAULT_ABI == ABI_AIX)
21444 {
21445 const char *desc_name, *orig_name;
21446
21447 orig_name = (*targetm.strip_name_encoding) (name);
21448 desc_name = orig_name;
21449 while (*desc_name == '.')
21450 desc_name++;
21451
21452 if (TREE_PUBLIC (decl))
21453 fprintf (file, "\t.globl %s\n", desc_name);
21454
21455 fprintf (file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
21456 fprintf (file, "%s:\n", desc_name);
21457 fprintf (file, "\t.long %s\n", orig_name);
21458 fputs ("\t.long _GLOBAL_OFFSET_TABLE_\n", file);
21459 if (DEFAULT_ABI == ABI_AIX)
21460 fputs ("\t.long 0\n", file);
21461 fprintf (file, "\t.previous\n");
21462 }
21463 ASM_OUTPUT_LABEL (file, name);
21464}
1334b570
AM
21465
21466static void
21467rs6000_elf_end_indicate_exec_stack (void)
21468{
21469 if (TARGET_32BIT)
21470 file_end_indicate_exec_stack ();
21471}
7c262518
RH
21472#endif
21473
cbaaba19 21474#if TARGET_XCOFF
0d5817b2
DE
21475static void
21476rs6000_xcoff_asm_output_anchor (rtx symbol)
21477{
21478 char buffer[100];
21479
21480 sprintf (buffer, "$ + " HOST_WIDE_INT_PRINT_DEC,
21481 SYMBOL_REF_BLOCK_OFFSET (symbol));
21482 ASM_OUTPUT_DEF (asm_out_file, XSTR (symbol, 0), buffer);
21483}
21484
7c262518 21485static void
a2369ed3 21486rs6000_xcoff_asm_globalize_label (FILE *stream, const char *name)
b275d088
DE
21487{
21488 fputs (GLOBAL_ASM_OP, stream);
21489 RS6000_OUTPUT_BASENAME (stream, name);
21490 putc ('\n', stream);
21491}
21492
d6b5193b
RS
21493/* A get_unnamed_decl callback, used for read-only sections. PTR
21494 points to the section string variable. */
21495
21496static void
21497rs6000_xcoff_output_readonly_section_asm_op (const void *directive)
21498{
890f9edf
OH
21499 fprintf (asm_out_file, "\t.csect %s[RO],%s\n",
21500 *(const char *const *) directive,
21501 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
d6b5193b
RS
21502}
21503
21504/* Likewise for read-write sections. */
21505
21506static void
21507rs6000_xcoff_output_readwrite_section_asm_op (const void *directive)
21508{
890f9edf
OH
21509 fprintf (asm_out_file, "\t.csect %s[RW],%s\n",
21510 *(const char *const *) directive,
21511 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
d6b5193b
RS
21512}
21513
21514/* A get_unnamed_section callback, used for switching to toc_section. */
21515
21516static void
21517rs6000_xcoff_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
21518{
21519 if (TARGET_MINIMAL_TOC)
21520 {
21521 /* toc_section is always selected at least once from
21522 rs6000_xcoff_file_start, so this is guaranteed to
21523 always be defined once and only once in each file. */
21524 if (!toc_initialized)
21525 {
21526 fputs ("\t.toc\nLCTOC..1:\n", asm_out_file);
21527 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file);
21528 toc_initialized = 1;
21529 }
21530 fprintf (asm_out_file, "\t.csect toc_table[RW]%s\n",
21531 (TARGET_32BIT ? "" : ",3"));
21532 }
21533 else
21534 fputs ("\t.toc\n", asm_out_file);
21535}
21536
21537/* Implement TARGET_ASM_INIT_SECTIONS. */
21538
21539static void
21540rs6000_xcoff_asm_init_sections (void)
21541{
21542 read_only_data_section
21543 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
21544 &xcoff_read_only_section_name);
21545
21546 private_data_section
21547 = get_unnamed_section (SECTION_WRITE,
21548 rs6000_xcoff_output_readwrite_section_asm_op,
21549 &xcoff_private_data_section_name);
21550
21551 read_only_private_data_section
21552 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
21553 &xcoff_private_data_section_name);
21554
21555 toc_section
21556 = get_unnamed_section (0, rs6000_xcoff_output_toc_section_asm_op, NULL);
21557
21558 readonly_data_section = read_only_data_section;
21559 exception_section = data_section;
21560}
21561
9b580a0b
RH
21562static int
21563rs6000_xcoff_reloc_rw_mask (void)
21564{
21565 return 3;
21566}
21567
b275d088 21568static void
c18a5b6c
MM
21569rs6000_xcoff_asm_named_section (const char *name, unsigned int flags,
21570 tree decl ATTRIBUTE_UNUSED)
7c262518 21571{
0e5dbd9b
DE
21572 int smclass;
21573 static const char * const suffix[3] = { "PR", "RO", "RW" };
21574
21575 if (flags & SECTION_CODE)
21576 smclass = 0;
21577 else if (flags & SECTION_WRITE)
21578 smclass = 2;
21579 else
21580 smclass = 1;
21581
5b5198f7 21582 fprintf (asm_out_file, "\t.csect %s%s[%s],%u\n",
0e5dbd9b 21583 (flags & SECTION_CODE) ? "." : "",
5b5198f7 21584 name, suffix[smclass], flags & SECTION_ENTSIZE);
7c262518 21585}
ae46c4e0 21586
d6b5193b 21587static section *
f676971a 21588rs6000_xcoff_select_section (tree decl, int reloc,
c4ad648e 21589 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
ae46c4e0 21590{
9b580a0b 21591 if (decl_readonly_section (decl, reloc))
ae46c4e0 21592 {
0e5dbd9b 21593 if (TREE_PUBLIC (decl))
d6b5193b 21594 return read_only_data_section;
ae46c4e0 21595 else
d6b5193b 21596 return read_only_private_data_section;
ae46c4e0
RH
21597 }
21598 else
21599 {
0e5dbd9b 21600 if (TREE_PUBLIC (decl))
d6b5193b 21601 return data_section;
ae46c4e0 21602 else
d6b5193b 21603 return private_data_section;
ae46c4e0
RH
21604 }
21605}
21606
21607static void
a2369ed3 21608rs6000_xcoff_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
ae46c4e0
RH
21609{
21610 const char *name;
ae46c4e0 21611
5b5198f7
DE
21612 /* Use select_section for private and uninitialized data. */
21613 if (!TREE_PUBLIC (decl)
21614 || DECL_COMMON (decl)
0e5dbd9b
DE
21615 || DECL_INITIAL (decl) == NULL_TREE
21616 || DECL_INITIAL (decl) == error_mark_node
21617 || (flag_zero_initialized_in_bss
21618 && initializer_zerop (DECL_INITIAL (decl))))
21619 return;
21620
21621 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
21622 name = (*targetm.strip_name_encoding) (name);
21623 DECL_SECTION_NAME (decl) = build_string (strlen (name), name);
ae46c4e0 21624}
b64a1b53 21625
fb49053f
RH
21626/* Select section for constant in constant pool.
