]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
netbsd.h (TARGET_OS_CPP_BUILTINS): Use NETBSD_OS_CPP_BUILTINS_ELF and NETBSD_OS_CPP_B...
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
16c484c7 3 2000, 2001, 2002 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
f045b2c9
RS
22
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
8e3f41e7
MM
44/* Default string to use for cpu if not specified. */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
f984d8df
DB
49/* Common CPP definitions used by CPP_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51#define CPP_CPU_SPEC \
52"%{!mcpu*: \
53 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
54 %{mpower2: -D_ARCH_PWR2} \
55 %{mpowerpc*: -D_ARCH_PPC} \
56 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
57 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
58%{mcpu=common: -D_ARCH_COM} \
59%{mcpu=power: -D_ARCH_PWR} \
60%{mcpu=power2: -D_ARCH_PWR2} \
61%{mcpu=powerpc: -D_ARCH_PPC} \
62%{mcpu=rios: -D_ARCH_PWR} \
63%{mcpu=rios1: -D_ARCH_PWR} \
64%{mcpu=rios2: -D_ARCH_PWR2} \
65%{mcpu=rsc: -D_ARCH_PWR} \
66%{mcpu=rsc1: -D_ARCH_PWR} \
67%{mcpu=401: -D_ARCH_PPC} \
68%{mcpu=403: -D_ARCH_PPC} \
3b370352 69%{mcpu=405: -D_ARCH_PPC} \
f984d8df
DB
70%{mcpu=505: -D_ARCH_PPC} \
71%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
72%{mcpu=602: -D_ARCH_PPC} \
73%{mcpu=603: -D_ARCH_PPC} \
74%{mcpu=603e: -D_ARCH_PPC} \
75%{mcpu=ec603e: -D_ARCH_PPC} \
76%{mcpu=604: -D_ARCH_PPC} \
77%{mcpu=604e: -D_ARCH_PPC} \
78%{mcpu=620: -D_ARCH_PPC} \
79%{mcpu=740: -D_ARCH_PPC} \
fd3b43f2 80%{mcpu=7400: -D_ARCH_PPC} \
f18c054f 81%{mcpu=7450: -D_ARCH_PPC} \
f984d8df
DB
82%{mcpu=750: -D_ARCH_PPC} \
83%{mcpu=801: -D_ARCH_PPC} \
84%{mcpu=821: -D_ARCH_PPC} \
85%{mcpu=823: -D_ARCH_PPC} \
0ac081f6
AH
86%{mcpu=860: -D_ARCH_PPC} \
87%{maltivec: -D__ALTIVEC__}"
f984d8df
DB
88
89/* Common ASM definitions used by ASM_SPEC among the various targets
90 for handling -mcpu=xxx switches. */
91#define ASM_CPU_SPEC \
92"%{!mcpu*: \
93 %{mpower: %{!mpower2: -mpwr}} \
94 %{mpower2: -mpwrx} \
95 %{mpowerpc*: -mppc} \
96 %{mno-power: %{!mpowerpc*: -mcom}} \
97 %{!mno-power: %{!mpower2: %(asm_default)}}} \
98%{mcpu=common: -mcom} \
99%{mcpu=power: -mpwr} \
100%{mcpu=power2: -mpwrx} \
101%{mcpu=powerpc: -mppc} \
102%{mcpu=rios: -mpwr} \
103%{mcpu=rios1: -mpwr} \
104%{mcpu=rios2: -mpwrx} \
105%{mcpu=rsc: -mpwr} \
106%{mcpu=rsc1: -mpwr} \
107%{mcpu=401: -mppc} \
108%{mcpu=403: -mppc} \
3b370352 109%{mcpu=405: -mppc} \
f984d8df
DB
110%{mcpu=505: -mppc} \
111%{mcpu=601: -m601} \
112%{mcpu=602: -mppc} \
113%{mcpu=603: -mppc} \
114%{mcpu=603e: -mppc} \
115%{mcpu=ec603e: -mppc} \
116%{mcpu=604: -mppc} \
117%{mcpu=604e: -mppc} \
118%{mcpu=620: -mppc} \
119%{mcpu=740: -mppc} \
fd3b43f2 120%{mcpu=7400: -mppc} \
f18c054f 121%{mcpu=7450: -mppc} \
f984d8df
DB
122%{mcpu=750: -mppc} \
123%{mcpu=801: -mppc} \
124%{mcpu=821: -mppc} \
125%{mcpu=823: -mppc} \
775db490
AH
126%{mcpu=860: -mppc} \
127%{maltivec: -maltivec}"
f984d8df
DB
128
129#define CPP_DEFAULT_SPEC ""
130
131#define ASM_DEFAULT_SPEC ""
132
841faeed
MM
133/* This macro defines names of additional specifications to put in the specs
134 that can be used in various specifications like CC1_SPEC. Its definition
135 is an initializer with a subgrouping for each command option.
