]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
rs6000: Delete HAVE_AS_LWSYNC and TARGET_LWSYNC_INSTRUCTION
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
85ec4feb 2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 4
5de601cf 5 This file is part of GCC.
f045b2c9 6
5de601cf
NC
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
5de601cf 10 option) any later version.
f045b2c9 11
5de601cf
NC
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f045b2c9 16
748086b7
JJ
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 24 <http://www.gnu.org/licenses/>. */
f045b2c9
RS
25
26/* Note that some other tm.h files include this one and then override
9ebbca7d 27 many of the definitions. */
f045b2c9 28
fd438373
MM
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
6a8886e4
MM
33/* 128-bit floating point precision values. */
34#ifndef RS6000_MODES_H
35#include "config/rs6000/rs6000-modes.h"
36#endif
37
9ebbca7d
GK
38/* Definitions for the object file format. These are set at
39 compile-time. */
f045b2c9 40
9ebbca7d
GK
41#define OBJECT_XCOFF 1
42#define OBJECT_ELF 2
43#define OBJECT_PEF 3
ee890fe2 44#define OBJECT_MACHO 4
f045b2c9 45
9ebbca7d 46#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 47#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 48#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 49#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 50
2bfcf297
DB
51#ifndef TARGET_AIX
52#define TARGET_AIX 0
53#endif
54
78009d9f
MM
55#ifndef TARGET_AIX_OS
56#define TARGET_AIX_OS 0
57#endif
58
85b776df
AM
59/* Control whether function entry points use a "dot" symbol when
60 ABI_AIX. */
61#define DOT_SYMBOLS 1
62
8e3f41e7
MM
63/* Default string to use for cpu if not specified. */
64#ifndef TARGET_CPU_DEFAULT
65#define TARGET_CPU_DEFAULT ((char *)0)
66#endif
67
f565b0a1 68/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 69#ifdef CONFIG_PPC405CR
f565b0a1
DE
70#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
71#else
72#define PPC405_ERRATUM77 0
73#endif
74
cd679487 75#define ASM_CPU_POWER5_SPEC "-mpower5"
cd679487 76#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
d40c9e33 77#define ASM_CPU_POWER7_SPEC "-mpower7"
428bffcb 78#define ASM_CPU_POWER8_SPEC "-mpower8"
d1f0d376 79#define ASM_CPU_POWER9_SPEC "-mpower9"
d1f0d376 80
47f67e51
PB
81#ifdef HAVE_AS_DCI
82#define ASM_CPU_476_SPEC "-m476"
83#else
84#define ASM_CPU_476_SPEC "-mpower4"
85#endif
86
cacf1ca8
MM
87/* Common ASM definitions used by ASM_SPEC among the various targets for
88 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
89 provide the default assembler options if the user uses -mcpu=native, so if
1b58c736
PB
90 you make changes here, make them also there. PR63177: Do not pass -mpower8
91 to the assembler if -mpower9-vector was also used. */
f984d8df
DB
92#define ASM_CPU_SPEC \
93"%{!mcpu*: \
93ae5495 94 %{mpowerpc64*: -mppc64} \
a441dedb 95 %{!mpowerpc64*: %(asm_default)}} \
cacf1ca8 96%{mcpu=native: %(asm_cpu_native)} \
d296e02e 97%{mcpu=cell: -mcell} \
93ae5495 98%{mcpu=power3: -mppc64} \
957e9e48 99%{mcpu=power4: -mpower4} \
cd679487
BE
100%{mcpu=power5: %(asm_cpu_power5)} \
101%{mcpu=power5+: %(asm_cpu_power5)} \
102%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
103%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
d40c9e33 104%{mcpu=power7: %(asm_cpu_power7)} \
1b58c736 105%{mcpu=power8: %{!mpower9-vector: %(asm_cpu_power8)}} \
d1f0d376 106%{mcpu=power9: %(asm_cpu_power9)} \
ebde32fd 107%{mcpu=a2: -ma2} \
f984d8df 108%{mcpu=powerpc: -mppc} \
fa17b3db 109%{mcpu=powerpc64le: %(asm_cpu_power8)} \
93ae5495 110%{mcpu=rs64a: -mppc64} \
f984d8df 111%{mcpu=401: -mppc} \
61a8515c
JS
112%{mcpu=403: -m403} \
113%{mcpu=405: -m405} \
2c9d95ef
DE
114%{mcpu=405fp: -m405} \
115%{mcpu=440: -m440} \
116%{mcpu=440fp: -m440} \
4adf8008
PB
117%{mcpu=464: -m440} \
118%{mcpu=464fp: -m440} \
47f67e51
PB
119%{mcpu=476: %(asm_cpu_476)} \
120%{mcpu=476fp: %(asm_cpu_476)} \
f984d8df
DB
121%{mcpu=505: -mppc} \
122%{mcpu=601: -m601} \
123%{mcpu=602: -mppc} \
124%{mcpu=603: -mppc} \
125%{mcpu=603e: -mppc} \
126%{mcpu=ec603e: -mppc} \
127%{mcpu=604: -mppc} \
128%{mcpu=604e: -mppc} \
93ae5495
AM
129%{mcpu=620: -mppc64} \
130%{mcpu=630: -mppc64} \
f984d8df
DB
131%{mcpu=740: -mppc} \
132%{mcpu=750: -mppc} \
49ffe578 133%{mcpu=G3: -mppc} \
93ae5495
AM
134%{mcpu=7400: -mppc -maltivec} \
135%{mcpu=7450: -mppc -maltivec} \
136%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
137%{mcpu=801: -mppc} \
138%{mcpu=821: -mppc} \
139%{mcpu=823: -mppc} \
775db490 140%{mcpu=860: -mppc} \
93ae5495
AM
141%{mcpu=970: -mpower4 -maltivec} \
142%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 143%{mcpu=8540: -me500} \
5ca0373f 144%{mcpu=8548: -me500} \
fa41c305
EW
145%{mcpu=e300c2: -me300} \
146%{mcpu=e300c3: -me300} \
edae5fe3 147%{mcpu=e500mc: -me500mc} \
b17f98b1 148%{mcpu=e500mc64: -me500mc64} \
683ed19e
EW
149%{mcpu=e5500: -me5500} \
150%{mcpu=e6500: -me6500} \
93ae5495 151%{maltivec: -maltivec} \
2c9ccc21 152%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
0258b6e4 153%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
1b58c736 154%{mpower9-vector: %{!mcpu*|mcpu=power8: %(asm_cpu_power9)}} \
93ae5495 155-many"
f984d8df
DB
156
157#define CPP_DEFAULT_SPEC ""
158
159#define ASM_DEFAULT_SPEC ""
160
841faeed
MM
161/* This macro defines names of additional specifications to put in the specs
162 that can be used in various specifications like CC1_SPEC. Its definition
163 is an initializer with a subgrouping for each command option.
164
165 Each subgrouping contains a string constant, that defines the
5de601cf 166 specification name, and a string constant that used by the GCC driver
841faeed
MM
167 program.
168
169 Do not define this macro if it does not need to do anything. */
170
7509c759 171#define SUBTARGET_EXTRA_SPECS
7509c759 172
c81bebd7 173#define EXTRA_SPECS \
c81bebd7 174 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7 175 { "asm_cpu", ASM_CPU_SPEC }, \
cacf1ca8 176 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
c81bebd7 177 { "asm_default", ASM_DEFAULT_SPEC }, \
0eab6840 178 { "cc1_cpu", CC1_CPU_SPEC }, \
cd679487
BE
179 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
180 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
d40c9e33 181 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
428bffcb 182 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
d1f0d376 183 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
47f67e51 184 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
7509c759
MM
185 SUBTARGET_EXTRA_SPECS
186
0eab6840
DE
187/* -mcpu=native handling only makes sense with compiler running on
188 an PowerPC chip. If changing this condition, also change
189 the condition in driver-rs6000.c. */
190#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
191/* In driver-rs6000.c. */
192extern const char *host_detect_local_cpu (int argc, const char **argv);
193#define EXTRA_SPEC_FUNCTIONS \
194 { "local_cpu_detect", host_detect_local_cpu },
195#define HAVE_LOCAL_CPU_DETECT
cacf1ca8
MM
196#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
197
198#else
199#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
0eab6840
DE
200#endif
201
ee7caeb3
DE
202#ifndef CC1_CPU_SPEC
203#ifdef HAVE_LOCAL_CPU_DETECT
0eab6840
DE
204#define CC1_CPU_SPEC \
205"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
206 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
ee7caeb3
DE
207#else
208#define CC1_CPU_SPEC ""
209#endif
0eab6840
DE
210#endif
211
fb623df5 212/* Architecture type. */
f045b2c9 213
bb22512c 214/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 215 optional field operand for mfcr. */
fb623df5 216
78f5898b 217#ifndef HAVE_AS_MFCRF
432218ba 218#undef TARGET_MFCRF
ffa22984
DE
219#define TARGET_MFCRF 0
220#endif
221
9752c4ad
AM
222/* Define TARGET_TLS_MARKERS if the target assembler does not support
223 arg markers for __tls_get_addr calls. */
224#ifndef HAVE_AS_TLS_MARKERS
225#undef TARGET_TLS_MARKERS
226#define TARGET_TLS_MARKERS 0
227#else
228#define TARGET_TLS_MARKERS tls_markers
229#endif
230
7f970b70
AM
231#ifndef TARGET_SECURE_PLT
232#define TARGET_SECURE_PLT 0
233#endif
234
070b27da
AM
235#ifndef TARGET_CMODEL
236#define TARGET_CMODEL CMODEL_SMALL
237#endif
238
2f3e5814 239#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 240
c4501e62
JJ
241#ifndef HAVE_AS_TLS
242#define HAVE_AS_TLS 0
243#endif
244
be26142a
PB
245#ifndef TARGET_LINK_STACK
246#define TARGET_LINK_STACK 0
247#endif
248
249#ifndef SET_TARGET_LINK_STACK
250#define SET_TARGET_LINK_STACK(X) do { } while (0)
251#endif
252
08213983
MM
253#ifndef TARGET_FLOAT128_ENABLE_TYPE
254#define TARGET_FLOAT128_ENABLE_TYPE 0
255#endif
256
48d72335
DE
257/* Return 1 for a symbol ref for a thread-local storage symbol. */
258#define RS6000_SYMBOL_REF_TLS_P(RTX) \
259 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
260
996ed075
JJ
261#ifdef IN_LIBGCC2
262/* For libgcc2 we make sure this is a compile time constant */
67796c1f 263#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
78f5898b 264#undef TARGET_POWERPC64
996ed075
JJ
265#define TARGET_POWERPC64 1
266#else
78f5898b 267#undef TARGET_POWERPC64
996ed075
JJ
268#define TARGET_POWERPC64 0
269#endif
b6c9286a 270#else
78f5898b 271 /* The option machinery will define this. */
b6c9286a
MM
272#endif
273
20c89ab7 274#define TARGET_DEFAULT (MASK_MULTIPLE)
9ebbca7d 275
8482e358 276/* Define generic processor types based upon current deployment. */
3cb999d8 277#define PROCESSOR_COMMON PROCESSOR_PPC601
3cb999d8
DE
278#define PROCESSOR_POWERPC PROCESSOR_PPC604
279#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 280
fb623df5 281/* Define the default processor. This is overridden by other tm.h files. */
f3061fa4 282#define PROCESSOR_DEFAULT PROCESSOR_PPC603
3cb999d8 283#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 284
59ac9a55
JJ
285/* Specify the dialect of assembler to use. Only new mnemonics are supported
286 starting with GCC 4.8, i.e. just one dialect, but for backwards
287 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
288 defined. */
289#define ASSEMBLER_DIALECT 1
290
38c1f2d7 291/* Debug support */
fd438373
MM
292#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
293#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
294#define MASK_DEBUG_REG 0x04 /* debug register handling */
295#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
296#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
297#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
7fa14a01 298#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
fd438373
MM
299#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
300 | MASK_DEBUG_ARG \
301 | MASK_DEBUG_REG \
302 | MASK_DEBUG_ADDR \
303 | MASK_DEBUG_COST \
7fa14a01
MM
304 | MASK_DEBUG_TARGET \
305 | MASK_DEBUG_BUILTIN)
fd438373
MM
306
307#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
308#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
309#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
310#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
311#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
312#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
7fa14a01 313#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
cacf1ca8 314
2c83faf8
MM
315/* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
316 long double format that uses a pair of doubles, or IEEE 128-bit floating
317 point. KFmode was added as a way to represent IEEE 128-bit floating point,
318 even if the default for long double is the IBM long double format.
