]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
s390.md (literal_pool_64, [...]): New insns.
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
16c484c7 3 2000, 2001, 2002 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
f045b2c9
RS
22
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
8e3f41e7
MM
44/* Default string to use for cpu if not specified. */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
f984d8df
DB
49/* Common ASM definitions used by ASM_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51#define ASM_CPU_SPEC \
52"%{!mcpu*: \
53 %{mpower: %{!mpower2: -mpwr}} \
54 %{mpower2: -mpwrx} \
55 %{mpowerpc*: -mppc} \
56 %{mno-power: %{!mpowerpc*: -mcom}} \
57 %{!mno-power: %{!mpower2: %(asm_default)}}} \
58%{mcpu=common: -mcom} \
59%{mcpu=power: -mpwr} \
60%{mcpu=power2: -mpwrx} \
309323c2 61%{mcpu=power3: -m604} \
957e9e48 62%{mcpu=power4: -mpower4} \
f984d8df
DB
63%{mcpu=powerpc: -mppc} \
64%{mcpu=rios: -mpwr} \
65%{mcpu=rios1: -mpwr} \
66%{mcpu=rios2: -mpwrx} \
67%{mcpu=rsc: -mpwr} \
68%{mcpu=rsc1: -mpwr} \
69%{mcpu=401: -mppc} \
61a8515c
JS
70%{mcpu=403: -m403} \
71%{mcpu=405: -m405} \
f984d8df
DB
72%{mcpu=505: -mppc} \
73%{mcpu=601: -m601} \
74%{mcpu=602: -mppc} \
75%{mcpu=603: -mppc} \
76%{mcpu=603e: -mppc} \
77%{mcpu=ec603e: -mppc} \
78%{mcpu=604: -mppc} \
79%{mcpu=604e: -mppc} \
80%{mcpu=620: -mppc} \
309323c2 81%{mcpu=630: -m604} \
f984d8df 82%{mcpu=740: -mppc} \
fd3b43f2 83%{mcpu=7400: -mppc} \
f18c054f 84%{mcpu=7450: -mppc} \
f984d8df
DB
85%{mcpu=750: -mppc} \
86%{mcpu=801: -mppc} \
87%{mcpu=821: -mppc} \
88%{mcpu=823: -mppc} \
775db490 89%{mcpu=860: -mppc} \
a3170dc6 90%{mcpu=8540: -me500} \
775db490 91%{maltivec: -maltivec}"
f984d8df
DB
92
93#define CPP_DEFAULT_SPEC ""
94
95#define ASM_DEFAULT_SPEC ""
96
841faeed
MM
97/* This macro defines names of additional specifications to put in the specs
98 that can be used in various specifications like CC1_SPEC. Its definition
99 is an initializer with a subgrouping for each command option.
100
101 Each subgrouping contains a string constant, that defines the
102 specification name, and a string constant that used by the GNU CC driver
103 program.
104
105 Do not define this macro if it does not need to do anything. */
106
7509c759 107#define SUBTARGET_EXTRA_SPECS
7509c759 108
c81bebd7 109#define EXTRA_SPECS \
c81bebd7 110 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
111 { "asm_cpu", ASM_CPU_SPEC }, \
112 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
113 SUBTARGET_EXTRA_SPECS
114
fb623df5 115/* Architecture type. */
f045b2c9 116
fb623df5
RK
117extern int target_flags;
118
119/* Use POWER architecture instructions and MQ register. */
38c1f2d7 120#define MASK_POWER 0x00000001
fb623df5 121
6febd581 122/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 123#define MASK_POWER2 0x00000002
6febd581 124
fb623df5 125/* Use PowerPC architecture instructions. */
38c1f2d7 126#define MASK_POWERPC 0x00000004
6febd581 127
583cf4db 128/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 129#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
130
131/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 132#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 133
fb623df5 134/* Use PowerPC-64 architecture instructions. */
38c1f2d7 135#define MASK_POWERPC64 0x00000020
f045b2c9 136
fb623df5 137/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 138#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
139
140/* Disable placing fp constants in the TOC; can be turned on when the
141 TOC overflows. */
38c1f2d7 142#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 143
0b9ccabc
RK
144/* Disable placing symbol+offset constants in the TOC; can be turned on when
145 the TOC overflows. */
38c1f2d7 146#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 147
fb623df5 148/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
149 there are more than 16K unique variables/constants in an executable. With
150 this option, linking fails only if there are more than 16K modules, or
151 if there are more than 16K unique variables/constant in a single module.
152
153 This is at the cost of having 2 extra loads and one extra store per
956d6950 154 function, and one less allocable register. */
38c1f2d7 155#define MASK_MINIMAL_TOC 0x00000200
642a35f1 156
b1765bde 157/* Nonzero for the 64bit model: longs and pointers are 64 bits. */
38c1f2d7 158#define MASK_64BIT 0x00000400
9e654916 159
f85f4585 160/* Disable use of FPRs. */
38c1f2d7 161#define MASK_SOFT_FLOAT 0x00000800
f85f4585 162
88cad84b 163/* Enable load/store multiple, even on PowerPC */
38c1f2d7
MM
164#define MASK_MULTIPLE 0x00001000
165#define MASK_MULTIPLE_SET 0x00002000
4d30c363 166
7e69e155 167/* Use string instructions for block moves */
38c1f2d7
MM
168#define MASK_STRING 0x00004000
169#define MASK_STRING_SET 0x00008000
7e69e155 170
38c1f2d7
MM
171/* Disable update form of load/store */
172#define MASK_NO_UPDATE 0x00010000
173
174/* Disable fused multiply/add operations */
175#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 176
9ebbca7d
GK
177/* Nonzero if we need to schedule the prolog and epilog. */
178#define MASK_SCHED_PROLOG 0x00040000
179
0ac081f6
AH
180/* Use AltiVec instructions. */
181#define MASK_ALTIVEC 0x00080000
182
6fa3f289
ZW
183/* Return small structures in memory (as the AIX ABI requires). */
184#define MASK_AIX_STRUCT_RET 0x00100000
185#define MASK_AIX_STRUCT_RET_SET 0x00200000
0ac081f6 186
6fa3f289
ZW
187/* The only remaining free bit is 0x00400000. sysv4.h uses
188 0x00800000 -> 0x40000000, and 0x80000000 is not available
189 because target_flags is signed. */
06f4e019 190
7e69e155
MM
191#define TARGET_POWER (target_flags & MASK_POWER)
192#define TARGET_POWER2 (target_flags & MASK_POWER2)
193#define TARGET_POWERPC (target_flags & MASK_POWERPC)
194#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
195#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
196#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
197#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
198#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
199#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
200#define TARGET_64BIT (target_flags & MASK_64BIT)
201#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
202#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
203#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
204#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 205#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
206#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
207#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 208#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 209#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 210#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 211
2f3e5814 212#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 213#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
214#define TARGET_UPDATE (! TARGET_NO_UPDATE)
215#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 216
996ed075
JJ
217#ifdef IN_LIBGCC2
218/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 219#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
220#define TARGET_POWERPC64 1
221#else
222#define TARGET_POWERPC64 0
223#endif
b6c9286a 224#else
9ebbca7d 225#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
226#endif
227
a3950905 228#define TARGET_XL_CALL 0
a3950905 229
fb623df5 230/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 231
fb623df5 232 Macro to define tables used to set the flags.
f045b2c9
RS
233 This is a list in braces of pairs in braces,
234 each pair being { "NAME", VALUE }
235 where VALUE is the bits to set or minus the bits to clear.
236 An empty string NAME is used to identify the default VALUE. */
237
938937d8 238#define TARGET_SWITCHES \
9ebbca7d 239 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 240 N_("Use POWER instruction set")}, \
938937d8 241 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 242 | MASK_POWER2), \
047142d3 243 N_("Use POWER2 instruction set")}, \
9ebbca7d 244 {"no-power2", - MASK_POWER2, \
047142d3 245 N_("Do not use POWER2 instruction set")}, \
938937d8 246 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 247 | MASK_STRING), \
047142d3 248 N_("Do not use POWER instruction set")}, \
9ebbca7d 249 {"powerpc", MASK_POWERPC, \
047142d3 250 N_("Use PowerPC instruction set")}, \
938937d8 251 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 252 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 253 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 254 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 255 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 256 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 257 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 258 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 259 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 260 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 261 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 262 {"powerpc64", MASK_POWERPC64, \
047142d3 263 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 264 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 265 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 266 {"altivec", MASK_ALTIVEC , \
c725bd79 267 N_("Use AltiVec instructions")}, \
f18c054f 268 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 269 N_("Don't use AltiVec instructions")}, \
9ebbca7d 270 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 271 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 272 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 273 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 274 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 275 | MASK_MINIMAL_TOC), \
047142d3 276 N_("Put everything in the regular TOC")}, \
9ebbca7d 277 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 278 N_("Place floating point constants in TOC")}, \
9ebbca7d 279 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 280 N_("Don't place floating point constants in TOC")},\
9ebbca7d 281 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 282 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 283 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 284 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
285 {"minimal-toc", MASK_MINIMAL_TOC, \
286 "Use only one TOC entry per procedure"}, \
287 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 288 ""}, \
9ebbca7d 289 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 290 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 291 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 292 N_("Use hardware fp")}, \
9ebbca7d 293 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 294 N_("Do not use hardware fp")}, \
9ebbca7d 295 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
047142d3 296 N_("Generate load/store multiple instructions")}, \
9ebbca7d 297 {"no-multiple", - MASK_MULTIPLE, \
047142d3 298 N_("Do not generate load/store multiple instructions")},\
9ebbca7d 299 {"no-multiple", MASK_MULTIPLE_SET, \
047142d3 300 ""}, \
9ebbca7d 301 {"string", MASK_STRING | MASK_STRING_SET, \
047142d3 302 N_("Generate string instructions for block moves")},\
9ebbca7d 303 {"no-string", - MASK_STRING, \
047142d3 304 N_("Do not generate string instructions for block moves")},\
9ebbca7d 305 {"no-string", MASK_STRING_SET, \
047142d3 306 ""}, \
9ebbca7d 307 {"update", - MASK_NO_UPDATE, \
047142d3 308 N_("Generate load/store with update instructions")},\
9ebbca7d 309 {"no-update", MASK_NO_UPDATE, \
047142d3 310 N_("Do not generate load/store with update instructions")},\
9ebbca7d 311 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 312 N_("Generate fused multiply/add instructions")},\
9ebbca7d 313 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 314 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
315 {"sched-prolog", MASK_SCHED_PROLOG, \
316 ""}, \
317 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 318 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
319 {"sched-epilog", MASK_SCHED_PROLOG, \
320 ""}, \
321 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
322 ""}, \
6fa3f289
ZW
323 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
324 N_("Return all structures in memory (AIX default)")},\
325 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
326 N_("Return small structures in registers (SVR4 default)")},\
327 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
328 ""},\
329 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
330 ""},\
331 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
332 ""},\
333 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
334 ""},\
938937d8 335 SUBTARGET_SWITCHES \
9ebbca7d
GK
336 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
337 ""}}
fb623df5 338
938937d8 339#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
340
341/* This is meant to be redefined in the host dependent files */
342#define SUBTARGET_SWITCHES
fb623df5 343
cac8ce95 344/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 345enum processor_type
bef84347
VM
346 {
347 PROCESSOR_RIOS1,
348 PROCESSOR_RIOS2,
3cb999d8 349 PROCESSOR_RS64A,
bef84347
VM
350 PROCESSOR_MPCCORE,
351 PROCESSOR_PPC403,
fe7f5677 352 PROCESSOR_PPC405,
bef84347
VM
353 PROCESSOR_PPC601,
354 PROCESSOR_PPC603,
355 PROCESSOR_PPC604,
356 PROCESSOR_PPC604e,
357 PROCESSOR_PPC620,
3cb999d8 358 PROCESSOR_PPC630,
ed947a96
DJ
359 PROCESSOR_PPC750,
360 PROCESSOR_PPC7400,
309323c2 361 PROCESSOR_PPC7450,
a3170dc6 362 PROCESSOR_PPC8540,
309323c2 363 PROCESSOR_POWER4
bef84347 364};
fb623df5
RK
365
366extern enum processor_type rs6000_cpu;
367
368/* Recast the processor type to the cpu attribute. */
369#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
370
8482e358 371/* Define generic processor types based upon current deployment. */
3cb999d8
DE
372#define PROCESSOR_COMMON PROCESSOR_PPC601
373#define PROCESSOR_POWER PROCESSOR_RIOS1
374#define PROCESSOR_POWERPC PROCESSOR_PPC604
375#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 376
fb623df5 377/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
378#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
379#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 380
6febd581
RK
381/* Specify the dialect of assembler to use. New mnemonics is dialect one
382 and the old mnemonics are dialect zero. */
9ebbca7d 383#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 384
956d6950 385/* This is meant to be overridden in target specific files. */
b6c9286a 386#define SUBTARGET_OPTIONS
b6c9286a 387
9ebbca7d
GK
388#define TARGET_OPTIONS \
389{ \
047142d3
PT
390 {"cpu=", &rs6000_select[1].string, \
391 N_("Use features of and schedule code for given CPU") }, \
392 {"tune=", &rs6000_select[2].string, \
393 N_("Schedule code for given CPU") }, \
394 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
57ac7be9
AM
395 {"traceback=", &rs6000_traceback_name, \
396 N_("Select full, part, or no traceback table") }, \
0ac081f6 397 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
6fa3f289
ZW
398 {"long-double-", &rs6000_long_double_size_string, \
399 N_("Specify size of long double (64 or 128 bits)") }, \
a3170dc6
AH
400 {"isel=", &rs6000_isel_string, \
401 N_("Specify yes/no if isel instructions should be generated") }, \
08b57fb3
AH
402 {"vrsave=", &rs6000_altivec_vrsave_string, \
403 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
a5c76ee6
ZW
404 {"longcall", &rs6000_longcall_switch, \
405 N_("Avoid all range limits on call instructions") }, \
406 {"no-longcall", &rs6000_longcall_switch, "" }, \
9ebbca7d 407 SUBTARGET_OPTIONS \
b6c9286a 408}
fb623df5 409
ff222560 410/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
411struct rs6000_cpu_select
412{
815cdc52
MM
413 const char *string;
414 const char *name;
8e3f41e7
MM
415 int set_tune_p;
416 int set_arch_p;
417};
418
419extern struct rs6000_cpu_select rs6000_select[];
fb623df5 420
38c1f2d7 421/* Debug support */
0ac081f6 422extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 423extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
424extern int rs6000_debug_stack; /* debug stack applications */
425extern int rs6000_debug_arg; /* debug argument handling */
426
427#define TARGET_DEBUG_STACK rs6000_debug_stack
428#define TARGET_DEBUG_ARG rs6000_debug_arg
429
57ac7be9
AM
430extern const char *rs6000_traceback_name; /* Type of traceback table. */
431
6fa3f289
ZW
432/* These are separate from target_flags because we've run out of bits
433 there. */
434extern const char *rs6000_long_double_size_string;
435extern int rs6000_long_double_type_size;
436extern int rs6000_altivec_abi;
a3170dc6
AH
437extern int rs6000_spe_abi;
438extern int rs6000_isel;
439extern int rs6000_fprs;
440extern const char *rs6000_isel_string;
08b57fb3
AH
441extern const char *rs6000_altivec_vrsave_string;
442extern int rs6000_altivec_vrsave;
a5c76ee6
ZW
443extern const char *rs6000_longcall_switch;
444extern int rs6000_default_long_calls;
6fa3f289
ZW
445
446#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
447#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
08b57fb3 448#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
6fa3f289 449
a3170dc6
AH
450#define TARGET_SPE_ABI 0
451#define TARGET_SPE 0
452#define TARGET_ISEL 0
453#define TARGET_FPRS 1
454
fb623df5
RK
455/* Sometimes certain combinations of command options do not make sense
456 on a particular target machine. You can define a macro
457 `OVERRIDE_OPTIONS' to take account of this. This macro, if
458 defined, is executed once just after all the command options have
459 been parsed.
