]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
Daily bump.
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
d1e082c2 2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 4
5de601cf 5 This file is part of GCC.
f045b2c9 6
5de601cf
NC
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
5de601cf 10 option) any later version.
f045b2c9 11
5de601cf
NC
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f045b2c9 16
748086b7
JJ
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 24 <http://www.gnu.org/licenses/>. */
f045b2c9
RS
25
26/* Note that some other tm.h files include this one and then override
9ebbca7d 27 many of the definitions. */
f045b2c9 28
fd438373
MM
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
9ebbca7d
GK
33/* Definitions for the object file format. These are set at
34 compile-time. */
f045b2c9 35
9ebbca7d
GK
36#define OBJECT_XCOFF 1
37#define OBJECT_ELF 2
38#define OBJECT_PEF 3
ee890fe2 39#define OBJECT_MACHO 4
f045b2c9 40
9ebbca7d 41#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 42#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 43#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 44#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 45
2bfcf297
DB
46#ifndef TARGET_AIX
47#define TARGET_AIX 0
48#endif
49
78009d9f
MM
50#ifndef TARGET_AIX_OS
51#define TARGET_AIX_OS 0
52#endif
53
85b776df
AM
54/* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56#define DOT_SYMBOLS 1
57
8e3f41e7
MM
58/* Default string to use for cpu if not specified. */
59#ifndef TARGET_CPU_DEFAULT
60#define TARGET_CPU_DEFAULT ((char *)0)
61#endif
62
f565b0a1 63/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 64#ifdef CONFIG_PPC405CR
f565b0a1
DE
65#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66#else
67#define PPC405_ERRATUM77 0
68#endif
69
96038623
DE
70#ifndef TARGET_PAIRED_FLOAT
71#define TARGET_PAIRED_FLOAT 0
72#endif
73
cd679487
BE
74#ifdef HAVE_AS_POPCNTB
75#define ASM_CPU_POWER5_SPEC "-mpower5"
76#else
77#define ASM_CPU_POWER5_SPEC "-mpower4"
78#endif
79
80#ifdef HAVE_AS_DFP
81#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82#else
83#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84#endif
85
cacf1ca8 86#ifdef HAVE_AS_POPCNTD
d40c9e33
PB
87#define ASM_CPU_POWER7_SPEC "-mpower7"
88#else
89#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90#endif
91
428bffcb
PB
92#ifdef HAVE_AS_POWER8
93#define ASM_CPU_POWER8_SPEC "-mpower8"
94#else
f62511da 95#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
428bffcb
PB
96#endif
97
47f67e51
PB
98#ifdef HAVE_AS_DCI
99#define ASM_CPU_476_SPEC "-m476"
100#else
101#define ASM_CPU_476_SPEC "-mpower4"
102#endif
103
cacf1ca8
MM
104/* Common ASM definitions used by ASM_SPEC among the various targets for
105 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
106 provide the default assembler options if the user uses -mcpu=native, so if
107 you make changes here, make them also there. */
f984d8df
DB
108#define ASM_CPU_SPEC \
109"%{!mcpu*: \
93ae5495 110 %{mpowerpc64*: -mppc64} \
a441dedb 111 %{!mpowerpc64*: %(asm_default)}} \
cacf1ca8 112%{mcpu=native: %(asm_cpu_native)} \
d296e02e 113%{mcpu=cell: -mcell} \
93ae5495 114%{mcpu=power3: -mppc64} \
957e9e48 115%{mcpu=power4: -mpower4} \
cd679487
BE
116%{mcpu=power5: %(asm_cpu_power5)} \
117%{mcpu=power5+: %(asm_cpu_power5)} \
118%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
119%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
d40c9e33 120%{mcpu=power7: %(asm_cpu_power7)} \
428bffcb 121%{mcpu=power8: %(asm_cpu_power8)} \
ebde32fd 122%{mcpu=a2: -ma2} \
f984d8df 123%{mcpu=powerpc: -mppc} \
93ae5495 124%{mcpu=rs64a: -mppc64} \
f984d8df 125%{mcpu=401: -mppc} \
61a8515c
JS
126%{mcpu=403: -m403} \
127%{mcpu=405: -m405} \
2c9d95ef
DE
128%{mcpu=405fp: -m405} \
129%{mcpu=440: -m440} \
130%{mcpu=440fp: -m440} \
4adf8008
PB
131%{mcpu=464: -m440} \
132%{mcpu=464fp: -m440} \
47f67e51
PB
133%{mcpu=476: %(asm_cpu_476)} \
134%{mcpu=476fp: %(asm_cpu_476)} \
f984d8df
DB
135%{mcpu=505: -mppc} \
136%{mcpu=601: -m601} \
137%{mcpu=602: -mppc} \
138%{mcpu=603: -mppc} \
139%{mcpu=603e: -mppc} \
140%{mcpu=ec603e: -mppc} \
141%{mcpu=604: -mppc} \
142%{mcpu=604e: -mppc} \
93ae5495
AM
143%{mcpu=620: -mppc64} \
144%{mcpu=630: -mppc64} \
f984d8df
DB
145%{mcpu=740: -mppc} \
146%{mcpu=750: -mppc} \
49ffe578 147%{mcpu=G3: -mppc} \
93ae5495
AM
148%{mcpu=7400: -mppc -maltivec} \
149%{mcpu=7450: -mppc -maltivec} \
150%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
151%{mcpu=801: -mppc} \
152%{mcpu=821: -mppc} \
153%{mcpu=823: -mppc} \
775db490 154%{mcpu=860: -mppc} \
93ae5495
AM
155%{mcpu=970: -mpower4 -maltivec} \
156%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 157%{mcpu=8540: -me500} \
5ca0373f 158%{mcpu=8548: -me500} \
fa41c305
EW
159%{mcpu=e300c2: -me300} \
160%{mcpu=e300c3: -me300} \
edae5fe3 161%{mcpu=e500mc: -me500mc} \
b17f98b1 162%{mcpu=e500mc64: -me500mc64} \
683ed19e
EW
163%{mcpu=e5500: -me5500} \
164%{mcpu=e6500: -me6500} \
93ae5495 165%{maltivec: -maltivec} \
2c9ccc21 166%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
f62511da 167%{mpower8-vector|mcrypto|mdirect-move: %{!mcpu*: %(asm_cpu_power8)}} \
93ae5495 168-many"
f984d8df
DB
169
170#define CPP_DEFAULT_SPEC ""
171
172#define ASM_DEFAULT_SPEC ""
173
841faeed
MM
174/* This macro defines names of additional specifications to put in the specs
175 that can be used in various specifications like CC1_SPEC. Its definition
176 is an initializer with a subgrouping for each command option.
177
178 Each subgrouping contains a string constant, that defines the
5de601cf 179 specification name, and a string constant that used by the GCC driver
841faeed
MM
180 program.
181
182 Do not define this macro if it does not need to do anything. */
183
7509c759 184#define SUBTARGET_EXTRA_SPECS
7509c759 185
c81bebd7 186#define EXTRA_SPECS \
c81bebd7 187 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7 188 { "asm_cpu", ASM_CPU_SPEC }, \
cacf1ca8 189 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
c81bebd7 190 { "asm_default", ASM_DEFAULT_SPEC }, \
0eab6840 191 { "cc1_cpu", CC1_CPU_SPEC }, \
cd679487
BE
192 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
193 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
d40c9e33 194 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
428bffcb 195 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
47f67e51 196 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
7509c759
MM
197 SUBTARGET_EXTRA_SPECS
198
0eab6840
DE
199/* -mcpu=native handling only makes sense with compiler running on
200 an PowerPC chip. If changing this condition, also change
201 the condition in driver-rs6000.c. */
202#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203/* In driver-rs6000.c. */
204extern const char *host_detect_local_cpu (int argc, const char **argv);
205#define EXTRA_SPEC_FUNCTIONS \
206 { "local_cpu_detect", host_detect_local_cpu },
207#define HAVE_LOCAL_CPU_DETECT
cacf1ca8
MM
208#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
209
210#else
211#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
0eab6840
DE
212#endif
213
ee7caeb3
DE
214#ifndef CC1_CPU_SPEC
215#ifdef HAVE_LOCAL_CPU_DETECT
0eab6840
DE
216#define CC1_CPU_SPEC \
217"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
ee7caeb3
DE
219#else
220#define CC1_CPU_SPEC ""
221#endif
0eab6840
DE
222#endif
223
fb623df5 224/* Architecture type. */
f045b2c9 225
bb22512c 226/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 227 optional field operand for mfcr. */
fb623df5 228
78f5898b 229#ifndef HAVE_AS_MFCRF
432218ba 230#undef TARGET_MFCRF
ffa22984
DE
231#define TARGET_MFCRF 0
232#endif
233
0fa2e4df 234/* Define TARGET_POPCNTB if the target assembler does not support the
432218ba
DE
235 popcount byte instruction. */
236
237#ifndef HAVE_AS_POPCNTB
238#undef TARGET_POPCNTB
239#define TARGET_POPCNTB 0
240#endif
241
9719f3b7
DE
242/* Define TARGET_FPRND if the target assembler does not support the
243 fp rounding instructions. */
244
245#ifndef HAVE_AS_FPRND
246#undef TARGET_FPRND
247#define TARGET_FPRND 0
248#endif
249
b639c3c2
JJ
250/* Define TARGET_CMPB if the target assembler does not support the
251 cmpb instruction. */
252
253#ifndef HAVE_AS_CMPB
254#undef TARGET_CMPB
255#define TARGET_CMPB 0
256#endif
257
44cd321e
PS
258/* Define TARGET_MFPGPR if the target assembler does not support the
259 mffpr and mftgpr instructions. */
260
261#ifndef HAVE_AS_MFPGPR
262#undef TARGET_MFPGPR
263#define TARGET_MFPGPR 0
264#endif
265
b639c3c2
JJ
266/* Define TARGET_DFP if the target assembler does not support decimal
267 floating point instructions. */
268#ifndef HAVE_AS_DFP
269#undef TARGET_DFP
270#define TARGET_DFP 0
271#endif
272
cacf1ca8
MM
273/* Define TARGET_POPCNTD if the target assembler does not support the
274 popcount word and double word instructions. */
275
276#ifndef HAVE_AS_POPCNTD
277#undef TARGET_POPCNTD
278#define TARGET_POPCNTD 0
279#endif
280
f62511da
MM
281/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
282 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
283 instructions. */
284
285#ifndef HAVE_AS_POWER8
286#undef TARGET_DIRECT_MOVE
287#undef TARGET_CRYPTO
288#undef TARGET_P8_VECTOR
289#define TARGET_DIRECT_MOVE 0
290#define TARGET_CRYPTO 0
291#define TARGET_P8_VECTOR 0
292#endif
293
cacf1ca8
MM
294/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
295 not, generate the lwsync code as an integer constant. */
296#ifdef HAVE_AS_LWSYNC
297#define TARGET_LWSYNC_INSTRUCTION 1
298#else
299#define TARGET_LWSYNC_INSTRUCTION 0
300#endif
301
9752c4ad
AM
302/* Define TARGET_TLS_MARKERS if the target assembler does not support
303 arg markers for __tls_get_addr calls. */
304#ifndef HAVE_AS_TLS_MARKERS
305#undef TARGET_TLS_MARKERS
306#define TARGET_TLS_MARKERS 0
307#else
308#define TARGET_TLS_MARKERS tls_markers
309#endif
310
7f970b70
AM
311#ifndef TARGET_SECURE_PLT
312#define TARGET_SECURE_PLT 0
313#endif
314
070b27da
AM
315#ifndef TARGET_CMODEL
316#define TARGET_CMODEL CMODEL_SMALL
317#endif
318
2f3e5814 319#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 320
c4501e62
JJ
321#ifndef HAVE_AS_TLS
322#define HAVE_AS_TLS 0
323#endif
324
be26142a
PB
325#ifndef TARGET_LINK_STACK
326#define TARGET_LINK_STACK 0
327#endif
328
329#ifndef SET_TARGET_LINK_STACK
330#define SET_TARGET_LINK_STACK(X) do { } while (0)
331#endif
332
48d72335
DE
333/* Return 1 for a symbol ref for a thread-local storage symbol. */
334#define RS6000_SYMBOL_REF_TLS_P(RTX) \
335 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
336
996ed075
JJ
337#ifdef IN_LIBGCC2
338/* For libgcc2 we make sure this is a compile time constant */
67796c1f 339#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
78f5898b 340#undef TARGET_POWERPC64
996ed075
JJ
341#define TARGET_POWERPC64 1
342#else
78f5898b 343#undef TARGET_POWERPC64
996ed075
JJ
344#define TARGET_POWERPC64 0
345#endif
b6c9286a 346#else
78f5898b 347 /* The option machinery will define this. */
b6c9286a
MM
348#endif
349
c28a7c24 350#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
9ebbca7d 351
696e45ba
ME
352/* FPU operations supported.
