]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
arm.h (enum floating_point_type): Delete.
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
c58b209a 3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
f045b2c9
RS
22
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
8e3f41e7
MM
44/* Default string to use for cpu if not specified. */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
f984d8df
DB
49/* Common ASM definitions used by ASM_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51#define ASM_CPU_SPEC \
52"%{!mcpu*: \
53 %{mpower: %{!mpower2: -mpwr}} \
54 %{mpower2: -mpwrx} \
55 %{mpowerpc*: -mppc} \
56 %{mno-power: %{!mpowerpc*: -mcom}} \
57 %{!mno-power: %{!mpower2: %(asm_default)}}} \
58%{mcpu=common: -mcom} \
59%{mcpu=power: -mpwr} \
60%{mcpu=power2: -mpwrx} \
309323c2 61%{mcpu=power3: -m604} \
957e9e48 62%{mcpu=power4: -mpower4} \
f984d8df
DB
63%{mcpu=powerpc: -mppc} \
64%{mcpu=rios: -mpwr} \
65%{mcpu=rios1: -mpwr} \
66%{mcpu=rios2: -mpwrx} \
67%{mcpu=rsc: -mpwr} \
68%{mcpu=rsc1: -mpwr} \
69%{mcpu=401: -mppc} \
61a8515c
JS
70%{mcpu=403: -m403} \
71%{mcpu=405: -m405} \
4977bab6 72%{mcpu=405f: -m405} \
f984d8df
DB
73%{mcpu=505: -mppc} \
74%{mcpu=601: -m601} \
75%{mcpu=602: -mppc} \
76%{mcpu=603: -mppc} \
77%{mcpu=603e: -mppc} \
78%{mcpu=ec603e: -mppc} \
79%{mcpu=604: -mppc} \
80%{mcpu=604e: -mppc} \
81%{mcpu=620: -mppc} \
309323c2 82%{mcpu=630: -m604} \
f984d8df 83%{mcpu=740: -mppc} \
fd3b43f2 84%{mcpu=7400: -mppc} \
f18c054f 85%{mcpu=7450: -mppc} \
f984d8df
DB
86%{mcpu=750: -mppc} \
87%{mcpu=801: -mppc} \
88%{mcpu=821: -mppc} \
89%{mcpu=823: -mppc} \
775db490 90%{mcpu=860: -mppc} \
a3170dc6 91%{mcpu=8540: -me500} \
775db490 92%{maltivec: -maltivec}"
f984d8df
DB
93
94#define CPP_DEFAULT_SPEC ""
95
96#define ASM_DEFAULT_SPEC ""
97
841faeed
MM
98/* This macro defines names of additional specifications to put in the specs
99 that can be used in various specifications like CC1_SPEC. Its definition
100 is an initializer with a subgrouping for each command option.
101
102 Each subgrouping contains a string constant, that defines the
103 specification name, and a string constant that used by the GNU CC driver
104 program.
105
106 Do not define this macro if it does not need to do anything. */
107
7509c759 108#define SUBTARGET_EXTRA_SPECS
7509c759 109
c81bebd7 110#define EXTRA_SPECS \
c81bebd7 111 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
112 { "asm_cpu", ASM_CPU_SPEC }, \
113 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
114 SUBTARGET_EXTRA_SPECS
115
fb623df5 116/* Architecture type. */
f045b2c9 117
fb623df5
RK
118extern int target_flags;
119
120/* Use POWER architecture instructions and MQ register. */
38c1f2d7 121#define MASK_POWER 0x00000001
fb623df5 122
6febd581 123/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 124#define MASK_POWER2 0x00000002
6febd581 125
fb623df5 126/* Use PowerPC architecture instructions. */
38c1f2d7 127#define MASK_POWERPC 0x00000004
6febd581 128
583cf4db 129/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 130#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
131
132/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 133#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 134
fb623df5 135/* Use PowerPC-64 architecture instructions. */
38c1f2d7 136#define MASK_POWERPC64 0x00000020
f045b2c9 137
fb623df5 138/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 139#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
140
141/* Disable placing fp constants in the TOC; can be turned on when the
142 TOC overflows. */
38c1f2d7 143#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 144
0b9ccabc
RK
145/* Disable placing symbol+offset constants in the TOC; can be turned on when
146 the TOC overflows. */
38c1f2d7 147#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 148
fb623df5 149/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
150 there are more than 16K unique variables/constants in an executable. With
151 this option, linking fails only if there are more than 16K modules, or
152 if there are more than 16K unique variables/constant in a single module.
153
154 This is at the cost of having 2 extra loads and one extra store per
956d6950 155 function, and one less allocable register. */
38c1f2d7 156#define MASK_MINIMAL_TOC 0x00000200
642a35f1 157
b1765bde 158/* Nonzero for the 64bit model: longs and pointers are 64 bits. */
38c1f2d7 159#define MASK_64BIT 0x00000400
9e654916 160
f85f4585 161/* Disable use of FPRs. */
38c1f2d7 162#define MASK_SOFT_FLOAT 0x00000800
f85f4585 163
88cad84b 164/* Enable load/store multiple, even on PowerPC */
b21fb038 165#define MASK_MULTIPLE 0x00001000
4d30c363 166
7e69e155 167/* Use string instructions for block moves */
b21fb038 168#define MASK_STRING 0x00002000
7e69e155 169
38c1f2d7 170/* Disable update form of load/store */
b21fb038 171#define MASK_NO_UPDATE 0x00004000
38c1f2d7
MM
172
173/* Disable fused multiply/add operations */
b21fb038 174#define MASK_NO_FUSED_MADD 0x00008000
4697a36c 175
9ebbca7d 176/* Nonzero if we need to schedule the prolog and epilog. */
b21fb038 177#define MASK_SCHED_PROLOG 0x00010000
9ebbca7d 178
0ac081f6 179/* Use AltiVec instructions. */
b21fb038 180#define MASK_ALTIVEC 0x00020000
0ac081f6 181
6fa3f289 182/* Return small structures in memory (as the AIX ABI requires). */
b21fb038 183#define MASK_AIX_STRUCT_RET 0x00040000
0ac081f6 184
b21fb038 185/* The only remaining free bits are 0x00780000. sysv4.h uses
6fa3f289
ZW
186 0x00800000 -> 0x40000000, and 0x80000000 is not available
187 because target_flags is signed. */
06f4e019 188
7e69e155
MM
189#define TARGET_POWER (target_flags & MASK_POWER)
190#define TARGET_POWER2 (target_flags & MASK_POWER2)
191#define TARGET_POWERPC (target_flags & MASK_POWERPC)
192#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
193#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
194#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
195#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
196#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
197#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
198#define TARGET_64BIT (target_flags & MASK_64BIT)
199#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
b21fb038 200#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
7e69e155 201#define TARGET_STRING (target_flags & MASK_STRING)
38c1f2d7
MM
202#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
203#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 204#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 205#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 206#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 207
2f3e5814 208#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 209#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
210#define TARGET_UPDATE (! TARGET_NO_UPDATE)
211#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 212
996ed075
JJ
213#ifdef IN_LIBGCC2
214/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 215#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
216#define TARGET_POWERPC64 1
217#else
218#define TARGET_POWERPC64 0
219#endif
b6c9286a 220#else
9ebbca7d 221#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
222#endif
223
a3950905 224#define TARGET_XL_CALL 0
a3950905 225
fb623df5 226/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 227
fb623df5 228 Macro to define tables used to set the flags.
f045b2c9
RS
229 This is a list in braces of pairs in braces,
230 each pair being { "NAME", VALUE }
231 where VALUE is the bits to set or minus the bits to clear.
232 An empty string NAME is used to identify the default VALUE. */
233
938937d8 234#define TARGET_SWITCHES \
9ebbca7d 235 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 236 N_("Use POWER instruction set")}, \
938937d8 237 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 238 | MASK_POWER2), \
047142d3 239 N_("Use POWER2 instruction set")}, \
9ebbca7d 240 {"no-power2", - MASK_POWER2, \
047142d3 241 N_("Do not use POWER2 instruction set")}, \
938937d8 242 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 243 | MASK_STRING), \
047142d3 244 N_("Do not use POWER instruction set")}, \
9ebbca7d 245 {"powerpc", MASK_POWERPC, \
047142d3 246 N_("Use PowerPC instruction set")}, \
938937d8 247 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 248 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 249 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 250 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 251 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 252 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 253 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 254 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 255 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 256 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 257 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 258 {"powerpc64", MASK_POWERPC64, \
047142d3 259 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 260 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 261 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 262 {"altivec", MASK_ALTIVEC , \
c725bd79 263 N_("Use AltiVec instructions")}, \
f18c054f 264 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 265 N_("Don't use AltiVec instructions")}, \
9ebbca7d 266 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 267 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 268 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 269 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 270 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 271 | MASK_MINIMAL_TOC), \
047142d3 272 N_("Put everything in the regular TOC")}, \
9ebbca7d 273 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 274 N_("Place floating point constants in TOC")}, \
9ebbca7d 275 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 276 N_("Don't place floating point constants in TOC")},\
9ebbca7d 277 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 278 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 279 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 280 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
281 {"minimal-toc", MASK_MINIMAL_TOC, \
282 "Use only one TOC entry per procedure"}, \
283 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 284 ""}, \
9ebbca7d 285 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 286 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 287 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 288 N_("Use hardware fp")}, \
9ebbca7d 289 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 290 N_("Do not use hardware fp")}, \
b21fb038 291 {"multiple", MASK_MULTIPLE, \
047142d3 292 N_("Generate load/store multiple instructions")}, \
9ebbca7d 293 {"no-multiple", - MASK_MULTIPLE, \
047142d3 294 N_("Do not generate load/store multiple instructions")},\
b21fb038 295 {"string", MASK_STRING, \
047142d3 296 N_("Generate string instructions for block moves")},\
9ebbca7d 297 {"no-string", - MASK_STRING, \
047142d3 298 N_("Do not generate string instructions for block moves")},\
9ebbca7d 299 {"update", - MASK_NO_UPDATE, \
047142d3 300 N_("Generate load/store with update instructions")},\
9ebbca7d 301 {"no-update", MASK_NO_UPDATE, \
047142d3 302 N_("Do not generate load/store with update instructions")},\
9ebbca7d 303 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 304 N_("Generate fused multiply/add instructions")},\
9ebbca7d 305 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 306 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
307 {"sched-prolog", MASK_SCHED_PROLOG, \
308 ""}, \
309 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 310 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
311 {"sched-epilog", MASK_SCHED_PROLOG, \
312 ""}, \
313 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
314 ""}, \
b21fb038 315 {"aix-struct-return", MASK_AIX_STRUCT_RET, \
6fa3f289 316 N_("Return all structures in memory (AIX default)")},\
b21fb038 317 {"svr4-struct-return", - MASK_AIX_STRUCT_RET, \
6fa3f289 318 N_("Return small structures in registers (SVR4 default)")},\
b21fb038 319 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET, \
6fa3f289 320 ""},\
b21fb038 321 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET, \
6fa3f289 322 ""},\
938937d8 323 SUBTARGET_SWITCHES \
9ebbca7d
GK
324 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
325 ""}}
fb623df5 326
938937d8 327#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
328
329/* This is meant to be redefined in the host dependent files */
330#define SUBTARGET_SWITCHES
fb623df5 331
cac8ce95 332/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 333enum processor_type
bef84347
VM
334 {
335 PROCESSOR_RIOS1,
336 PROCESSOR_RIOS2,
3cb999d8 337 PROCESSOR_RS64A,
bef84347
VM
338 PROCESSOR_MPCCORE,
339 PROCESSOR_PPC403,
fe7f5677 340 PROCESSOR_PPC405,
b54cf83a 341 PROCESSOR_PPC440,
bef84347
VM
342 PROCESSOR_PPC601,
343 PROCESSOR_PPC603,
344 PROCESSOR_PPC604,
345 PROCESSOR_PPC604e,
346 PROCESSOR_PPC620,
3cb999d8 347 PROCESSOR_PPC630,
ed947a96
DJ
348 PROCESSOR_PPC750,
349 PROCESSOR_PPC7400,
309323c2 350 PROCESSOR_PPC7450,
a3170dc6 351 PROCESSOR_PPC8540,
309323c2 352 PROCESSOR_POWER4
bef84347 353};
fb623df5
RK
354
355extern enum processor_type rs6000_cpu;
356
357/* Recast the processor type to the cpu attribute. */
358#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
359
8482e358 360/* Define generic processor types based upon current deployment. */
3cb999d8
DE
361#define PROCESSOR_COMMON PROCESSOR_PPC601
362#define PROCESSOR_POWER PROCESSOR_RIOS1
363#define PROCESSOR_POWERPC PROCESSOR_PPC604
364#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 365
fb623df5 366/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
367#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
368#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 369
6febd581
RK
370/* Specify the dialect of assembler to use. New mnemonics is dialect one
371 and the old mnemonics are dialect zero. */
9ebbca7d 372#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 373
956d6950 374/* This is meant to be overridden in target specific files. */
b6c9286a 375#define SUBTARGET_OPTIONS
b6c9286a 376
9ebbca7d
GK
377#define TARGET_OPTIONS \
378{ \
047142d3
PT
379 {"cpu=", &rs6000_select[1].string, \
380 N_("Use features of and schedule code for given CPU") }, \
381 {"tune=", &rs6000_select[2].string, \
382 N_("Schedule code for given CPU") }, \
383 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
57ac7be9
AM
384 {"traceback=", &rs6000_traceback_name, \
385 N_("Select full, part, or no traceback table") }, \
0ac081f6 386 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
6fa3f289
ZW
387 {"long-double-", &rs6000_long_double_size_string, \
388 N_("Specify size of long double (64 or 128 bits)") }, \
a3170dc6
AH
389 {"isel=", &rs6000_isel_string, \
390 N_("Specify yes/no if isel instructions should be generated") }, \
08b57fb3
AH
391 {"vrsave=", &rs6000_altivec_vrsave_string, \
392 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
a5c76ee6
ZW
393 {"longcall", &rs6000_longcall_switch, \
394 N_("Avoid all range limits on call instructions") }, \
395 {"no-longcall", &rs6000_longcall_switch, "" }, \
9ebbca7d 396 SUBTARGET_OPTIONS \
b6c9286a 397}
fb623df5 398
ff222560 399/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
400struct rs6000_cpu_select
401{
815cdc52
MM
402 const char *string;
403 const char *name;
8e3f41e7
MM
404 int set_tune_p;
405 int set_arch_p;
406};
407
408extern struct rs6000_cpu_select rs6000_select[];
fb623df5 409
38c1f2d7 410/* Debug support */
0ac081f6 411extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 412extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
413extern int rs6000_debug_stack; /* debug stack applications */
414extern int rs6000_debug_arg; /* debug argument handling */
415
416#define TARGET_DEBUG_STACK rs6000_debug_stack
417#define TARGET_DEBUG_ARG rs6000_debug_arg
418
57ac7be9
AM
419extern const char *rs6000_traceback_name; /* Type of traceback table. */
420
6fa3f289
ZW
421/* These are separate from target_flags because we've run out of bits
422 there. */
423extern const char *rs6000_long_double_size_string;
424extern int rs6000_long_double_type_size;
425extern int rs6000_altivec_abi;
a3170dc6
AH
426extern int rs6000_spe_abi;
427extern int rs6000_isel;
428extern int rs6000_fprs;
429extern const char *rs6000_isel_string;
08b57fb3
AH
430extern const char *rs6000_altivec_vrsave_string;
431extern int rs6000_altivec_vrsave;
a5c76ee6
ZW
432extern const char *rs6000_longcall_switch;
433extern int rs6000_default_long_calls;
6fa3f289
ZW
434
435#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
436#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
08b57fb3 437#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
6fa3f289 438
a3170dc6
AH
439#define TARGET_SPE_ABI 0
440#define TARGET_SPE 0
441#define TARGET_ISEL 0
442#define TARGET_FPRS 1
443
fb623df5
RK
444/* Sometimes certain combinations of command options do not make sense
445 on a particular target machine. You can define a macro
446 `OVERRIDE_OPTIONS' to take account of this. This macro, if
447 defined, is executed once just after all the command options have
448 been parsed.