21627
21628 On RS/6000, all constants are in the private read-only data area.
21629 However, if this is being placed in the TOC it must be output as a
21630 toc entry. */
21631
d6b5193b 21632static section *
f676971a 21633rs6000_xcoff_select_rtx_section (enum machine_mode mode, rtx x,
c4ad648e 21634 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
b64a1b53
RH
21635{
21636 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
d6b5193b 21637 return toc_section;
b64a1b53 21638 else
d6b5193b 21639 return read_only_private_data_section;
b64a1b53 21640}
772c5265
RH
21641
21642/* Remove any trailing [DS] or the like from the symbol name. */
21643
21644static const char *
a2369ed3 21645rs6000_xcoff_strip_name_encoding (const char *name)
772c5265
RH
21646{
21647 size_t len;
21648 if (*name == '*')
21649 name++;
21650 len = strlen (name);
21651 if (name[len - 1] == ']')
21652 return ggc_alloc_string (name, len - 4);
21653 else
21654 return name;
21655}
21656
5add3202
DE
21657/* Section attributes. AIX is always PIC. */
21658
21659static unsigned int
a2369ed3 21660rs6000_xcoff_section_type_flags (tree decl, const char *name, int reloc)
5add3202 21661{
5b5198f7 21662 unsigned int align;
9b580a0b 21663 unsigned int flags = default_section_type_flags (decl, name, reloc);
5b5198f7
DE
21664
21665 /* Align to at least UNIT size. */
21666 if (flags & SECTION_CODE)
21667 align = MIN_UNITS_PER_WORD;
21668 else
21669 /* Increase alignment of large objects if not already stricter. */
21670 align = MAX ((DECL_ALIGN (decl) / BITS_PER_UNIT),
21671 int_size_in_bytes (TREE_TYPE (decl)) > MIN_UNITS_PER_WORD
21672 ? UNITS_PER_FP_WORD : MIN_UNITS_PER_WORD);
21673
21674 return flags | (exact_log2 (align) & SECTION_ENTSIZE);
5add3202 21675}
a5fe455b 21676
1bc7c5b6
ZW
21677/* Output at beginning of assembler file.
21678
21679 Initialize the section names for the RS/6000 at this point.
21680
21681 Specify filename, including full path, to assembler.
21682
21683 We want to go into the TOC section so at least one .toc will be emitted.
21684 Also, in order to output proper .bs/.es pairs, we need at least one static
21685 [RW] section emitted.
21686
21687 Finally, declare mcount when profiling to make the assembler happy. */
21688
21689static void
863d938c 21690rs6000_xcoff_file_start (void)
1bc7c5b6
ZW
21691{
21692 rs6000_gen_section_name (&xcoff_bss_section_name,
21693 main_input_filename, ".bss_");
21694 rs6000_gen_section_name (&xcoff_private_data_section_name,
21695 main_input_filename, ".rw_");
21696 rs6000_gen_section_name (&xcoff_read_only_section_name,
21697 main_input_filename, ".ro_");
21698
21699 fputs ("\t.file\t", asm_out_file);
21700 output_quoted_string (asm_out_file, main_input_filename);
21701 fputc ('\n', asm_out_file);
1bc7c5b6 21702 if (write_symbols != NO_DEBUG)
d6b5193b
RS
21703 switch_to_section (private_data_section);
21704 switch_to_section (text_section);
1bc7c5b6
ZW
21705 if (profile_flag)
21706 fprintf (asm_out_file, "\t.extern %s\n", RS6000_MCOUNT);
21707 rs6000_file_start ();
21708}
21709
a5fe455b
ZW
21710/* Output at end of assembler file.
21711 On the RS/6000, referencing data should automatically pull in text. */
21712
21713static void
863d938c 21714rs6000_xcoff_file_end (void)
a5fe455b 21715{
d6b5193b 21716 switch_to_section (text_section);
a5fe455b 21717 fputs ("_section_.text:\n", asm_out_file);
d6b5193b 21718 switch_to_section (data_section);
a5fe455b
ZW
21719 fputs (TARGET_32BIT
21720 ? "\t.long _section_.text\n" : "\t.llong _section_.text\n",
21721 asm_out_file);
21722}
f1384257 21723#endif /* TARGET_XCOFF */
0e5dbd9b 21724
3c50106f
RH
21725/* Compute a (partial) cost for rtx X. Return true if the complete
21726 cost has been computed, and false if subexpressions should be
21727 scanned. In either case, *TOTAL contains the cost result. */
21728
21729static bool
f40751dd
JH
21730rs6000_rtx_costs (rtx x, int code, int outer_code, int *total,
21731 bool speed)
3c50106f 21732{
f0517163
RS
21733 enum machine_mode mode = GET_MODE (x);
21734
3c50106f
RH
21735 switch (code)
21736 {
30a555d9 21737 /* On the RS/6000, if it is valid in the insn, it is free. */
3c50106f 21738 case CONST_INT:
066cd967
DE
21739 if (((outer_code == SET
21740 || outer_code == PLUS
21741 || outer_code == MINUS)
279bb624
DE
21742 && (satisfies_constraint_I (x)
21743 || satisfies_constraint_L (x)))
066cd967 21744 || (outer_code == AND
279bb624
DE
21745 && (satisfies_constraint_K (x)
21746 || (mode == SImode
21747 ? satisfies_constraint_L (x)
21748 : satisfies_constraint_J (x))
1990cd79
AM
21749 || mask_operand (x, mode)
21750 || (mode == DImode
21751 && mask64_operand (x, DImode))))
22e54023 21752 || ((outer_code == IOR || outer_code == XOR)
279bb624
DE
21753 && (satisfies_constraint_K (x)
21754 || (mode == SImode
21755 ? satisfies_constraint_L (x)
21756 : satisfies_constraint_J (x))))
066cd967
DE
21757 || outer_code == ASHIFT
21758 || outer_code == ASHIFTRT
21759 || outer_code == LSHIFTRT
21760 || outer_code == ROTATE
21761 || outer_code == ROTATERT
d5861a7a 21762 || outer_code == ZERO_EXTRACT
066cd967 21763 || (outer_code == MULT
279bb624 21764 && satisfies_constraint_I (x))
22e54023
DE
21765 || ((outer_code == DIV || outer_code == UDIV
21766 || outer_code == MOD || outer_code == UMOD)
21767 && exact_log2 (INTVAL (x)) >= 0)
066cd967 21768 || (outer_code == COMPARE
279bb624
DE
21769 && (satisfies_constraint_I (x)
21770 || satisfies_constraint_K (x)))
22e54023 21771 || (outer_code == EQ
279bb624
DE
21772 && (satisfies_constraint_I (x)
21773 || satisfies_constraint_K (x)
21774 || (mode == SImode
21775 ? satisfies_constraint_L (x)
21776 : satisfies_constraint_J (x))))
22e54023 21777 || (outer_code == GTU
279bb624 21778 && satisfies_constraint_I (x))
22e54023 21779 || (outer_code == LTU
279bb624 21780 && satisfies_constraint_P (x)))
066cd967
DE
21781 {
21782 *total = 0;
21783 return true;
21784 }
21785 else if ((outer_code == PLUS
4ae234b0 21786 && reg_or_add_cint_operand (x, VOIDmode))
066cd967 21787 || (outer_code == MINUS
4ae234b0 21788 && reg_or_sub_cint_operand (x, VOIDmode))
066cd967
DE
21789 || ((outer_code == SET
21790 || outer_code == IOR
21791 || outer_code == XOR)
21792 && (INTVAL (x)
21793 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) == 0))
21794 {
21795 *total = COSTS_N_INSNS (1);
21796 return true;
21797 }
21798 /* FALLTHRU */
21799
21800 case CONST_DOUBLE:
f6fe3a22 21801 if (mode == DImode && code == CONST_DOUBLE)
066cd967 21802 {
f6fe3a22
DE
21803 if ((outer_code == IOR || outer_code == XOR)
21804 && CONST_DOUBLE_HIGH (x) == 0
21805 && (CONST_DOUBLE_LOW (x)
21806 & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0)
21807 {
21808 *total = 0;
21809 return true;
21810 }
21811 else if ((outer_code == AND && and64_2_operand (x, DImode))
21812 || ((outer_code == SET
21813 || outer_code == IOR
21814 || outer_code == XOR)
21815 && CONST_DOUBLE_HIGH (x) == 0))
21816 {
21817 *total = COSTS_N_INSNS (1);
21818 return true;
21819 }
066cd967
DE
21820 }
21821 /* FALLTHRU */
21822
3c50106f 21823 case CONST:
066cd967 21824 case HIGH:
3c50106f 21825 case SYMBOL_REF:
066cd967
DE
21826 case MEM:
21827 /* When optimizing for size, MEM should be slightly more expensive
21828 than generating address, e.g., (plus (reg) (const)).