319 Similarly IFmode is the IBM long double format even if the default is IEEE
0bc36dec 320 128-bit. Don't allow IFmode if -msoft-float. */
2c83faf8 321#define FLOAT128_IEEE_P(MODE) \
83cbbe3a
MM
322 ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
323 && ((MODE) == TFmode || (MODE) == TCmode)) \
4304ccfd 324 || ((MODE) == KFmode) || ((MODE) == KCmode))
2c83faf8
MM
325
326#define FLOAT128_IBM_P(MODE) \
83cbbe3a
MM
327 ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
328 && ((MODE) == TFmode || (MODE) == TCmode)) \
11d8d07e 329 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
2c83faf8
MM
330
331/* Helper macros to say whether a 128-bit floating point type can go in a
332 single vector register, or whether it needs paired scalar values. */
08213983 333#define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
2c83faf8
MM
334
335#define FLOAT128_2REG_P(MODE) \
336 (FLOAT128_IBM_P (MODE) \
337 || ((MODE) == TDmode) \
08213983 338 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
2c83faf8
MM
339
340/* Return true for floating point that does not use a vector register. */
341#define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
342 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
343
f62511da 344/* Describe the vector unit used for arithmetic operations. */
cacf1ca8
MM
345extern enum rs6000_vector rs6000_vector_unit[];
346
347#define VECTOR_UNIT_NONE_P(MODE) \
348 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
349
350#define VECTOR_UNIT_VSX_P(MODE) \
351 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
352
f62511da
MM
353#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
354 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
355
cacf1ca8
MM
356#define VECTOR_UNIT_ALTIVEC_P(MODE) \
357 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
358
f62511da
MM
359#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
360 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
361 (int)VECTOR_VSX, \
362 (int)VECTOR_P8_VECTOR))
363
364/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
365 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
366 compatible, so allow it as well, rather than changing all of the uses of the
367 macro. */
cacf1ca8 368#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
369 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
370 (int)VECTOR_ALTIVEC, \
371 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
372
373/* Describe whether to use VSX loads or Altivec loads. For now, just use the
374 same unit as the vector unit we are using, but we may want to migrate to
375 using VSX style loads even for types handled by altivec. */
376extern enum rs6000_vector rs6000_vector_mem[];
377
378#define VECTOR_MEM_NONE_P(MODE) \
379 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
380
381#define VECTOR_MEM_VSX_P(MODE) \
382 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
383
f62511da
MM
384#define VECTOR_MEM_P8_VECTOR_P(MODE) \
385 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
386
cacf1ca8
MM
387#define VECTOR_MEM_ALTIVEC_P(MODE) \
388 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
389
f62511da
MM
390#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
391 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
392 (int)VECTOR_VSX, \
393 (int)VECTOR_P8_VECTOR))
394
cacf1ca8 395#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
396 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
397 (int)VECTOR_ALTIVEC, \
398 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
399
400/* Return the alignment of a given vector type, which is set based on the
401 vector unit use. VSX for instance can load 32 or 64 bit aligned words
402 without problems, while Altivec requires 128-bit aligned vectors. */
403extern int rs6000_vector_align[];
404
405#define VECTOR_ALIGN(MODE) \
406 ((rs6000_vector_align[(MODE)] != 0) \
407 ? rs6000_vector_align[(MODE)] \
408 : (int)GET_MODE_BITSIZE ((MODE)))
409
117f16fb
MM
410/* Element number of the 64-bit value in a 128-bit vector that can be accessed
411 with scalar instructions. */
412#define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
413
dd551aa1
MM
414/* Element number of the 64-bit value in a 128-bit vector that can be accessed
415 with the ISA 3.0 MFVSRLD instructions. */
416#define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
417
025d9908
KH
418/* Alignment options for fields in structures for sub-targets following
419 AIX-like ABI.
420 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
421 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
422
423 Override the macro definitions when compiling libobjc to avoid undefined
424 reference to rs6000_alignment_flags due to library's use of GCC alignment
425 macros which use the macros below. */
f676971a 426
025d9908
KH
427#ifndef IN_TARGET_LIBS
428#define MASK_ALIGN_POWER 0x00000000
429#define MASK_ALIGN_NATURAL 0x00000001
430#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
431#else
432#define TARGET_ALIGN_NATURAL 0
433#endif
6fa3f289 434
6a8886e4
MM
435/* We use values 126..128 to pick the appropriate long double type (IFmode,
436 KFmode, TFmode). */
437#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
602ea4d3 438#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289 439#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
cacf1ca8 440#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
6fa3f289 441
7042fe5e 442/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
2c2aa74d 443 Enable 32-bit fcfid's on any of the switches for newer ISA machines. */
c3f8384f
MM
444#define TARGET_FCFID (TARGET_POWERPC64 \
445 || TARGET_PPC_GPOPT /* 970/power4 */ \
446 || TARGET_POPCNTB /* ISA 2.02 */ \
447 || TARGET_CMPB /* ISA 2.05 */ \
2c2aa74d 448 || TARGET_POPCNTD) /* ISA 2.06 */
7042fe5e
MM
449
450#define TARGET_FCTIDZ TARGET_FCFID
451#define TARGET_STFIWX TARGET_PPC_GFXOPT
452#define TARGET_LFIWAX TARGET_CMPB
453#define TARGET_LFIWZX TARGET_POPCNTD
454#define TARGET_FCFIDS TARGET_POPCNTD
455#define TARGET_FCFIDU TARGET_POPCNTD
456#define TARGET_FCFIDUS TARGET_POPCNTD
457#define TARGET_FCTIDUZ TARGET_POPCNTD
458#define TARGET_FCTIWUZ TARGET_POPCNTD
0299bc72
MM
459#define TARGET_CTZ TARGET_MODULO
460#define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
dd551aa1 461#define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
7042fe5e 462
f62511da
MM
463#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
464#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
a16a872d 465#define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
dd551aa1
MM
466#define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
467 && TARGET_POWERPC64)
c5e74d9d 468#define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
6bd6f4f4 469 && TARGET_POWERPC64)
fba4b861 470
fba4b861
MM
471/* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
472#define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
473#define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
474
87b44b83
AS
475/* This wants to be set for p8 and newer. On p7, overlapping unaligned
476 loads are slow. */
477#define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
f62511da
MM
478
479/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
480 in power7, so conditionalize them on p8 features. TImode syncs need quad
481 memory support. */
b846c948
MM
482#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
483 || TARGET_QUAD_MEMORY_ATOMIC \
484 || TARGET_DIRECT_MOVE)
485
486#define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
f62511da 487
c6d5ff83
MM
488/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
489 to allocate the SDmode stack slot to get the value into the proper location
490 in the register. */
491#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
492
21316320
MM
493/* ISA 3.0 has new min/max functions that don't need fast math that are being
494 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
495 answers if the arguments are not in the normal range. */
2c2aa74d
SB
496#define TARGET_MINMAX (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
497 && (TARGET_P9_MINMAX || !flag_trapping_math))
21316320 498
4d967549
MM
499/* In switching from using target_flags to using rs6000_isa_flags, the options
500 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
501 OPTION_MASK_<xxx> back into MASK_<xxx>. */
502#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
503#define MASK_CMPB OPTION_MASK_CMPB
f62511da 504#define MASK_CRYPTO OPTION_MASK_CRYPTO
4d967549 505#define MASK_DFP OPTION_MASK_DFP
f62511da 506#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
4d967549
MM
507#define MASK_DLMZB OPTION_MASK_DLMZB
508#define MASK_EABI OPTION_MASK_EABI
bbd35101 509#define MASK_FLOAT128_KEYWORD OPTION_MASK_FLOAT128_KEYWORD
12fca96e 510#define MASK_FLOAT128_HW OPTION_MASK_FLOAT128_HW
4d967549 511#define MASK_FPRND OPTION_MASK_FPRND
f62511da 512#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
4d967549 513#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
0258b6e4 514#define MASK_HTM OPTION_MASK_HTM
4d967549
MM
515#define MASK_ISEL OPTION_MASK_ISEL
516#define MASK_MFCRF OPTION_MASK_MFCRF
517#define MASK_MFPGPR OPTION_MASK_MFPGPR
518#define MASK_MULHW OPTION_MASK_MULHW
519#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
520#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
f62511da 521#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
8fa97501 522#define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
5a3a6a5e 523#define MASK_P9_MISC OPTION_MASK_P9_MISC
4d967549
MM
524#define MASK_POPCNTB OPTION_MASK_POPCNTB
525#define MASK_POPCNTD OPTION_MASK_POPCNTD
526#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
527#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
528#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
529#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
530#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
4d967549
MM
531#define MASK_UPDATE OPTION_MASK_UPDATE
532#define MASK_VSX OPTION_MASK_VSX
533
534#ifndef IN_LIBGCC2
535#define MASK_POWERPC64 OPTION_MASK_POWERPC64
536#endif
537
538#ifdef TARGET_64BIT
539#define MASK_64BIT OPTION_MASK_64BIT
540#endif
541
4d967549
MM
542#ifdef TARGET_LITTLE_ENDIAN
543#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
544#endif
545
4d967549
MM
546#ifdef TARGET_REGNAMES
547#define MASK_REGNAMES OPTION_MASK_REGNAMES
548#endif
549
550#ifdef TARGET_PROTOTYPE
551#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
552#endif
553
4f45da44
KN
554#ifdef TARGET_MODULO
555#define RS6000_BTM_MODULO OPTION_MASK_MODULO
556#endif
557
558
7fa14a01
MM
559/* For power systems, we want to enable Altivec and VSX builtins even if the
560 user did not use -maltivec or -mvsx to allow the builtins to be used inside
561 of #pragma GCC target or the target attribute to change the code level for a
55928937
SB
562 given system. */
563
564#define TARGET_EXTRA_BUILTINS (TARGET_POWERPC64 \
565 || TARGET_PPC_GPOPT /* 970/power4 */ \
566 || TARGET_POPCNTB /* ISA 2.02 */ \
567 || TARGET_CMPB /* ISA 2.05 */ \
568 || TARGET_POPCNTD /* ISA 2.06 */ \
569 || TARGET_ALTIVEC \
570 || TARGET_VSX \
571 || TARGET_HARD_FLOAT)
7fa14a01 572
a7c6c6d6
OH
573/* E500 cores only support plain "sync", not lwsync. */
574#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
575 || rs6000_cpu == PROCESSOR_PPC8548)
7fa14a01
MM
576
577
92902797 578/* Which machine supports the various reciprocal estimate instructions. */
2c2aa74d 579#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
92902797 580
2c2aa74d 581#define TARGET_FRE (TARGET_HARD_FLOAT \
92902797
MM
582 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
583
584#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
2c2aa74d 585 && TARGET_PPC_GFXOPT)
92902797 586
2c2aa74d 587#define TARGET_FRSQRTE (TARGET_HARD_FLOAT \
92902797
MM
588 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
589
6019c0fc
MM
590/* Macro to say whether we can do optimizations where we need to do parts of
591 the calculation in 64-bit GPRs and then is transfered to the vector
427a7384 592 registers. */
e0d32185
MM
593#define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
594 && TARGET_P8_VECTOR \
427a7384 595 && TARGET_POWERPC64)
e0d32185 596
92902797
MM
597/* Whether the various reciprocal divide/square root estimate instructions
598 exist, and whether we should automatically generate code for the instruction
599 by default. */
600#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
601#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
602#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
603#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
604
605extern unsigned char rs6000_recip_bits[];
606
607#define RS6000_RECIP_HAVE_RE_P(MODE) \
608 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
609
610#define RS6000_RECIP_AUTO_RE_P(MODE) \
611 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
612
613#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
614 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
615
616#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
617 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
618
c5387660
JM
619/* The default CPU for TARGET_OPTION_OVERRIDE. */
620#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
f045b2c9 621
a5c76ee6 622/* Target pragma. */
c58b209a
NB
623#define REGISTER_TARGET_PRAGMAS() do { \
624 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
fd438373 625 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
2fab365e 626 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
7fa14a01 627 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
a5c76ee6
ZW
628} while (0)
629
4c4eb375
GK
630/* Target #defines. */
631#define TARGET_CPU_CPP_BUILTINS() \
632 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
633
634/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
635 we're compiling for. Some configurations may need to override it. */
636#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
637 do \
638 { \
639 if (BYTES_BIG_ENDIAN) \
640 { \
641 builtin_define ("__BIG_ENDIAN__"); \
642 builtin_define ("_BIG_ENDIAN"); \
643 builtin_assert ("machine=bigendian"); \
644 } \
645 else \
646 { \
647 builtin_define ("__LITTLE_ENDIAN__"); \
648 builtin_define ("_LITTLE_ENDIAN"); \
649 builtin_assert ("machine=littleendian"); \
650 } \
651 } \
652 while (0)
f045b2c9 653\f
4c4eb375 654/* Target machine storage layout. */
f045b2c9 655
13d39dbc 656/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 657 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
658 the value is constrained to be within the bounds of the declared
659 type, but kept valid in the wider mode. The signedness of the
660 extension may differ from that of the type. */
661
39403d82
DE
662#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
663 if (GET_MODE_CLASS (MODE) == MODE_INT \
96922e4c 664 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
b78d48dd 665 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 666
f045b2c9 667/* Define this if most significant bit is lowest numbered
82e41834
KH
668 in instructions that operate on numbered bit-fields. */
669/* That is true on RS/6000. */
f045b2c9
RS
670#define BITS_BIG_ENDIAN 1
671
672/* Define this if most significant byte of a word is the lowest numbered. */
673/* That is true on RS/6000. */
674#define BYTES_BIG_ENDIAN 1
675
676/* Define this if most significant word of a multiword number is lowest
c81bebd7 677 numbered.