353 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
354 also test TARGET_HARD_FLOAT. */
355#define TARGET_SINGLE_FLOAT 1
356#define TARGET_DOUBLE_FLOAT 1
357#define TARGET_SINGLE_FPU 0
358#define TARGET_SIMPLE_FPU 0
0bb7b92e 359#define TARGET_XILINX_FPU 0
696e45ba 360
fb623df5
RK
361/* Recast the processor type to the cpu attribute. */
362#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
363
8482e358 364/* Define generic processor types based upon current deployment. */
3cb999d8 365#define PROCESSOR_COMMON PROCESSOR_PPC601
3cb999d8
DE
366#define PROCESSOR_POWERPC PROCESSOR_PPC604
367#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 368
fb623df5 369/* Define the default processor. This is overridden by other tm.h files. */
f3061fa4 370#define PROCESSOR_DEFAULT PROCESSOR_PPC603
3cb999d8 371#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 372
59ac9a55
JJ
373/* Specify the dialect of assembler to use. Only new mnemonics are supported
374 starting with GCC 4.8, i.e. just one dialect, but for backwards
375 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
376 defined. */
377#define ASSEMBLER_DIALECT 1
378
38c1f2d7 379/* Debug support */
fd438373
MM
380#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
381#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
382#define MASK_DEBUG_REG 0x04 /* debug register handling */
383#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
384#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
385#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
7fa14a01 386#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
fd438373
MM
387#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
388 | MASK_DEBUG_ARG \
389 | MASK_DEBUG_REG \
390 | MASK_DEBUG_ADDR \
391 | MASK_DEBUG_COST \
7fa14a01
MM
392 | MASK_DEBUG_TARGET \
393 | MASK_DEBUG_BUILTIN)
fd438373
MM
394
395#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
396#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
397#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
398#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
399#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
400#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
7fa14a01 401#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
cacf1ca8 402
f62511da 403/* Describe the vector unit used for arithmetic operations. */
cacf1ca8
MM
404extern enum rs6000_vector rs6000_vector_unit[];
405
406#define VECTOR_UNIT_NONE_P(MODE) \
407 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
408
409#define VECTOR_UNIT_VSX_P(MODE) \
410 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
411
f62511da
MM
412#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
413 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
414
cacf1ca8
MM
415#define VECTOR_UNIT_ALTIVEC_P(MODE) \
416 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
417
f62511da
MM
418#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
419 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
420 (int)VECTOR_VSX, \
421 (int)VECTOR_P8_VECTOR))
422
423/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
424 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
425 compatible, so allow it as well, rather than changing all of the uses of the
426 macro. */
cacf1ca8 427#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
428 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
429 (int)VECTOR_ALTIVEC, \
430 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
431
432/* Describe whether to use VSX loads or Altivec loads. For now, just use the
433 same unit as the vector unit we are using, but we may want to migrate to
434 using VSX style loads even for types handled by altivec. */
435extern enum rs6000_vector rs6000_vector_mem[];
436
437#define VECTOR_MEM_NONE_P(MODE) \
438 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
439
440#define VECTOR_MEM_VSX_P(MODE) \
441 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
442
f62511da
MM
443#define VECTOR_MEM_P8_VECTOR_P(MODE) \
444 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
445
cacf1ca8
MM
446#define VECTOR_MEM_ALTIVEC_P(MODE) \
447 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
448
f62511da
MM
449#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
450 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
451 (int)VECTOR_VSX, \
452 (int)VECTOR_P8_VECTOR))
453
cacf1ca8 454#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
455 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
456 (int)VECTOR_ALTIVEC, \
457 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
458
459/* Return the alignment of a given vector type, which is set based on the
460 vector unit use. VSX for instance can load 32 or 64 bit aligned words
461 without problems, while Altivec requires 128-bit aligned vectors. */
462extern int rs6000_vector_align[];
463
464#define VECTOR_ALIGN(MODE) \
465 ((rs6000_vector_align[(MODE)] != 0) \
466 ? rs6000_vector_align[(MODE)] \
467 : (int)GET_MODE_BITSIZE ((MODE)))
468
025d9908
KH
469/* Alignment options for fields in structures for sub-targets following
470 AIX-like ABI.
471 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
472 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
473
474 Override the macro definitions when compiling libobjc to avoid undefined
475 reference to rs6000_alignment_flags due to library's use of GCC alignment
476 macros which use the macros below. */
f676971a 477
025d9908
KH
478#ifndef IN_TARGET_LIBS
479#define MASK_ALIGN_POWER 0x00000000
480#define MASK_ALIGN_NATURAL 0x00000001
481#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
482#else
483#define TARGET_ALIGN_NATURAL 0
484#endif
6fa3f289
ZW
485
486#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
602ea4d3 487#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289 488#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
cacf1ca8 489#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
6fa3f289 490
a3170dc6
AH
491#define TARGET_SPE_ABI 0
492#define TARGET_SPE 0
cacf1ca8 493#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
a3170dc6 494#define TARGET_FPRS 1
4d4cbc0e
AH
495#define TARGET_E500_SINGLE 0
496#define TARGET_E500_DOUBLE 0
eca0d5e8 497#define CHECK_E500_OPTIONS do { } while (0)
a3170dc6 498
7042fe5e
MM
499/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
500 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
501 XILINX. */
c3f8384f
MM
502#define TARGET_FCFID (TARGET_POWERPC64 \
503 || TARGET_PPC_GPOPT /* 970/power4 */ \
504 || TARGET_POPCNTB /* ISA 2.02 */ \
505 || TARGET_CMPB /* ISA 2.05 */ \
506 || TARGET_POPCNTD /* ISA 2.06 */ \
7042fe5e
MM
507 || TARGET_XILINX_FPU)
508
509#define TARGET_FCTIDZ TARGET_FCFID
510#define TARGET_STFIWX TARGET_PPC_GFXOPT
511#define TARGET_LFIWAX TARGET_CMPB
512#define TARGET_LFIWZX TARGET_POPCNTD
513#define TARGET_FCFIDS TARGET_POPCNTD
514#define TARGET_FCFIDU TARGET_POPCNTD
515#define TARGET_FCFIDUS TARGET_POPCNTD
516#define TARGET_FCTIDUZ TARGET_POPCNTD
517#define TARGET_FCTIWUZ TARGET_POPCNTD
518
f62511da
MM
519#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
520#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
521
522/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
523 in power7, so conditionalize them on p8 features. TImode syncs need quad
524 memory support. */
525#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY || TARGET_DIRECT_MOVE)
526#define TARGET_SYNC_TI TARGET_QUAD_MEMORY
527
c6d5ff83
MM
528/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
529 to allocate the SDmode stack slot to get the value into the proper location
530 in the register. */
531#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
532
4d967549
MM
533/* In switching from using target_flags to using rs6000_isa_flags, the options
534 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
535 OPTION_MASK_<xxx> back into MASK_<xxx>. */
536#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
537#define MASK_CMPB OPTION_MASK_CMPB
f62511da 538#define MASK_CRYPTO OPTION_MASK_CRYPTO
4d967549 539#define MASK_DFP OPTION_MASK_DFP
f62511da 540#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
4d967549
MM
541#define MASK_DLMZB OPTION_MASK_DLMZB
542#define MASK_EABI OPTION_MASK_EABI
543#define MASK_FPRND OPTION_MASK_FPRND
f62511da 544#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
4d967549
MM
545#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
546#define MASK_ISEL OPTION_MASK_ISEL
547#define MASK_MFCRF OPTION_MASK_MFCRF
548#define MASK_MFPGPR OPTION_MASK_MFPGPR
549#define MASK_MULHW OPTION_MASK_MULHW
550#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
551#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
f62511da 552#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
4d967549
MM
553#define MASK_POPCNTB OPTION_MASK_POPCNTB
554#define MASK_POPCNTD OPTION_MASK_POPCNTD
555#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
556#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
557#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
558#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
559#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
560#define MASK_STRING OPTION_MASK_STRING
561#define MASK_UPDATE OPTION_MASK_UPDATE
562#define MASK_VSX OPTION_MASK_VSX
c6d5ff83 563#define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
4d967549
MM
564
565#ifndef IN_LIBGCC2
566#define MASK_POWERPC64 OPTION_MASK_POWERPC64
567#endif
568
569#ifdef TARGET_64BIT
570#define MASK_64BIT OPTION_MASK_64BIT
571#endif
572
573#ifdef TARGET_RELOCATABLE
574#define MASK_RELOCATABLE OPTION_MASK_RELOCATABLE
575#endif
576
577#ifdef TARGET_LITTLE_ENDIAN
578#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
579#endif
580
581#ifdef TARGET_MINIMAL_TOC
582#define MASK_MINIMAL_TOC OPTION_MASK_MINIMAL_TOC
583#endif
584
585#ifdef TARGET_REGNAMES
586#define MASK_REGNAMES OPTION_MASK_REGNAMES
587#endif
588
589#ifdef TARGET_PROTOTYPE
590#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
591#endif
592
593/* Explicit ISA options that were set. */
594#define rs6000_isa_flags_explicit global_options_set.x_rs6000_isa_flags
595
7fa14a01
MM
596/* For power systems, we want to enable Altivec and VSX builtins even if the
597 user did not use -maltivec or -mvsx to allow the builtins to be used inside
598 of #pragma GCC target or the target attribute to change the code level for a
599 given system. The SPE and Paired builtins are only enabled if you configure
600 the compiler for those builtins, and those machines don't support altivec or
601 VSX. */
602
603#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
604 && ((TARGET_POWERPC64 \
c3f8384f 605 || TARGET_PPC_GPOPT /* 970/power4 */ \
7fa14a01
MM
606 || TARGET_POPCNTB /* ISA 2.02 */ \
607 || TARGET_CMPB /* ISA 2.05 */ \
608 || TARGET_POPCNTD /* ISA 2.06 */ \
609 || TARGET_ALTIVEC \
610 || TARGET_VSX)))
611
a7c6c6d6
OH
612/* E500 cores only support plain "sync", not lwsync. */
613#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
614 || rs6000_cpu == PROCESSOR_PPC8548)
7fa14a01
MM
615
616
92902797
MM
617/* Which machine supports the various reciprocal estimate instructions. */
618#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
619 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
620
621#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
622 && TARGET_DOUBLE_FLOAT \
623 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
624
625#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
626 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
627
628#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
629 && TARGET_DOUBLE_FLOAT \
630 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
631
632/* Whether the various reciprocal divide/square root estimate instructions
633 exist, and whether we should automatically generate code for the instruction
634 by default. */
635#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
636#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
637#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
638#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
639
640extern unsigned char rs6000_recip_bits[];
641
642#define RS6000_RECIP_HAVE_RE_P(MODE) \
643 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
644
645#define RS6000_RECIP_AUTO_RE_P(MODE) \
646 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
647
648#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
649 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
650
651#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
652 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
653
c5387660
JM
654/* The default CPU for TARGET_OPTION_OVERRIDE. */
655#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
f045b2c9 656
a5c76ee6 657/* Target pragma. */
c58b209a
NB
658#define REGISTER_TARGET_PRAGMAS() do { \
659 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
fd438373 660 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
2fab365e 661 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
7fa14a01 662 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
a5c76ee6
ZW
663} while (0)
664
4c4eb375
GK
665/* Target #defines. */
666#define TARGET_CPU_CPP_BUILTINS() \
667 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
668
669/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
670 we're compiling for. Some configurations may need to override it. */
671#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
672 do \
673 { \
674 if (BYTES_BIG_ENDIAN) \
675 { \
676 builtin_define ("__BIG_ENDIAN__"); \
677 builtin_define ("_BIG_ENDIAN"); \
678 builtin_assert ("machine=bigendian"); \
679 } \
680 else \
681 { \
682 builtin_define ("__LITTLE_ENDIAN__"); \
683 builtin_define ("_LITTLE_ENDIAN"); \
684 builtin_assert ("machine=littleendian"); \
685 } \
686 } \
687 while (0)
f045b2c9 688\f
4c4eb375 689/* Target machine storage layout. */
f045b2c9 690
13d39dbc 691/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 692 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
693 the value is constrained to be within the bounds of the declared
694 type, but kept valid in the wider mode. The signedness of the
695 extension may differ from that of the type. */
696
39403d82
DE
697#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
698 if (GET_MODE_CLASS (MODE) == MODE_INT \
699 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
b78d48dd 700 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 701
f045b2c9 702/* Define this if most significant bit is lowest numbered
82e41834
KH
703 in instructions that operate on numbered bit-fields. */
704/* That is true on RS/6000. */
f045b2c9
RS
705#define BITS_BIG_ENDIAN 1
706
707/* Define this if most significant byte of a word is the lowest numbered. */
708/* That is true on RS/6000. */
709#define BYTES_BIG_ENDIAN 1
710
711/* Define this if most significant word of a multiword number is lowest
c81bebd7 712 numbered.