c112cf2b 21829 L1 cache latency is about two instructions. */
f40751dd 21830 *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
3c50106f
RH
21831 return true;
21832
30a555d9
DE
21833 case LABEL_REF:
21834 *total = 0;
21835 return true;
21836
3c50106f 21837 case PLUS:
f0517163 21838 if (mode == DFmode)
066cd967
DE
21839 {
21840 if (GET_CODE (XEXP (x, 0)) == MULT)
21841 {
21842 /* FNMA accounted in outer NEG. */
21843 if (outer_code == NEG)
21844 *total = rs6000_cost->dmul - rs6000_cost->fp;
21845 else
21846 *total = rs6000_cost->dmul;
21847 }
21848 else
21849 *total = rs6000_cost->fp;
21850 }
f0517163 21851 else if (mode == SFmode)
066cd967
DE
21852 {
21853 /* FNMA accounted in outer NEG. */
21854 if (outer_code == NEG && GET_CODE (XEXP (x, 0)) == MULT)
21855 *total = 0;
21856 else
21857 *total = rs6000_cost->fp;
21858 }
f0517163 21859 else
066cd967
DE
21860 *total = COSTS_N_INSNS (1);
21861 return false;
3c50106f 21862
52190329 21863 case MINUS:
f0517163 21864 if (mode == DFmode)
066cd967 21865 {
762c919f
JM
21866 if (GET_CODE (XEXP (x, 0)) == MULT
21867 || GET_CODE (XEXP (x, 1)) == MULT)
066cd967
DE
21868 {
21869 /* FNMA accounted in outer NEG. */
21870 if (outer_code == NEG)
762c919f 21871 *total = rs6000_cost->dmul - rs6000_cost->fp;
066cd967
DE
21872 else
21873 *total = rs6000_cost->dmul;
21874 }
21875 else
21876 *total = rs6000_cost->fp;
21877 }
f0517163 21878 else if (mode == SFmode)
066cd967
DE
21879 {
21880 /* FNMA accounted in outer NEG. */
21881 if (outer_code == NEG && GET_CODE (XEXP (x, 0)) == MULT)
21882 *total = 0;
21883 else
21884 *total = rs6000_cost->fp;
21885 }
f0517163 21886 else
c4ad648e 21887 *total = COSTS_N_INSNS (1);
066cd967 21888 return false;
3c50106f
RH
21889
21890 case MULT:
c9dbf840 21891 if (GET_CODE (XEXP (x, 1)) == CONST_INT
279bb624 21892 && satisfies_constraint_I (XEXP (x, 1)))
3c50106f 21893 {
8b897cfa
RS
21894 if (INTVAL (XEXP (x, 1)) >= -256
21895 && INTVAL (XEXP (x, 1)) <= 255)
06a67bdd 21896 *total = rs6000_cost->mulsi_const9;
8b897cfa 21897 else
06a67bdd 21898 *total = rs6000_cost->mulsi_const;
3c50106f 21899 }
066cd967
DE
21900 /* FMA accounted in outer PLUS/MINUS. */
21901 else if ((mode == DFmode || mode == SFmode)
21902 && (outer_code == PLUS || outer_code == MINUS))
21903 *total = 0;
f0517163 21904 else if (mode == DFmode)
06a67bdd 21905 *total = rs6000_cost->dmul;
f0517163 21906 else if (mode == SFmode)
06a67bdd 21907 *total = rs6000_cost->fp;
f0517163 21908 else if (mode == DImode)
06a67bdd 21909 *total = rs6000_cost->muldi;
8b897cfa 21910 else
06a67bdd 21911 *total = rs6000_cost->mulsi;
066cd967 21912 return false;
3c50106f
RH
21913
21914 case DIV:
21915 case MOD:
f0517163
RS
21916 if (FLOAT_MODE_P (mode))
21917 {
06a67bdd
RS
21918 *total = mode == DFmode ? rs6000_cost->ddiv
21919 : rs6000_cost->sdiv;
066cd967 21920 return false;
f0517163 21921 }
5efb1046 21922 /* FALLTHRU */
3c50106f
RH
21923
21924 case UDIV:
21925 case UMOD:
627b6fe2
DJ
21926 if (GET_CODE (XEXP (x, 1)) == CONST_INT
21927 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
21928 {
21929 if (code == DIV || code == MOD)
21930 /* Shift, addze */
21931 *total = COSTS_N_INSNS (2);
21932 else
21933 /* Shift */
21934 *total = COSTS_N_INSNS (1);
21935 }
c4ad648e 21936 else
627b6fe2
DJ
21937 {
21938 if (GET_MODE (XEXP (x, 1)) == DImode)
21939 *total = rs6000_cost->divdi;
21940 else
21941 *total = rs6000_cost->divsi;
21942 }
21943 /* Add in shift and subtract for MOD. */
21944 if (code == MOD || code == UMOD)
21945 *total += COSTS_N_INSNS (2);
066cd967 21946 return false;
3c50106f 21947
32f56aad 21948 case CTZ:
3c50106f
RH
21949 case FFS:
21950 *total = COSTS_N_INSNS (4);
066cd967 21951 return false;
3c50106f 21952
32f56aad
DE
21953 case POPCOUNT:
21954 *total = COSTS_N_INSNS (6);
21955 return false;
21956
06a67bdd 21957 case NOT:
066cd967
DE
21958 if (outer_code == AND || outer_code == IOR || outer_code == XOR)
21959 {
21960 *total = 0;
21961 return false;
21962 }
21963 /* FALLTHRU */
21964
21965 case AND:
32f56aad 21966 case CLZ:
066cd967
DE
21967 case IOR:
21968 case XOR:
d5861a7a
DE
21969 case ZERO_EXTRACT:
21970 *total = COSTS_N_INSNS (1);
21971 return false;
21972
066cd967
DE
21973 case ASHIFT:
21974 case ASHIFTRT:
21975 case LSHIFTRT:
21976 case ROTATE:
21977 case ROTATERT:
d5861a7a 21978 /* Handle mul_highpart. */
066cd967
DE
21979 if (outer_code == TRUNCATE
21980 && GET_CODE (XEXP (x, 0)) == MULT)
21981 {
21982 if (mode == DImode)
21983 *total = rs6000_cost->muldi;
21984 else
21985 *total = rs6000_cost->mulsi;
21986 return true;
21987 }
d5861a7a
DE
21988 else if (outer_code == AND)
21989 *total = 0;
21990 else
21991 *total = COSTS_N_INSNS (1);
21992 return false;
21993
21994 case SIGN_EXTEND:
21995 case ZERO_EXTEND:
21996 if (GET_CODE (XEXP (x, 0)) == MEM)
21997 *total = 0;
21998 else
21999 *total = COSTS_N_INSNS (1);
066cd967 22000 return false;
06a67bdd 22001
066cd967
DE
22002 case COMPARE:
22003 case NEG:
22004 case ABS:
22005 if (!FLOAT_MODE_P (mode))
22006 {
22007 *total = COSTS_N_INSNS (1);
22008 return false;
22009 }
22010 /* FALLTHRU */
22011
22012 case FLOAT:
22013 case UNSIGNED_FLOAT:
22014 case FIX:
22015 case UNSIGNED_FIX:
06a67bdd
RS
22016 case FLOAT_TRUNCATE:
22017 *total = rs6000_cost->fp;
066cd967 22018 return false;
06a67bdd 22019
a2af5043
DJ
22020 case FLOAT_EXTEND:
22021 if (mode == DFmode)
22022 *total = 0;
22023 else
22024 *total = rs6000_cost->fp;
22025 return false;
22026
06a67bdd
RS
22027 case UNSPEC:
22028 switch (XINT (x, 1))
22029 {
22030 case UNSPEC_FRSP:
22031 *total = rs6000_cost->fp;
22032 return true;
22033
22034 default:
22035 break;
22036 }
22037 break;
22038
22039 case CALL:
22040 case IF_THEN_ELSE:
f40751dd 22041 if (!speed)
06a67bdd
RS
22042 {
22043 *total = COSTS_N_INSNS (1);
22044 return true;
22045 }
066cd967
DE
22046 else if (FLOAT_MODE_P (mode)
22047 && TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT && TARGET_FPRS)
22048 {
22049 *total = rs6000_cost->fp;
22050 return false;
22051 }
06a67bdd
RS
22052 break;
22053
c0600ecd
DE
22054 case EQ:
22055 case GTU:
22056 case LTU:
22e54023
DE
22057 /* Carry bit requires mode == Pmode.