136
137 Each subgrouping contains a string constant, that defines the
138 specification name, and a string constant that used by the GNU CC driver
139 program.
140
141 Do not define this macro if it does not need to do anything. */
142
7509c759 143#define SUBTARGET_EXTRA_SPECS
7509c759 144
c81bebd7
MM
145#define EXTRA_SPECS \
146 { "cpp_cpu", CPP_CPU_SPEC }, \
147 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
148 { "asm_cpu", ASM_CPU_SPEC }, \
149 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
150 SUBTARGET_EXTRA_SPECS
151
fb623df5 152/* Architecture type. */
f045b2c9 153
fb623df5
RK
154extern int target_flags;
155
156/* Use POWER architecture instructions and MQ register. */
38c1f2d7 157#define MASK_POWER 0x00000001
fb623df5 158
6febd581 159/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 160#define MASK_POWER2 0x00000002
6febd581 161
fb623df5 162/* Use PowerPC architecture instructions. */
38c1f2d7 163#define MASK_POWERPC 0x00000004
6febd581 164
583cf4db 165/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 166#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
167
168/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 169#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 170
fb623df5 171/* Use PowerPC-64 architecture instructions. */
38c1f2d7 172#define MASK_POWERPC64 0x00000020
f045b2c9 173
fb623df5 174/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 175#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
176
177/* Disable placing fp constants in the TOC; can be turned on when the
178 TOC overflows. */
38c1f2d7 179#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 180
0b9ccabc
RK
181/* Disable placing symbol+offset constants in the TOC; can be turned on when
182 the TOC overflows. */
38c1f2d7 183#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 184
fb623df5 185/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
186 there are more than 16K unique variables/constants in an executable. With
187 this option, linking fails only if there are more than 16K modules, or
188 if there are more than 16K unique variables/constant in a single module.