460
5accd822
DE
461 Don't use this macro to turn on various extra optimizations for
462 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
463
fb623df5
RK
464 On the RS/6000 this is used to define the target cpu type. */
465
8e3f41e7 466#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 467
5accd822
DE
468/* Define this to change the optimizations performed by default. */
469#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
470
4c4eb375
GK
471/* Show we can debug even without a frame pointer. */
472#define CAN_DEBUG_WITHOUT_FP
473
a5c76ee6
ZW
474/* Target pragma. */
475#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
476 cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
477} while (0)
478
4c4eb375
GK
479/* Target #defines. */
480#define TARGET_CPU_CPP_BUILTINS() \
481 rs6000_cpu_cpp_builtins (pfile)
f045b2c9 482\f
4c4eb375 483/* Target machine storage layout. */
f045b2c9 484
13d39dbc 485/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 486 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
487 the value is constrained to be within the bounds of the declared
488 type, but kept valid in the wider mode. The signedness of the
489 extension may differ from that of the type. */
490
39403d82
DE
491#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
492 if (GET_MODE_CLASS (MODE) == MODE_INT \
493 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 494 (MODE) = word_mode;
39403d82
DE
495
496/* Define this if function arguments should also be promoted using the above
497 procedure. */
498
499#define PROMOTE_FUNCTION_ARGS
500
501/* Likewise, if the function return value is promoted. */
502
503#define PROMOTE_FUNCTION_RETURN
ef457bda 504
f045b2c9 505/* Define this if most significant bit is lowest numbered
82e41834
KH
506 in instructions that operate on numbered bit-fields. */
507/* That is true on RS/6000. */
f045b2c9
RS
508#define BITS_BIG_ENDIAN 1
509
510/* Define this if most significant byte of a word is the lowest numbered. */
511/* That is true on RS/6000. */
512#define BYTES_BIG_ENDIAN 1
513
514/* Define this if most significant word of a multiword number is lowest
c81bebd7 515 numbered.
f045b2c9
RS
516
517 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 518 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
519#define WORDS_BIG_ENDIAN 1
520
2e360ab3 521#define MAX_BITS_PER_WORD 64
f045b2c9
RS
522
523/* Width of a word, in units (bytes). */
2f3e5814 524#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
525#ifdef IN_LIBGCC2
526#define MIN_UNITS_PER_WORD UNITS_PER_WORD
527#else
ef0e53ce 528#define MIN_UNITS_PER_WORD 4
f34fc46e 529#endif
2e360ab3 530#define UNITS_PER_FP_WORD 8
0ac081f6 531#define UNITS_PER_ALTIVEC_WORD 16
a3170dc6 532#define UNITS_PER_SPE_WORD 8
f045b2c9 533
915f619f
JW
534/* Type used for ptrdiff_t, as a string used in a declaration. */
535#define PTRDIFF_TYPE "int"
536
058ef853
DE
537/* Type used for size_t, as a string used in a declaration. */
538#define SIZE_TYPE "long unsigned int"
539
f045b2c9
RS
540/* Type used for wchar_t, as a string used in a declaration. */
541#define WCHAR_TYPE "short unsigned int"
542
543/* Width of wchar_t in bits. */
544#define WCHAR_TYPE_SIZE 16
545
9e654916
RK
546/* A C expression for the size in bits of the type `short' on the
547 target machine. If you don't define this, the default is half a
548 word. (If this would be less than one storage unit, it is
549 rounded up to one unit.) */
550#define SHORT_TYPE_SIZE 16
551
552/* A C expression for the size in bits of the type `int' on the
553 target machine. If you don't define this, the default is one
554 word. */
19d2d16f 555#define INT_TYPE_SIZE 32
9e654916
RK
556
557/* A C expression for the size in bits of the type `long' on the
558 target machine. If you don't define this, the default is one
559 word. */
2f3e5814 560#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
561#define MAX_LONG_TYPE_SIZE 64
562
563/* A C expression for the size in bits of the type `long long' on the
564 target machine. If you don't define this, the default is two
565 words. */
566#define LONG_LONG_TYPE_SIZE 64
567
9e654916
RK
568/* A C expression for the size in bits of the type `float' on the
569 target machine. If you don't define this, the default is one
570 word. */
571#define FLOAT_TYPE_SIZE 32
572
573/* A C expression for the size in bits of the type `double' on the
574 target machine. If you don't define this, the default is two
575 words. */
576#define DOUBLE_TYPE_SIZE 64
577
578/* A C expression for the size in bits of the type `long double' on
579 the target machine. If you don't define this, the default is two
580 words. */
6fa3f289 581#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
582
583/* Constant which presents upper bound of the above value. */
584#define MAX_LONG_DOUBLE_TYPE_SIZE 128
585
586/* Define this to set long double type size to use in libgcc2.c, which can
587 not depend on target_flags. */
588#ifdef __LONG_DOUBLE_128__
589#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
590#else
591#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
592#endif
9e654916 593
f045b2c9
RS
594/* Width in bits of a pointer.
595 See also the macro `Pmode' defined below. */
2f3e5814 596#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
597
598/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 599#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
600
601/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 602#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
603
604/* Allocation boundary (in *bits*) for the code of a function. */
605#define FUNCTION_BOUNDARY 32
606
607/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
608#define BIGGEST_ALIGNMENT 128
609
610/* A C expression to compute the alignment for a variables in the
611 local store. TYPE is the data type, and ALIGN is the alignment
612 that the object would ordinarily have. */
613#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a3170dc6
AH
614 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
615 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
b73fd26c 616
f045b2c9
RS
617/* Alignment of field after `int : 0' in a structure. */
618#define EMPTY_FIELD_BOUNDARY 32
619
620/* Every structure's size must be a multiple of this. */
621#define STRUCTURE_SIZE_BOUNDARY 8
622
a3170dc6
AH
623/* Return 1 if a structure or array containing FIELD should be
624 accessed using `BLKMODE'.
625
626 For the SPE, simd types are V2SI, and gcc can be tempted to put the
627 entire thing in a DI and use subregs to access the internals.
628 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
629 back-end. Because a single GPR can hold a V2SI, but not a DI, the
630 best thing to do is set structs to BLKmode and avoid Severe Tire
631 Damage. */
632#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
633 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
634
43a88a8c 635/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
636#define PCC_BITFIELD_TYPE_MATTERS 1
637
69ef87e2
AH
638/* Make strings word-aligned so strcpy from constants will be faster.
639 Make vector constants quadword aligned. */
640#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
641 (TREE_CODE (EXP) == STRING_CST \
642 && (ALIGN) < BITS_PER_WORD \
643 ? BITS_PER_WORD \
644 : (ALIGN))
f045b2c9 645
0ac081f6
AH
646/* Make arrays of chars word-aligned for the same reasons.
647 Align vectors to 128 bits. */
f045b2c9 648#define DATA_ALIGNMENT(TYPE, ALIGN) \
a3170dc6 649 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
0ac081f6 650 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
651 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
652 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
653
a0ab749a 654/* Nonzero if move instructions will actually fail to work
f045b2c9 655 when given unaligned data. */
fdaff8ba 656#define STRICT_ALIGNMENT 0
e1565e65
DE
657
658/* Define this macro to be the value 1 if unaligned accesses have a cost
659 many times greater than aligned accesses, for example if they are
660 emulated in a trap handler. */
41543739
GK
661#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
662 (STRICT_ALIGNMENT \
fcce224d
DE
663 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
664 || (MODE) == DImode) \
41543739 665 && (ALIGN) < 32))
f045b2c9
RS
666\f
667/* Standard register usage. */
668
669/* Number of actual hardware registers.
670 The hardware registers are assigned numbers for the compiler
671 from 0 to just below FIRST_PSEUDO_REGISTER.
672 All registers that the compiler knows about must be given numbers,
673 even those that are not normally considered general registers.
674
675 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
676 an MQ register, a count register, a link register, and 8 condition
677 register fields, which we view here as separate registers.
678
679 In addition, the difference between the frame and argument pointers is
680 a function of the number of registers saved, so we need to have a
681 register for AP that will later be eliminated in favor of SP or FP.
802a0058 682 This is a normal register, but it is fixed.
f045b2c9 683
802a0058
MM
684 We also create a pseudo register for float/int conversions, that will
685 really represent the memory location used. It is represented here as
686 a register, in order to work around problems in allocating stack storage
687 in inline functions. */
688
a3170dc6 689#define FIRST_PSEUDO_REGISTER 113
f045b2c9 690
d6a7951f 691/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 692#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 693
f045b2c9
RS
694/* 1 for registers that have pervasive standard uses
695 and are not available for the register allocator.
696
5dead3e5
DJ
697 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
698 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 699
a127c4e5
RK
700 cr5 is not supposed to be used.
701
702 On System V implementations, r13 is fixed and not available for use. */
703
f045b2c9 704#define FIXED_REGISTERS \
5dead3e5 705 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
707 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
708 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
709 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
710 /* AltiVec registers. */ \
711 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
712 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 713 1, 1 \
a3170dc6 714 , 1, 1 \
0ac081f6 715}
f045b2c9
RS
716
717/* 1 for registers not available across function calls.
718 These must include the FIXED_REGISTERS and also any
719 registers that can be used without being saved.
720 The latter must include the registers where values are returned
721 and the register where structure-value addresses are passed.
722 Aside from that, you can include as many other registers as you like. */
723
724#define CALL_USED_REGISTERS \
a127c4e5 725 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
726 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
727 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
728 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
729 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
730 /* AltiVec registers. */ \
731 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
732 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 733 1, 1 \
a3170dc6 734 , 1, 1 \
0ac081f6
AH
735}
736
289e96b2
AH
737/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
738 the entire set of `FIXED_REGISTERS' be included.
739 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
740 This macro is optional. If not specified, it defaults to the value
741 of `CALL_USED_REGISTERS'. */
742
743#define CALL_REALLY_USED_REGISTERS \
744 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
746 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
747 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
748 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
749 /* AltiVec registers. */ \
750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
751 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 752 0, 0 \
a3170dc6 753 , 0, 0 \
289e96b2 754}
f045b2c9 755
9ebbca7d
GK
756#define MQ_REGNO 64
757#define CR0_REGNO 68
758#define CR1_REGNO 69
759#define CR2_REGNO 70
760#define CR3_REGNO 71
761#define CR4_REGNO 72
762#define MAX_CR_REGNO 75
763#define XER_REGNO 76
0ac081f6
AH
764#define FIRST_ALTIVEC_REGNO 77
765#define LAST_ALTIVEC_REGNO 108
28bcfd4d 766#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 767#define VRSAVE_REGNO 109
5f004351 768#define VSCR_REGNO 110
a3170dc6
AH
769#define SPE_ACC_REGNO 111
770#define SPEFSCR_REGNO 112
9ebbca7d 771
f045b2c9
RS
772/* List the order in which to allocate registers. Each register must be
773 listed once, even those in FIXED_REGISTERS.
774
775 We allocate in the following order:
776 fp0 (not saved or used for anything)
777 fp13 - fp2 (not saved; incoming fp arg registers)
778 fp1 (not saved; return value)
779 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
780 cr7, cr6 (not saved or special)
781 cr1 (not saved, but used for FP operations)
f045b2c9 782 cr0 (not saved, but used for arithmetic operations)
5accd822 783 cr4, cr3, cr2 (saved)
f045b2c9
RS
784 r0 (not saved; cannot be base reg)
785 r9 (not saved; best for TImode)
786 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
787 r3 (not saved; return value register)
788 r31 - r13 (saved; order given to save least number)
789 r12 (not saved; if used for DImode or DFmode would use r13)
790 mq (not saved; best to use it if we can)
791 ctr (not saved; when we have the choice ctr is better)
792 lr (saved)
5f004351 793 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
a3170dc6 794 spe_acc, spefscr (fixed)
0ac081f6
AH
795
796 AltiVec registers:
797 v0 - v1 (not saved or used for anything)
798 v13 - v3 (not saved; incoming vector arg registers)
799 v2 (not saved; incoming vector arg reg; return value)
800 v19 - v14 (not saved or used for anything)
801 v31 - v20 (saved; order given to save least number)
802*/
803
f045b2c9
RS
804
805#define REG_ALLOC_ORDER \
806 {32, \
807 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
808 33, \
809 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
810 50, 49, 48, 47, 46, \
5accd822 811 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
812 0, \
813 9, 11, 10, 8, 7, 6, 5, 4, \
814 3, \
815 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
816 18, 17, 16, 15, 14, 13, 12, \
817 64, 66, 65, \
0ac081f6
AH
818 73, 1, 2, 67, 76, \
819 /* AltiVec registers. */ \
820 77, 78, \
821 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
822 79, \
823 96, 95, 94, 93, 92, 91, \
58568475 824 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
5f004351 825 97, 109, 110 \
a3170dc6 826 , 111, 112 \
0ac081f6 827}
f045b2c9
RS
828
829/* True if register is floating-point. */
830#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
831
832/* True if register is a condition register. */
833#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
834
815cdc52
MM
835/* True if register is a condition register, but not cr0. */
836#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
837
f045b2c9 838/* True if register is an integer register. */
9ebbca7d 839#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 840
a3170dc6
AH
841/* SPE SIMD registers are just the GPRs. */
842#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
843
0d86f538 844/* True if register is the XER register. */
9ebbca7d 845#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 846
0ac081f6
AH
847/* True if register is an AltiVec register. */
848#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
849
f045b2c9
RS
850/* Return number of consecutive hard regs needed starting at reg REGNO
851 to hold something of mode MODE.
852 This is ordinarily the length in words of a value of mode MODE
853 but can be less for certain modes in special long registers.
854
a3170dc6
AH
855 For the SPE, GPRs are 64 bits but only 32 bits are visible in
856 scalar instructions. The upper 32 bits are only available to the
857 SIMD instructions.
858
a260abc9
DE
859 POWER and PowerPC GPRs hold 32 bits worth;
860 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 861
802a0058 862#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 863 (FP_REGNO_P (REGNO) \
2e360ab3 864 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
a3170dc6
AH
865 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
866 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
0ac081f6
AH
867 : ALTIVEC_REGNO_P (REGNO) \
868 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
869 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
870
0ac081f6 871#define ALTIVEC_VECTOR_MODE(MODE) \
cb2a532e
AH
872 ((MODE) == V16QImode \
873 || (MODE) == V8HImode \
874 || (MODE) == V4SFmode \
6e1f54e2 875 || (MODE) == V4SImode)
0ac081f6 876
a3170dc6
AH
877#define SPE_VECTOR_MODE(MODE) \
878 ((MODE) == V4HImode \
879 || (MODE) == V2SFmode \
00a892b8 880 || (MODE) == V1DImode \
a3170dc6
AH
881 || (MODE) == V2SImode)
882
0ac081f6
AH
883/* Define this macro to be nonzero if the port is prepared to handle
884 insns involving vector mode MODE. At the very least, it must have
885 move patterns for this mode. */
886
a3170dc6
AH
887#define VECTOR_MODE_SUPPORTED_P(MODE) \
888 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
889 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
0ac081f6 890
f045b2c9 891/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
892 For POWER and PowerPC, the GPRs can hold any mode, but the float
893 registers only can hold floating modes and DImode, and CR register only
894 can hold CC modes. We cannot put TImode anywhere except general
82e41834 895 register and it must be able to fit within the register set. */
f045b2c9 896
802a0058
MM
897#define HARD_REGNO_MODE_OK(REGNO, MODE) \
898 (FP_REGNO_P (REGNO) ? \
899 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
900 || (GET_MODE_CLASS (MODE) == MODE_INT \
901 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 902 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
a3170dc6 903 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
802a0058 904 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 905 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
b991a865 906 : ! INT_REGNO_P (REGNO) ? GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
f045b2c9
RS
907 : 1)
908
909/* Value is 1 if it is a good idea to tie two pseudo registers
910 when one has mode MODE1 and one has mode MODE2.
911 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
912 for any hard reg, then this must be 0 for correct output. */
913#define MODES_TIEABLE_P(MODE1, MODE2) \
914 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
915 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
916 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
917 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
918 : GET_MODE_CLASS (MODE1) == MODE_CC \
919 ? GET_MODE_CLASS (MODE2) == MODE_CC \
920 : GET_MODE_CLASS (MODE2) == MODE_CC \
921 ? GET_MODE_CLASS (MODE1) == MODE_CC \
0ac081f6
AH
922 : ALTIVEC_VECTOR_MODE (MODE1) \
923 ? ALTIVEC_VECTOR_MODE (MODE2) \
924 : ALTIVEC_VECTOR_MODE (MODE2) \
925 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
926 : 1)
927
928/* A C expression returning the cost of moving data from a register of class
34bb030a 929 CLASS1 to one of CLASS2. */
f045b2c9 930
34bb030a 931#define REGISTER_MOVE_COST rs6000_register_move_cost
f045b2c9 932
34bb030a
DE
933/* A C expressions returning the cost of moving data of MODE from a register to
934 or from memory. */
f045b2c9 935
34bb030a 936#define MEMORY_MOVE_COST rs6000_memory_move_cost
f045b2c9
RS
937
938/* Specify the cost of a branch insn; roughly the number of extra insns that
939 should be added to avoid a branch.