22058 NEG or PLUS already counted so only add one. */
22059 if (mode == Pmode
22060 && (outer_code == NEG || outer_code == PLUS))
c0600ecd 22061 {
22e54023
DE
22062 *total = COSTS_N_INSNS (1);
22063 return true;
22064 }
22065 if (outer_code == SET)
22066 {
22067 if (XEXP (x, 1) == const0_rtx)
c0600ecd 22068 {
22e54023 22069 *total = COSTS_N_INSNS (2);
c0600ecd 22070 return true;
c0600ecd 22071 }
22e54023
DE
22072 else if (mode == Pmode)
22073 {
22074 *total = COSTS_N_INSNS (3);
22075 return false;
22076 }
22077 }
22078 /* FALLTHRU */
22079
22080 case GT:
22081 case LT:
22082 case UNORDERED:
22083 if (outer_code == SET && (XEXP (x, 1) == const0_rtx))
22084 {
22085 *total = COSTS_N_INSNS (2);
22086 return true;
c0600ecd 22087 }
22e54023
DE
22088 /* CC COMPARE. */
22089 if (outer_code == COMPARE)
22090 {
22091 *total = 0;
22092 return true;
22093 }
22094 break;
c0600ecd 22095
3c50106f 22096 default:
06a67bdd 22097 break;
3c50106f 22098 }
06a67bdd
RS
22099
22100 return false;
3c50106f
RH
22101}
22102
34bb030a
DE
22103/* A C expression returning the cost of moving data from a register of class
22104 CLASS1 to one of CLASS2. */
22105
22106int
f676971a 22107rs6000_register_move_cost (enum machine_mode mode,
a2369ed3 22108 enum reg_class from, enum reg_class to)
34bb030a
DE
22109{
22110 /* Moves from/to GENERAL_REGS. */
22111 if (reg_classes_intersect_p (to, GENERAL_REGS)
22112 || reg_classes_intersect_p (from, GENERAL_REGS))
22113 {
22114 if (! reg_classes_intersect_p (to, GENERAL_REGS))
22115 from = to;
22116
22117 if (from == FLOAT_REGS || from == ALTIVEC_REGS)
22118 return (rs6000_memory_move_cost (mode, from, 0)
22119 + rs6000_memory_move_cost (mode, GENERAL_REGS, 0));
22120
c4ad648e
AM
22121 /* It's more expensive to move CR_REGS than CR0_REGS because of the
22122 shift. */
34bb030a
DE
22123 else if (from == CR_REGS)
22124 return 4;
22125
aafc759a
PH
22126 /* Power6 has slower LR/CTR moves so make them more expensive than
22127 memory in order to bias spills to memory .*/
22128 else if (rs6000_cpu == PROCESSOR_POWER6
22129 && reg_classes_intersect_p (from, LINK_OR_CTR_REGS))
22130 return 6 * hard_regno_nregs[0][mode];
22131
34bb030a 22132 else
c4ad648e 22133 /* A move will cost one instruction per GPR moved. */
c8b622ff 22134 return 2 * hard_regno_nregs[0][mode];
34bb030a
DE
22135 }
22136
c4ad648e 22137 /* Moving between two similar registers is just one instruction. */
34bb030a 22138 else if (reg_classes_intersect_p (to, from))
7393f7f8 22139 return (mode == TFmode || mode == TDmode) ? 4 : 2;
34bb030a 22140
c4ad648e 22141 /* Everything else has to go through GENERAL_REGS. */
34bb030a 22142 else
f676971a 22143 return (rs6000_register_move_cost (mode, GENERAL_REGS, to)
34bb030a
DE
22144 + rs6000_register_move_cost (mode, from, GENERAL_REGS));
22145}
22146
22147/* A C expressions returning the cost of moving data of MODE from a register to
22148 or from memory. */
22149
22150int
0a2aaacc 22151rs6000_memory_move_cost (enum machine_mode mode, enum reg_class rclass,
a2369ed3 22152 int in ATTRIBUTE_UNUSED)
34bb030a 22153{
0a2aaacc 22154 if (reg_classes_intersect_p (rclass, GENERAL_REGS))
c8b622ff 22155 return 4 * hard_regno_nregs[0][mode];
0a2aaacc 22156 else if (reg_classes_intersect_p (rclass, FLOAT_REGS))
c8b622ff 22157 return 4 * hard_regno_nregs[32][mode];
0a2aaacc 22158 else if (reg_classes_intersect_p (rclass, ALTIVEC_REGS))
c8b622ff 22159 return 4 * hard_regno_nregs[FIRST_ALTIVEC_REGNO][mode];
34bb030a 22160 else
0a2aaacc 22161 return 4 + rs6000_register_move_cost (mode, rclass, GENERAL_REGS);
34bb030a
DE
22162}
22163
9c78b944
DE
22164/* Returns a code for a target-specific builtin that implements
22165 reciprocal of the function, or NULL_TREE if not available. */
22166
22167static tree
22168rs6000_builtin_reciprocal (unsigned int fn, bool md_fn,
22169 bool sqrt ATTRIBUTE_UNUSED)
22170{
22171 if (! (TARGET_RECIP && TARGET_PPC_GFXOPT && !optimize_size
22172 && flag_finite_math_only && !flag_trapping_math
22173 && flag_unsafe_math_optimizations))
22174 return NULL_TREE;
22175
22176 if (md_fn)
22177 return NULL_TREE;
22178 else
22179 switch (fn)
22180 {
22181 case BUILT_IN_SQRTF:
22182 return rs6000_builtin_decls[RS6000_BUILTIN_RSQRTF];
22183
22184 default:
22185 return NULL_TREE;
22186 }
22187}
22188
ef765ea9
DE
22189/* Newton-Raphson approximation of single-precision floating point divide n/d.