f045b2c9
RS
678
679 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 680 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
681#define WORDS_BIG_ENDIAN 1
682
50751417
AM
683/* This says that for the IBM long double the larger magnitude double
684 comes first. It's really a two element double array, and arrays
685 don't index differently between little- and big-endian. */
686#define LONG_DOUBLE_LARGE_FIRST 1
687
2e360ab3 688#define MAX_BITS_PER_WORD 64
f045b2c9
RS
689
690/* Width of a word, in units (bytes). */
c1aa3958 691#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
692#ifdef IN_LIBGCC2
693#define MIN_UNITS_PER_WORD UNITS_PER_WORD
694#else
ef0e53ce 695#define MIN_UNITS_PER_WORD 4
f34fc46e 696#endif
2e360ab3 697#define UNITS_PER_FP_WORD 8
0ac081f6 698#define UNITS_PER_ALTIVEC_WORD 16
cacf1ca8 699#define UNITS_PER_VSX_WORD 16
f045b2c9 700
915f619f
JW
701/* Type used for ptrdiff_t, as a string used in a declaration. */
702#define PTRDIFF_TYPE "int"
703
058ef853
DE
704/* Type used for size_t, as a string used in a declaration. */
705#define SIZE_TYPE "long unsigned int"
706
f045b2c9
RS
707/* Type used for wchar_t, as a string used in a declaration. */
708#define WCHAR_TYPE "short unsigned int"
709
710/* Width of wchar_t in bits. */
711#define WCHAR_TYPE_SIZE 16
712
9e654916
RK
713/* A C expression for the size in bits of the type `short' on the
714 target machine. If you don't define this, the default is half a
715 word. (If this would be less than one storage unit, it is
716 rounded up to one unit.) */
717#define SHORT_TYPE_SIZE 16
718
719/* A C expression for the size in bits of the type `int' on the
720 target machine. If you don't define this, the default is one
721 word. */
19d2d16f 722#define INT_TYPE_SIZE 32
9e654916
RK
723
724/* A C expression for the size in bits of the type `long' on the
725 target machine. If you don't define this, the default is one
726 word. */
2f3e5814 727#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
728
729/* A C expression for the size in bits of the type `long long' on the
730 target machine. If you don't define this, the default is two
731 words. */
732#define LONG_LONG_TYPE_SIZE 64
733
9e654916
RK
734/* A C expression for the size in bits of the type `float' on the
735 target machine. If you don't define this, the default is one
736 word. */
737#define FLOAT_TYPE_SIZE 32
738
739/* A C expression for the size in bits of the type `double' on the
740 target machine. If you don't define this, the default is two
741 words. */
742#define DOUBLE_TYPE_SIZE 64
743
6a8886e4
MM
744/* A C expression for the size in bits of the type `long double' on the target
745 machine. If you don't define this, the default is two words. */
6fa3f289 746#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 747
5b8f5865
DE
748/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
749#define WIDEST_HARDWARE_FP_SIZE 64
750
f045b2c9
RS
751/* Width in bits of a pointer.
752 See also the macro `Pmode' defined below. */
cacf1ca8
MM
753extern unsigned rs6000_pointer_size;
754#define POINTER_SIZE rs6000_pointer_size
f045b2c9
RS
755
756/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 757#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
758
759/* Boundary (in *bits*) on which stack pointer should be aligned. */
cacf1ca8
MM
760#define STACK_BOUNDARY \
761 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
762 ? 64 : 128)
f045b2c9
RS
763
764/* Allocation boundary (in *bits*) for the code of a function. */
765#define FUNCTION_BOUNDARY 32
766
767/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
768#define BIGGEST_ALIGNMENT 128
769
f045b2c9
RS
770/* Alignment of field after `int : 0' in a structure. */
771#define EMPTY_FIELD_BOUNDARY 32
772
773/* Every structure's size must be a multiple of this. */
774#define STRUCTURE_SIZE_BOUNDARY 8
775
43a88a8c 776/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
777#define PCC_BITFIELD_TYPE_MATTERS 1
778
69eff9da
AM
779enum data_align { align_abi, align_opt, align_both };
780
781/* A C expression to compute the alignment for a variables in the
782 local store. TYPE is the data type, and ALIGN is the alignment
783 that the object would ordinarily have. */
784#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
785 rs6000_data_alignment (TYPE, ALIGN, align_both)
786
69eff9da
AM
787/* Make arrays of chars word-aligned for the same reasons. */
788#define DATA_ALIGNMENT(TYPE, ALIGN) \
789 rs6000_data_alignment (TYPE, ALIGN, align_opt)
790
e075a6cc 791/* Align vectors to 128 bits. */
69eff9da
AM
792#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
793 rs6000_data_alignment (TYPE, ALIGN, align_abi)
f045b2c9 794
a0ab749a 795/* Nonzero if move instructions will actually fail to work
f045b2c9 796 when given unaligned data. */
fdaff8ba 797#define STRICT_ALIGNMENT 0
f045b2c9
RS
798\f
799/* Standard register usage. */
800
801/* Number of actual hardware registers.
802 The hardware registers are assigned numbers for the compiler
803 from 0 to just below FIRST_PSEUDO_REGISTER.
804 All registers that the compiler knows about must be given numbers,
805 even those that are not normally considered general registers.
806
807 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
462f7901
SB
808 a count register, a link register, and 8 condition register fields,
809 which we view here as separate registers. AltiVec adds 32 vector
810 registers and a VRsave register.
f045b2c9
RS
811
812 In addition, the difference between the frame and argument pointers is
813 a function of the number of registers saved, so we need to have a
814 register for AP that will later be eliminated in favor of SP or FP.
802a0058 815 This is a normal register, but it is fixed.
f045b2c9 816
802a0058
MM
817 We also create a pseudo register for float/int conversions, that will
818 really represent the memory location used. It is represented here as
819 a register, in order to work around problems in allocating stack storage
7d5175e1 820 in inline functions.
802a0058 821
7d5175e1 822 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
7a5add18
PB
823 pointer, which is eventually eliminated in favor of SP or FP.
824
825 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
7d5175e1 826
346081bd 827#define FIRST_PSEUDO_REGISTER 115
f045b2c9 828
d6a7951f 829/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 830#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 831
e075a6cc 832/* The sfp register and 3 HTM registers
23742a9e
RAR
833 aren't included in DWARF_FRAME_REGISTERS. */
834#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
c19de7aa 835
ed1cf8ff 836/* Use standard DWARF numbering for DWARF debugging information. */
3d36d470 837#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
ed1cf8ff 838
93c9d1ba 839/* Use gcc hard register numbering for eh_frame. */
3d36d470 840#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 841
ed1cf8ff
GK
842/* Map register numbers held in the call frame info that gcc has
843 collected using DWARF_FRAME_REGNUM to those that should be output in
3d36d470
UW
844 .debug_frame and .eh_frame. */
845#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
846 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
ed1cf8ff 847
f045b2c9
RS
848/* 1 for registers that have pervasive standard uses
849 and are not available for the register allocator.
850
5dead3e5
DJ
851 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
852 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 853
a127c4e5
RK
854 On System V implementations, r13 is fixed and not available for use. */
855
f045b2c9 856#define FIXED_REGISTERS \
5dead3e5 857 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
858 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
859 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
860 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
36bd0c3e 861 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
0ac081f6
AH
862 /* AltiVec registers. */ \
863 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
864 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 865 1, 1 \
346081bd 866 , 1, 1, 1, 1 \
0ac081f6 867}
f045b2c9
RS
868
869/* 1 for registers not available across function calls.
870 These must include the FIXED_REGISTERS and also any
871 registers that can be used without being saved.
872 The latter must include the registers where values are returned
873 and the register where structure-value addresses are passed.
874 Aside from that, you can include as many other registers as you like. */
875
876#define CALL_USED_REGISTERS \
a127c4e5 877 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
878 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
879 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
880 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
881 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
882 /* AltiVec registers. */ \
883 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
884 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 885 1, 1 \
346081bd 886 , 1, 1, 1, 1 \
0ac081f6
AH
887}
888
289e96b2
AH
889/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
890 the entire set of `FIXED_REGISTERS' be included.
891 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
892 This macro is optional. If not specified, it defaults to the value
893 of `CALL_USED_REGISTERS'. */
f676971a 894
289e96b2
AH
895#define CALL_REALLY_USED_REGISTERS \
896 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
897 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
898 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
899 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0b390d60 900 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
289e96b2
AH
901 /* AltiVec registers. */ \
902 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
903 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 904 0, 0 \
346081bd 905 , 0, 0, 0, 0 \
289e96b2 906}
f045b2c9 907
28bcfd4d 908#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
9ebbca7d 909
d62294f5 910#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
b427dd7a
AM
911#define FIRST_SAVED_FP_REGNO (14+32)
912#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
d62294f5 913
f045b2c9
RS
914/* List the order in which to allocate registers. Each register must be
915 listed once, even those in FIXED_REGISTERS.