189
190 This is at the cost of having 2 extra loads and one extra store per
956d6950 191 function, and one less allocable register. */
38c1f2d7 192#define MASK_MINIMAL_TOC 0x00000200
642a35f1 193
b1765bde 194/* Nonzero for the 64bit model: longs and pointers are 64 bits. */
38c1f2d7 195#define MASK_64BIT 0x00000400
9e654916 196
f85f4585 197/* Disable use of FPRs. */
38c1f2d7 198#define MASK_SOFT_FLOAT 0x00000800
f85f4585 199
4d30c363 200/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
201#define MASK_MULTIPLE 0x00001000
202#define MASK_MULTIPLE_SET 0x00002000
4d30c363 203
7e69e155 204/* Use string instructions for block moves */
38c1f2d7
MM
205#define MASK_STRING 0x00004000
206#define MASK_STRING_SET 0x00008000
7e69e155 207
38c1f2d7
MM
208/* Disable update form of load/store */
209#define MASK_NO_UPDATE 0x00010000
210
211/* Disable fused multiply/add operations */
212#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 213
9ebbca7d
GK
214/* Nonzero if we need to schedule the prolog and epilog. */
215#define MASK_SCHED_PROLOG 0x00040000
216
0ac081f6
AH
217/* Use AltiVec instructions. */
218#define MASK_ALTIVEC 0x00080000
219
6fa3f289
ZW
220/* Return small structures in memory (as the AIX ABI requires). */
221#define MASK_AIX_STRUCT_RET 0x00100000
222#define MASK_AIX_STRUCT_RET_SET 0x00200000
0ac081f6 223
6fa3f289
ZW
224/* The only remaining free bit is 0x00400000. sysv4.h uses
225 0x00800000 -> 0x40000000, and 0x80000000 is not available
226 because target_flags is signed. */
06f4e019 227
7e69e155
MM
228#define TARGET_POWER (target_flags & MASK_POWER)
229#define TARGET_POWER2 (target_flags & MASK_POWER2)
230#define TARGET_POWERPC (target_flags & MASK_POWERPC)
231#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
232#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
233#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
234#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
235#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
236#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
237#define TARGET_64BIT (target_flags & MASK_64BIT)
238#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
239#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
240#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
241#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 242#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
243#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
244#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 245#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 246#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 247#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 248
2f3e5814 249#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 250#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
251#define TARGET_UPDATE (! TARGET_NO_UPDATE)
252#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 253
996ed075
JJ
254#ifdef IN_LIBGCC2
255/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 256#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
257#define TARGET_POWERPC64 1
258#else
259#define TARGET_POWERPC64 0
260#endif
b6c9286a 261#else
9ebbca7d 262#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
263#endif
264
a3950905 265#define TARGET_XL_CALL 0
a3950905 266
fb623df5 267/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 268
fb623df5 269 Macro to define tables used to set the flags.
f045b2c9
RS
270 This is a list in braces of pairs in braces,
271 each pair being { "NAME", VALUE }
272 where VALUE is the bits to set or minus the bits to clear.
273 An empty string NAME is used to identify the default VALUE. */
274
938937d8 275#define TARGET_SWITCHES \
9ebbca7d 276 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 277 N_("Use POWER instruction set")}, \
938937d8 278 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 279 | MASK_POWER2), \
047142d3 280 N_("Use POWER2 instruction set")}, \
9ebbca7d 281 {"no-power2", - MASK_POWER2, \
047142d3 282 N_("Do not use POWER2 instruction set")}, \
938937d8 283 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 284 | MASK_STRING), \
047142d3 285 N_("Do not use POWER instruction set")}, \
9ebbca7d 286 {"powerpc", MASK_POWERPC, \
047142d3 287 N_("Use PowerPC instruction set")}, \
938937d8 288 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 289 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 290 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 291 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 292 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 293 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 294 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 295 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 296 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 297 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 298 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 299 {"powerpc64", MASK_POWERPC64, \
