]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
tree-flow-inline.h (get_def_ops, [...]): Add operand structure reference.
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
93c9d1ba 3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 5
5de601cf 6 This file is part of GCC.
f045b2c9 7
5de601cf
NC
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
f045b2c9 12
5de601cf
NC
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
f045b2c9 17
5de601cf
NC
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the
20 Free Software Foundation, 59 Temple Place - Suite 330, Boston,
21 MA 02111-1307, USA. */
f045b2c9
RS
22
23/* Note that some other tm.h files include this one and then override
9ebbca7d 24 many of the definitions. */
f045b2c9 25
9ebbca7d
GK
26/* Definitions for the object file format. These are set at
27 compile-time. */
f045b2c9 28
9ebbca7d
GK
29#define OBJECT_XCOFF 1
30#define OBJECT_ELF 2
31#define OBJECT_PEF 3
ee890fe2 32#define OBJECT_MACHO 4
f045b2c9 33
9ebbca7d 34#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 35#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 36#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 37#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 38
2bfcf297
DB
39#ifndef TARGET_AIX
40#define TARGET_AIX 0
41#endif
42
8e3f41e7
MM
43/* Default string to use for cpu if not specified. */
44#ifndef TARGET_CPU_DEFAULT
45#define TARGET_CPU_DEFAULT ((char *)0)
46#endif
47
f984d8df
DB
48/* Common ASM definitions used by ASM_SPEC among the various targets
49 for handling -mcpu=xxx switches. */
50#define ASM_CPU_SPEC \
51"%{!mcpu*: \
52 %{mpower: %{!mpower2: -mpwr}} \
53 %{mpower2: -mpwrx} \
93ae5495
AM
54 %{mpowerpc64*: -mppc64} \
55 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
f984d8df 56 %{mno-power: %{!mpowerpc*: -mcom}} \
93ae5495 57 %{!mno-power: %{!mpower*: %(asm_default)}}} \
f984d8df
DB
58%{mcpu=common: -mcom} \
59%{mcpu=power: -mpwr} \
60%{mcpu=power2: -mpwrx} \
93ae5495 61%{mcpu=power3: -mppc64} \
957e9e48 62%{mcpu=power4: -mpower4} \
93ae5495 63%{mcpu=power5: -mpower4} \
f984d8df
DB
64%{mcpu=powerpc: -mppc} \
65%{mcpu=rios: -mpwr} \
66%{mcpu=rios1: -mpwr} \
67%{mcpu=rios2: -mpwrx} \
68%{mcpu=rsc: -mpwr} \
69%{mcpu=rsc1: -mpwr} \
93ae5495 70%{mcpu=rs64a: -mppc64} \
f984d8df 71%{mcpu=401: -mppc} \
61a8515c
JS
72%{mcpu=403: -m403} \
73%{mcpu=405: -m405} \
2c9d95ef
DE
74%{mcpu=405fp: -m405} \
75%{mcpu=440: -m440} \
76%{mcpu=440fp: -m440} \
f984d8df
DB
77%{mcpu=505: -mppc} \
78%{mcpu=601: -m601} \
79%{mcpu=602: -mppc} \
80%{mcpu=603: -mppc} \
81%{mcpu=603e: -mppc} \
82%{mcpu=ec603e: -mppc} \
83%{mcpu=604: -mppc} \
84%{mcpu=604e: -mppc} \
93ae5495
AM
85%{mcpu=620: -mppc64} \
86%{mcpu=630: -mppc64} \
f984d8df
DB
87%{mcpu=740: -mppc} \
88%{mcpu=750: -mppc} \
49ffe578 89%{mcpu=G3: -mppc} \
93ae5495
AM
90%{mcpu=7400: -mppc -maltivec} \
91%{mcpu=7450: -mppc -maltivec} \
92%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
93%{mcpu=801: -mppc} \
94%{mcpu=821: -mppc} \
95%{mcpu=823: -mppc} \
775db490 96%{mcpu=860: -mppc} \
93ae5495
AM
97%{mcpu=970: -mpower4 -maltivec} \
98%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 99%{mcpu=8540: -me500} \
93ae5495
AM
100%{maltivec: -maltivec} \
101-many"
f984d8df
DB
102
103#define CPP_DEFAULT_SPEC ""
104
105#define ASM_DEFAULT_SPEC ""
106
841faeed
MM
107/* This macro defines names of additional specifications to put in the specs
108 that can be used in various specifications like CC1_SPEC. Its definition
109 is an initializer with a subgrouping for each command option.
110
111 Each subgrouping contains a string constant, that defines the
5de601cf 112 specification name, and a string constant that used by the GCC driver
841faeed
MM
113 program.
114
115 Do not define this macro if it does not need to do anything. */
116
7509c759 117#define SUBTARGET_EXTRA_SPECS
7509c759 118
c81bebd7 119#define EXTRA_SPECS \
c81bebd7 120 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
121 { "asm_cpu", ASM_CPU_SPEC }, \
122 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
123 SUBTARGET_EXTRA_SPECS
124
fb623df5 125/* Architecture type. */
f045b2c9 126
fb623df5
RK
127extern int target_flags;
128
129/* Use POWER architecture instructions and MQ register. */
38c1f2d7 130#define MASK_POWER 0x00000001
fb623df5 131
6febd581 132/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 133#define MASK_POWER2 0x00000002
6febd581 134
fb623df5 135/* Use PowerPC architecture instructions. */
38c1f2d7 136#define MASK_POWERPC 0x00000004
6febd581 137
583cf4db 138/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 139#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
140
141/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 142#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 143
fb623df5 144/* Use PowerPC-64 architecture instructions. */
38c1f2d7 145#define MASK_POWERPC64 0x00000020
f045b2c9 146
fb623df5 147/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 148#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
149
150/* Disable placing fp constants in the TOC; can be turned on when the
151 TOC overflows. */
38c1f2d7 152#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 153
0b9ccabc
RK
154/* Disable placing symbol+offset constants in the TOC; can be turned on when
155 the TOC overflows. */
38c1f2d7 156#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 157
fb623df5 158/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
159 there are more than 16K unique variables/constants in an executable. With
160 this option, linking fails only if there are more than 16K modules, or
161 if there are more than 16K unique variables/constant in a single module.
162
163 This is at the cost of having 2 extra loads and one extra store per
956d6950 164 function, and one less allocable register. */
38c1f2d7 165#define MASK_MINIMAL_TOC 0x00000200
642a35f1 166
7ddb6568
AM
167/* Nonzero for the 64 bit ABIs: longs and pointers are 64 bits. The
168 chip is running in "64-bit mode", in which CR0 is set in dot
169 operations based on all 64 bits of the register, bdnz works on 64-bit
170 ctr, lr is 64 bits, and so on. Requires MASK_POWERPC64. */
38c1f2d7 171#define MASK_64BIT 0x00000400
9e654916 172
f85f4585 173/* Disable use of FPRs. */
38c1f2d7 174#define MASK_SOFT_FLOAT 0x00000800
f85f4585 175
88cad84b 176/* Enable load/store multiple, even on PowerPC */
b21fb038 177#define MASK_MULTIPLE 0x00001000
4d30c363 178
7e69e155 179/* Use string instructions for block moves */
b21fb038 180#define MASK_STRING 0x00002000
7e69e155 181
38c1f2d7 182/* Disable update form of load/store */
b21fb038 183#define MASK_NO_UPDATE 0x00004000
38c1f2d7
MM
184
185/* Disable fused multiply/add operations */
b21fb038 186#define MASK_NO_FUSED_MADD 0x00008000
4697a36c 187
9ebbca7d 188/* Nonzero if we need to schedule the prolog and epilog. */
b21fb038 189#define MASK_SCHED_PROLOG 0x00010000
9ebbca7d 190
0ac081f6 191/* Use AltiVec instructions. */
b21fb038 192#define MASK_ALTIVEC 0x00020000
0ac081f6 193
6fa3f289 194/* Return small structures in memory (as the AIX ABI requires). */
b21fb038 195#define MASK_AIX_STRUCT_RET 0x00040000
0ac081f6 196
ffa22984
DE
197/* Use single field mfcr instruction. */
198#define MASK_MFCRF 0x00080000
199
895ea8f0
AM
200/* The only remaining free bits are 0x00600000. linux64.h uses
201 0x00100000, and sysv4.h uses 0x00800000 -> 0x40000000.
202 0x80000000 is not available because target_flags is signed. */
06f4e019 203
7e69e155
MM
204#define TARGET_POWER (target_flags & MASK_POWER)
205#define TARGET_POWER2 (target_flags & MASK_POWER2)
206#define TARGET_POWERPC (target_flags & MASK_POWERPC)
207#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
208#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
209#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
210#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
211#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
212#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
213#define TARGET_64BIT (target_flags & MASK_64BIT)
214#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
b21fb038 215#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
7e69e155 216#define TARGET_STRING (target_flags & MASK_STRING)
38c1f2d7
MM
217#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
218#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 219#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 220#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 221#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 222
ffa22984
DE
223/* Define TARGET_MFCRF if the target assembler supports the optional
224 field operand for mfcr and the target processor supports the
225 instruction. */
226
227#ifdef HAVE_AS_MFCRF
228#define TARGET_MFCRF (target_flags & MASK_MFCRF)
229#else
230#define TARGET_MFCRF 0
231#endif
232
233
2f3e5814 234#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 235#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
236#define TARGET_UPDATE (! TARGET_NO_UPDATE)
237#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 238
c973d557
JJ
239/* Emit a dtp-relative reference to a TLS variable. */
240
241#ifdef HAVE_AS_TLS
242#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
243 rs6000_output_dwarf_dtprel (FILE, SIZE, X)
244#endif
245
c4501e62
JJ
246#ifndef HAVE_AS_TLS
247#define HAVE_AS_TLS 0
248#endif
249
996ed075
JJ
250#ifdef IN_LIBGCC2
251/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 252#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
253#define TARGET_POWERPC64 1
254#else
255#define TARGET_POWERPC64 0
256#endif
b6c9286a 257#else
9ebbca7d 258#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
259#endif
260
a3950905 261#define TARGET_XL_CALL 0
a3950905 262
fb623df5 263/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 264
fb623df5 265 Macro to define tables used to set the flags.
f045b2c9
RS
266 This is a list in braces of pairs in braces,
267 each pair being { "NAME", VALUE }
268 where VALUE is the bits to set or minus the bits to clear.
269 An empty string NAME is used to identify the default VALUE. */
270
938937d8 271#define TARGET_SWITCHES \
9ebbca7d 272 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 273 N_("Use POWER instruction set")}, \
938937d8 274 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 275 | MASK_POWER2), \
047142d3 276 N_("Use POWER2 instruction set")}, \
9ebbca7d 277 {"no-power2", - MASK_POWER2, \
047142d3 278 N_("Do not use POWER2 instruction set")}, \
938937d8 279 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 280 | MASK_STRING), \
047142d3 281 N_("Do not use POWER instruction set")}, \
9ebbca7d 282 {"powerpc", MASK_POWERPC, \
047142d3 283 N_("Use PowerPC instruction set")}, \
938937d8 284 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 285 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 286 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 287 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 288 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 289 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
ffa22984 290 N_("Do not use PowerPC General Purpose group optional instructions")},\
9ebbca7d 291 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 292 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 293 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
ffa22984 294 N_("Do not use PowerPC Graphics group optional instructions")},\
9ebbca7d 295 {"powerpc64", MASK_POWERPC64, \
047142d3 296 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 297 {"no-powerpc64", - MASK_POWERPC64, \
ffa22984 298 N_("Do not use PowerPC-64 instruction set")}, \
f18c054f 299 {"altivec", MASK_ALTIVEC , \
c725bd79 300 N_("Use AltiVec instructions")}, \
f18c054f 301 {"no-altivec", - MASK_ALTIVEC , \
ffa22984 302 N_("Do not use AltiVec instructions")}, \
9ebbca7d 303 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 304 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 305 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 306 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 307 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 308 | MASK_MINIMAL_TOC), \
047142d3 309 N_("Put everything in the regular TOC")}, \
9ebbca7d 310 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 311 N_("Place floating point constants in TOC")}, \
9ebbca7d 312 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
ffa22984 313 N_("Do not place floating point constants in TOC")},\
9ebbca7d 314 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 315 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 316 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
ffa22984 317 N_("Do not place symbol+offset constants in TOC")},\
9ebbca7d
GK
318 {"minimal-toc", MASK_MINIMAL_TOC, \
319 "Use only one TOC entry per procedure"}, \
320 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 321 ""}, \
9ebbca7d 322 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 323 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 324 {"hard-float", - MASK_SOFT_FLOAT, \
ffa22984 325 N_("Use hardware floating point")}, \
9ebbca7d 326 {"soft-float", MASK_SOFT_FLOAT, \
ffa22984 327 N_("Do not use hardware floating point")}, \
b21fb038 328 {"multiple", MASK_MULTIPLE, \
047142d3 329 N_("Generate load/store multiple instructions")}, \
9ebbca7d 330 {"no-multiple", - MASK_MULTIPLE, \
047142d3 331 N_("Do not generate load/store multiple instructions")},\
b21fb038 332 {"string", MASK_STRING, \
047142d3 333 N_("Generate string instructions for block moves")},\
9ebbca7d 334 {"no-string", - MASK_STRING, \
047142d3 335 N_("Do not generate string instructions for block moves")},\
9ebbca7d 336 {"update", - MASK_NO_UPDATE, \
047142d3 337 N_("Generate load/store with update instructions")},\
9ebbca7d 338 {"no-update", MASK_NO_UPDATE, \
047142d3 339 N_("Do not generate load/store with update instructions")},\
9ebbca7d 340 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 341 N_("Generate fused multiply/add instructions")},\
9ebbca7d 342 {"no-fused-madd", MASK_NO_FUSED_MADD, \
ffa22984 343 N_("Do not generate fused multiply/add instructions")},\
9ebbca7d
GK
344 {"sched-prolog", MASK_SCHED_PROLOG, \
345 ""}, \
346 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
ffa22984 347 N_("Do not schedule the start and end of the procedure")},\
9ebbca7d
GK
348 {"sched-epilog", MASK_SCHED_PROLOG, \
349 ""}, \
350 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
351 ""}, \
b21fb038 352 {"aix-struct-return", MASK_AIX_STRUCT_RET, \
6fa3f289 353 N_("Return all structures in memory (AIX default)")},\
b21fb038 354 {"svr4-struct-return", - MASK_AIX_STRUCT_RET, \
6fa3f289 355 N_("Return small structures in registers (SVR4 default)")},\
b21fb038 356 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET, \
ffa22984 357 ""}, \
b21fb038 358 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET, \
ffa22984
DE
359 ""}, \
360 {"mfcrf", MASK_MFCRF, \
361 N_("Generate single field mfcr instruction")}, \
362 {"no-mfcrf", - MASK_MFCRF, \
363 N_("Do not generate single field mfcr instruction")},\
938937d8 364 SUBTARGET_SWITCHES \
9ebbca7d
GK
365 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
366 ""}}
fb623df5 367
938937d8 368#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
369
370/* This is meant to be redefined in the host dependent files */
371#define SUBTARGET_SWITCHES
fb623df5 372
cac8ce95 373/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 374enum processor_type
bef84347
VM
375 {
376 PROCESSOR_RIOS1,
377 PROCESSOR_RIOS2,
3cb999d8 378 PROCESSOR_RS64A,
bef84347
VM
379 PROCESSOR_MPCCORE,
380 PROCESSOR_PPC403,
fe7f5677 381 PROCESSOR_PPC405,
b54cf83a 382 PROCESSOR_PPC440,
bef84347
VM
383 PROCESSOR_PPC601,
384 PROCESSOR_PPC603,
385 PROCESSOR_PPC604,
386 PROCESSOR_PPC604e,