916
917 We allocate in the following order:
918 fp0 (not saved or used for anything)
919 fp13 - fp2 (not saved; incoming fp arg registers)
920 fp1 (not saved; return value)
9390387d 921 fp31 - fp14 (saved; order given to save least number)
36bd0c3e
SB
922 cr7, cr5 (not saved or special)
923 cr6 (not saved, but used for vector operations)
5accd822 924 cr1 (not saved, but used for FP operations)
f045b2c9 925 cr0 (not saved, but used for arithmetic operations)
5accd822 926 cr4, cr3, cr2 (saved)
f045b2c9 927 r9 (not saved; best for TImode)
d44b26bd 928 r10, r8-r4 (not saved; highest first for less conflict with params)
9390387d 929 r3 (not saved; return value register)
d44b26bd
AM
930 r11 (not saved; later alloc to help shrink-wrap)
931 r0 (not saved; cannot be base reg)
f045b2c9
RS
932 r31 - r13 (saved; order given to save least number)
933 r12 (not saved; if used for DImode or DFmode would use r13)
f045b2c9
RS
934 ctr (not saved; when we have the choice ctr is better)
935 lr (saved)
36bd0c3e 936 r1, r2, ap, ca (fixed)
9390387d
AM
937 v0 - v1 (not saved or used for anything)
938 v13 - v3 (not saved; incoming vector arg registers)
939 v2 (not saved; incoming vector arg reg; return value)
940 v19 - v14 (not saved or used for anything)
941 v31 - v20 (saved; order given to save least number)
942 vrsave, vscr (fixed)
7d5175e1 943 sfp (fixed)
0258b6e4
PB
944 tfhar (fixed)
945 tfiar (fixed)
946 texasr (fixed)
0ac081f6 947*/
f676971a 948
6b13641d
DJ
949#if FIXED_R2 == 1
950#define MAYBE_R2_AVAILABLE
951#define MAYBE_R2_FIXED 2,
952#else
953#define MAYBE_R2_AVAILABLE 2,
954#define MAYBE_R2_FIXED
955#endif
f045b2c9 956
d44b26bd
AM
957#if FIXED_R13 == 1
958#define EARLY_R12 12,
959#define LATE_R12
960#else
961#define EARLY_R12
962#define LATE_R12 12,
963#endif
964
9390387d
AM
965#define REG_ALLOC_ORDER \
966 {32, \
f62511da
MM
967 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
968 /* not use fr14 which is a saved register. */ \
969 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
9390387d
AM
970 33, \
971 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
972 50, 49, 48, 47, 46, \
36bd0c3e 973 75, 73, 74, 69, 68, 72, 71, 70, \
d44b26bd
AM
974 MAYBE_R2_AVAILABLE \
975 9, 10, 8, 7, 6, 5, 4, \
976 3, EARLY_R12 11, 0, \
9390387d 977 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
d44b26bd 978 18, 17, 16, 15, 14, 13, LATE_R12 \
462f7901 979 66, 65, \
36bd0c3e 980 1, MAYBE_R2_FIXED 67, 76, \
9390387d
AM
981 /* AltiVec registers. */ \
982 77, 78, \
983 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
984 79, \
985 96, 95, 94, 93, 92, 91, \
986 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
987 109, 110, \
346081bd 988 111, 112, 113, 114 \
0ac081f6 989}
f045b2c9
RS
990
991/* True if register is floating-point. */
992#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
993
994/* True if register is a condition register. */
1de43f85 995#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
f045b2c9 996
815cdc52 997/* True if register is a condition register, but not cr0. */
1de43f85 998#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
815cdc52 999
f045b2c9 1000/* True if register is an integer register. */
7d5175e1
JJ
1001#define INT_REGNO_P(N) \
1002 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 1003
f6b5d695
SB
1004/* True if register is the CA register. */
1005#define CA_REGNO_P(N) ((N) == CA_REGNO)
802a0058 1006
0ac081f6
AH
1007/* True if register is an AltiVec register. */
1008#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1009
cacf1ca8
MM
1010/* True if register is a VSX register. */
1011#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1012
1013/* Alternate name for any vector register supporting floating point, no matter
1014 which instruction set(s) are available. */
1015#define VFLOAT_REGNO_P(N) \
1016 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1017
1018/* Alternate name for any vector register supporting integer, no matter which
1019 instruction set(s) are available. */
1020#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1021
1022/* Alternate name for any vector register supporting logical operations, no
dd7a40e1
MM
1023 matter which instruction set(s) are available. Allow GPRs as well as the
1024 vector registers. */
f62511da 1025#define VLOGICAL_REGNO_P(N) \
dd7a40e1
MM
1026 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1027 || (TARGET_VSX && FP_REGNO_P (N))) \
cacf1ca8 1028
79eefb0d 1029/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
5ec6aff2
MM
1030 enough space to account for vectors in FP regs. However, TFmode/TDmode
1031 should not use VSX instructions to do a caller save. */
dbcc9f08 1032#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
90b725f0
PB
1033 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1034 ? (MODE) \
1035 : TARGET_VSX \
1036 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1037 && FP_REGNO_P (REGNO) \
5ec6aff2 1038 ? V2DFmode \
f7c12ec4 1039 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
5ec6aff2 1040 ? DFmode \
f7c12ec4 1041 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
5ec6aff2 1042 ? DImode \
79eefb0d
PH
1043 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1044
cacf1ca8
MM
1045#define VSX_VECTOR_MODE(MODE) \
1046 ((MODE) == V4SFmode \
1047 || (MODE) == V2DFmode) \
1048
bdb60a10
MM
1049/* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1050 really a vector, but we want to treat it as a vector for moves, and
1051 such. */
1052
1053#define ALTIVEC_VECTOR_MODE(MODE) \
1054 ((MODE) == V16QImode \
1055 || (MODE) == V8HImode \
1056 || (MODE) == V4SFmode \
1057 || (MODE) == V4SImode \
1058 || FLOAT128_VECTOR_P (MODE))
0ac081f6 1059
dbcc9f08
MM
1060#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1061 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
a16a872d 1062 || (MODE) == V2DImode || (MODE) == V1TImode)
dbcc9f08 1063
c8ae788f
SB
1064/* Post-reload, we can't use any new AltiVec registers, as we already
1065 emitted the vrsave mask. */
1066
1067#define HARD_REGNO_RENAME_OK(SRC, DST) \
6fb5fa3c 1068 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
c8ae788f 1069
f045b2c9
RS
1070/* Specify the cost of a branch insn; roughly the number of extra insns that
1071 should be added to avoid a branch.
1072
ef457bda 1073 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1074 unscheduled conditional branch. */
1075
3a4fd356 1076#define BRANCH_COST(speed_p, predictable_p) 3
f045b2c9 1077
85e50b6b 1078/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 1079 performance for removing short circuiting from the logical ops. */
85e50b6b 1080
b8610a53 1081#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6 1082
f045b2c9
RS
1083/* Specify the registers used for certain standard purposes.
1084 The values of these macros are register numbers. */
1085
1086/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1087/* #define PC_REGNUM */
1088
1089/* Register to use for pushing function arguments. */
1090#define STACK_POINTER_REGNUM 1
1091
1092/* Base register for access to local variables of the function. */
7d5175e1
JJ
1093#define HARD_FRAME_POINTER_REGNUM 31
1094
1095/* Base register for access to local variables of the function. */
346081bd 1096#define FRAME_POINTER_REGNUM 111
f045b2c9 1097
f045b2c9
RS
1098/* Base register for access to arguments of the function. */
1099#define ARG_POINTER_REGNUM 67
1100
1101/* Place to put static chain when calling a function that requires it. */
1102#define STATIC_CHAIN_REGNUM 11
1103
26a2e6ae
PB
1104/* Base register for access to thread local storage variables. */
1105#define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1106
f045b2c9
RS
1107\f
1108/* Define the classes of registers for register constraints in the
1109 machine description. Also define ranges of constants.
1110
1111 One of the classes must always be named ALL_REGS and include all hard regs.
1112 If there is more than one class, another class must be named NO_REGS
1113 and contain no registers.
1114
1115 The name GENERAL_REGS must be the name of a class (or an alias for
1116 another name such as ALL_REGS). This is the class of registers
1117 that is allowed by "g" or "r" in a register constraint.
1118 Also, registers outside this class are allocated only when
1119 instructions express preferences for them.
1120
1121 The classes must be numbered in nondecreasing order; that is,
1122 a larger-numbered class must never be contained completely
1123 in a smaller-numbered class.
1124
1125 For any two classes, it is very desirable that there be another
1126 class that represents their union. */
c81bebd7 1127
cacf1ca8 1128/* The RS/6000 has three types of registers, fixed-point, floating-point, and
462f7901 1129 condition registers, plus three special registers, CTR, and the link
cacf1ca8
MM
1130 register. AltiVec adds a vector register class. VSX registers overlap the
1131 FPR registers and the Altivec registers.
f045b2c9
RS
1132
1133 However, r0 is special in that it cannot be used as a base register.
1134 So make a class for registers valid as base registers.
1135
1136 Also, cr0 is the only condition code register that can be used in
0d86f538 1137 arithmetic insns, so make a separate class for it. */
f045b2c9 1138
ebedb4dd
MM
1139enum reg_class
1140{
1141 NO_REGS,
ebedb4dd
MM
1142 BASE_REGS,
1143 GENERAL_REGS,
1144 FLOAT_REGS,
0ac081f6 1145 ALTIVEC_REGS,
8beb65e3 1146 VSX_REGS,
0ac081f6 1147 VRSAVE_REGS,
5f004351 1148 VSCR_REGS,
0258b6e4 1149 SPR_REGS,
ebedb4dd 1150 NON_SPECIAL_REGS,
ebedb4dd
MM
1151 LINK_REGS,
1152 CTR_REGS,
1153 LINK_OR_CTR_REGS,
1154 SPECIAL_REGS,
1155 SPEC_OR_GEN_REGS,
1156 CR0_REGS,
ebedb4dd
MM
1157 CR_REGS,
1158 NON_FLOAT_REGS,
f6b5d695 1159 CA_REGS,
ebedb4dd
MM
1160 ALL_REGS,
1161 LIM_REG_CLASSES
1162};
f045b2c9
RS
1163
1164#define N_REG_CLASSES (int) LIM_REG_CLASSES
1165
82e41834 1166/* Give names of register classes as strings for dump file. */
f045b2c9 1167
ebedb4dd
MM
1168#define REG_CLASS_NAMES \
1169{ \
1170 "NO_REGS", \
ebedb4dd
MM
1171 "BASE_REGS", \
1172 "GENERAL_REGS", \
1173 "FLOAT_REGS", \
0ac081f6 1174 "ALTIVEC_REGS", \
8beb65e3 1175 "VSX_REGS", \
0ac081f6 1176 "VRSAVE_REGS", \
5f004351 1177 "VSCR_REGS", \
0258b6e4 1178 "SPR_REGS", \
ebedb4dd 1179 "NON_SPECIAL_REGS", \
ebedb4dd
MM
1180 "LINK_REGS", \
1181 "CTR_REGS", \
1182 "LINK_OR_CTR_REGS", \
1183 "SPECIAL_REGS", \
1184 "SPEC_OR_GEN_REGS", \
1185 "CR0_REGS", \
ebedb4dd
MM
1186 "CR_REGS", \
1187 "NON_FLOAT_REGS", \
f6b5d695 1188 "CA_REGS", \
ebedb4dd
MM
1189 "ALL_REGS" \
1190}
f045b2c9
RS
1191
1192/* Define which registers fit in which classes.
1193 This is an initializer for a vector of HARD_REG_SET
1194 of length N_REG_CLASSES. */
1195
23742a9e
RAR
1196#define REG_CLASS_CONTENTS \
1197{ \
1198 /* NO_REGS. */ \
3e2bca2e 1199 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
23742a9e 1200 /* BASE_REGS. */ \
346081bd 1201 { 0xfffffffe, 0x00000000, 0x00000008, 0x00008000 }, \
23742a9e 1202 /* GENERAL_REGS. */ \
346081bd 1203 { 0xffffffff, 0x00000000, 0x00000008, 0x00008000 }, \
23742a9e 1204 /* FLOAT_REGS. */ \
3e2bca2e 1205 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
23742a9e 1206 /* ALTIVEC_REGS. */ \
3e2bca2e 1207 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, \
23742a9e 1208 /* VSX_REGS. */ \
3e2bca2e 1209 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, \
23742a9e 1210 /* VRSAVE_REGS. */ \
3e2bca2e 1211 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
23742a9e 1212 /* VSCR_REGS. */ \
3e2bca2e 1213 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, \
23742a9e 1214 /* SPR_REGS. */ \
346081bd 1215 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, \
23742a9e 1216 /* NON_SPECIAL_REGS. */ \
346081bd 1217 { 0xffffffff, 0xffffffff, 0x00000008, 0x00008000 }, \
23742a9e 1218 /* LINK_REGS. */ \
3e2bca2e 1219 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, \
23742a9e 1220 /* CTR_REGS. */ \
3e2bca2e 1221 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, \
23742a9e 1222 /* LINK_OR_CTR_REGS. */ \
3e2bca2e 1223 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, \
23742a9e 1224 /* SPECIAL_REGS. */ \
3e2bca2e 1225 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, \
23742a9e 1226 /* SPEC_OR_GEN_REGS. */ \
346081bd 1227 { 0xffffffff, 0x00000000, 0x0000000e, 0x0000a000 }, \
23742a9e 1228 /* CR0_REGS. */ \
3e2bca2e 1229 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, \
23742a9e 1230 /* CR_REGS. */ \
3e2bca2e 1231 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, \
23742a9e 1232 /* NON_FLOAT_REGS. */ \
346081bd 1233 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00008000 }, \
23742a9e 1234 /* CA_REGS. */ \
3e2bca2e 1235 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, \
23742a9e 1236 /* ALL_REGS. */ \
346081bd 1237 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0001ffff } \
ebedb4dd 1238}
f045b2c9
RS
1239
1240/* The same information, inverted:
1241 Return the class number of the smallest class containing
1242 reg number REGNO. This could be a conditional expression
1243 or could index an array. */
1244
cacf1ca8
MM
1245extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1246
cacf1ca8 1247#define REGNO_REG_CLASS(REGNO) \
e28c2052 1248 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
cacf1ca8
MM
1249 rs6000_regno_regclass[(REGNO)])
1250
a72c65c7
MM
1251/* Register classes for various constraints that are based on the target
1252 switches. */
1253enum r6000_reg_class_enum {
1254 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1255 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1256 RS6000_CONSTRAINT_v, /* Altivec registers */
1257 RS6000_CONSTRAINT_wa, /* Any VSX register */
d5906efc 1258 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
a72c65c7 1259 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
dd551aa1 1260 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
a72c65c7 1261 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
5e8586d7 1262 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
59f5868d
MM
1263 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1264 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1265 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1266 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
c6d5ff83 1267 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
f62511da 1268 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
4e8a3a35 1269 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
c477a667
MM
1270 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1271 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
f62511da 1272 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
a72c65c7 1273 RS6000_CONSTRAINT_ws, /* VSX register for DF */
c6d5ff83 1274 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
5e8586d7
MM
1275 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1276 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1277 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
c6d5ff83 1278 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
5e8586d7 1279 RS6000_CONSTRAINT_wy, /* VSX register for SF */
c6d5ff83 1280 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
99211352 1281 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
787c7a65
MM
1282 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1283 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1284 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1285 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
a72c65c7
MM
1286 RS6000_CONSTRAINT_MAX
1287};
1288
1289extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
f045b2c9
RS
1290
1291/* The class value for index registers, and the one for base regs. */
1292#define INDEX_REG_CLASS GENERAL_REGS
1293#define BASE_REG_CLASS BASE_REGS
1294
cacf1ca8
MM
1295/* Return whether a given register class can hold VSX objects. */
1296#define VSX_REG_CLASS_P(CLASS) \
1297 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1298
59f5868d
MM
1299/* Return whether a given register class targets general purpose registers. */
1300#define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1301
f045b2c9
RS
1302/* Given an rtx X being reloaded into a reg required to be
1303 in class CLASS, return the class of reg to actually use.