047142d3 300 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 301 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 302 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 303 {"altivec", MASK_ALTIVEC , \
c725bd79 304 N_("Use AltiVec instructions")}, \
f18c054f 305 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 306 N_("Don't use AltiVec instructions")}, \
9ebbca7d 307 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 308 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 309 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 310 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 311 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 312 | MASK_MINIMAL_TOC), \
047142d3 313 N_("Put everything in the regular TOC")}, \
9ebbca7d 314 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 315 N_("Place floating point constants in TOC")}, \
9ebbca7d 316 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 317 N_("Don't place floating point constants in TOC")},\
9ebbca7d 318 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 319 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 320 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 321 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
322 {"minimal-toc", MASK_MINIMAL_TOC, \
323 "Use only one TOC entry per procedure"}, \
324 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 325 ""}, \
9ebbca7d 326 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 327 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 328 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 329 N_("Use hardware fp")}, \
9ebbca7d 330 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 331 N_("Do not use hardware fp")}, \
9ebbca7d 332 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
047142d3 333 N_("Generate load/store multiple instructions")}, \
9ebbca7d 334 {"no-multiple", - MASK_MULTIPLE, \
047142d3 335 N_("Do not generate load/store multiple instructions")},\
9ebbca7d 336 {"no-multiple", MASK_MULTIPLE_SET, \
047142d3 337 ""}, \
9ebbca7d 338 {"string", MASK_STRING | MASK_STRING_SET, \
047142d3 339 N_("Generate string instructions for block moves")},\
9ebbca7d 340 {"no-string", - MASK_STRING, \
047142d3 341 N_("Do not generate string instructions for block moves")},\
9ebbca7d 342 {"no-string", MASK_STRING_SET, \
047142d3 343 ""}, \
9ebbca7d 344 {"update", - MASK_NO_UPDATE, \
047142d3 345 N_("Generate load/store with update instructions")},\
9ebbca7d 346 {"no-update", MASK_NO_UPDATE, \
047142d3 347 N_("Do not generate load/store with update instructions")},\
9ebbca7d 348 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 349 N_("Generate fused multiply/add instructions")},\
9ebbca7d 350 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 351 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
352 {"sched-prolog", MASK_SCHED_PROLOG, \
353 ""}, \
354 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 355 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
356 {"sched-epilog", MASK_SCHED_PROLOG, \
357 ""}, \
358 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
359 ""}, \
6fa3f289
ZW
360 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
361 N_("Return all structures in memory (AIX default)")},\
362 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
363 N_("Return small structures in registers (SVR4 default)")},\
364 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
365 ""},\
366 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
367 ""},\
368 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
369 ""},\
370 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
371 ""},\
938937d8 372 SUBTARGET_SWITCHES \
9ebbca7d
GK
373 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
374 ""}}
fb623df5 375
938937d8 376#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
377
378/* This is meant to be redefined in the host dependent files */
379#define SUBTARGET_SWITCHES
fb623df5 380
cac8ce95 381/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 382enum processor_type
bef84347
VM
383 {
384 PROCESSOR_RIOS1,
385 PROCESSOR_RIOS2,
3cb999d8 386 PROCESSOR_RS64A,
bef84347
VM
387 PROCESSOR_MPCCORE,
388 PROCESSOR_PPC403,
fe7f5677 389 PROCESSOR_PPC405,
bef84347
VM
390 PROCESSOR_PPC601,
391 PROCESSOR_PPC603,
392 PROCESSOR_PPC604,
393 PROCESSOR_PPC604e,
394 PROCESSOR_PPC620,
3cb999d8 395 PROCESSOR_PPC630,
ed947a96
DJ
396 PROCESSOR_PPC750,
397 PROCESSOR_PPC7400,
398 PROCESSOR_PPC7450
bef84347 399};
fb623df5
RK
400
401extern enum processor_type rs6000_cpu;
402
403/* Recast the processor type to the cpu attribute. */
404#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
405
8482e358 406/* Define generic processor types based upon current deployment. */
3cb999d8
DE
407#define PROCESSOR_COMMON PROCESSOR_PPC601
408#define PROCESSOR_POWER PROCESSOR_RIOS1
409#define PROCESSOR_POWERPC PROCESSOR_PPC604
410#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 411
fb623df5 412/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