940
ef457bda 941 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
942 unscheduled conditional branch. */
943
ef457bda 944#define BRANCH_COST 3
f045b2c9 945
a3170dc6
AH
946
947/* A fixed register used at prologue and epilogue generation to fix
948 addressing modes. The SPE needs heavy addressing fixes at the last
949 minute, and it's best to save a register for it.
950
951 AltiVec also needs fixes, but we've gotten around using r11, which
952 is actually wrong because when use_backchain_to_restore_sp is true,
953 we end up clobbering r11.
954
955 The AltiVec case needs to be fixed. Dunno if we should break ABI
956 compatability and reserve a register for it as well.. */
957
958#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
959
6febd581
RK
960/* Define this macro to change register usage conditional on target flags.
961 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 962 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 963 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
964 Conditionally disable FPRs. */
965
8d30c4ee
FS
966#define CONDITIONAL_REGISTER_USAGE \
967{ \
e9e4208a 968 int i; \
8d30c4ee
FS
969 if (! TARGET_POWER) \
970 fixed_regs[64] = 1; \
971 if (TARGET_64BIT) \
289e96b2
AH
972 fixed_regs[13] = call_used_regs[13] \
973 = call_really_used_regs[13] = 1; \
a3170dc6 974 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
8d30c4ee 975 for (i = 32; i < 64; i++) \
289e96b2
AH
976 fixed_regs[i] = call_used_regs[i] \
977 = call_really_used_regs[i] = 1; \
1db02437
FS
978 if (DEFAULT_ABI == ABI_V4 \
979 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
980 && flag_pic == 1) \
981 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
982 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
983 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
984 if (DEFAULT_ABI == ABI_DARWIN \
985 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
986 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
987 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
988 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
989 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
5f004351
AH
990 if (TARGET_ALTIVEC) \
991 global_regs[VSCR_REGNO] = 1; \
a3170dc6
AH
992 if (TARGET_SPE) \
993 { \
994 global_regs[SPEFSCR_REGNO] = 1; \
995 fixed_regs[FIXED_SCRATCH] \
996 = call_used_regs[FIXED_SCRATCH] \
997 = call_really_used_regs[FIXED_SCRATCH] = 1; \
998 } \
2473ee11 999 if (! TARGET_ALTIVEC) \
c1f11548
DE
1000 { \
1001 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1002 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1003 call_really_used_regs[VRSAVE_REGNO] = 1; \
1004 } \
0ac081f6 1005 if (TARGET_ALTIVEC_ABI) \
2473ee11 1006 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 1007 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 1008}
6febd581 1009
f045b2c9
RS
1010/* Specify the registers used for certain standard purposes.
1011 The values of these macros are register numbers. */
1012
1013/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1014/* #define PC_REGNUM */
1015
1016/* Register to use for pushing function arguments. */
1017#define STACK_POINTER_REGNUM 1
1018
1019/* Base register for access to local variables of the function. */
1020#define FRAME_POINTER_REGNUM 31
1021
1022/* Value should be nonzero if functions must have frame pointers.
1023 Zero means the frame pointer need not be set up (and parms
1024 may be accessed via the stack pointer) in functions that seem suitable.
1025 This is computed in `reload', in reload1.c. */
1026#define FRAME_POINTER_REQUIRED 0
1027
1028/* Base register for access to arguments of the function. */
1029#define ARG_POINTER_REGNUM 67
1030
1031/* Place to put static chain when calling a function that requires it. */
1032#define STATIC_CHAIN_REGNUM 11
1033
82e41834 1034/* Link register number. */
9ebbca7d 1035#define LINK_REGISTER_REGNUM 65
b6c9286a 1036
82e41834 1037/* Count register number. */
9ebbca7d 1038#define COUNT_REGISTER_REGNUM 66
802a0058 1039
f045b2c9
RS
1040/* Place that structure value return address is placed.
1041
1042 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1043#define STRUCT_VALUE 0
f045b2c9
RS
1044\f
1045/* Define the classes of registers for register constraints in the
1046 machine description. Also define ranges of constants.
1047
1048 One of the classes must always be named ALL_REGS and include all hard regs.
1049 If there is more than one class, another class must be named NO_REGS
1050 and contain no registers.
1051
1052 The name GENERAL_REGS must be the name of a class (or an alias for
1053 another name such as ALL_REGS). This is the class of registers
1054 that is allowed by "g" or "r" in a register constraint.
1055 Also, registers outside this class are allocated only when
1056 instructions express preferences for them.
1057
1058 The classes must be numbered in nondecreasing order; that is,
1059 a larger-numbered class must never be contained completely
1060 in a smaller-numbered class.
1061
1062 For any two classes, it is very desirable that there be another
1063 class that represents their union. */
c81bebd7 1064
f045b2c9
RS
1065/* The RS/6000 has three types of registers, fixed-point, floating-point,
1066 and condition registers, plus three special registers, MQ, CTR, and the
1067 link register.
1068
1069 However, r0 is special in that it cannot be used as a base register.
1070 So make a class for registers valid as base registers.
1071
1072 Also, cr0 is the only condition code register that can be used in
0d86f538 1073 arithmetic insns, so make a separate class for it. */
f045b2c9 1074
ebedb4dd
MM
1075enum reg_class
1076{
1077 NO_REGS,
ebedb4dd
MM
1078 BASE_REGS,
1079 GENERAL_REGS,
1080 FLOAT_REGS,
0ac081f6
AH
1081 ALTIVEC_REGS,
1082 VRSAVE_REGS,
5f004351 1083 VSCR_REGS,
a3170dc6
AH
1084 SPE_ACC_REGS,
1085 SPEFSCR_REGS,
ebedb4dd
MM
1086 NON_SPECIAL_REGS,
1087 MQ_REGS,
1088 LINK_REGS,
1089 CTR_REGS,
1090 LINK_OR_CTR_REGS,
1091 SPECIAL_REGS,
1092 SPEC_OR_GEN_REGS,
1093 CR0_REGS,
ebedb4dd
MM
1094 CR_REGS,
1095 NON_FLOAT_REGS,
9ebbca7d 1096 XER_REGS,
ebedb4dd
MM
1097 ALL_REGS,
1098 LIM_REG_CLASSES
1099};
f045b2c9
RS
1100
1101#define N_REG_CLASSES (int) LIM_REG_CLASSES
1102
82e41834 1103/* Give names of register classes as strings for dump file. */
f045b2c9 1104
ebedb4dd
MM
1105#define REG_CLASS_NAMES \
1106{ \
1107 "NO_REGS", \
ebedb4dd
MM
1108 "BASE_REGS", \
1109 "GENERAL_REGS", \
1110 "FLOAT_REGS", \
0ac081f6
AH
1111 "ALTIVEC_REGS", \
1112 "VRSAVE_REGS", \
5f004351 1113 "VSCR_REGS", \
a3170dc6
AH
1114 "SPE_ACC_REGS", \
1115 "SPEFSCR_REGS", \
ebedb4dd
MM
1116 "NON_SPECIAL_REGS", \
1117 "MQ_REGS", \
1118 "LINK_REGS", \
1119 "CTR_REGS", \
1120 "LINK_OR_CTR_REGS", \
1121 "SPECIAL_REGS", \
1122 "SPEC_OR_GEN_REGS", \
1123 "CR0_REGS", \
ebedb4dd
MM
1124 "CR_REGS", \
1125 "NON_FLOAT_REGS", \
9ebbca7d 1126 "XER_REGS", \
ebedb4dd
MM
1127 "ALL_REGS" \
1128}
f045b2c9
RS
1129
1130/* Define which registers fit in which classes.
1131 This is an initializer for a vector of HARD_REG_SET
1132 of length N_REG_CLASSES. */
1133
0ac081f6
AH
1134#define REG_CLASS_CONTENTS \
1135{ \
1136 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1137 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1138 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1139 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1140 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1141 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1142 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
a3170dc6
AH
1143 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1144 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
0ac081f6
AH
1145 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1146 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1147 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1148 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1149 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1150 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1151 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1152 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1153 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1154 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1155 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1156 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1157}
f045b2c9
RS
1158
1159/* The same information, inverted:
1160 Return the class number of the smallest class containing
1161 reg number REGNO. This could be a conditional expression
1162 or could index an array. */
1163
0d86f538
GK
1164#define REGNO_REG_CLASS(REGNO) \
1165 ((REGNO) == 0 ? GENERAL_REGS \
1166 : (REGNO) < 32 ? BASE_REGS \
1167 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1168 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1169 : (REGNO) == CR0_REGNO ? CR0_REGS \
1170 : CR_REGNO_P (REGNO) ? CR_REGS \
1171 : (REGNO) == MQ_REGNO ? MQ_REGS \
1172 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1173 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1174 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1175 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1176 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
5f004351 1177 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
a3170dc6
AH
1178 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1179 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
f045b2c9
RS
1180 : NO_REGS)
1181
1182/* The class value for index registers, and the one for base regs. */
1183#define INDEX_REG_CLASS GENERAL_REGS
1184#define BASE_REG_CLASS BASE_REGS
1185
1186/* Get reg_class from a letter such as appears in the machine description. */
1187
1188#define REG_CLASS_FROM_LETTER(C) \
1189 ((C) == 'f' ? FLOAT_REGS \
1190 : (C) == 'b' ? BASE_REGS \
1191 : (C) == 'h' ? SPECIAL_REGS \
1192 : (C) == 'q' ? MQ_REGS \
1193 : (C) == 'c' ? CTR_REGS \
1194 : (C) == 'l' ? LINK_REGS \
0ac081f6 1195 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1196 : (C) == 'x' ? CR0_REGS \
1197 : (C) == 'y' ? CR_REGS \
9ebbca7d 1198 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1199 : NO_REGS)
1200
1201/* The letters I, J, K, L, M, N, and P in a register constraint string
1202 can be used to stand for particular ranges of immediate operands.
1203 This macro defines what the ranges are.
1204 C is the letter, and VALUE is a constant value.
1205 Return 1 if VALUE is in the range specified by C.
1206
9615f239 1207 `I' is a signed 16-bit constant
a0ab749a
KH
1208 `J' is a constant with only the high-order 16 bits nonzero
1209 `K' is a constant with only the low-order 16 bits nonzero
9615f239 1210 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1211 `M' is a constant that is greater than 31
2bfcf297 1212 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1213 `O' is the constant zero
1214 `P' is a constant whose negation is a signed 16-bit constant */
1215
5b6f7b96
RK
1216#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1217 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1218 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1219 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1220 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1221 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1222 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1223 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1224 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1225 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1226 : 0)
1227
1228/* Similar, but for floating constants, and defining letters G and H.
1229 Here VALUE is the CONST_DOUBLE rtx itself.
1230
1231 We flag for special constants when we can copy the constant into
4e74d8ec 1232 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1233
c4c40373 1234 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1235
1236#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1237 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1238 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1239 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1240 : 0)
f045b2c9
RS
1241
1242/* Optional extra constraints for this machine.
1243
b6c9286a
MM
1244 'Q' means that is a memory operand that is just an offset from a reg.
1245 'R' is for AIX TOC entries.
a260abc9 1246 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1247 'T' is a constant that can be placed into a 32-bit mask operand
0ba1b2ff
AM
1248 'U' is for V.4 small data references.
1249 't' is for AND masks that can be performed by two rldic{l,r} insns. */
f045b2c9 1250
e8a8bc24
RK
1251#define EXTRA_CONSTRAINT(OP, C) \
1252 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1253 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b1765bde
DE
1254 : (C) == 'S' ? mask64_operand (OP, DImode) \
1255 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1256 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1257 && small_data_operand (OP, GET_MODE (OP))) \
0ba1b2ff
AM
1258 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1259 && (fixed_regs[CR0_REGNO] \
1260 || !logical_operand (OP, DImode)) \
1261 && !mask64_operand (OP, DImode)) \
e8a8bc24 1262 : 0)
f045b2c9
RS
1263
1264/* Given an rtx X being reloaded into a reg required to be
1265 in class CLASS, return the class of reg to actually use.
1266 In general this is just CLASS; but on some machines
c81bebd7 1267 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1268
1269 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1270 floating-point CONST_DOUBLE to force it to be copied to memory.
1271
1272 We also don't want to reload integer values into floating-point
1273 registers if we can at all help it. In fact, this can
1274 cause reload to abort, if it tries to generate a reload of CTR
1275 into a FP register and discovers it doesn't have the memory location
1276 required.
1277
1278 ??? Would it be a good idea to have reload do the converse, that is
1279 try to reload floating modes into FP registers if possible?
1280 */
f045b2c9 1281
802a0058 1282#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1283 (((GET_CODE (X) == CONST_DOUBLE \
1284 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1285 ? NO_REGS \
1286 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1287 && (CLASS) == NON_SPECIAL_REGS) \
1288 ? GENERAL_REGS \
1289 : (CLASS)))
c81bebd7 1290
f045b2c9
RS
1291/* Return the register class of a scratch register needed to copy IN into
1292 or out of a register in CLASS in MODE. If it can be done directly,
1293 NO_REGS is returned. */
1294
1295#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1296 secondary_reload_class (CLASS, MODE, IN)
1297
0ac081f6
AH
1298/* If we are copying between FP or AltiVec registers and anything
1299 else, we need a memory location. */
7ea555a4 1300
0ac081f6
AH
1301#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1302 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1303 || (CLASS2) == FLOAT_REGS \
1304 || (CLASS1) == ALTIVEC_REGS \
1305 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1306
f045b2c9
RS
1307/* Return the maximum number of consecutive registers
1308 needed to represent mode MODE in a register of class CLASS.
1309
1310 On RS/6000, this is the size of MODE in words,
1311 except in the FP regs, where a single reg is enough for two words. */
802a0058 1312#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1313 (((CLASS) == FLOAT_REGS) \
2e360ab3 1314 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1315 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230 1316
580d3230 1317
cff9f8d5 1318/* Return a class of registers that cannot change FROM mode to TO mode. */
02188693 1319
cff9f8d5
AH
1320#define CANNOT_CHANGE_MODE_CLASS(FROM, TO) \
1321 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) ? FLOAT_REGS \
1322 : (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1 ? GENERAL_REGS \
1323 : NO_REGS)
02188693 1324
f045b2c9
RS
1325/* Stack layout; function entry, exit and calling. */
1326
6b67933e
RK
1327/* Enumeration to give which calling sequence to use. */
1328enum rs6000_abi {
1329 ABI_NONE,
1330 ABI_AIX, /* IBM's AIX */
f607bc57
ZW
1331 ABI_AIX_NODESC, /* AIX calling sequence minus
1332 function descriptors */
b6c9286a 1333 ABI_V4, /* System V.4/eabi */
ee890fe2 1334 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1335};
1336
b6c9286a
MM
1337extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1338
4697a36c
MM
1339/* Structure used to define the rs6000 stack */
1340typedef struct rs6000_stack {
1341 int first_gp_reg_save; /* first callee saved GP register used */
1342 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1343 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1344 int lr_save_p; /* true if the link reg needs to be saved */
1345 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1346 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1347 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1348 int push_p; /* true if we need to allocate stack space */
1349 int calls_p; /* true if the function makes any calls */
6b67933e 1350 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1351 int gp_save_offset; /* offset to save GP regs from initial SP */
1352 int fp_save_offset; /* offset to save FP regs from initial SP */
00b960c7 1353 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
4697a36c
MM
1354 int lr_save_offset; /* offset to save LR from initial SP */
1355 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1356 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
a3170dc6 1357 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
b6c9286a 1358 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1359 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1360 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1361 int reg_size; /* register size (4 or 8) */
1362 int varargs_size; /* size to hold V.4 args passed in regs */
1363 int vars_size; /* variable save area size */
1364 int parm_size; /* outgoing parameter size */
1365 int save_size; /* save area size */
1366 int fixed_size; /* fixed size of stack frame */
1367 int gp_size; /* size of saved GP registers */
1368 int fp_size; /* size of saved FP registers */
00b960c7 1369 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1370 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1371 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1372 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1373 int altivec_padding_size; /* size of altivec alignment padding if
1374 not in save_size */
a3170dc6
AH
1375 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1376 int spe_padding_size;
b6c9286a 1377 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1378 int total_size; /* total bytes allocated for stack */
1379} rs6000_stack_t;
1380
f045b2c9
RS
1381/* Define this if pushing a word on the stack
1382 makes the stack pointer a smaller address. */
1383#define STACK_GROWS_DOWNWARD
1384
1385/* Define this if the nominal address of the stack frame
1386 is at the high-address end of the local variables;
1387 that is, each additional local variable allocated
1388 goes at a more negative offset in the frame.