449
5accd822
DE
450 Don't use this macro to turn on various extra optimizations for
451 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
452
fb623df5
RK
453 On the RS/6000 this is used to define the target cpu type. */
454
8e3f41e7 455#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 456
5accd822
DE
457/* Define this to change the optimizations performed by default. */
458#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
459
4c4eb375
GK
460/* Show we can debug even without a frame pointer. */
461#define CAN_DEBUG_WITHOUT_FP
462
a5c76ee6 463/* Target pragma. */
c58b209a
NB
464#define REGISTER_TARGET_PRAGMAS() do { \
465 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
a5c76ee6
ZW
466} while (0)
467
4c4eb375
GK
468/* Target #defines. */
469#define TARGET_CPU_CPP_BUILTINS() \
470 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
471
472/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
473 we're compiling for. Some configurations may need to override it. */
474#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
475 do \
476 { \
477 if (BYTES_BIG_ENDIAN) \
478 { \
479 builtin_define ("__BIG_ENDIAN__"); \
480 builtin_define ("_BIG_ENDIAN"); \
481 builtin_assert ("machine=bigendian"); \
482 } \
483 else \
484 { \
485 builtin_define ("__LITTLE_ENDIAN__"); \
486 builtin_define ("_LITTLE_ENDIAN"); \
487 builtin_assert ("machine=littleendian"); \
488 } \
489 } \
490 while (0)
f045b2c9 491\f
4c4eb375 492/* Target machine storage layout. */
f045b2c9 493
13d39dbc 494/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 495 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
496 the value is constrained to be within the bounds of the declared
497 type, but kept valid in the wider mode. The signedness of the
498 extension may differ from that of the type. */
499
39403d82
DE
500#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
501 if (GET_MODE_CLASS (MODE) == MODE_INT \
502 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 503 (MODE) = word_mode;
39403d82
DE
504
505/* Define this if function arguments should also be promoted using the above
506 procedure. */
507
508#define PROMOTE_FUNCTION_ARGS
509
510/* Likewise, if the function return value is promoted. */
511
512#define PROMOTE_FUNCTION_RETURN
ef457bda 513
f045b2c9 514/* Define this if most significant bit is lowest numbered
82e41834
KH
515 in instructions that operate on numbered bit-fields. */
516/* That is true on RS/6000. */
f045b2c9
RS
517#define BITS_BIG_ENDIAN 1
518
519/* Define this if most significant byte of a word is the lowest numbered. */
520/* That is true on RS/6000. */
521#define BYTES_BIG_ENDIAN 1
522
523/* Define this if most significant word of a multiword number is lowest
c81bebd7 524 numbered.
f045b2c9
RS
525
526 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 527 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
528#define WORDS_BIG_ENDIAN 1
529
2e360ab3 530#define MAX_BITS_PER_WORD 64
f045b2c9
RS
531
532/* Width of a word, in units (bytes). */
2f3e5814 533#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
534#ifdef IN_LIBGCC2
535#define MIN_UNITS_PER_WORD UNITS_PER_WORD
536#else
ef0e53ce 537#define MIN_UNITS_PER_WORD 4
f34fc46e 538#endif
2e360ab3 539#define UNITS_PER_FP_WORD 8
0ac081f6 540#define UNITS_PER_ALTIVEC_WORD 16
a3170dc6 541#define UNITS_PER_SPE_WORD 8
f045b2c9 542
915f619f
JW
543/* Type used for ptrdiff_t, as a string used in a declaration. */
544#define PTRDIFF_TYPE "int"
545
058ef853
DE
546/* Type used for size_t, as a string used in a declaration. */
547#define SIZE_TYPE "long unsigned int"
548
f045b2c9
RS
549/* Type used for wchar_t, as a string used in a declaration. */
550#define WCHAR_TYPE "short unsigned int"
551
552/* Width of wchar_t in bits. */
553#define WCHAR_TYPE_SIZE 16
554
9e654916
RK
555/* A C expression for the size in bits of the type `short' on the
556 target machine. If you don't define this, the default is half a
557 word. (If this would be less than one storage unit, it is
558 rounded up to one unit.) */
559#define SHORT_TYPE_SIZE 16
560
561/* A C expression for the size in bits of the type `int' on the
562 target machine. If you don't define this, the default is one
563 word. */
19d2d16f 564#define INT_TYPE_SIZE 32
9e654916
RK
565
566/* A C expression for the size in bits of the type `long' on the
567 target machine. If you don't define this, the default is one
568 word. */
2f3e5814 569#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
570#define MAX_LONG_TYPE_SIZE 64
571
572/* A C expression for the size in bits of the type `long long' on the
573 target machine. If you don't define this, the default is two
574 words. */
575#define LONG_LONG_TYPE_SIZE 64
576
9e654916
RK
577/* A C expression for the size in bits of the type `float' on the
578 target machine. If you don't define this, the default is one
579 word. */
580#define FLOAT_TYPE_SIZE 32
581
582/* A C expression for the size in bits of the type `double' on the
583 target machine. If you don't define this, the default is two
584 words. */
585#define DOUBLE_TYPE_SIZE 64
586
587/* A C expression for the size in bits of the type `long double' on
588 the target machine. If you don't define this, the default is two
589 words. */
6fa3f289 590#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
591
592/* Constant which presents upper bound of the above value. */
593#define MAX_LONG_DOUBLE_TYPE_SIZE 128
594
595/* Define this to set long double type size to use in libgcc2.c, which can
596 not depend on target_flags. */
597#ifdef __LONG_DOUBLE_128__
598#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
599#else
600#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
601#endif
9e654916 602
5b8f5865
DE
603/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
604#define WIDEST_HARDWARE_FP_SIZE 64
605
f045b2c9
RS
606/* Width in bits of a pointer.
607 See also the macro `Pmode' defined below. */
2f3e5814 608#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
609
610/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 611#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
612
613/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 614#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
615
616/* Allocation boundary (in *bits*) for the code of a function. */
617#define FUNCTION_BOUNDARY 32
618
619/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
620#define BIGGEST_ALIGNMENT 128
621
622/* A C expression to compute the alignment for a variables in the
623 local store. TYPE is the data type, and ALIGN is the alignment
624 that the object would ordinarily have. */
625#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a3170dc6
AH
626 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
627 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
b73fd26c 628
f045b2c9
RS
629/* Alignment of field after `int : 0' in a structure. */
630#define EMPTY_FIELD_BOUNDARY 32
631
632/* Every structure's size must be a multiple of this. */
633#define STRUCTURE_SIZE_BOUNDARY 8
634
a3170dc6
AH
635/* Return 1 if a structure or array containing FIELD should be
636 accessed using `BLKMODE'.
637
638 For the SPE, simd types are V2SI, and gcc can be tempted to put the
639 entire thing in a DI and use subregs to access the internals.
640 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
641 back-end. Because a single GPR can hold a V2SI, but not a DI, the
642 best thing to do is set structs to BLKmode and avoid Severe Tire
643 Damage. */
644#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
645 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
646
43a88a8c 647/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
648#define PCC_BITFIELD_TYPE_MATTERS 1
649
69ef87e2
AH
650/* Make strings word-aligned so strcpy from constants will be faster.
651 Make vector constants quadword aligned. */
652#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
653 (TREE_CODE (EXP) == STRING_CST \
654 && (ALIGN) < BITS_PER_WORD \
655 ? BITS_PER_WORD \
656 : (ALIGN))
f045b2c9 657
0ac081f6
AH
658/* Make arrays of chars word-aligned for the same reasons.
659 Align vectors to 128 bits. */
f045b2c9 660#define DATA_ALIGNMENT(TYPE, ALIGN) \
a3170dc6 661 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
0ac081f6 662 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
663 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
664 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
665
a0ab749a 666/* Nonzero if move instructions will actually fail to work
f045b2c9 667 when given unaligned data. */
fdaff8ba 668#define STRICT_ALIGNMENT 0
e1565e65
DE
669
670/* Define this macro to be the value 1 if unaligned accesses have a cost
671 many times greater than aligned accesses, for example if they are
672 emulated in a trap handler. */
41543739
GK
673#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
674 (STRICT_ALIGNMENT \
fcce224d
DE
675 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
676 || (MODE) == DImode) \
41543739 677 && (ALIGN) < 32))
f045b2c9
RS
678\f
679/* Standard register usage. */
680
681/* Number of actual hardware registers.
682 The hardware registers are assigned numbers for the compiler
683 from 0 to just below FIRST_PSEUDO_REGISTER.
684 All registers that the compiler knows about must be given numbers,
685 even those that are not normally considered general registers.
686
687 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
688 an MQ register, a count register, a link register, and 8 condition
07488f32
ZW
689 register fields, which we view here as separate registers. AltiVec
690 adds 32 vector registers and a VRsave register.
f045b2c9
RS
691
692 In addition, the difference between the frame and argument pointers is
693 a function of the number of registers saved, so we need to have a
694 register for AP that will later be eliminated in favor of SP or FP.
802a0058 695 This is a normal register, but it is fixed.
f045b2c9 696
802a0058
MM
697 We also create a pseudo register for float/int conversions, that will
698 really represent the memory location used. It is represented here as
699 a register, in order to work around problems in allocating stack storage
700 in inline functions. */
701
a3170dc6 702#define FIRST_PSEUDO_REGISTER 113
f045b2c9 703
d6a7951f 704/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 705#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 706
f045b2c9
RS
707/* 1 for registers that have pervasive standard uses
708 and are not available for the register allocator.
709
5dead3e5
DJ
710 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
711 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 712
a127c4e5
RK
713 cr5 is not supposed to be used.
714
715 On System V implementations, r13 is fixed and not available for use. */
716
f045b2c9 717#define FIXED_REGISTERS \
5dead3e5 718 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
719 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
720 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
721 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
722 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
723 /* AltiVec registers. */ \
724 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
725 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 726 1, 1 \
a3170dc6 727 , 1, 1 \
0ac081f6 728}
f045b2c9
RS
729
730/* 1 for registers not available across function calls.
731 These must include the FIXED_REGISTERS and also any
732 registers that can be used without being saved.
733 The latter must include the registers where values are returned
734 and the register where structure-value addresses are passed.
735 Aside from that, you can include as many other registers as you like. */
736
737#define CALL_USED_REGISTERS \
a127c4e5 738 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
740 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
741 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
742 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
743 /* AltiVec registers. */ \
744 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 746 1, 1 \
a3170dc6 747 , 1, 1 \
0ac081f6
AH
748}
749
289e96b2
AH
750/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
751 the entire set of `FIXED_REGISTERS' be included.
752 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
753 This macro is optional. If not specified, it defaults to the value
754 of `CALL_USED_REGISTERS'. */
755
756#define CALL_REALLY_USED_REGISTERS \
757 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
758 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
759 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
760 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
761 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
762 /* AltiVec registers. */ \
763 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
764 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 765 0, 0 \
a3170dc6 766 , 0, 0 \
289e96b2 767}
f045b2c9 768
9ebbca7d
GK
769#define MQ_REGNO 64
770#define CR0_REGNO 68
771#define CR1_REGNO 69
772#define CR2_REGNO 70
773#define CR3_REGNO 71
774#define CR4_REGNO 72
775#define MAX_CR_REGNO 75
776#define XER_REGNO 76
0ac081f6
AH
777#define FIRST_ALTIVEC_REGNO 77
778#define LAST_ALTIVEC_REGNO 108
28bcfd4d 779#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 780#define VRSAVE_REGNO 109
5f004351 781#define VSCR_REGNO 110
a3170dc6
AH
782#define SPE_ACC_REGNO 111
783#define SPEFSCR_REGNO 112
9ebbca7d 784
f045b2c9
RS
785/* List the order in which to allocate registers. Each register must be
786 listed once, even those in FIXED_REGISTERS.
787
788 We allocate in the following order:
789 fp0 (not saved or used for anything)
790 fp13 - fp2 (not saved; incoming fp arg registers)
791 fp1 (not saved; return value)
792 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
793 cr7, cr6 (not saved or special)
794 cr1 (not saved, but used for FP operations)
f045b2c9 795 cr0 (not saved, but used for arithmetic operations)
5accd822 796 cr4, cr3, cr2 (saved)
f045b2c9
RS
797 r0 (not saved; cannot be base reg)
798 r9 (not saved; best for TImode)
799 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
800 r3 (not saved; return value register)
801 r31 - r13 (saved; order given to save least number)
802 r12 (not saved; if used for DImode or DFmode would use r13)
803 mq (not saved; best to use it if we can)
804 ctr (not saved; when we have the choice ctr is better)
805 lr (saved)
5f004351 806 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
a3170dc6 807 spe_acc, spefscr (fixed)
0ac081f6
AH
808
809 AltiVec registers:
810 v0 - v1 (not saved or used for anything)
811 v13 - v3 (not saved; incoming vector arg registers)
812 v2 (not saved; incoming vector arg reg; return value)
813 v19 - v14 (not saved or used for anything)
814 v31 - v20 (saved; order given to save least number)
815*/
816
f045b2c9
RS
817
818#define REG_ALLOC_ORDER \
819 {32, \
820 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
821 33, \
822 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
823 50, 49, 48, 47, 46, \
5accd822 824 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
825 0, \
826 9, 11, 10, 8, 7, 6, 5, 4, \
827 3, \
828 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
829 18, 17, 16, 15, 14, 13, 12, \
830 64, 66, 65, \
0ac081f6
AH
831 73, 1, 2, 67, 76, \
832 /* AltiVec registers. */ \
833 77, 78, \
834 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
835 79, \
836 96, 95, 94, 93, 92, 91, \
58568475 837 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
5f004351 838 97, 109, 110 \
a3170dc6 839 , 111, 112 \
0ac081f6 840}
f045b2c9
RS
841
842/* True if register is floating-point. */
843#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
844
845/* True if register is a condition register. */
846#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
847
815cdc52
MM
848/* True if register is a condition register, but not cr0. */
849#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
850
f045b2c9 851/* True if register is an integer register. */
9ebbca7d 852#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 853
a3170dc6
AH
854/* SPE SIMD registers are just the GPRs. */
855#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
856
0d86f538 857/* True if register is the XER register. */
9ebbca7d 858#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 859
0ac081f6
AH
860/* True if register is an AltiVec register. */
861#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
862
f045b2c9
RS
863/* Return number of consecutive hard regs needed starting at reg REGNO
864 to hold something of mode MODE.
865 This is ordinarily the length in words of a value of mode MODE
866 but can be less for certain modes in special long registers.
867
a3170dc6
AH
868 For the SPE, GPRs are 64 bits but only 32 bits are visible in
869 scalar instructions. The upper 32 bits are only available to the
870 SIMD instructions.
871
a260abc9
DE
872 POWER and PowerPC GPRs hold 32 bits worth;
873 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 874
802a0058 875#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 876 (FP_REGNO_P (REGNO) \
2e360ab3 877 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
a3170dc6
AH
878 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
879 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
0ac081f6
AH
880 : ALTIVEC_REGNO_P (REGNO) \
881 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
882 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
883
0ac081f6 884#define ALTIVEC_VECTOR_MODE(MODE) \
cb2a532e
AH
885 ((MODE) == V16QImode \
886 || (MODE) == V8HImode \
887 || (MODE) == V4SFmode \
6e1f54e2 888 || (MODE) == V4SImode)
0ac081f6 889
a3170dc6
AH
890#define SPE_VECTOR_MODE(MODE) \
891 ((MODE) == V4HImode \
892 || (MODE) == V2SFmode \
00a892b8 893 || (MODE) == V1DImode \
a3170dc6
AH
894 || (MODE) == V2SImode)
895
0ac081f6
AH
896/* Define this macro to be nonzero if the port is prepared to handle
897 insns involving vector mode MODE. At the very least, it must have
898 move patterns for this mode. */
899
a3170dc6
AH
900#define VECTOR_MODE_SUPPORTED_P(MODE) \
901 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
902 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
0ac081f6 903
f045b2c9 904/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
905 For POWER and PowerPC, the GPRs can hold any mode, but the float
906 registers only can hold floating modes and DImode, and CR register only
907 can hold CC modes. We cannot put TImode anywhere except general
82e41834 908 register and it must be able to fit within the register set. */
f045b2c9 909
802a0058
MM
910#define HARD_REGNO_MODE_OK(REGNO, MODE) \
911 (FP_REGNO_P (REGNO) ? \
912 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
913 || (GET_MODE_CLASS (MODE) == MODE_INT \
914 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 915 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
a3170dc6 916 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
802a0058 917 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 918 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
b991a865 919 : ! INT_REGNO_P (REGNO) ? GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
f045b2c9
RS
920 : 1)
921
922/* Value is 1 if it is a good idea to tie two pseudo registers
923 when one has mode MODE1 and one has mode MODE2.