413#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
414#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 415
6febd581
RK
416/* Specify the dialect of assembler to use. New mnemonics is dialect one
417 and the old mnemonics are dialect zero. */
9ebbca7d 418#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 419
956d6950 420/* This is meant to be overridden in target specific files. */
b6c9286a 421#define SUBTARGET_OPTIONS
b6c9286a 422
9ebbca7d
GK
423#define TARGET_OPTIONS \
424{ \
047142d3
PT
425 {"cpu=", &rs6000_select[1].string, \
426 N_("Use features of and schedule code for given CPU") }, \
427 {"tune=", &rs6000_select[2].string, \
428 N_("Schedule code for given CPU") }, \
429 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
0ac081f6 430 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
6fa3f289
ZW
431 {"long-double-", &rs6000_long_double_size_string, \
432 N_("Specify size of long double (64 or 128 bits)") }, \
08b57fb3
AH
433 {"vrsave=", &rs6000_altivec_vrsave_string, \
434 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
a5c76ee6
ZW
435 {"longcall", &rs6000_longcall_switch, \
436 N_("Avoid all range limits on call instructions") }, \
437 {"no-longcall", &rs6000_longcall_switch, "" }, \
9ebbca7d 438 SUBTARGET_OPTIONS \
b6c9286a 439}
fb623df5 440
ff222560 441/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
442struct rs6000_cpu_select
443{
815cdc52
MM
444 const char *string;
445 const char *name;
8e3f41e7
MM
446 int set_tune_p;
447 int set_arch_p;
448};
449
450extern struct rs6000_cpu_select rs6000_select[];
fb623df5 451
38c1f2d7 452/* Debug support */
0ac081f6 453extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 454extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
455extern int rs6000_debug_stack; /* debug stack applications */
456extern int rs6000_debug_arg; /* debug argument handling */
457
458#define TARGET_DEBUG_STACK rs6000_debug_stack
459#define TARGET_DEBUG_ARG rs6000_debug_arg
460
6fa3f289
ZW
461/* These are separate from target_flags because we've run out of bits
462 there. */
463extern const char *rs6000_long_double_size_string;
464extern int rs6000_long_double_type_size;
465extern int rs6000_altivec_abi;
08b57fb3
AH
466extern const char *rs6000_altivec_vrsave_string;
467extern int rs6000_altivec_vrsave;
a5c76ee6
ZW
468extern const char *rs6000_longcall_switch;
469extern int rs6000_default_long_calls;
6fa3f289
ZW
470
471#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
472#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
08b57fb3 473#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
6fa3f289 474
fb623df5
RK
475/* Sometimes certain combinations of command options do not make sense
476 on a particular target machine. You can define a macro
477 `OVERRIDE_OPTIONS' to take account of this. This macro, if
478 defined, is executed once just after all the command options have
479 been parsed.
480
5accd822
DE
481 Don't use this macro to turn on various extra optimizations for
482 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
483
fb623df5
RK
484 On the RS/6000 this is used to define the target cpu type. */
485
8e3f41e7 486#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 487
5accd822
DE
488/* Define this to change the optimizations performed by default. */
489#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
490
a5c76ee6
ZW
491/* Target pragma. */
492#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
493 cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
494} while (0)
495
4f074454
RK
496/* Show we can debug even without a frame pointer. */
497#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
498\f
499/* target machine storage layout */
500
13d39dbc 501/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 502 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
503 the value is constrained to be within the bounds of the declared
504 type, but kept valid in the wider mode. The signedness of the
505 extension may differ from that of the type. */
506
39403d82
DE
507#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
508 if (GET_MODE_CLASS (MODE) == MODE_INT \
509 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 510 (MODE) = word_mode;
39403d82
DE
511
512/* Define this if function arguments should also be promoted using the above
513 procedure. */
514
515#define PROMOTE_FUNCTION_ARGS
516
517/* Likewise, if the function return value is promoted. */
518
519#define PROMOTE_FUNCTION_RETURN
ef457bda 520
f045b2c9 521/* Define this if most significant bit is lowest numbered
82e41834
KH
522 in instructions that operate on numbered bit-fields. */
523/* That is true on RS/6000. */
f045b2c9
RS
524#define BITS_BIG_ENDIAN 1
525
526/* Define this if most significant byte of a word is the lowest numbered. */
527/* That is true on RS/6000. */
528#define BYTES_BIG_ENDIAN 1
529
530/* Define this if most significant word of a multiword number is lowest
c81bebd7 531 numbered.