1389
1390 On the RS/6000, we grow upwards, from the area after the outgoing
1391 arguments. */
1392/* #define FRAME_GROWS_DOWNWARD */
1393
4697a36c 1394/* Size of the outgoing register save area */
9ebbca7d 1395#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1396 || DEFAULT_ABI == ABI_AIX_NODESC \
1397 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1398 ? (TARGET_64BIT ? 64 : 32) \
1399 : 0)
4697a36c
MM
1400
1401/* Size of the fixed area on the stack */
9ebbca7d 1402#define RS6000_SAVE_AREA \
ee890fe2 1403 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1404 << (TARGET_64BIT ? 1 : 0))
4697a36c 1405
97f6e72f
DE
1406/* MEM representing address to save the TOC register */
1407#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1408 plus_constant (stack_pointer_rtx, \
1409 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1410
4697a36c
MM
1411/* Size of the V.4 varargs area if needed */
1412#define RS6000_VARARGS_AREA 0
1413
4697a36c 1414/* Align an address */
ed33106f 1415#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1416
1417/* Size of V.4 varargs area in bytes */
1418#define RS6000_VARARGS_SIZE \
2f3e5814 1419 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1420
f045b2c9
RS
1421/* Offset within stack frame to start allocating local variables at.
1422 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1423 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1424 of the first local allocated.
f045b2c9
RS
1425
1426 On the RS/6000, the frame pointer is the same as the stack pointer,
1427 except for dynamic allocations. So we start after the fixed area and
1428 outgoing parameter area. */
1429
802a0058 1430#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1431 (RS6000_ALIGN (current_function_outgoing_args_size, \
1432 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1433 + RS6000_VARARGS_AREA \
1434 + RS6000_SAVE_AREA)
1435
1436/* Offset from the stack pointer register to an item dynamically
1437 allocated on the stack, e.g., by `alloca'.
1438
1439 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1440 length of the outgoing arguments. The default is correct for most
1441 machines. See `function.c' for details. */
1442#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1443 (RS6000_ALIGN (current_function_outgoing_args_size, \
1444 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1445 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1446
1447/* If we generate an insn to push BYTES bytes,
1448 this says how many the stack pointer really advances by.
1449 On RS/6000, don't define this because there are no push insns. */
1450/* #define PUSH_ROUNDING(BYTES) */
1451
1452/* Offset of first parameter from the argument pointer register value.
1453 On the RS/6000, we define the argument pointer to the start of the fixed
1454 area. */
4697a36c 1455#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1456
62153b61
JM
1457/* Offset from the argument pointer register value to the top of
1458 stack. This is different from FIRST_PARM_OFFSET because of the
1459 register save area. */
1460#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1461
f045b2c9
RS
1462/* Define this if stack space is still allocated for a parameter passed
1463 in a register. The value is the number of bytes allocated to this
1464 area. */
4697a36c 1465#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1466
1467/* Define this if the above stack space is to be considered part of the
1468 space allocated by the caller. */
1469#define OUTGOING_REG_PARM_STACK_SPACE
1470
1471/* This is the difference between the logical top of stack and the actual sp.
1472
82e41834 1473 For the RS/6000, sp points past the fixed area. */
4697a36c 1474#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1475
1476/* Define this if the maximum size of all the outgoing args is to be
1477 accumulated and pushed during the prologue. The amount can be
1478 found in the variable current_function_outgoing_args_size. */
f73ad30e 1479#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1480
1481/* Value is the number of bytes of arguments automatically
1482 popped when returning from a subroutine call.
8b109b37 1483 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1484 FUNTYPE is the data type of the function (as a tree),
1485 or for a library call it is an identifier node for the subroutine name.
1486 SIZE is the number of bytes of arguments passed on the stack. */
1487
8b109b37 1488#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1489
1490/* Define how to find the value returned by a function.
1491 VALTYPE is the data type of the value (as a tree).
1492 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1493 otherwise, FUNC is 0.
1494
a3170dc6
AH
1495 On the SPE, both FPs and vectors are returned in r3.
1496
c81bebd7 1497 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1498 fp1, unless -msoft-float. */
f045b2c9 1499
39403d82
DE
1500#define FUNCTION_VALUE(VALTYPE, FUNC) \
1501 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1502 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1503 || POINTER_TYPE_P (VALTYPE) \
1504 ? word_mode : TYPE_MODE (VALTYPE), \
16861f33
AH
1505 TREE_CODE (VALTYPE) == VECTOR_TYPE \
1506 && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN \
a3170dc6
AH
1507 : TREE_CODE (VALTYPE) == REAL_TYPE \
1508 && TARGET_SPE_ABI && !TARGET_FPRS \
1509 ? GP_ARG_RETURN \
1510 : TREE_CODE (VALTYPE) == REAL_TYPE \
1511 && TARGET_HARD_FLOAT && TARGET_FPRS \
e9cf9523 1512 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9
RS
1513
1514/* Define how to find the value returned by a library function
1515 assuming the value has mode MODE. */
1516
0ac081f6
AH
1517#define LIBCALL_VALUE(MODE) \
1518 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1519 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
a3170dc6 1520 && TARGET_HARD_FLOAT && TARGET_FPRS \
0ac081f6 1521 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9 1522
6fa3f289
ZW
1523/* The AIX ABI for the RS/6000 specifies that all structures are
1524 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1525 specifies that structures <= 8 bytes are returned in r3/r4, but a
1526 draft put them in memory, and GCC used to implement the draft
1527 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1528 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1529 compatibility can change DRAFT_V4_STRUCT_RET to override the
1530 default, and -m switches get the final word. See
52acbdcb
ZW
1531 rs6000_override_options for more details.
1532
1533 int_size_in_bytes returns -1 for variable size objects, which go in
1534 memory always. The cast to unsigned makes -1 > 8. */
1535
6fa3f289
ZW
1536#define RETURN_IN_MEMORY(TYPE) \
1537 (AGGREGATE_TYPE_P (TYPE) && \
52acbdcb 1538 (TARGET_AIX_STRUCT_RET || \
0c769cf8 1539 (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8))
f045b2c9 1540
6fa3f289
ZW
1541/* DRAFT_V4_STRUCT_RET defaults off. */
1542#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1543
1544/* Let RETURN_IN_MEMORY control what happens. */
1545#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1546
a260abc9 1547/* Mode of stack savearea.
dfdfa60f
DE
1548 FUNCTION is VOIDmode because calling convention maintains SP.
1549 BLOCK needs Pmode for SP.
a260abc9
DE
1550 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1551#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1552 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1553 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1554
4697a36c
MM
1555/* Minimum and maximum general purpose registers used to hold arguments. */
1556#define GP_ARG_MIN_REG 3
1557#define GP_ARG_MAX_REG 10
1558#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1559
1560/* Minimum and maximum floating point registers used to hold arguments. */
1561#define FP_ARG_MIN_REG 33
7509c759
MM
1562#define FP_ARG_AIX_MAX_REG 45
1563#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1564#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1565 || DEFAULT_ABI == ABI_AIX_NODESC \
1566 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1567 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1568#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1569
0ac081f6
AH
1570/* Minimum and maximum AltiVec registers used to hold arguments. */
1571#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1572#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1573#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1574
4697a36c
MM
1575/* Return registers */
1576#define GP_ARG_RETURN GP_ARG_MIN_REG
1577#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1578#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1579
7509c759 1580/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1581#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1582/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1583#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1584#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1585#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1586
f045b2c9
RS
1587/* 1 if N is a possible register number for a function value
1588 as seen by the caller.
1589
0ac081f6
AH
1590 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1591#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1592 || ((N) == FP_ARG_RETURN) \
1593 || (TARGET_ALTIVEC && \
1594 (N) == ALTIVEC_ARG_RETURN))
f045b2c9
RS
1595
1596/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1597 On RS/6000, these are r3-r10 and fp1-fp13.
1598 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1599#define FUNCTION_ARG_REGNO_P(N) \
b1765bde 1600 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
0ac081f6 1601 || (TARGET_ALTIVEC && \
1a3ab9e1 1602 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
6d0f55e6 1603 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1604
f045b2c9 1605\f
00dba523
NC
1606/* A C structure for machine-specific, per-function data.
1607 This is added to the cfun structure. */
e2500fed 1608typedef struct machine_function GTY(())
00dba523
NC
1609{
1610 /* Whether a System V.4 varargs area was created. */
1611 int sysv_varargs_p;
71f123ca
FS
1612 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1613 int ra_needs_full_frame;
00dba523
NC
1614} machine_function;
1615
f045b2c9
RS
1616/* Define a data type for recording info about an argument list
1617 during the scan of that argument list. This data type should
1618 hold all necessary information about the function itself
1619 and about the args processed so far, enough to enable macros
1620 such as FUNCTION_ARG to determine where the next arg should go.
1621
1622 On the RS/6000, this is a structure. The first element is the number of
1623 total argument words, the second is used to store the next
1624 floating-point register number, and the third says how many more args we
4697a36c
MM
1625 have prototype types for.
1626
4cc833b7
RH
1627 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1628 the next availible GP register, `fregno' is the next available FP
1629 register, and `words' is the number of words used on the stack.
1630
bd227acc 1631 The varargs/stdarg support requires that this structure's size
4cc833b7 1632 be a multiple of sizeof(int). */
4697a36c
MM
1633
1634typedef struct rs6000_args
1635{
4cc833b7 1636 int words; /* # words used for passing GP registers */
6a4cee5f 1637 int fregno; /* next available FP register */
0ac081f6 1638 int vregno; /* next available AltiVec register */
6a4cee5f
MM
1639 int nargs_prototype; /* # args left in the current prototype */
1640 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1641 int prototype; /* Whether a prototype was defined */
1642 int call_cookie; /* Do special things for this call */
4cc833b7 1643 int sysv_gregno; /* next available GP register */
4697a36c 1644} CUMULATIVE_ARGS;
f045b2c9
RS
1645
1646/* Define intermediate macro to compute the size (in registers) of an argument
1647 for the RS/6000. */
1648
d34c5b80
DE
1649#define RS6000_ARG_SIZE(MODE, TYPE) \
1650((MODE) != BLKmode \
c5d71f39 1651 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
0c769cf8 1652 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1653
1654/* Initialize a variable CUM of type CUMULATIVE_ARGS
1655 for a call to a function whose data type is FNTYPE.
1656 For a library call, FNTYPE is 0. */
1657
2c7ee1a6 1658#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1659 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1660
1661/* Similar, but when scanning the definition of a procedure. We always
1662 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1663
4697a36c
MM
1664#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1665 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1666
1667/* Update the data in CUM to advance over an argument
1668 of mode MODE and data type TYPE.
1669 (TYPE is null for libcalls where that information may not be available.) */
1670
1671#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1672 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9 1673
a0ab749a 1674/* Nonzero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1675#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1676 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1677 && (CUM).fregno <= FP_ARG_MAX_REG \
a3170dc6 1678 && TARGET_HARD_FLOAT && TARGET_FPRS)
f045b2c9 1679
a0ab749a 1680/* Nonzero if we can use an AltiVec register to pass this arg. */
0ac081f6
AH
1681#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1682 (ALTIVEC_VECTOR_MODE (MODE) \
1683 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1684 && TARGET_ALTIVEC_ABI)
1685
f045b2c9
RS
1686/* Determine where to put an argument to a function.
1687 Value is zero to push the argument on the stack,
1688 or a hard register in which to store the argument.
1689
1690 MODE is the argument's machine mode.
1691 TYPE is the data type of the argument (as a tree).
1692 This is null for libcalls where that information may
1693 not be available.
1694 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1695 the preceding args and about the function being called.
1696 NAMED is nonzero if this argument is a named parameter
1697 (otherwise it is an extra parameter matching an ellipsis).
1698
1699 On RS/6000 the first eight words of non-FP are normally in registers
1700 and the rest are pushed. The first 13 FP args are in registers.
1701
1702 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1703 both an FP and integer register (or possibly FP reg and stack). Library
1704 functions (when TYPE is zero) always have the proper types for args,
1705 so we can pass the FP value just in one register. emit_library_function
1706 doesn't support EXPR_LIST anyway. */
f045b2c9 1707
4697a36c
MM
1708#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1709 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1710
1711/* For an arg passed partly in registers and partly in memory,
1712 this is the number of registers used.
1713 For args passed entirely in registers or entirely in memory, zero. */
1714
4697a36c
MM
1715#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1716 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1717
1718/* A C expression that indicates when an argument must be passed by
1719 reference. If nonzero for an argument, a copy of that argument is
1720 made in memory and a pointer to the argument is passed instead of
1721 the argument itself. The pointer is passed in whatever way is
82e41834 1722 appropriate for passing a pointer to that type. */
4697a36c
MM
1723
1724#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1725 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1726
c229cba9
DE
1727/* If defined, a C expression which determines whether, and in which
1728 direction, to pad out an argument with extra space. The value
1729 should be of type `enum direction': either `upward' to pad above
1730 the argument, `downward' to pad below, or `none' to inhibit
1731 padding. */
1732
9ebbca7d 1733#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1734
b6c9286a 1735/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1736 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1737 PARM_BOUNDARY is used for all arguments. */
1738
1739#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1740 function_arg_boundary (MODE, TYPE)
1741
f045b2c9 1742/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1743 variable number of arguments.
f045b2c9
RS
1744
1745 CUM is as above.
1746
1747 MODE and TYPE are the mode and type of the current parameter.
1748
1749 PRETEND_SIZE is a variable that should be set to the amount of stack
1750 that must be pushed by the prolog to pretend that our caller pushed
1751 it.
1752
1753 Normally, this macro will push all remaining incoming registers on the
1754 stack and set PRETEND_SIZE to the length of the registers pushed. */
1755
4697a36c
MM
1756#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1757 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1758
dfafc897
FS
1759/* Define the `__builtin_va_list' type for the ABI. */
1760#define BUILD_VA_LIST_TYPE(VALIST) \
1761 (VALIST) = rs6000_build_va_list ()
4697a36c 1762
dfafc897 1763/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1764#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1765 rs6000_va_start (valist, nextarg)
dfafc897
FS
1766
1767/* Implement `va_arg'. */
1768#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1769 rs6000_va_arg (valist, type)
f045b2c9 1770
2a55fd42
DE
1771/* For AIX, the rule is that structures are passed left-aligned in
1772 their stack slot. However, GCC does not presently do this:
1773 structures which are the same size as integer types are passed
1774 right-aligned, as if they were in fact integers. This only
1775 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1776 ABI_V4 does not use std_expand_builtin_va_arg. */
1777#define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1778
d34c5b80
DE
1779/* Define this macro to be a nonzero value if the location where a function
1780 argument is passed depends on whether or not it is a named argument. */
1781#define STRICT_ARGUMENT_NAMING 1
1782
5e1bf043
DJ
1783/* We do not allow indirect calls to be optimized into sibling calls, nor
1784 do we allow calls with vector parameters. */
1785#define FUNCTION_OK_FOR_SIBCALL(DECL) function_ok_for_sibcall ((DECL))
1786
f045b2c9 1787/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1788 for profiling a function entry. */
f045b2c9
RS
1789
1790#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1791 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1792
1793/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1794 the stack pointer does not matter. No definition is equivalent to
1795 always zero.
1796
a0ab749a 1797 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1798 its backpointer, which we maintain. */
1799#define EXIT_IGNORE_STACK 1
1800
a701949a
FS
1801/* Define this macro as a C expression that is nonzero for registers
1802 that are used by the epilogue or the return' pattern. The stack
1803 and frame pointer registers are already be assumed to be used as
1804 needed. */
1805
83720594
RH
1806#define EPILOGUE_USES(REGNO) \
1807 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1808 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1809 || (current_function_calls_eh_return \
3553b09d 1810 && TARGET_AIX \
83720594 1811 && (REGNO) == TOC_REGISTER))
2bfcf297 1812
f045b2c9 1813\f
eaf1bcf1 1814/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1815
1816/* Length in units of the trampoline for entering a nested function. */
1817
b6c9286a 1818#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1819
1820/* Emit RTL insns to initialize the variable parts of a trampoline.
1821 FNADDR is an RTX for the address of the function's pure code.
1822 CXT is an RTX for the static chain value for the function. */
1823
1824#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1825 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1826\f
f33985c6
MS
1827/* Definitions for __builtin_return_address and __builtin_frame_address.