387 PROCESSOR_PPC620,
3cb999d8 388 PROCESSOR_PPC630,
ed947a96
DJ
389 PROCESSOR_PPC750,
390 PROCESSOR_PPC7400,
309323c2 391 PROCESSOR_PPC7450,
a3170dc6 392 PROCESSOR_PPC8540,
ec507f2d
DE
393 PROCESSOR_POWER4,
394 PROCESSOR_POWER5
bef84347 395};
fb623df5
RK
396
397extern enum processor_type rs6000_cpu;
398
399/* Recast the processor type to the cpu attribute. */
400#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
401
8482e358 402/* Define generic processor types based upon current deployment. */
3cb999d8
DE
403#define PROCESSOR_COMMON PROCESSOR_PPC601
404#define PROCESSOR_POWER PROCESSOR_RIOS1
405#define PROCESSOR_POWERPC PROCESSOR_PPC604
406#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 407
fb623df5 408/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
409#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
410#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 411
6febd581
RK
412/* Specify the dialect of assembler to use. New mnemonics is dialect one
413 and the old mnemonics are dialect zero. */
9ebbca7d 414#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 415
569fa502
DN
416/* Types of costly dependences. */
417enum rs6000_dependence_cost
418 {
419 max_dep_latency = 1000,
420 no_dep_costly,
421 all_deps_costly,
422 true_store_to_load_dep_costly,
423 store_to_load_dep_costly
424 };
425
cbe26ab8
DN
426/* Types of nop insertion schemes in sched target hook sched_finish. */
427enum rs6000_nop_insertion
428 {
429 sched_finish_regroup_exact = 1000,
430 sched_finish_pad_groups,
431 sched_finish_none
432 };
433
434/* Dispatch group termination caused by an insn. */
435enum group_termination
436 {
437 current_group,
438 previous_group
439 };
440
956d6950 441/* This is meant to be overridden in target specific files. */
b6c9286a 442#define SUBTARGET_OPTIONS
b6c9286a 443
9ebbca7d
GK
444#define TARGET_OPTIONS \
445{ \
047142d3 446 {"cpu=", &rs6000_select[1].string, \
c409ea0d 447 N_("Use features of and schedule code for given CPU"), 0}, \
047142d3 448 {"tune=", &rs6000_select[2].string, \
c409ea0d
DD
449 N_("Schedule code for given CPU"), 0}, \
450 {"debug=", &rs6000_debug_name, N_("Enable debug output"), 0}, \
57ac7be9 451 {"traceback=", &rs6000_traceback_name, \
c409ea0d
DD
452 N_("Select full, part, or no traceback table"), 0}, \
453 {"abi=", &rs6000_abi_string, N_("Specify ABI to use"), 0}, \
6fa3f289 454 {"long-double-", &rs6000_long_double_size_string, \
c409ea0d 455 N_("Specify size of long double (64 or 128 bits)"), 0}, \
a3170dc6 456 {"isel=", &rs6000_isel_string, \
c409ea0d 457 N_("Specify yes/no if isel instructions should be generated"), 0}, \
993f19a8 458 {"spe=", &rs6000_spe_string, \
c409ea0d 459 N_("Specify yes/no if SPE SIMD instructions should be generated"), 0},\
5da702b1 460 {"float-gprs=", &rs6000_float_gprs_string, \
c409ea0d
DD
461 N_("Specify yes/no if using floating point in the GPRs"), 0}, \
462 {"vrsave=", &rs6000_altivec_vrsave_string, \
463 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec"), 0}, \
a5c76ee6 464 {"longcall", &rs6000_longcall_switch, \
c409ea0d
DD
465 N_("Avoid all range limits on call instructions"), 0}, \
466 {"no-longcall", &rs6000_longcall_switch, "", 0}, \
8bb418a3
ZL
467 {"warn-altivec-long", &rs6000_warn_altivec_long_switch, \
468 N_("Warn about deprecated 'vector long ...' AltiVec type usage"), 0}, \
469 {"no-warn-altivec-long", &rs6000_warn_altivec_long_switch, "", 0}, \
569fa502 470 {"sched-costly-dep=", &rs6000_sched_costly_dep_str, \
cbe26ab8
DN
471 N_("Determine which dependences between insns are considered costly"), 0}, \
472 {"insert-sched-nops=", &rs6000_sched_insert_nops_str, \
473 N_("Specify which post scheduling nop insertion scheme to apply"), 0}, \
025d9908
KH
474 {"align-", &rs6000_alignment_string, \
475 N_("Specify alignment of structure fields default/natural"), 0}, \
79ae11c4
DN
476 {"prioritize-restricted-insns=", &rs6000_sched_restricted_insns_priority_str, \
477 N_("Specify scheduling priority for dispatch slot restricted insns"), 0}, \
9ebbca7d 478 SUBTARGET_OPTIONS \
b6c9286a 479}
fb623df5 480
7816bea0
DJ
481/* Support for a compile-time default CPU, et cetera. The rules are:
482 --with-cpu is ignored if -mcpu is specified.
483 --with-tune is ignored if -mtune is specified.
484 --with-float is ignored if -mhard-float or -msoft-float are
485 specified. */
486#define OPTION_DEFAULT_SPECS \
487 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
488 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
489 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
490
ff222560 491/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
492struct rs6000_cpu_select
493{
815cdc52
MM
494 const char *string;
495 const char *name;
8e3f41e7
MM
496 int set_tune_p;
497 int set_arch_p;
498};
499
500extern struct rs6000_cpu_select rs6000_select[];
fb623df5 501
38c1f2d7 502/* Debug support */
0ac081f6 503extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 504extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
505extern int rs6000_debug_stack; /* debug stack applications */
506extern int rs6000_debug_arg; /* debug argument handling */
507
508#define TARGET_DEBUG_STACK rs6000_debug_stack
509#define TARGET_DEBUG_ARG rs6000_debug_arg
510
57ac7be9
AM
511extern const char *rs6000_traceback_name; /* Type of traceback table. */
512
6fa3f289
ZW
513/* These are separate from target_flags because we've run out of bits
514 there. */
515extern const char *rs6000_long_double_size_string;
516extern int rs6000_long_double_type_size;
517extern int rs6000_altivec_abi;
a3170dc6
AH
518extern int rs6000_spe_abi;
519extern int rs6000_isel;
993f19a8 520extern int rs6000_spe;
5da702b1
AH
521extern int rs6000_float_gprs;
522extern const char *rs6000_float_gprs_string;
a3170dc6 523extern const char *rs6000_isel_string;
993f19a8 524extern const char *rs6000_spe_string;
08b57fb3
AH
525extern const char *rs6000_altivec_vrsave_string;
526extern int rs6000_altivec_vrsave;
a5c76ee6
ZW
527extern const char *rs6000_longcall_switch;
528extern int rs6000_default_long_calls;
025d9908
KH
529extern const char* rs6000_alignment_string;
530extern int rs6000_alignment_flags;
79ae11c4
DN
531extern const char *rs6000_sched_restricted_insns_priority_str;
532extern int rs6000_sched_restricted_insns_priority;
569fa502
DN
533extern const char *rs6000_sched_costly_dep_str;
534extern enum rs6000_dependence_cost rs6000_sched_costly_dep;
cbe26ab8
DN
535extern const char *rs6000_sched_insert_nops_str;
536extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
025d9908 537
8bb418a3
ZL
538extern int rs6000_warn_altivec_long;
539extern const char *rs6000_warn_altivec_long_switch;
540
025d9908
KH
541/* Alignment options for fields in structures for sub-targets following
542 AIX-like ABI.
543 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
544 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
545
546 Override the macro definitions when compiling libobjc to avoid undefined
547 reference to rs6000_alignment_flags due to library's use of GCC alignment
548 macros which use the macros below. */
549
550#ifndef IN_TARGET_LIBS
551#define MASK_ALIGN_POWER 0x00000000
552#define MASK_ALIGN_NATURAL 0x00000001
553#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
554#else
555#define TARGET_ALIGN_NATURAL 0
556#endif
6fa3f289
ZW
557
558#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
559#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
08b57fb3 560#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
6fa3f289 561
a3170dc6
AH
562#define TARGET_SPE_ABI 0
563#define TARGET_SPE 0
993f19a8 564#define TARGET_E500 0
a3170dc6
AH
565#define TARGET_ISEL 0
566#define TARGET_FPRS 1
567
fb623df5
RK
568/* Sometimes certain combinations of command options do not make sense
569 on a particular target machine. You can define a macro
570 `OVERRIDE_OPTIONS' to take account of this. This macro, if
571 defined, is executed once just after all the command options have
572 been parsed.
573
ffa22984 574 Do not use this macro to turn on various extra optimizations for
5accd822
DE
575 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
576
fb623df5
RK
577 On the RS/6000 this is used to define the target cpu type. */
578
8e3f41e7 579#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 580
5accd822
DE
581/* Define this to change the optimizations performed by default. */
582#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
583
4c4eb375
GK
584/* Show we can debug even without a frame pointer. */
585#define CAN_DEBUG_WITHOUT_FP
586
a5c76ee6 587/* Target pragma. */
c58b209a
NB
588#define REGISTER_TARGET_PRAGMAS() do { \
589 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
a5c76ee6
ZW
590} while (0)
591
4c4eb375
GK
592/* Target #defines. */
593#define TARGET_CPU_CPP_BUILTINS() \
594 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
595
596/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
597 we're compiling for. Some configurations may need to override it. */
598#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
599 do \
600 { \
601 if (BYTES_BIG_ENDIAN) \
602 { \
603 builtin_define ("__BIG_ENDIAN__"); \
604 builtin_define ("_BIG_ENDIAN"); \
605 builtin_assert ("machine=bigendian"); \
606 } \
607 else \
608 { \
609 builtin_define ("__LITTLE_ENDIAN__"); \
610 builtin_define ("_LITTLE_ENDIAN"); \
611 builtin_assert ("machine=littleendian"); \
612 } \
613 } \
614 while (0)
f045b2c9 615\f
4c4eb375 616/* Target machine storage layout. */
f045b2c9 617
13d39dbc 618/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 619 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
620 the value is constrained to be within the bounds of the declared
621 type, but kept valid in the wider mode. The signedness of the
622 extension may differ from that of the type. */
623
39403d82
DE
624#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
625 if (GET_MODE_CLASS (MODE) == MODE_INT \
626 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
b78d48dd 627 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 628
f045b2c9 629/* Define this if most significant bit is lowest numbered
82e41834
KH
630 in instructions that operate on numbered bit-fields. */
631/* That is true on RS/6000. */
f045b2c9
RS
632#define BITS_BIG_ENDIAN 1
633
634/* Define this if most significant byte of a word is the lowest numbered. */
635/* That is true on RS/6000. */
636#define BYTES_BIG_ENDIAN 1
637
638/* Define this if most significant word of a multiword number is lowest
c81bebd7 639 numbered.
f045b2c9
RS
640
641 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 642 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
643#define WORDS_BIG_ENDIAN 1
644
2e360ab3 645#define MAX_BITS_PER_WORD 64
f045b2c9
RS
646
647/* Width of a word, in units (bytes). */
c1aa3958 648#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
649#ifdef IN_LIBGCC2
650#define MIN_UNITS_PER_WORD UNITS_PER_WORD
651#else
ef0e53ce 652#define MIN_UNITS_PER_WORD 4
f34fc46e 653#endif
2e360ab3 654#define UNITS_PER_FP_WORD 8
0ac081f6 655#define UNITS_PER_ALTIVEC_WORD 16
a3170dc6 656#define UNITS_PER_SPE_WORD 8
f045b2c9 657
915f619f
JW
658/* Type used for ptrdiff_t, as a string used in a declaration. */
659#define PTRDIFF_TYPE "int"
660
058ef853
DE
661/* Type used for size_t, as a string used in a declaration. */
662#define SIZE_TYPE "long unsigned int"
663
f045b2c9
RS
664/* Type used for wchar_t, as a string used in a declaration. */
665#define WCHAR_TYPE "short unsigned int"
666
667/* Width of wchar_t in bits. */
668#define WCHAR_TYPE_SIZE 16
669
9e654916
RK
670/* A C expression for the size in bits of the type `short' on the
671 target machine. If you don't define this, the default is half a
672 word. (If this would be less than one storage unit, it is
673 rounded up to one unit.) */
674#define SHORT_TYPE_SIZE 16
675
676/* A C expression for the size in bits of the type `int' on the
677 target machine. If you don't define this, the default is one
678 word. */
19d2d16f 679#define INT_TYPE_SIZE 32
9e654916
RK
680
681/* A C expression for the size in bits of the type `long' on the
682 target machine. If you don't define this, the default is one
683 word. */
2f3e5814 684#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
685
686/* A C expression for the size in bits of the type `long long' on the
687 target machine. If you don't define this, the default is two
688 words. */
689#define LONG_LONG_TYPE_SIZE 64
690
9e654916
RK
691/* A C expression for the size in bits of the type `float' on the
692 target machine. If you don't define this, the default is one
693 word. */
694#define FLOAT_TYPE_SIZE 32
695
696/* A C expression for the size in bits of the type `double' on the
697 target machine. If you don't define this, the default is two
698 words. */
699#define DOUBLE_TYPE_SIZE 64
700
701/* A C expression for the size in bits of the type `long double' on
702 the target machine. If you don't define this, the default is two
703 words. */
6fa3f289 704#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 705
06f4e019
DE
706/* Define this to set long double type size to use in libgcc2.c, which can
707 not depend on target_flags. */
708#ifdef __LONG_DOUBLE_128__
709#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
710#else
711#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
712#endif
9e654916 713
5b8f5865
DE
714/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
715#define WIDEST_HARDWARE_FP_SIZE 64
716
f045b2c9
RS
717/* Width in bits of a pointer.
718 See also the macro `Pmode' defined below. */
2f3e5814 719#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
720
721/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 722#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
723
724/* Boundary (in *bits*) on which stack pointer should be aligned. */
19fb36e3
AM
725#define STACK_BOUNDARY \
726 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
727
728/* Allocation boundary (in *bits*) for the code of a function. */
729#define FUNCTION_BOUNDARY 32
730
731/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
732#define BIGGEST_ALIGNMENT 128
733
734/* A C expression to compute the alignment for a variables in the
735 local store. TYPE is the data type, and ALIGN is the alignment
736 that the object would ordinarily have. */
737#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a3170dc6
AH
738 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
739 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
b73fd26c 740
f045b2c9
RS
741/* Alignment of field after `int : 0' in a structure. */
742#define EMPTY_FIELD_BOUNDARY 32
743
744/* Every structure's size must be a multiple of this. */
745#define STRUCTURE_SIZE_BOUNDARY 8
746
a3170dc6
AH
747/* Return 1 if a structure or array containing FIELD should be
748 accessed using `BLKMODE'.
749
750 For the SPE, simd types are V2SI, and gcc can be tempted to put the
751 entire thing in a DI and use subregs to access the internals.
752 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
753 back-end. Because a single GPR can hold a V2SI, but not a DI, the
754 best thing to do is set structs to BLKmode and avoid Severe Tire
755 Damage. */
756#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
757 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
758
43a88a8c 759/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
760#define PCC_BITFIELD_TYPE_MATTERS 1
761
69ef87e2
AH
762/* Make strings word-aligned so strcpy from constants will be faster.
763 Make vector constants quadword aligned. */
764#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
765 (TREE_CODE (EXP) == STRING_CST \
766 && (ALIGN) < BITS_PER_WORD \
767 ? BITS_PER_WORD \
768 : (ALIGN))
f045b2c9 769
0ac081f6
AH
770/* Make arrays of chars word-aligned for the same reasons.