22190 Assumes no trapping math and finite arguments. */
22191
22192void
9c78b944 22193rs6000_emit_swdivsf (rtx dst, rtx n, rtx d)
ef765ea9
DE
22194{
22195 rtx x0, e0, e1, y1, u0, v0, one;
22196
22197 x0 = gen_reg_rtx (SFmode);
22198 e0 = gen_reg_rtx (SFmode);
22199 e1 = gen_reg_rtx (SFmode);
22200 y1 = gen_reg_rtx (SFmode);
22201 u0 = gen_reg_rtx (SFmode);
22202 v0 = gen_reg_rtx (SFmode);
22203 one = force_reg (SFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconst1, SFmode));
22204
22205 /* x0 = 1./d estimate */
22206 emit_insn (gen_rtx_SET (VOIDmode, x0,
22207 gen_rtx_UNSPEC (SFmode, gen_rtvec (1, d),
22208 UNSPEC_FRES)));
22209 /* e0 = 1. - d * x0 */
22210 emit_insn (gen_rtx_SET (VOIDmode, e0,
22211 gen_rtx_MINUS (SFmode, one,
22212 gen_rtx_MULT (SFmode, d, x0))));
22213 /* e1 = e0 + e0 * e0 */
22214 emit_insn (gen_rtx_SET (VOIDmode, e1,
22215 gen_rtx_PLUS (SFmode,
22216 gen_rtx_MULT (SFmode, e0, e0), e0)));
22217 /* y1 = x0 + e1 * x0 */
22218 emit_insn (gen_rtx_SET (VOIDmode, y1,
22219 gen_rtx_PLUS (SFmode,
22220 gen_rtx_MULT (SFmode, e1, x0), x0)));
22221 /* u0 = n * y1 */
22222 emit_insn (gen_rtx_SET (VOIDmode, u0,
22223 gen_rtx_MULT (SFmode, n, y1)));
22224 /* v0 = n - d * u0 */
22225 emit_insn (gen_rtx_SET (VOIDmode, v0,
22226 gen_rtx_MINUS (SFmode, n,
22227 gen_rtx_MULT (SFmode, d, u0))));
9c78b944
DE
22228 /* dst = u0 + v0 * y1 */
22229 emit_insn (gen_rtx_SET (VOIDmode, dst,
ef765ea9
DE
22230 gen_rtx_PLUS (SFmode,
22231 gen_rtx_MULT (SFmode, v0, y1), u0)));
22232}
22233
22234/* Newton-Raphson approximation of double-precision floating point divide n/d.
22235 Assumes no trapping math and finite arguments. */
22236
22237void
9c78b944 22238rs6000_emit_swdivdf (rtx dst, rtx n, rtx d)
ef765ea9
DE
22239{
22240 rtx x0, e0, e1, e2, y1, y2, y3, u0, v0, one;
22241
22242 x0 = gen_reg_rtx (DFmode);
22243 e0 = gen_reg_rtx (DFmode);
22244 e1 = gen_reg_rtx (DFmode);
22245 e2 = gen_reg_rtx (DFmode);
22246 y1 = gen_reg_rtx (DFmode);
22247 y2 = gen_reg_rtx (DFmode);
22248 y3 = gen_reg_rtx (DFmode);
22249 u0 = gen_reg_rtx (DFmode);
22250 v0 = gen_reg_rtx (DFmode);
22251 one = force_reg (DFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconst1, DFmode));
22252
22253 /* x0 = 1./d estimate */
22254 emit_insn (gen_rtx_SET (VOIDmode, x0,
22255 gen_rtx_UNSPEC (DFmode, gen_rtvec (1, d),
22256 UNSPEC_FRES)));
22257 /* e0 = 1. - d * x0 */
22258 emit_insn (gen_rtx_SET (VOIDmode, e0,
22259 gen_rtx_MINUS (DFmode, one,
22260 gen_rtx_MULT (SFmode, d, x0))));
22261 /* y1 = x0 + e0 * x0 */
22262 emit_insn (gen_rtx_SET (VOIDmode, y1,
22263 gen_rtx_PLUS (DFmode,
22264 gen_rtx_MULT (DFmode, e0, x0), x0)));
22265 /* e1 = e0 * e0 */
22266 emit_insn (gen_rtx_SET (VOIDmode, e1,
22267 gen_rtx_MULT (DFmode, e0, e0)));
22268 /* y2 = y1 + e1 * y1 */
22269 emit_insn (gen_rtx_SET (VOIDmode, y2,
22270 gen_rtx_PLUS (DFmode,
22271 gen_rtx_MULT (DFmode, e1, y1), y1)));
22272 /* e2 = e1 * e1 */
22273 emit_insn (gen_rtx_SET (VOIDmode, e2,
22274 gen_rtx_MULT (DFmode, e1, e1)));
22275 /* y3 = y2 + e2 * y2 */
22276 emit_insn (gen_rtx_SET (VOIDmode, y3,
22277 gen_rtx_PLUS (DFmode,
22278 gen_rtx_MULT (DFmode, e2, y2), y2)));
22279 /* u0 = n * y3 */
22280 emit_insn (gen_rtx_SET (VOIDmode, u0,
22281 gen_rtx_MULT (DFmode, n, y3)));
22282 /* v0 = n - d * u0 */
22283 emit_insn (gen_rtx_SET (VOIDmode, v0,
22284 gen_rtx_MINUS (DFmode, n,
22285 gen_rtx_MULT (DFmode, d, u0))));
9c78b944
DE
22286 /* dst = u0 + v0 * y3 */
22287 emit_insn (gen_rtx_SET (VOIDmode, dst,
ef765ea9
DE
22288 gen_rtx_PLUS (DFmode,
22289 gen_rtx_MULT (DFmode, v0, y3), u0)));
22290}
22291
565ef4ba 22292
9c78b944
DE
22293/* Newton-Raphson approximation of single-precision floating point rsqrt.
22294 Assumes no trapping math and finite arguments. */
22295
22296void
22297rs6000_emit_swrsqrtsf (rtx dst, rtx src)
22298{
22299 rtx x0, x1, x2, y1, u0, u1, u2, v0, v1, v2, t0,
22300 half, one, halfthree, c1, cond, label;
22301
22302 x0 = gen_reg_rtx (SFmode);
22303 x1 = gen_reg_rtx (SFmode);
22304 x2 = gen_reg_rtx (SFmode);
22305 y1 = gen_reg_rtx (SFmode);
22306 u0 = gen_reg_rtx (SFmode);
22307 u1 = gen_reg_rtx (SFmode);
22308 u2 = gen_reg_rtx (SFmode);
22309 v0 = gen_reg_rtx (SFmode);
22310 v1 = gen_reg_rtx (SFmode);
22311 v2 = gen_reg_rtx (SFmode);
22312 t0 = gen_reg_rtx (SFmode);
22313 halfthree = gen_reg_rtx (SFmode);
22314 cond = gen_rtx_REG (CCFPmode, CR1_REGNO);
22315 label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
22316
22317 /* check 0.0, 1.0, NaN, Inf by testing src * src = src */
22318 emit_insn (gen_rtx_SET (VOIDmode, t0,
22319 gen_rtx_MULT (SFmode, src, src)));
22320
22321 emit_insn (gen_rtx_SET (VOIDmode, cond,
22322 gen_rtx_COMPARE (CCFPmode, t0, src)));
22323 c1 = gen_rtx_EQ (VOIDmode, cond, const0_rtx);
22324 emit_unlikely_jump (c1, label);
22325
22326 half = force_reg (SFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconsthalf, SFmode));
22327 one = force_reg (SFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconst1, SFmode));
22328
22329 /* halfthree = 1.5 = 1.0 + 0.5 */
22330 emit_insn (gen_rtx_SET (VOIDmode, halfthree,
22331 gen_rtx_PLUS (SFmode, one, half)));
22332
22333 /* x0 = rsqrt estimate */
22334 emit_insn (gen_rtx_SET (VOIDmode, x0,
22335 gen_rtx_UNSPEC (SFmode, gen_rtvec (1, src),
22336 UNSPEC_RSQRT)));
22337
22338 /* y1 = 0.5 * src = 1.5 * src - src -> fewer constants */
22339 emit_insn (gen_rtx_SET (VOIDmode, y1,