1304 In general this is just CLASS; but on some machines
c81bebd7 1305 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1306
1307 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1308 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1309
1310 We also don't want to reload integer values into floating-point
1311 registers if we can at all help it. In fact, this can
37409796 1312 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1313 into a FP register and discovers it doesn't have the memory location
1314 required.
1315
1316 ??? Would it be a good idea to have reload do the converse, that is
1317 try to reload floating modes into FP registers if possible?
1318 */
f045b2c9 1319
802a0058 1320#define PREFERRED_RELOAD_CLASS(X,CLASS) \
8beb65e3 1321 rs6000_preferred_reload_class_ptr (X, CLASS)
c81bebd7 1322
f045b2c9
RS
1323/* Return the register class of a scratch register needed to copy IN into
1324 or out of a register in CLASS in MODE. If it can be done directly,
1325 NO_REGS is returned. */
1326
1327#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
8beb65e3 1328 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
f045b2c9
RS
1329
1330/* Return the maximum number of consecutive registers
1331 needed to represent mode MODE in a register of class CLASS.
1332
cacf1ca8
MM
1333 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1334 a single reg is enough for two words, unless we have VSX, where the FP
1335 registers can hold 128 bits. */
1336#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
580d3230 1337
f045b2c9
RS
1338/* Stack layout; function entry, exit and calling. */
1339
1340/* Define this if pushing a word on the stack
1341 makes the stack pointer a smaller address. */
62f9f30b 1342#define STACK_GROWS_DOWNWARD 1
f045b2c9 1343
327e5343
FJ
1344/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1345#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1346
a4d05547 1347/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1348 is at the high-address end of the local variables;
1349 that is, each additional local variable allocated
1350 goes at a more negative offset in the frame.
1351
1352 On the RS/6000, we grow upwards, from the area after the outgoing
1353 arguments. */
de5a5fa1
MP
1354#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1355 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
f045b2c9 1356
4697a36c 1357/* Size of the fixed area on the stack */
9ebbca7d 1358#define RS6000_SAVE_AREA \
b54214fe
UW
1359 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1360 << (TARGET_64BIT ? 1 : 0))
4697a36c 1361
b54214fe
UW
1362/* Stack offset for toc save slot. */
1363#define RS6000_TOC_SAVE_SLOT \
1364 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
b6c9286a 1365
4697a36c 1366/* Align an address */
4f59f9f2 1367#define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
4697a36c 1368
f045b2c9
RS
1369/* Offset within stack frame to start allocating local variables at.
1370 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1371 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1372 of the first local allocated.
f045b2c9
RS
1373
1374 On the RS/6000, the frame pointer is the same as the stack pointer,
1375 except for dynamic allocations. So we start after the fixed area and
a7790c71
DV
1376 outgoing parameter area.
1377
1378 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1379 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1380 sizes of the fixed area and the parameter area must be a multiple of
1381 STACK_BOUNDARY. */
f045b2c9 1382
2a31c321
RS
1383#define RS6000_STARTING_FRAME_OFFSET \
1384 (cfun->calls_alloca \
1385 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1386 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1387 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1388 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1389 + RS6000_SAVE_AREA))
802a0058
MM
1390
1391/* Offset from the stack pointer register to an item dynamically
1392 allocated on the stack, e.g., by `alloca'.
1393
1394 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1395 length of the outgoing arguments. The default is correct for most
a7790c71
DV
1396 machines. See `function.c' for details.
1397
1398 This value must be a multiple of STACK_BOUNDARY (hard coded in
1399 `emit-rtl.c'). */
802a0058 1400#define STACK_DYNAMIC_OFFSET(FUNDECL) \
a20c5714
RS
1401 RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \
1402 + STACK_POINTER_OFFSET, \
a7790c71 1403 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
f045b2c9
RS
1404
1405/* If we generate an insn to push BYTES bytes,
1406 this says how many the stack pointer really advances by.
1407 On RS/6000, don't define this because there are no push insns. */
1408/* #define PUSH_ROUNDING(BYTES) */
1409
1410/* Offset of first parameter from the argument pointer register value.
1411 On the RS/6000, we define the argument pointer to the start of the fixed
1412 area. */
4697a36c 1413#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1414
62153b61
JM
1415/* Offset from the argument pointer register value to the top of
1416 stack. This is different from FIRST_PARM_OFFSET because of the
1417 register save area. */
1418#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1419
f045b2c9
RS
1420/* Define this if stack space is still allocated for a parameter passed
1421 in a register. The value is the number of bytes allocated to this
1422 area. */
ddbb449f
AM
1423#define REG_PARM_STACK_SPACE(FNDECL) \
1424 rs6000_reg_parm_stack_space ((FNDECL), false)
1425
1426/* Define this macro if space guaranteed when compiling a function body
1427 is different to space required when making a call, a situation that
1428 can arise with K&R style function definitions. */
1429#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1430 rs6000_reg_parm_stack_space ((FNDECL), true)
f045b2c9
RS
1431
1432/* Define this if the above stack space is to be considered part of the
1433 space allocated by the caller. */
81464b2c 1434#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
f045b2c9
RS
1435
1436/* This is the difference between the logical top of stack and the actual sp.
1437
82e41834 1438 For the RS/6000, sp points past the fixed area. */
4697a36c 1439#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1440
1441/* Define this if the maximum size of all the outgoing args is to be
1442 accumulated and pushed during the prologue. The amount can be
38173d38 1443 found in the variable crtl->outgoing_args_size. */
f73ad30e 1444#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9 1445
f045b2c9
RS
1446/* Define how to find the value returned by a library function
1447 assuming the value has mode MODE. */
1448
ded9bf77 1449#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1450
6fa3f289
ZW
1451/* DRAFT_V4_STRUCT_RET defaults off. */
1452#define DRAFT_V4_STRUCT_RET 0
f607bc57 1453
bd5bd7ac 1454/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1455#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1456
a260abc9 1457/* Mode of stack savearea.
dfdfa60f
DE
1458 FUNCTION is VOIDmode because calling convention maintains SP.
1459 BLOCK needs Pmode for SP.
a260abc9
DE
1460 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1461#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f 1462 (LEVEL == SAVE_FUNCTION ? VOIDmode \
c6d5ff83 1463 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
a260abc9 1464
4697a36c
MM
1465/* Minimum and maximum general purpose registers used to hold arguments. */
1466#define GP_ARG_MIN_REG 3
1467#define GP_ARG_MAX_REG 10
1468#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1469
1470/* Minimum and maximum floating point registers used to hold arguments. */
1471#define FP_ARG_MIN_REG 33
7509c759
MM
1472#define FP_ARG_AIX_MAX_REG 45
1473#define FP_ARG_V4_MAX_REG 40
008e32c0
UW
1474#define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1475 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
4697a36c
MM
1476#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1477
0ac081f6
AH
1478/* Minimum and maximum AltiVec registers used to hold arguments. */
1479#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1480#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1481#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1482
b54214fe
UW
1483/* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1484#define AGGR_ARG_NUM_REG 8
1485
4697a36c
MM
1486/* Return registers */
1487#define GP_ARG_RETURN GP_ARG_MIN_REG
1488#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1489#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
b54214fe
UW
1490#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1491 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4304ccfd
MM
1492#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1493 ? (ALTIVEC_ARG_RETURN \
08213983 1494 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
b54214fe 1495 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4697a36c 1496
7509c759 1497/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1498#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1499/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1500#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1501#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1502#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1503#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1504
f57fe068
AM
1505/* We don't have prologue and epilogue functions to save/restore
1506 everything for most ABIs. */
1507#define WORLD_SAVE_P(INFO) 0
1508
f045b2c9
RS
1509/* 1 if N is a possible register number for a function value
1510 as seen by the caller.
1511
0ac081f6 1512 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1513#define FUNCTION_VALUE_REGNO_P(N) \
1514 ((N) == GP_ARG_RETURN \
202687fb 1515 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
11d8d07e 1516 && TARGET_HARD_FLOAT) \
202687fb 1517 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
b54214fe 1518 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1519
1520/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1521 On RS/6000, these are r3-r10 and fp1-fp13.
1522 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1523#define FUNCTION_ARG_REGNO_P(N) \
202687fb
MM
1524 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1525 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
44688022 1526 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
202687fb 1527 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
11d8d07e 1528 && TARGET_HARD_FLOAT))
f045b2c9
RS
1529\f
1530/* Define a data type for recording info about an argument list
1531 during the scan of that argument list. This data type should
1532 hold all necessary information about the function itself
1533 and about the args processed so far, enough to enable macros
1534 such as FUNCTION_ARG to determine where the next arg should go.
1535
1536 On the RS/6000, this is a structure. The first element is the number of
1537 total argument words, the second is used to store the next
1538 floating-point register number, and the third says how many more args we
4697a36c
MM
1539 have prototype types for.
1540
4cc833b7 1541 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1542 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1543 register, and `words' is the number of words used on the stack.
1544
bd227acc 1545 The varargs/stdarg support requires that this structure's size
4cc833b7 1546 be a multiple of sizeof(int). */
4697a36c
MM
1547
1548typedef struct rs6000_args
1549{
4cc833b7 1550 int words; /* # words used for passing GP registers */
6a4cee5f 1551 int fregno; /* next available FP register */
0ac081f6 1552 int vregno; /* next available AltiVec register */
6a4cee5f 1553 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1554 int prototype; /* Whether a prototype was defined */
a6c9bed4 1555 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1556 int call_cookie; /* Do special things for this call */
4cc833b7 1557 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1558 int intoffset; /* running offset in struct (darwin64) */
1559 int use_stack; /* any part of struct on stack (darwin64) */
a9ab25e2
IS
1560 int floats_in_gpr; /* count of SFmode floats taking up
1561 GPR space (darwin64) */
0b5383eb 1562 int named; /* false for varargs params */
617718f7 1563 int escapes; /* if function visible outside tu */
bdb60a10 1564 int libcall; /* If this is a compiler generated call. */
4697a36c 1565} CUMULATIVE_ARGS;
f045b2c9 1566
f045b2c9
RS
1567/* Initialize a variable CUM of type CUMULATIVE_ARGS
1568 for a call to a function whose data type is FNTYPE.