771 Align vectors to 128 bits. */
f045b2c9 772#define DATA_ALIGNMENT(TYPE, ALIGN) \
a3170dc6 773 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
0ac081f6 774 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
775 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
776 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
777
a0ab749a 778/* Nonzero if move instructions will actually fail to work
f045b2c9 779 when given unaligned data. */
fdaff8ba 780#define STRICT_ALIGNMENT 0
e1565e65
DE
781
782/* Define this macro to be the value 1 if unaligned accesses have a cost
783 many times greater than aligned accesses, for example if they are
784 emulated in a trap handler. */
41543739
GK
785#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
786 (STRICT_ALIGNMENT \
fcce224d
DE
787 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
788 || (MODE) == DImode) \
41543739 789 && (ALIGN) < 32))
f045b2c9
RS
790\f
791/* Standard register usage. */
792
793/* Number of actual hardware registers.
794 The hardware registers are assigned numbers for the compiler
795 from 0 to just below FIRST_PSEUDO_REGISTER.
796 All registers that the compiler knows about must be given numbers,
797 even those that are not normally considered general registers.
798
799 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
800 an MQ register, a count register, a link register, and 8 condition
07488f32
ZW
801 register fields, which we view here as separate registers. AltiVec
802 adds 32 vector registers and a VRsave register.
f045b2c9
RS
803
804 In addition, the difference between the frame and argument pointers is
805 a function of the number of registers saved, so we need to have a
806 register for AP that will later be eliminated in favor of SP or FP.
802a0058 807 This is a normal register, but it is fixed.
f045b2c9 808
802a0058
MM
809 We also create a pseudo register for float/int conversions, that will
810 really represent the memory location used. It is represented here as
811 a register, in order to work around problems in allocating stack storage
812 in inline functions. */
813
a3170dc6 814#define FIRST_PSEUDO_REGISTER 113
f045b2c9 815
d6a7951f 816/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 817#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 818
93c9d1ba 819/* Add 32 dwarf columns for synthetic SPE registers. */
c19de7aa
AH
820#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
821
93c9d1ba
AM
822/* The SPE has an additional 32 synthetic registers, with DWARF debug
823 info numbering for these registers starting at 1200. While eh_frame
824 register numbering need not be the same as the debug info numbering,
825 we choose to number these regs for eh_frame at 1200 too. This allows
826 future versions of the rs6000 backend to add hard registers and
827 continue to use the gcc hard register numbering for eh_frame. If the
828 extra SPE registers in eh_frame were numbered starting from the
829 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
830 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
831 avoid invalidating older SPE eh_frame info.
832
833 We must map them here to avoid huge unwinder tables mostly consisting
834 of unused space. */
835#define DWARF_REG_TO_UNWIND_COLUMN(r) \
836 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER) : (r))
837
838/* Use gcc hard register numbering for eh_frame. */
839#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 840
f045b2c9
RS
841/* 1 for registers that have pervasive standard uses
842 and are not available for the register allocator.
843
5dead3e5
DJ
844 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
845 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 846
a127c4e5
RK
847 cr5 is not supposed to be used.
848
849 On System V implementations, r13 is fixed and not available for use. */
850
f045b2c9 851#define FIXED_REGISTERS \
5dead3e5 852 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
853 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
854 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
855 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
856 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
857 /* AltiVec registers. */ \
858 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
859 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 860 1, 1 \
a3170dc6 861 , 1, 1 \
0ac081f6 862}
f045b2c9
RS
863
864/* 1 for registers not available across function calls.
865 These must include the FIXED_REGISTERS and also any
866 registers that can be used without being saved.
867 The latter must include the registers where values are returned
868 and the register where structure-value addresses are passed.
869 Aside from that, you can include as many other registers as you like. */
870
871#define CALL_USED_REGISTERS \
a127c4e5 872 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
873 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
874 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
875 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
876 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
877 /* AltiVec registers. */ \
878 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
879 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 880 1, 1 \
a3170dc6 881 , 1, 1 \
0ac081f6
AH
882}
883
289e96b2
AH
884/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
885 the entire set of `FIXED_REGISTERS' be included.
886 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
887 This macro is optional. If not specified, it defaults to the value
888 of `CALL_USED_REGISTERS'. */
889
890#define CALL_REALLY_USED_REGISTERS \
891 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
892 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
893 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
894 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
895 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
896 /* AltiVec registers. */ \
897 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
898 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 899 0, 0 \
a3170dc6 900 , 0, 0 \
289e96b2 901}
f045b2c9 902
9ebbca7d
GK
903#define MQ_REGNO 64
904#define CR0_REGNO 68
905#define CR1_REGNO 69
906#define CR2_REGNO 70
907#define CR3_REGNO 71
908#define CR4_REGNO 72
909#define MAX_CR_REGNO 75
910#define XER_REGNO 76
0ac081f6
AH
911#define FIRST_ALTIVEC_REGNO 77
912#define LAST_ALTIVEC_REGNO 108
28bcfd4d 913#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 914#define VRSAVE_REGNO 109
5f004351 915#define VSCR_REGNO 110
a3170dc6
AH
916#define SPE_ACC_REGNO 111
917#define SPEFSCR_REGNO 112
9ebbca7d 918
f045b2c9
RS
919/* List the order in which to allocate registers. Each register must be
920 listed once, even those in FIXED_REGISTERS.
921
922 We allocate in the following order:
923 fp0 (not saved or used for anything)
924 fp13 - fp2 (not saved; incoming fp arg registers)
925 fp1 (not saved; return value)
926 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
927 cr7, cr6 (not saved or special)
928 cr1 (not saved, but used for FP operations)
f045b2c9 929 cr0 (not saved, but used for arithmetic operations)
5accd822 930 cr4, cr3, cr2 (saved)
f045b2c9
RS
931 r0 (not saved; cannot be base reg)
932 r9 (not saved; best for TImode)
933 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
934 r3 (not saved; return value register)
935 r31 - r13 (saved; order given to save least number)
936 r12 (not saved; if used for DImode or DFmode would use r13)
937 mq (not saved; best to use it if we can)
938 ctr (not saved; when we have the choice ctr is better)
939 lr (saved)
5f004351 940 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
a3170dc6 941 spe_acc, spefscr (fixed)
0ac081f6
AH
942
943 AltiVec registers:
944 v0 - v1 (not saved or used for anything)
945 v13 - v3 (not saved; incoming vector arg registers)
946 v2 (not saved; incoming vector arg reg; return value)
947 v19 - v14 (not saved or used for anything)
948 v31 - v20 (saved; order given to save least number)
949*/
950
6b13641d
DJ
951#if FIXED_R2 == 1
952#define MAYBE_R2_AVAILABLE
953#define MAYBE_R2_FIXED 2,
954#else
955#define MAYBE_R2_AVAILABLE 2,
956#define MAYBE_R2_FIXED
957#endif
f045b2c9
RS
958
959#define REG_ALLOC_ORDER \
960 {32, \
961 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
962 33, \
963 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
964 50, 49, 48, 47, 46, \
5accd822 965 75, 74, 69, 68, 72, 71, 70, \
6b13641d 966 0, MAYBE_R2_AVAILABLE \
f045b2c9
RS
967 9, 11, 10, 8, 7, 6, 5, 4, \
968 3, \
969 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
970 18, 17, 16, 15, 14, 13, 12, \
971 64, 66, 65, \
6b13641d 972 73, 1, MAYBE_R2_FIXED 67, 76, \
0ac081f6
AH
973 /* AltiVec registers. */ \
974 77, 78, \
975 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
976 79, \
977 96, 95, 94, 93, 92, 91, \
58568475 978 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
5f004351 979 97, 109, 110 \
a3170dc6 980 , 111, 112 \
0ac081f6 981}
f045b2c9
RS
982
983/* True if register is floating-point. */
984#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
985
986/* True if register is a condition register. */
987#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
988
815cdc52
MM
989/* True if register is a condition register, but not cr0. */
990#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
991
f045b2c9 992/* True if register is an integer register. */
9ebbca7d 993#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 994
a3170dc6
AH
995/* SPE SIMD registers are just the GPRs. */
996#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
997
0d86f538 998/* True if register is the XER register. */
9ebbca7d 999#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 1000
0ac081f6
AH
1001/* True if register is an AltiVec register. */
1002#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1003
f045b2c9 1004/* Return number of consecutive hard regs needed starting at reg REGNO
d8ecbcdb
AH
1005 to hold something of mode MODE. */
1006
1007#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
0e67400a
FJ
1008
1009#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1010 ((TARGET_32BIT && TARGET_POWERPC64 \
1011 && (MODE == DImode || MODE == DFmode) \
1012 && INT_REGNO_P (REGNO)) ? 1 : 0)
f045b2c9 1013
0ac081f6 1014#define ALTIVEC_VECTOR_MODE(MODE) \
cb2a532e
AH
1015 ((MODE) == V16QImode \
1016 || (MODE) == V8HImode \
1017 || (MODE) == V4SFmode \
6e1f54e2 1018 || (MODE) == V4SImode)
0ac081f6 1019
a3170dc6
AH
1020#define SPE_VECTOR_MODE(MODE) \
1021 ((MODE) == V4HImode \
1022 || (MODE) == V2SFmode \
00a892b8 1023 || (MODE) == V1DImode \
a3170dc6
AH
1024 || (MODE) == V2SImode)
1025
0ac081f6
AH
1026/* Define this macro to be nonzero if the port is prepared to handle
1027 insns involving vector mode MODE. At the very least, it must have
1028 move patterns for this mode. */
1029
a3170dc6
AH
1030#define VECTOR_MODE_SUPPORTED_P(MODE) \
1031 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
1032 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
0ac081f6 1033
0d1fbc8c
AH
1034/* Value is TRUE if hard register REGNO can hold a value of
1035 machine-mode MODE. */
1036#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1037 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
f045b2c9
RS
1038
1039/* Value is 1 if it is a good idea to tie two pseudo registers
1040 when one has mode MODE1 and one has mode MODE2.
1041 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1042 for any hard reg, then this must be 0 for correct output. */
1043#define MODES_TIEABLE_P(MODE1, MODE2) \
1044 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1045 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1046 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1047 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1048 : GET_MODE_CLASS (MODE1) == MODE_CC \
1049 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1050 : GET_MODE_CLASS (MODE2) == MODE_CC \
1051 ? GET_MODE_CLASS (MODE1) == MODE_CC \
4dcc01f3
AH
1052 : SPE_VECTOR_MODE (MODE1) \
1053 ? SPE_VECTOR_MODE (MODE2) \
1054 : SPE_VECTOR_MODE (MODE2) \
1055 ? SPE_VECTOR_MODE (MODE1) \
0ac081f6
AH
1056 : ALTIVEC_VECTOR_MODE (MODE1) \
1057 ? ALTIVEC_VECTOR_MODE (MODE2) \
1058 : ALTIVEC_VECTOR_MODE (MODE2) \
1059 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
1060 : 1)
1061
c8ae788f
SB
1062/* Post-reload, we can't use any new AltiVec registers, as we already
1063 emitted the vrsave mask. */
1064
1065#define HARD_REGNO_RENAME_OK(SRC, DST) \
1066 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
1067
f045b2c9 1068/* A C expression returning the cost of moving data from a register of class
34bb030a 1069 CLASS1 to one of CLASS2. */
f045b2c9 1070
34bb030a 1071#define REGISTER_MOVE_COST rs6000_register_move_cost
f045b2c9 1072
34bb030a
DE
1073/* A C expressions returning the cost of moving data of MODE from a register to
1074 or from memory. */
f045b2c9 1075
34bb030a 1076#define MEMORY_MOVE_COST rs6000_memory_move_cost
f045b2c9
RS
1077
1078/* Specify the cost of a branch insn; roughly the number of extra insns that
1079 should be added to avoid a branch.
1080
ef457bda 1081 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1082 unscheduled conditional branch. */
1083
ef457bda 1084#define BRANCH_COST 3
f045b2c9 1085
85e50b6b
DE
1086/* Override BRANCH_COST heuristic which empirically produces worse
1087 performance for fold_range_test(). */
1088
1089#define RANGE_TEST_NON_SHORT_CIRCUIT 0
a3170dc6
AH
1090
1091/* A fixed register used at prologue and epilogue generation to fix
1092 addressing modes. The SPE needs heavy addressing fixes at the last
1093 minute, and it's best to save a register for it.
1094
1095 AltiVec also needs fixes, but we've gotten around using r11, which
1096 is actually wrong because when use_backchain_to_restore_sp is true,
1097 we end up clobbering r11.
1098
1099 The AltiVec case needs to be fixed. Dunno if we should break ABI
b6d08ca1 1100 compatibility and reserve a register for it as well.. */
a3170dc6
AH
1101
1102#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
1103
2aa4498c
AH
1104/* Define this macro to change register usage conditional on target
1105 flags. */
f85f4585 1106
2aa4498c 1107#define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
6febd581 1108
f045b2c9
RS
1109/* Specify the registers used for certain standard purposes.
1110 The values of these macros are register numbers. */
1111
1112/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1113/* #define PC_REGNUM */
1114
1115/* Register to use for pushing function arguments. */
1116#define STACK_POINTER_REGNUM 1
1117
1118/* Base register for access to local variables of the function. */
1119#define FRAME_POINTER_REGNUM 31
1120
1121/* Value should be nonzero if functions must have frame pointers.
1122 Zero means the frame pointer need not be set up (and parms
1123 may be accessed via the stack pointer) in functions that seem suitable.
1124 This is computed in `reload', in reload1.c. */
1125#define FRAME_POINTER_REQUIRED 0
1126
1127/* Base register for access to arguments of the function. */
1128#define ARG_POINTER_REGNUM 67
1129
1130/* Place to put static chain when calling a function that requires it. */
1131#define STATIC_CHAIN_REGNUM 11
1132
82e41834 1133/* Link register number. */
9ebbca7d 1134#define LINK_REGISTER_REGNUM 65
b6c9286a 1135
82e41834 1136/* Count register number. */
9ebbca7d 1137#define COUNT_REGISTER_REGNUM 66
f045b2c9
RS
1138\f
1139/* Define the classes of registers for register constraints in the
1140 machine description. Also define ranges of constants.
1141
1142 One of the classes must always be named ALL_REGS and include all hard regs.
1143 If there is more than one class, another class must be named NO_REGS
1144 and contain no registers.
1145
1146 The name GENERAL_REGS must be the name of a class (or an alias for
1147 another name such as ALL_REGS). This is the class of registers
1148 that is allowed by "g" or "r" in a register constraint.
1149 Also, registers outside this class are allocated only when
1150 instructions express preferences for them.
1151
1152 The classes must be numbered in nondecreasing order; that is,
1153 a larger-numbered class must never be contained completely
1154 in a smaller-numbered class.