f045b2c9
RS
532
533 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 534 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
535#define WORDS_BIG_ENDIAN 1
536
2e360ab3 537#define MAX_BITS_PER_WORD 64
f045b2c9
RS
538
539/* Width of a word, in units (bytes). */
2f3e5814 540#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 541#define MIN_UNITS_PER_WORD 4
2e360ab3 542#define UNITS_PER_FP_WORD 8
0ac081f6 543#define UNITS_PER_ALTIVEC_WORD 16
f045b2c9 544
915f619f
JW
545/* Type used for ptrdiff_t, as a string used in a declaration. */
546#define PTRDIFF_TYPE "int"
547
058ef853
DE
548/* Type used for size_t, as a string used in a declaration. */
549#define SIZE_TYPE "long unsigned int"
550
f045b2c9
RS
551/* Type used for wchar_t, as a string used in a declaration. */
552#define WCHAR_TYPE "short unsigned int"
553
554/* Width of wchar_t in bits. */
555#define WCHAR_TYPE_SIZE 16
556
9e654916
RK
557/* A C expression for the size in bits of the type `short' on the
558 target machine. If you don't define this, the default is half a
559 word. (If this would be less than one storage unit, it is
560 rounded up to one unit.) */
561#define SHORT_TYPE_SIZE 16
562
563/* A C expression for the size in bits of the type `int' on the
564 target machine. If you don't define this, the default is one
565 word. */
19d2d16f 566#define INT_TYPE_SIZE 32
9e654916
RK
567
568/* A C expression for the size in bits of the type `long' on the
569 target machine. If you don't define this, the default is one
570 word. */
2f3e5814 571#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
572#define MAX_LONG_TYPE_SIZE 64
573
574/* A C expression for the size in bits of the type `long long' on the
575 target machine. If you don't define this, the default is two
576 words. */
577#define LONG_LONG_TYPE_SIZE 64
578
9e654916
RK
579/* A C expression for the size in bits of the type `float' on the
580 target machine. If you don't define this, the default is one
581 word. */
582#define FLOAT_TYPE_SIZE 32
583
584/* A C expression for the size in bits of the type `double' on the
585 target machine. If you don't define this, the default is two
586 words. */
587#define DOUBLE_TYPE_SIZE 64
588
589/* A C expression for the size in bits of the type `long double' on
590 the target machine. If you don't define this, the default is two
591 words. */
6fa3f289 592#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
593
594/* Constant which presents upper bound of the above value. */
595#define MAX_LONG_DOUBLE_TYPE_SIZE 128
596
597/* Define this to set long double type size to use in libgcc2.c, which can
598 not depend on target_flags. */
599#ifdef __LONG_DOUBLE_128__
600#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
601#else
602#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
603#endif
9e654916 604
f045b2c9
RS
605/* Width in bits of a pointer.
606 See also the macro `Pmode' defined below. */
2f3e5814 607#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
608
609/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 610#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
611
612/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 613#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
614
615/* Allocation boundary (in *bits*) for the code of a function. */
616#define FUNCTION_BOUNDARY 32
617
618/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
619#define BIGGEST_ALIGNMENT 128
620
621/* A C expression to compute the alignment for a variables in the
622 local store. TYPE is the data type, and ALIGN is the alignment
623 that the object would ordinarily have. */
624#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a4edd584 625 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : ALIGN)
b73fd26c 626
f045b2c9
RS
627/* Alignment of field after `int : 0' in a structure. */
628#define EMPTY_FIELD_BOUNDARY 32
629
630/* Every structure's size must be a multiple of this. */
631#define STRUCTURE_SIZE_BOUNDARY 8
632
633/* A bitfield declared as `int' forces `int' alignment for the struct. */
634#define PCC_BITFIELD_TYPE_MATTERS 1
635
69ef87e2
AH
636/* Make strings word-aligned so strcpy from constants will be faster.