f045b2c9
RS
713
714 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 715 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
716#define WORDS_BIG_ENDIAN 1
717
50751417
AM
718/* This says that for the IBM long double the larger magnitude double
719 comes first. It's really a two element double array, and arrays
720 don't index differently between little- and big-endian. */
721#define LONG_DOUBLE_LARGE_FIRST 1
722
2e360ab3 723#define MAX_BITS_PER_WORD 64
f045b2c9
RS
724
725/* Width of a word, in units (bytes). */
c1aa3958 726#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
727#ifdef IN_LIBGCC2
728#define MIN_UNITS_PER_WORD UNITS_PER_WORD
729#else
ef0e53ce 730#define MIN_UNITS_PER_WORD 4
f34fc46e 731#endif
2e360ab3 732#define UNITS_PER_FP_WORD 8
0ac081f6 733#define UNITS_PER_ALTIVEC_WORD 16
cacf1ca8 734#define UNITS_PER_VSX_WORD 16
a3170dc6 735#define UNITS_PER_SPE_WORD 8
96038623 736#define UNITS_PER_PAIRED_WORD 8
f045b2c9 737
915f619f
JW
738/* Type used for ptrdiff_t, as a string used in a declaration. */
739#define PTRDIFF_TYPE "int"
740
058ef853
DE
741/* Type used for size_t, as a string used in a declaration. */
742#define SIZE_TYPE "long unsigned int"
743
f045b2c9
RS
744/* Type used for wchar_t, as a string used in a declaration. */
745#define WCHAR_TYPE "short unsigned int"
746
747/* Width of wchar_t in bits. */
748#define WCHAR_TYPE_SIZE 16
749
9e654916
RK
750/* A C expression for the size in bits of the type `short' on the
751 target machine. If you don't define this, the default is half a
752 word. (If this would be less than one storage unit, it is
753 rounded up to one unit.) */
754#define SHORT_TYPE_SIZE 16
755
756/* A C expression for the size in bits of the type `int' on the
757 target machine. If you don't define this, the default is one
758 word. */
19d2d16f 759#define INT_TYPE_SIZE 32
9e654916
RK
760
761/* A C expression for the size in bits of the type `long' on the
762 target machine. If you don't define this, the default is one
763 word. */
2f3e5814 764#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
765
766/* A C expression for the size in bits of the type `long long' on the
767 target machine. If you don't define this, the default is two
768 words. */
769#define LONG_LONG_TYPE_SIZE 64
770
9e654916
RK
771/* A C expression for the size in bits of the type `float' on the
772 target machine. If you don't define this, the default is one
773 word. */
774#define FLOAT_TYPE_SIZE 32
775
776/* A C expression for the size in bits of the type `double' on the
777 target machine. If you don't define this, the default is two
778 words. */
779#define DOUBLE_TYPE_SIZE 64
780
781/* A C expression for the size in bits of the type `long double' on
782 the target machine. If you don't define this, the default is two
783 words. */
6fa3f289 784#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 785
06f4e019
DE
786/* Define this to set long double type size to use in libgcc2.c, which can
787 not depend on target_flags. */
788#ifdef __LONG_DOUBLE_128__
789#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
790#else
791#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
792#endif
9e654916 793
5b8f5865
DE
794/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
795#define WIDEST_HARDWARE_FP_SIZE 64
796
f045b2c9
RS
797/* Width in bits of a pointer.
798 See also the macro `Pmode' defined below. */
cacf1ca8
MM
799extern unsigned rs6000_pointer_size;
800#define POINTER_SIZE rs6000_pointer_size
f045b2c9
RS
801
802/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 803#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
804
805/* Boundary (in *bits*) on which stack pointer should be aligned. */
cacf1ca8
MM
806#define STACK_BOUNDARY \
807 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
808 ? 64 : 128)
f045b2c9
RS
809
810/* Allocation boundary (in *bits*) for the code of a function. */
811#define FUNCTION_BOUNDARY 32
812
813/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
814#define BIGGEST_ALIGNMENT 128
815
816/* A C expression to compute the alignment for a variables in the
817 local store. TYPE is the data type, and ALIGN is the alignment
818 that the object would ordinarily have. */
819#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
777a3a6a 820 DATA_ALIGNMENT (TYPE, ALIGN)
b73fd26c 821
f045b2c9
RS
822/* Alignment of field after `int : 0' in a structure. */
823#define EMPTY_FIELD_BOUNDARY 32
824
825/* Every structure's size must be a multiple of this. */
826#define STRUCTURE_SIZE_BOUNDARY 8
827
43a88a8c 828/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
829#define PCC_BITFIELD_TYPE_MATTERS 1
830
69ef87e2
AH
831/* Make strings word-aligned so strcpy from constants will be faster.
832 Make vector constants quadword aligned. */
833#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
834 (TREE_CODE (EXP) == STRING_CST \
153fbec8 835 && (STRICT_ALIGNMENT || !optimize_size) \
69ef87e2
AH
836 && (ALIGN) < BITS_PER_WORD \
837 ? BITS_PER_WORD \
838 : (ALIGN))
f045b2c9 839
0ac081f6 840/* Make arrays of chars word-aligned for the same reasons.
f82f556d
AH
841 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
842 64 bits. */
b851135c
NF
843#define DATA_ALIGNMENT(TYPE, ALIGN) \
844 (TREE_CODE (TYPE) == VECTOR_TYPE \
845 ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) \
846 || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
847 ? 64 : 128) \
848 : ((TARGET_E500_DOUBLE \
849 && TREE_CODE (TYPE) == REAL_TYPE \
850 && TYPE_MODE (TYPE) == DFmode) \
851 ? 64 \
852 : (TREE_CODE (TYPE) == ARRAY_TYPE \
853 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
854 && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
f045b2c9 855
a0ab749a 856/* Nonzero if move instructions will actually fail to work
f045b2c9 857 when given unaligned data. */
fdaff8ba 858#define STRICT_ALIGNMENT 0
e1565e65
DE
859
860/* Define this macro to be the value 1 if unaligned accesses have a cost
861 many times greater than aligned accesses, for example if they are
862 emulated in a trap handler. */
cacf1ca8
MM
863/* Altivec vector memory instructions simply ignore the low bits; SPE vector
864 memory instructions trap on unaligned accesses; VSX memory instructions are
865 aligned to 4 or 8 bytes. */
41543739
GK
866#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
867 (STRICT_ALIGNMENT \
fcce224d 868 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
9f89e66e 869 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) \
54ce9cc2 870 && (ALIGN) < 32) \
cacf1ca8
MM
871 || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
872
f045b2c9
RS
873\f
874/* Standard register usage. */
875
876/* Number of actual hardware registers.
877 The hardware registers are assigned numbers for the compiler
878 from 0 to just below FIRST_PSEUDO_REGISTER.
879 All registers that the compiler knows about must be given numbers,
880 even those that are not normally considered general registers.
881
882 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
462f7901
SB
883 a count register, a link register, and 8 condition register fields,
884 which we view here as separate registers. AltiVec adds 32 vector
885 registers and a VRsave register.
f045b2c9
RS
886
887 In addition, the difference between the frame and argument pointers is
888 a function of the number of registers saved, so we need to have a
889 register for AP that will later be eliminated in favor of SP or FP.
802a0058 890 This is a normal register, but it is fixed.
f045b2c9 891
802a0058
MM
892 We also create a pseudo register for float/int conversions, that will
893 really represent the memory location used. It is represented here as
894 a register, in order to work around problems in allocating stack storage
7d5175e1 895 in inline functions.
802a0058 896
7d5175e1
JJ
897 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
898 pointer, which is eventually eliminated in favor of SP or FP. */
899
900#define FIRST_PSEUDO_REGISTER 114
f045b2c9 901
d6a7951f 902/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 903#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 904
93c9d1ba 905/* Add 32 dwarf columns for synthetic SPE registers. */
7d5175e1 906#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
c19de7aa 907
93c9d1ba
AM
908/* The SPE has an additional 32 synthetic registers, with DWARF debug
909 info numbering for these registers starting at 1200. While eh_frame
910 register numbering need not be the same as the debug info numbering,
911 we choose to number these regs for eh_frame at 1200 too. This allows
912 future versions of the rs6000 backend to add hard registers and
913 continue to use the gcc hard register numbering for eh_frame. If the
914 extra SPE registers in eh_frame were numbered starting from the
915 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
916 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
917 avoid invalidating older SPE eh_frame info.
918
919 We must map them here to avoid huge unwinder tables mostly consisting
f676971a 920 of unused space. */
93c9d1ba 921#define DWARF_REG_TO_UNWIND_COLUMN(r) \
7d5175e1 922 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
93c9d1ba 923
ed1cf8ff
GK
924/* Use standard DWARF numbering for DWARF debugging information. */
925#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
926
93c9d1ba
AM
927/* Use gcc hard register numbering for eh_frame. */
928#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 929
ed1cf8ff
GK
930/* Map register numbers held in the call frame info that gcc has
931 collected using DWARF_FRAME_REGNUM to those that should be output in
932 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
933 for .eh_frame, but use the numbers mandated by the various ABIs for
934 .debug_frame. rs6000_emit_prologue has translated any combination of
935 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
936 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
937#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
938 ((FOR_EH) ? (REGNO) \
939 : (REGNO) == CR2_REGNO ? 64 \
940 : DBX_REGISTER_NUMBER (REGNO))
941
f045b2c9
RS
942/* 1 for registers that have pervasive standard uses
943 and are not available for the register allocator.
944
5dead3e5
DJ
945 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
946 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 947
a127c4e5
RK
948 cr5 is not supposed to be used.
949
950 On System V implementations, r13 is fixed and not available for use. */
951
f045b2c9 952#define FIXED_REGISTERS \
5dead3e5 953 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
954 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
955 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
956 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
957 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
958 /* AltiVec registers. */ \
959 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
960 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 961 1, 1 \
7d5175e1 962 , 1, 1, 1 \
0ac081f6 963}
f045b2c9
RS
964
965/* 1 for registers not available across function calls.
966 These must include the FIXED_REGISTERS and also any
967 registers that can be used without being saved.
968 The latter must include the registers where values are returned
969 and the register where structure-value addresses are passed.
970 Aside from that, you can include as many other registers as you like. */
971
972#define CALL_USED_REGISTERS \
a127c4e5 973 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
974 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
975 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
976 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
977 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
978 /* AltiVec registers. */ \
979 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
980 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 981 1, 1 \
7d5175e1 982 , 1, 1, 1 \
0ac081f6
AH
983}
984
289e96b2
AH
985/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
986 the entire set of `FIXED_REGISTERS' be included.
987 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
988 This macro is optional. If not specified, it defaults to the value
989 of `CALL_USED_REGISTERS'. */
f676971a 990
289e96b2
AH
991#define CALL_REALLY_USED_REGISTERS \
992 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
993 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
994 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
995 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
996 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
997 /* AltiVec registers. */ \
998 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
999 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1000 0, 0 \
7d5175e1 1001 , 0, 0, 0 \
289e96b2 1002}
f045b2c9 1003
28bcfd4d 1004#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
9ebbca7d 1005
d62294f5 1006#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
b427dd7a
AM
1007#define FIRST_SAVED_FP_REGNO (14+32)
1008#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
d62294f5 1009
f045b2c9
RS
1010/* List the order in which to allocate registers. Each register must be
1011 listed once, even those in FIXED_REGISTERS.