1155
1156 For any two classes, it is very desirable that there be another
1157 class that represents their union. */
c81bebd7 1158
f045b2c9
RS
1159/* The RS/6000 has three types of registers, fixed-point, floating-point,
1160 and condition registers, plus three special registers, MQ, CTR, and the
07488f32 1161 link register. AltiVec adds a vector register class.
f045b2c9
RS
1162
1163 However, r0 is special in that it cannot be used as a base register.
1164 So make a class for registers valid as base registers.
1165
1166 Also, cr0 is the only condition code register that can be used in
0d86f538 1167 arithmetic insns, so make a separate class for it. */
f045b2c9 1168
ebedb4dd
MM
1169enum reg_class
1170{
1171 NO_REGS,
ebedb4dd
MM
1172 BASE_REGS,
1173 GENERAL_REGS,
1174 FLOAT_REGS,
0ac081f6
AH
1175 ALTIVEC_REGS,
1176 VRSAVE_REGS,
5f004351 1177 VSCR_REGS,
a3170dc6
AH
1178 SPE_ACC_REGS,
1179 SPEFSCR_REGS,
ebedb4dd
MM
1180 NON_SPECIAL_REGS,
1181 MQ_REGS,
1182 LINK_REGS,
1183 CTR_REGS,
1184 LINK_OR_CTR_REGS,
1185 SPECIAL_REGS,
1186 SPEC_OR_GEN_REGS,
1187 CR0_REGS,
ebedb4dd
MM
1188 CR_REGS,
1189 NON_FLOAT_REGS,
9ebbca7d 1190 XER_REGS,
ebedb4dd
MM
1191 ALL_REGS,
1192 LIM_REG_CLASSES
1193};
f045b2c9
RS
1194
1195#define N_REG_CLASSES (int) LIM_REG_CLASSES
1196
82e41834 1197/* Give names of register classes as strings for dump file. */
f045b2c9 1198
ebedb4dd
MM
1199#define REG_CLASS_NAMES \
1200{ \
1201 "NO_REGS", \
ebedb4dd
MM
1202 "BASE_REGS", \
1203 "GENERAL_REGS", \
1204 "FLOAT_REGS", \
0ac081f6
AH
1205 "ALTIVEC_REGS", \
1206 "VRSAVE_REGS", \
5f004351 1207 "VSCR_REGS", \
a3170dc6
AH
1208 "SPE_ACC_REGS", \
1209 "SPEFSCR_REGS", \
ebedb4dd
MM
1210 "NON_SPECIAL_REGS", \
1211 "MQ_REGS", \
1212 "LINK_REGS", \
1213 "CTR_REGS", \
1214 "LINK_OR_CTR_REGS", \
1215 "SPECIAL_REGS", \
1216 "SPEC_OR_GEN_REGS", \
1217 "CR0_REGS", \
ebedb4dd
MM
1218 "CR_REGS", \
1219 "NON_FLOAT_REGS", \
9ebbca7d 1220 "XER_REGS", \
ebedb4dd
MM
1221 "ALL_REGS" \
1222}
f045b2c9
RS
1223
1224/* Define which registers fit in which classes.
1225 This is an initializer for a vector of HARD_REG_SET
1226 of length N_REG_CLASSES. */
1227
0ac081f6
AH
1228#define REG_CLASS_CONTENTS \
1229{ \
1230 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1231 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1232 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1233 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1234 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1235 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1236 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
a3170dc6
AH
1237 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1238 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
0ac081f6
AH
1239 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1240 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1241 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1242 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1243 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1244 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1245 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1246 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1247 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1248 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1249 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1250 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1251}
f045b2c9
RS
1252
1253/* The same information, inverted:
1254 Return the class number of the smallest class containing
1255 reg number REGNO. This could be a conditional expression
1256 or could index an array. */
1257
0d86f538
GK
1258#define REGNO_REG_CLASS(REGNO) \
1259 ((REGNO) == 0 ? GENERAL_REGS \
1260 : (REGNO) < 32 ? BASE_REGS \
1261 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1262 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1263 : (REGNO) == CR0_REGNO ? CR0_REGS \
1264 : CR_REGNO_P (REGNO) ? CR_REGS \
1265 : (REGNO) == MQ_REGNO ? MQ_REGS \
1266 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1267 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1268 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1269 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1270 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
5f004351 1271 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
a3170dc6
AH
1272 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1273 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
f045b2c9
RS
1274 : NO_REGS)
1275
1276/* The class value for index registers, and the one for base regs. */
1277#define INDEX_REG_CLASS GENERAL_REGS
1278#define BASE_REG_CLASS BASE_REGS
1279
1280/* Get reg_class from a letter such as appears in the machine description. */
1281
1282#define REG_CLASS_FROM_LETTER(C) \
1283 ((C) == 'f' ? FLOAT_REGS \
1284 : (C) == 'b' ? BASE_REGS \
1285 : (C) == 'h' ? SPECIAL_REGS \
1286 : (C) == 'q' ? MQ_REGS \
1287 : (C) == 'c' ? CTR_REGS \
1288 : (C) == 'l' ? LINK_REGS \
0ac081f6 1289 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1290 : (C) == 'x' ? CR0_REGS \
1291 : (C) == 'y' ? CR_REGS \
9ebbca7d 1292 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1293 : NO_REGS)
1294
1295/* The letters I, J, K, L, M, N, and P in a register constraint string
1296 can be used to stand for particular ranges of immediate operands.
1297 This macro defines what the ranges are.
1298 C is the letter, and VALUE is a constant value.
1299 Return 1 if VALUE is in the range specified by C.
1300
9615f239 1301 `I' is a signed 16-bit constant
a0ab749a
KH
1302 `J' is a constant with only the high-order 16 bits nonzero
1303 `K' is a constant with only the low-order 16 bits nonzero
9615f239 1304 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1305 `M' is a constant that is greater than 31
2bfcf297 1306 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1307 `O' is the constant zero
1308 `P' is a constant whose negation is a signed 16-bit constant */
1309
5b6f7b96
RK
1310#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1311 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1312 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1313 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1314 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1315 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1316 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1317 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1318 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1319 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1320 : 0)
1321
1322/* Similar, but for floating constants, and defining letters G and H.
1323 Here VALUE is the CONST_DOUBLE rtx itself.
1324
1325 We flag for special constants when we can copy the constant into
4e74d8ec 1326 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1327
c4c40373 1328 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1329
1330#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1331 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1332 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1333 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1334 : 0)
f045b2c9
RS
1335
1336/* Optional extra constraints for this machine.
1337
b6c9286a
MM
1338 'Q' means that is a memory operand that is just an offset from a reg.
1339 'R' is for AIX TOC entries.
a260abc9 1340 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1341 'T' is a constant that can be placed into a 32-bit mask operand
0ba1b2ff 1342 'U' is for V.4 small data references.
d744e06e 1343 'W' is a vector constant that can be easily generated (no mem refs).
d2288d5d 1344 'Y' is a indexed or word-aligned displacement memory operand.
0ba1b2ff 1345 't' is for AND masks that can be performed by two rldic{l,r} insns. */
f045b2c9 1346
e8a8bc24
RK
1347#define EXTRA_CONSTRAINT(OP, C) \
1348 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
4d588c14 1349 : (C) == 'R' ? legitimate_constant_pool_address_p (OP) \
b1765bde
DE
1350 : (C) == 'S' ? mask64_operand (OP, DImode) \
1351 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1352 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1353 && small_data_operand (OP, GET_MODE (OP))) \
0ba1b2ff
AM
1354 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1355 && (fixed_regs[CR0_REGNO] \
1356 || !logical_operand (OP, DImode)) \
1357 && !mask64_operand (OP, DImode)) \
d744e06e 1358 : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP))) \
d2288d5d 1359 : (C) == 'Y' ? (word_offset_memref_operand (OP, GET_MODE (OP))) \
e8a8bc24 1360 : 0)
f045b2c9 1361
59b9a953 1362/* Define which constraints are memory constraints. Tell reload
d2288d5d
HP
1363 that any memory address can be reloaded by copying the
1364 memory address into a base register if required. */
1365
1366#define EXTRA_MEMORY_CONSTRAINT(C, STR) \
1367 ((C) == 'Q' || (C) == 'Y')
1368
f045b2c9
RS
1369/* Given an rtx X being reloaded into a reg required to be
1370 in class CLASS, return the class of reg to actually use.
1371 In general this is just CLASS; but on some machines
c81bebd7 1372 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1373
1374 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1375 floating-point CONST_DOUBLE to force it to be copied to memory.
1376
1377 We also don't want to reload integer values into floating-point
1378 registers if we can at all help it. In fact, this can
1379 cause reload to abort, if it tries to generate a reload of CTR
1380 into a FP register and discovers it doesn't have the memory location
1381 required.
1382
1383 ??? Would it be a good idea to have reload do the converse, that is
1384 try to reload floating modes into FP registers if possible?
1385 */
f045b2c9 1386
802a0058 1387#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1388 (((GET_CODE (X) == CONST_DOUBLE \
1389 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1390 ? NO_REGS \
1391 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1392 && (CLASS) == NON_SPECIAL_REGS) \
1393 ? GENERAL_REGS \
1394 : (CLASS)))
c81bebd7 1395
f045b2c9
RS
1396/* Return the register class of a scratch register needed to copy IN into
1397 or out of a register in CLASS in MODE. If it can be done directly,
1398 NO_REGS is returned. */
1399
1400#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1401 secondary_reload_class (CLASS, MODE, IN)
1402
0ac081f6
AH
1403/* If we are copying between FP or AltiVec registers and anything
1404 else, we need a memory location. */
7ea555a4 1405
0ac081f6
AH
1406#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1407 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1408 || (CLASS2) == FLOAT_REGS \
1409 || (CLASS1) == ALTIVEC_REGS \
1410 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1411
f045b2c9
RS
1412/* Return the maximum number of consecutive registers
1413 needed to represent mode MODE in a register of class CLASS.
1414
1415 On RS/6000, this is the size of MODE in words,
1416 except in the FP regs, where a single reg is enough for two words. */
802a0058 1417#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1418 (((CLASS) == FLOAT_REGS) \
2e360ab3 1419 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
c1aa3958 1420 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230 1421
580d3230 1422
cff9f8d5 1423/* Return a class of registers that cannot change FROM mode to TO mode. */
02188693 1424
a9baceb1
GK
1425#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1426 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) \
1427 && GET_MODE_SIZE (FROM) >= 8 && GET_MODE_SIZE (TO) >= 8) \
1428 ? 0 \
1429 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1430 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
28636c6e 1431 : (TARGET_SPE && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1) \
a9baceb1 1432 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
b0c42aed 1433 : 0)
02188693 1434
f045b2c9
RS
1435/* Stack layout; function entry, exit and calling. */
1436
6b67933e
RK
1437/* Enumeration to give which calling sequence to use. */
1438enum rs6000_abi {
1439 ABI_NONE,
1440 ABI_AIX, /* IBM's AIX */
b6c9286a 1441 ABI_V4, /* System V.4/eabi */
ee890fe2 1442 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1443};
1444
b6c9286a
MM
1445extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1446
f045b2c9
RS
1447/* Define this if pushing a word on the stack
1448 makes the stack pointer a smaller address. */
1449#define STACK_GROWS_DOWNWARD
1450
327e5343
FJ
1451/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1452#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1453
f045b2c9
RS
1454/* Define this if the nominal address of the stack frame
1455 is at the high-address end of the local variables;
1456 that is, each additional local variable allocated
1457 goes at a more negative offset in the frame.
1458
1459 On the RS/6000, we grow upwards, from the area after the outgoing
1460 arguments. */
1461/* #define FRAME_GROWS_DOWNWARD */
1462
4697a36c 1463/* Size of the outgoing register save area */
9ebbca7d 1464#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1465 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1466 ? (TARGET_64BIT ? 64 : 32) \
1467 : 0)
4697a36c
MM
1468
1469/* Size of the fixed area on the stack */
9ebbca7d 1470#define RS6000_SAVE_AREA \
50d440bc 1471 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1472 << (TARGET_64BIT ? 1 : 0))
4697a36c 1473
97f6e72f
DE
1474/* MEM representing address to save the TOC register */
1475#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1476 plus_constant (stack_pointer_rtx, \
1477 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1478
4697a36c
MM
1479/* Size of the V.4 varargs area if needed */
1480#define RS6000_VARARGS_AREA 0
1481
4697a36c 1482/* Align an address */
ed33106f 1483#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1484
1485/* Size of V.4 varargs area in bytes */
1486#define RS6000_VARARGS_SIZE \
2f3e5814 1487 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1488
f045b2c9
RS
1489/* Offset within stack frame to start allocating local variables at.
1490 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1491 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1492 of the first local allocated.
f045b2c9
RS
1493
1494 On the RS/6000, the frame pointer is the same as the stack pointer,
1495 except for dynamic allocations. So we start after the fixed area and
1496 outgoing parameter area. */
1497
802a0058 1498#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1499 (RS6000_ALIGN (current_function_outgoing_args_size, \
1500 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1501 + RS6000_VARARGS_AREA \
1502 + RS6000_SAVE_AREA)
1503
1504/* Offset from the stack pointer register to an item dynamically
1505 allocated on the stack, e.g., by `alloca'.
1506
1507 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1508 length of the outgoing arguments. The default is correct for most
1509 machines. See `function.c' for details. */
1510#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1511 (RS6000_ALIGN (current_function_outgoing_args_size, \
1512 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1513 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1514
1515/* If we generate an insn to push BYTES bytes,
1516 this says how many the stack pointer really advances by.
1517 On RS/6000, don't define this because there are no push insns. */
1518/* #define PUSH_ROUNDING(BYTES) */
1519
1520/* Offset of first parameter from the argument pointer register value.
1521 On the RS/6000, we define the argument pointer to the start of the fixed
1522 area. */
4697a36c 1523#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1524
62153b61
JM
1525/* Offset from the argument pointer register value to the top of
1526 stack. This is different from FIRST_PARM_OFFSET because of the
1527 register save area. */
1528#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1529
f045b2c9
RS
1530/* Define this if stack space is still allocated for a parameter passed
1531 in a register. The value is the number of bytes allocated to this
1532 area. */
4697a36c 1533#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1534
1535/* Define this if the above stack space is to be considered part of the
1536 space allocated by the caller. */
1537#define OUTGOING_REG_PARM_STACK_SPACE
1538
1539/* This is the difference between the logical top of stack and the actual sp.
1540
82e41834 1541 For the RS/6000, sp points past the fixed area. */
4697a36c 1542#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1543
1544/* Define this if the maximum size of all the outgoing args is to be
1545 accumulated and pushed during the prologue. The amount can be
1546 found in the variable current_function_outgoing_args_size. */
f73ad30e 1547#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1548
1549/* Value is the number of bytes of arguments automatically
1550 popped when returning from a subroutine call.
8b109b37 1551 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1552 FUNTYPE is the data type of the function (as a tree),
1553 or for a library call it is an identifier node for the subroutine name.
1554 SIZE is the number of bytes of arguments passed on the stack. */
1555
8b109b37 1556#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1557
1558/* Define how to find the value returned by a function.
1559 VALTYPE is the data type of the value (as a tree).
1560 If the precise function being called is known, FUNC is its FUNCTION_DECL;
a6ebc39a
AH
1561 otherwise, FUNC is 0. */
1562
1563#define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
f045b2c9
RS
1564
1565/* Define how to find the value returned by a library function
1566 assuming the value has mode MODE. */
1567
ded9bf77 1568#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1569
6fa3f289
ZW
1570/* DRAFT_V4_STRUCT_RET defaults off. */
1571#define DRAFT_V4_STRUCT_RET 0
f607bc57 1572
bd5bd7ac 1573/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1574#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1575
a260abc9 1576/* Mode of stack savearea.
dfdfa60f
DE
1577 FUNCTION is VOIDmode because calling convention maintains SP.
1578 BLOCK needs Pmode for SP.
a260abc9
DE
1579 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1580#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1581 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1582 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1583
4697a36c
MM
1584/* Minimum and maximum general purpose registers used to hold arguments. */
1585#define GP_ARG_MIN_REG 3
1586#define GP_ARG_MAX_REG 10
1587#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1588
1589/* Minimum and maximum floating point registers used to hold arguments. */
1590#define FP_ARG_MIN_REG 33
7509c759
MM
1591#define FP_ARG_AIX_MAX_REG 45
1592#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1593#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1594 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1595 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1596#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1597
0ac081f6
AH
1598/* Minimum and maximum AltiVec registers used to hold arguments. */
1599#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1600#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1601#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1602
4697a36c
MM
1603/* Return registers */
1604#define GP_ARG_RETURN GP_ARG_MIN_REG
1605#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1606#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1607
7509c759 1608/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1609#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1610/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1611#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1612#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1613#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1614#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1615
f045b2c9
RS
1616/* 1 if N is a possible register number for a function value
1617 as seen by the caller.