637 Make vector constants quadword aligned. */
638#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
639 (TREE_CODE (EXP) == STRING_CST \
640 && (ALIGN) < BITS_PER_WORD \
641 ? BITS_PER_WORD \
642 : (ALIGN))
f045b2c9 643
0ac081f6
AH
644/* Make arrays of chars word-aligned for the same reasons.
645 Align vectors to 128 bits. */
f045b2c9 646#define DATA_ALIGNMENT(TYPE, ALIGN) \
0ac081f6
AH
647 (TREE_CODE (TYPE) == VECTOR_TYPE ? 128 \
648 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
649 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
650 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
651
fdaff8ba 652/* Non-zero if move instructions will actually fail to work
f045b2c9 653 when given unaligned data. */
fdaff8ba 654#define STRICT_ALIGNMENT 0
e1565e65
DE
655
656/* Define this macro to be the value 1 if unaligned accesses have a cost
657 many times greater than aligned accesses, for example if they are
658 emulated in a trap handler. */
41543739
GK
659#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
660 (STRICT_ALIGNMENT \
661 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
662 && (ALIGN) < 32))
f045b2c9
RS
663\f
664/* Standard register usage. */
665
666/* Number of actual hardware registers.
667 The hardware registers are assigned numbers for the compiler
668 from 0 to just below FIRST_PSEUDO_REGISTER.
669 All registers that the compiler knows about must be given numbers,
670 even those that are not normally considered general registers.
671
672 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
673 an MQ register, a count register, a link register, and 8 condition
674 register fields, which we view here as separate registers.
675
676 In addition, the difference between the frame and argument pointers is
677 a function of the number of registers saved, so we need to have a
678 register for AP that will later be eliminated in favor of SP or FP.
802a0058 679 This is a normal register, but it is fixed.
f045b2c9 680
802a0058
MM
681 We also create a pseudo register for float/int conversions, that will
682 really represent the memory location used. It is represented here as
683 a register, in order to work around problems in allocating stack storage
684 in inline functions. */
685
5f004351 686#define FIRST_PSEUDO_REGISTER 111
f045b2c9 687
d6a7951f 688/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 689#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 690
f045b2c9
RS
691/* 1 for registers that have pervasive standard uses
692 and are not available for the register allocator.
693
5dead3e5
DJ
694 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
695 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 696
a127c4e5
RK
697 cr5 is not supposed to be used.
698
699 On System V implementations, r13 is fixed and not available for use. */
700
f045b2c9 701#define FIXED_REGISTERS \
5dead3e5 702 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
703 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
704 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
705 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
706 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
707 /* AltiVec registers. */ \
708 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
709 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 710 1, 1 \
0ac081f6 711}
f045b2c9
RS
712
713/* 1 for registers not available across function calls.
714 These must include the FIXED_REGISTERS and also any
715 registers that can be used without being saved.
716 The latter must include the registers where values are returned
717 and the register where structure-value addresses are passed.
718 Aside from that, you can include as many other registers as you like. */
719
720#define CALL_USED_REGISTERS \
a127c4e5 721 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
722 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
723 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
724 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
725 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
726 /* AltiVec registers. */ \
727 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
728 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 729 1, 1 \
0ac081f6
AH
730}
731
289e96b2
AH
732/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
733 the entire set of `FIXED_REGISTERS' be included.
734 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
735 This macro is optional. If not specified, it defaults to the value
736 of `CALL_USED_REGISTERS'. */
737
738#define CALL_REALLY_USED_REGISTERS \
739 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
741 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
742 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
743 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
744 /* AltiVec registers. */ \
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 747 0, 0 \
289e96b2 748}
f045b2c9 749
9ebbca7d
GK
750#define MQ_REGNO 64
751#define CR0_REGNO 68
752#define CR1_REGNO 69
753#define CR2_REGNO 70
754#define CR3_REGNO 71
755#define CR4_REGNO 72
756#define MAX_CR_REGNO 75
757#define XER_REGNO 76
0ac081f6
AH
758#define FIRST_ALTIVEC_REGNO 77
759#define LAST_ALTIVEC_REGNO 108
28bcfd4d 760#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 761#define VRSAVE_REGNO 109
5f004351 762#define VSCR_REGNO 110
9ebbca7d 763
f045b2c9
RS
764/* List the order in which to allocate registers. Each register must be
765 listed once, even those in FIXED_REGISTERS.