1569 For a library call, FNTYPE is 0. */
1570
617718f7
AM
1571#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1572 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1573 N_NAMED_ARGS, FNDECL, VOIDmode)
f045b2c9
RS
1574
1575/* Similar, but when scanning the definition of a procedure. We always
1576 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1577
0f6937fe 1578#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617718f7
AM
1579 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1580 1000, current_function_decl, VOIDmode)
b9599e46
FS
1581
1582/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1583
1584#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
617718f7
AM
1585 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1586 0, NULL_TREE, MODE)
f045b2c9 1587
6e985040 1588#define PAD_VARARGS_DOWN \
76b0cbf8 1589 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
2a55fd42 1590
f045b2c9 1591/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1592 for profiling a function entry. */
f045b2c9
RS
1593
1594#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1595 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1596
1597/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1598 the stack pointer does not matter. No definition is equivalent to
1599 always zero.
1600
a0ab749a 1601 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1602 its backpointer, which we maintain. */
1603#define EXIT_IGNORE_STACK 1
1604
a701949a
FS
1605/* Define this macro as a C expression that is nonzero for registers
1606 that are used by the epilogue or the return' pattern. The stack
1607 and frame pointer registers are already be assumed to be used as
1608 needed. */
1609
83720594 1610#define EPILOGUE_USES(REGNO) \
1de43f85 1611 ((reload_completed && (REGNO) == LR_REGNO) \
b1765bde 1612 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
cacf1ca8 1613 || (crtl->calls_eh_return \
3553b09d 1614 && TARGET_AIX \
ff3867ae 1615 && (REGNO) == 2))
2bfcf297 1616
f045b2c9 1617\f
f045b2c9
RS
1618/* Length in units of the trampoline for entering a nested function. */
1619
b6c9286a 1620#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9 1621\f
f33985c6 1622/* Definitions for __builtin_return_address and __builtin_frame_address.
893fc0a0 1623 __builtin_return_address (0) should give link register (LR_REGNO), enable
82e41834 1624 this. */
f33985c6
MS
1625/* This should be uncommented, so that the link register is used, but
1626 currently this would result in unmatched insns and spilling fixed
1627 registers so we'll leave it for another day. When these problems are
1628 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1629 (mrs) */
1630/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1631
b6c9286a
MM
1632/* Number of bytes into the frame return addresses can be found. See
1633 rs6000_stack_info in rs6000.c for more information on how the different
1634 abi's store the return address. */
008e32c0
UW
1635#define RETURN_ADDRESS_OFFSET \
1636 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
f09d4c33 1637
f33985c6
MS
1638/* The current return address is in link register (65). The return address
1639 of anything farther back is accessed normally at an offset of 8 from the
1640 frame pointer. */
71f123ca
FS
1641#define RETURN_ADDR_RTX(COUNT, FRAME) \
1642 (rs6000_return_addr (COUNT, FRAME))
1643
f33985c6 1644\f
f045b2c9
RS
1645/* Definitions for register eliminations.
1646
1647 We have two registers that can be eliminated on the RS/6000. First, the
1648 frame pointer register can often be eliminated in favor of the stack
1649 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1650 eliminated; it is replaced with either the stack or frame pointer.
1651
1652 In addition, we use the elimination mechanism to see if r30 is needed
1653 Initially we assume that it isn't. If it is, we spill it. This is done
1654 by making it an eliminable register. We replace it with itself so that
1655 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1656
1657/* This is an array of structures. Each structure initializes one pair
1658 of eliminable registers. The "from" register number is given first,
1659 followed by "to". Eliminations of the same "from" register are listed
1660 in order of preference. */
7d5175e1
JJ
1661#define ELIMINABLE_REGS \
1662{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1663 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1664 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1665 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1666 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 1667 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9 1668
f045b2c9
RS
1669/* Define the offset between two registers, one to be eliminated, and the other
1670 its replacement, at the start of a routine. */
d1d0c603
JJ
1671#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1672 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1673\f
1674/* Addressing modes, and classification of registers for them. */
1675
940da324
JL
1676#define HAVE_PRE_DECREMENT 1
1677#define HAVE_PRE_INCREMENT 1
6fb5fa3c
DB
1678#define HAVE_PRE_MODIFY_DISP 1
1679#define HAVE_PRE_MODIFY_REG 1
f045b2c9
RS
1680
1681/* Macros to check register numbers against specific register classes. */
1682
1683/* These assume that REGNO is a hard or pseudo reg number.
1684 They give nonzero only if REGNO is a hard reg of the suitable class
1685 or a pseudo reg currently allocated to a suitable hard reg.
1686 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1687 has been allocated, which happens in reginfo.c during register
1688 allocation. */
f045b2c9
RS
1689
1690#define REGNO_OK_FOR_INDEX_P(REGNO) \
1691((REGNO) < FIRST_PSEUDO_REGISTER \
1692 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 1693 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1694 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
1695 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1696 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
1697
1698#define REGNO_OK_FOR_BASE_P(REGNO) \
1699((REGNO) < FIRST_PSEUDO_REGISTER \
1700 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 1701 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1702 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
1703 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1704 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
c6c3dba9
PB
1705
1706/* Nonzero if X is a hard reg that can be used as an index
1707 or if it is a pseudo reg in the non-strict case. */
1708#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1709 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1710 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1711
1712/* Nonzero if X is a hard reg that can be used as a base reg
1713 or if it is a pseudo reg in the non-strict case. */
1714#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1715 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1716 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1717
f045b2c9
RS
1718\f
1719/* Maximum number of registers that can appear in a valid memory address. */
1720
1721#define MAX_REGS_PER_ADDRESS 2
1722
1723/* Recognize any constant value that is a valid address. */
1724
6eff269e
BK
1725#define CONSTANT_ADDRESS_P(X) \
1726 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1727 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1728 || GET_CODE (X) == HIGH)
f045b2c9 1729
48d72335 1730#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3 1731#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
76492753
PB
1732 && EASY_VECTOR_15((n) >> 1) \
1733 && ((n) & 1) == 0)
48d72335 1734
29e6733c 1735#define EASY_VECTOR_MSB(n,mode) \
683be46f 1736 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
29e6733c
MM
1737 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1738
f045b2c9 1739\f
a260abc9
DE
1740/* Try a machine-dependent way of reloading an illegitimate address
1741 operand. If we find one, push the reload and jump to WIN. This
1742 macro is used in only one place: `find_reloads_address' in reload.c.
1743
f676971a 1744 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 1745 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 1746
a9098fd0
GK
1747#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1748do { \
24ea750e 1749 int win; \
8beb65e3 1750 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
24ea750e
DJ
1751 (int)(TYPE), (IND_LEVELS), &win); \
1752 if ( win ) \
1753 goto WIN; \
a260abc9
DE
1754} while (0)
1755
944258eb 1756#define FIND_BASE_TERM rs6000_find_base_term
766a866c
MM
1757\f
1758/* The register number of the register used to address a table of
1759 static data addresses in memory. In some cases this register is
1760 defined by a processor's "application binary interface" (ABI).
1761 When this macro is defined, RTL is generated for this register
1762 once, as with the stack pointer and frame pointer registers. If
1763 this macro is not defined, it is up to the machine-dependent files
1764 to allocate such a register (if necessary). */
1765
1db02437 1766#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
24f77f59
AM
1767#define PIC_OFFSET_TABLE_REGNUM \
1768 (TARGET_TOC ? TOC_REGISTER \
1769 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1770 : INVALID_REGNUM)
766a866c 1771
97b23853 1772#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 1773
766a866c
MM
1774/* Define this macro if the register defined by
1775 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 1776 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
1777
1778/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1779
766a866c
MM
1780/* A C expression that is nonzero if X is a legitimate immediate
1781 operand on the target machine when generating position independent
1782 code. You can assume that X satisfies `CONSTANT_P', so you need
1783 not check this. You can also assume FLAG_PIC is true, so you need
1784 not check it either. You need not define this macro if all
1785 constants (including `SYMBOL_REF') can be immediate operands when
1786 generating position independent code. */
1787
1788/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9 1789\f
f045b2c9
RS
1790/* Specify the machine mode that this machine uses
1791 for the index in the tablejump instruction. */
e1565e65 1792#define CASE_VECTOR_MODE SImode
f045b2c9 1793
18543a22
ILT
1794/* Define as C expression which evaluates to nonzero if the tablejump
1795 instruction expects the table to contain offsets from the address of the
1796 table.
82e41834 1797 Do not define this if the table should contain absolute addresses. */
18543a22 1798#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 1799
f045b2c9
RS
1800/* Define this as 1 if `char' should by default be signed; else as 0. */
1801#define DEFAULT_SIGNED_CHAR 0
1802
c1618c0c
DE
1803/* An integer expression for the size in bits of the largest integer machine
1804 mode that should actually be used. */
1805
1806/* Allow pairs of registers to be used, which is the intent of the default. */
1807#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1808
f045b2c9
RS
1809/* Max number of bytes we can move from memory to memory
1810 in one reasonably fast instruction. */
2f3e5814 1811#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 1812#define MAX_MOVE_MAX 8
f045b2c9
RS
1813
1814/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 1815 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
1816 is undesirable. */
1817#define SLOW_BYTE_ACCESS 1
1818
9a63901f
RK
1819/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1820 will either zero-extend or sign-extend. The value of this macro should
1821 be the code that says which one of the two operations is implicitly
f822d252 1822 done, UNKNOWN if none. */
9a63901f 1823#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
1824
1825/* Define if loading short immediate values into registers sign extends. */
58f2ae18 1826#define SHORT_IMMEDIATES_SIGN_EXTEND 1
fdaff8ba 1827\f
94993909 1828/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122 1829#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
bb0f9c02 1830 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
d865b122 1831
0299bc72 1832/* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
bb0f9c02
SB
1833 zero. The hardware instructions added in Power9 and the sequences using
1834 popcount return 32 or 64. */
0299bc72 1835#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
bb0f9c02
SB
1836 (TARGET_CTZ || TARGET_POPCNTD \
1837 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
1838 : ((VALUE) = -1, 2))
94993909 1839
f045b2c9
RS
1840/* Specify the machine mode that pointers have.
1841 After generation of rtl, the compiler makes no further distinction
1842 between pointers and any other objects of this machine mode. */
501623d4
RS
1843extern scalar_int_mode rs6000_pmode;
1844#define Pmode rs6000_pmode
f045b2c9 1845
a3c9585f 1846/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
1847#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1848
f045b2c9 1849/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 1850 Doesn't matter on RS/6000. */
5b71a4e7 1851#define FUNCTION_MODE SImode
f045b2c9
RS
1852
1853/* Define this if addresses of constant functions
1854 shouldn't be put through pseudo regs where they can be cse'd.
1855 Desirable on machines where ordinary constants are expensive
1856 but a CALL with constant address is cheap. */
1e8552c2 1857#define NO_FUNCTION_CSE 1
f045b2c9 1858
d969caf8 1859/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
1860 few bits.
1861
1862 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1863 have been dropped from the PowerPC architecture. */
c28a7c24 1864#define SHIFT_COUNT_TRUNCATED 0
f045b2c9 1865
f045b2c9
RS
1866/* Adjust the length of an INSN. LENGTH is the currently-computed length and
1867 should be adjusted to reflect any required changes. This macro is used when
1868 there is some systematic length adjustment required that would be difficult
1869 to express in the length attribute. */
1870
1871/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1872
39a10a29
GK
1873/* Given a comparison code (EQ, NE, etc.) and the first operand of a
1874 COMPARE, return the mode to be used for the comparison. For
1875 floating-point, CCFPmode should be used. CCUNSmode should be used
1876 for unsigned comparisons. CCEQmode should be used when we are
1877 doing an inequality comparison on the result of a
1878 comparison. CCmode should be used in all other cases. */
c5defebb 1879
b565a316 1880#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 1881 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 1882 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 1883 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 1884 ? CCEQmode : CCmode))
f045b2c9 1885
b39358e1
GK
1886/* Can the condition code MODE be safely reversed? This is safe in
1887 all cases on this port, because at present it doesn't use the
1888 trapping FP comparisons (fcmpo). */
1889#define REVERSIBLE_CC_MODE(MODE) 1
1890
1891/* Given a condition code and a mode, return the inverse condition. */
1892#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1893
d9664254
SB
1894\f
1895/* Target cpu costs. */
1896
1897struct processor_costs {
1898 const int mulsi; /* cost of SImode multiplication. */
1899 const int mulsi_const; /* cost of SImode multiplication by constant. */
1900 const int mulsi_const9; /* cost of SImode mult by short constant. */
1901 const int muldi; /* cost of DImode multiplication. */
1902 const int divsi; /* cost of SImode division. */
1903 const int divdi; /* cost of DImode division. */
1904 const int fp; /* cost of simple SFmode and DFmode insns. */
1905 const int dmul; /* cost of DFmode multiplication (and fmadd). */
1906 const int sdiv; /* cost of SFmode division (fdivs). */
1907 const int ddiv; /* cost of DFmode division (fdiv). */
1908 const int cache_line_size; /* cache line size in bytes. */
1909 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
1910 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
1911 const int simultaneous_prefetches; /* number of parallel prefetch
1912 operations. */
1913 const int sfdf_convert; /* cost of SF->DF conversion. */
1914};
1915
1916extern const struct processor_costs *rs6000_cost;
f045b2c9
RS
1917\f
1918/* Control the assembler format that we output. */
1919
1b279f39
DE
1920/* A C string constant describing how to begin a comment in the target
1921 assembler language. The compiler assumes that the comment will end at
1922 the end of the line. */
1923#define ASM_COMMENT_START " #"
6b67933e 1924
38c1f2d7
MM
1925/* Flag to say the TOC is initialized */
1926extern int toc_initialized;
1927
f045b2c9
RS
1928/* Macro to output a special constant pool entry. Go to WIN if we output
1929 it. Otherwise, it is written the usual way.