1618
0ac081f6 1619 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1620#define FUNCTION_VALUE_REGNO_P(N) \
1621 ((N) == GP_ARG_RETURN \
1622 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT) \
44688022 1623 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1624
1625/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1626 On RS/6000, these are r3-r10 and fp1-fp13.
1627 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1628#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1629 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1630 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
44688022 1631 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
e87a88d3
AM
1632 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1633 && TARGET_HARD_FLOAT))
f045b2c9 1634\f
00dba523
NC
1635/* A C structure for machine-specific, per-function data.
1636 This is added to the cfun structure. */
e2500fed 1637typedef struct machine_function GTY(())
00dba523
NC
1638{
1639 /* Whether a System V.4 varargs area was created. */
1640 int sysv_varargs_p;
71f123ca
FS
1641 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1642 int ra_needs_full_frame;
c4501e62
JJ
1643 /* Some local-dynamic symbol. */
1644 const char *some_ld_name;
9b7b447f
AH
1645 /* Whether the instruction chain has been scanned already. */
1646 int insn_chain_scanned_p;
8c29550d
JJ
1647 /* Flags if __builtin_return_address (0) was used. */
1648 int ra_need_lr;
00dba523
NC
1649} machine_function;
1650
f045b2c9
RS
1651/* Define a data type for recording info about an argument list
1652 during the scan of that argument list. This data type should
1653 hold all necessary information about the function itself
1654 and about the args processed so far, enough to enable macros
1655 such as FUNCTION_ARG to determine where the next arg should go.
1656
1657 On the RS/6000, this is a structure. The first element is the number of
1658 total argument words, the second is used to store the next
1659 floating-point register number, and the third says how many more args we
4697a36c
MM
1660 have prototype types for.
1661
4cc833b7 1662 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1663 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1664 register, and `words' is the number of words used on the stack.
1665
bd227acc 1666 The varargs/stdarg support requires that this structure's size
4cc833b7 1667 be a multiple of sizeof(int). */
4697a36c
MM
1668
1669typedef struct rs6000_args
1670{
4cc833b7 1671 int words; /* # words used for passing GP registers */
6a4cee5f 1672 int fregno; /* next available FP register */
0ac081f6 1673 int vregno; /* next available AltiVec register */
6a4cee5f 1674 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1675 int prototype; /* Whether a prototype was defined */
a6c9bed4 1676 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1677 int call_cookie; /* Do special things for this call */
4cc833b7 1678 int sysv_gregno; /* next available GP register */
4697a36c 1679} CUMULATIVE_ARGS;
f045b2c9 1680
f045b2c9
RS
1681/* Initialize a variable CUM of type CUMULATIVE_ARGS
1682 for a call to a function whose data type is FNTYPE.
1683 For a library call, FNTYPE is 0. */
1684
0f6937fe
AM
1685#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1686 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
f045b2c9
RS
1687
1688/* Similar, but when scanning the definition of a procedure. We always
1689 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1690
0f6937fe
AM
1691#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1692 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
b9599e46
FS
1693
1694/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1695
1696#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
0f6937fe 1697 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
f045b2c9
RS
1698
1699/* Update the data in CUM to advance over an argument
1700 of mode MODE and data type TYPE.
1701 (TYPE is null for libcalls where that information may not be available.) */
1702
1703#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1704 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9 1705
f045b2c9
RS
1706/* Determine where to put an argument to a function.
1707 Value is zero to push the argument on the stack,
1708 or a hard register in which to store the argument.
1709
1710 MODE is the argument's machine mode.
1711 TYPE is the data type of the argument (as a tree).
1712 This is null for libcalls where that information may
1713 not be available.
1714 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1715 the preceding args and about the function being called.
1716 NAMED is nonzero if this argument is a named parameter
1717 (otherwise it is an extra parameter matching an ellipsis).
1718
1719 On RS/6000 the first eight words of non-FP are normally in registers
1720 and the rest are pushed. The first 13 FP args are in registers.
1721
1722 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1723 both an FP and integer register (or possibly FP reg and stack). Library
1724 functions (when TYPE is zero) always have the proper types for args,
1725 so we can pass the FP value just in one register. emit_library_function
1726 doesn't support EXPR_LIST anyway. */
f045b2c9 1727
4697a36c
MM
1728#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1729 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1730
1731/* For an arg passed partly in registers and partly in memory,
1732 this is the number of registers used.
1733 For args passed entirely in registers or entirely in memory, zero. */
1734
4697a36c
MM
1735#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1736 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1737
c229cba9
DE
1738/* If defined, a C expression which determines whether, and in which
1739 direction, to pad out an argument with extra space. The value
1740 should be of type `enum direction': either `upward' to pad above
1741 the argument, `downward' to pad below, or `none' to inhibit
1742 padding. */
1743
9ebbca7d 1744#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1745
b6c9286a 1746/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1747 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1748 PARM_BOUNDARY is used for all arguments. */
1749
1750#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1751 function_arg_boundary (MODE, TYPE)
1752
dfafc897 1753/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1754#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1755 rs6000_va_start (valist, nextarg)
dfafc897 1756
6e985040
AM
1757#define PAD_VARARGS_DOWN \
1758 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1759
f045b2c9 1760/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1761 for profiling a function entry. */
f045b2c9
RS
1762
1763#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1764 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1765
1766/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1767 the stack pointer does not matter. No definition is equivalent to
1768 always zero.
1769
a0ab749a 1770 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1771 its backpointer, which we maintain. */
1772#define EXIT_IGNORE_STACK 1
1773
a701949a
FS
1774/* Define this macro as a C expression that is nonzero for registers
1775 that are used by the epilogue or the return' pattern. The stack
1776 and frame pointer registers are already be assumed to be used as
1777 needed. */
1778
83720594
RH
1779#define EPILOGUE_USES(REGNO) \
1780 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1781 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1782 || (current_function_calls_eh_return \
3553b09d 1783 && TARGET_AIX \
ff3867ae 1784 && (REGNO) == 2))
2bfcf297 1785
f045b2c9 1786\f
eaf1bcf1 1787/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1788
1789/* Length in units of the trampoline for entering a nested function. */
1790
b6c9286a 1791#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1792
1793/* Emit RTL insns to initialize the variable parts of a trampoline.
1794 FNADDR is an RTX for the address of the function's pure code.
1795 CXT is an RTX for the static chain value for the function. */
1796
1797#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1798 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1799\f
f33985c6
MS
1800/* Definitions for __builtin_return_address and __builtin_frame_address.
1801 __builtin_return_address (0) should give link register (65), enable
82e41834 1802 this. */
f33985c6
MS
1803/* This should be uncommented, so that the link register is used, but
1804 currently this would result in unmatched insns and spilling fixed
1805 registers so we'll leave it for another day. When these problems are
1806 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1807 (mrs) */
1808/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1809
b6c9286a
MM
1810/* Number of bytes into the frame return addresses can be found. See
1811 rs6000_stack_info in rs6000.c for more information on how the different
1812 abi's store the return address. */
1813#define RETURN_ADDRESS_OFFSET \
1814 ((DEFAULT_ABI == ABI_AIX \
50d440bc 1815 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1816 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1817 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1818
f33985c6
MS
1819/* The current return address is in link register (65). The return address
1820 of anything farther back is accessed normally at an offset of 8 from the
1821 frame pointer. */
71f123ca
FS
1822#define RETURN_ADDR_RTX(COUNT, FRAME) \
1823 (rs6000_return_addr (COUNT, FRAME))
1824
f33985c6 1825\f
f045b2c9
RS
1826/* Definitions for register eliminations.
1827
1828 We have two registers that can be eliminated on the RS/6000. First, the
1829 frame pointer register can often be eliminated in favor of the stack
1830 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1831 eliminated; it is replaced with either the stack or frame pointer.
1832
1833 In addition, we use the elimination mechanism to see if r30 is needed
1834 Initially we assume that it isn't. If it is, we spill it. This is done
1835 by making it an eliminable register. We replace it with itself so that
1836 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1837
1838/* This is an array of structures. Each structure initializes one pair
1839 of eliminable registers. The "from" register number is given first,
1840 followed by "to". Eliminations of the same "from" register are listed
1841 in order of preference. */
1842#define ELIMINABLE_REGS \
1843{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1844 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1 1845 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
97b23853 1846 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9
RS
1847
1848/* Given FROM and TO register numbers, say whether this elimination is allowed.
1849 Frame pointer elimination is automatically handled.
1850
1851 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1852 to convert ap into fp, not sp.
1853
abc95ed3 1854 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1855 references. */
f045b2c9 1856
97b23853
GK
1857#define CAN_ELIMINATE(FROM, TO) \
1858 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1859 ? ! frame_pointer_needed \
1860 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1861 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1862 : 1)
1863
1864/* Define the offset between two registers, one to be eliminated, and the other
1865 its replacement, at the start of a routine. */
d1d0c603
JJ
1866#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1867 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1868\f
1869/* Addressing modes, and classification of registers for them. */
1870
940da324
JL
1871#define HAVE_PRE_DECREMENT 1
1872#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1873
1874/* Macros to check register numbers against specific register classes. */
1875
1876/* These assume that REGNO is a hard or pseudo reg number.
1877 They give nonzero only if REGNO is a hard reg of the suitable class
1878 or a pseudo reg currently allocated to a suitable hard reg.
1879 Since they use reg_renumber, they are safe only once reg_renumber
1880 has been allocated, which happens in local-alloc.c. */
1881
1882#define REGNO_OK_FOR_INDEX_P(REGNO) \
1883((REGNO) < FIRST_PSEUDO_REGISTER \
1884 ? (REGNO) <= 31 || (REGNO) == 67 \
1885 : (reg_renumber[REGNO] >= 0 \
1886 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1887
1888#define REGNO_OK_FOR_BASE_P(REGNO) \
1889((REGNO) < FIRST_PSEUDO_REGISTER \
1890 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1891 : (reg_renumber[REGNO] > 0 \
1892 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1893\f
1894/* Maximum number of registers that can appear in a valid memory address. */
1895
1896#define MAX_REGS_PER_ADDRESS 2
1897
1898/* Recognize any constant value that is a valid address. */
1899
6eff269e
BK
1900#define CONSTANT_ADDRESS_P(X) \
1901 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1902 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1903 || GET_CODE (X) == HIGH)
f045b2c9
RS
1904
1905/* Nonzero if the constant value X is a legitimate general operand.
1906 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1907
1908 On the RS/6000, all integer constants are acceptable, most won't be valid
1909 for particular insns, though. Only easy FP constants are
1910 acceptable. */
1911
1912#define LEGITIMATE_CONSTANT_P(X) \
49a2166f
AH
1913 (((GET_CODE (X) != CONST_DOUBLE \
1914 && GET_CODE (X) != CONST_VECTOR) \
1915 || GET_MODE (X) == VOIDmode \
c4501e62 1916 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
49a2166f
AH
1917 || easy_fp_constant (X, GET_MODE (X)) \
1918 || easy_vector_constant (X, GET_MODE (X))) \
c4501e62 1919 && !rs6000_tls_referenced_p (X))
f045b2c9
RS
1920
1921/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1922 and check its validity for a certain class.
1923 We have two alternate definitions for each of them.
1924 The usual definition accepts all pseudo regs; the other rejects
1925 them unless they have been allocated suitable hard regs.
1926 The symbol REG_OK_STRICT causes the latter definition to be used.
1927
1928 Most source files want to accept pseudo regs in the hope that
1929 they will get allocated to the class that the insn wants them to be in.
1930 Source files for reload pass need to be strict.
1931 After reload, it makes no difference, since pseudo regs have
1932 been eliminated by then. */
1933
258bfae2
FS
1934#ifdef REG_OK_STRICT
1935# define REG_OK_STRICT_FLAG 1
1936#else
1937# define REG_OK_STRICT_FLAG 0
1938#endif
f045b2c9
RS
1939
1940/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1941 or if it is a pseudo reg in the non-strict case. */
1942#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1943 ((! (STRICT) \
1944 && (REGNO (X) <= 31 \
1945 || REGNO (X) == ARG_POINTER_REGNUM \
1946 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1947 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
1948
1949/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
1950 or if it is a pseudo reg in the non-strict case. */
1951#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1952 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 1953
258bfae2
FS
1954#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1955#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
1956\f
1957/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1958 that is a valid memory address for an instruction.
1959 The MODE argument is the machine mode for the MEM expression
1960 that wants to use this address.
1961
1962 On the RS/6000, there are four valid address: a SYMBOL_REF that
1963 refers to a constant pool entry of an address (or the sum of it
1964 plus a constant), a short (16-bit signed) constant plus a register,
1965 the sum of two registers, or a register indirect, possibly with an
5bdc5878 1966 auto-increment. For DFmode and DImode with a constant plus register,
2f3e5814 1967 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1968 word aligned.
1969
1970 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1971 32-bit DImode, TImode), indexed addressing cannot be used because
1972 adjacent memory cells are accessed by adding word-sized offsets
1973 during assembly output. */
f045b2c9 1974
258bfae2
FS
1975#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1976{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
1977 goto ADDR; \
f045b2c9
RS
1978}
1979\f
1980/* Try machine-dependent ways of modifying an illegitimate address
1981 to be legitimate. If we find one, return the new, valid address.
1982 This macro is used in only one place: `memory_address' in explow.c.
1983
1984 OLDX is the address as it was before break_out_memory_refs was called.
1985 In some cases it is useful to look at this to decide what needs to be done.
1986
1987 MODE and WIN are passed so that this macro can use
1988 GO_IF_LEGITIMATE_ADDRESS.
1989
1990 It is always safe for this macro to do nothing. It exists to recognize
1991 opportunities to optimize the output.
1992
1993 On RS/6000, first check for the sum of a register with a constant
1994 integer that is out of range. If so, generate code to add the
1995 constant with the low-order 16 bits masked to the register and force
1996 this result into another register (this can be done with `cau').
c81bebd7 1997 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1998 possibility of bit 16 being a one.
1999
2000 Then check for the sum of a register and something not constant, try to
2001 load the other things into a register and return the sum. */
2002
9ebbca7d
GK
2003#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2004{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2005 if (result != NULL_RTX) \
2006 { \
2007 (X) = result; \
2008 goto WIN; \
2009 } \
f045b2c9
RS
2010}
2011
a260abc9
DE
2012/* Try a machine-dependent way of reloading an illegitimate address
2013 operand. If we find one, push the reload and jump to WIN. This
2014 macro is used in only one place: `find_reloads_address' in reload.c.
2015
24ea750e
DJ
2016 Implemented on rs6000 by rs6000_legitimize_reload_address.
2017 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2018
a9098fd0
GK
2019#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2020do { \
24ea750e
DJ
2021 int win; \
2022 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2023 (int)(TYPE), (IND_LEVELS), &win); \
2024 if ( win ) \
2025 goto WIN; \
a260abc9
DE
2026} while (0)
2027
f045b2c9 2028/* Go to LABEL if ADDR (a legitimate address expression)
4d588c14 2029 has an effect that depends on the machine mode it is used for. */
f045b2c9
RS
2030
2031#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
4d588c14
RH
2032do { \
2033 if (rs6000_mode_dependent_address (ADDR)) \
f045b2c9 2034 goto LABEL; \
4d588c14 2035} while (0)
766a866c
MM
2036\f
2037/* The register number of the register used to address a table of
2038 static data addresses in memory. In some cases this register is
2039 defined by a processor's "application binary interface" (ABI).
2040 When this macro is defined, RTL is generated for this register
2041 once, as with the stack pointer and frame pointer registers. If
2042 this macro is not defined, it is up to the machine-dependent files
2043 to allocate such a register (if necessary). */
2044
1db02437
FS
2045#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2046#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2047
97b23853 2048#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2049
766a866c
MM
2050/* Define this macro if the register defined by
2051 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2052 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2053
2054/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2055
2056/* By generating position-independent code, when two different
2057 programs (A and B) share a common library (libC.a), the text of
2058 the library can be shared whether or not the library is linked at
2059 the same address for both programs. In some of these
2060 environments, position-independent code requires not only the use
2061 of different addressing modes, but also special code to enable the
2062 use of these addressing modes.