22340 gen_rtx_MINUS (SFmode,
22341 gen_rtx_MULT (SFmode, src, halfthree),
22342 src)));
22343
22344 /* x1 = x0 * (1.5 - y1 * (x0 * x0)) */
22345 emit_insn (gen_rtx_SET (VOIDmode, u0,
22346 gen_rtx_MULT (SFmode, x0, x0)));
22347 emit_insn (gen_rtx_SET (VOIDmode, v0,
22348 gen_rtx_MINUS (SFmode,
22349 halfthree,
22350 gen_rtx_MULT (SFmode, y1, u0))));
22351 emit_insn (gen_rtx_SET (VOIDmode, x1,
22352 gen_rtx_MULT (SFmode, x0, v0)));
22353
22354 /* x2 = x1 * (1.5 - y1 * (x1 * x1)) */
22355 emit_insn (gen_rtx_SET (VOIDmode, u1,
22356 gen_rtx_MULT (SFmode, x1, x1)));
22357 emit_insn (gen_rtx_SET (VOIDmode, v1,
22358 gen_rtx_MINUS (SFmode,
22359 halfthree,
22360 gen_rtx_MULT (SFmode, y1, u1))));
22361 emit_insn (gen_rtx_SET (VOIDmode, x2,
22362 gen_rtx_MULT (SFmode, x1, v1)));
22363
22364 /* dst = x2 * (1.5 - y1 * (x2 * x2)) */
22365 emit_insn (gen_rtx_SET (VOIDmode, u2,
22366 gen_rtx_MULT (SFmode, x2, x2)));
22367 emit_insn (gen_rtx_SET (VOIDmode, v2,
22368 gen_rtx_MINUS (SFmode,
22369 halfthree,
22370 gen_rtx_MULT (SFmode, y1, u2))));
22371 emit_insn (gen_rtx_SET (VOIDmode, dst,
22372 gen_rtx_MULT (SFmode, x2, v2)));
22373
22374 emit_label (XEXP (label, 0));
22375}
22376
565ef4ba
RS
22377/* Emit popcount intrinsic on TARGET_POPCNTB targets. DST is the
22378 target, and SRC is the argument operand. */
22379
22380void
22381rs6000_emit_popcount (rtx dst, rtx src)
22382{
22383 enum machine_mode mode = GET_MODE (dst);
22384 rtx tmp1, tmp2;
22385
22386 tmp1 = gen_reg_rtx (mode);
22387
22388 if (mode == SImode)
22389 {
22390 emit_insn (gen_popcntbsi2 (tmp1, src));
22391 tmp2 = expand_mult (SImode, tmp1, GEN_INT (0x01010101),
22392 NULL_RTX, 0);
22393 tmp2 = force_reg (SImode, tmp2);
22394 emit_insn (gen_lshrsi3 (dst, tmp2, GEN_INT (24)));
22395 }
22396 else
22397 {
22398 emit_insn (gen_popcntbdi2 (tmp1, src));
22399 tmp2 = expand_mult (DImode, tmp1,
22400 GEN_INT ((HOST_WIDE_INT)
22401 0x01010101 << 32 | 0x01010101),
22402 NULL_RTX, 0);
22403 tmp2 = force_reg (DImode, tmp2);
22404 emit_insn (gen_lshrdi3 (dst, tmp2, GEN_INT (56)));
22405 }
22406}
22407
22408
22409/* Emit parity intrinsic on TARGET_POPCNTB targets. DST is the
22410 target, and SRC is the argument operand. */
22411
22412void
22413rs6000_emit_parity (rtx dst, rtx src)
22414{
22415 enum machine_mode mode = GET_MODE (dst);
22416 rtx tmp;
22417
22418 tmp = gen_reg_rtx (mode);
22419 if (mode == SImode)
22420 {
22421 /* Is mult+shift >= shift+xor+shift+xor? */
22422 if (rs6000_cost->mulsi_const >= COSTS_N_INSNS (3))
22423 {
22424 rtx tmp1, tmp2, tmp3, tmp4;
22425
22426 tmp1 = gen_reg_rtx (SImode);
22427 emit_insn (gen_popcntbsi2 (tmp1, src));
22428
22429 tmp2 = gen_reg_rtx (SImode);
22430 emit_insn (gen_lshrsi3 (tmp2, tmp1, GEN_INT (16)));
22431 tmp3 = gen_reg_rtx (SImode);
22432 emit_insn (gen_xorsi3 (tmp3, tmp1, tmp2));
22433
22434 tmp4 = gen_reg_rtx (SImode);
22435 emit_insn (gen_lshrsi3 (tmp4, tmp3, GEN_INT (8)));
22436 emit_insn (gen_xorsi3 (tmp, tmp3, tmp4));
22437 }
22438 else
22439 rs6000_emit_popcount (tmp, src);
22440 emit_insn (gen_andsi3 (dst, tmp, const1_rtx));
22441 }
22442 else
22443 {
22444 /* Is mult+shift >= shift+xor+shift+xor+shift+xor? */
22445 if (rs6000_cost->muldi >= COSTS_N_INSNS (5))
22446 {
22447 rtx tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
22448
22449 tmp1 = gen_reg_rtx (DImode);
22450 emit_insn (gen_popcntbdi2 (tmp1, src));
22451
22452 tmp2 = gen_reg_rtx (DImode);
22453 emit_insn (gen_lshrdi3 (tmp2, tmp1, GEN_INT (32)));
22454 tmp3 = gen_reg_rtx (DImode);
22455 emit_insn (gen_xordi3 (tmp3, tmp1, tmp2));
22456
22457 tmp4 = gen_reg_rtx (DImode);
22458 emit_insn (gen_lshrdi3 (tmp4, tmp3, GEN_INT (16)));
22459 tmp5 = gen_reg_rtx (DImode);
22460 emit_insn (gen_xordi3 (tmp5, tmp3, tmp4));
22461
22462 tmp6 = gen_reg_rtx (DImode);
22463 emit_insn (gen_lshrdi3 (tmp6, tmp5, GEN_INT (8)));
22464 emit_insn (gen_xordi3 (tmp, tmp5, tmp6));
22465 }
22466 else
22467 rs6000_emit_popcount (tmp, src);
22468 emit_insn (gen_anddi3 (dst, tmp, const1_rtx));
22469 }
22470}
22471
ded9bf77
AH
22472/* Return an RTX representing where to find the function value of a
22473 function returning MODE. */
22474static rtx
22475rs6000_complex_function_value (enum machine_mode mode)
22476{
22477 unsigned int regno;
22478 rtx r1, r2;
22479 enum machine_mode inner = GET_MODE_INNER (mode);
fb7e4164 22480 unsigned int inner_bytes = GET_MODE_SIZE (inner);
ded9bf77 22481
18f63bfa
AH
22482 if (FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT && TARGET_FPRS)
22483 regno = FP_ARG_RETURN;
354ed18f
AH
22484 else
22485 {
18f63bfa 22486 regno = GP_ARG_RETURN;
ded9bf77 22487
18f63bfa
AH
22488 /* 32-bit is OK since it'll go in r3/r4. */
22489 if (TARGET_32BIT && inner_bytes >= 4)
ded9bf77
AH
22490 return gen_rtx_REG (mode, regno);
22491 }
22492
18f63bfa
AH
22493 if (inner_bytes >= 8)
22494 return gen_rtx_REG (mode, regno);
22495
ded9bf77
AH
22496 r1 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno),
22497 const0_rtx);
22498 r2 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno + 1),
fb7e4164 22499 GEN_INT (inner_bytes));
ded9bf77
AH
22500 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
22501}
22502
a6ebc39a
AH
22503/* Define how to find the value returned by a function.
22504 VALTYPE is the data type of the value (as a tree).
22505 If the precise function being called is known, FUNC is its FUNCTION_DECL;
22506 otherwise, FUNC is 0.