924 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
925 for any hard reg, then this must be 0 for correct output. */
926#define MODES_TIEABLE_P(MODE1, MODE2) \
927 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
928 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
929 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
930 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
931 : GET_MODE_CLASS (MODE1) == MODE_CC \
932 ? GET_MODE_CLASS (MODE2) == MODE_CC \
933 : GET_MODE_CLASS (MODE2) == MODE_CC \
934 ? GET_MODE_CLASS (MODE1) == MODE_CC \
0ac081f6
AH
935 : ALTIVEC_VECTOR_MODE (MODE1) \
936 ? ALTIVEC_VECTOR_MODE (MODE2) \
937 : ALTIVEC_VECTOR_MODE (MODE2) \
938 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
939 : 1)
940
941/* A C expression returning the cost of moving data from a register of class
34bb030a 942 CLASS1 to one of CLASS2. */
f045b2c9 943
34bb030a 944#define REGISTER_MOVE_COST rs6000_register_move_cost
f045b2c9 945
34bb030a
DE
946/* A C expressions returning the cost of moving data of MODE from a register to
947 or from memory. */
f045b2c9 948
34bb030a 949#define MEMORY_MOVE_COST rs6000_memory_move_cost
f045b2c9
RS
950
951/* Specify the cost of a branch insn; roughly the number of extra insns that
952 should be added to avoid a branch.
953
ef457bda 954 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
955 unscheduled conditional branch. */
956
ef457bda 957#define BRANCH_COST 3
f045b2c9 958
a3170dc6
AH
959
960/* A fixed register used at prologue and epilogue generation to fix
961 addressing modes. The SPE needs heavy addressing fixes at the last
962 minute, and it's best to save a register for it.
963
964 AltiVec also needs fixes, but we've gotten around using r11, which
965 is actually wrong because when use_backchain_to_restore_sp is true,
966 we end up clobbering r11.
967
968 The AltiVec case needs to be fixed. Dunno if we should break ABI
b6d08ca1 969 compatibility and reserve a register for it as well.. */
a3170dc6
AH
970
971#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
972
6febd581
RK
973/* Define this macro to change register usage conditional on target flags.
974 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 975 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 976 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
977 Conditionally disable FPRs. */
978
8d30c4ee
FS
979#define CONDITIONAL_REGISTER_USAGE \
980{ \
e9e4208a 981 int i; \
8d30c4ee
FS
982 if (! TARGET_POWER) \
983 fixed_regs[64] = 1; \
984 if (TARGET_64BIT) \
289e96b2
AH
985 fixed_regs[13] = call_used_regs[13] \
986 = call_really_used_regs[13] = 1; \
a3170dc6 987 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
8d30c4ee 988 for (i = 32; i < 64; i++) \
289e96b2
AH
989 fixed_regs[i] = call_used_regs[i] \
990 = call_really_used_regs[i] = 1; \
14f00213
FS
991 if (DEFAULT_ABI == ABI_V4 \
992 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
993 && flag_pic == 2) \
994 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1db02437
FS
995 if (DEFAULT_ABI == ABI_V4 \
996 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
997 && flag_pic == 1) \
998 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
999 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1000 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1001 if (DEFAULT_ABI == ABI_DARWIN \
1002 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1003 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1004 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1005 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1006 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
5f004351
AH
1007 if (TARGET_ALTIVEC) \
1008 global_regs[VSCR_REGNO] = 1; \
a3170dc6
AH
1009 if (TARGET_SPE) \
1010 { \
1011 global_regs[SPEFSCR_REGNO] = 1; \
1012 fixed_regs[FIXED_SCRATCH] \
1013 = call_used_regs[FIXED_SCRATCH] \
1014 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1015 } \
2473ee11 1016 if (! TARGET_ALTIVEC) \
c1f11548
DE
1017 { \
1018 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1019 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1020 call_really_used_regs[VRSAVE_REGNO] = 1; \
1021 } \
0ac081f6 1022 if (TARGET_ALTIVEC_ABI) \
2473ee11 1023 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 1024 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 1025}
6febd581 1026
f045b2c9
RS
1027/* Specify the registers used for certain standard purposes.
1028 The values of these macros are register numbers. */
1029
1030/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1031/* #define PC_REGNUM */
1032
1033/* Register to use for pushing function arguments. */
1034#define STACK_POINTER_REGNUM 1
1035
1036/* Base register for access to local variables of the function. */
1037#define FRAME_POINTER_REGNUM 31
1038
1039/* Value should be nonzero if functions must have frame pointers.
1040 Zero means the frame pointer need not be set up (and parms
1041 may be accessed via the stack pointer) in functions that seem suitable.
1042 This is computed in `reload', in reload1.c. */
1043#define FRAME_POINTER_REQUIRED 0
1044
1045/* Base register for access to arguments of the function. */
1046#define ARG_POINTER_REGNUM 67
1047
1048/* Place to put static chain when calling a function that requires it. */
1049#define STATIC_CHAIN_REGNUM 11
1050
82e41834 1051/* Link register number. */
9ebbca7d 1052#define LINK_REGISTER_REGNUM 65
b6c9286a 1053
82e41834 1054/* Count register number. */
9ebbca7d 1055#define COUNT_REGISTER_REGNUM 66
802a0058 1056
f045b2c9
RS
1057/* Place that structure value return address is placed.
1058
1059 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1060#define STRUCT_VALUE 0
f045b2c9
RS
1061\f
1062/* Define the classes of registers for register constraints in the
1063 machine description. Also define ranges of constants.
1064
1065 One of the classes must always be named ALL_REGS and include all hard regs.
1066 If there is more than one class, another class must be named NO_REGS
1067 and contain no registers.
1068
1069 The name GENERAL_REGS must be the name of a class (or an alias for
1070 another name such as ALL_REGS). This is the class of registers
1071 that is allowed by "g" or "r" in a register constraint.
1072 Also, registers outside this class are allocated only when
1073 instructions express preferences for them.
1074
1075 The classes must be numbered in nondecreasing order; that is,
1076 a larger-numbered class must never be contained completely
1077 in a smaller-numbered class.
1078
1079 For any two classes, it is very desirable that there be another
1080 class that represents their union. */
c81bebd7 1081
f045b2c9
RS
1082/* The RS/6000 has three types of registers, fixed-point, floating-point,
1083 and condition registers, plus three special registers, MQ, CTR, and the
07488f32 1084 link register. AltiVec adds a vector register class.
f045b2c9
RS
1085
1086 However, r0 is special in that it cannot be used as a base register.
1087 So make a class for registers valid as base registers.
1088
1089 Also, cr0 is the only condition code register that can be used in
0d86f538 1090 arithmetic insns, so make a separate class for it. */
f045b2c9 1091
ebedb4dd
MM
1092enum reg_class
1093{
1094 NO_REGS,
ebedb4dd
MM
1095 BASE_REGS,
1096 GENERAL_REGS,
1097 FLOAT_REGS,
0ac081f6
AH
1098 ALTIVEC_REGS,
1099 VRSAVE_REGS,
5f004351 1100 VSCR_REGS,
a3170dc6
AH
1101 SPE_ACC_REGS,
1102 SPEFSCR_REGS,
ebedb4dd
MM
1103 NON_SPECIAL_REGS,
1104 MQ_REGS,
1105 LINK_REGS,
1106 CTR_REGS,
1107 LINK_OR_CTR_REGS,
1108 SPECIAL_REGS,
1109 SPEC_OR_GEN_REGS,
1110 CR0_REGS,
ebedb4dd
MM
1111 CR_REGS,
1112 NON_FLOAT_REGS,
9ebbca7d 1113 XER_REGS,
ebedb4dd
MM
1114 ALL_REGS,
1115 LIM_REG_CLASSES
1116};
f045b2c9
RS
1117
1118#define N_REG_CLASSES (int) LIM_REG_CLASSES
1119
82e41834 1120/* Give names of register classes as strings for dump file. */
f045b2c9 1121
ebedb4dd
MM
1122#define REG_CLASS_NAMES \
1123{ \
1124 "NO_REGS", \
ebedb4dd
MM
1125 "BASE_REGS", \
1126 "GENERAL_REGS", \
1127 "FLOAT_REGS", \
0ac081f6
AH
1128 "ALTIVEC_REGS", \
1129 "VRSAVE_REGS", \
5f004351 1130 "VSCR_REGS", \
a3170dc6
AH
1131 "SPE_ACC_REGS", \
1132 "SPEFSCR_REGS", \
ebedb4dd
MM
1133 "NON_SPECIAL_REGS", \
1134 "MQ_REGS", \
1135 "LINK_REGS", \
1136 "CTR_REGS", \
1137 "LINK_OR_CTR_REGS", \
1138 "SPECIAL_REGS", \
1139 "SPEC_OR_GEN_REGS", \
1140 "CR0_REGS", \
ebedb4dd
MM
1141 "CR_REGS", \
1142 "NON_FLOAT_REGS", \
9ebbca7d 1143 "XER_REGS", \
ebedb4dd
MM
1144 "ALL_REGS" \
1145}
f045b2c9
RS
1146
1147/* Define which registers fit in which classes.
1148 This is an initializer for a vector of HARD_REG_SET
1149 of length N_REG_CLASSES. */
1150
0ac081f6
AH
1151#define REG_CLASS_CONTENTS \
1152{ \
1153 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1154 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1155 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1156 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1157 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1158 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1159 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
a3170dc6
AH
1160 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1161 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
0ac081f6
AH
1162 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1163 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1164 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1165 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1166 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1167 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1168 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1169 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1170 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1171 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1172 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1173 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1174}
f045b2c9
RS
1175
1176/* The same information, inverted:
1177 Return the class number of the smallest class containing
1178 reg number REGNO. This could be a conditional expression
1179 or could index an array. */
1180
0d86f538
GK
1181#define REGNO_REG_CLASS(REGNO) \
1182 ((REGNO) == 0 ? GENERAL_REGS \
1183 : (REGNO) < 32 ? BASE_REGS \
1184 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1185 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1186 : (REGNO) == CR0_REGNO ? CR0_REGS \
1187 : CR_REGNO_P (REGNO) ? CR_REGS \
1188 : (REGNO) == MQ_REGNO ? MQ_REGS \
1189 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1190 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1191 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1192 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1193 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
5f004351 1194 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
a3170dc6
AH
1195 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1196 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
f045b2c9
RS
1197 : NO_REGS)
1198
1199/* The class value for index registers, and the one for base regs. */
1200#define INDEX_REG_CLASS GENERAL_REGS
1201#define BASE_REG_CLASS BASE_REGS
1202
1203/* Get reg_class from a letter such as appears in the machine description. */
1204
1205#define REG_CLASS_FROM_LETTER(C) \
1206 ((C) == 'f' ? FLOAT_REGS \
1207 : (C) == 'b' ? BASE_REGS \
1208 : (C) == 'h' ? SPECIAL_REGS \
1209 : (C) == 'q' ? MQ_REGS \
1210 : (C) == 'c' ? CTR_REGS \
1211 : (C) == 'l' ? LINK_REGS \
0ac081f6 1212 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1213 : (C) == 'x' ? CR0_REGS \
1214 : (C) == 'y' ? CR_REGS \
9ebbca7d 1215 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1216 : NO_REGS)
1217
1218/* The letters I, J, K, L, M, N, and P in a register constraint string
1219 can be used to stand for particular ranges of immediate operands.
1220 This macro defines what the ranges are.
1221 C is the letter, and VALUE is a constant value.
1222 Return 1 if VALUE is in the range specified by C.
1223
9615f239 1224 `I' is a signed 16-bit constant
a0ab749a
KH
1225 `J' is a constant with only the high-order 16 bits nonzero
1226 `K' is a constant with only the low-order 16 bits nonzero
9615f239 1227 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1228 `M' is a constant that is greater than 31
2bfcf297 1229 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1230 `O' is the constant zero
1231 `P' is a constant whose negation is a signed 16-bit constant */
1232
5b6f7b96
RK
1233#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1234 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1235 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1236 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1237 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1238 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1239 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1240 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1241 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1242 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1243 : 0)
1244
1245/* Similar, but for floating constants, and defining letters G and H.
1246 Here VALUE is the CONST_DOUBLE rtx itself.
1247
1248 We flag for special constants when we can copy the constant into
4e74d8ec 1249 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1250
c4c40373 1251 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1252
1253#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1254 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1255 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1256 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1257 : 0)
f045b2c9
RS
1258
1259/* Optional extra constraints for this machine.
1260
b6c9286a
MM
1261 'Q' means that is a memory operand that is just an offset from a reg.
1262 'R' is for AIX TOC entries.
a260abc9 1263 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1264 'T' is a constant that can be placed into a 32-bit mask operand
0ba1b2ff
AM
1265 'U' is for V.4 small data references.
1266 't' is for AND masks that can be performed by two rldic{l,r} insns. */
f045b2c9 1267
e8a8bc24
RK
1268#define EXTRA_CONSTRAINT(OP, C) \
1269 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1270 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b1765bde
DE
1271 : (C) == 'S' ? mask64_operand (OP, DImode) \
1272 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1273 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1274 && small_data_operand (OP, GET_MODE (OP))) \
0ba1b2ff
AM
1275 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1276 && (fixed_regs[CR0_REGNO] \
1277 || !logical_operand (OP, DImode)) \
1278 && !mask64_operand (OP, DImode)) \
e8a8bc24 1279 : 0)
f045b2c9
RS
1280
1281/* Given an rtx X being reloaded into a reg required to be
1282 in class CLASS, return the class of reg to actually use.
1283 In general this is just CLASS; but on some machines
c81bebd7 1284 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1285
1286 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1287 floating-point CONST_DOUBLE to force it to be copied to memory.
1288
1289 We also don't want to reload integer values into floating-point
1290 registers if we can at all help it. In fact, this can
1291 cause reload to abort, if it tries to generate a reload of CTR
1292 into a FP register and discovers it doesn't have the memory location
1293 required.
1294
1295 ??? Would it be a good idea to have reload do the converse, that is
1296 try to reload floating modes into FP registers if possible?
1297 */
f045b2c9 1298
802a0058 1299#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1300 (((GET_CODE (X) == CONST_DOUBLE \
1301 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1302 ? NO_REGS \
1303 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1304 && (CLASS) == NON_SPECIAL_REGS) \
1305 ? GENERAL_REGS \
1306 : (CLASS)))
c81bebd7 1307
f045b2c9
RS
1308/* Return the register class of a scratch register needed to copy IN into
1309 or out of a register in CLASS in MODE. If it can be done directly,
1310 NO_REGS is returned. */
1311
1312#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1313 secondary_reload_class (CLASS, MODE, IN)
1314
0ac081f6
AH
1315/* If we are copying between FP or AltiVec registers and anything
1316 else, we need a memory location. */
7ea555a4 1317
0ac081f6
AH
1318#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1319 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1320 || (CLASS2) == FLOAT_REGS \
1321 || (CLASS1) == ALTIVEC_REGS \
1322 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1323
f045b2c9
RS
1324/* Return the maximum number of consecutive registers
1325 needed to represent mode MODE in a register of class CLASS.