1828 __builtin_return_address (0) should give link register (65), enable
82e41834 1829 this. */
f33985c6
MS
1830/* This should be uncommented, so that the link register is used, but
1831 currently this would result in unmatched insns and spilling fixed
1832 registers so we'll leave it for another day. When these problems are
1833 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1834 (mrs) */
1835/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1836
b6c9286a
MM
1837/* Number of bytes into the frame return addresses can be found. See
1838 rs6000_stack_info in rs6000.c for more information on how the different
1839 abi's store the return address. */
1840#define RETURN_ADDRESS_OFFSET \
1841 ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1842 || DEFAULT_ABI == ABI_DARWIN \
05ef2698 1843 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1844 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1845 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1846
f33985c6
MS
1847/* The current return address is in link register (65). The return address
1848 of anything farther back is accessed normally at an offset of 8 from the
1849 frame pointer. */
71f123ca
FS
1850#define RETURN_ADDR_RTX(COUNT, FRAME) \
1851 (rs6000_return_addr (COUNT, FRAME))
1852
f33985c6 1853\f
f045b2c9
RS
1854/* Definitions for register eliminations.
1855
1856 We have two registers that can be eliminated on the RS/6000. First, the
1857 frame pointer register can often be eliminated in favor of the stack
1858 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1859 eliminated; it is replaced with either the stack or frame pointer.
1860
1861 In addition, we use the elimination mechanism to see if r30 is needed
1862 Initially we assume that it isn't. If it is, we spill it. This is done
1863 by making it an eliminable register. We replace it with itself so that
1864 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1865
1866/* This is an array of structures. Each structure initializes one pair
1867 of eliminable registers. The "from" register number is given first,
1868 followed by "to". Eliminations of the same "from" register are listed
1869 in order of preference. */
1870#define ELIMINABLE_REGS \
1871{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1872 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1 1873 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
97b23853 1874 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9
RS
1875
1876/* Given FROM and TO register numbers, say whether this elimination is allowed.
1877 Frame pointer elimination is automatically handled.
1878
1879 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1880 to convert ap into fp, not sp.
1881
abc95ed3 1882 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1883 references. */
f045b2c9 1884
97b23853
GK
1885#define CAN_ELIMINATE(FROM, TO) \
1886 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1887 ? ! frame_pointer_needed \
1888 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1889 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1890 : 1)
1891
1892/* Define the offset between two registers, one to be eliminated, and the other
1893 its replacement, at the start of a routine. */
1894#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1895{ \
4697a36c 1896 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1897 \
1898 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1899 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1900 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1901 (OFFSET) = info->total_size; \
1902 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1903 (OFFSET) = (info->push_p) ? info->total_size : 0; \
97b23853 1904 else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM) \
642a35f1 1905 (OFFSET) = 0; \
f045b2c9
RS
1906 else \
1907 abort (); \
1908}
1909\f
1910/* Addressing modes, and classification of registers for them. */
1911
940da324
JL
1912/* #define HAVE_POST_INCREMENT 0 */
1913/* #define HAVE_POST_DECREMENT 0 */
f045b2c9 1914
940da324
JL
1915#define HAVE_PRE_DECREMENT 1
1916#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1917
1918/* Macros to check register numbers against specific register classes. */
1919
1920/* These assume that REGNO is a hard or pseudo reg number.
1921 They give nonzero only if REGNO is a hard reg of the suitable class
1922 or a pseudo reg currently allocated to a suitable hard reg.
1923 Since they use reg_renumber, they are safe only once reg_renumber
1924 has been allocated, which happens in local-alloc.c. */
1925
1926#define REGNO_OK_FOR_INDEX_P(REGNO) \
1927((REGNO) < FIRST_PSEUDO_REGISTER \
1928 ? (REGNO) <= 31 || (REGNO) == 67 \
1929 : (reg_renumber[REGNO] >= 0 \
1930 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1931
1932#define REGNO_OK_FOR_BASE_P(REGNO) \
1933((REGNO) < FIRST_PSEUDO_REGISTER \
1934 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1935 : (reg_renumber[REGNO] > 0 \
1936 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1937\f
1938/* Maximum number of registers that can appear in a valid memory address. */
1939
1940#define MAX_REGS_PER_ADDRESS 2
1941
1942/* Recognize any constant value that is a valid address. */
1943
6eff269e
BK
1944#define CONSTANT_ADDRESS_P(X) \
1945 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1946 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1947 || GET_CODE (X) == HIGH)
f045b2c9
RS
1948
1949/* Nonzero if the constant value X is a legitimate general operand.
1950 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1951
1952 On the RS/6000, all integer constants are acceptable, most won't be valid
1953 for particular insns, though. Only easy FP constants are
1954 acceptable. */
1955
1956#define LEGITIMATE_CONSTANT_P(X) \
1957 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1958 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1959 || easy_fp_constant (X, GET_MODE (X)))
1960
1961/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1962 and check its validity for a certain class.
1963 We have two alternate definitions for each of them.
1964 The usual definition accepts all pseudo regs; the other rejects
1965 them unless they have been allocated suitable hard regs.
1966 The symbol REG_OK_STRICT causes the latter definition to be used.
1967
1968 Most source files want to accept pseudo regs in the hope that
1969 they will get allocated to the class that the insn wants them to be in.
1970 Source files for reload pass need to be strict.
1971 After reload, it makes no difference, since pseudo regs have
1972 been eliminated by then. */
1973
258bfae2
FS
1974#ifdef REG_OK_STRICT
1975# define REG_OK_STRICT_FLAG 1
1976#else
1977# define REG_OK_STRICT_FLAG 0
1978#endif
f045b2c9
RS
1979
1980/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1981 or if it is a pseudo reg in the non-strict case. */
1982#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1983 ((! (STRICT) \
1984 && (REGNO (X) <= 31 \
1985 || REGNO (X) == ARG_POINTER_REGNUM \
1986 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1987 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
1988
1989/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
1990 or if it is a pseudo reg in the non-strict case. */
1991#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1992 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 1993
258bfae2
FS
1994#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1995#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
1996\f
1997/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1998 that is a valid memory address for an instruction.
1999 The MODE argument is the machine mode for the MEM expression
2000 that wants to use this address.
2001
2002 On the RS/6000, there are four valid address: a SYMBOL_REF that
2003 refers to a constant pool entry of an address (or the sum of it
2004 plus a constant), a short (16-bit signed) constant plus a register,
2005 the sum of two registers, or a register indirect, possibly with an
2006 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 2007 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
2008 word aligned.
2009
2010 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2011 32-bit DImode, TImode), indexed addressing cannot be used because
2012 adjacent memory cells are accessed by adding word-sized offsets
2013 during assembly output. */
f045b2c9 2014
9ebbca7d
GK
2015#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2016
2017#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
f045b2c9 2018
17072732 2019/* SPE offset addressing is limited to 5-bits worth of double words. */
88c38659 2020#define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
a3170dc6 2021
f045b2c9 2022#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
9ebbca7d
GK
2023 (TARGET_TOC \
2024 && GET_CODE (X) == PLUS \
2025 && GET_CODE (XEXP (X, 0)) == REG \
2026 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
2027 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
f045b2c9 2028
7509c759 2029#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
f607bc57 2030 (DEFAULT_ABI == ABI_V4 \
81795281 2031 && !flag_pic && !TARGET_TOC \
88228c4b
MM
2032 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
2033 && small_data_operand (X, MODE))
7509c759 2034
258bfae2 2035#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
f045b2c9 2036 (GET_CODE (X) == CONST_INT \
5b6f7b96 2037 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9 2038
258bfae2
FS
2039#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
2040 (GET_CODE (X) == PLUS \
2041 && GET_CODE (XEXP (X, 0)) == REG \
2042 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2043 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
37fa124a
AM
2044 && (! ALTIVEC_VECTOR_MODE (MODE) \
2045 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
a3170dc6
AH
2046 && (! SPE_VECTOR_MODE (MODE) \
2047 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
2048 && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1))))) \
258bfae2
FS
2049 && (((MODE) != DFmode && (MODE) != DImode) \
2050 || (TARGET_32BIT \
2051 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
2052 : ! (INTVAL (XEXP (X, 1)) & 3))) \
fcce224d 2053 && (((MODE) != TFmode && (MODE) != TImode) \
258bfae2
FS
2054 || (TARGET_32BIT \
2055 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
2056 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1465faec 2057 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9 2058
258bfae2
FS
2059#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2060 (GET_CODE (X) == PLUS \
2061 && GET_CODE (XEXP (X, 0)) == REG \
2062 && GET_CODE (XEXP (X, 1)) == REG \
2063 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2064 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2065 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2066 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2067
2068#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2069 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2070
6ac7bf2c
GK
2071#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2072 (TARGET_ELF \
2073 && ! flag_pic && ! TARGET_TOC \
2074 && GET_MODE_NUNITS (MODE) == 1 \
2075 && (GET_MODE_BITSIZE (MODE) <= 32 \
a3170dc6 2076 || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode)) \
6ac7bf2c
GK
2077 && GET_CODE (X) == LO_SUM \
2078 && GET_CODE (XEXP (X, 0)) == REG \
2079 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
4697a36c
MM
2080 && CONSTANT_P (XEXP (X, 1)))
2081
258bfae2
FS
2082#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2083{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2084 goto ADDR; \
f045b2c9
RS
2085}
2086\f
2087/* Try machine-dependent ways of modifying an illegitimate address
2088 to be legitimate. If we find one, return the new, valid address.
2089 This macro is used in only one place: `memory_address' in explow.c.
2090
2091 OLDX is the address as it was before break_out_memory_refs was called.
2092 In some cases it is useful to look at this to decide what needs to be done.
2093
2094 MODE and WIN are passed so that this macro can use
2095 GO_IF_LEGITIMATE_ADDRESS.
2096
2097 It is always safe for this macro to do nothing. It exists to recognize
2098 opportunities to optimize the output.
2099
2100 On RS/6000, first check for the sum of a register with a constant
2101 integer that is out of range. If so, generate code to add the
2102 constant with the low-order 16 bits masked to the register and force
2103 this result into another register (this can be done with `cau').
c81bebd7 2104 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2105 possibility of bit 16 being a one.
2106
2107 Then check for the sum of a register and something not constant, try to
2108 load the other things into a register and return the sum. */
2109
9ebbca7d
GK
2110#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2111{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2112 if (result != NULL_RTX) \
2113 { \
2114 (X) = result; \
2115 goto WIN; \
2116 } \
f045b2c9
RS
2117}
2118
a260abc9
DE
2119/* Try a machine-dependent way of reloading an illegitimate address
2120 operand. If we find one, push the reload and jump to WIN. This
2121 macro is used in only one place: `find_reloads_address' in reload.c.
2122
24ea750e
DJ
2123 Implemented on rs6000 by rs6000_legitimize_reload_address.
2124 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2125
a9098fd0
GK
2126#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2127do { \
24ea750e
DJ
2128 int win; \
2129 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2130 (int)(TYPE), (IND_LEVELS), &win); \
2131 if ( win ) \
2132 goto WIN; \
a260abc9
DE
2133} while (0)
2134
f045b2c9
RS
2135/* Go to LABEL if ADDR (a legitimate address expression)
2136 has an effect that depends on the machine mode it is used for.
2137
2138 On the RS/6000 this is true if the address is valid with a zero offset
2139 but not with an offset of four (this means it cannot be used as an
2140 address for DImode or DFmode) or is a pre-increment or decrement. Since
2141 we know it is valid, we just check for an address that is not valid with
2142 an offset of four. */
2143
2144#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2145{ if (GET_CODE (ADDR) == PLUS \
2146 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2147 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2148 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2149 goto LABEL; \
38c1f2d7 2150 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2151 goto LABEL; \
38c1f2d7 2152 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2153 goto LABEL; \
4697a36c
MM
2154 if (GET_CODE (ADDR) == LO_SUM) \
2155 goto LABEL; \
f045b2c9 2156}
766a866c
MM
2157\f
2158/* The register number of the register used to address a table of
2159 static data addresses in memory. In some cases this register is
2160 defined by a processor's "application binary interface" (ABI).
2161 When this macro is defined, RTL is generated for this register
2162 once, as with the stack pointer and frame pointer registers. If
2163 this macro is not defined, it is up to the machine-dependent files
2164 to allocate such a register (if necessary). */
2165
1db02437
FS
2166#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2167#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2168
97b23853 2169#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2170
766a866c
MM
2171/* Define this macro if the register defined by
2172 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2173 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2174
2175/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2176
2177/* By generating position-independent code, when two different
2178 programs (A and B) share a common library (libC.a), the text of
2179 the library can be shared whether or not the library is linked at
2180 the same address for both programs. In some of these
2181 environments, position-independent code requires not only the use
2182 of different addressing modes, but also special code to enable the
2183 use of these addressing modes.
2184
2185 The `FINALIZE_PIC' macro serves as a hook to emit these special
2186 codes once the function is being compiled into assembly code, but
2187 not before. (It is not done before, because in the case of
2188 compiling an inline function, it would lead to multiple PIC
2189 prologues being included in functions which used inline functions
2190 and were compiled to assembly language.) */
2191
8d30c4ee 2192/* #define FINALIZE_PIC */
766a866c 2193
766a866c
MM
2194/* A C expression that is nonzero if X is a legitimate immediate
2195 operand on the target machine when generating position independent
2196 code. You can assume that X satisfies `CONSTANT_P', so you need
2197 not check this. You can also assume FLAG_PIC is true, so you need
2198 not check it either. You need not define this macro if all
2199 constants (including `SYMBOL_REF') can be immediate operands when
2200 generating position independent code. */
2201
2202/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2203
30ea98f1
MM
2204/* In rare cases, correct code generation requires extra machine
2205 dependent processing between the second jump optimization pass and
2206 delayed branch scheduling. On those machines, define this macro
9ebbca7d 2207 as a C statement to act on the code starting at INSN. */
30ea98f1 2208
9ebbca7d 2209/* #define MACHINE_DEPENDENT_REORG(INSN) */
30ea98f1 2210
f045b2c9
RS
2211\f
2212/* Define this if some processing needs to be done immediately before
4255474b 2213 emitting code for an insn. */
f045b2c9 2214
4255474b 2215/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2216
2217/* Specify the machine mode that this machine uses
2218 for the index in the tablejump instruction. */
e1565e65 2219#define CASE_VECTOR_MODE SImode
f045b2c9 2220
18543a22
ILT
2221/* Define as C expression which evaluates to nonzero if the tablejump
2222 instruction expects the table to contain offsets from the address of the
2223 table.
82e41834 2224 Do not define this if the table should contain absolute addresses. */
18543a22 2225#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2226
f045b2c9
RS
2227/* Define this as 1 if `char' should by default be signed; else as 0. */
2228#define DEFAULT_SIGNED_CHAR 0
2229
2230/* This flag, if defined, says the same insns that convert to a signed fixnum
2231 also convert validly to an unsigned one. */
2232
2233/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2234
2235/* Max number of bytes we can move from memory to memory
2236 in one reasonably fast instruction. */
2f3e5814 2237#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2238#define MAX_MOVE_MAX 8
f045b2c9
RS
2239
2240/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2241 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2242 is undesirable. */
2243#define SLOW_BYTE_ACCESS 1
2244
9a63901f
RK
2245/* Define if operations between registers always perform the operation
2246 on the full register even if a narrower mode is specified. */
2247#define WORD_REGISTER_OPERATIONS
2248
2249/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2250 will either zero-extend or sign-extend. The value of this macro should
2251 be the code that says which one of the two operations is implicitly
2252 done, NIL if none. */
2253#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2254
2255/* Define if loading short immediate values into registers sign extends. */
2256#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2257\f
f045b2c9
RS
2258/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2259 is done just by pretending it is already truncated. */
2260#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2261
2262/* Specify the machine mode that pointers have.
2263 After generation of rtl, the compiler makes no further distinction
2264 between pointers and any other objects of this machine mode. */
2f3e5814 2265#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2266
2267/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2268 Doesn't matter on RS/6000. */
2f3e5814 2269#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2270
2271/* Define this if addresses of constant functions
2272 shouldn't be put through pseudo regs where they can be cse'd.
2273 Desirable on machines where ordinary constants are expensive
2274 but a CALL with constant address is cheap. */
2275#define NO_FUNCTION_CSE
2276
d969caf8 2277/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2278 few bits.
2279
2280 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2281 have been dropped from the PowerPC architecture. */
2282
4697a36c 2283#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2284
f045b2c9
RS
2285/* Compute the cost of computing a constant rtl expression RTX
2286 whose rtx-code is CODE. The body of this macro is a portion
2287 of a switch statement. If the code is computed here,
2288 return it with a return statement. Otherwise, break from the switch.