1012
1013 We allocate in the following order:
1014 fp0 (not saved or used for anything)
1015 fp13 - fp2 (not saved; incoming fp arg registers)
1016 fp1 (not saved; return value)
9390387d 1017 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
1018 cr7, cr6 (not saved or special)
1019 cr1 (not saved, but used for FP operations)
f045b2c9 1020 cr0 (not saved, but used for arithmetic operations)
5accd822 1021 cr4, cr3, cr2 (saved)
f045b2c9 1022 r9 (not saved; best for TImode)
d44b26bd 1023 r10, r8-r4 (not saved; highest first for less conflict with params)
9390387d 1024 r3 (not saved; return value register)
d44b26bd
AM
1025 r11 (not saved; later alloc to help shrink-wrap)
1026 r0 (not saved; cannot be base reg)
f045b2c9
RS
1027 r31 - r13 (saved; order given to save least number)
1028 r12 (not saved; if used for DImode or DFmode would use r13)
f045b2c9
RS
1029 ctr (not saved; when we have the choice ctr is better)
1030 lr (saved)
f6b5d695 1031 cr5, r1, r2, ap, ca (fixed)
9390387d
AM
1032 v0 - v1 (not saved or used for anything)
1033 v13 - v3 (not saved; incoming vector arg registers)
1034 v2 (not saved; incoming vector arg reg; return value)
1035 v19 - v14 (not saved or used for anything)
1036 v31 - v20 (saved; order given to save least number)
1037 vrsave, vscr (fixed)
a3170dc6 1038 spe_acc, spefscr (fixed)
7d5175e1 1039 sfp (fixed)
0ac081f6 1040*/
f676971a 1041
6b13641d
DJ
1042#if FIXED_R2 == 1
1043#define MAYBE_R2_AVAILABLE
1044#define MAYBE_R2_FIXED 2,
1045#else
1046#define MAYBE_R2_AVAILABLE 2,
1047#define MAYBE_R2_FIXED
1048#endif
f045b2c9 1049
d44b26bd
AM
1050#if FIXED_R13 == 1
1051#define EARLY_R12 12,
1052#define LATE_R12
1053#else
1054#define EARLY_R12
1055#define LATE_R12 12,
1056#endif
1057
9390387d
AM
1058#define REG_ALLOC_ORDER \
1059 {32, \
f62511da
MM
1060 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1061 /* not use fr14 which is a saved register. */ \
1062 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
9390387d
AM
1063 33, \
1064 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1065 50, 49, 48, 47, 46, \
1066 75, 74, 69, 68, 72, 71, 70, \
d44b26bd
AM
1067 MAYBE_R2_AVAILABLE \
1068 9, 10, 8, 7, 6, 5, 4, \
1069 3, EARLY_R12 11, 0, \
9390387d 1070 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
d44b26bd 1071 18, 17, 16, 15, 14, 13, LATE_R12 \
462f7901 1072 66, 65, \
9390387d
AM
1073 73, 1, MAYBE_R2_FIXED 67, 76, \
1074 /* AltiVec registers. */ \
1075 77, 78, \
1076 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1077 79, \
1078 96, 95, 94, 93, 92, 91, \
1079 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1080 109, 110, \
7d5175e1 1081 111, 112, 113 \
0ac081f6 1082}
f045b2c9
RS
1083
1084/* True if register is floating-point. */
1085#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1086
1087/* True if register is a condition register. */
1de43f85 1088#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
f045b2c9 1089
815cdc52 1090/* True if register is a condition register, but not cr0. */
1de43f85 1091#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
815cdc52 1092
f045b2c9 1093/* True if register is an integer register. */
7d5175e1
JJ
1094#define INT_REGNO_P(N) \
1095 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 1096
a3170dc6
AH
1097/* SPE SIMD registers are just the GPRs. */
1098#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1099
96038623
DE
1100/* PAIRED SIMD registers are just the FPRs. */
1101#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1102
f6b5d695
SB
1103/* True if register is the CA register. */
1104#define CA_REGNO_P(N) ((N) == CA_REGNO)
802a0058 1105
0ac081f6
AH
1106/* True if register is an AltiVec register. */
1107#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1108
cacf1ca8
MM
1109/* True if register is a VSX register. */
1110#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1111
1112/* Alternate name for any vector register supporting floating point, no matter
1113 which instruction set(s) are available. */
1114#define VFLOAT_REGNO_P(N) \
1115 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1116
1117/* Alternate name for any vector register supporting integer, no matter which
1118 instruction set(s) are available. */
1119#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1120
1121/* Alternate name for any vector register supporting logical operations, no
0bd62dca
MM
1122 matter which instruction set(s) are available. For 64-bit mode, we also
1123 allow logical operations in the GPRS. This is to allow atomic quad word
1124 builtins not to need the VSX registers for lqarx/stqcx. It also helps with
1125 __int128_t arguments that are passed in GPRs. */
f62511da
MM
1126#define VLOGICAL_REGNO_P(N) \
1127 (ALTIVEC_REGNO_P (N) \
1128 || (TARGET_VSX && FP_REGNO_P (N)) \
1129 || (TARGET_VSX && TARGET_POWERPC64 && INT_REGNO_P (N)))
cacf1ca8 1130
f045b2c9 1131/* Return number of consecutive hard regs needed starting at reg REGNO
d8ecbcdb
AH
1132 to hold something of mode MODE. */
1133
cacf1ca8 1134#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
0e67400a 1135
79eefb0d 1136/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
5ec6aff2
MM
1137 enough space to account for vectors in FP regs. However, TFmode/TDmode
1138 should not use VSX instructions to do a caller save. */
dbcc9f08
MM
1139#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1140 (TARGET_VSX \
1141 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
5ec6aff2
MM
1142 && FP_REGNO_P (REGNO) \
1143 ? V2DFmode \
1144 : ((MODE) == TFmode && FP_REGNO_P (REGNO)) \
1145 ? DFmode \
1146 : ((MODE) == TDmode && FP_REGNO_P (REGNO)) \
1147 ? DImode \
79eefb0d
PH
1148 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1149
3fc841c8
MM
1150#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1151 (((TARGET_32BIT && TARGET_POWERPC64 \
1152 && (GET_MODE_SIZE (MODE) > 4) \
1153 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1154 || (TARGET_VSX && FP_REGNO_P (REGNO) \
5ec6aff2
MM
1155 && GET_MODE_SIZE (MODE) > 8 && ((MODE) != TDmode) \
1156 && ((MODE) != TFmode)))
f045b2c9 1157
cacf1ca8
MM
1158#define VSX_VECTOR_MODE(MODE) \
1159 ((MODE) == V4SFmode \
1160 || (MODE) == V2DFmode) \
1161
0ac081f6 1162#define ALTIVEC_VECTOR_MODE(MODE) \
cb2a532e
AH
1163 ((MODE) == V16QImode \
1164 || (MODE) == V8HImode \
1165 || (MODE) == V4SFmode \
6e1f54e2 1166 || (MODE) == V4SImode)
0ac081f6 1167
dbcc9f08
MM
1168#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1169 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1170 || (MODE) == V2DImode)
1171
a3170dc6
AH
1172#define SPE_VECTOR_MODE(MODE) \
1173 ((MODE) == V4HImode \
1174 || (MODE) == V2SFmode \
00a892b8 1175 || (MODE) == V1DImode \
a3170dc6
AH
1176 || (MODE) == V2SImode)
1177
96038623
DE
1178#define PAIRED_VECTOR_MODE(MODE) \
1179 ((MODE) == V2SFmode)
1180
0d1fbc8c
AH
1181/* Value is TRUE if hard register REGNO can hold a value of
1182 machine-mode MODE. */
1183#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1184 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
f045b2c9
RS
1185
1186/* Value is 1 if it is a good idea to tie two pseudo registers
1187 when one has mode MODE1 and one has mode MODE2.
1188 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1189 for any hard reg, then this must be 0 for correct output. */
f62511da 1190#define MODES_TIEABLE_P(MODE1, MODE2) \
ebb109ad
BE
1191 (SCALAR_FLOAT_MODE_P (MODE1) \
1192 ? SCALAR_FLOAT_MODE_P (MODE2) \
1193 : SCALAR_FLOAT_MODE_P (MODE2) \
1194 ? SCALAR_FLOAT_MODE_P (MODE1) \
f045b2c9
RS
1195 : GET_MODE_CLASS (MODE1) == MODE_CC \
1196 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1197 : GET_MODE_CLASS (MODE2) == MODE_CC \
1198 ? GET_MODE_CLASS (MODE1) == MODE_CC \
4dcc01f3
AH
1199 : SPE_VECTOR_MODE (MODE1) \
1200 ? SPE_VECTOR_MODE (MODE2) \
1201 : SPE_VECTOR_MODE (MODE2) \
1202 ? SPE_VECTOR_MODE (MODE1) \
dbcc9f08
MM
1203 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1204 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1205 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1206 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
f62511da
MM
1207 : ALTIVEC_VECTOR_MODE (MODE1) \
1208 ? ALTIVEC_VECTOR_MODE (MODE2) \
1209 : ALTIVEC_VECTOR_MODE (MODE2) \
1210 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
1211 : 1)
1212
c8ae788f
SB
1213/* Post-reload, we can't use any new AltiVec registers, as we already
1214 emitted the vrsave mask. */
1215
1216#define HARD_REGNO_RENAME_OK(SRC, DST) \
6fb5fa3c 1217 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
c8ae788f 1218
f045b2c9
RS
1219/* Specify the cost of a branch insn; roughly the number of extra insns that
1220 should be added to avoid a branch.
1221
ef457bda 1222 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1223 unscheduled conditional branch. */
1224
3a4fd356 1225#define BRANCH_COST(speed_p, predictable_p) 3
f045b2c9 1226
85e50b6b 1227/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 1228 performance for removing short circuiting from the logical ops. */
85e50b6b 1229
b8610a53 1230#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6 1231
52ff33d0
NF
1232/* A fixed register used at epilogue generation to address SPE registers
1233 with negative offsets. The 64-bit load/store instructions on the SPE
1234 only take positive offsets (and small ones at that), so we need to
1235 reserve a register for consing up negative offsets. */
a3170dc6 1236
52ff33d0 1237#define FIXED_SCRATCH 0
a3170dc6 1238
f045b2c9
RS
1239/* Specify the registers used for certain standard purposes.
1240 The values of these macros are register numbers. */
1241
1242/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1243/* #define PC_REGNUM */
1244
1245/* Register to use for pushing function arguments. */
1246#define STACK_POINTER_REGNUM 1
1247
1248/* Base register for access to local variables of the function. */
7d5175e1
JJ
1249#define HARD_FRAME_POINTER_REGNUM 31
1250
1251/* Base register for access to local variables of the function. */
1252#define FRAME_POINTER_REGNUM 113
f045b2c9 1253
f045b2c9
RS
1254/* Base register for access to arguments of the function. */
1255#define ARG_POINTER_REGNUM 67
1256
1257/* Place to put static chain when calling a function that requires it. */
1258#define STATIC_CHAIN_REGNUM 11
1259
f045b2c9
RS
1260\f
1261/* Define the classes of registers for register constraints in the
1262 machine description. Also define ranges of constants.
1263
1264 One of the classes must always be named ALL_REGS and include all hard regs.
1265 If there is more than one class, another class must be named NO_REGS
1266 and contain no registers.
1267
1268 The name GENERAL_REGS must be the name of a class (or an alias for
1269 another name such as ALL_REGS). This is the class of registers
1270 that is allowed by "g" or "r" in a register constraint.
1271 Also, registers outside this class are allocated only when
1272 instructions express preferences for them.
1273
1274 The classes must be numbered in nondecreasing order; that is,
1275 a larger-numbered class must never be contained completely
1276 in a smaller-numbered class.