1326
1327 On RS/6000, this is the size of MODE in words,
1328 except in the FP regs, where a single reg is enough for two words. */
802a0058 1329#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1330 (((CLASS) == FLOAT_REGS) \
2e360ab3 1331 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1332 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230 1333
580d3230 1334
cff9f8d5 1335/* Return a class of registers that cannot change FROM mode to TO mode. */
02188693 1336
b0c42aed
JH
1337#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1338 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1339 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
1340 : (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1 \
1341 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
1342 : 0)
02188693 1343
f045b2c9
RS
1344/* Stack layout; function entry, exit and calling. */
1345
6b67933e
RK
1346/* Enumeration to give which calling sequence to use. */
1347enum rs6000_abi {
1348 ABI_NONE,
1349 ABI_AIX, /* IBM's AIX */
f607bc57
ZW
1350 ABI_AIX_NODESC, /* AIX calling sequence minus
1351 function descriptors */
b6c9286a 1352 ABI_V4, /* System V.4/eabi */
ee890fe2 1353 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1354};
1355
b6c9286a
MM
1356extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1357
4697a36c
MM
1358/* Structure used to define the rs6000 stack */
1359typedef struct rs6000_stack {
1360 int first_gp_reg_save; /* first callee saved GP register used */
1361 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1362 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1363 int lr_save_p; /* true if the link reg needs to be saved */
1364 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1365 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1366 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1367 int push_p; /* true if we need to allocate stack space */
1368 int calls_p; /* true if the function makes any calls */
6b67933e 1369 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1370 int gp_save_offset; /* offset to save GP regs from initial SP */
1371 int fp_save_offset; /* offset to save FP regs from initial SP */
b6d08ca1 1372 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
4697a36c
MM
1373 int lr_save_offset; /* offset to save LR from initial SP */
1374 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1375 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
a3170dc6 1376 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
b6c9286a 1377 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1378 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1379 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1380 int reg_size; /* register size (4 or 8) */
1381 int varargs_size; /* size to hold V.4 args passed in regs */
1382 int vars_size; /* variable save area size */
1383 int parm_size; /* outgoing parameter size */
1384 int save_size; /* save area size */
1385 int fixed_size; /* fixed size of stack frame */
1386 int gp_size; /* size of saved GP registers */
1387 int fp_size; /* size of saved FP registers */
00b960c7 1388 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1389 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1390 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1391 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1392 int altivec_padding_size; /* size of altivec alignment padding if
1393 not in save_size */
a3170dc6
AH
1394 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1395 int spe_padding_size;
b6c9286a 1396 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1397 int total_size; /* total bytes allocated for stack */
1398} rs6000_stack_t;
1399
f045b2c9
RS
1400/* Define this if pushing a word on the stack
1401 makes the stack pointer a smaller address. */
1402#define STACK_GROWS_DOWNWARD
1403
1404/* Define this if the nominal address of the stack frame
1405 is at the high-address end of the local variables;
1406 that is, each additional local variable allocated
1407 goes at a more negative offset in the frame.
1408
1409 On the RS/6000, we grow upwards, from the area after the outgoing
1410 arguments. */
1411/* #define FRAME_GROWS_DOWNWARD */
1412
4697a36c 1413/* Size of the outgoing register save area */
9ebbca7d 1414#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1415 || DEFAULT_ABI == ABI_AIX_NODESC \
1416 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1417 ? (TARGET_64BIT ? 64 : 32) \
1418 : 0)
4697a36c
MM
1419
1420/* Size of the fixed area on the stack */
9ebbca7d 1421#define RS6000_SAVE_AREA \
ee890fe2 1422 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1423 << (TARGET_64BIT ? 1 : 0))
4697a36c 1424
97f6e72f
DE
1425/* MEM representing address to save the TOC register */
1426#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1427 plus_constant (stack_pointer_rtx, \
1428 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1429
4697a36c
MM
1430/* Size of the V.4 varargs area if needed */
1431#define RS6000_VARARGS_AREA 0
1432
4697a36c 1433/* Align an address */
ed33106f 1434#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1435
1436/* Size of V.4 varargs area in bytes */
1437#define RS6000_VARARGS_SIZE \
2f3e5814 1438 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1439
f045b2c9
RS
1440/* Offset within stack frame to start allocating local variables at.
1441 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1442 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1443 of the first local allocated.
f045b2c9
RS
1444
1445 On the RS/6000, the frame pointer is the same as the stack pointer,
1446 except for dynamic allocations. So we start after the fixed area and
1447 outgoing parameter area. */
1448
802a0058 1449#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1450 (RS6000_ALIGN (current_function_outgoing_args_size, \
1451 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1452 + RS6000_VARARGS_AREA \
1453 + RS6000_SAVE_AREA)
1454
1455/* Offset from the stack pointer register to an item dynamically
1456 allocated on the stack, e.g., by `alloca'.
1457
1458 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1459 length of the outgoing arguments. The default is correct for most
1460 machines. See `function.c' for details. */
1461#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1462 (RS6000_ALIGN (current_function_outgoing_args_size, \
1463 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1464 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1465
1466/* If we generate an insn to push BYTES bytes,
1467 this says how many the stack pointer really advances by.
1468 On RS/6000, don't define this because there are no push insns. */
1469/* #define PUSH_ROUNDING(BYTES) */
1470
1471/* Offset of first parameter from the argument pointer register value.
1472 On the RS/6000, we define the argument pointer to the start of the fixed
1473 area. */
4697a36c 1474#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1475
62153b61
JM
1476/* Offset from the argument pointer register value to the top of
1477 stack. This is different from FIRST_PARM_OFFSET because of the
1478 register save area. */
1479#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1480
f045b2c9
RS
1481/* Define this if stack space is still allocated for a parameter passed
1482 in a register. The value is the number of bytes allocated to this
1483 area. */
4697a36c 1484#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1485
1486/* Define this if the above stack space is to be considered part of the
1487 space allocated by the caller. */
1488#define OUTGOING_REG_PARM_STACK_SPACE
1489
1490/* This is the difference between the logical top of stack and the actual sp.
1491
82e41834 1492 For the RS/6000, sp points past the fixed area. */
4697a36c 1493#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1494
1495/* Define this if the maximum size of all the outgoing args is to be
1496 accumulated and pushed during the prologue. The amount can be
1497 found in the variable current_function_outgoing_args_size. */
f73ad30e 1498#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1499
1500/* Value is the number of bytes of arguments automatically
1501 popped when returning from a subroutine call.
8b109b37 1502 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1503 FUNTYPE is the data type of the function (as a tree),
1504 or for a library call it is an identifier node for the subroutine name.
1505 SIZE is the number of bytes of arguments passed on the stack. */
1506
8b109b37 1507#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1508
1509/* Define how to find the value returned by a function.
1510 VALTYPE is the data type of the value (as a tree).
1511 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1512 otherwise, FUNC is 0.
1513
a3170dc6
AH
1514 On the SPE, both FPs and vectors are returned in r3.
1515
c81bebd7 1516 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1517 fp1, unless -msoft-float. */
f045b2c9 1518
39403d82
DE
1519#define FUNCTION_VALUE(VALTYPE, FUNC) \
1520 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1521 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1522 || POINTER_TYPE_P (VALTYPE) \
1523 ? word_mode : TYPE_MODE (VALTYPE), \
16861f33
AH
1524 TREE_CODE (VALTYPE) == VECTOR_TYPE \
1525 && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN \
a3170dc6
AH
1526 : TREE_CODE (VALTYPE) == REAL_TYPE \
1527 && TARGET_SPE_ABI && !TARGET_FPRS \
1528 ? GP_ARG_RETURN \
1529 : TREE_CODE (VALTYPE) == REAL_TYPE \
1530 && TARGET_HARD_FLOAT && TARGET_FPRS \
e9cf9523 1531 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9
RS
1532
1533/* Define how to find the value returned by a library function
1534 assuming the value has mode MODE. */
1535
0ac081f6
AH
1536#define LIBCALL_VALUE(MODE) \
1537 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1538 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
a3170dc6 1539 && TARGET_HARD_FLOAT && TARGET_FPRS \
0ac081f6 1540 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9 1541
6fa3f289
ZW
1542/* The AIX ABI for the RS/6000 specifies that all structures are
1543 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1544 specifies that structures <= 8 bytes are returned in r3/r4, but a
1545 draft put them in memory, and GCC used to implement the draft
1546 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1547 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1548 compatibility can change DRAFT_V4_STRUCT_RET to override the
1549 default, and -m switches get the final word. See
52acbdcb
ZW
1550 rs6000_override_options for more details.
1551
0e9f8e82
JW
1552 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
1553 long double support is enabled. These values are returned in memory.
1554
52acbdcb
ZW
1555 int_size_in_bytes returns -1 for variable size objects, which go in
1556 memory always. The cast to unsigned makes -1 > 8. */
1557
6fa3f289 1558#define RETURN_IN_MEMORY(TYPE) \
0e9f8e82
JW
1559 ((AGGREGATE_TYPE_P (TYPE) \
1560 && (TARGET_AIX_STRUCT_RET \
1561 || (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8)) \
1562 || (DEFAULT_ABI == ABI_V4 && TYPE_MODE (TYPE) == TFmode))
f045b2c9 1563
6fa3f289
ZW
1564/* DRAFT_V4_STRUCT_RET defaults off. */
1565#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1566
1567/* Let RETURN_IN_MEMORY control what happens. */
1568#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1569
a260abc9 1570/* Mode of stack savearea.
dfdfa60f
DE
1571 FUNCTION is VOIDmode because calling convention maintains SP.
1572 BLOCK needs Pmode for SP.
a260abc9
DE
1573 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1574#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1575 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1576 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1577
4697a36c
MM
1578/* Minimum and maximum general purpose registers used to hold arguments. */
1579#define GP_ARG_MIN_REG 3
1580#define GP_ARG_MAX_REG 10
1581#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1582
1583/* Minimum and maximum floating point registers used to hold arguments. */
1584#define FP_ARG_MIN_REG 33
7509c759
MM
1585#define FP_ARG_AIX_MAX_REG 45
1586#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1587#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1588 || DEFAULT_ABI == ABI_AIX_NODESC \
1589 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1590 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1591#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1592
0ac081f6
AH
1593/* Minimum and maximum AltiVec registers used to hold arguments. */
1594#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1595#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1596#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1597
4697a36c
MM
1598/* Return registers */
1599#define GP_ARG_RETURN GP_ARG_MIN_REG
1600#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1601#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1602
7509c759 1603/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1604#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1605/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1606#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1607#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1608#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1609
f045b2c9
RS
1610/* 1 if N is a possible register number for a function value
1611 as seen by the caller.
1612
0ac081f6
AH
1613 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1614#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1615 || ((N) == FP_ARG_RETURN) \
1616 || (TARGET_ALTIVEC && \
1617 (N) == ALTIVEC_ARG_RETURN))
f045b2c9
RS
1618
1619/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1620 On RS/6000, these are r3-r10 and fp1-fp13.
1621 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1622#define FUNCTION_ARG_REGNO_P(N) \
b1765bde 1623 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
0ac081f6 1624 || (TARGET_ALTIVEC && \
1a3ab9e1 1625 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
6d0f55e6 1626 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1627
f045b2c9 1628\f
00dba523
NC
1629/* A C structure for machine-specific, per-function data.
1630 This is added to the cfun structure. */
e2500fed 1631typedef struct machine_function GTY(())
00dba523
NC
1632{
1633 /* Whether a System V.4 varargs area was created. */
1634 int sysv_varargs_p;
71f123ca
FS
1635 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1636 int ra_needs_full_frame;
00dba523
NC
1637} machine_function;
1638
f045b2c9
RS
1639/* Define a data type for recording info about an argument list
1640 during the scan of that argument list. This data type should
1641 hold all necessary information about the function itself
1642 and about the args processed so far, enough to enable macros
1643 such as FUNCTION_ARG to determine where the next arg should go.
1644
1645 On the RS/6000, this is a structure. The first element is the number of
1646 total argument words, the second is used to store the next
1647 floating-point register number, and the third says how many more args we
4697a36c
MM
1648 have prototype types for.
1649
4cc833b7 1650 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1651 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1652 register, and `words' is the number of words used on the stack.
1653
bd227acc 1654 The varargs/stdarg support requires that this structure's size
4cc833b7 1655 be a multiple of sizeof(int). */
4697a36c
MM
1656
1657typedef struct rs6000_args
1658{
4cc833b7 1659 int words; /* # words used for passing GP registers */
6a4cee5f 1660 int fregno; /* next available FP register */
0ac081f6 1661 int vregno; /* next available AltiVec register */
6a4cee5f
MM
1662 int nargs_prototype; /* # args left in the current prototype */
1663 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1664 int prototype; /* Whether a prototype was defined */
1665 int call_cookie; /* Do special things for this call */
4cc833b7 1666 int sysv_gregno; /* next available GP register */
4697a36c 1667} CUMULATIVE_ARGS;
f045b2c9
RS
1668
1669/* Define intermediate macro to compute the size (in registers) of an argument
1670 for the RS/6000. */
1671
d34c5b80
DE
1672#define RS6000_ARG_SIZE(MODE, TYPE) \
1673((MODE) != BLKmode \
c5d71f39 1674 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
0c769cf8 1675 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1676
1677/* Initialize a variable CUM of type CUMULATIVE_ARGS
1678 for a call to a function whose data type is FNTYPE.
1679 For a library call, FNTYPE is 0. */
1680
2c7ee1a6 1681#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1682 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1683
1684/* Similar, but when scanning the definition of a procedure. We always
1685 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1686
4697a36c
MM
1687#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1688 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1689
1690/* Update the data in CUM to advance over an argument
1691 of mode MODE and data type TYPE.
1692 (TYPE is null for libcalls where that information may not be available.) */
1693
1694#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1695 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9 1696
a0ab749a 1697/* Nonzero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1698#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1699 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1700 && (CUM).fregno <= FP_ARG_MAX_REG \
a3170dc6 1701 && TARGET_HARD_FLOAT && TARGET_FPRS)
f045b2c9 1702
a0ab749a 1703/* Nonzero if we can use an AltiVec register to pass this arg. */
0ac081f6
AH
1704#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1705 (ALTIVEC_VECTOR_MODE (MODE) \
1706 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1707 && TARGET_ALTIVEC_ABI)
1708
f045b2c9
RS
1709/* Determine where to put an argument to a function.
1710 Value is zero to push the argument on the stack,
1711 or a hard register in which to store the argument.
1712
1713 MODE is the argument's machine mode.
1714 TYPE is the data type of the argument (as a tree).
1715 This is null for libcalls where that information may
1716 not be available.
1717 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1718 the preceding args and about the function being called.
1719 NAMED is nonzero if this argument is a named parameter
1720 (otherwise it is an extra parameter matching an ellipsis).
1721
1722 On RS/6000 the first eight words of non-FP are normally in registers
1723 and the rest are pushed. The first 13 FP args are in registers.
1724
1725 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1726 both an FP and integer register (or possibly FP reg and stack). Library
1727 functions (when TYPE is zero) always have the proper types for args,
1728 so we can pass the FP value just in one register. emit_library_function
1729 doesn't support EXPR_LIST anyway. */
f045b2c9 1730
4697a36c
MM
1731#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1732 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1733
1734/* For an arg passed partly in registers and partly in memory,
1735 this is the number of registers used.