2289
01554f00 2290 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2291 always returns 0. */
2292
4697a36c 2293#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2294 case CONST_INT: \
2295 case CONST: \
2296 case LABEL_REF: \
2297 case SYMBOL_REF: \
2298 case CONST_DOUBLE: \
4697a36c 2299 case HIGH: \
f045b2c9
RS
2300 return 0;
2301
2302/* Provide the costs of a rtl expression. This is in the body of a
2303 switch on CODE. */
2304
38c1f2d7
MM
2305#define RTX_COSTS(X,CODE,OUTER_CODE) \
2306 case PLUS: \
2307 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2308 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2309 + 0x8000) >= 0x10000) \
296b8152 2310 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2311 ? COSTS_N_INSNS (2) \
2312 : COSTS_N_INSNS (1)); \
2313 case AND: \
38c1f2d7
MM
2314 case IOR: \
2315 case XOR: \
a260abc9
DE
2316 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2317 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2318 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2319 ? COSTS_N_INSNS (2) \
2320 : COSTS_N_INSNS (1)); \
2321 case MULT: \
055dd007
DE
2322 if (optimize_size) \
2323 return COSTS_N_INSNS (2); \
38c1f2d7
MM
2324 switch (rs6000_cpu) \
2325 { \
2326 case PROCESSOR_RIOS1: \
fe7f5677 2327 case PROCESSOR_PPC405: \
38c1f2d7
MM
2328 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2329 ? COSTS_N_INSNS (5) \
2330 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2331 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
3cb999d8
DE
2332 case PROCESSOR_RS64A: \
2333 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2334 ? GET_MODE (XEXP (X, 1)) != DImode \
2335 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2336 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
fe7f5677 2337 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
38c1f2d7
MM
2338 case PROCESSOR_RIOS2: \
2339 case PROCESSOR_MPCCORE: \
5a41b476 2340 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2341 return COSTS_N_INSNS (2); \
2342 case PROCESSOR_PPC601: \
2343 return COSTS_N_INSNS (5); \
2344 case PROCESSOR_PPC603: \
7960cfbb 2345 case PROCESSOR_PPC7400: \
bef84347 2346 case PROCESSOR_PPC750: \
38c1f2d7
MM
2347 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2348 ? COSTS_N_INSNS (5) \
2349 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2350 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
fd3b43f2
DJ
2351 case PROCESSOR_PPC7450: \
2352 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2353 ? COSTS_N_INSNS (4) \
2354 : COSTS_N_INSNS (3)); \
38c1f2d7
MM
2355 case PROCESSOR_PPC403: \
2356 case PROCESSOR_PPC604: \
a23acaa6 2357 case PROCESSOR_PPC8540: \
38c1f2d7 2358 return COSTS_N_INSNS (4); \
3cb999d8
DE
2359 case PROCESSOR_PPC620: \
2360 case PROCESSOR_PPC630: \
309323c2 2361 case PROCESSOR_POWER4: \
3cb999d8
DE
2362 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2363 ? GET_MODE (XEXP (X, 1)) != DImode \
fe7f5677 2364 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
3cb999d8
DE
2365 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2366 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
38c1f2d7
MM
2367 } \
2368 case DIV: \
2369 case MOD: \
2370 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2371 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2372 return COSTS_N_INSNS (2); \
2373 /* otherwise fall through to normal divide. */ \
2374 case UDIV: \
2375 case UMOD: \
2376 switch (rs6000_cpu) \
2377 { \
2378 case PROCESSOR_RIOS1: \
2379 return COSTS_N_INSNS (19); \
2380 case PROCESSOR_RIOS2: \
2381 return COSTS_N_INSNS (13); \
3cb999d8
DE
2382 case PROCESSOR_RS64A: \
2383 return (GET_MODE (XEXP (X, 1)) != DImode \
2384 ? COSTS_N_INSNS (65) \
2385 : COSTS_N_INSNS (67)); \
38c1f2d7
MM
2386 case PROCESSOR_MPCCORE: \
2387 return COSTS_N_INSNS (6); \
2388 case PROCESSOR_PPC403: \
2389 return COSTS_N_INSNS (33); \
fe7f5677
DE
2390 case PROCESSOR_PPC405: \
2391 return COSTS_N_INSNS (35); \
38c1f2d7
MM
2392 case PROCESSOR_PPC601: \
2393 return COSTS_N_INSNS (36); \
2394 case PROCESSOR_PPC603: \
2395 return COSTS_N_INSNS (37); \
2396 case PROCESSOR_PPC604: \
5a41b476 2397 case PROCESSOR_PPC604e: \
38c1f2d7 2398 return COSTS_N_INSNS (20); \
3cb999d8
DE
2399 case PROCESSOR_PPC620: \
2400 case PROCESSOR_PPC630: \
309323c2 2401 case PROCESSOR_POWER4: \
3cb999d8
DE
2402 return (GET_MODE (XEXP (X, 1)) != DImode \
2403 ? COSTS_N_INSNS (21) \
2404 : COSTS_N_INSNS (37)); \
bef84347 2405 case PROCESSOR_PPC750: \
a3170dc6 2406 case PROCESSOR_PPC8540: \
ed947a96 2407 case PROCESSOR_PPC7400: \
bef84347 2408 return COSTS_N_INSNS (19); \
ed947a96
DJ
2409 case PROCESSOR_PPC7450: \
2410 return COSTS_N_INSNS (23); \
38c1f2d7
MM
2411 } \
2412 case FFS: \
2413 return COSTS_N_INSNS (4); \
2414 case MEM: \
f045b2c9
RS
2415 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2416 return 5;
2417
2418/* Compute the cost of an address. This is meant to approximate the size
2419 and/or execution delay of an insn using that address. If the cost is
2420 approximated by the RTL complexity, including CONST_COSTS above, as
2421 is usually the case for CISC machines, this macro should not be defined.
2422 For aggressively RISCy machines, only one insn format is allowed, so
2423 this macro should be a constant. The value of this macro only matters
2424 for valid addresses.
2425
2426 For the RS/6000, everything is cost 0. */
2427
2428#define ADDRESS_COST(RTX) 0
2429
2430/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2431 should be adjusted to reflect any required changes. This macro is used when
2432 there is some systematic length adjustment required that would be difficult
2433 to express in the length attribute. */
2434
2435/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2436
39a10a29
GK
2437/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2438 COMPARE, return the mode to be used for the comparison. For
2439 floating-point, CCFPmode should be used. CCUNSmode should be used
2440 for unsigned comparisons. CCEQmode should be used when we are
2441 doing an inequality comparison on the result of a
2442 comparison. CCmode should be used in all other cases. */
c5defebb 2443
b565a316 2444#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2445 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2446 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2447 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2448 ? CCEQmode : CCmode))
f045b2c9
RS
2449
2450/* Define the information needed to generate branch and scc insns. This is
2451 stored from the compare operation. Note that we can't use "rtx" here
2452 since it hasn't been defined! */
2453
e2500fed
GK
2454extern GTY(()) rtx rs6000_compare_op0;
2455extern GTY(()) rtx rs6000_compare_op1;
f045b2c9 2456extern int rs6000_compare_fp_p;
f045b2c9
RS
2457\f
2458/* Control the assembler format that we output. */
2459
1b279f39
DE
2460/* A C string constant describing how to begin a comment in the target
2461 assembler language. The compiler assumes that the comment will end at
2462 the end of the line. */
2463#define ASM_COMMENT_START " #"
6b67933e 2464
fdaff8ba
RS
2465/* Implicit library calls should use memcpy, not bcopy, etc. */
2466
2467#define TARGET_MEM_FUNCTIONS
2468
38c1f2d7
MM
2469/* Flag to say the TOC is initialized */
2470extern int toc_initialized;
2471
f045b2c9
RS
2472/* Macro to output a special constant pool entry. Go to WIN if we output
2473 it. Otherwise, it is written the usual way.
2474
2475 On the RS/6000, toc entries are handled this way. */
2476
a9098fd0
GK
2477#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2478{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2479 { \
2480 output_toc (FILE, X, LABELNO, MODE); \
2481 goto WIN; \
2482 } \
f045b2c9
RS
2483}
2484
ebd97b96
DE
2485#ifdef HAVE_GAS_WEAK
2486#define RS6000_WEAK 1
2487#else
2488#define RS6000_WEAK 0
2489#endif
290ad355 2490
79c4e63f
AM
2491#if RS6000_WEAK
2492/* Used in lieu of ASM_WEAKEN_LABEL. */
2493#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2494 do \
2495 { \
2496 fputs ("\t.weak\t", (FILE)); \
cbaaba19 2497 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2498 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2499 && DEFAULT_ABI == ABI_AIX) \
2500 { \
cbaaba19
DE
2501 if (TARGET_XCOFF) \
2502 fputs ("[DS]", (FILE)); \
ca734b39 2503 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2504 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2505 } \
2506 fputc ('\n', (FILE)); \
2507 if (VAL) \
2508 { \
2509 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2510 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2511 && DEFAULT_ABI == ABI_AIX) \
2512 { \
2513 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2514 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2515 fputs (",.", (FILE)); \
cbaaba19 2516 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2517 fputc ('\n', (FILE)); \
2518 } \
2519 } \
2520 } \
2521 while (0)
2522#endif
2523
2524/* This implements the `alias' attribute. */
2525#undef ASM_OUTPUT_DEF_FROM_DECLS
2526#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2527 do \
2528 { \
2529 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2530 const char *name = IDENTIFIER_POINTER (TARGET); \
2531 if (TREE_CODE (DECL) == FUNCTION_DECL \
2532 && DEFAULT_ABI == ABI_AIX) \
2533 { \
2534 if (TREE_PUBLIC (DECL)) \
2535 { \
2536 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2537 { \
2538 fputs ("\t.globl\t.", FILE); \
cbaaba19 2539 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2540 putc ('\n', FILE); \
2541 } \
2542 } \
2543 else if (TARGET_XCOFF) \
2544 { \
2545 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2546 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2547 putc ('\n', FILE); \
2548 } \
2549 fputs ("\t.set\t.", FILE); \
cbaaba19 2550 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2551 fputs (",.", FILE); \
cbaaba19 2552 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2553 fputc ('\n', FILE); \
2554 } \
2555 ASM_OUTPUT_DEF (FILE, alias, name); \
2556 } \
2557 while (0)
290ad355 2558
f045b2c9
RS
2559/* Output to assembler file text saying following lines
2560 may contain character constants, extra white space, comments, etc. */
2561
2562#define ASM_APP_ON ""
2563
2564/* Output to assembler file text saying following lines
2565 no longer contain unusual constructs. */
2566
2567#define ASM_APP_OFF ""
2568
f045b2c9
RS
2569/* How to refer to registers in assembler output.
2570 This sequence is indexed by compiler's hard-register-number (see above). */
2571
82e41834 2572extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2573
2574#define REGISTER_NAMES \
2575{ \
2576 &rs6000_reg_names[ 0][0], /* r0 */ \
2577 &rs6000_reg_names[ 1][0], /* r1 */ \
2578 &rs6000_reg_names[ 2][0], /* r2 */ \
2579 &rs6000_reg_names[ 3][0], /* r3 */ \
2580 &rs6000_reg_names[ 4][0], /* r4 */ \
2581 &rs6000_reg_names[ 5][0], /* r5 */ \
2582 &rs6000_reg_names[ 6][0], /* r6 */ \
2583 &rs6000_reg_names[ 7][0], /* r7 */ \
2584 &rs6000_reg_names[ 8][0], /* r8 */ \
2585 &rs6000_reg_names[ 9][0], /* r9 */ \
2586 &rs6000_reg_names[10][0], /* r10 */ \
2587 &rs6000_reg_names[11][0], /* r11 */ \
2588 &rs6000_reg_names[12][0], /* r12 */ \
2589 &rs6000_reg_names[13][0], /* r13 */ \
2590 &rs6000_reg_names[14][0], /* r14 */ \
2591 &rs6000_reg_names[15][0], /* r15 */ \
2592 &rs6000_reg_names[16][0], /* r16 */ \
2593 &rs6000_reg_names[17][0], /* r17 */ \
2594 &rs6000_reg_names[18][0], /* r18 */ \
2595 &rs6000_reg_names[19][0], /* r19 */ \
2596 &rs6000_reg_names[20][0], /* r20 */ \
2597 &rs6000_reg_names[21][0], /* r21 */ \
2598 &rs6000_reg_names[22][0], /* r22 */ \
2599 &rs6000_reg_names[23][0], /* r23 */ \
2600 &rs6000_reg_names[24][0], /* r24 */ \
2601 &rs6000_reg_names[25][0], /* r25 */ \
2602 &rs6000_reg_names[26][0], /* r26 */ \
2603 &rs6000_reg_names[27][0], /* r27 */ \
2604 &rs6000_reg_names[28][0], /* r28 */ \
2605 &rs6000_reg_names[29][0], /* r29 */ \
2606 &rs6000_reg_names[30][0], /* r30 */ \
2607 &rs6000_reg_names[31][0], /* r31 */ \
2608 \
2609 &rs6000_reg_names[32][0], /* fr0 */ \
2610 &rs6000_reg_names[33][0], /* fr1 */ \
2611 &rs6000_reg_names[34][0], /* fr2 */ \
2612 &rs6000_reg_names[35][0], /* fr3 */ \
2613 &rs6000_reg_names[36][0], /* fr4 */ \
2614 &rs6000_reg_names[37][0], /* fr5 */ \
2615 &rs6000_reg_names[38][0], /* fr6 */ \
2616 &rs6000_reg_names[39][0], /* fr7 */ \
2617 &rs6000_reg_names[40][0], /* fr8 */ \
2618 &rs6000_reg_names[41][0], /* fr9 */ \
2619 &rs6000_reg_names[42][0], /* fr10 */ \
2620 &rs6000_reg_names[43][0], /* fr11 */ \
2621 &rs6000_reg_names[44][0], /* fr12 */ \
2622 &rs6000_reg_names[45][0], /* fr13 */ \
2623 &rs6000_reg_names[46][0], /* fr14 */ \
2624 &rs6000_reg_names[47][0], /* fr15 */ \
2625 &rs6000_reg_names[48][0], /* fr16 */ \
2626 &rs6000_reg_names[49][0], /* fr17 */ \
2627 &rs6000_reg_names[50][0], /* fr18 */ \
2628 &rs6000_reg_names[51][0], /* fr19 */ \
2629 &rs6000_reg_names[52][0], /* fr20 */ \
2630 &rs6000_reg_names[53][0], /* fr21 */ \
2631 &rs6000_reg_names[54][0], /* fr22 */ \
2632 &rs6000_reg_names[55][0], /* fr23 */ \
2633 &rs6000_reg_names[56][0], /* fr24 */ \
2634 &rs6000_reg_names[57][0], /* fr25 */ \
2635 &rs6000_reg_names[58][0], /* fr26 */ \
2636 &rs6000_reg_names[59][0], /* fr27 */ \
2637 &rs6000_reg_names[60][0], /* fr28 */ \
2638 &rs6000_reg_names[61][0], /* fr29 */ \
2639 &rs6000_reg_names[62][0], /* fr30 */ \
2640 &rs6000_reg_names[63][0], /* fr31 */ \
2641 \
2642 &rs6000_reg_names[64][0], /* mq */ \
2643 &rs6000_reg_names[65][0], /* lr */ \
2644 &rs6000_reg_names[66][0], /* ctr */ \
2645 &rs6000_reg_names[67][0], /* ap */ \
2646 \
2647 &rs6000_reg_names[68][0], /* cr0 */ \
2648 &rs6000_reg_names[69][0], /* cr1 */ \
2649 &rs6000_reg_names[70][0], /* cr2 */ \
2650 &rs6000_reg_names[71][0], /* cr3 */ \
2651 &rs6000_reg_names[72][0], /* cr4 */ \
2652 &rs6000_reg_names[73][0], /* cr5 */ \
2653 &rs6000_reg_names[74][0], /* cr6 */ \
2654 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2655 \
9ebbca7d 2656 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2657 \
2658 &rs6000_reg_names[77][0], /* v0 */ \
2659 &rs6000_reg_names[78][0], /* v1 */ \
2660 &rs6000_reg_names[79][0], /* v2 */ \
2661 &rs6000_reg_names[80][0], /* v3 */ \
2662 &rs6000_reg_names[81][0], /* v4 */ \
2663 &rs6000_reg_names[82][0], /* v5 */ \
2664 &rs6000_reg_names[83][0], /* v6 */ \
2665 &rs6000_reg_names[84][0], /* v7 */ \
2666 &rs6000_reg_names[85][0], /* v8 */ \
2667 &rs6000_reg_names[86][0], /* v9 */ \
2668 &rs6000_reg_names[87][0], /* v10 */ \
2669 &rs6000_reg_names[88][0], /* v11 */ \
2670 &rs6000_reg_names[89][0], /* v12 */ \
2671 &rs6000_reg_names[90][0], /* v13 */ \
2672 &rs6000_reg_names[91][0], /* v14 */ \
2673 &rs6000_reg_names[92][0], /* v15 */ \
2674 &rs6000_reg_names[93][0], /* v16 */ \
2675 &rs6000_reg_names[94][0], /* v17 */ \
2676 &rs6000_reg_names[95][0], /* v18 */ \
2677 &rs6000_reg_names[96][0], /* v19 */ \
2678 &rs6000_reg_names[97][0], /* v20 */ \
2679 &rs6000_reg_names[98][0], /* v21 */ \
2680 &rs6000_reg_names[99][0], /* v22 */ \
2681 &rs6000_reg_names[100][0], /* v23 */ \
2682 &rs6000_reg_names[101][0], /* v24 */ \
2683 &rs6000_reg_names[102][0], /* v25 */ \
2684 &rs6000_reg_names[103][0], /* v26 */ \
2685 &rs6000_reg_names[104][0], /* v27 */ \
2686 &rs6000_reg_names[105][0], /* v28 */ \
2687 &rs6000_reg_names[106][0], /* v29 */ \
2688 &rs6000_reg_names[107][0], /* v30 */ \
2689 &rs6000_reg_names[108][0], /* v31 */ \
2690 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2691 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2692 &rs6000_reg_names[111][0], /* spe_acc */ \
2693 &rs6000_reg_names[112][0], /* spefscr */ \
c81bebd7
MM
2694}
2695
2696/* print-rtl can't handle the above REGISTER_NAMES, so define the
2697 following for it. Switch to use the alternate names since
2698 they are more mnemonic. */
2699
2700#define DEBUG_REGISTER_NAMES \
2701{ \
802a0058
MM
2702 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2703 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2704 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2705 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2706 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2707 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2708 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2709 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2710 "mq", "lr", "ctr", "ap", \
2711 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
0ac081f6
AH
2712 "xer", \
2713 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2714 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2715 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2716 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
5f004351 2717 "vrsave", "vscr" \
a3170dc6 2718 , "spe_acc", "spefscr" \
c81bebd7 2719}
f045b2c9
RS
2720
2721/* Table of additional register names to use in user input. */
2722
2723#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2724 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2725 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2726 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2727 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2728 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2729 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2730 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2731 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2732 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2733 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2734 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2735 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2736 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2737 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2738 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2739 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2740 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2741 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2742 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2743 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2744 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2745 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2746 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2747 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2748 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2749 {"spe_acc", 111}, {"spefscr", 112}, \
c4d38ccb
MM
2750 /* no additional names for: mq, lr, ctr, ap */ \
2751 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2752 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2753 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2754
0da40b09
RK
2755/* Text to write out after a CALL that may be replaced by glue code by
2756 the loader. This depends on the AIX version. */
2757#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2758
f045b2c9
RS
2759/* This is how to output an element of a case-vector that is relative. */
2760
e1565e65 2761#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2762 do { char buf[100]; \
e1565e65 2763 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2764 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2765 assemble_name (FILE, buf); \
19d2d16f 2766 putc ('-', FILE); \
3daf36a4
ILT
2767 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2768 assemble_name (FILE, buf); \
19d2d16f 2769 putc ('\n', FILE); \
3daf36a4 2770 } while (0)
f045b2c9
RS
2771
2772/* This is how to output an assembler line
2773 that says to advance the location counter
2774 to a multiple of 2**LOG bytes. */
2775
2776#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2777 if ((LOG) != 0) \
2778 fprintf (FILE, "\t.align %d\n", (LOG))
2779
f045b2c9
RS
2780/* Store in OUTPUT a string (made with alloca) containing
2781 an assembler-name for a local static variable named NAME.