2063
2064 The `FINALIZE_PIC' macro serves as a hook to emit these special
2065 codes once the function is being compiled into assembly code, but
2066 not before. (It is not done before, because in the case of
2067 compiling an inline function, it would lead to multiple PIC
2068 prologues being included in functions which used inline functions
2069 and were compiled to assembly language.) */
2070
8d30c4ee 2071/* #define FINALIZE_PIC */
766a866c 2072
766a866c
MM
2073/* A C expression that is nonzero if X is a legitimate immediate
2074 operand on the target machine when generating position independent
2075 code. You can assume that X satisfies `CONSTANT_P', so you need
2076 not check this. You can also assume FLAG_PIC is true, so you need
2077 not check it either. You need not define this macro if all
2078 constants (including `SYMBOL_REF') can be immediate operands when
2079 generating position independent code. */
2080
2081/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
2082\f
2083/* Define this if some processing needs to be done immediately before
4255474b 2084 emitting code for an insn. */
f045b2c9 2085
4255474b 2086/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2087
2088/* Specify the machine mode that this machine uses
2089 for the index in the tablejump instruction. */
e1565e65 2090#define CASE_VECTOR_MODE SImode
f045b2c9 2091
18543a22
ILT
2092/* Define as C expression which evaluates to nonzero if the tablejump
2093 instruction expects the table to contain offsets from the address of the
2094 table.
82e41834 2095 Do not define this if the table should contain absolute addresses. */
18543a22 2096#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2097
f045b2c9
RS
2098/* Define this as 1 if `char' should by default be signed; else as 0. */
2099#define DEFAULT_SIGNED_CHAR 0
2100
2101/* This flag, if defined, says the same insns that convert to a signed fixnum
2102 also convert validly to an unsigned one. */
2103
2104/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2105
2106/* Max number of bytes we can move from memory to memory
2107 in one reasonably fast instruction. */
2f3e5814 2108#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2109#define MAX_MOVE_MAX 8
f045b2c9
RS
2110
2111/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2112 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2113 is undesirable. */
2114#define SLOW_BYTE_ACCESS 1
2115
9a63901f
RK
2116/* Define if operations between registers always perform the operation
2117 on the full register even if a narrower mode is specified. */
2118#define WORD_REGISTER_OPERATIONS
2119
2120/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2121 will either zero-extend or sign-extend. The value of this macro should
2122 be the code that says which one of the two operations is implicitly
2123 done, NIL if none. */
2124#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2125
2126/* Define if loading short immediate values into registers sign extends. */
2127#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2128\f
f045b2c9
RS
2129/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2130 is done just by pretending it is already truncated. */
2131#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2132
94993909 2133/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122
DE
2134#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2135 ((VALUE) = ((MODE) == SImode ? 32 : 64))
2136
94993909
DE
2137/* The CTZ patterns return -1 for input of zero. */
2138#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2139
f045b2c9
RS
2140/* Specify the machine mode that pointers have.
2141 After generation of rtl, the compiler makes no further distinction
2142 between pointers and any other objects of this machine mode. */
2f3e5814 2143#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9 2144
a3c9585f 2145/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
2146#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2147
f045b2c9 2148/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2149 Doesn't matter on RS/6000. */
5b71a4e7 2150#define FUNCTION_MODE SImode
f045b2c9
RS
2151
2152/* Define this if addresses of constant functions
2153 shouldn't be put through pseudo regs where they can be cse'd.
2154 Desirable on machines where ordinary constants are expensive
2155 but a CALL with constant address is cheap. */
2156#define NO_FUNCTION_CSE
2157
d969caf8 2158/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2159 few bits.
2160
2161 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2162 have been dropped from the PowerPC architecture. */
2163
4697a36c 2164#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2165
f045b2c9
RS
2166/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2167 should be adjusted to reflect any required changes. This macro is used when
2168 there is some systematic length adjustment required that would be difficult
2169 to express in the length attribute. */
2170
2171/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2172
39a10a29
GK
2173/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2174 COMPARE, return the mode to be used for the comparison. For
2175 floating-point, CCFPmode should be used. CCUNSmode should be used
2176 for unsigned comparisons. CCEQmode should be used when we are
2177 doing an inequality comparison on the result of a
2178 comparison. CCmode should be used in all other cases. */
c5defebb 2179
b565a316 2180#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2181 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb 2182 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 2183 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 2184 ? CCEQmode : CCmode))
f045b2c9 2185
b39358e1
GK
2186/* Can the condition code MODE be safely reversed? This is safe in
2187 all cases on this port, because at present it doesn't use the
2188 trapping FP comparisons (fcmpo). */
2189#define REVERSIBLE_CC_MODE(MODE) 1
2190
2191/* Given a condition code and a mode, return the inverse condition. */
2192#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2193
f045b2c9 2194/* Define the information needed to generate branch and scc insns. This is
b39358e1 2195 stored from the compare operation. */
f045b2c9 2196
e2500fed
GK
2197extern GTY(()) rtx rs6000_compare_op0;
2198extern GTY(()) rtx rs6000_compare_op1;
f045b2c9 2199extern int rs6000_compare_fp_p;
f045b2c9
RS
2200\f
2201/* Control the assembler format that we output. */
2202
1b279f39
DE
2203/* A C string constant describing how to begin a comment in the target
2204 assembler language. The compiler assumes that the comment will end at
2205 the end of the line. */
2206#define ASM_COMMENT_START " #"
6b67933e 2207
38c1f2d7
MM
2208/* Flag to say the TOC is initialized */
2209extern int toc_initialized;
2210
f045b2c9
RS
2211/* Macro to output a special constant pool entry. Go to WIN if we output
2212 it. Otherwise, it is written the usual way.
2213
2214 On the RS/6000, toc entries are handled this way. */
2215
a9098fd0
GK
2216#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2217{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2218 { \
2219 output_toc (FILE, X, LABELNO, MODE); \
2220 goto WIN; \
2221 } \
f045b2c9
RS
2222}
2223
ebd97b96
DE
2224#ifdef HAVE_GAS_WEAK
2225#define RS6000_WEAK 1
2226#else
2227#define RS6000_WEAK 0
2228#endif
290ad355 2229
79c4e63f
AM
2230#if RS6000_WEAK
2231/* Used in lieu of ASM_WEAKEN_LABEL. */
2232#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2233 do \
2234 { \
2235 fputs ("\t.weak\t", (FILE)); \
cbaaba19 2236 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2237 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2238 && DEFAULT_ABI == ABI_AIX) \
2239 { \
cbaaba19
DE
2240 if (TARGET_XCOFF) \
2241 fputs ("[DS]", (FILE)); \
ca734b39 2242 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2243 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2244 } \
2245 fputc ('\n', (FILE)); \
2246 if (VAL) \
2247 { \
2248 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2249 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2250 && DEFAULT_ABI == ABI_AIX) \
2251 { \
2252 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2253 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2254 fputs (",.", (FILE)); \
cbaaba19 2255 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2256 fputc ('\n', (FILE)); \
2257 } \
2258 } \
2259 } \
2260 while (0)
2261#endif
2262
2263/* This implements the `alias' attribute. */
2264#undef ASM_OUTPUT_DEF_FROM_DECLS
2265#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2266 do \
2267 { \
2268 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2269 const char *name = IDENTIFIER_POINTER (TARGET); \
2270 if (TREE_CODE (DECL) == FUNCTION_DECL \
2271 && DEFAULT_ABI == ABI_AIX) \
2272 { \
2273 if (TREE_PUBLIC (DECL)) \
2274 { \
2275 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2276 { \
2277 fputs ("\t.globl\t.", FILE); \
cbaaba19 2278 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2279 putc ('\n', FILE); \
2280 } \
2281 } \
2282 else if (TARGET_XCOFF) \
2283 { \
2284 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2285 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2286 putc ('\n', FILE); \
2287 } \
2288 fputs ("\t.set\t.", FILE); \
cbaaba19 2289 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2290 fputs (",.", FILE); \
cbaaba19 2291 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2292 fputc ('\n', FILE); \
2293 } \
2294 ASM_OUTPUT_DEF (FILE, alias, name); \
2295 } \
2296 while (0)
290ad355 2297
1bc7c5b6
ZW
2298#define TARGET_ASM_FILE_START rs6000_file_start
2299
f045b2c9
RS
2300/* Output to assembler file text saying following lines
2301 may contain character constants, extra white space, comments, etc. */
2302
2303#define ASM_APP_ON ""
2304
2305/* Output to assembler file text saying following lines
2306 no longer contain unusual constructs. */
2307
2308#define ASM_APP_OFF ""
2309
f045b2c9
RS
2310/* How to refer to registers in assembler output.
2311 This sequence is indexed by compiler's hard-register-number (see above). */
2312
82e41834 2313extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2314
2315#define REGISTER_NAMES \
2316{ \
2317 &rs6000_reg_names[ 0][0], /* r0 */ \
2318 &rs6000_reg_names[ 1][0], /* r1 */ \
2319 &rs6000_reg_names[ 2][0], /* r2 */ \
2320 &rs6000_reg_names[ 3][0], /* r3 */ \
2321 &rs6000_reg_names[ 4][0], /* r4 */ \
2322 &rs6000_reg_names[ 5][0], /* r5 */ \
2323 &rs6000_reg_names[ 6][0], /* r6 */ \
2324 &rs6000_reg_names[ 7][0], /* r7 */ \
2325 &rs6000_reg_names[ 8][0], /* r8 */ \
2326 &rs6000_reg_names[ 9][0], /* r9 */ \
2327 &rs6000_reg_names[10][0], /* r10 */ \
2328 &rs6000_reg_names[11][0], /* r11 */ \
2329 &rs6000_reg_names[12][0], /* r12 */ \
2330 &rs6000_reg_names[13][0], /* r13 */ \
2331 &rs6000_reg_names[14][0], /* r14 */ \
2332 &rs6000_reg_names[15][0], /* r15 */ \
2333 &rs6000_reg_names[16][0], /* r16 */ \
2334 &rs6000_reg_names[17][0], /* r17 */ \
2335 &rs6000_reg_names[18][0], /* r18 */ \
2336 &rs6000_reg_names[19][0], /* r19 */ \
2337 &rs6000_reg_names[20][0], /* r20 */ \
2338 &rs6000_reg_names[21][0], /* r21 */ \
2339 &rs6000_reg_names[22][0], /* r22 */ \
2340 &rs6000_reg_names[23][0], /* r23 */ \
2341 &rs6000_reg_names[24][0], /* r24 */ \
2342 &rs6000_reg_names[25][0], /* r25 */ \
2343 &rs6000_reg_names[26][0], /* r26 */ \
2344 &rs6000_reg_names[27][0], /* r27 */ \
2345 &rs6000_reg_names[28][0], /* r28 */ \
2346 &rs6000_reg_names[29][0], /* r29 */ \
2347 &rs6000_reg_names[30][0], /* r30 */ \
2348 &rs6000_reg_names[31][0], /* r31 */ \
2349 \
2350 &rs6000_reg_names[32][0], /* fr0 */ \
2351 &rs6000_reg_names[33][0], /* fr1 */ \
2352 &rs6000_reg_names[34][0], /* fr2 */ \
2353 &rs6000_reg_names[35][0], /* fr3 */ \
2354 &rs6000_reg_names[36][0], /* fr4 */ \
2355 &rs6000_reg_names[37][0], /* fr5 */ \
2356 &rs6000_reg_names[38][0], /* fr6 */ \
2357 &rs6000_reg_names[39][0], /* fr7 */ \
2358 &rs6000_reg_names[40][0], /* fr8 */ \
2359 &rs6000_reg_names[41][0], /* fr9 */ \
2360 &rs6000_reg_names[42][0], /* fr10 */ \
2361 &rs6000_reg_names[43][0], /* fr11 */ \
2362 &rs6000_reg_names[44][0], /* fr12 */ \
2363 &rs6000_reg_names[45][0], /* fr13 */ \
2364 &rs6000_reg_names[46][0], /* fr14 */ \
2365 &rs6000_reg_names[47][0], /* fr15 */ \
2366 &rs6000_reg_names[48][0], /* fr16 */ \
2367 &rs6000_reg_names[49][0], /* fr17 */ \
2368 &rs6000_reg_names[50][0], /* fr18 */ \
2369 &rs6000_reg_names[51][0], /* fr19 */ \
2370 &rs6000_reg_names[52][0], /* fr20 */ \
2371 &rs6000_reg_names[53][0], /* fr21 */ \
2372 &rs6000_reg_names[54][0], /* fr22 */ \
2373 &rs6000_reg_names[55][0], /* fr23 */ \
2374 &rs6000_reg_names[56][0], /* fr24 */ \
2375 &rs6000_reg_names[57][0], /* fr25 */ \
2376 &rs6000_reg_names[58][0], /* fr26 */ \
2377 &rs6000_reg_names[59][0], /* fr27 */ \
2378 &rs6000_reg_names[60][0], /* fr28 */ \
2379 &rs6000_reg_names[61][0], /* fr29 */ \
2380 &rs6000_reg_names[62][0], /* fr30 */ \
2381 &rs6000_reg_names[63][0], /* fr31 */ \
2382 \
2383 &rs6000_reg_names[64][0], /* mq */ \
2384 &rs6000_reg_names[65][0], /* lr */ \
2385 &rs6000_reg_names[66][0], /* ctr */ \
2386 &rs6000_reg_names[67][0], /* ap */ \
2387 \
2388 &rs6000_reg_names[68][0], /* cr0 */ \
2389 &rs6000_reg_names[69][0], /* cr1 */ \
2390 &rs6000_reg_names[70][0], /* cr2 */ \
2391 &rs6000_reg_names[71][0], /* cr3 */ \
2392 &rs6000_reg_names[72][0], /* cr4 */ \
2393 &rs6000_reg_names[73][0], /* cr5 */ \
2394 &rs6000_reg_names[74][0], /* cr6 */ \
2395 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2396 \
9ebbca7d 2397 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2398 \
2399 &rs6000_reg_names[77][0], /* v0 */ \
2400 &rs6000_reg_names[78][0], /* v1 */ \
2401 &rs6000_reg_names[79][0], /* v2 */ \
2402 &rs6000_reg_names[80][0], /* v3 */ \
2403 &rs6000_reg_names[81][0], /* v4 */ \
2404 &rs6000_reg_names[82][0], /* v5 */ \
2405 &rs6000_reg_names[83][0], /* v6 */ \
2406 &rs6000_reg_names[84][0], /* v7 */ \
2407 &rs6000_reg_names[85][0], /* v8 */ \
2408 &rs6000_reg_names[86][0], /* v9 */ \
2409 &rs6000_reg_names[87][0], /* v10 */ \
2410 &rs6000_reg_names[88][0], /* v11 */ \
2411 &rs6000_reg_names[89][0], /* v12 */ \
2412 &rs6000_reg_names[90][0], /* v13 */ \
2413 &rs6000_reg_names[91][0], /* v14 */ \
2414 &rs6000_reg_names[92][0], /* v15 */ \
2415 &rs6000_reg_names[93][0], /* v16 */ \
2416 &rs6000_reg_names[94][0], /* v17 */ \
2417 &rs6000_reg_names[95][0], /* v18 */ \
2418 &rs6000_reg_names[96][0], /* v19 */ \
2419 &rs6000_reg_names[97][0], /* v20 */ \
2420 &rs6000_reg_names[98][0], /* v21 */ \
2421 &rs6000_reg_names[99][0], /* v22 */ \
2422 &rs6000_reg_names[100][0], /* v23 */ \
2423 &rs6000_reg_names[101][0], /* v24 */ \
2424 &rs6000_reg_names[102][0], /* v25 */ \
2425 &rs6000_reg_names[103][0], /* v26 */ \
2426 &rs6000_reg_names[104][0], /* v27 */ \
2427 &rs6000_reg_names[105][0], /* v28 */ \
2428 &rs6000_reg_names[106][0], /* v29 */ \
2429 &rs6000_reg_names[107][0], /* v30 */ \
2430 &rs6000_reg_names[108][0], /* v31 */ \
2431 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2432 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2433 &rs6000_reg_names[111][0], /* spe_acc */ \
2434 &rs6000_reg_names[112][0], /* spefscr */ \
c81bebd7
MM
2435}
2436
f045b2c9
RS
2437/* Table of additional register names to use in user input. */
2438
2439#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2440 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2441 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2442 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2443 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2444 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2445 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2446 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2447 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2448 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2449 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2450 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2451 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2452 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2453 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2454 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2455 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2456 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2457 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2458 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2459 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2460 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2461 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2462 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2463 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2464 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2465 {"spe_acc", 111}, {"spefscr", 112}, \
c4d38ccb
MM
2466 /* no additional names for: mq, lr, ctr, ap */ \
2467 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2468 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2469 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2470
0da40b09
RK
2471/* Text to write out after a CALL that may be replaced by glue code by
2472 the loader. This depends on the AIX version. */
2473#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2474
f045b2c9
RS
2475/* This is how to output an element of a case-vector that is relative. */
2476
e1565e65 2477#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2478 do { char buf[100]; \
e1565e65 2479 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2480 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2481 assemble_name (FILE, buf); \
19d2d16f 2482 putc ('-', FILE); \
3daf36a4
ILT
2483 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2484 assemble_name (FILE, buf); \
19d2d16f 2485 putc ('\n', FILE); \
3daf36a4 2486 } while (0)
f045b2c9
RS
2487
2488/* This is how to output an assembler line
2489 that says to advance the location counter
2490 to a multiple of 2**LOG bytes. */
2491
2492#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2493 if ((LOG) != 0) \
2494 fprintf (FILE, "\t.align %d\n", (LOG))
2495
9ebbca7d
GK
2496/* Pick up the return address upon entry to a procedure. Used for
2497 dwarf2 unwind information. This also enables the table driven
2498 mechanism. */
2499
2500#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2501#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2502
83720594
RH
2503/* Describe how we implement __builtin_eh_return. */
2504#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2505#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2506
f045b2c9
RS
2507/* Print operand X (an rtx) in assembler syntax to file FILE.