1736 For args passed entirely in registers or entirely in memory, zero. */
1737
4697a36c
MM
1738#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1739 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1740
1741/* A C expression that indicates when an argument must be passed by
1742 reference. If nonzero for an argument, a copy of that argument is
1743 made in memory and a pointer to the argument is passed instead of
1744 the argument itself. The pointer is passed in whatever way is
82e41834 1745 appropriate for passing a pointer to that type. */
4697a36c
MM
1746
1747#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1748 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1749
c229cba9
DE
1750/* If defined, a C expression which determines whether, and in which
1751 direction, to pad out an argument with extra space. The value
1752 should be of type `enum direction': either `upward' to pad above
1753 the argument, `downward' to pad below, or `none' to inhibit
1754 padding. */
1755
9ebbca7d 1756#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1757
b6c9286a 1758/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1759 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1760 PARM_BOUNDARY is used for all arguments. */
1761
1762#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1763 function_arg_boundary (MODE, TYPE)
1764
f045b2c9 1765/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1766 variable number of arguments.
f045b2c9
RS
1767
1768 CUM is as above.
1769
1770 MODE and TYPE are the mode and type of the current parameter.
1771
1772 PRETEND_SIZE is a variable that should be set to the amount of stack
1773 that must be pushed by the prolog to pretend that our caller pushed
1774 it.
1775
1776 Normally, this macro will push all remaining incoming registers on the
1777 stack and set PRETEND_SIZE to the length of the registers pushed. */
1778
4697a36c
MM
1779#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1780 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1781
dfafc897
FS
1782/* Define the `__builtin_va_list' type for the ABI. */
1783#define BUILD_VA_LIST_TYPE(VALIST) \
1784 (VALIST) = rs6000_build_va_list ()
4697a36c 1785
dfafc897 1786/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1787#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1788 rs6000_va_start (valist, nextarg)
dfafc897
FS
1789
1790/* Implement `va_arg'. */
1791#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1792 rs6000_va_arg (valist, type)
f045b2c9 1793
2a55fd42
DE
1794/* For AIX, the rule is that structures are passed left-aligned in
1795 their stack slot. However, GCC does not presently do this:
1796 structures which are the same size as integer types are passed
1797 right-aligned, as if they were in fact integers. This only
1798 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1799 ABI_V4 does not use std_expand_builtin_va_arg. */
1800#define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1801
d34c5b80
DE
1802/* Define this macro to be a nonzero value if the location where a function
1803 argument is passed depends on whether or not it is a named argument. */
1804#define STRICT_ARGUMENT_NAMING 1
1805
f045b2c9 1806/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1807 for profiling a function entry. */
f045b2c9
RS
1808
1809#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1810 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1811
1812/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1813 the stack pointer does not matter. No definition is equivalent to
1814 always zero.
1815
a0ab749a 1816 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1817 its backpointer, which we maintain. */
1818#define EXIT_IGNORE_STACK 1
1819
a701949a
FS
1820/* Define this macro as a C expression that is nonzero for registers
1821 that are used by the epilogue or the return' pattern. The stack
1822 and frame pointer registers are already be assumed to be used as
1823 needed. */
1824
83720594
RH
1825#define EPILOGUE_USES(REGNO) \
1826 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1827 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1828 || (current_function_calls_eh_return \
3553b09d 1829 && TARGET_AIX \
83720594 1830 && (REGNO) == TOC_REGISTER))
2bfcf297 1831
f045b2c9 1832\f
eaf1bcf1 1833/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1834
1835/* Length in units of the trampoline for entering a nested function. */
1836
b6c9286a 1837#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1838
1839/* Emit RTL insns to initialize the variable parts of a trampoline.
1840 FNADDR is an RTX for the address of the function's pure code.
1841 CXT is an RTX for the static chain value for the function. */
1842
1843#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1844 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1845\f
f33985c6
MS
1846/* Definitions for __builtin_return_address and __builtin_frame_address.
1847 __builtin_return_address (0) should give link register (65), enable
82e41834 1848 this. */
f33985c6
MS
1849/* This should be uncommented, so that the link register is used, but
1850 currently this would result in unmatched insns and spilling fixed
1851 registers so we'll leave it for another day. When these problems are
1852 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1853 (mrs) */
1854/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1855
b6c9286a
MM
1856/* Number of bytes into the frame return addresses can be found. See
1857 rs6000_stack_info in rs6000.c for more information on how the different
1858 abi's store the return address. */
1859#define RETURN_ADDRESS_OFFSET \
1860 ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1861 || DEFAULT_ABI == ABI_DARWIN \
05ef2698 1862 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1863 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1864 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1865
f33985c6
MS
1866/* The current return address is in link register (65). The return address
1867 of anything farther back is accessed normally at an offset of 8 from the
1868 frame pointer. */
71f123ca
FS
1869#define RETURN_ADDR_RTX(COUNT, FRAME) \
1870 (rs6000_return_addr (COUNT, FRAME))
1871
f33985c6 1872\f
f045b2c9
RS
1873/* Definitions for register eliminations.
1874
1875 We have two registers that can be eliminated on the RS/6000. First, the
1876 frame pointer register can often be eliminated in favor of the stack
1877 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1878 eliminated; it is replaced with either the stack or frame pointer.
1879
1880 In addition, we use the elimination mechanism to see if r30 is needed
1881 Initially we assume that it isn't. If it is, we spill it. This is done
1882 by making it an eliminable register. We replace it with itself so that
1883 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1884
1885/* This is an array of structures. Each structure initializes one pair
1886 of eliminable registers. The "from" register number is given first,
1887 followed by "to". Eliminations of the same "from" register are listed
1888 in order of preference. */
1889#define ELIMINABLE_REGS \
1890{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1891 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1 1892 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
97b23853 1893 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9
RS
1894
1895/* Given FROM and TO register numbers, say whether this elimination is allowed.
1896 Frame pointer elimination is automatically handled.
1897
1898 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1899 to convert ap into fp, not sp.
1900
abc95ed3 1901 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1902 references. */
f045b2c9 1903
97b23853
GK
1904#define CAN_ELIMINATE(FROM, TO) \
1905 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1906 ? ! frame_pointer_needed \
1907 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1908 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1909 : 1)
1910
1911/* Define the offset between two registers, one to be eliminated, and the other
1912 its replacement, at the start of a routine. */
1913#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1914{ \
4697a36c 1915 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1916 \
1917 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1918 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1919 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1920 (OFFSET) = info->total_size; \
1921 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1922 (OFFSET) = (info->push_p) ? info->total_size : 0; \
97b23853 1923 else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM) \
642a35f1 1924 (OFFSET) = 0; \
f045b2c9
RS
1925 else \
1926 abort (); \
1927}
1928\f
1929/* Addressing modes, and classification of registers for them. */
1930
940da324
JL
1931#define HAVE_PRE_DECREMENT 1
1932#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1933
1934/* Macros to check register numbers against specific register classes. */
1935
1936/* These assume that REGNO is a hard or pseudo reg number.
1937 They give nonzero only if REGNO is a hard reg of the suitable class
1938 or a pseudo reg currently allocated to a suitable hard reg.
1939 Since they use reg_renumber, they are safe only once reg_renumber
1940 has been allocated, which happens in local-alloc.c. */
1941
1942#define REGNO_OK_FOR_INDEX_P(REGNO) \
1943((REGNO) < FIRST_PSEUDO_REGISTER \
1944 ? (REGNO) <= 31 || (REGNO) == 67 \
1945 : (reg_renumber[REGNO] >= 0 \
1946 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1947
1948#define REGNO_OK_FOR_BASE_P(REGNO) \
1949((REGNO) < FIRST_PSEUDO_REGISTER \
1950 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1951 : (reg_renumber[REGNO] > 0 \
1952 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1953\f
1954/* Maximum number of registers that can appear in a valid memory address. */
1955
1956#define MAX_REGS_PER_ADDRESS 2
1957
1958/* Recognize any constant value that is a valid address. */
1959
6eff269e
BK
1960#define CONSTANT_ADDRESS_P(X) \
1961 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1962 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1963 || GET_CODE (X) == HIGH)
f045b2c9
RS
1964
1965/* Nonzero if the constant value X is a legitimate general operand.
1966 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1967
1968 On the RS/6000, all integer constants are acceptable, most won't be valid
1969 for particular insns, though. Only easy FP constants are
1970 acceptable. */
1971
1972#define LEGITIMATE_CONSTANT_P(X) \
1973 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1974 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1975 || easy_fp_constant (X, GET_MODE (X)))
1976
1977/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1978 and check its validity for a certain class.
1979 We have two alternate definitions for each of them.
1980 The usual definition accepts all pseudo regs; the other rejects
1981 them unless they have been allocated suitable hard regs.
1982 The symbol REG_OK_STRICT causes the latter definition to be used.
1983
1984 Most source files want to accept pseudo regs in the hope that
1985 they will get allocated to the class that the insn wants them to be in.
1986 Source files for reload pass need to be strict.
1987 After reload, it makes no difference, since pseudo regs have
1988 been eliminated by then. */
1989
258bfae2
FS
1990#ifdef REG_OK_STRICT
1991# define REG_OK_STRICT_FLAG 1
1992#else
1993# define REG_OK_STRICT_FLAG 0
1994#endif
f045b2c9
RS
1995
1996/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1997 or if it is a pseudo reg in the non-strict case. */
1998#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1999 ((! (STRICT) \
2000 && (REGNO (X) <= 31 \
2001 || REGNO (X) == ARG_POINTER_REGNUM \
2002 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2003 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
2004
2005/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
2006 or if it is a pseudo reg in the non-strict case. */
2007#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2008 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 2009
258bfae2
FS
2010#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2011#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
2012\f
2013/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2014 that is a valid memory address for an instruction.
2015 The MODE argument is the machine mode for the MEM expression
2016 that wants to use this address.
2017
2018 On the RS/6000, there are four valid address: a SYMBOL_REF that
2019 refers to a constant pool entry of an address (or the sum of it
2020 plus a constant), a short (16-bit signed) constant plus a register,
2021 the sum of two registers, or a register indirect, possibly with an
5bdc5878 2022 auto-increment. For DFmode and DImode with a constant plus register,
2f3e5814 2023 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
2024 word aligned.
2025
2026 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2027 32-bit DImode, TImode), indexed addressing cannot be used because
2028 adjacent memory cells are accessed by adding word-sized offsets
2029 during assembly output. */
f045b2c9 2030
9ebbca7d
GK
2031#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2032
2033#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
f045b2c9 2034
17072732 2035/* SPE offset addressing is limited to 5-bits worth of double words. */
88c38659 2036#define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
a3170dc6 2037
f045b2c9 2038#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
9ebbca7d
GK
2039 (TARGET_TOC \
2040 && GET_CODE (X) == PLUS \
2041 && GET_CODE (XEXP (X, 0)) == REG \
2042 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
2043 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
f045b2c9 2044
7509c759 2045#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
f607bc57 2046 (DEFAULT_ABI == ABI_V4 \
81795281 2047 && !flag_pic && !TARGET_TOC \
88228c4b
MM
2048 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
2049 && small_data_operand (X, MODE))
7509c759 2050
258bfae2 2051#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
f045b2c9 2052 (GET_CODE (X) == CONST_INT \
5b6f7b96 2053 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9 2054
258bfae2
FS
2055#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
2056 (GET_CODE (X) == PLUS \
2057 && GET_CODE (XEXP (X, 0)) == REG \
2058 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2059 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
37fa124a
AM
2060 && (! ALTIVEC_VECTOR_MODE (MODE) \
2061 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
a3170dc6
AH
2062 && (! SPE_VECTOR_MODE (MODE) \
2063 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
2064 && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1))))) \
258bfae2
FS
2065 && (((MODE) != DFmode && (MODE) != DImode) \
2066 || (TARGET_32BIT \
2067 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
2068 : ! (INTVAL (XEXP (X, 1)) & 3))) \
fcce224d 2069 && (((MODE) != TFmode && (MODE) != TImode) \
258bfae2
FS
2070 || (TARGET_32BIT \
2071 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
2072 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1465faec 2073 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9 2074
258bfae2
FS
2075#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2076 (GET_CODE (X) == PLUS \
2077 && GET_CODE (XEXP (X, 0)) == REG \
2078 && GET_CODE (XEXP (X, 1)) == REG \
2079 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2080 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2081 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2082 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2083
2084#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2085 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2086
6ac7bf2c
GK
2087#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2088 (TARGET_ELF \
2089 && ! flag_pic && ! TARGET_TOC \
2090 && GET_MODE_NUNITS (MODE) == 1 \
2091 && (GET_MODE_BITSIZE (MODE) <= 32 \
a3170dc6 2092 || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode)) \
6ac7bf2c
GK
2093 && GET_CODE (X) == LO_SUM \
2094 && GET_CODE (XEXP (X, 0)) == REG \
2095 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
4697a36c
MM
2096 && CONSTANT_P (XEXP (X, 1)))
2097
258bfae2
FS
2098#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2099{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2100 goto ADDR; \
f045b2c9
RS
2101}
2102\f
2103/* Try machine-dependent ways of modifying an illegitimate address
2104 to be legitimate. If we find one, return the new, valid address.
2105 This macro is used in only one place: `memory_address' in explow.c.
2106
2107 OLDX is the address as it was before break_out_memory_refs was called.
2108 In some cases it is useful to look at this to decide what needs to be done.
2109
2110 MODE and WIN are passed so that this macro can use
2111 GO_IF_LEGITIMATE_ADDRESS.
2112
2113 It is always safe for this macro to do nothing. It exists to recognize
2114 opportunities to optimize the output.
2115
2116 On RS/6000, first check for the sum of a register with a constant
2117 integer that is out of range. If so, generate code to add the
2118 constant with the low-order 16 bits masked to the register and force
2119 this result into another register (this can be done with `cau').
c81bebd7 2120 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2121 possibility of bit 16 being a one.
2122
2123 Then check for the sum of a register and something not constant, try to
2124 load the other things into a register and return the sum. */
2125
9ebbca7d
GK
2126#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2127{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2128 if (result != NULL_RTX) \
2129 { \
2130 (X) = result; \
2131 goto WIN; \
2132 } \
f045b2c9
RS
2133}
2134
a260abc9
DE
2135/* Try a machine-dependent way of reloading an illegitimate address
2136 operand. If we find one, push the reload and jump to WIN. This
2137 macro is used in only one place: `find_reloads_address' in reload.c.
2138
24ea750e
DJ
2139 Implemented on rs6000 by rs6000_legitimize_reload_address.
2140 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2141
a9098fd0
GK
2142#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2143do { \
24ea750e
DJ
2144 int win; \
2145 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2146 (int)(TYPE), (IND_LEVELS), &win); \
2147 if ( win ) \
2148 goto WIN; \
a260abc9
DE
2149} while (0)
2150
f045b2c9
RS
2151/* Go to LABEL if ADDR (a legitimate address expression)
2152 has an effect that depends on the machine mode it is used for.
2153
2154 On the RS/6000 this is true if the address is valid with a zero offset
2155 but not with an offset of four (this means it cannot be used as an
2156 address for DImode or DFmode) or is a pre-increment or decrement. Since
2157 we know it is valid, we just check for an address that is not valid with
2158 an offset of four. */
2159
2160#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2161{ if (GET_CODE (ADDR) == PLUS \
2162 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2163 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2164 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2165 goto LABEL; \
38c1f2d7 2166 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2167 goto LABEL; \
38c1f2d7 2168 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2169 goto LABEL; \
4697a36c
MM
2170 if (GET_CODE (ADDR) == LO_SUM) \
2171 goto LABEL; \
f045b2c9 2172}
766a866c
MM
2173\f
2174/* The register number of the register used to address a table of
2175 static data addresses in memory. In some cases this register is
2176 defined by a processor's "application binary interface" (ABI).