1930
1931 On the RS/6000, toc entries are handled this way. */
1932
a9098fd0
GK
1933#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1934{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1935 { \
1936 output_toc (FILE, X, LABELNO, MODE); \
1937 goto WIN; \
1938 } \
f045b2c9
RS
1939}
1940
ebd97b96
DE
1941#ifdef HAVE_GAS_WEAK
1942#define RS6000_WEAK 1
1943#else
1944#define RS6000_WEAK 0
1945#endif
290ad355 1946
79c4e63f
AM
1947#if RS6000_WEAK
1948/* Used in lieu of ASM_WEAKEN_LABEL. */
8d91472f
DE
1949#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1950 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
79c4e63f
AM
1951#endif
1952
ff2d10c1
AO
1953#if HAVE_GAS_WEAKREF
1954#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1955 do \
1956 { \
1957 fputs ("\t.weakref\t", (FILE)); \
1958 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1959 fputs (", ", (FILE)); \
1960 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1961 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1962 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1963 { \
1964 fputs ("\n\t.weakref\t.", (FILE)); \
1965 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1966 fputs (", .", (FILE)); \
1967 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1968 } \
1969 fputc ('\n', (FILE)); \
1970 } while (0)
1971#endif
1972
79c4e63f
AM
1973/* This implements the `alias' attribute. */
1974#undef ASM_OUTPUT_DEF_FROM_DECLS
1975#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1976 do \
1977 { \
1978 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1979 const char *name = IDENTIFIER_POINTER (TARGET); \
1980 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 1981 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
1982 { \
1983 if (TREE_PUBLIC (DECL)) \
1984 { \
1985 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1986 { \
1987 fputs ("\t.globl\t.", FILE); \
cbaaba19 1988 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
1989 putc ('\n', FILE); \
1990 } \
1991 } \
1992 else if (TARGET_XCOFF) \
1993 { \
c167bc5b
DE
1994 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1995 { \
1996 fputs ("\t.lglobl\t.", FILE); \
1997 RS6000_OUTPUT_BASENAME (FILE, alias); \
1998 putc ('\n', FILE); \
1999 fputs ("\t.lglobl\t", FILE); \
2000 RS6000_OUTPUT_BASENAME (FILE, alias); \
2001 putc ('\n', FILE); \
2002 } \
79c4e63f
AM
2003 } \
2004 fputs ("\t.set\t.", FILE); \
cbaaba19 2005 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2006 fputs (",.", FILE); \
cbaaba19 2007 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2008 fputc ('\n', FILE); \
2009 } \
2010 ASM_OUTPUT_DEF (FILE, alias, name); \
2011 } \
2012 while (0)
290ad355 2013
1bc7c5b6
ZW
2014#define TARGET_ASM_FILE_START rs6000_file_start
2015
f045b2c9
RS
2016/* Output to assembler file text saying following lines
2017 may contain character constants, extra white space, comments, etc. */
2018
2019#define ASM_APP_ON ""
2020
2021/* Output to assembler file text saying following lines
2022 no longer contain unusual constructs. */
2023
2024#define ASM_APP_OFF ""
2025
f045b2c9
RS
2026/* How to refer to registers in assembler output.
2027 This sequence is indexed by compiler's hard-register-number (see above). */
2028
82e41834 2029extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2030
2031#define REGISTER_NAMES \
2032{ \
2033 &rs6000_reg_names[ 0][0], /* r0 */ \
2034 &rs6000_reg_names[ 1][0], /* r1 */ \
2035 &rs6000_reg_names[ 2][0], /* r2 */ \
2036 &rs6000_reg_names[ 3][0], /* r3 */ \
2037 &rs6000_reg_names[ 4][0], /* r4 */ \
2038 &rs6000_reg_names[ 5][0], /* r5 */ \
2039 &rs6000_reg_names[ 6][0], /* r6 */ \
2040 &rs6000_reg_names[ 7][0], /* r7 */ \
2041 &rs6000_reg_names[ 8][0], /* r8 */ \
2042 &rs6000_reg_names[ 9][0], /* r9 */ \
2043 &rs6000_reg_names[10][0], /* r10 */ \
2044 &rs6000_reg_names[11][0], /* r11 */ \
2045 &rs6000_reg_names[12][0], /* r12 */ \
2046 &rs6000_reg_names[13][0], /* r13 */ \
2047 &rs6000_reg_names[14][0], /* r14 */ \
2048 &rs6000_reg_names[15][0], /* r15 */ \
2049 &rs6000_reg_names[16][0], /* r16 */ \
2050 &rs6000_reg_names[17][0], /* r17 */ \
2051 &rs6000_reg_names[18][0], /* r18 */ \
2052 &rs6000_reg_names[19][0], /* r19 */ \
2053 &rs6000_reg_names[20][0], /* r20 */ \
2054 &rs6000_reg_names[21][0], /* r21 */ \
2055 &rs6000_reg_names[22][0], /* r22 */ \
2056 &rs6000_reg_names[23][0], /* r23 */ \
2057 &rs6000_reg_names[24][0], /* r24 */ \
2058 &rs6000_reg_names[25][0], /* r25 */ \
2059 &rs6000_reg_names[26][0], /* r26 */ \
2060 &rs6000_reg_names[27][0], /* r27 */ \
2061 &rs6000_reg_names[28][0], /* r28 */ \
2062 &rs6000_reg_names[29][0], /* r29 */ \
2063 &rs6000_reg_names[30][0], /* r30 */ \
2064 &rs6000_reg_names[31][0], /* r31 */ \
2065 \
2066 &rs6000_reg_names[32][0], /* fr0 */ \
2067 &rs6000_reg_names[33][0], /* fr1 */ \
2068 &rs6000_reg_names[34][0], /* fr2 */ \
2069 &rs6000_reg_names[35][0], /* fr3 */ \
2070 &rs6000_reg_names[36][0], /* fr4 */ \
2071 &rs6000_reg_names[37][0], /* fr5 */ \
2072 &rs6000_reg_names[38][0], /* fr6 */ \
2073 &rs6000_reg_names[39][0], /* fr7 */ \
2074 &rs6000_reg_names[40][0], /* fr8 */ \
2075 &rs6000_reg_names[41][0], /* fr9 */ \
2076 &rs6000_reg_names[42][0], /* fr10 */ \
2077 &rs6000_reg_names[43][0], /* fr11 */ \
2078 &rs6000_reg_names[44][0], /* fr12 */ \
2079 &rs6000_reg_names[45][0], /* fr13 */ \
2080 &rs6000_reg_names[46][0], /* fr14 */ \
2081 &rs6000_reg_names[47][0], /* fr15 */ \
2082 &rs6000_reg_names[48][0], /* fr16 */ \
2083 &rs6000_reg_names[49][0], /* fr17 */ \
2084 &rs6000_reg_names[50][0], /* fr18 */ \
2085 &rs6000_reg_names[51][0], /* fr19 */ \
2086 &rs6000_reg_names[52][0], /* fr20 */ \
2087 &rs6000_reg_names[53][0], /* fr21 */ \
2088 &rs6000_reg_names[54][0], /* fr22 */ \
2089 &rs6000_reg_names[55][0], /* fr23 */ \
2090 &rs6000_reg_names[56][0], /* fr24 */ \
2091 &rs6000_reg_names[57][0], /* fr25 */ \
2092 &rs6000_reg_names[58][0], /* fr26 */ \
2093 &rs6000_reg_names[59][0], /* fr27 */ \
2094 &rs6000_reg_names[60][0], /* fr28 */ \
2095 &rs6000_reg_names[61][0], /* fr29 */ \
2096 &rs6000_reg_names[62][0], /* fr30 */ \
2097 &rs6000_reg_names[63][0], /* fr31 */ \
2098 \
462f7901 2099 &rs6000_reg_names[64][0], /* was mq */ \
c81bebd7
MM
2100 &rs6000_reg_names[65][0], /* lr */ \
2101 &rs6000_reg_names[66][0], /* ctr */ \
2102 &rs6000_reg_names[67][0], /* ap */ \
2103 \
2104 &rs6000_reg_names[68][0], /* cr0 */ \
2105 &rs6000_reg_names[69][0], /* cr1 */ \
2106 &rs6000_reg_names[70][0], /* cr2 */ \
2107 &rs6000_reg_names[71][0], /* cr3 */ \
2108 &rs6000_reg_names[72][0], /* cr4 */ \
2109 &rs6000_reg_names[73][0], /* cr5 */ \
2110 &rs6000_reg_names[74][0], /* cr6 */ \
2111 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2112 \
f6b5d695 2113 &rs6000_reg_names[76][0], /* ca */ \
0ac081f6
AH
2114 \
2115 &rs6000_reg_names[77][0], /* v0 */ \
2116 &rs6000_reg_names[78][0], /* v1 */ \
2117 &rs6000_reg_names[79][0], /* v2 */ \
2118 &rs6000_reg_names[80][0], /* v3 */ \
2119 &rs6000_reg_names[81][0], /* v4 */ \
2120 &rs6000_reg_names[82][0], /* v5 */ \
2121 &rs6000_reg_names[83][0], /* v6 */ \
2122 &rs6000_reg_names[84][0], /* v7 */ \
2123 &rs6000_reg_names[85][0], /* v8 */ \
2124 &rs6000_reg_names[86][0], /* v9 */ \
2125 &rs6000_reg_names[87][0], /* v10 */ \
2126 &rs6000_reg_names[88][0], /* v11 */ \
2127 &rs6000_reg_names[89][0], /* v12 */ \
2128 &rs6000_reg_names[90][0], /* v13 */ \
2129 &rs6000_reg_names[91][0], /* v14 */ \
2130 &rs6000_reg_names[92][0], /* v15 */ \
2131 &rs6000_reg_names[93][0], /* v16 */ \
2132 &rs6000_reg_names[94][0], /* v17 */ \
2133 &rs6000_reg_names[95][0], /* v18 */ \
2134 &rs6000_reg_names[96][0], /* v19 */ \
2135 &rs6000_reg_names[97][0], /* v20 */ \
2136 &rs6000_reg_names[98][0], /* v21 */ \
2137 &rs6000_reg_names[99][0], /* v22 */ \
2138 &rs6000_reg_names[100][0], /* v23 */ \
2139 &rs6000_reg_names[101][0], /* v24 */ \
2140 &rs6000_reg_names[102][0], /* v25 */ \
2141 &rs6000_reg_names[103][0], /* v26 */ \
2142 &rs6000_reg_names[104][0], /* v27 */ \
2143 &rs6000_reg_names[105][0], /* v28 */ \
2144 &rs6000_reg_names[106][0], /* v29 */ \
2145 &rs6000_reg_names[107][0], /* v30 */ \
2146 &rs6000_reg_names[108][0], /* v31 */ \
2147 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2148 &rs6000_reg_names[110][0], /* vscr */ \
346081bd
SB
2149 &rs6000_reg_names[111][0], /* sfp */ \
2150 &rs6000_reg_names[112][0], /* tfhar */ \
2151 &rs6000_reg_names[113][0], /* tfiar */ \
2152 &rs6000_reg_names[114][0], /* texasr */ \
c81bebd7
MM
2153}
2154
f045b2c9
RS
2155/* Table of additional register names to use in user input. */
2156
2157#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2158 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2159 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2160 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2161 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2162 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2163 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2164 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2165 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2166 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2167 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2168 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2169 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2170 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2171 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2172 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2173 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2174 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2175 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2176 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2177 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2178 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2179 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2180 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2181 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2182 {"vrsave", 109}, {"vscr", 110}, \
462f7901 2183 /* no additional names for: lr, ctr, ap */ \
c4d38ccb
MM
2184 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2185 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
cacf1ca8 2186 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
f6b5d695
SB
2187 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2188 {"xer", 76}, \
cacf1ca8
MM
2189 /* VSX registers overlaid on top of FR, Altivec registers */ \
2190 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2191 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2192 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2193 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2194 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2195 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2196 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2197 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2198 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2199 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2200 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2201 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2202 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2203 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2204 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
0258b6e4
PB
2205 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2206 /* Transactional Memory Facility (HTM) Registers. */ \
346081bd 2207 {"tfhar", 112}, {"tfiar", 113}, {"texasr", 114}, \
23742a9e 2208}
f045b2c9 2209
f045b2c9
RS
2210/* This is how to output an element of a case-vector that is relative. */
2211
e1565e65 2212#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2213 do { char buf[100]; \
e1565e65 2214 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2215 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2216 assemble_name (FILE, buf); \
19d2d16f 2217 putc ('-', FILE); \
3daf36a4
ILT
2218 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2219 assemble_name (FILE, buf); \
19d2d16f 2220 putc ('\n', FILE); \
3daf36a4 2221 } while (0)
f045b2c9
RS
2222
2223/* This is how to output an assembler line
2224 that says to advance the location counter
2225 to a multiple of 2**LOG bytes. */
2226
2227#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2228 if ((LOG) != 0) \
2229 fprintf (FILE, "\t.align %d\n", (LOG))
2230
58082ff6
PH
2231/* How to align the given loop. */
2232#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2233
d28073d4
BS
2234/* Alignment guaranteed by __builtin_malloc. */
2235/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2236 However, specifying the stronger guarantee currently leads to
2237 a regression in SPEC CPU2006 437.leslie3d. The stronger
2238 guarantee should be implemented here once that's fixed. */
2239#define MALLOC_ABI_ALIGNMENT (64)
2240
9ebbca7d
GK
2241/* Pick up the return address upon entry to a procedure. Used for
2242 dwarf2 unwind information. This also enables the table driven
2243 mechanism. */
2244
1de43f85
DE
2245#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2246#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
9ebbca7d 2247
83720594
RH
2248/* Describe how we implement __builtin_eh_return. */
2249#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2250#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2251
f045b2c9
RS
2252/* Print operand X (an rtx) in assembler syntax to file FILE.