2782 LABELNO is an integer which is different for each call. */
2783
2784#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2785( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2786 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2787
9ebbca7d
GK
2788/* Pick up the return address upon entry to a procedure. Used for
2789 dwarf2 unwind information. This also enables the table driven
2790 mechanism. */
2791
2792#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2793#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2794
83720594
RH
2795/* Describe how we implement __builtin_eh_return. */
2796#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2797#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2798
f045b2c9
RS
2799/* Print operand X (an rtx) in assembler syntax to file FILE.
2800 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2801 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2802
2803#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2804
2805/* Define which CODE values are valid. */
2806
c81bebd7 2807#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
6fa3f289 2808 ((CODE) == '.')
f045b2c9
RS
2809
2810/* Print a memory address as an operand to reference that memory location. */
2811
2812#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2813
2814/* Define the codes that are matched by predicates in rs6000.c. */
2815
39a10a29 2816#define PREDICATE_CODES \
a65c591c 2817 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
df15fbc7 2818 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
a65c591c
DE
2819 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2820 LABEL_REF, SUBREG, REG, MEM}}, \
39a10a29
GK
2821 {"short_cint_operand", {CONST_INT}}, \
2822 {"u_short_cint_operand", {CONST_INT}}, \
2823 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2824 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2825 {"gpc_reg_operand", {SUBREG, REG}}, \
2826 {"cc_reg_operand", {SUBREG, REG}}, \
2827 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2828 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2829 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2830 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2831 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2832 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2833 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2834 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2835 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2836 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2837 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2838 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2839 {"easy_fp_constant", {CONST_DOUBLE}}, \
50a0b056 2840 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2841 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2842 {"lwa_operand", {SUBREG, MEM, REG}}, \
2843 {"volatile_mem_operand", {MEM}}, \
2844 {"offsettable_mem_operand", {MEM}}, \
2845 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2846 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2847 {"non_add_cint_operand", {CONST_INT}}, \
2848 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2849 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
0ba1b2ff 2850 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2851 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2852 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2853 {"mask_operand", {CONST_INT}}, \
0ba1b2ff
AM
2854 {"mask_operand_wrap", {CONST_INT}}, \
2855 {"mask64_operand", {CONST_INT}}, \
2856 {"mask64_2_operand", {CONST_INT}}, \
39a10a29
GK
2857 {"count_register_operand", {REG}}, \
2858 {"xer_operand", {REG}}, \
cc4d5fec 2859 {"symbol_ref_operand", {SYMBOL_REF}}, \
39a10a29
GK
2860 {"call_operand", {SYMBOL_REF, REG}}, \
2861 {"current_file_function_operand", {SYMBOL_REF}}, \
2862 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2863 CONST_DOUBLE, SYMBOL_REF}}, \
2864 {"load_multiple_operation", {PARALLEL}}, \
2865 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2866 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2867 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2868 GT, LEU, LTU, GEU, GTU, \
2869 UNORDERED, ORDERED, \
2870 UNGE, UNLE }}, \
2871 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2872 UNORDERED }}, \
2873 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2874 GT, LEU, LTU, GEU, GTU, \
2875 UNORDERED, ORDERED, \
2876 UNGE, UNLE }}, \
2877 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2878 GT, LEU, LTU, GEU, GTU}}, \
2879 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2880 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2881 {"altivec_register_operand", {REG}}, \
50a0b056 2882 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2883
b6c9286a
MM
2884/* uncomment for disabling the corresponding default options */
2885/* #define MACHINE_no_sched_interblock */
2886/* #define MACHINE_no_sched_speculative */
2887/* #define MACHINE_no_sched_speculative_load */
2888
766a866c
MM
2889/* General flags. */
2890extern int flag_pic;
354b734b
MM
2891extern int optimize;
2892extern int flag_expensive_optimizations;
a7df97e6 2893extern int frame_pointer_needed;
0ac081f6
AH
2894
2895enum rs6000_builtins
2896{
2897 /* AltiVec builtins. */
f18c054f
DB
2898 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2899 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2900 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2901 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2902 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2903 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2904 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2905 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2906 ALTIVEC_BUILTIN_VADDUBM,
2907 ALTIVEC_BUILTIN_VADDUHM,
2908 ALTIVEC_BUILTIN_VADDUWM,
2909 ALTIVEC_BUILTIN_VADDFP,
2910 ALTIVEC_BUILTIN_VADDCUW,
2911 ALTIVEC_BUILTIN_VADDUBS,
2912 ALTIVEC_BUILTIN_VADDSBS,
2913 ALTIVEC_BUILTIN_VADDUHS,
2914 ALTIVEC_BUILTIN_VADDSHS,
2915 ALTIVEC_BUILTIN_VADDUWS,
2916 ALTIVEC_BUILTIN_VADDSWS,
2917 ALTIVEC_BUILTIN_VAND,
2918 ALTIVEC_BUILTIN_VANDC,
2919 ALTIVEC_BUILTIN_VAVGUB,
2920 ALTIVEC_BUILTIN_VAVGSB,
2921 ALTIVEC_BUILTIN_VAVGUH,
2922 ALTIVEC_BUILTIN_VAVGSH,
2923 ALTIVEC_BUILTIN_VAVGUW,
2924 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2925 ALTIVEC_BUILTIN_VCFUX,
2926 ALTIVEC_BUILTIN_VCFSX,
2927 ALTIVEC_BUILTIN_VCTSXS,
2928 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2929 ALTIVEC_BUILTIN_VCMPBFP,
2930 ALTIVEC_BUILTIN_VCMPEQUB,
2931 ALTIVEC_BUILTIN_VCMPEQUH,
2932 ALTIVEC_BUILTIN_VCMPEQUW,
2933 ALTIVEC_BUILTIN_VCMPEQFP,
2934 ALTIVEC_BUILTIN_VCMPGEFP,
2935 ALTIVEC_BUILTIN_VCMPGTUB,
2936 ALTIVEC_BUILTIN_VCMPGTSB,
2937 ALTIVEC_BUILTIN_VCMPGTUH,
2938 ALTIVEC_BUILTIN_VCMPGTSH,
2939 ALTIVEC_BUILTIN_VCMPGTUW,
2940 ALTIVEC_BUILTIN_VCMPGTSW,
2941 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2942 ALTIVEC_BUILTIN_VEXPTEFP,
2943 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2944 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2945 ALTIVEC_BUILTIN_VMAXUB,
2946 ALTIVEC_BUILTIN_VMAXSB,
2947 ALTIVEC_BUILTIN_VMAXUH,
2948 ALTIVEC_BUILTIN_VMAXSH,
2949 ALTIVEC_BUILTIN_VMAXUW,
2950 ALTIVEC_BUILTIN_VMAXSW,
2951 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2952 ALTIVEC_BUILTIN_VMHADDSHS,
2953 ALTIVEC_BUILTIN_VMHRADDSHS,
2954 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2955 ALTIVEC_BUILTIN_VMRGHB,
2956 ALTIVEC_BUILTIN_VMRGHH,
2957 ALTIVEC_BUILTIN_VMRGHW,
2958 ALTIVEC_BUILTIN_VMRGLB,
2959 ALTIVEC_BUILTIN_VMRGLH,
2960 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2961 ALTIVEC_BUILTIN_VMSUMUBM,
2962 ALTIVEC_BUILTIN_VMSUMMBM,
2963 ALTIVEC_BUILTIN_VMSUMUHM,
2964 ALTIVEC_BUILTIN_VMSUMSHM,
2965 ALTIVEC_BUILTIN_VMSUMUHS,
2966 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2967 ALTIVEC_BUILTIN_VMINUB,
2968 ALTIVEC_BUILTIN_VMINSB,
2969 ALTIVEC_BUILTIN_VMINUH,
2970 ALTIVEC_BUILTIN_VMINSH,
2971 ALTIVEC_BUILTIN_VMINUW,
2972 ALTIVEC_BUILTIN_VMINSW,
2973 ALTIVEC_BUILTIN_VMINFP,
2974 ALTIVEC_BUILTIN_VMULEUB,
2975 ALTIVEC_BUILTIN_VMULESB,
2976 ALTIVEC_BUILTIN_VMULEUH,
2977 ALTIVEC_BUILTIN_VMULESH,
2978 ALTIVEC_BUILTIN_VMULOUB,
2979 ALTIVEC_BUILTIN_VMULOSB,
2980 ALTIVEC_BUILTIN_VMULOUH,
2981 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2982 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2983 ALTIVEC_BUILTIN_VNOR,
2984 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2985 ALTIVEC_BUILTIN_VSEL_4SI,
2986 ALTIVEC_BUILTIN_VSEL_4SF,
2987 ALTIVEC_BUILTIN_VSEL_8HI,
2988 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2989 ALTIVEC_BUILTIN_VPERM_4SI,
2990 ALTIVEC_BUILTIN_VPERM_4SF,
2991 ALTIVEC_BUILTIN_VPERM_8HI,
2992 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2993 ALTIVEC_BUILTIN_VPKUHUM,
2994 ALTIVEC_BUILTIN_VPKUWUM,
2995 ALTIVEC_BUILTIN_VPKPX,
2996 ALTIVEC_BUILTIN_VPKUHSS,
2997 ALTIVEC_BUILTIN_VPKSHSS,
2998 ALTIVEC_BUILTIN_VPKUWSS,
2999 ALTIVEC_BUILTIN_VPKSWSS,
3000 ALTIVEC_BUILTIN_VPKUHUS,
3001 ALTIVEC_BUILTIN_VPKSHUS,
3002 ALTIVEC_BUILTIN_VPKUWUS,
3003 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
3004 ALTIVEC_BUILTIN_VREFP,
3005 ALTIVEC_BUILTIN_VRFIM,
3006 ALTIVEC_BUILTIN_VRFIN,
3007 ALTIVEC_BUILTIN_VRFIP,
3008 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
3009 ALTIVEC_BUILTIN_VRLB,
3010 ALTIVEC_BUILTIN_VRLH,
3011 ALTIVEC_BUILTIN_VRLW,
617e0e1d 3012 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