2177 When this macro is defined, RTL is generated for this register
2178 once, as with the stack pointer and frame pointer registers. If
2179 this macro is not defined, it is up to the machine-dependent files
2180 to allocate such a register (if necessary). */
2181
1db02437
FS
2182#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2183#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2184
97b23853 2185#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2186
766a866c
MM
2187/* Define this macro if the register defined by
2188 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2189 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2190
2191/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2192
2193/* By generating position-independent code, when two different
2194 programs (A and B) share a common library (libC.a), the text of
2195 the library can be shared whether or not the library is linked at
2196 the same address for both programs. In some of these
2197 environments, position-independent code requires not only the use
2198 of different addressing modes, but also special code to enable the
2199 use of these addressing modes.
2200
2201 The `FINALIZE_PIC' macro serves as a hook to emit these special
2202 codes once the function is being compiled into assembly code, but
2203 not before. (It is not done before, because in the case of
2204 compiling an inline function, it would lead to multiple PIC
2205 prologues being included in functions which used inline functions
2206 and were compiled to assembly language.) */
2207
8d30c4ee 2208/* #define FINALIZE_PIC */
766a866c 2209
766a866c
MM
2210/* A C expression that is nonzero if X is a legitimate immediate
2211 operand on the target machine when generating position independent
2212 code. You can assume that X satisfies `CONSTANT_P', so you need
2213 not check this. You can also assume FLAG_PIC is true, so you need
2214 not check it either. You need not define this macro if all
2215 constants (including `SYMBOL_REF') can be immediate operands when
2216 generating position independent code. */
2217
2218/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2219
30ea98f1
MM
2220/* In rare cases, correct code generation requires extra machine
2221 dependent processing between the second jump optimization pass and
2222 delayed branch scheduling. On those machines, define this macro
9ebbca7d 2223 as a C statement to act on the code starting at INSN. */
30ea98f1 2224
9ebbca7d 2225/* #define MACHINE_DEPENDENT_REORG(INSN) */
30ea98f1 2226
f045b2c9
RS
2227\f
2228/* Define this if some processing needs to be done immediately before
4255474b 2229 emitting code for an insn. */
f045b2c9 2230
4255474b 2231/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2232
2233/* Specify the machine mode that this machine uses
2234 for the index in the tablejump instruction. */
e1565e65 2235#define CASE_VECTOR_MODE SImode
f045b2c9 2236
18543a22
ILT
2237/* Define as C expression which evaluates to nonzero if the tablejump
2238 instruction expects the table to contain offsets from the address of the
2239 table.
82e41834 2240 Do not define this if the table should contain absolute addresses. */
18543a22 2241#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2242
f045b2c9
RS
2243/* Define this as 1 if `char' should by default be signed; else as 0. */
2244#define DEFAULT_SIGNED_CHAR 0
2245
2246/* This flag, if defined, says the same insns that convert to a signed fixnum
2247 also convert validly to an unsigned one. */
2248
2249/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2250
2251/* Max number of bytes we can move from memory to memory
2252 in one reasonably fast instruction. */
2f3e5814 2253#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2254#define MAX_MOVE_MAX 8
f045b2c9
RS
2255
2256/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2257 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2258 is undesirable. */
2259#define SLOW_BYTE_ACCESS 1
2260
9a63901f
RK
2261/* Define if operations between registers always perform the operation
2262 on the full register even if a narrower mode is specified. */
2263#define WORD_REGISTER_OPERATIONS
2264
2265/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2266 will either zero-extend or sign-extend. The value of this macro should
2267 be the code that says which one of the two operations is implicitly
2268 done, NIL if none. */
2269#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2270
2271/* Define if loading short immediate values into registers sign extends. */
2272#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2273\f
f045b2c9
RS
2274/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2275 is done just by pretending it is already truncated. */
2276#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2277
94993909 2278/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122
DE
2279#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2280 ((VALUE) = ((MODE) == SImode ? 32 : 64))
2281
94993909
DE
2282/* The CTZ patterns return -1 for input of zero. */
2283#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2284
f045b2c9
RS
2285/* Specify the machine mode that pointers have.
2286 After generation of rtl, the compiler makes no further distinction
2287 between pointers and any other objects of this machine mode. */
2f3e5814 2288#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2289
2290/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2291 Doesn't matter on RS/6000. */
5b71a4e7 2292#define FUNCTION_MODE SImode
f045b2c9
RS
2293
2294/* Define this if addresses of constant functions
2295 shouldn't be put through pseudo regs where they can be cse'd.
2296 Desirable on machines where ordinary constants are expensive
2297 but a CALL with constant address is cheap. */
2298#define NO_FUNCTION_CSE
2299
d969caf8 2300/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2301 few bits.
2302
2303 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2304 have been dropped from the PowerPC architecture. */
2305
4697a36c 2306#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2307
f045b2c9
RS
2308/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2309 should be adjusted to reflect any required changes. This macro is used when
2310 there is some systematic length adjustment required that would be difficult
2311 to express in the length attribute. */
2312
2313/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2314
39a10a29
GK
2315/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2316 COMPARE, return the mode to be used for the comparison. For
2317 floating-point, CCFPmode should be used. CCUNSmode should be used
2318 for unsigned comparisons. CCEQmode should be used when we are
2319 doing an inequality comparison on the result of a
2320 comparison. CCmode should be used in all other cases. */
c5defebb 2321
b565a316 2322#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2323 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2324 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2325 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2326 ? CCEQmode : CCmode))
f045b2c9
RS
2327
2328/* Define the information needed to generate branch and scc insns. This is
2329 stored from the compare operation. Note that we can't use "rtx" here
2330 since it hasn't been defined! */
2331
e2500fed
GK
2332extern GTY(()) rtx rs6000_compare_op0;
2333extern GTY(()) rtx rs6000_compare_op1;
f045b2c9 2334extern int rs6000_compare_fp_p;
f045b2c9
RS
2335\f
2336/* Control the assembler format that we output. */
2337
1b279f39
DE
2338/* A C string constant describing how to begin a comment in the target
2339 assembler language. The compiler assumes that the comment will end at
2340 the end of the line. */
2341#define ASM_COMMENT_START " #"
6b67933e 2342
fdaff8ba
RS
2343/* Implicit library calls should use memcpy, not bcopy, etc. */
2344
2345#define TARGET_MEM_FUNCTIONS
2346
38c1f2d7
MM
2347/* Flag to say the TOC is initialized */
2348extern int toc_initialized;
2349
f045b2c9
RS
2350/* Macro to output a special constant pool entry. Go to WIN if we output
2351 it. Otherwise, it is written the usual way.
2352
2353 On the RS/6000, toc entries are handled this way. */
2354
a9098fd0
GK
2355#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2356{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2357 { \
2358 output_toc (FILE, X, LABELNO, MODE); \
2359 goto WIN; \
2360 } \
f045b2c9
RS
2361}
2362
ebd97b96
DE
2363#ifdef HAVE_GAS_WEAK
2364#define RS6000_WEAK 1
2365#else
2366#define RS6000_WEAK 0
2367#endif
290ad355 2368
79c4e63f
AM
2369#if RS6000_WEAK
2370/* Used in lieu of ASM_WEAKEN_LABEL. */
2371#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2372 do \
2373 { \
2374 fputs ("\t.weak\t", (FILE)); \
cbaaba19 2375 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2376 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2377 && DEFAULT_ABI == ABI_AIX) \
2378 { \
cbaaba19
DE
2379 if (TARGET_XCOFF) \
2380 fputs ("[DS]", (FILE)); \
ca734b39 2381 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2382 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2383 } \
2384 fputc ('\n', (FILE)); \
2385 if (VAL) \
2386 { \
2387 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2388 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2389 && DEFAULT_ABI == ABI_AIX) \
2390 { \
2391 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2392 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2393 fputs (",.", (FILE)); \
cbaaba19 2394 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2395 fputc ('\n', (FILE)); \
2396 } \
2397 } \
2398 } \
2399 while (0)
2400#endif
2401
2402/* This implements the `alias' attribute. */
2403#undef ASM_OUTPUT_DEF_FROM_DECLS
2404#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2405 do \
2406 { \
2407 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2408 const char *name = IDENTIFIER_POINTER (TARGET); \
2409 if (TREE_CODE (DECL) == FUNCTION_DECL \
2410 && DEFAULT_ABI == ABI_AIX) \
2411 { \
2412 if (TREE_PUBLIC (DECL)) \
2413 { \
2414 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2415 { \
2416 fputs ("\t.globl\t.", FILE); \
cbaaba19 2417 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2418 putc ('\n', FILE); \
2419 } \
2420 } \
2421 else if (TARGET_XCOFF) \
2422 { \
2423 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2424 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2425 putc ('\n', FILE); \
2426 } \
2427 fputs ("\t.set\t.", FILE); \
cbaaba19 2428 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2429 fputs (",.", FILE); \
cbaaba19 2430 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2431 fputc ('\n', FILE); \
2432 } \
2433 ASM_OUTPUT_DEF (FILE, alias, name); \
2434 } \
2435 while (0)
290ad355 2436
f045b2c9
RS
2437/* Output to assembler file text saying following lines
2438 may contain character constants, extra white space, comments, etc. */
2439
2440#define ASM_APP_ON ""
2441
2442/* Output to assembler file text saying following lines
2443 no longer contain unusual constructs. */
2444
2445#define ASM_APP_OFF ""
2446
f045b2c9
RS
2447/* How to refer to registers in assembler output.
2448 This sequence is indexed by compiler's hard-register-number (see above). */
2449
82e41834 2450extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2451
2452#define REGISTER_NAMES \
2453{ \
2454 &rs6000_reg_names[ 0][0], /* r0 */ \
2455 &rs6000_reg_names[ 1][0], /* r1 */ \
2456 &rs6000_reg_names[ 2][0], /* r2 */ \
2457 &rs6000_reg_names[ 3][0], /* r3 */ \
2458 &rs6000_reg_names[ 4][0], /* r4 */ \
2459 &rs6000_reg_names[ 5][0], /* r5 */ \
2460 &rs6000_reg_names[ 6][0], /* r6 */ \
2461 &rs6000_reg_names[ 7][0], /* r7 */ \
2462 &rs6000_reg_names[ 8][0], /* r8 */ \
2463 &rs6000_reg_names[ 9][0], /* r9 */ \
2464 &rs6000_reg_names[10][0], /* r10 */ \
2465 &rs6000_reg_names[11][0], /* r11 */ \
2466 &rs6000_reg_names[12][0], /* r12 */ \
2467 &rs6000_reg_names[13][0], /* r13 */ \
2468 &rs6000_reg_names[14][0], /* r14 */ \
2469 &rs6000_reg_names[15][0], /* r15 */ \
2470 &rs6000_reg_names[16][0], /* r16 */ \
2471 &rs6000_reg_names[17][0], /* r17 */ \
2472 &rs6000_reg_names[18][0], /* r18 */ \
2473 &rs6000_reg_names[19][0], /* r19 */ \
2474 &rs6000_reg_names[20][0], /* r20 */ \
2475 &rs6000_reg_names[21][0], /* r21 */ \
2476 &rs6000_reg_names[22][0], /* r22 */ \
2477 &rs6000_reg_names[23][0], /* r23 */ \
2478 &rs6000_reg_names[24][0], /* r24 */ \
2479 &rs6000_reg_names[25][0], /* r25 */ \
2480 &rs6000_reg_names[26][0], /* r26 */ \
2481 &rs6000_reg_names[27][0], /* r27 */ \
2482 &rs6000_reg_names[28][0], /* r28 */ \
2483 &rs6000_reg_names[29][0], /* r29 */ \
2484 &rs6000_reg_names[30][0], /* r30 */ \
2485 &rs6000_reg_names[31][0], /* r31 */ \
2486 \
2487 &rs6000_reg_names[32][0], /* fr0 */ \
2488 &rs6000_reg_names[33][0], /* fr1 */ \
2489 &rs6000_reg_names[34][0], /* fr2 */ \
2490 &rs6000_reg_names[35][0], /* fr3 */ \
2491 &rs6000_reg_names[36][0], /* fr4 */ \
2492 &rs6000_reg_names[37][0], /* fr5 */ \
2493 &rs6000_reg_names[38][0], /* fr6 */ \
2494 &rs6000_reg_names[39][0], /* fr7 */ \
2495 &rs6000_reg_names[40][0], /* fr8 */ \
2496 &rs6000_reg_names[41][0], /* fr9 */ \
2497 &rs6000_reg_names[42][0], /* fr10 */ \
2498 &rs6000_reg_names[43][0], /* fr11 */ \
2499 &rs6000_reg_names[44][0], /* fr12 */ \
2500 &rs6000_reg_names[45][0], /* fr13 */ \
2501 &rs6000_reg_names[46][0], /* fr14 */ \
2502 &rs6000_reg_names[47][0], /* fr15 */ \
2503 &rs6000_reg_names[48][0], /* fr16 */ \
2504 &rs6000_reg_names[49][0], /* fr17 */ \
2505 &rs6000_reg_names[50][0], /* fr18 */ \
2506 &rs6000_reg_names[51][0], /* fr19 */ \
2507 &rs6000_reg_names[52][0], /* fr20 */ \
2508 &rs6000_reg_names[53][0], /* fr21 */ \
2509 &rs6000_reg_names[54][0], /* fr22 */ \
2510 &rs6000_reg_names[55][0], /* fr23 */ \
2511 &rs6000_reg_names[56][0], /* fr24 */ \
2512 &rs6000_reg_names[57][0], /* fr25 */ \
2513 &rs6000_reg_names[58][0], /* fr26 */ \
2514 &rs6000_reg_names[59][0], /* fr27 */ \
2515 &rs6000_reg_names[60][0], /* fr28 */ \
2516 &rs6000_reg_names[61][0], /* fr29 */ \
2517 &rs6000_reg_names[62][0], /* fr30 */ \
2518 &rs6000_reg_names[63][0], /* fr31 */ \
2519 \
2520 &rs6000_reg_names[64][0], /* mq */ \
2521 &rs6000_reg_names[65][0], /* lr */ \
2522 &rs6000_reg_names[66][0], /* ctr */ \
2523 &rs6000_reg_names[67][0], /* ap */ \
2524 \
2525 &rs6000_reg_names[68][0], /* cr0 */ \
2526 &rs6000_reg_names[69][0], /* cr1 */ \
2527 &rs6000_reg_names[70][0], /* cr2 */ \
2528 &rs6000_reg_names[71][0], /* cr3 */ \
2529 &rs6000_reg_names[72][0], /* cr4 */ \
2530 &rs6000_reg_names[73][0], /* cr5 */ \
2531 &rs6000_reg_names[74][0], /* cr6 */ \
2532 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2533 \
9ebbca7d 2534 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2535 \
2536 &rs6000_reg_names[77][0], /* v0 */ \
2537 &rs6000_reg_names[78][0], /* v1 */ \
2538 &rs6000_reg_names[79][0], /* v2 */ \
2539 &rs6000_reg_names[80][0], /* v3 */ \
2540 &rs6000_reg_names[81][0], /* v4 */ \
2541 &rs6000_reg_names[82][0], /* v5 */ \
2542 &rs6000_reg_names[83][0], /* v6 */ \
2543 &rs6000_reg_names[84][0], /* v7 */ \
2544 &rs6000_reg_names[85][0], /* v8 */ \
2545 &rs6000_reg_names[86][0], /* v9 */ \
2546 &rs6000_reg_names[87][0], /* v10 */ \
2547 &rs6000_reg_names[88][0], /* v11 */ \
2548 &rs6000_reg_names[89][0], /* v12 */ \
2549 &rs6000_reg_names[90][0], /* v13 */ \
2550 &rs6000_reg_names[91][0], /* v14 */ \
2551 &rs6000_reg_names[92][0], /* v15 */ \
2552 &rs6000_reg_names[93][0], /* v16 */ \
2553 &rs6000_reg_names[94][0], /* v17 */ \
2554 &rs6000_reg_names[95][0], /* v18 */ \
2555 &rs6000_reg_names[96][0], /* v19 */ \
2556 &rs6000_reg_names[97][0], /* v20 */ \
2557 &rs6000_reg_names[98][0], /* v21 */ \
2558 &rs6000_reg_names[99][0], /* v22 */ \
2559 &rs6000_reg_names[100][0], /* v23 */ \
2560 &rs6000_reg_names[101][0], /* v24 */ \
2561 &rs6000_reg_names[102][0], /* v25 */ \
2562 &rs6000_reg_names[103][0], /* v26 */ \
2563 &rs6000_reg_names[104][0], /* v27 */ \
2564 &rs6000_reg_names[105][0], /* v28 */ \
2565 &rs6000_reg_names[106][0], /* v29 */ \
2566 &rs6000_reg_names[107][0], /* v30 */ \
2567 &rs6000_reg_names[108][0], /* v31 */ \
2568 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2569 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2570 &rs6000_reg_names[111][0], /* spe_acc */ \
2571 &rs6000_reg_names[112][0], /* spefscr */ \
c81bebd7
MM
2572}
2573
2574/* print-rtl can't handle the above REGISTER_NAMES, so define the
2575 following for it. Switch to use the alternate names since
2576 they are more mnemonic. */
2577
2578#define DEBUG_REGISTER_NAMES \
2579{ \
59a4c851
AH
2580 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2581 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
802a0058
MM
2582 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2583 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2584 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2585 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2586 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2587 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2588 "mq", "lr", "ctr", "ap", \
2589 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
59a4c851 2590 "xer", \
0ac081f6
AH
2591 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2592 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2593 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2594 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
59a4c851
AH
2595 "vrsave", "vscr", \
2596 "spe_acc", "spefscr" \
c81bebd7 2597}
f045b2c9
RS
2598
2599/* Table of additional register names to use in user input. */
2600
2601#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2602 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2603 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2604 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2605 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2606 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2607 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2608 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2609 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2610 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2611 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2612 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2613 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2614 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2615 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2616 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2617 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2618 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2619 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2620 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2621 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2622 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2623 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2624 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2625 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2626 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2627 {"spe_acc", 111}, {"spefscr", 112}, \
c4d38ccb
MM
2628 /* no additional names for: mq, lr, ctr, ap */ \
2629 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2630 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2631 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2632
0da40b09
RK
2633/* Text to write out after a CALL that may be replaced by glue code by
2634 the loader. This depends on the AIX version. */
2635#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2636
f045b2c9
RS
2637/* This is how to output an element of a case-vector that is relative. */
2638
e1565e65 2639#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2640 do { char buf[100]; \
e1565e65 2641 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2642 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2643 assemble_name (FILE, buf); \
19d2d16f 2644 putc ('-', FILE); \
3daf36a4
ILT
2645 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2646 assemble_name (FILE, buf); \
19d2d16f 2647 putc ('\n', FILE); \
3daf36a4 2648 } while (0)
f045b2c9
RS
2649
2650/* This is how to output an assembler line
2651 that says to advance the location counter
2652 to a multiple of 2**LOG bytes. */
2653
2654#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2655 if ((LOG) != 0) \
2656 fprintf (FILE, "\t.align %d\n", (LOG))
2657
9ebbca7d
GK
2658/* Pick up the return address upon entry to a procedure. Used for
2659 dwarf2 unwind information. This also enables the table driven
2660 mechanism. */
2661
2662#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2663#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2664
83720594
RH
2665/* Describe how we implement __builtin_eh_return. */
2666#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2667#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2668
f045b2c9
RS
2669/* Print operand X (an rtx) in assembler syntax to file FILE.