22507
22508 On the SPE, both FPs and vectors are returned in r3.
22509
22510 On RS/6000 an integer value is in r3 and a floating-point value is in
22511 fp1, unless -msoft-float. */
22512
22513rtx
586de218 22514rs6000_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
a6ebc39a
AH
22515{
22516 enum machine_mode mode;
2a8fa26c 22517 unsigned int regno;
a6ebc39a 22518
594a51fe
SS
22519 /* Special handling for structs in darwin64. */
22520 if (rs6000_darwin64_abi
22521 && TYPE_MODE (valtype) == BLKmode
0b5383eb
DJ
22522 && TREE_CODE (valtype) == RECORD_TYPE
22523 && int_size_in_bytes (valtype) > 0)
594a51fe
SS
22524 {
22525 CUMULATIVE_ARGS valcum;
22526 rtx valret;
22527
0b5383eb 22528 valcum.words = 0;
594a51fe
SS
22529 valcum.fregno = FP_ARG_MIN_REG;
22530 valcum.vregno = ALTIVEC_ARG_MIN_REG;
0b5383eb
DJ
22531 /* Do a trial code generation as if this were going to be passed as
22532 an argument; if any part goes in memory, we return NULL. */
22533 valret = rs6000_darwin64_record_arg (&valcum, valtype, 1, true);
594a51fe
SS
22534 if (valret)
22535 return valret;
22536 /* Otherwise fall through to standard ABI rules. */
22537 }
22538
0e67400a
FJ
22539 if (TARGET_32BIT && TARGET_POWERPC64 && TYPE_MODE (valtype) == DImode)
22540 {
22541 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
22542 return gen_rtx_PARALLEL (DImode,
22543 gen_rtvec (2,
22544 gen_rtx_EXPR_LIST (VOIDmode,
22545 gen_rtx_REG (SImode, GP_ARG_RETURN),
22546 const0_rtx),
22547 gen_rtx_EXPR_LIST (VOIDmode,
22548 gen_rtx_REG (SImode,
22549 GP_ARG_RETURN + 1),
22550 GEN_INT (4))));
22551 }
0f086e42
FJ
22552 if (TARGET_32BIT && TARGET_POWERPC64 && TYPE_MODE (valtype) == DCmode)
22553 {
22554 return gen_rtx_PARALLEL (DCmode,
22555 gen_rtvec (4,
22556 gen_rtx_EXPR_LIST (VOIDmode,
22557 gen_rtx_REG (SImode, GP_ARG_RETURN),
22558 const0_rtx),
22559 gen_rtx_EXPR_LIST (VOIDmode,
22560 gen_rtx_REG (SImode,
22561 GP_ARG_RETURN + 1),
22562 GEN_INT (4)),
22563 gen_rtx_EXPR_LIST (VOIDmode,
22564 gen_rtx_REG (SImode,
22565 GP_ARG_RETURN + 2),
22566 GEN_INT (8)),
22567 gen_rtx_EXPR_LIST (VOIDmode,
22568 gen_rtx_REG (SImode,
22569 GP_ARG_RETURN + 3),
22570 GEN_INT (12))));
22571 }
602ea4d3 22572
7348aa7f
FXC
22573 mode = TYPE_MODE (valtype);
22574 if ((INTEGRAL_TYPE_P (valtype) && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
a6ebc39a 22575 || POINTER_TYPE_P (valtype))
b78d48dd 22576 mode = TARGET_32BIT ? SImode : DImode;
a6ebc39a 22577
e41b2a33
PB
22578 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT && TARGET_FPRS)
22579 /* _Decimal128 must use an even/odd register pair. */
22580 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
2c5cac98
ME
22581 else if (SCALAR_FLOAT_TYPE_P (valtype) && TARGET_HARD_FLOAT && TARGET_FPRS
22582 && ((TARGET_SINGLE_FLOAT && (mode == SFmode)) || TARGET_DOUBLE_FLOAT))
2a8fa26c 22583 regno = FP_ARG_RETURN;
ded9bf77 22584 else if (TREE_CODE (valtype) == COMPLEX_TYPE
42ba5130 22585 && targetm.calls.split_complex_arg)
ded9bf77 22586 return rs6000_complex_function_value (mode);
44688022 22587 else if (TREE_CODE (valtype) == VECTOR_TYPE
d0b2079e 22588 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI
23ba09f0 22589 && ALTIVEC_VECTOR_MODE (mode))
a6ebc39a 22590 regno = ALTIVEC_ARG_RETURN;
18f63bfa 22591 else if (TARGET_E500_DOUBLE && TARGET_HARD_FLOAT
4f011e1e
JM
22592 && (mode == DFmode || mode == DCmode
22593 || mode == TFmode || mode == TCmode))
18f63bfa 22594 return spe_build_register_parallel (mode, GP_ARG_RETURN);
a6ebc39a
AH
22595 else
22596 regno = GP_ARG_RETURN;
22597
22598 return gen_rtx_REG (mode, regno);
22599}
22600
ded9bf77
AH
22601/* Define how to find the value returned by a library function
22602 assuming the value has mode MODE. */
22603rtx
22604rs6000_libcall_value (enum machine_mode mode)
22605{
22606 unsigned int regno;
22607
2e6c9641
FJ
22608 if (TARGET_32BIT && TARGET_POWERPC64 && mode == DImode)
22609 {
22610 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
22611 return gen_rtx_PARALLEL (DImode,
22612 gen_rtvec (2,
22613 gen_rtx_EXPR_LIST (VOIDmode,
22614 gen_rtx_REG (SImode, GP_ARG_RETURN),
22615 const0_rtx),
22616 gen_rtx_EXPR_LIST (VOIDmode,
22617 gen_rtx_REG (SImode,
22618 GP_ARG_RETURN + 1),
22619 GEN_INT (4))));
22620 }
22621
e41b2a33
PB
22622 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT && TARGET_FPRS)
22623 /* _Decimal128 must use an even/odd register pair. */
22624 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
00b79d54 22625 else if (SCALAR_FLOAT_MODE_P (mode)
ded9bf77
AH
22626 && TARGET_HARD_FLOAT && TARGET_FPRS)
22627 regno = FP_ARG_RETURN;
44688022
AM
22628 else if (ALTIVEC_VECTOR_MODE (mode)
22629 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)
ded9bf77 22630 regno = ALTIVEC_ARG_RETURN;
42ba5130 22631 else if (COMPLEX_MODE_P (mode) && targetm.calls.split_complex_arg)
ded9bf77 22632 return rs6000_complex_function_value (mode);
18f63bfa 22633 else if (TARGET_E500_DOUBLE && TARGET_HARD_FLOAT
4f011e1e
JM
22634 && (mode == DFmode || mode == DCmode
22635 || mode == TFmode || mode == TCmode))
18f63bfa 22636 return spe_build_register_parallel (mode, GP_ARG_RETURN);
ded9bf77
AH
22637 else
22638 regno = GP_ARG_RETURN;
22639
22640 return gen_rtx_REG (mode, regno);
22641}
22642
d1d0c603
JJ
22643/* Define the offset between two registers, FROM to be eliminated and its
22644 replacement TO, at the start of a routine. */
22645HOST_WIDE_INT
22646rs6000_initial_elimination_offset (int from, int to)
22647{
22648 rs6000_stack_t *info = rs6000_stack_info ();
22649 HOST_WIDE_INT offset;
22650
7d5175e1 22651 if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
d1d0c603 22652 offset = info->push_p ? 0 : -info->total_size;
7d5175e1
JJ
22653 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
22654 {
22655 offset = info->push_p ? 0 : -info->total_size;
22656 if (FRAME_GROWS_DOWNWARD)
5b667039 22657 offset += info->fixed_size + info->vars_size + info->parm_size;
7d5175e1
JJ
22658 }
22659 else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
22660 offset = FRAME_GROWS_DOWNWARD
5b667039 22661 ? info->fixed_size + info->vars_size + info->parm_size
7d5175e1
JJ
22662 : 0;
22663 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
d1d0c603
JJ
22664 offset = info->total_size;
22665 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
22666 offset = info->push_p ? info->total_size : 0;
22667 else if (from == RS6000_PIC_OFFSET_TABLE_REGNUM)
22668 offset = 0;
22669 else
37409796 22670 gcc_unreachable ();
d1d0c603
JJ
22671
22672 return offset;
22673}
22674
96714395 22675static rtx
a2369ed3 22676rs6000_dwarf_register_span (rtx reg)
96714395 22677{
6cd1d2e2
DJ
22678 rtx parts[8];
22679 int i, words;
22680 unsigned regno = REGNO (reg);
22681 enum machine_mode mode = GET_MODE (reg);
96714395 22682
4d4cbc0e 22683 if (TARGET_SPE
6cd1d2e2 22684 && regno < 32
4d4cbc0e 22685 && (SPE_VECTOR_MODE (GET_MODE (reg))
6cd1d2e2
DJ
22686 || (TARGET_E500_DOUBLE && FLOAT_MODE_P (mode)
22687 && mode != SFmode && mode != SDmode && mode != SCmode)))
4d4cbc0e
AH
22688 ;
22689 else
96714395
AH
22690 return NULL_RTX;
22691
22692 regno = REGNO (reg);
22693
22694 /* The duality of the SPE register size wreaks all kinds of havoc.