2253 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2254 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2255
2256#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2257
2258/* Define which CODE values are valid. */
2259
3cf437d4 2260#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
f045b2c9
RS
2261
2262/* Print a memory address as an operand to reference that memory location. */
2263
2264#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2265
c82846bc
DE
2266/* For switching between functions with different target attributes. */
2267#define SWITCHABLE_TARGET 1
2268
b6c9286a
MM
2269/* uncomment for disabling the corresponding default options */
2270/* #define MACHINE_no_sched_interblock */
2271/* #define MACHINE_no_sched_speculative */
2272/* #define MACHINE_no_sched_speculative_load */
2273
766a866c 2274/* General flags. */
a7df97e6 2275extern int frame_pointer_needed;
0ac081f6 2276
7fa14a01
MM
2277/* Classification of the builtin functions as to which switches enable the
2278 builtin, and what attributes it should have. We used to use the target
2279 flags macros, but we've run out of bits, so we now map the options into new
2280 settings used here. */
2281
2282/* Builtin attributes. */
2283#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2284#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2285#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2286#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2287#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2288#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
7fa14a01
MM
2289#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2290#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2291
2292#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
902cb7b1
KN
2293#define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2294 modifies global state. */
4f45da44
KN
2295#define RS6000_BTC_PURE 0x00000200 /* reads global
2296 state/mem and does
2297 not modify global state. */
7fa14a01
MM
2298#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2299#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2300
2301/* Miscellaneous information. */
0258b6e4
PB
2302#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2303#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
01f61a78
PB
2304#define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2305#define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
0258b6e4 2306#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
1c9df37c
MM
2307
2308/* Convenience macros to document the instruction type. */
7fa14a01
MM
2309#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2310#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2311
2312/* Builtin targets. For now, we reuse the masks for those options that are in
55928937
SB
2313 target flags, and pick a random bit for ldbl128, which isn't in
2314 target_flags. */
4b705221 2315#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
7fa14a01 2316#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
4fd18c78 2317#define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
7fa14a01 2318#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
f62511da 2319#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
8fa97501 2320#define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
5a3a6a5e 2321#define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
f62511da 2322#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
0258b6e4 2323#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
7fa14a01
MM
2324#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2325#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2326#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2327#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2328#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
7fa14a01 2329#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
06b39289 2330#define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
f93bc5b3 2331#define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
8241efd1 2332#define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
4f45da44 2333#define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
eb581af4 2334#define RS6000_BTM_POWERPC64 MASK_POWERPC64 /* 64-bit registers. */
bbd35101 2335#define RS6000_BTM_FLOAT128 MASK_FLOAT128_KEYWORD /* IEEE 128-bit float. */
12fca96e 2336#define RS6000_BTM_FLOAT128_HW MASK_FLOAT128_HW /* IEEE 128-bit float h/w. */
7fa14a01
MM
2337
2338#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2339 | RS6000_BTM_VSX \
f62511da 2340 | RS6000_BTM_P8_VECTOR \
8fa97501 2341 | RS6000_BTM_P9_VECTOR \
5a3a6a5e 2342 | RS6000_BTM_P9_MISC \
402e60c5 2343 | RS6000_BTM_MODULO \
f62511da 2344 | RS6000_BTM_CRYPTO \
7fa14a01
MM
2345 | RS6000_BTM_FRE \
2346 | RS6000_BTM_FRES \
2347 | RS6000_BTM_FRSQRTE \
2348 | RS6000_BTM_FRSQRTES \
0258b6e4 2349 | RS6000_BTM_HTM \
7fa14a01 2350 | RS6000_BTM_POPCNTD \
06b39289 2351 | RS6000_BTM_CELL \
f93bc5b3 2352 | RS6000_BTM_DFP \
8241efd1 2353 | RS6000_BTM_HARD_FLOAT \
53605f35 2354 | RS6000_BTM_LDBL128 \
eb581af4 2355 | RS6000_BTM_POWERPC64 \
12fca96e
MM
2356 | RS6000_BTM_FLOAT128 \
2357 | RS6000_BTM_FLOAT128_HW)
7fa14a01
MM
2358
2359/* Define builtin enum index. */
2360
4f45da44 2361#undef RS6000_BUILTIN_0
7fa14a01
MM
2362#undef RS6000_BUILTIN_1
2363#undef RS6000_BUILTIN_2
2364#undef RS6000_BUILTIN_3
2365#undef RS6000_BUILTIN_A
2366#undef RS6000_BUILTIN_D
0258b6e4 2367#undef RS6000_BUILTIN_H
7fa14a01 2368#undef RS6000_BUILTIN_P
7fa14a01
MM
2369#undef RS6000_BUILTIN_X
2370
4f45da44 2371#define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2372#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2373#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2374#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2375#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2376#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
0258b6e4 2377#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01 2378#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01 2379#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
1c9df37c 2380
0ac081f6
AH
2381enum rs6000_builtins
2382{
1c9df37c 2383#include "rs6000-builtin.def"
a72c65c7 2384
58646b77
PB
2385 RS6000_BUILTIN_COUNT
2386};
2387
4f45da44 2388#undef RS6000_BUILTIN_0
7fa14a01
MM
2389#undef RS6000_BUILTIN_1
2390#undef RS6000_BUILTIN_2
2391#undef RS6000_BUILTIN_3
2392#undef RS6000_BUILTIN_A
2393#undef RS6000_BUILTIN_D
0258b6e4 2394#undef RS6000_BUILTIN_H
7fa14a01 2395#undef RS6000_BUILTIN_P
7fa14a01 2396#undef RS6000_BUILTIN_X
1c9df37c 2397
58646b77
PB
2398enum rs6000_builtin_type_index
2399{
2400 RS6000_BTI_NOT_OPAQUE,
58646b77 2401 RS6000_BTI_opaque_V4SI,
d4f18ec6 2402 RS6000_BTI_V16QI, /* __vector signed char */
a16a872d 2403 RS6000_BTI_V1TI,
a72c65c7
MM
2404 RS6000_BTI_V2DI,
2405 RS6000_BTI_V2DF,
58646b77
PB
2406 RS6000_BTI_V4HI,
2407 RS6000_BTI_V4SI,
2408 RS6000_BTI_V4SF,
2409 RS6000_BTI_V8HI,
d4f18ec6 2410 RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */
a16a872d 2411 RS6000_BTI_unsigned_V1TI,
58646b77
PB
2412 RS6000_BTI_unsigned_V8HI,
2413 RS6000_BTI_unsigned_V4SI,
a72c65c7 2414 RS6000_BTI_unsigned_V2DI,
58646b77
PB
2415 RS6000_BTI_bool_char, /* __bool char */
2416 RS6000_BTI_bool_short, /* __bool short */
2417 RS6000_BTI_bool_int, /* __bool int */
d4f18ec6
KN
2418 RS6000_BTI_bool_long_long, /* __bool long long */
2419 RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4
2420 channels of 1, 5, 5, and 5 bits
2421 respectively as packed with the
2422 vpkpx insn. __pixel is only
2423 meaningful as a vector type.
2424 There is no corresponding scalar
2425 __pixel data type.) */
58646b77
PB
2426 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2427 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2428 RS6000_BTI_bool_V4SI, /* __vector __bool int */
a72c65c7 2429 RS6000_BTI_bool_V2DI, /* __vector __bool long */
58646b77
PB
2430 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2431 RS6000_BTI_long, /* long_integer_type_node */
2432 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
c9485473
MM
2433 RS6000_BTI_long_long, /* long_long_integer_type_node */
2434 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
d4f18ec6 2435 RS6000_BTI_INTQI, /* (signed) intQI_type_node */
58646b77
PB
2436 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2437 RS6000_BTI_INTHI, /* intHI_type_node */
2438 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
d4f18ec6 2439 RS6000_BTI_INTSI, /* intSI_type_node (signed) */
58646b77 2440 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
a72c65c7
MM
2441 RS6000_BTI_INTDI, /* intDI_type_node */
2442 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
a16a872d
MM
2443 RS6000_BTI_INTTI, /* intTI_type_node */
2444 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
58646b77 2445 RS6000_BTI_float, /* float_type_node */
a72c65c7 2446 RS6000_BTI_double, /* double_type_node */
06b39289
MM
2447 RS6000_BTI_long_double, /* long_double_type_node */
2448 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2449 RS6000_BTI_dfloat128, /* dfloat128_type_node */
58646b77 2450 RS6000_BTI_void, /* void_type_node */
6712d6fd
MM
2451 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2452 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
53605f35 2453 RS6000_BTI_const_str, /* pointer to const char * */
58646b77 2454 RS6000_BTI_MAX
0ac081f6 2455};
58646b77
PB
2456
2457
58646b77
PB
2458#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2459#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
a16a872d 2460#define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
a72c65c7
MM
2461#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2462#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
58646b77
PB
2463#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2464#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2465#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2466#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2467#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
a16a872d 2468#define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
58646b77
PB
2469#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2470#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
a72c65c7 2471#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
58646b77
PB
2472#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2473#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2474#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
d4f18ec6 2475#define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long])
58646b77
PB
2476#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2477#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2478#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2479#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
a72c65c7 2480#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
58646b77
PB
2481#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2482
c9485473
MM
2483#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2484#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
58646b77
PB
2485#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2486#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2487#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2488#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2489#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2490#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2491#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2492#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
a72c65c7
MM
2493#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2494#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
a16a872d
MM
2495#define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2496#define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
58646b77 2497#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
a72c65c7 2498#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
06b39289
MM
2499#define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2500#define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2501#define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
58646b77 2502#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
6712d6fd
MM
2503#define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2504#define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
53605f35 2505#define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
58646b77
PB
2506
2507extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2508extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2509
807e902e 2510#define TARGET_SUPPORTS_WIDE_INT 1
08213983
MM
2511
2512#if (GCC_VERSION >= 3000)
2513#pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2514#endif