2670 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2671 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2672
2673#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2674
2675/* Define which CODE values are valid. */
2676
c81bebd7 2677#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
6fa3f289 2678 ((CODE) == '.')
f045b2c9
RS
2679
2680/* Print a memory address as an operand to reference that memory location. */
2681
2682#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2683
2684/* Define the codes that are matched by predicates in rs6000.c. */
2685
39a10a29 2686#define PREDICATE_CODES \
a65c591c 2687 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
df15fbc7 2688 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
a65c591c
DE
2689 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2690 LABEL_REF, SUBREG, REG, MEM}}, \
39a10a29
GK
2691 {"short_cint_operand", {CONST_INT}}, \
2692 {"u_short_cint_operand", {CONST_INT}}, \
2693 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2694 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2695 {"gpc_reg_operand", {SUBREG, REG}}, \
2696 {"cc_reg_operand", {SUBREG, REG}}, \
2697 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2698 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2699 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2700 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2701 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2702 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2703 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2704 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2705 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2706 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2707 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2708 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2709 {"easy_fp_constant", {CONST_DOUBLE}}, \
50a0b056 2710 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2711 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2712 {"lwa_operand", {SUBREG, MEM, REG}}, \
2713 {"volatile_mem_operand", {MEM}}, \
2714 {"offsettable_mem_operand", {MEM}}, \
2715 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2716 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2717 {"non_add_cint_operand", {CONST_INT}}, \
2718 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2719 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
0ba1b2ff 2720 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2721 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2722 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2723 {"mask_operand", {CONST_INT}}, \
0ba1b2ff
AM
2724 {"mask_operand_wrap", {CONST_INT}}, \
2725 {"mask64_operand", {CONST_INT}}, \
2726 {"mask64_2_operand", {CONST_INT}}, \
39a10a29
GK
2727 {"count_register_operand", {REG}}, \
2728 {"xer_operand", {REG}}, \
cc4d5fec 2729 {"symbol_ref_operand", {SYMBOL_REF}}, \
39a10a29
GK
2730 {"call_operand", {SYMBOL_REF, REG}}, \
2731 {"current_file_function_operand", {SYMBOL_REF}}, \
2732 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2733 CONST_DOUBLE, SYMBOL_REF}}, \
2734 {"load_multiple_operation", {PARALLEL}}, \
2735 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2736 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2737 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2738 GT, LEU, LTU, GEU, GTU, \
2739 UNORDERED, ORDERED, \
2740 UNGE, UNLE }}, \
2741 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2742 UNORDERED }}, \
2743 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2744 GT, LEU, LTU, GEU, GTU, \
2745 UNORDERED, ORDERED, \
2746 UNGE, UNLE }}, \
2747 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2748 GT, LEU, LTU, GEU, GTU}}, \
2749 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2750 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2751 {"altivec_register_operand", {REG}}, \
50a0b056 2752 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2753
b6c9286a
MM
2754/* uncomment for disabling the corresponding default options */
2755/* #define MACHINE_no_sched_interblock */
2756/* #define MACHINE_no_sched_speculative */
2757/* #define MACHINE_no_sched_speculative_load */
2758
766a866c
MM
2759/* General flags. */
2760extern int flag_pic;
354b734b
MM
2761extern int optimize;
2762extern int flag_expensive_optimizations;
a7df97e6 2763extern int frame_pointer_needed;
0ac081f6
AH
2764
2765enum rs6000_builtins
2766{
2767 /* AltiVec builtins. */
f18c054f
DB
2768 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2769 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2770 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2771 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2772 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2773 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2774 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2775 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2776 ALTIVEC_BUILTIN_VADDUBM,
2777 ALTIVEC_BUILTIN_VADDUHM,
2778 ALTIVEC_BUILTIN_VADDUWM,
2779 ALTIVEC_BUILTIN_VADDFP,
2780 ALTIVEC_BUILTIN_VADDCUW,
2781 ALTIVEC_BUILTIN_VADDUBS,
2782 ALTIVEC_BUILTIN_VADDSBS,
2783 ALTIVEC_BUILTIN_VADDUHS,
2784 ALTIVEC_BUILTIN_VADDSHS,
2785 ALTIVEC_BUILTIN_VADDUWS,
2786 ALTIVEC_BUILTIN_VADDSWS,
2787 ALTIVEC_BUILTIN_VAND,
2788 ALTIVEC_BUILTIN_VANDC,
2789 ALTIVEC_BUILTIN_VAVGUB,
2790 ALTIVEC_BUILTIN_VAVGSB,
2791 ALTIVEC_BUILTIN_VAVGUH,
2792 ALTIVEC_BUILTIN_VAVGSH,
2793 ALTIVEC_BUILTIN_VAVGUW,
2794 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2795 ALTIVEC_BUILTIN_VCFUX,
2796 ALTIVEC_BUILTIN_VCFSX,
2797 ALTIVEC_BUILTIN_VCTSXS,
2798 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2799 ALTIVEC_BUILTIN_VCMPBFP,
2800 ALTIVEC_BUILTIN_VCMPEQUB,
2801 ALTIVEC_BUILTIN_VCMPEQUH,
2802 ALTIVEC_BUILTIN_VCMPEQUW,
2803 ALTIVEC_BUILTIN_VCMPEQFP,
2804 ALTIVEC_BUILTIN_VCMPGEFP,
2805 ALTIVEC_BUILTIN_VCMPGTUB,
2806 ALTIVEC_BUILTIN_VCMPGTSB,
2807 ALTIVEC_BUILTIN_VCMPGTUH,
2808 ALTIVEC_BUILTIN_VCMPGTSH,
2809 ALTIVEC_BUILTIN_VCMPGTUW,
2810 ALTIVEC_BUILTIN_VCMPGTSW,
2811 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2812 ALTIVEC_BUILTIN_VEXPTEFP,
2813 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2814 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2815 ALTIVEC_BUILTIN_VMAXUB,
2816 ALTIVEC_BUILTIN_VMAXSB,
2817 ALTIVEC_BUILTIN_VMAXUH,
2818 ALTIVEC_BUILTIN_VMAXSH,
2819 ALTIVEC_BUILTIN_VMAXUW,
2820 ALTIVEC_BUILTIN_VMAXSW,
2821 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2822 ALTIVEC_BUILTIN_VMHADDSHS,
2823 ALTIVEC_BUILTIN_VMHRADDSHS,
2824 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2825 ALTIVEC_BUILTIN_VMRGHB,
2826 ALTIVEC_BUILTIN_VMRGHH,
2827 ALTIVEC_BUILTIN_VMRGHW,
2828 ALTIVEC_BUILTIN_VMRGLB,
2829 ALTIVEC_BUILTIN_VMRGLH,
2830 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2831 ALTIVEC_BUILTIN_VMSUMUBM,
2832 ALTIVEC_BUILTIN_VMSUMMBM,
2833 ALTIVEC_BUILTIN_VMSUMUHM,
2834 ALTIVEC_BUILTIN_VMSUMSHM,
2835 ALTIVEC_BUILTIN_VMSUMUHS,
2836 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2837 ALTIVEC_BUILTIN_VMINUB,
2838 ALTIVEC_BUILTIN_VMINSB,
2839 ALTIVEC_BUILTIN_VMINUH,
2840 ALTIVEC_BUILTIN_VMINSH,
2841 ALTIVEC_BUILTIN_VMINUW,
2842 ALTIVEC_BUILTIN_VMINSW,
2843 ALTIVEC_BUILTIN_VMINFP,
2844 ALTIVEC_BUILTIN_VMULEUB,
2845 ALTIVEC_BUILTIN_VMULESB,
2846 ALTIVEC_BUILTIN_VMULEUH,
2847 ALTIVEC_BUILTIN_VMULESH,
2848 ALTIVEC_BUILTIN_VMULOUB,
2849 ALTIVEC_BUILTIN_VMULOSB,
2850 ALTIVEC_BUILTIN_VMULOUH,
2851 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2852 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2853 ALTIVEC_BUILTIN_VNOR,
2854 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2855 ALTIVEC_BUILTIN_VSEL_4SI,
2856 ALTIVEC_BUILTIN_VSEL_4SF,
2857 ALTIVEC_BUILTIN_VSEL_8HI,
2858 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2859 ALTIVEC_BUILTIN_VPERM_4SI,
2860 ALTIVEC_BUILTIN_VPERM_4SF,
2861 ALTIVEC_BUILTIN_VPERM_8HI,
2862 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2863 ALTIVEC_BUILTIN_VPKUHUM,
2864 ALTIVEC_BUILTIN_VPKUWUM,
2865 ALTIVEC_BUILTIN_VPKPX,
2866 ALTIVEC_BUILTIN_VPKUHSS,
2867 ALTIVEC_BUILTIN_VPKSHSS,
2868 ALTIVEC_BUILTIN_VPKUWSS,
2869 ALTIVEC_BUILTIN_VPKSWSS,
2870 ALTIVEC_BUILTIN_VPKUHUS,
2871 ALTIVEC_BUILTIN_VPKSHUS,
2872 ALTIVEC_BUILTIN_VPKUWUS,
2873 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2874 ALTIVEC_BUILTIN_VREFP,
2875 ALTIVEC_BUILTIN_VRFIM,
2876 ALTIVEC_BUILTIN_VRFIN,
2877 ALTIVEC_BUILTIN_VRFIP,
2878 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2879 ALTIVEC_BUILTIN_VRLB,
2880 ALTIVEC_BUILTIN_VRLH,
2881 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2882 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2883 ALTIVEC_BUILTIN_VSLB,
2884 ALTIVEC_BUILTIN_VSLH,
2885 ALTIVEC_BUILTIN_VSLW,
2886 ALTIVEC_BUILTIN_VSL,
2887 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2888 ALTIVEC_BUILTIN_VSPLTB,
2889 ALTIVEC_BUILTIN_VSPLTH,
2890 ALTIVEC_BUILTIN_VSPLTW,
2891 ALTIVEC_BUILTIN_VSPLTISB,
2892 ALTIVEC_BUILTIN_VSPLTISH,