1277
1278 For any two classes, it is very desirable that there be another
1279 class that represents their union. */
c81bebd7 1280
cacf1ca8 1281/* The RS/6000 has three types of registers, fixed-point, floating-point, and
462f7901 1282 condition registers, plus three special registers, CTR, and the link
cacf1ca8
MM
1283 register. AltiVec adds a vector register class. VSX registers overlap the
1284 FPR registers and the Altivec registers.
f045b2c9
RS
1285
1286 However, r0 is special in that it cannot be used as a base register.
1287 So make a class for registers valid as base registers.
1288
1289 Also, cr0 is the only condition code register that can be used in
0d86f538 1290 arithmetic insns, so make a separate class for it. */
f045b2c9 1291
ebedb4dd
MM
1292enum reg_class
1293{
1294 NO_REGS,
ebedb4dd
MM
1295 BASE_REGS,
1296 GENERAL_REGS,
1297 FLOAT_REGS,
0ac081f6 1298 ALTIVEC_REGS,
8beb65e3 1299 VSX_REGS,
0ac081f6 1300 VRSAVE_REGS,
5f004351 1301 VSCR_REGS,
a3170dc6
AH
1302 SPE_ACC_REGS,
1303 SPEFSCR_REGS,
ebedb4dd 1304 NON_SPECIAL_REGS,
ebedb4dd
MM
1305 LINK_REGS,
1306 CTR_REGS,
1307 LINK_OR_CTR_REGS,
1308 SPECIAL_REGS,
1309 SPEC_OR_GEN_REGS,
1310 CR0_REGS,
ebedb4dd
MM
1311 CR_REGS,
1312 NON_FLOAT_REGS,
f6b5d695 1313 CA_REGS,
ebedb4dd
MM
1314 ALL_REGS,
1315 LIM_REG_CLASSES
1316};
f045b2c9
RS
1317
1318#define N_REG_CLASSES (int) LIM_REG_CLASSES
1319
82e41834 1320/* Give names of register classes as strings for dump file. */
f045b2c9 1321
ebedb4dd
MM
1322#define REG_CLASS_NAMES \
1323{ \
1324 "NO_REGS", \
ebedb4dd
MM
1325 "BASE_REGS", \
1326 "GENERAL_REGS", \
1327 "FLOAT_REGS", \
0ac081f6 1328 "ALTIVEC_REGS", \
8beb65e3 1329 "VSX_REGS", \
0ac081f6 1330 "VRSAVE_REGS", \
5f004351 1331 "VSCR_REGS", \
a3170dc6
AH
1332 "SPE_ACC_REGS", \
1333 "SPEFSCR_REGS", \
ebedb4dd 1334 "NON_SPECIAL_REGS", \
ebedb4dd
MM
1335 "LINK_REGS", \
1336 "CTR_REGS", \
1337 "LINK_OR_CTR_REGS", \
1338 "SPECIAL_REGS", \
1339 "SPEC_OR_GEN_REGS", \
1340 "CR0_REGS", \
ebedb4dd
MM
1341 "CR_REGS", \
1342 "NON_FLOAT_REGS", \
f6b5d695 1343 "CA_REGS", \
ebedb4dd
MM
1344 "ALL_REGS" \
1345}
f045b2c9
RS
1346
1347/* Define which registers fit in which classes.
1348 This is an initializer for a vector of HARD_REG_SET
1349 of length N_REG_CLASSES. */
1350
0ac081f6
AH
1351#define REG_CLASS_CONTENTS \
1352{ \
1353 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
7d5175e1
JJ
1354 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1355 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
0ac081f6 1356 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8 1357 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
8beb65e3 1358 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
089a05b8 1359 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1360 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
a3170dc6
AH
1361 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1362 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
7d5175e1 1363 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
0ac081f6
AH
1364 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1365 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1366 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
462f7901
SB
1367 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, /* SPECIAL_REGS */ \
1368 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
0ac081f6
AH
1369 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1370 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
462f7901 1371 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000 }, /* NON_FLOAT_REGS */ \
f6b5d695 1372 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
462f7901 1373 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0003ffff } /* ALL_REGS */ \
ebedb4dd 1374}
f045b2c9
RS
1375
1376/* The same information, inverted:
1377 Return the class number of the smallest class containing
1378 reg number REGNO. This could be a conditional expression
1379 or could index an array. */
1380
cacf1ca8
MM
1381extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1382
1383#if ENABLE_CHECKING
1384#define REGNO_REG_CLASS(REGNO) \
1385 (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
1386 rs6000_regno_regclass[(REGNO)])
1387
1388#else
1389#define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1390#endif
1391
a72c65c7
MM
1392/* Register classes for various constraints that are based on the target
1393 switches. */
1394enum r6000_reg_class_enum {
1395 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1396 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1397 RS6000_CONSTRAINT_v, /* Altivec registers */
1398 RS6000_CONSTRAINT_wa, /* Any VSX register */
1399 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
c6d5ff83 1400 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
a72c65c7 1401 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
c6d5ff83 1402 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
f62511da
MM
1403 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1404 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
a72c65c7 1405 RS6000_CONSTRAINT_ws, /* VSX register for DF */
c6d5ff83 1406 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
f62511da 1407 RS6000_CONSTRAINT_wv, /* Altivec register for power8 vector */
c6d5ff83
MM
1408 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1409 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
a72c65c7
MM
1410 RS6000_CONSTRAINT_MAX
1411};
1412
1413extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
f045b2c9
RS
1414
1415/* The class value for index registers, and the one for base regs. */
1416#define INDEX_REG_CLASS GENERAL_REGS
1417#define BASE_REG_CLASS BASE_REGS
1418
cacf1ca8
MM
1419/* Return whether a given register class can hold VSX objects. */
1420#define VSX_REG_CLASS_P(CLASS) \
1421 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1422
f045b2c9
RS
1423/* Given an rtx X being reloaded into a reg required to be
1424 in class CLASS, return the class of reg to actually use.
1425 In general this is just CLASS; but on some machines
c81bebd7 1426 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1427
1428 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1429 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1430
1431 We also don't want to reload integer values into floating-point
1432 registers if we can at all help it. In fact, this can
37409796 1433 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1434 into a FP register and discovers it doesn't have the memory location
1435 required.
1436
1437 ??? Would it be a good idea to have reload do the converse, that is
1438 try to reload floating modes into FP registers if possible?
1439 */
f045b2c9 1440
802a0058 1441#define PREFERRED_RELOAD_CLASS(X,CLASS) \
8beb65e3 1442 rs6000_preferred_reload_class_ptr (X, CLASS)
c81bebd7 1443
f045b2c9
RS
1444/* Return the register class of a scratch register needed to copy IN into
1445 or out of a register in CLASS in MODE. If it can be done directly,
1446 NO_REGS is returned. */
1447
1448#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
8beb65e3 1449 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
f045b2c9 1450
0ac081f6 1451/* If we are copying between FP or AltiVec registers and anything
44cd321e
PS
1452 else, we need a memory location. The exception is when we are
1453 targeting ppc64 and the move to/from fpr to gpr instructions
1454 are available.*/
1455
1456#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
8beb65e3 1457 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
7ea555a4 1458
e41b2a33
PB
1459/* For cpus that cannot load/store SDmode values from the 64-bit
1460 FP registers without using a full 64-bit load/store, we need
1461 to allocate a full 64-bit stack slot for them. */
1462
1463#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1464 rs6000_secondary_memory_needed_rtx (MODE)
1465
f045b2c9
RS
1466/* Return the maximum number of consecutive registers
1467 needed to represent mode MODE in a register of class CLASS.
1468
cacf1ca8
MM
1469 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1470 a single reg is enough for two words, unless we have VSX, where the FP
1471 registers can hold 128 bits. */
1472#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
580d3230 1473
ca0e79d9
AM
1474/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1475
1476#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
8beb65e3 1477 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
02188693 1478
f045b2c9
RS
1479/* Stack layout; function entry, exit and calling. */
1480
1481/* Define this if pushing a word on the stack
1482 makes the stack pointer a smaller address. */
1483#define STACK_GROWS_DOWNWARD
1484
327e5343
FJ
1485/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1486#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1487
a4d05547 1488/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1489 is at the high-address end of the local variables;
1490 that is, each additional local variable allocated
1491 goes at a more negative offset in the frame.
1492
1493 On the RS/6000, we grow upwards, from the area after the outgoing
1494 arguments. */
957fee09 1495#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 || flag_asan != 0)
f045b2c9 1496
4697a36c 1497/* Size of the outgoing register save area */
9ebbca7d 1498#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1499 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1500 ? (TARGET_64BIT ? 64 : 32) \
1501 : 0)
4697a36c
MM
1502
1503/* Size of the fixed area on the stack */
9ebbca7d 1504#define RS6000_SAVE_AREA \
50d440bc 1505 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1506 << (TARGET_64BIT ? 1 : 0))
4697a36c 1507
97f6e72f
DE
1508/* MEM representing address to save the TOC register */
1509#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
0a81f074 1510 plus_constant (Pmode, stack_pointer_rtx, \
97f6e72f 1511 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1512
4697a36c 1513/* Align an address */
ed33106f 1514#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c 1515
f045b2c9
RS
1516/* Offset within stack frame to start allocating local variables at.
1517 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1518 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1519 of the first local allocated.
f045b2c9
RS
1520
1521 On the RS/6000, the frame pointer is the same as the stack pointer,
1522 except for dynamic allocations. So we start after the fixed area and
1523 outgoing parameter area. */
1524
802a0058 1525#define STARTING_FRAME_OFFSET \
7d5175e1
JJ
1526 (FRAME_GROWS_DOWNWARD \
1527 ? 0 \
cacf1ca8
MM
1528 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1529 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
7d5175e1 1530 + RS6000_SAVE_AREA))
802a0058
MM
1531
1532/* Offset from the stack pointer register to an item dynamically
1533 allocated on the stack, e.g., by `alloca'.
1534
1535 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1536 length of the outgoing arguments. The default is correct for most
1537 machines. See `function.c' for details. */
1538#define STACK_DYNAMIC_OFFSET(FUNDECL) \
cacf1ca8
MM
1539 (RS6000_ALIGN (crtl->outgoing_args_size, \
1540 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
802a0058 1541 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1542
1543/* If we generate an insn to push BYTES bytes,
1544 this says how many the stack pointer really advances by.
1545 On RS/6000, don't define this because there are no push insns. */
1546/* #define PUSH_ROUNDING(BYTES) */
1547
1548/* Offset of first parameter from the argument pointer register value.
1549 On the RS/6000, we define the argument pointer to the start of the fixed
1550 area. */
4697a36c 1551#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1552
62153b61
JM
1553/* Offset from the argument pointer register value to the top of
1554 stack. This is different from FIRST_PARM_OFFSET because of the
1555 register save area. */
1556#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1557
f045b2c9
RS
1558/* Define this if stack space is still allocated for a parameter passed
1559 in a register. The value is the number of bytes allocated to this
1560 area. */
4697a36c 1561#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1562
1563/* Define this if the above stack space is to be considered part of the
1564 space allocated by the caller. */
81464b2c 1565#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
f045b2c9
RS
1566
1567/* This is the difference between the logical top of stack and the actual sp.
1568
82e41834 1569 For the RS/6000, sp points past the fixed area. */
4697a36c 1570#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1571
1572/* Define this if the maximum size of all the outgoing args is to be
1573 accumulated and pushed during the prologue. The amount can be
38173d38 1574 found in the variable crtl->outgoing_args_size. */
f73ad30e 1575#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9 1576
f045b2c9
RS
1577/* Define how to find the value returned by a library function
1578 assuming the value has mode MODE. */
1579
ded9bf77 1580#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1581
6fa3f289
ZW
1582/* DRAFT_V4_STRUCT_RET defaults off. */
1583#define DRAFT_V4_STRUCT_RET 0
f607bc57 1584
bd5bd7ac 1585/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1586#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1587
a260abc9 1588/* Mode of stack savearea.
dfdfa60f
DE
1589 FUNCTION is VOIDmode because calling convention maintains SP.
1590 BLOCK needs Pmode for SP.
a260abc9
DE
1591 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1592#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f 1593 (LEVEL == SAVE_FUNCTION ? VOIDmode \
c6d5ff83 1594 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
a260abc9 1595
4697a36c
MM
1596/* Minimum and maximum general purpose registers used to hold arguments. */
1597#define GP_ARG_MIN_REG 3
1598#define GP_ARG_MAX_REG 10
1599#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1600
1601/* Minimum and maximum floating point registers used to hold arguments. */
1602#define FP_ARG_MIN_REG 33
7509c759
MM
1603#define FP_ARG_AIX_MAX_REG 45
1604#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1605#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1606 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1607 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1608#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1609
0ac081f6
AH
1610/* Minimum and maximum AltiVec registers used to hold arguments. */
1611#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1612#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1613#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1614
4697a36c
MM
1615/* Return registers */
1616#define GP_ARG_RETURN GP_ARG_MIN_REG
1617#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1618#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1619
7509c759 1620/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1621#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1622/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1623#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1624#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1625#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1626#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1627
f57fe068
AM
1628/* We don't have prologue and epilogue functions to save/restore
1629 everything for most ABIs. */
1630#define WORLD_SAVE_P(INFO) 0
1631
f045b2c9
RS
1632/* 1 if N is a possible register number for a function value
1633 as seen by the caller.