2508 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2509 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2510
2511#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2512
2513/* Define which CODE values are valid. */
2514
c81bebd7 2515#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c4501e62 2516 ((CODE) == '.' || (CODE) == '&')
f045b2c9
RS
2517
2518/* Print a memory address as an operand to reference that memory location. */
2519
2520#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2521
2522/* Define the codes that are matched by predicates in rs6000.c. */
2523
39a10a29 2524#define PREDICATE_CODES \
a65c591c 2525 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
df15fbc7 2526 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
a65c591c
DE
2527 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2528 LABEL_REF, SUBREG, REG, MEM}}, \
39a10a29
GK
2529 {"short_cint_operand", {CONST_INT}}, \
2530 {"u_short_cint_operand", {CONST_INT}}, \
2531 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2532 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2533 {"gpc_reg_operand", {SUBREG, REG}}, \
2534 {"cc_reg_operand", {SUBREG, REG}}, \
2535 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2536 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2537 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2538 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2539 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2540 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2541 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2542 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2543 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2544 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2545 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2546 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2547 {"easy_fp_constant", {CONST_DOUBLE}}, \
d744e06e
AH
2548 {"easy_vector_constant", {CONST_VECTOR}}, \
2549 {"easy_vector_constant_add_self", {CONST_VECTOR}}, \
50a0b056 2550 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2551 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2552 {"lwa_operand", {SUBREG, MEM, REG}}, \
2553 {"volatile_mem_operand", {MEM}}, \
2554 {"offsettable_mem_operand", {MEM}}, \
2555 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2556 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2557 {"non_add_cint_operand", {CONST_INT}}, \
2558 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2559 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
0ba1b2ff 2560 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2561 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2562 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2563 {"mask_operand", {CONST_INT}}, \
0ba1b2ff
AM
2564 {"mask_operand_wrap", {CONST_INT}}, \
2565 {"mask64_operand", {CONST_INT}}, \
2566 {"mask64_2_operand", {CONST_INT}}, \
39a10a29
GK
2567 {"count_register_operand", {REG}}, \
2568 {"xer_operand", {REG}}, \
cc4d5fec 2569 {"symbol_ref_operand", {SYMBOL_REF}}, \
c4501e62 2570 {"rs6000_tls_symbol_ref", {SYMBOL_REF}}, \
39a10a29
GK
2571 {"call_operand", {SYMBOL_REF, REG}}, \
2572 {"current_file_function_operand", {SYMBOL_REF}}, \
2573 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2574 CONST_DOUBLE, SYMBOL_REF}}, \
2575 {"load_multiple_operation", {PARALLEL}}, \
2576 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2577 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2578 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2579 GT, LEU, LTU, GEU, GTU, \
2580 UNORDERED, ORDERED, \
2581 UNGE, UNLE }}, \
2582 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2583 UNORDERED }}, \
2584 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2585 GT, LEU, LTU, GEU, GTU, \
2586 UNORDERED, ORDERED, \
2587 UNGE, UNLE }}, \
2588 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2589 GT, LEU, LTU, GEU, GTU}}, \
2590 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2591 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2592 {"altivec_register_operand", {REG}}, \
50a0b056 2593 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2594
b6c9286a
MM
2595/* uncomment for disabling the corresponding default options */
2596/* #define MACHINE_no_sched_interblock */
2597/* #define MACHINE_no_sched_speculative */
2598/* #define MACHINE_no_sched_speculative_load */
2599
766a866c
MM
2600/* General flags. */
2601extern int flag_pic;
354b734b
MM
2602extern int optimize;
2603extern int flag_expensive_optimizations;
a7df97e6 2604extern int frame_pointer_needed;
0ac081f6
AH
2605
2606enum rs6000_builtins
2607{
2608 /* AltiVec builtins. */
f18c054f
DB
2609 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2610 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2611 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2612 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2613 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2614 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2615 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2616 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2617 ALTIVEC_BUILTIN_VADDUBM,
2618 ALTIVEC_BUILTIN_VADDUHM,
2619 ALTIVEC_BUILTIN_VADDUWM,
2620 ALTIVEC_BUILTIN_VADDFP,
2621 ALTIVEC_BUILTIN_VADDCUW,
2622 ALTIVEC_BUILTIN_VADDUBS,
2623 ALTIVEC_BUILTIN_VADDSBS,
2624 ALTIVEC_BUILTIN_VADDUHS,
2625 ALTIVEC_BUILTIN_VADDSHS,
2626 ALTIVEC_BUILTIN_VADDUWS,
2627 ALTIVEC_BUILTIN_VADDSWS,
2628 ALTIVEC_BUILTIN_VAND,
2629 ALTIVEC_BUILTIN_VANDC,
2630 ALTIVEC_BUILTIN_VAVGUB,
2631 ALTIVEC_BUILTIN_VAVGSB,
2632 ALTIVEC_BUILTIN_VAVGUH,
2633 ALTIVEC_BUILTIN_VAVGSH,
2634 ALTIVEC_BUILTIN_VAVGUW,
2635 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2636 ALTIVEC_BUILTIN_VCFUX,
2637 ALTIVEC_BUILTIN_VCFSX,
2638 ALTIVEC_BUILTIN_VCTSXS,
2639 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2640 ALTIVEC_BUILTIN_VCMPBFP,
2641 ALTIVEC_BUILTIN_VCMPEQUB,
2642 ALTIVEC_BUILTIN_VCMPEQUH,
2643 ALTIVEC_BUILTIN_VCMPEQUW,
2644 ALTIVEC_BUILTIN_VCMPEQFP,
2645 ALTIVEC_BUILTIN_VCMPGEFP,
2646 ALTIVEC_BUILTIN_VCMPGTUB,
2647 ALTIVEC_BUILTIN_VCMPGTSB,
2648 ALTIVEC_BUILTIN_VCMPGTUH,
2649 ALTIVEC_BUILTIN_VCMPGTSH,
2650 ALTIVEC_BUILTIN_VCMPGTUW,
2651 ALTIVEC_BUILTIN_VCMPGTSW,
2652 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2653 ALTIVEC_BUILTIN_VEXPTEFP,
2654 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2655 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2656 ALTIVEC_BUILTIN_VMAXUB,
2657 ALTIVEC_BUILTIN_VMAXSB,
2658 ALTIVEC_BUILTIN_VMAXUH,
2659 ALTIVEC_BUILTIN_VMAXSH,
2660 ALTIVEC_BUILTIN_VMAXUW,
2661 ALTIVEC_BUILTIN_VMAXSW,
2662 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2663 ALTIVEC_BUILTIN_VMHADDSHS,
2664 ALTIVEC_BUILTIN_VMHRADDSHS,
2665 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2666 ALTIVEC_BUILTIN_VMRGHB,
2667 ALTIVEC_BUILTIN_VMRGHH,
2668 ALTIVEC_BUILTIN_VMRGHW,
2669 ALTIVEC_BUILTIN_VMRGLB,
2670 ALTIVEC_BUILTIN_VMRGLH,
2671 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2672 ALTIVEC_BUILTIN_VMSUMUBM,
2673 ALTIVEC_BUILTIN_VMSUMMBM,
2674 ALTIVEC_BUILTIN_VMSUMUHM,
2675 ALTIVEC_BUILTIN_VMSUMSHM,
2676 ALTIVEC_BUILTIN_VMSUMUHS,
2677 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2678 ALTIVEC_BUILTIN_VMINUB,
2679 ALTIVEC_BUILTIN_VMINSB,
2680 ALTIVEC_BUILTIN_VMINUH,
2681 ALTIVEC_BUILTIN_VMINSH,
2682 ALTIVEC_BUILTIN_VMINUW,
2683 ALTIVEC_BUILTIN_VMINSW,
2684 ALTIVEC_BUILTIN_VMINFP,
2685 ALTIVEC_BUILTIN_VMULEUB,
2686 ALTIVEC_BUILTIN_VMULESB,
2687 ALTIVEC_BUILTIN_VMULEUH,
2688 ALTIVEC_BUILTIN_VMULESH,
2689 ALTIVEC_BUILTIN_VMULOUB,
2690 ALTIVEC_BUILTIN_VMULOSB,
2691 ALTIVEC_BUILTIN_VMULOUH,
2692 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2693 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2694 ALTIVEC_BUILTIN_VNOR,
2695 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2696 ALTIVEC_BUILTIN_VSEL_4SI,
2697 ALTIVEC_BUILTIN_VSEL_4SF,
2698 ALTIVEC_BUILTIN_VSEL_8HI,
2699 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2700 ALTIVEC_BUILTIN_VPERM_4SI,
2701 ALTIVEC_BUILTIN_VPERM_4SF,
2702 ALTIVEC_BUILTIN_VPERM_8HI,
2703 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2704 ALTIVEC_BUILTIN_VPKUHUM,
2705 ALTIVEC_BUILTIN_VPKUWUM,
2706 ALTIVEC_BUILTIN_VPKPX,
2707 ALTIVEC_BUILTIN_VPKUHSS,
2708 ALTIVEC_BUILTIN_VPKSHSS,
2709 ALTIVEC_BUILTIN_VPKUWSS,
2710 ALTIVEC_BUILTIN_VPKSWSS,
2711 ALTIVEC_BUILTIN_VPKUHUS,
2712 ALTIVEC_BUILTIN_VPKSHUS,
2713 ALTIVEC_BUILTIN_VPKUWUS,
2714 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2715 ALTIVEC_BUILTIN_VREFP,
2716 ALTIVEC_BUILTIN_VRFIM,
2717 ALTIVEC_BUILTIN_VRFIN,
2718 ALTIVEC_BUILTIN_VRFIP,
2719 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2720 ALTIVEC_BUILTIN_VRLB,
2721 ALTIVEC_BUILTIN_VRLH,
2722 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2723 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2724 ALTIVEC_BUILTIN_VSLB,
2725 ALTIVEC_BUILTIN_VSLH,
2726 ALTIVEC_BUILTIN_VSLW,
2727 ALTIVEC_BUILTIN_VSL,
2728 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2729 ALTIVEC_BUILTIN_VSPLTB,
2730 ALTIVEC_BUILTIN_VSPLTH,
2731 ALTIVEC_BUILTIN_VSPLTW,
2732 ALTIVEC_BUILTIN_VSPLTISB,
2733 ALTIVEC_BUILTIN_VSPLTISH,