2893 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2894 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2895 ALTIVEC_BUILTIN_VSRH,
2896 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2897 ALTIVEC_BUILTIN_VSRAB,
2898 ALTIVEC_BUILTIN_VSRAH,
2899 ALTIVEC_BUILTIN_VSRAW,
2900 ALTIVEC_BUILTIN_VSR,
2901 ALTIVEC_BUILTIN_VSRO,
2902 ALTIVEC_BUILTIN_VSUBUBM,
2903 ALTIVEC_BUILTIN_VSUBUHM,
2904 ALTIVEC_BUILTIN_VSUBUWM,
2905 ALTIVEC_BUILTIN_VSUBFP,
2906 ALTIVEC_BUILTIN_VSUBCUW,
2907 ALTIVEC_BUILTIN_VSUBUBS,
2908 ALTIVEC_BUILTIN_VSUBSBS,
2909 ALTIVEC_BUILTIN_VSUBUHS,
2910 ALTIVEC_BUILTIN_VSUBSHS,
2911 ALTIVEC_BUILTIN_VSUBUWS,
2912 ALTIVEC_BUILTIN_VSUBSWS,
2913 ALTIVEC_BUILTIN_VSUM4UBS,
2914 ALTIVEC_BUILTIN_VSUM4SBS,
2915 ALTIVEC_BUILTIN_VSUM4SHS,
2916 ALTIVEC_BUILTIN_VSUM2SWS,
2917 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2918 ALTIVEC_BUILTIN_VXOR,
2919 ALTIVEC_BUILTIN_VSLDOI_16QI,
2920 ALTIVEC_BUILTIN_VSLDOI_8HI,
2921 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2922 ALTIVEC_BUILTIN_VSLDOI_4SF,
2923 ALTIVEC_BUILTIN_VUPKHSB,
2924 ALTIVEC_BUILTIN_VUPKHPX,
2925 ALTIVEC_BUILTIN_VUPKHSH,
2926 ALTIVEC_BUILTIN_VUPKLSB,
2927 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 2928 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
2929 ALTIVEC_BUILTIN_MTVSCR,
2930 ALTIVEC_BUILTIN_MFVSCR,
2931 ALTIVEC_BUILTIN_DSSALL,
2932 ALTIVEC_BUILTIN_DSS,
2933 ALTIVEC_BUILTIN_LVSL,
2934 ALTIVEC_BUILTIN_LVSR,
2935 ALTIVEC_BUILTIN_DSTT,
2936 ALTIVEC_BUILTIN_DSTST,
2937 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
2938 ALTIVEC_BUILTIN_DST,
2939 ALTIVEC_BUILTIN_LVEBX,
2940 ALTIVEC_BUILTIN_LVEHX,
2941 ALTIVEC_BUILTIN_LVEWX,
2942 ALTIVEC_BUILTIN_LVXL,
2943 ALTIVEC_BUILTIN_LVX,
2944 ALTIVEC_BUILTIN_STVX,
2945 ALTIVEC_BUILTIN_STVEBX,
2946 ALTIVEC_BUILTIN_STVEHX,
2947 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
2948 ALTIVEC_BUILTIN_STVXL,
2949 ALTIVEC_BUILTIN_VCMPBFP_P,
2950 ALTIVEC_BUILTIN_VCMPEQFP_P,
2951 ALTIVEC_BUILTIN_VCMPEQUB_P,
2952 ALTIVEC_BUILTIN_VCMPEQUH_P,
2953 ALTIVEC_BUILTIN_VCMPEQUW_P,
2954 ALTIVEC_BUILTIN_VCMPGEFP_P,
2955 ALTIVEC_BUILTIN_VCMPGTFP_P,
2956 ALTIVEC_BUILTIN_VCMPGTSB_P,
2957 ALTIVEC_BUILTIN_VCMPGTSH_P,
2958 ALTIVEC_BUILTIN_VCMPGTSW_P,
2959 ALTIVEC_BUILTIN_VCMPGTUB_P,
2960 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
2961 ALTIVEC_BUILTIN_VCMPGTUW_P,
2962 ALTIVEC_BUILTIN_ABSS_V4SI,
2963 ALTIVEC_BUILTIN_ABSS_V8HI,
2964 ALTIVEC_BUILTIN_ABSS_V16QI,
2965 ALTIVEC_BUILTIN_ABS_V4SI,
2966 ALTIVEC_BUILTIN_ABS_V4SF,
2967 ALTIVEC_BUILTIN_ABS_V8HI,
2968 ALTIVEC_BUILTIN_ABS_V16QI
a3170dc6
AH
2969 /* SPE builtins. */
2970 , SPE_BUILTIN_EVADDW,
2971 SPE_BUILTIN_EVAND,
2972 SPE_BUILTIN_EVANDC,
2973 SPE_BUILTIN_EVDIVWS,
2974 SPE_BUILTIN_EVDIVWU,
2975 SPE_BUILTIN_EVEQV,
2976 SPE_BUILTIN_EVFSADD,
2977 SPE_BUILTIN_EVFSDIV,
2978 SPE_BUILTIN_EVFSMUL,
2979 SPE_BUILTIN_EVFSSUB,
2980 SPE_BUILTIN_EVLDDX,
2981 SPE_BUILTIN_EVLDHX,
2982 SPE_BUILTIN_EVLDWX,
2983 SPE_BUILTIN_EVLHHESPLATX,
2984 SPE_BUILTIN_EVLHHOSSPLATX,
2985 SPE_BUILTIN_EVLHHOUSPLATX,
2986 SPE_BUILTIN_EVLWHEX,
2987 SPE_BUILTIN_EVLWHOSX,
2988 SPE_BUILTIN_EVLWHOUX,
2989 SPE_BUILTIN_EVLWHSPLATX,
2990 SPE_BUILTIN_EVLWWSPLATX,
2991 SPE_BUILTIN_EVMERGEHI,
2992 SPE_BUILTIN_EVMERGEHILO,
2993 SPE_BUILTIN_EVMERGELO,
2994 SPE_BUILTIN_EVMERGELOHI,
2995 SPE_BUILTIN_EVMHEGSMFAA,
2996 SPE_BUILTIN_EVMHEGSMFAN,
2997 SPE_BUILTIN_EVMHEGSMIAA,
2998 SPE_BUILTIN_EVMHEGSMIAN,
2999 SPE_BUILTIN_EVMHEGUMIAA,
3000 SPE_BUILTIN_EVMHEGUMIAN,
3001 SPE_BUILTIN_EVMHESMF,
3002 SPE_BUILTIN_EVMHESMFA,
3003 SPE_BUILTIN_EVMHESMFAAW,
3004 SPE_BUILTIN_EVMHESMFANW,
3005 SPE_BUILTIN_EVMHESMI,
3006 SPE_BUILTIN_EVMHESMIA,
3007 SPE_BUILTIN_EVMHESMIAAW,
3008 SPE_BUILTIN_EVMHESMIANW,
3009 SPE_BUILTIN_EVMHESSF,
3010 SPE_BUILTIN_EVMHESSFA,
3011 SPE_BUILTIN_EVMHESSFAAW,
3012 SPE_BUILTIN_EVMHESSFANW,
3013 SPE_BUILTIN_EVMHESSIAAW,
3014 SPE_BUILTIN_EVMHESSIANW,
3015 SPE_BUILTIN_EVMHEUMI,
3016 SPE_BUILTIN_EVMHEUMIA,
3017 SPE_BUILTIN_EVMHEUMIAAW,
3018 SPE_BUILTIN_EVMHEUMIANW,
3019 SPE_BUILTIN_EVMHEUSIAAW,
3020 SPE_BUILTIN_EVMHEUSIANW,
3021 SPE_BUILTIN_EVMHOGSMFAA,
3022 SPE_BUILTIN_EVMHOGSMFAN,
3023 SPE_BUILTIN_EVMHOGSMIAA,
3024 SPE_BUILTIN_EVMHOGSMIAN,
3025 SPE_BUILTIN_EVMHOGUMIAA,
3026 SPE_BUILTIN_EVMHOGUMIAN,
3027 SPE_BUILTIN_EVMHOSMF,
3028 SPE_BUILTIN_EVMHOSMFA,
3029 SPE_BUILTIN_EVMHOSMFAAW,
3030 SPE_BUILTIN_EVMHOSMFANW,
3031 SPE_BUILTIN_EVMHOSMI,
3032 SPE_BUILTIN_EVMHOSMIA,
3033 SPE_BUILTIN_EVMHOSMIAAW,
3034 SPE_BUILTIN_EVMHOSMIANW,
3035 SPE_BUILTIN_EVMHOSSF,
3036 SPE_BUILTIN_EVMHOSSFA,
3037 SPE_BUILTIN_EVMHOSSFAAW,
3038 SPE_BUILTIN_EVMHOSSFANW,
3039 SPE_BUILTIN_EVMHOSSIAAW,
3040 SPE_BUILTIN_EVMHOSSIANW,
3041 SPE_BUILTIN_EVMHOUMI,
3042 SPE_BUILTIN_EVMHOUMIA,
3043 SPE_BUILTIN_EVMHOUMIAAW,
3044 SPE_BUILTIN_EVMHOUMIANW,
3045 SPE_BUILTIN_EVMHOUSIAAW,
3046 SPE_BUILTIN_EVMHOUSIANW,
3047 SPE_BUILTIN_EVMWHSMF,
3048 SPE_BUILTIN_EVMWHSMFA,
3049 SPE_BUILTIN_EVMWHSMI,
3050 SPE_BUILTIN_EVMWHSMIA,
3051 SPE_BUILTIN_EVMWHSSF,
3052 SPE_BUILTIN_EVMWHSSFA,
3053 SPE_BUILTIN_EVMWHUMI,
3054 SPE_BUILTIN_EVMWHUMIA,
a3170dc6
AH
3055 SPE_BUILTIN_EVMWLSMIAAW,
3056 SPE_BUILTIN_EVMWLSMIANW,
a3170dc6
AH
3057 SPE_BUILTIN_EVMWLSSIAAW,
3058 SPE_BUILTIN_EVMWLSSIANW,
3059 SPE_BUILTIN_EVMWLUMI,
3060 SPE_BUILTIN_EVMWLUMIA,
3061 SPE_BUILTIN_EVMWLUMIAAW,
3062 SPE_BUILTIN_EVMWLUMIANW,
3063 SPE_BUILTIN_EVMWLUSIAAW,
3064 SPE_BUILTIN_EVMWLUSIANW,
3065 SPE_BUILTIN_EVMWSMF,
3066 SPE_BUILTIN_EVMWSMFA,
3067 SPE_BUILTIN_EVMWSMFAA,
3068 SPE_BUILTIN_EVMWSMFAN,
3069 SPE_BUILTIN_EVMWSMI,
3070 SPE_BUILTIN_EVMWSMIA,
3071 SPE_BUILTIN_EVMWSMIAA,
3072 SPE_BUILTIN_EVMWSMIAN,
3073 SPE_BUILTIN_EVMWHSSFAA,
3074 SPE_BUILTIN_EVMWSSF,
3075 SPE_BUILTIN_EVMWSSFA,
3076 SPE_BUILTIN_EVMWSSFAA,
3077 SPE_BUILTIN_EVMWSSFAN,
3078 SPE_BUILTIN_EVMWUMI,
3079 SPE_BUILTIN_EVMWUMIA,
3080 SPE_BUILTIN_EVMWUMIAA,
3081 SPE_BUILTIN_EVMWUMIAN,
3082 SPE_BUILTIN_EVNAND,
3083 SPE_BUILTIN_EVNOR,
3084 SPE_BUILTIN_EVOR,
3085 SPE_BUILTIN_EVORC,
3086 SPE_BUILTIN_EVRLW,
3087 SPE_BUILTIN_EVSLW,
3088 SPE_BUILTIN_EVSRWS,
3089 SPE_BUILTIN_EVSRWU,
3090 SPE_BUILTIN_EVSTDDX,
3091 SPE_BUILTIN_EVSTDHX,
3092 SPE_BUILTIN_EVSTDWX,
3093 SPE_BUILTIN_EVSTWHEX,
3094 SPE_BUILTIN_EVSTWHOX,
3095 SPE_BUILTIN_EVSTWWEX,
3096 SPE_BUILTIN_EVSTWWOX,
3097 SPE_BUILTIN_EVSUBFW,
3098 SPE_BUILTIN_EVXOR,
3099 SPE_BUILTIN_EVABS,
3100 SPE_BUILTIN_EVADDSMIAAW,
3101 SPE_BUILTIN_EVADDSSIAAW,
3102 SPE_BUILTIN_EVADDUMIAAW,
3103 SPE_BUILTIN_EVADDUSIAAW,
3104 SPE_BUILTIN_EVCNTLSW,
3105 SPE_BUILTIN_EVCNTLZW,
3106 SPE_BUILTIN_EVEXTSB,
3107 SPE_BUILTIN_EVEXTSH,
3108 SPE_BUILTIN_EVFSABS,
3109 SPE_BUILTIN_EVFSCFSF,
3110 SPE_BUILTIN_EVFSCFSI,
3111 SPE_BUILTIN_EVFSCFUF,
3112 SPE_BUILTIN_EVFSCFUI,
3113 SPE_BUILTIN_EVFSCTSF,
3114 SPE_BUILTIN_EVFSCTSI,
3115 SPE_BUILTIN_EVFSCTSIZ,
3116 SPE_BUILTIN_EVFSCTUF,
3117 SPE_BUILTIN_EVFSCTUI,
3118 SPE_BUILTIN_EVFSCTUIZ,
3119 SPE_BUILTIN_EVFSNABS,
3120 SPE_BUILTIN_EVFSNEG,
3121 SPE_BUILTIN_EVMRA,
3122 SPE_BUILTIN_EVNEG,
3123 SPE_BUILTIN_EVRNDW,
3124 SPE_BUILTIN_EVSUBFSMIAAW,
3125 SPE_BUILTIN_EVSUBFSSIAAW,
3126 SPE_BUILTIN_EVSUBFUMIAAW,
3127 SPE_BUILTIN_EVSUBFUSIAAW,
3128 SPE_BUILTIN_EVADDIW,
3129 SPE_BUILTIN_EVLDD,
3130 SPE_BUILTIN_EVLDH,
3131 SPE_BUILTIN_EVLDW,
3132 SPE_BUILTIN_EVLHHESPLAT,
3133 SPE_BUILTIN_EVLHHOSSPLAT,
3134 SPE_BUILTIN_EVLHHOUSPLAT,
3135 SPE_BUILTIN_EVLWHE,
3136 SPE_BUILTIN_EVLWHOS,
3137 SPE_BUILTIN_EVLWHOU,
3138 SPE_BUILTIN_EVLWHSPLAT,
3139 SPE_BUILTIN_EVLWWSPLAT,
3140 SPE_BUILTIN_EVRLWI,
3141 SPE_BUILTIN_EVSLWI,
3142 SPE_BUILTIN_EVSRWIS,
3143 SPE_BUILTIN_EVSRWIU,
3144 SPE_BUILTIN_EVSTDD,
3145 SPE_BUILTIN_EVSTDH,
3146 SPE_BUILTIN_EVSTDW,
3147 SPE_BUILTIN_EVSTWHE,
3148 SPE_BUILTIN_EVSTWHO,
3149 SPE_BUILTIN_EVSTWWE,
3150 SPE_BUILTIN_EVSTWWO,
3151 SPE_BUILTIN_EVSUBIFW,
3152
3153 /* Compares. */
3154 SPE_BUILTIN_EVCMPEQ,
3155 SPE_BUILTIN_EVCMPGTS,
3156 SPE_BUILTIN_EVCMPGTU,
3157 SPE_BUILTIN_EVCMPLTS,
3158 SPE_BUILTIN_EVCMPLTU,
3159 SPE_BUILTIN_EVFSCMPEQ,
3160 SPE_BUILTIN_EVFSCMPGT,
3161 SPE_BUILTIN_EVFSCMPLT,
3162 SPE_BUILTIN_EVFSTSTEQ,
3163 SPE_BUILTIN_EVFSTSTGT,
3164 SPE_BUILTIN_EVFSTSTLT,
3165
3166 /* EVSEL compares. */
3167 SPE_BUILTIN_EVSEL_CMPEQ,
3168 SPE_BUILTIN_EVSEL_CMPGTS,
3169 SPE_BUILTIN_EVSEL_CMPGTU,
3170 SPE_BUILTIN_EVSEL_CMPLTS,
3171 SPE_BUILTIN_EVSEL_CMPLTU,
3172 SPE_BUILTIN_EVSEL_FSCMPEQ,
3173 SPE_BUILTIN_EVSEL_FSCMPGT,
3174 SPE_BUILTIN_EVSEL_FSCMPLT,
3175 SPE_BUILTIN_EVSEL_FSTSTEQ,
3176 SPE_BUILTIN_EVSEL_FSTSTGT,
3177 SPE_BUILTIN_EVSEL_FSTSTLT,
3178
3179 SPE_BUILTIN_EVSPLATFI,
3180 SPE_BUILTIN_EVSPLATI,
3181 SPE_BUILTIN_EVMWHSSMAA,
3182 SPE_BUILTIN_EVMWHSMFAA,
3183 SPE_BUILTIN_EVMWHSMIAA,
3184 SPE_BUILTIN_EVMWHUSIAA,
3185 SPE_BUILTIN_EVMWHUMIAA,
3186 SPE_BUILTIN_EVMWHSSFAN,
3187 SPE_BUILTIN_EVMWHSSIAN,
3188 SPE_BUILTIN_EVMWHSMFAN,
3189 SPE_BUILTIN_EVMWHSMIAN,
3190 SPE_BUILTIN_EVMWHUSIAN,
3191 SPE_BUILTIN_EVMWHUMIAN,
3192 SPE_BUILTIN_EVMWHGSSFAA,
3193 SPE_BUILTIN_EVMWHGSMFAA,
3194 SPE_BUILTIN_EVMWHGSMIAA,
3195 SPE_BUILTIN_EVMWHGUMIAA,
3196 SPE_BUILTIN_EVMWHGSSFAN,
3197 SPE_BUILTIN_EVMWHGSMFAN,
3198 SPE_BUILTIN_EVMWHGSMIAN,
3199 SPE_BUILTIN_EVMWHGUMIAN,
3200 SPE_BUILTIN_MTSPEFSCR,
3201 SPE_BUILTIN_MFSPEFSCR,
3202 SPE_BUILTIN_BRINC
0ac081f6 3203};