1634
0ac081f6 1635 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1636#define FUNCTION_VALUE_REGNO_P(N) \
1637 ((N) == GP_ARG_RETURN \
b2df7d08 1638 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
44688022 1639 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1640
1641/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1642 On RS/6000, these are r3-r10 and fp1-fp13.
1643 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1644#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1645 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1646 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
44688022 1647 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
e87a88d3 1648 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
b2df7d08 1649 && TARGET_HARD_FLOAT && TARGET_FPRS))
f045b2c9
RS
1650\f
1651/* Define a data type for recording info about an argument list
1652 during the scan of that argument list. This data type should
1653 hold all necessary information about the function itself
1654 and about the args processed so far, enough to enable macros
1655 such as FUNCTION_ARG to determine where the next arg should go.
1656
1657 On the RS/6000, this is a structure. The first element is the number of
1658 total argument words, the second is used to store the next
1659 floating-point register number, and the third says how many more args we
4697a36c
MM
1660 have prototype types for.
1661
4cc833b7 1662 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1663 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1664 register, and `words' is the number of words used on the stack.
1665
bd227acc 1666 The varargs/stdarg support requires that this structure's size
4cc833b7 1667 be a multiple of sizeof(int). */
4697a36c
MM
1668
1669typedef struct rs6000_args
1670{
4cc833b7 1671 int words; /* # words used for passing GP registers */
6a4cee5f 1672 int fregno; /* next available FP register */
0ac081f6 1673 int vregno; /* next available AltiVec register */
6a4cee5f 1674 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1675 int prototype; /* Whether a prototype was defined */
a6c9bed4 1676 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1677 int call_cookie; /* Do special things for this call */
4cc833b7 1678 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1679 int intoffset; /* running offset in struct (darwin64) */
1680 int use_stack; /* any part of struct on stack (darwin64) */
a9ab25e2
IS
1681 int floats_in_gpr; /* count of SFmode floats taking up
1682 GPR space (darwin64) */
0b5383eb 1683 int named; /* false for varargs params */
617718f7 1684 int escapes; /* if function visible outside tu */
4697a36c 1685} CUMULATIVE_ARGS;
f045b2c9 1686
f045b2c9
RS
1687/* Initialize a variable CUM of type CUMULATIVE_ARGS
1688 for a call to a function whose data type is FNTYPE.
1689 For a library call, FNTYPE is 0. */
1690
617718f7
AM
1691#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1692 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1693 N_NAMED_ARGS, FNDECL, VOIDmode)
f045b2c9
RS
1694
1695/* Similar, but when scanning the definition of a procedure. We always
1696 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1697
0f6937fe 1698#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617718f7
AM
1699 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1700 1000, current_function_decl, VOIDmode)
b9599e46
FS
1701
1702/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1703
1704#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
617718f7
AM
1705 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1706 0, NULL_TREE, MODE)
f045b2c9 1707
c229cba9
DE
1708/* If defined, a C expression which determines whether, and in which
1709 direction, to pad out an argument with extra space. The value
1710 should be of type `enum direction': either `upward' to pad above
1711 the argument, `downward' to pad below, or `none' to inhibit
1712 padding. */
1713
9ebbca7d 1714#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1715
6e985040
AM
1716#define PAD_VARARGS_DOWN \
1717 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1718
f045b2c9 1719/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1720 for profiling a function entry. */
f045b2c9
RS
1721
1722#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1723 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1724
1725/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1726 the stack pointer does not matter. No definition is equivalent to
1727 always zero.
1728
a0ab749a 1729 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1730 its backpointer, which we maintain. */
1731#define EXIT_IGNORE_STACK 1
1732
a701949a
FS
1733/* Define this macro as a C expression that is nonzero for registers
1734 that are used by the epilogue or the return' pattern. The stack
1735 and frame pointer registers are already be assumed to be used as
1736 needed. */
1737
83720594 1738#define EPILOGUE_USES(REGNO) \
1de43f85 1739 ((reload_completed && (REGNO) == LR_REGNO) \
b1765bde 1740 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
cacf1ca8 1741 || (crtl->calls_eh_return \
3553b09d 1742 && TARGET_AIX \
ff3867ae 1743 && (REGNO) == 2))
2bfcf297 1744
f045b2c9 1745\f
f045b2c9
RS
1746/* Length in units of the trampoline for entering a nested function. */
1747
b6c9286a 1748#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9 1749\f
f33985c6
MS
1750/* Definitions for __builtin_return_address and __builtin_frame_address.
1751 __builtin_return_address (0) should give link register (65), enable
82e41834 1752 this. */
f33985c6
MS
1753/* This should be uncommented, so that the link register is used, but
1754 currently this would result in unmatched insns and spilling fixed
1755 registers so we'll leave it for another day. When these problems are
1756 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1757 (mrs) */
1758/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1759
b6c9286a
MM
1760/* Number of bytes into the frame return addresses can be found. See
1761 rs6000_stack_info in rs6000.c for more information on how the different
1762 abi's store the return address. */
1763#define RETURN_ADDRESS_OFFSET \
1764 ((DEFAULT_ABI == ABI_AIX \
50d440bc 1765 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1766 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1767 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1768
f33985c6
MS
1769/* The current return address is in link register (65). The return address
1770 of anything farther back is accessed normally at an offset of 8 from the
1771 frame pointer. */
71f123ca
FS
1772#define RETURN_ADDR_RTX(COUNT, FRAME) \
1773 (rs6000_return_addr (COUNT, FRAME))
1774
f33985c6 1775\f
f045b2c9
RS
1776/* Definitions for register eliminations.
1777
1778 We have two registers that can be eliminated on the RS/6000. First, the
1779 frame pointer register can often be eliminated in favor of the stack
1780 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1781 eliminated; it is replaced with either the stack or frame pointer.
1782
1783 In addition, we use the elimination mechanism to see if r30 is needed
1784 Initially we assume that it isn't. If it is, we spill it. This is done
1785 by making it an eliminable register. We replace it with itself so that
1786 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1787
1788/* This is an array of structures. Each structure initializes one pair
1789 of eliminable registers. The "from" register number is given first,
1790 followed by "to". Eliminations of the same "from" register are listed
1791 in order of preference. */
7d5175e1
JJ
1792#define ELIMINABLE_REGS \
1793{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1794 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1795 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1796 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1797 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 1798 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9 1799
f045b2c9
RS
1800/* Define the offset between two registers, one to be eliminated, and the other
1801 its replacement, at the start of a routine. */
d1d0c603
JJ
1802#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1803 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1804\f
1805/* Addressing modes, and classification of registers for them. */
1806
940da324
JL
1807#define HAVE_PRE_DECREMENT 1
1808#define HAVE_PRE_INCREMENT 1
6fb5fa3c
DB
1809#define HAVE_PRE_MODIFY_DISP 1
1810#define HAVE_PRE_MODIFY_REG 1
f045b2c9
RS
1811
1812/* Macros to check register numbers against specific register classes. */
1813
1814/* These assume that REGNO is a hard or pseudo reg number.
1815 They give nonzero only if REGNO is a hard reg of the suitable class
1816 or a pseudo reg currently allocated to a suitable hard reg.
1817 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1818 has been allocated, which happens in reginfo.c during register
1819 allocation. */
f045b2c9
RS
1820
1821#define REGNO_OK_FOR_INDEX_P(REGNO) \
1822((REGNO) < FIRST_PSEUDO_REGISTER \
1823 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 1824 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1825 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
1826 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1827 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
1828
1829#define REGNO_OK_FOR_BASE_P(REGNO) \
1830((REGNO) < FIRST_PSEUDO_REGISTER \
1831 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 1832 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1833 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
1834 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1835 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
c6c3dba9
PB
1836
1837/* Nonzero if X is a hard reg that can be used as an index
1838 or if it is a pseudo reg in the non-strict case. */
1839#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1840 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1841 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1842
1843/* Nonzero if X is a hard reg that can be used as a base reg
1844 or if it is a pseudo reg in the non-strict case. */
1845#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1846 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1847 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1848
f045b2c9
RS
1849\f
1850/* Maximum number of registers that can appear in a valid memory address. */
1851
1852#define MAX_REGS_PER_ADDRESS 2
1853
1854/* Recognize any constant value that is a valid address. */
1855
6eff269e
BK
1856#define CONSTANT_ADDRESS_P(X) \
1857 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1858 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1859 || GET_CODE (X) == HIGH)
f045b2c9 1860
48d72335 1861#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3 1862#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
76492753
PB
1863 && EASY_VECTOR_15((n) >> 1) \
1864 && ((n) & 1) == 0)
48d72335 1865
29e6733c
MM
1866#define EASY_VECTOR_MSB(n,mode) \
1867 (((unsigned HOST_WIDE_INT)n) == \
1868 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1869
f045b2c9 1870\f
a260abc9
DE
1871/* Try a machine-dependent way of reloading an illegitimate address
1872 operand. If we find one, push the reload and jump to WIN. This
1873 macro is used in only one place: `find_reloads_address' in reload.c.
1874
f676971a 1875 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 1876 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 1877
a9098fd0
GK
1878#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1879do { \
24ea750e 1880 int win; \
8beb65e3 1881 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
24ea750e
DJ
1882 (int)(TYPE), (IND_LEVELS), &win); \
1883 if ( win ) \
1884 goto WIN; \
a260abc9
DE
1885} while (0)
1886
944258eb 1887#define FIND_BASE_TERM rs6000_find_base_term
766a866c
MM
1888\f
1889/* The register number of the register used to address a table of
1890 static data addresses in memory. In some cases this register is
1891 defined by a processor's "application binary interface" (ABI).
1892 When this macro is defined, RTL is generated for this register
1893 once, as with the stack pointer and frame pointer registers. If
1894 this macro is not defined, it is up to the machine-dependent files
1895 to allocate such a register (if necessary). */
1896
1db02437
FS
1897#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1898#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 1899
97b23853 1900#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 1901
766a866c
MM
1902/* Define this macro if the register defined by
1903 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 1904 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
1905
1906/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1907
766a866c
MM
1908/* A C expression that is nonzero if X is a legitimate immediate
1909 operand on the target machine when generating position independent
1910 code. You can assume that X satisfies `CONSTANT_P', so you need
1911 not check this. You can also assume FLAG_PIC is true, so you need
1912 not check it either. You need not define this macro if all
1913 constants (including `SYMBOL_REF') can be immediate operands when
1914 generating position independent code. */
1915
1916/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
1917\f
1918/* Define this if some processing needs to be done immediately before
4255474b 1919 emitting code for an insn. */
f045b2c9 1920
c921bad8
AP
1921#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1922 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
f045b2c9
RS
1923
1924/* Specify the machine mode that this machine uses
1925 for the index in the tablejump instruction. */
e1565e65 1926#define CASE_VECTOR_MODE SImode
f045b2c9 1927
18543a22
ILT
1928/* Define as C expression which evaluates to nonzero if the tablejump
1929 instruction expects the table to contain offsets from the address of the
1930 table.