22695 This is a way of distinguishing r0 in 32-bits from r0 in
22696 64-bits. */
6cd1d2e2
DJ
22697 words = (GET_MODE_SIZE (mode) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD;
22698 gcc_assert (words <= 4);
22699 for (i = 0; i < words; i++, regno++)
22700 {
22701 if (BYTES_BIG_ENDIAN)
22702 {
22703 parts[2 * i] = gen_rtx_REG (SImode, regno + 1200);
22704 parts[2 * i + 1] = gen_rtx_REG (SImode, regno);
22705 }
22706 else
22707 {
22708 parts[2 * i] = gen_rtx_REG (SImode, regno);
22709 parts[2 * i + 1] = gen_rtx_REG (SImode, regno + 1200);
22710 }
22711 }
22712
22713 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (words * 2, parts));
96714395
AH
22714}
22715
37ea0b7e
JM
22716/* Fill in sizes for SPE register high parts in table used by unwinder. */
22717
22718static void
22719rs6000_init_dwarf_reg_sizes_extra (tree address)
22720{
22721 if (TARGET_SPE)
22722 {
22723 int i;
22724 enum machine_mode mode = TYPE_MODE (char_type_node);
bbbbb16a 22725 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, EXPAND_NORMAL);
37ea0b7e
JM
22726 rtx mem = gen_rtx_MEM (BLKmode, addr);
22727 rtx value = gen_int_mode (4, mode);
22728
22729 for (i = 1201; i < 1232; i++)
22730 {
22731 int column = DWARF_REG_TO_UNWIND_COLUMN (i);
22732 HOST_WIDE_INT offset
22733 = DWARF_FRAME_REGNUM (column) * GET_MODE_SIZE (mode);
22734
22735 emit_move_insn (adjust_address (mem, mode, offset), value);
22736 }
22737 }
22738}
22739
93c9d1ba
AM
22740/* Map internal gcc register numbers to DWARF2 register numbers. */
22741
22742unsigned int
22743rs6000_dbx_register_number (unsigned int regno)
22744{
22745 if (regno <= 63 || write_symbols != DWARF2_DEBUG)
22746 return regno;
22747 if (regno == MQ_REGNO)
22748 return 100;
1de43f85 22749 if (regno == LR_REGNO)
93c9d1ba 22750 return 108;
1de43f85 22751 if (regno == CTR_REGNO)
93c9d1ba
AM
22752 return 109;
22753 if (CR_REGNO_P (regno))
22754 return regno - CR0_REGNO + 86;
22755 if (regno == XER_REGNO)
22756 return 101;
22757 if (ALTIVEC_REGNO_P (regno))
22758 return regno - FIRST_ALTIVEC_REGNO + 1124;
22759 if (regno == VRSAVE_REGNO)
22760 return 356;
22761 if (regno == VSCR_REGNO)
22762 return 67;
22763 if (regno == SPE_ACC_REGNO)
22764 return 99;
22765 if (regno == SPEFSCR_REGNO)
22766 return 612;
22767 /* SPE high reg number. We get these values of regno from
22768 rs6000_dwarf_register_span. */
37409796
NS
22769 gcc_assert (regno >= 1200 && regno < 1232);
22770 return regno;
93c9d1ba
AM
22771}
22772
93f90be6 22773/* target hook eh_return_filter_mode */
f676971a 22774static enum machine_mode
93f90be6
FJ
22775rs6000_eh_return_filter_mode (void)
22776{
22777 return TARGET_32BIT ? SImode : word_mode;
22778}
22779
00b79d54
BE
22780/* Target hook for scalar_mode_supported_p. */
22781static bool
22782rs6000_scalar_mode_supported_p (enum machine_mode mode)
22783{
22784 if (DECIMAL_FLOAT_MODE_P (mode))
22785 return true;
22786 else
22787 return default_scalar_mode_supported_p (mode);
22788}
22789
f676971a
EC
22790/* Target hook for vector_mode_supported_p. */
22791static bool
22792rs6000_vector_mode_supported_p (enum machine_mode mode)
22793{
22794
96038623
DE
22795 if (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (mode))
22796 return true;
22797
f676971a
EC
22798 if (TARGET_SPE && SPE_VECTOR_MODE (mode))
22799 return true;
22800
22801 else if (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (mode))
22802 return true;
22803
22804 else
22805 return false;
22806}
22807
bb8df8a6
EC
22808/* Target hook for invalid_arg_for_unprototyped_fn. */
22809static const char *
3101faab 22810invalid_arg_for_unprototyped_fn (const_tree typelist, const_tree funcdecl, const_tree val)
4d3e6fae
FJ
22811{
22812 return (!rs6000_darwin64_abi
22813 && typelist == 0
22814 && TREE_CODE (TREE_TYPE (val)) == VECTOR_TYPE
22815 && (funcdecl == NULL_TREE
22816 || (TREE_CODE (funcdecl) == FUNCTION_DECL
22817 && DECL_BUILT_IN_CLASS (funcdecl) != BUILT_IN_MD)))
22818 ? N_("AltiVec argument passed to unprototyped function")
22819 : NULL;
22820}
22821
3aebbe5f
JJ
22822/* For TARGET_SECURE_PLT 32-bit PIC code we can save PIC register
22823 setup by using __stack_chk_fail_local hidden function instead of
22824 calling __stack_chk_fail directly. Otherwise it is better to call
22825 __stack_chk_fail directly. */
22826
22827static tree
22828rs6000_stack_protect_fail (void)
22829{
22830 return (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
22831 ? default_hidden_stack_protect_fail ()
22832 : default_external_stack_protect_fail ();
22833}
22834
c921bad8
AP
22835void
22836rs6000_final_prescan_insn (rtx insn, rtx *operand ATTRIBUTE_UNUSED,
22837 int num_operands ATTRIBUTE_UNUSED)
22838{
22839 if (rs6000_warn_cell_microcode)
22840 {
22841 const char *temp;
22842 int insn_code_number = recog_memoized (insn);
22843 location_t location = locator_location (INSN_LOCATOR (insn));
22844
22845 /* Punt on insns we cannot recognize. */
22846 if (insn_code_number < 0)
22847 return;
22848
22849 temp = get_insn_template (insn_code_number, insn);
22850
22851 if (get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS)
22852 warning_at (location, OPT_mwarn_cell_microcode,
22853 "emitting microcode insn %s\t[%s] #%d",
22854 temp, insn_data[INSN_CODE (insn)].name, INSN_UID (insn));
22855 else if (get_attr_cell_micro (insn) == CELL_MICRO_CONDITIONAL)
22856 warning_at (location, OPT_mwarn_cell_microcode,
22857 "emitting conditional microcode insn %s\t[%s] #%d",
22858 temp, insn_data[INSN_CODE (insn)].name, INSN_UID (insn));
22859 }
22860}
22861
17211ab5 22862#include "gt-rs6000.h"