2734 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2735 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2736 ALTIVEC_BUILTIN_VSRH,
2737 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2738 ALTIVEC_BUILTIN_VSRAB,
2739 ALTIVEC_BUILTIN_VSRAH,
2740 ALTIVEC_BUILTIN_VSRAW,
2741 ALTIVEC_BUILTIN_VSR,
2742 ALTIVEC_BUILTIN_VSRO,
2743 ALTIVEC_BUILTIN_VSUBUBM,
2744 ALTIVEC_BUILTIN_VSUBUHM,
2745 ALTIVEC_BUILTIN_VSUBUWM,
2746 ALTIVEC_BUILTIN_VSUBFP,
2747 ALTIVEC_BUILTIN_VSUBCUW,
2748 ALTIVEC_BUILTIN_VSUBUBS,
2749 ALTIVEC_BUILTIN_VSUBSBS,
2750 ALTIVEC_BUILTIN_VSUBUHS,
2751 ALTIVEC_BUILTIN_VSUBSHS,
2752 ALTIVEC_BUILTIN_VSUBUWS,
2753 ALTIVEC_BUILTIN_VSUBSWS,
2754 ALTIVEC_BUILTIN_VSUM4UBS,
2755 ALTIVEC_BUILTIN_VSUM4SBS,
2756 ALTIVEC_BUILTIN_VSUM4SHS,
2757 ALTIVEC_BUILTIN_VSUM2SWS,
2758 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2759 ALTIVEC_BUILTIN_VXOR,
2760 ALTIVEC_BUILTIN_VSLDOI_16QI,
2761 ALTIVEC_BUILTIN_VSLDOI_8HI,
2762 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2763 ALTIVEC_BUILTIN_VSLDOI_4SF,
2764 ALTIVEC_BUILTIN_VUPKHSB,
2765 ALTIVEC_BUILTIN_VUPKHPX,
2766 ALTIVEC_BUILTIN_VUPKHSH,
2767 ALTIVEC_BUILTIN_VUPKLSB,
2768 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 2769 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
2770 ALTIVEC_BUILTIN_MTVSCR,
2771 ALTIVEC_BUILTIN_MFVSCR,
2772 ALTIVEC_BUILTIN_DSSALL,
2773 ALTIVEC_BUILTIN_DSS,
2774 ALTIVEC_BUILTIN_LVSL,
2775 ALTIVEC_BUILTIN_LVSR,
2776 ALTIVEC_BUILTIN_DSTT,
2777 ALTIVEC_BUILTIN_DSTST,
2778 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
2779 ALTIVEC_BUILTIN_DST,
2780 ALTIVEC_BUILTIN_LVEBX,
2781 ALTIVEC_BUILTIN_LVEHX,
2782 ALTIVEC_BUILTIN_LVEWX,
2783 ALTIVEC_BUILTIN_LVXL,
2784 ALTIVEC_BUILTIN_LVX,
2785 ALTIVEC_BUILTIN_STVX,
2786 ALTIVEC_BUILTIN_STVEBX,
2787 ALTIVEC_BUILTIN_STVEHX,
2788 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
2789 ALTIVEC_BUILTIN_STVXL,
2790 ALTIVEC_BUILTIN_VCMPBFP_P,
2791 ALTIVEC_BUILTIN_VCMPEQFP_P,
2792 ALTIVEC_BUILTIN_VCMPEQUB_P,
2793 ALTIVEC_BUILTIN_VCMPEQUH_P,
2794 ALTIVEC_BUILTIN_VCMPEQUW_P,
2795 ALTIVEC_BUILTIN_VCMPGEFP_P,
2796 ALTIVEC_BUILTIN_VCMPGTFP_P,
2797 ALTIVEC_BUILTIN_VCMPGTSB_P,
2798 ALTIVEC_BUILTIN_VCMPGTSH_P,
2799 ALTIVEC_BUILTIN_VCMPGTSW_P,
2800 ALTIVEC_BUILTIN_VCMPGTUB_P,
2801 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
2802 ALTIVEC_BUILTIN_VCMPGTUW_P,
2803 ALTIVEC_BUILTIN_ABSS_V4SI,
2804 ALTIVEC_BUILTIN_ABSS_V8HI,
2805 ALTIVEC_BUILTIN_ABSS_V16QI,
2806 ALTIVEC_BUILTIN_ABS_V4SI,
2807 ALTIVEC_BUILTIN_ABS_V4SF,
2808 ALTIVEC_BUILTIN_ABS_V8HI,
8bb418a3
ZL
2809 ALTIVEC_BUILTIN_ABS_V16QI,
2810 ALTIVEC_BUILTIN_COMPILETIME_ERROR,
2811
a3170dc6 2812 /* SPE builtins. */
8bb418a3 2813 SPE_BUILTIN_EVADDW,
a3170dc6
AH
2814 SPE_BUILTIN_EVAND,
2815 SPE_BUILTIN_EVANDC,
2816 SPE_BUILTIN_EVDIVWS,
2817 SPE_BUILTIN_EVDIVWU,
2818 SPE_BUILTIN_EVEQV,
2819 SPE_BUILTIN_EVFSADD,
2820 SPE_BUILTIN_EVFSDIV,
2821 SPE_BUILTIN_EVFSMUL,
2822 SPE_BUILTIN_EVFSSUB,
2823 SPE_BUILTIN_EVLDDX,
2824 SPE_BUILTIN_EVLDHX,
2825 SPE_BUILTIN_EVLDWX,
2826 SPE_BUILTIN_EVLHHESPLATX,
2827 SPE_BUILTIN_EVLHHOSSPLATX,
2828 SPE_BUILTIN_EVLHHOUSPLATX,
2829 SPE_BUILTIN_EVLWHEX,
2830 SPE_BUILTIN_EVLWHOSX,
2831 SPE_BUILTIN_EVLWHOUX,
2832 SPE_BUILTIN_EVLWHSPLATX,
2833 SPE_BUILTIN_EVLWWSPLATX,
2834 SPE_BUILTIN_EVMERGEHI,
2835 SPE_BUILTIN_EVMERGEHILO,
2836 SPE_BUILTIN_EVMERGELO,
2837 SPE_BUILTIN_EVMERGELOHI,
2838 SPE_BUILTIN_EVMHEGSMFAA,
2839 SPE_BUILTIN_EVMHEGSMFAN,
2840 SPE_BUILTIN_EVMHEGSMIAA,
2841 SPE_BUILTIN_EVMHEGSMIAN,
2842 SPE_BUILTIN_EVMHEGUMIAA,
2843 SPE_BUILTIN_EVMHEGUMIAN,
2844 SPE_BUILTIN_EVMHESMF,
2845 SPE_BUILTIN_EVMHESMFA,
2846 SPE_BUILTIN_EVMHESMFAAW,
2847 SPE_BUILTIN_EVMHESMFANW,
2848 SPE_BUILTIN_EVMHESMI,
2849 SPE_BUILTIN_EVMHESMIA,
2850 SPE_BUILTIN_EVMHESMIAAW,
2851 SPE_BUILTIN_EVMHESMIANW,
2852 SPE_BUILTIN_EVMHESSF,
2853 SPE_BUILTIN_EVMHESSFA,
2854 SPE_BUILTIN_EVMHESSFAAW,
2855 SPE_BUILTIN_EVMHESSFANW,
2856 SPE_BUILTIN_EVMHESSIAAW,
2857 SPE_BUILTIN_EVMHESSIANW,
2858 SPE_BUILTIN_EVMHEUMI,
2859 SPE_BUILTIN_EVMHEUMIA,
2860 SPE_BUILTIN_EVMHEUMIAAW,
2861 SPE_BUILTIN_EVMHEUMIANW,
2862 SPE_BUILTIN_EVMHEUSIAAW,
2863 SPE_BUILTIN_EVMHEUSIANW,
2864 SPE_BUILTIN_EVMHOGSMFAA,
2865 SPE_BUILTIN_EVMHOGSMFAN,
2866 SPE_BUILTIN_EVMHOGSMIAA,
2867 SPE_BUILTIN_EVMHOGSMIAN,
2868 SPE_BUILTIN_EVMHOGUMIAA,
2869 SPE_BUILTIN_EVMHOGUMIAN,
2870 SPE_BUILTIN_EVMHOSMF,
2871 SPE_BUILTIN_EVMHOSMFA,
2872 SPE_BUILTIN_EVMHOSMFAAW,
2873 SPE_BUILTIN_EVMHOSMFANW,
2874 SPE_BUILTIN_EVMHOSMI,
2875 SPE_BUILTIN_EVMHOSMIA,
2876 SPE_BUILTIN_EVMHOSMIAAW,
2877 SPE_BUILTIN_EVMHOSMIANW,
2878 SPE_BUILTIN_EVMHOSSF,
2879 SPE_BUILTIN_EVMHOSSFA,
2880 SPE_BUILTIN_EVMHOSSFAAW,
2881 SPE_BUILTIN_EVMHOSSFANW,
2882 SPE_BUILTIN_EVMHOSSIAAW,
2883 SPE_BUILTIN_EVMHOSSIANW,
2884 SPE_BUILTIN_EVMHOUMI,
2885 SPE_BUILTIN_EVMHOUMIA,
2886 SPE_BUILTIN_EVMHOUMIAAW,
2887 SPE_BUILTIN_EVMHOUMIANW,
2888 SPE_BUILTIN_EVMHOUSIAAW,
2889 SPE_BUILTIN_EVMHOUSIANW,
2890 SPE_BUILTIN_EVMWHSMF,
2891 SPE_BUILTIN_EVMWHSMFA,
2892 SPE_BUILTIN_EVMWHSMI,
2893 SPE_BUILTIN_EVMWHSMIA,
2894 SPE_BUILTIN_EVMWHSSF,
2895 SPE_BUILTIN_EVMWHSSFA,
2896 SPE_BUILTIN_EVMWHUMI,
2897 SPE_BUILTIN_EVMWHUMIA,
a3170dc6
AH
2898 SPE_BUILTIN_EVMWLSMIAAW,
2899 SPE_BUILTIN_EVMWLSMIANW,
a3170dc6
AH
2900 SPE_BUILTIN_EVMWLSSIAAW,
2901 SPE_BUILTIN_EVMWLSSIANW,
2902 SPE_BUILTIN_EVMWLUMI,
2903 SPE_BUILTIN_EVMWLUMIA,
2904 SPE_BUILTIN_EVMWLUMIAAW,
2905 SPE_BUILTIN_EVMWLUMIANW,
2906 SPE_BUILTIN_EVMWLUSIAAW,
2907 SPE_BUILTIN_EVMWLUSIANW,
2908 SPE_BUILTIN_EVMWSMF,
2909 SPE_BUILTIN_EVMWSMFA,
2910 SPE_BUILTIN_EVMWSMFAA,
2911 SPE_BUILTIN_EVMWSMFAN,
2912 SPE_BUILTIN_EVMWSMI,
2913 SPE_BUILTIN_EVMWSMIA,
2914 SPE_BUILTIN_EVMWSMIAA,
2915 SPE_BUILTIN_EVMWSMIAN,
2916 SPE_BUILTIN_EVMWHSSFAA,
2917 SPE_BUILTIN_EVMWSSF,
2918 SPE_BUILTIN_EVMWSSFA,
2919 SPE_BUILTIN_EVMWSSFAA,
2920 SPE_BUILTIN_EVMWSSFAN,
2921 SPE_BUILTIN_EVMWUMI,
2922 SPE_BUILTIN_EVMWUMIA,
2923 SPE_BUILTIN_EVMWUMIAA,
2924 SPE_BUILTIN_EVMWUMIAN,
2925 SPE_BUILTIN_EVNAND,
2926 SPE_BUILTIN_EVNOR,
2927 SPE_BUILTIN_EVOR,
2928 SPE_BUILTIN_EVORC,
2929 SPE_BUILTIN_EVRLW,
2930 SPE_BUILTIN_EVSLW,
2931 SPE_BUILTIN_EVSRWS,
2932 SPE_BUILTIN_EVSRWU,
2933 SPE_BUILTIN_EVSTDDX,
2934 SPE_BUILTIN_EVSTDHX,
2935 SPE_BUILTIN_EVSTDWX,
2936 SPE_BUILTIN_EVSTWHEX,
2937 SPE_BUILTIN_EVSTWHOX,
2938 SPE_BUILTIN_EVSTWWEX,
2939 SPE_BUILTIN_EVSTWWOX,
2940 SPE_BUILTIN_EVSUBFW,
2941 SPE_BUILTIN_EVXOR,
2942 SPE_BUILTIN_EVABS,
2943 SPE_BUILTIN_EVADDSMIAAW,
2944 SPE_BUILTIN_EVADDSSIAAW,
2945 SPE_BUILTIN_EVADDUMIAAW,
2946 SPE_BUILTIN_EVADDUSIAAW,
2947 SPE_BUILTIN_EVCNTLSW,
2948 SPE_BUILTIN_EVCNTLZW,
2949 SPE_BUILTIN_EVEXTSB,
2950 SPE_BUILTIN_EVEXTSH,
2951 SPE_BUILTIN_EVFSABS,
2952 SPE_BUILTIN_EVFSCFSF,
2953 SPE_BUILTIN_EVFSCFSI,
2954 SPE_BUILTIN_EVFSCFUF,
2955 SPE_BUILTIN_EVFSCFUI,
2956 SPE_BUILTIN_EVFSCTSF,
2957 SPE_BUILTIN_EVFSCTSI,
2958 SPE_BUILTIN_EVFSCTSIZ,
2959 SPE_BUILTIN_EVFSCTUF,
2960 SPE_BUILTIN_EVFSCTUI,
2961 SPE_BUILTIN_EVFSCTUIZ,
2962 SPE_BUILTIN_EVFSNABS,
2963 SPE_BUILTIN_EVFSNEG,
2964 SPE_BUILTIN_EVMRA,
2965 SPE_BUILTIN_EVNEG,
2966 SPE_BUILTIN_EVRNDW,
2967 SPE_BUILTIN_EVSUBFSMIAAW,
2968 SPE_BUILTIN_EVSUBFSSIAAW,
2969 SPE_BUILTIN_EVSUBFUMIAAW,
2970 SPE_BUILTIN_EVSUBFUSIAAW,
2971 SPE_BUILTIN_EVADDIW,
2972 SPE_BUILTIN_EVLDD,
2973 SPE_BUILTIN_EVLDH,
2974 SPE_BUILTIN_EVLDW,
2975 SPE_BUILTIN_EVLHHESPLAT,
2976 SPE_BUILTIN_EVLHHOSSPLAT,
2977 SPE_BUILTIN_EVLHHOUSPLAT,
2978 SPE_BUILTIN_EVLWHE,
2979 SPE_BUILTIN_EVLWHOS,
2980 SPE_BUILTIN_EVLWHOU,
2981 SPE_BUILTIN_EVLWHSPLAT,
2982 SPE_BUILTIN_EVLWWSPLAT,
2983 SPE_BUILTIN_EVRLWI,
2984 SPE_BUILTIN_EVSLWI,
2985 SPE_BUILTIN_EVSRWIS,
2986 SPE_BUILTIN_EVSRWIU,
2987 SPE_BUILTIN_EVSTDD,
2988 SPE_BUILTIN_EVSTDH,
2989 SPE_BUILTIN_EVSTDW,
2990 SPE_BUILTIN_EVSTWHE,
2991 SPE_BUILTIN_EVSTWHO,
2992 SPE_BUILTIN_EVSTWWE,
2993 SPE_BUILTIN_EVSTWWO,
2994 SPE_BUILTIN_EVSUBIFW,
2995
2996 /* Compares. */
2997 SPE_BUILTIN_EVCMPEQ,
2998 SPE_BUILTIN_EVCMPGTS,
2999 SPE_BUILTIN_EVCMPGTU,
3000 SPE_BUILTIN_EVCMPLTS,
3001 SPE_BUILTIN_EVCMPLTU,
3002 SPE_BUILTIN_EVFSCMPEQ,
3003 SPE_BUILTIN_EVFSCMPGT,
3004 SPE_BUILTIN_EVFSCMPLT,
3005 SPE_BUILTIN_EVFSTSTEQ,
3006 SPE_BUILTIN_EVFSTSTGT,
3007 SPE_BUILTIN_EVFSTSTLT,
3008
3009 /* EVSEL compares. */
3010 SPE_BUILTIN_EVSEL_CMPEQ,
3011 SPE_BUILTIN_EVSEL_CMPGTS,
3012 SPE_BUILTIN_EVSEL_CMPGTU,
3013 SPE_BUILTIN_EVSEL_CMPLTS,
3014 SPE_BUILTIN_EVSEL_CMPLTU,
3015 SPE_BUILTIN_EVSEL_FSCMPEQ,
3016 SPE_BUILTIN_EVSEL_FSCMPGT,
3017 SPE_BUILTIN_EVSEL_FSCMPLT,
3018 SPE_BUILTIN_EVSEL_FSTSTEQ,
3019 SPE_BUILTIN_EVSEL_FSTSTGT,
3020 SPE_BUILTIN_EVSEL_FSTSTLT,
3021
3022 SPE_BUILTIN_EVSPLATFI,
3023 SPE_BUILTIN_EVSPLATI,
3024 SPE_BUILTIN_EVMWHSSMAA,
3025 SPE_BUILTIN_EVMWHSMFAA,
3026 SPE_BUILTIN_EVMWHSMIAA,
3027 SPE_BUILTIN_EVMWHUSIAA,
3028 SPE_BUILTIN_EVMWHUMIAA,
3029 SPE_BUILTIN_EVMWHSSFAN,
3030 SPE_BUILTIN_EVMWHSSIAN,
3031 SPE_BUILTIN_EVMWHSMFAN,
3032 SPE_BUILTIN_EVMWHSMIAN,
3033 SPE_BUILTIN_EVMWHUSIAN,
3034 SPE_BUILTIN_EVMWHUMIAN,
3035 SPE_BUILTIN_EVMWHGSSFAA,
3036 SPE_BUILTIN_EVMWHGSMFAA,
3037 SPE_BUILTIN_EVMWHGSMIAA,
3038 SPE_BUILTIN_EVMWHGUMIAA,
3039 SPE_BUILTIN_EVMWHGSSFAN,
3040 SPE_BUILTIN_EVMWHGSMFAN,
3041 SPE_BUILTIN_EVMWHGSMIAN,
3042 SPE_BUILTIN_EVMWHGUMIAN,
3043 SPE_BUILTIN_MTSPEFSCR,
3044 SPE_BUILTIN_MFSPEFSCR,
3045 SPE_BUILTIN_BRINC
0ac081f6 3046};