82e41834 1931 Do not define this if the table should contain absolute addresses. */
18543a22 1932#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 1933
f045b2c9
RS
1934/* Define this as 1 if `char' should by default be signed; else as 0. */
1935#define DEFAULT_SIGNED_CHAR 0
1936
c1618c0c
DE
1937/* An integer expression for the size in bits of the largest integer machine
1938 mode that should actually be used. */
1939
1940/* Allow pairs of registers to be used, which is the intent of the default. */
1941#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1942
f045b2c9
RS
1943/* Max number of bytes we can move from memory to memory
1944 in one reasonably fast instruction. */
2f3e5814 1945#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 1946#define MAX_MOVE_MAX 8
f045b2c9
RS
1947
1948/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 1949 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
1950 is undesirable. */
1951#define SLOW_BYTE_ACCESS 1
1952
9a63901f
RK
1953/* Define if operations between registers always perform the operation
1954 on the full register even if a narrower mode is specified. */
1955#define WORD_REGISTER_OPERATIONS
1956
1957/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1958 will either zero-extend or sign-extend. The value of this macro should
1959 be the code that says which one of the two operations is implicitly
f822d252 1960 done, UNKNOWN if none. */
9a63901f 1961#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
1962
1963/* Define if loading short immediate values into registers sign extends. */
1964#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 1965\f
f045b2c9
RS
1966/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1967 is done just by pretending it is already truncated. */
1968#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1969
94993909 1970/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122 1971#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
14670a74 1972 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
d865b122 1973
94993909 1974/* The CTZ patterns return -1 for input of zero. */
14670a74 1975#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
94993909 1976
f045b2c9
RS
1977/* Specify the machine mode that pointers have.
1978 After generation of rtl, the compiler makes no further distinction
1979 between pointers and any other objects of this machine mode. */
cacf1ca8
MM
1980extern unsigned rs6000_pmode;
1981#define Pmode ((enum machine_mode)rs6000_pmode)
f045b2c9 1982
a3c9585f 1983/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
1984#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1985
f045b2c9 1986/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 1987 Doesn't matter on RS/6000. */
5b71a4e7 1988#define FUNCTION_MODE SImode
f045b2c9
RS
1989
1990/* Define this if addresses of constant functions
1991 shouldn't be put through pseudo regs where they can be cse'd.
1992 Desirable on machines where ordinary constants are expensive
1993 but a CALL with constant address is cheap. */
1994#define NO_FUNCTION_CSE
1995
d969caf8 1996/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
1997 few bits.
1998
1999 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2000 have been dropped from the PowerPC architecture. */
c28a7c24 2001#define SHIFT_COUNT_TRUNCATED 0
f045b2c9 2002
f045b2c9
RS
2003/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2004 should be adjusted to reflect any required changes. This macro is used when
2005 there is some systematic length adjustment required that would be difficult
2006 to express in the length attribute. */
2007
2008/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2009
39a10a29
GK
2010/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2011 COMPARE, return the mode to be used for the comparison. For
2012 floating-point, CCFPmode should be used. CCUNSmode should be used
2013 for unsigned comparisons. CCEQmode should be used when we are
2014 doing an inequality comparison on the result of a
2015 comparison. CCmode should be used in all other cases. */
c5defebb 2016
b565a316 2017#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 2018 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 2019 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 2020 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 2021 ? CCEQmode : CCmode))
f045b2c9 2022
b39358e1
GK
2023/* Can the condition code MODE be safely reversed? This is safe in
2024 all cases on this port, because at present it doesn't use the
2025 trapping FP comparisons (fcmpo). */
2026#define REVERSIBLE_CC_MODE(MODE) 1
2027
2028/* Given a condition code and a mode, return the inverse condition. */
2029#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2030
f045b2c9
RS
2031\f
2032/* Control the assembler format that we output. */
2033
1b279f39
DE
2034/* A C string constant describing how to begin a comment in the target
2035 assembler language. The compiler assumes that the comment will end at
2036 the end of the line. */
2037#define ASM_COMMENT_START " #"
6b67933e 2038
38c1f2d7
MM
2039/* Flag to say the TOC is initialized */
2040extern int toc_initialized;
2041
f045b2c9
RS
2042/* Macro to output a special constant pool entry. Go to WIN if we output
2043 it. Otherwise, it is written the usual way.
2044
2045 On the RS/6000, toc entries are handled this way. */
2046
a9098fd0
GK
2047#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2048{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2049 { \
2050 output_toc (FILE, X, LABELNO, MODE); \
2051 goto WIN; \
2052 } \
f045b2c9
RS
2053}
2054
ebd97b96
DE
2055#ifdef HAVE_GAS_WEAK
2056#define RS6000_WEAK 1
2057#else
2058#define RS6000_WEAK 0
2059#endif
290ad355 2060
79c4e63f
AM
2061#if RS6000_WEAK
2062/* Used in lieu of ASM_WEAKEN_LABEL. */
2063#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2064 do \
2065 { \
2066 fputs ("\t.weak\t", (FILE)); \
85b776df 2067 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2068 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2069 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f 2070 { \
cbaaba19
DE
2071 if (TARGET_XCOFF) \
2072 fputs ("[DS]", (FILE)); \
ca734b39 2073 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2074 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2075 } \
2076 fputc ('\n', (FILE)); \
2077 if (VAL) \
2078 { \
2079 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2080 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2081 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2082 { \
2083 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2084 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2085 fputs (",.", (FILE)); \
cbaaba19 2086 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2087 fputc ('\n', (FILE)); \
2088 } \
2089 } \
2090 } \
2091 while (0)
2092#endif
2093
ff2d10c1
AO
2094#if HAVE_GAS_WEAKREF
2095#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2096 do \
2097 { \
2098 fputs ("\t.weakref\t", (FILE)); \
2099 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2100 fputs (", ", (FILE)); \
2101 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2102 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2103 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2104 { \
2105 fputs ("\n\t.weakref\t.", (FILE)); \
2106 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2107 fputs (", .", (FILE)); \
2108 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2109 } \
2110 fputc ('\n', (FILE)); \
2111 } while (0)
2112#endif
2113
79c4e63f
AM
2114/* This implements the `alias' attribute. */
2115#undef ASM_OUTPUT_DEF_FROM_DECLS
2116#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2117 do \
2118 { \
2119 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2120 const char *name = IDENTIFIER_POINTER (TARGET); \
2121 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2122 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2123 { \
2124 if (TREE_PUBLIC (DECL)) \
2125 { \
2126 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2127 { \
2128 fputs ("\t.globl\t.", FILE); \
cbaaba19 2129 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2130 putc ('\n', FILE); \
2131 } \
2132 } \
2133 else if (TARGET_XCOFF) \
2134 { \
2135 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2136 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2137 putc ('\n', FILE); \
2138 } \
2139 fputs ("\t.set\t.", FILE); \
cbaaba19 2140 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2141 fputs (",.", FILE); \
cbaaba19 2142 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2143 fputc ('\n', FILE); \
2144 } \
2145 ASM_OUTPUT_DEF (FILE, alias, name); \
2146 } \
2147 while (0)
290ad355 2148
1bc7c5b6
ZW
2149#define TARGET_ASM_FILE_START rs6000_file_start
2150
f045b2c9
RS
2151/* Output to assembler file text saying following lines
2152 may contain character constants, extra white space, comments, etc. */
2153
2154#define ASM_APP_ON ""
2155
2156/* Output to assembler file text saying following lines
2157 no longer contain unusual constructs. */
2158
2159#define ASM_APP_OFF ""
2160
f045b2c9
RS
2161/* How to refer to registers in assembler output.
2162 This sequence is indexed by compiler's hard-register-number (see above). */
2163
82e41834 2164extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2165
2166#define REGISTER_NAMES \
2167{ \
2168 &rs6000_reg_names[ 0][0], /* r0 */ \
2169 &rs6000_reg_names[ 1][0], /* r1 */ \
2170 &rs6000_reg_names[ 2][0], /* r2 */ \
2171 &rs6000_reg_names[ 3][0], /* r3 */ \
2172 &rs6000_reg_names[ 4][0], /* r4 */ \
2173 &rs6000_reg_names[ 5][0], /* r5 */ \
2174 &rs6000_reg_names[ 6][0], /* r6 */ \
2175 &rs6000_reg_names[ 7][0], /* r7 */ \
2176 &rs6000_reg_names[ 8][0], /* r8 */ \
2177 &rs6000_reg_names[ 9][0], /* r9 */ \
2178 &rs6000_reg_names[10][0], /* r10 */ \
2179 &rs6000_reg_names[11][0], /* r11 */ \
2180 &rs6000_reg_names[12][0], /* r12 */ \
2181 &rs6000_reg_names[13][0], /* r13 */ \
2182 &rs6000_reg_names[14][0], /* r14 */ \
2183 &rs6000_reg_names[15][0], /* r15 */ \
2184 &rs6000_reg_names[16][0], /* r16 */ \
2185 &rs6000_reg_names[17][0], /* r17 */ \
2186 &rs6000_reg_names[18][0], /* r18 */ \
2187 &rs6000_reg_names[19][0], /* r19 */ \
2188 &rs6000_reg_names[20][0], /* r20 */ \
2189 &rs6000_reg_names[21][0], /* r21 */ \
2190 &rs6000_reg_names[22][0], /* r22 */ \
2191 &rs6000_reg_names[23][0], /* r23 */ \
2192 &rs6000_reg_names[24][0], /* r24 */ \
2193 &rs6000_reg_names[25][0], /* r25 */ \
2194 &rs6000_reg_names[26][0], /* r26 */ \
2195 &rs6000_reg_names[27][0], /* r27 */ \
2196 &rs6000_reg_names[28][0], /* r28 */ \
2197 &rs6000_reg_names[29][0], /* r29 */ \
2198 &rs6000_reg_names[30][0], /* r30 */ \
2199 &rs6000_reg_names[31][0], /* r31 */ \
2200 \
2201 &rs6000_reg_names[32][0], /* fr0 */ \
2202 &rs6000_reg_names[33][0], /* fr1 */ \
2203 &rs6000_reg_names[34][0], /* fr2 */ \
2204 &rs6000_reg_names[35][0], /* fr3 */ \
2205 &rs6000_reg_names[36][0], /* fr4 */ \
2206 &rs6000_reg_names[37][0], /* fr5 */ \
2207 &rs6000_reg_names[38][0], /* fr6 */ \
2208 &rs6000_reg_names[39][0], /* fr7 */ \
2209 &rs6000_reg_names[40][0], /* fr8 */ \
2210 &rs6000_reg_names[41][0], /* fr9 */ \
2211 &rs6000_reg_names[42][0], /* fr10 */ \
2212 &rs6000_reg_names[43][0], /* fr11 */ \
2213 &rs6000_reg_names[44][0], /* fr12 */ \
2214 &rs6000_reg_names[45][0], /* fr13 */ \
2215 &rs6000_reg_names[46][0], /* fr14 */ \
2216 &rs6000_reg_names[47][0], /* fr15 */ \
2217 &rs6000_reg_names[48][0], /* fr16 */ \
2218 &rs6000_reg_names[49][0], /* fr17 */ \
2219 &rs6000_reg_names[50][0], /* fr18 */ \
2220 &rs6000_reg_names[51][0], /* fr19 */ \
2221 &rs6000_reg_names[52][0], /* fr20 */ \
2222 &rs6000_reg_names[53][0], /* fr21 */ \
2223 &rs6000_reg_names[54][0], /* fr22 */ \
2224 &rs6000_reg_names[55][0], /* fr23 */ \
2225 &rs6000_reg_names[56][0], /* fr24 */ \
2226 &rs6000_reg_names[57][0], /* fr25 */ \
2227 &rs6000_reg_names[58][0], /* fr26 */ \
2228 &rs6000_reg_names[59][0], /* fr27 */ \
2229 &rs6000_reg_names[60][0], /* fr28 */ \
2230 &rs6000_reg_names[61][0], /* fr29 */ \
2231 &rs6000_reg_names[62][0], /* fr30 */ \
2232 &rs6000_reg_names[63][0], /* fr31 */ \
2233 \
462f7901 2234 &rs6000_reg_names[64][0], /* was mq */ \
c81bebd7
MM
2235 &rs6000_reg_names[65][0], /* lr */ \
2236 &rs6000_reg_names[66][0], /* ctr */ \
2237 &rs6000_reg_names[67][0], /* ap */ \
2238 \
2239 &rs6000_reg_names[68][0], /* cr0 */ \
2240 &rs6000_reg_names[69][0], /* cr1 */ \
2241 &rs6000_reg_names[70][0], /* cr2 */ \
2242 &rs6000_reg_names[71][0], /* cr3 */ \
2243 &rs6000_reg_names[72][0], /* cr4 */ \
2244 &rs6000_reg_names[73][0], /* cr5 */ \
2245 &rs6000_reg_names[74][0], /* cr6 */ \
2246 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2247 \
f6b5d695 2248 &rs6000_reg_names[76][0], /* ca */ \
0ac081f6
AH
2249 \
2250 &rs6000_reg_names[77][0], /* v0 */ \
2251 &rs6000_reg_names[78][0], /* v1 */ \
2252 &rs6000_reg_names[79][0], /* v2 */ \
2253 &rs6000_reg_names[80][0], /* v3 */ \
2254 &rs6000_reg_names[81][0], /* v4 */ \
2255 &rs6000_reg_names[82][0], /* v5 */ \
2256 &rs6000_reg_names[83][0], /* v6 */ \
2257 &rs6000_reg_names[84][0], /* v7 */ \
2258 &rs6000_reg_names[85][0], /* v8 */ \
2259 &rs6000_reg_names[86][0], /* v9 */ \
2260 &rs6000_reg_names[87][0], /* v10 */ \
2261 &rs6000_reg_names[88][0], /* v11 */ \
2262 &rs6000_reg_names[89][0], /* v12 */ \
2263 &rs6000_reg_names[90][0], /* v13 */ \
2264 &rs6000_reg_names[91][0], /* v14 */ \
2265 &rs6000_reg_names[92][0], /* v15 */ \
2266 &rs6000_reg_names[93][0], /* v16 */ \
2267 &rs6000_reg_names[94][0], /* v17 */ \
2268 &rs6000_reg_names[95][0], /* v18 */ \
2269 &rs6000_reg_names[96][0], /* v19 */ \
2270 &rs6000_reg_names[97][0], /* v20 */ \
2271 &rs6000_reg_names[98][0], /* v21 */ \
2272 &rs6000_reg_names[99][0], /* v22 */ \
2273 &rs6000_reg_names[100][0], /* v23 */ \
2274 &rs6000_reg_names[101][0], /* v24 */ \
2275 &rs6000_reg_names[102][0], /* v25 */ \
2276 &rs6000_reg_names[103][0], /* v26 */ \
2277 &rs6000_reg_names[104][0], /* v27 */ \
2278 &rs6000_reg_names[105][0], /* v28 */ \
2279 &rs6000_reg_names[106][0], /* v29 */ \
2280 &rs6000_reg_names[107][0], /* v30 */ \
2281 &rs6000_reg_names[108][0], /* v31 */ \
2282 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2283 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2284 &rs6000_reg_names[111][0], /* spe_acc */ \
2285 &rs6000_reg_names[112][0], /* spefscr */ \
7d5175e1 2286 &rs6000_reg_names[113][0], /* sfp */ \
c81bebd7
MM
2287}
2288
f045b2c9
RS
2289/* Table of additional register names to use in user input. */
2290