3013 ALTIVEC_BUILTIN_VSLB,
3014 ALTIVEC_BUILTIN_VSLH,
3015 ALTIVEC_BUILTIN_VSLW,
3016 ALTIVEC_BUILTIN_VSL,
3017 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
3018 ALTIVEC_BUILTIN_VSPLTB,
3019 ALTIVEC_BUILTIN_VSPLTH,
3020 ALTIVEC_BUILTIN_VSPLTW,
3021 ALTIVEC_BUILTIN_VSPLTISB,
3022 ALTIVEC_BUILTIN_VSPLTISH,
3023 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 3024 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
3025 ALTIVEC_BUILTIN_VSRH,
3026 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
3027 ALTIVEC_BUILTIN_VSRAB,
3028 ALTIVEC_BUILTIN_VSRAH,
3029 ALTIVEC_BUILTIN_VSRAW,
3030 ALTIVEC_BUILTIN_VSR,
3031 ALTIVEC_BUILTIN_VSRO,
3032 ALTIVEC_BUILTIN_VSUBUBM,
3033 ALTIVEC_BUILTIN_VSUBUHM,
3034 ALTIVEC_BUILTIN_VSUBUWM,
3035 ALTIVEC_BUILTIN_VSUBFP,
3036 ALTIVEC_BUILTIN_VSUBCUW,
3037 ALTIVEC_BUILTIN_VSUBUBS,
3038 ALTIVEC_BUILTIN_VSUBSBS,
3039 ALTIVEC_BUILTIN_VSUBUHS,
3040 ALTIVEC_BUILTIN_VSUBSHS,
3041 ALTIVEC_BUILTIN_VSUBUWS,
3042 ALTIVEC_BUILTIN_VSUBSWS,
3043 ALTIVEC_BUILTIN_VSUM4UBS,
3044 ALTIVEC_BUILTIN_VSUM4SBS,
3045 ALTIVEC_BUILTIN_VSUM4SHS,
3046 ALTIVEC_BUILTIN_VSUM2SWS,
3047 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
3048 ALTIVEC_BUILTIN_VXOR,
3049 ALTIVEC_BUILTIN_VSLDOI_16QI,
3050 ALTIVEC_BUILTIN_VSLDOI_8HI,
3051 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
3052 ALTIVEC_BUILTIN_VSLDOI_4SF,
3053 ALTIVEC_BUILTIN_VUPKHSB,
3054 ALTIVEC_BUILTIN_VUPKHPX,
3055 ALTIVEC_BUILTIN_VUPKHSH,
3056 ALTIVEC_BUILTIN_VUPKLSB,
3057 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 3058 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
3059 ALTIVEC_BUILTIN_MTVSCR,
3060 ALTIVEC_BUILTIN_MFVSCR,
3061 ALTIVEC_BUILTIN_DSSALL,
3062 ALTIVEC_BUILTIN_DSS,
3063 ALTIVEC_BUILTIN_LVSL,
3064 ALTIVEC_BUILTIN_LVSR,
3065 ALTIVEC_BUILTIN_DSTT,
3066 ALTIVEC_BUILTIN_DSTST,
3067 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
3068 ALTIVEC_BUILTIN_DST,
3069 ALTIVEC_BUILTIN_LVEBX,
3070 ALTIVEC_BUILTIN_LVEHX,
3071 ALTIVEC_BUILTIN_LVEWX,
3072 ALTIVEC_BUILTIN_LVXL,
3073 ALTIVEC_BUILTIN_LVX,
3074 ALTIVEC_BUILTIN_STVX,
3075 ALTIVEC_BUILTIN_STVEBX,
3076 ALTIVEC_BUILTIN_STVEHX,
3077 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
3078 ALTIVEC_BUILTIN_STVXL,
3079 ALTIVEC_BUILTIN_VCMPBFP_P,
3080 ALTIVEC_BUILTIN_VCMPEQFP_P,
3081 ALTIVEC_BUILTIN_VCMPEQUB_P,
3082 ALTIVEC_BUILTIN_VCMPEQUH_P,
3083 ALTIVEC_BUILTIN_VCMPEQUW_P,
3084 ALTIVEC_BUILTIN_VCMPGEFP_P,
3085 ALTIVEC_BUILTIN_VCMPGTFP_P,
3086 ALTIVEC_BUILTIN_VCMPGTSB_P,
3087 ALTIVEC_BUILTIN_VCMPGTSH_P,
3088 ALTIVEC_BUILTIN_VCMPGTSW_P,
3089 ALTIVEC_BUILTIN_VCMPGTUB_P,
3090 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
3091 ALTIVEC_BUILTIN_VCMPGTUW_P,
3092 ALTIVEC_BUILTIN_ABSS_V4SI,
3093 ALTIVEC_BUILTIN_ABSS_V8HI,
3094 ALTIVEC_BUILTIN_ABSS_V16QI,
3095 ALTIVEC_BUILTIN_ABS_V4SI,
3096 ALTIVEC_BUILTIN_ABS_V4SF,
3097 ALTIVEC_BUILTIN_ABS_V8HI,
3098 ALTIVEC_BUILTIN_ABS_V16QI
a3170dc6
AH
3099 /* SPE builtins. */
3100 , SPE_BUILTIN_EVADDW,
3101 SPE_BUILTIN_EVAND,
3102 SPE_BUILTIN_EVANDC,
3103 SPE_BUILTIN_EVDIVWS,
3104 SPE_BUILTIN_EVDIVWU,
3105 SPE_BUILTIN_EVEQV,
3106 SPE_BUILTIN_EVFSADD,
3107 SPE_BUILTIN_EVFSDIV,
3108 SPE_BUILTIN_EVFSMUL,
3109 SPE_BUILTIN_EVFSSUB,
3110 SPE_BUILTIN_EVLDDX,
3111 SPE_BUILTIN_EVLDHX,
3112 SPE_BUILTIN_EVLDWX,
3113 SPE_BUILTIN_EVLHHESPLATX,
3114 SPE_BUILTIN_EVLHHOSSPLATX,
3115 SPE_BUILTIN_EVLHHOUSPLATX,
3116 SPE_BUILTIN_EVLWHEX,
3117 SPE_BUILTIN_EVLWHOSX,
3118 SPE_BUILTIN_EVLWHOUX,
3119 SPE_BUILTIN_EVLWHSPLATX,
3120 SPE_BUILTIN_EVLWWSPLATX,
3121 SPE_BUILTIN_EVMERGEHI,
3122 SPE_BUILTIN_EVMERGEHILO,
3123 SPE_BUILTIN_EVMERGELO,
3124 SPE_BUILTIN_EVMERGELOHI,
3125 SPE_BUILTIN_EVMHEGSMFAA,
3126 SPE_BUILTIN_EVMHEGSMFAN,
3127 SPE_BUILTIN_EVMHEGSMIAA,
3128 SPE_BUILTIN_EVMHEGSMIAN,
3129 SPE_BUILTIN_EVMHEGUMIAA,
3130 SPE_BUILTIN_EVMHEGUMIAN,
3131 SPE_BUILTIN_EVMHESMF,
3132 SPE_BUILTIN_EVMHESMFA,
3133 SPE_BUILTIN_EVMHESMFAAW,
3134 SPE_BUILTIN_EVMHESMFANW,
3135 SPE_BUILTIN_EVMHESMI,
3136 SPE_BUILTIN_EVMHESMIA,
3137 SPE_BUILTIN_EVMHESMIAAW,
3138 SPE_BUILTIN_EVMHESMIANW,
3139 SPE_BUILTIN_EVMHESSF,
3140 SPE_BUILTIN_EVMHESSFA,
3141 SPE_BUILTIN_EVMHESSFAAW,
3142 SPE_BUILTIN_EVMHESSFANW,
3143 SPE_BUILTIN_EVMHESSIAAW,
3144 SPE_BUILTIN_EVMHESSIANW,
3145 SPE_BUILTIN_EVMHEUMI,
3146 SPE_BUILTIN_EVMHEUMIA,
3147 SPE_BUILTIN_EVMHEUMIAAW,
3148 SPE_BUILTIN_EVMHEUMIANW,
3149 SPE_BUILTIN_EVMHEUSIAAW,
3150 SPE_BUILTIN_EVMHEUSIANW,
3151 SPE_BUILTIN_EVMHOGSMFAA,
3152 SPE_BUILTIN_EVMHOGSMFAN,
3153 SPE_BUILTIN_EVMHOGSMIAA,
3154 SPE_BUILTIN_EVMHOGSMIAN,
3155 SPE_BUILTIN_EVMHOGUMIAA,
3156 SPE_BUILTIN_EVMHOGUMIAN,
3157 SPE_BUILTIN_EVMHOSMF,
3158 SPE_BUILTIN_EVMHOSMFA,
3159 SPE_BUILTIN_EVMHOSMFAAW,
3160 SPE_BUILTIN_EVMHOSMFANW,
3161 SPE_BUILTIN_EVMHOSMI,
3162 SPE_BUILTIN_EVMHOSMIA,
3163 SPE_BUILTIN_EVMHOSMIAAW,
3164 SPE_BUILTIN_EVMHOSMIANW,
3165 SPE_BUILTIN_EVMHOSSF,
3166 SPE_BUILTIN_EVMHOSSFA,
3167 SPE_BUILTIN_EVMHOSSFAAW,
3168 SPE_BUILTIN_EVMHOSSFANW,
3169 SPE_BUILTIN_EVMHOSSIAAW,
3170 SPE_BUILTIN_EVMHOSSIANW,
3171 SPE_BUILTIN_EVMHOUMI,
3172 SPE_BUILTIN_EVMHOUMIA,
3173 SPE_BUILTIN_EVMHOUMIAAW,
3174 SPE_BUILTIN_EVMHOUMIANW,
3175 SPE_BUILTIN_EVMHOUSIAAW,
3176 SPE_BUILTIN_EVMHOUSIANW,
3177 SPE_BUILTIN_EVMWHSMF,
3178 SPE_BUILTIN_EVMWHSMFA,
3179 SPE_BUILTIN_EVMWHSMI,
3180 SPE_BUILTIN_EVMWHSMIA,
3181 SPE_BUILTIN_EVMWHSSF,
3182 SPE_BUILTIN_EVMWHSSFA,
3183 SPE_BUILTIN_EVMWHUMI,
3184 SPE_BUILTIN_EVMWHUMIA,
a3170dc6
AH
3185 SPE_BUILTIN_EVMWLSMIAAW,
3186 SPE_BUILTIN_EVMWLSMIANW,
a3170dc6
AH
3187 SPE_BUILTIN_EVMWLSSIAAW,
3188 SPE_BUILTIN_EVMWLSSIANW,
3189 SPE_BUILTIN_EVMWLUMI,
3190 SPE_BUILTIN_EVMWLUMIA,
3191 SPE_BUILTIN_EVMWLUMIAAW,
3192 SPE_BUILTIN_EVMWLUMIANW,
3193 SPE_BUILTIN_EVMWLUSIAAW,
3194 SPE_BUILTIN_EVMWLUSIANW,
3195 SPE_BUILTIN_EVMWSMF,
3196 SPE_BUILTIN_EVMWSMFA,
3197 SPE_BUILTIN_EVMWSMFAA,
3198 SPE_BUILTIN_EVMWSMFAN,
3199 SPE_BUILTIN_EVMWSMI,
3200 SPE_BUILTIN_EVMWSMIA,
3201 SPE_BUILTIN_EVMWSMIAA,
3202 SPE_BUILTIN_EVMWSMIAN,
3203 SPE_BUILTIN_EVMWHSSFAA,
3204 SPE_BUILTIN_EVMWSSF,
3205 SPE_BUILTIN_EVMWSSFA,
3206 SPE_BUILTIN_EVMWSSFAA,
3207 SPE_BUILTIN_EVMWSSFAN,
3208 SPE_BUILTIN_EVMWUMI,
3209 SPE_BUILTIN_EVMWUMIA,
3210 SPE_BUILTIN_EVMWUMIAA,
3211 SPE_BUILTIN_EVMWUMIAN,
3212 SPE_BUILTIN_EVNAND,
3213 SPE_BUILTIN_EVNOR,
3214 SPE_BUILTIN_EVOR,
3215 SPE_BUILTIN_EVORC,
3216 SPE_BUILTIN_EVRLW,
3217 SPE_BUILTIN_EVSLW,
3218 SPE_BUILTIN_EVSRWS,
3219 SPE_BUILTIN_EVSRWU,
3220 SPE_BUILTIN_EVSTDDX,
3221 SPE_BUILTIN_EVSTDHX,
3222 SPE_BUILTIN_EVSTDWX,
3223 SPE_BUILTIN_EVSTWHEX,
3224 SPE_BUILTIN_EVSTWHOX,
3225 SPE_BUILTIN_EVSTWWEX,
3226 SPE_BUILTIN_EVSTWWOX,
3227 SPE_BUILTIN_EVSUBFW,
3228 SPE_BUILTIN_EVXOR,
3229 SPE_BUILTIN_EVABS,
3230 SPE_BUILTIN_EVADDSMIAAW,
3231 SPE_BUILTIN_EVADDSSIAAW,
3232 SPE_BUILTIN_EVADDUMIAAW,
3233 SPE_BUILTIN_EVADDUSIAAW,
3234 SPE_BUILTIN_EVCNTLSW,
3235 SPE_BUILTIN_EVCNTLZW,
3236 SPE_BUILTIN_EVEXTSB,
3237 SPE_BUILTIN_EVEXTSH,
3238 SPE_BUILTIN_EVFSABS,
3239 SPE_BUILTIN_EVFSCFSF,
3240 SPE_BUILTIN_EVFSCFSI,
3241 SPE_BUILTIN_EVFSCFUF,
3242 SPE_BUILTIN_EVFSCFUI,
3243 SPE_BUILTIN_EVFSCTSF,
3244 SPE_BUILTIN_EVFSCTSI,
3245 SPE_BUILTIN_EVFSCTSIZ,
3246 SPE_BUILTIN_EVFSCTUF,
3247 SPE_BUILTIN_EVFSCTUI,
3248 SPE_BUILTIN_EVFSCTUIZ,
3249 SPE_BUILTIN_EVFSNABS,
3250 SPE_BUILTIN_EVFSNEG,
3251 SPE_BUILTIN_EVMRA,
3252 SPE_BUILTIN_EVNEG,
3253 SPE_BUILTIN_EVRNDW,
3254 SPE_BUILTIN_EVSUBFSMIAAW,
3255 SPE_BUILTIN_EVSUBFSSIAAW,
3256 SPE_BUILTIN_EVSUBFUMIAAW,
3257 SPE_BUILTIN_EVSUBFUSIAAW,
3258 SPE_BUILTIN_EVADDIW,
3259 SPE_BUILTIN_EVLDD,
3260 SPE_BUILTIN_EVLDH,
3261 SPE_BUILTIN_EVLDW,
3262 SPE_BUILTIN_EVLHHESPLAT,
3263 SPE_BUILTIN_EVLHHOSSPLAT,
3264 SPE_BUILTIN_EVLHHOUSPLAT,
3265 SPE_BUILTIN_EVLWHE,
3266 SPE_BUILTIN_EVLWHOS,
3267 SPE_BUILTIN_EVLWHOU,
3268 SPE_BUILTIN_EVLWHSPLAT,
3269 SPE_BUILTIN_EVLWWSPLAT,
3270 SPE_BUILTIN_EVRLWI,
3271 SPE_BUILTIN_EVSLWI,
3272 SPE_BUILTIN_EVSRWIS,
3273 SPE_BUILTIN_EVSRWIU,
3274 SPE_BUILTIN_EVSTDD,
3275 SPE_BUILTIN_EVSTDH,
3276 SPE_BUILTIN_EVSTDW,
3277 SPE_BUILTIN_EVSTWHE,
3278 SPE_BUILTIN_EVSTWHO,
3279 SPE_BUILTIN_EVSTWWE,
3280 SPE_BUILTIN_EVSTWWO,
3281 SPE_BUILTIN_EVSUBIFW,
3282
3283 /* Compares. */
3284 SPE_BUILTIN_EVCMPEQ,
3285 SPE_BUILTIN_EVCMPGTS,
3286 SPE_BUILTIN_EVCMPGTU,
3287 SPE_BUILTIN_EVCMPLTS,
3288 SPE_BUILTIN_EVCMPLTU,
3289 SPE_BUILTIN_EVFSCMPEQ,
3290 SPE_BUILTIN_EVFSCMPGT,
3291 SPE_BUILTIN_EVFSCMPLT,
3292 SPE_BUILTIN_EVFSTSTEQ,
3293 SPE_BUILTIN_EVFSTSTGT,
3294 SPE_BUILTIN_EVFSTSTLT,
3295
3296 /* EVSEL compares. */
3297 SPE_BUILTIN_EVSEL_CMPEQ,
3298 SPE_BUILTIN_EVSEL_CMPGTS,
3299 SPE_BUILTIN_EVSEL_CMPGTU,
3300 SPE_BUILTIN_EVSEL_CMPLTS,
3301 SPE_BUILTIN_EVSEL_CMPLTU,
3302 SPE_BUILTIN_EVSEL_FSCMPEQ,
3303 SPE_BUILTIN_EVSEL_FSCMPGT,
3304 SPE_BUILTIN_EVSEL_FSCMPLT,
3305 SPE_BUILTIN_EVSEL_FSTSTEQ,
3306 SPE_BUILTIN_EVSEL_FSTSTGT,
3307 SPE_BUILTIN_EVSEL_FSTSTLT,
3308
3309 SPE_BUILTIN_EVSPLATFI,
3310 SPE_BUILTIN_EVSPLATI,
3311 SPE_BUILTIN_EVMWHSSMAA,
3312 SPE_BUILTIN_EVMWHSMFAA,
3313 SPE_BUILTIN_EVMWHSMIAA,
3314 SPE_BUILTIN_EVMWHUSIAA,
3315 SPE_BUILTIN_EVMWHUMIAA,
3316 SPE_BUILTIN_EVMWHSSFAN,
3317 SPE_BUILTIN_EVMWHSSIAN,
3318 SPE_BUILTIN_EVMWHSMFAN,
3319 SPE_BUILTIN_EVMWHSMIAN,
3320 SPE_BUILTIN_EVMWHUSIAN,
3321 SPE_BUILTIN_EVMWHUMIAN,
3322 SPE_BUILTIN_EVMWHGSSFAA,
3323 SPE_BUILTIN_EVMWHGSMFAA,
3324 SPE_BUILTIN_EVMWHGSMIAA,
3325 SPE_BUILTIN_EVMWHGUMIAA,
3326 SPE_BUILTIN_EVMWHGSSFAN,
3327 SPE_BUILTIN_EVMWHGSMFAN,
3328 SPE_BUILTIN_EVMWHGSMIAN,
3329 SPE_BUILTIN_EVMWHGUMIAN,
3330 SPE_BUILTIN_MTSPEFSCR,
3331 SPE_BUILTIN_MFSPEFSCR,
3332 SPE_BUILTIN_BRINC
0ac081f6 3333};