2291#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2292 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2293 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2294 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2295 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2296 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2297 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2298 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2299 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2300 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2301 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2302 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2303 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2304 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2305 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2306 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2307 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2308 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2309 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2310 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2311 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2312 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2313 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2314 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2315 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2316 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2317 {"spe_acc", 111}, {"spefscr", 112}, \
462f7901 2318 /* no additional names for: lr, ctr, ap */ \
c4d38ccb
MM
2319 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2320 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
cacf1ca8 2321 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
f6b5d695
SB
2322 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2323 {"xer", 76}, \
cacf1ca8
MM
2324 /* VSX registers overlaid on top of FR, Altivec registers */ \
2325 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2326 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2327 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2328 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2329 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2330 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2331 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2332 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2333 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2334 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2335 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2336 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2337 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2338 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2339 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2340 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
f045b2c9 2341
f045b2c9
RS
2342/* This is how to output an element of a case-vector that is relative. */
2343
e1565e65 2344#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2345 do { char buf[100]; \
e1565e65 2346 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2347 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2348 assemble_name (FILE, buf); \
19d2d16f 2349 putc ('-', FILE); \
3daf36a4
ILT
2350 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2351 assemble_name (FILE, buf); \
19d2d16f 2352 putc ('\n', FILE); \
3daf36a4 2353 } while (0)
f045b2c9
RS
2354
2355/* This is how to output an assembler line
2356 that says to advance the location counter
2357 to a multiple of 2**LOG bytes. */
2358
2359#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2360 if ((LOG) != 0) \
2361 fprintf (FILE, "\t.align %d\n", (LOG))
2362
58082ff6
PH
2363/* How to align the given loop. */
2364#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2365
d28073d4
BS
2366/* Alignment guaranteed by __builtin_malloc. */
2367/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2368 However, specifying the stronger guarantee currently leads to
2369 a regression in SPEC CPU2006 437.leslie3d. The stronger
2370 guarantee should be implemented here once that's fixed. */
2371#define MALLOC_ABI_ALIGNMENT (64)
2372
9ebbca7d
GK
2373/* Pick up the return address upon entry to a procedure. Used for
2374 dwarf2 unwind information. This also enables the table driven
2375 mechanism. */
2376
1de43f85
DE
2377#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2378#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
9ebbca7d 2379
83720594
RH
2380/* Describe how we implement __builtin_eh_return. */
2381#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2382#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2383
f045b2c9
RS
2384/* Print operand X (an rtx) in assembler syntax to file FILE.
2385 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2386 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2387
2388#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2389
2390/* Define which CODE values are valid. */
2391
3cf437d4 2392#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
f045b2c9
RS
2393
2394/* Print a memory address as an operand to reference that memory location. */
2395
2396#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2397
b6c9286a
MM
2398/* uncomment for disabling the corresponding default options */
2399/* #define MACHINE_no_sched_interblock */
2400/* #define MACHINE_no_sched_speculative */
2401/* #define MACHINE_no_sched_speculative_load */
2402
766a866c 2403/* General flags. */
a7df97e6 2404extern int frame_pointer_needed;
0ac081f6 2405
7fa14a01
MM
2406/* Classification of the builtin functions as to which switches enable the
2407 builtin, and what attributes it should have. We used to use the target
2408 flags macros, but we've run out of bits, so we now map the options into new
2409 settings used here. */
2410
2411/* Builtin attributes. */
2412#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2413#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2414#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2415#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2416#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2417#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2418#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2419#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2420#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2421
2422#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2423#define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
2424#define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
2425#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2426#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2427
2428/* Miscellaneous information. */
2429#define RS6000_BTC_OVERLOADED 0x4000000 /* function is overloaded. */
1c9df37c
MM
2430
2431/* Convenience macros to document the instruction type. */
7fa14a01
MM
2432#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2433#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2434
2435/* Builtin targets. For now, we reuse the masks for those options that are in
2436 target flags, and pick two random bits for SPE and paired which aren't in
2437 target_flags. */
4b705221 2438#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
7fa14a01
MM
2439#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2440#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
f62511da
MM
2441#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2442#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
7fa14a01
MM
2443#define RS6000_BTM_SPE MASK_STRING /* E500 */
2444#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2445#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2446#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2447#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2448#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2449#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
7fa14a01
MM
2450#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2451
2452#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2453 | RS6000_BTM_VSX \
f62511da
MM
2454 | RS6000_BTM_P8_VECTOR \
2455 | RS6000_BTM_CRYPTO \
7fa14a01
MM
2456 | RS6000_BTM_FRE \
2457 | RS6000_BTM_FRES \
2458 | RS6000_BTM_FRSQRTE \
2459 | RS6000_BTM_FRSQRTES \
2460 | RS6000_BTM_POPCNTD \
7fa14a01
MM
2461 | RS6000_BTM_CELL)
2462
2463/* Define builtin enum index. */
2464
2465#undef RS6000_BUILTIN_1
2466#undef RS6000_BUILTIN_2
2467#undef RS6000_BUILTIN_3
2468#undef RS6000_BUILTIN_A
2469#undef RS6000_BUILTIN_D
2470#undef RS6000_BUILTIN_E
2471#undef RS6000_BUILTIN_P
2472#undef RS6000_BUILTIN_Q
2473#undef RS6000_BUILTIN_S
2474#undef RS6000_BUILTIN_X
2475
2476#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2477#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2478#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2479#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2480#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2481#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2482#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2483#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2484#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2485#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
1c9df37c 2486
0ac081f6
AH
2487enum rs6000_builtins
2488{
1c9df37c 2489#include "rs6000-builtin.def"
a72c65c7 2490
58646b77
PB
2491 RS6000_BUILTIN_COUNT
2492};
2493
7fa14a01
MM
2494#undef RS6000_BUILTIN_1
2495#undef RS6000_BUILTIN_2
2496#undef RS6000_BUILTIN_3
2497#undef RS6000_BUILTIN_A
2498#undef RS6000_BUILTIN_D
2499#undef RS6000_BUILTIN_E
2500#undef RS6000_BUILTIN_P
2501#undef RS6000_BUILTIN_Q
2502#undef RS6000_BUILTIN_S
2503#undef RS6000_BUILTIN_X
1c9df37c 2504
58646b77
PB
2505enum rs6000_builtin_type_index
2506{
2507 RS6000_BTI_NOT_OPAQUE,
2508 RS6000_BTI_opaque_V2SI,
2509 RS6000_BTI_opaque_V2SF,
2510 RS6000_BTI_opaque_p_V2SI,
2511 RS6000_BTI_opaque_V4SI,
2512 RS6000_BTI_V16QI,
2513 RS6000_BTI_V2SI,
2514 RS6000_BTI_V2SF,
a72c65c7
MM
2515 RS6000_BTI_V2DI,
2516 RS6000_BTI_V2DF,
58646b77
PB
2517 RS6000_BTI_V4HI,
2518 RS6000_BTI_V4SI,
2519 RS6000_BTI_V4SF,
2520 RS6000_BTI_V8HI,
2521 RS6000_BTI_unsigned_V16QI,
2522 RS6000_BTI_unsigned_V8HI,
2523 RS6000_BTI_unsigned_V4SI,
a72c65c7 2524 RS6000_BTI_unsigned_V2DI,
58646b77
PB
2525 RS6000_BTI_bool_char, /* __bool char */
2526 RS6000_BTI_bool_short, /* __bool short */
2527 RS6000_BTI_bool_int, /* __bool int */
a72c65c7 2528 RS6000_BTI_bool_long, /* __bool long */
58646b77
PB
2529 RS6000_BTI_pixel, /* __pixel */
2530 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2531 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2532 RS6000_BTI_bool_V4SI, /* __vector __bool int */
a72c65c7 2533 RS6000_BTI_bool_V2DI, /* __vector __bool long */
58646b77
PB
2534 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2535 RS6000_BTI_long, /* long_integer_type_node */
2536 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
c9485473
MM
2537 RS6000_BTI_long_long, /* long_long_integer_type_node */
2538 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
58646b77
PB
2539 RS6000_BTI_INTQI, /* intQI_type_node */
2540 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2541 RS6000_BTI_INTHI, /* intHI_type_node */
2542 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2543 RS6000_BTI_INTSI, /* intSI_type_node */
2544 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
a72c65c7
MM
2545 RS6000_BTI_INTDI, /* intDI_type_node */
2546 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
58646b77 2547 RS6000_BTI_float, /* float_type_node */
a72c65c7 2548 RS6000_BTI_double, /* double_type_node */
58646b77
PB
2549 RS6000_BTI_void, /* void_type_node */
2550 RS6000_BTI_MAX
0ac081f6 2551};
58646b77
PB
2552
2553
2554#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2555#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2556#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2557#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2558#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
a72c65c7
MM
2559#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2560#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
58646b77
PB
2561#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2562#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2563#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2564#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2565#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2566#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2567#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2568#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2569#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
a72c65c7 2570#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
58646b77
PB
2571#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2572#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2573#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
a72c65c7 2574#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
58646b77
PB
2575#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2576#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2577#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2578#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
a72c65c7 2579#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
58646b77
PB
2580#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2581
c9485473
MM
2582#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2583#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
58646b77
PB
2584#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2585#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2586#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2587#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2588#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2589#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2590#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2591#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
a72c65c7
MM
2592#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2593#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
58646b77 2594#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
a72c65c7 2595#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
58646b77
PB
2596#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2597
2598extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2599extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2600