766
767 We allocate in the following order:
768 fp0 (not saved or used for anything)
769 fp13 - fp2 (not saved; incoming fp arg registers)
770 fp1 (not saved; return value)
771 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
772 cr7, cr6 (not saved or special)
773 cr1 (not saved, but used for FP operations)
f045b2c9 774 cr0 (not saved, but used for arithmetic operations)
5accd822 775 cr4, cr3, cr2 (saved)
f045b2c9
RS
776 r0 (not saved; cannot be base reg)
777 r9 (not saved; best for TImode)
778 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
779 r3 (not saved; return value register)
780 r31 - r13 (saved; order given to save least number)
781 r12 (not saved; if used for DImode or DFmode would use r13)
782 mq (not saved; best to use it if we can)
783 ctr (not saved; when we have the choice ctr is better)
784 lr (saved)
5f004351 785 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
0ac081f6
AH
786
787 AltiVec registers:
788 v0 - v1 (not saved or used for anything)
789 v13 - v3 (not saved; incoming vector arg registers)
790 v2 (not saved; incoming vector arg reg; return value)
791 v19 - v14 (not saved or used for anything)
792 v31 - v20 (saved; order given to save least number)
793*/
794
f045b2c9
RS
795
796#define REG_ALLOC_ORDER \
797 {32, \
798 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
799 33, \
800 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
801 50, 49, 48, 47, 46, \
5accd822 802 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
803 0, \
804 9, 11, 10, 8, 7, 6, 5, 4, \
805 3, \
806 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
807 18, 17, 16, 15, 14, 13, 12, \
808 64, 66, 65, \
0ac081f6
AH
809 73, 1, 2, 67, 76, \
810 /* AltiVec registers. */ \
811 77, 78, \
812 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
813 79, \
814 96, 95, 94, 93, 92, 91, \
58568475 815 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
5f004351 816 97, 109, 110 \
0ac081f6 817}
f045b2c9
RS
818
819/* True if register is floating-point. */
820#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
821
822/* True if register is a condition register. */
823#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
824
815cdc52
MM
825/* True if register is a condition register, but not cr0. */
826#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
827
f045b2c9 828/* True if register is an integer register. */
9ebbca7d 829#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 830
0d86f538 831/* True if register is the XER register. */
9ebbca7d 832#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 833
0ac081f6
AH
834/* True if register is an AltiVec register. */
835#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
836
f045b2c9
RS
837/* Return number of consecutive hard regs needed starting at reg REGNO
838 to hold something of mode MODE.
839 This is ordinarily the length in words of a value of mode MODE
840 but can be less for certain modes in special long registers.
841
a260abc9
DE
842 POWER and PowerPC GPRs hold 32 bits worth;
843 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 844
802a0058 845#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 846 (FP_REGNO_P (REGNO) \
2e360ab3 847 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
0ac081f6
AH
848 : ALTIVEC_REGNO_P (REGNO) \
849 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
850 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
851
0ac081f6
AH
852#define ALTIVEC_VECTOR_MODE(MODE) \
853 ((MODE) == V16QImode \
854 || (MODE) == V8HImode \
855 || (MODE) == V4SFmode \
856 || (MODE) == V4SImode)
857
858/* Define this macro to be nonzero if the port is prepared to handle
859 insns involving vector mode MODE. At the very least, it must have
860 move patterns for this mode. */
861
862#define VECTOR_MODE_SUPPORTED_P(MODE) \
863 (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE))
864
f045b2c9 865/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
866 For POWER and PowerPC, the GPRs can hold any mode, but the float
867 registers only can hold floating modes and DImode, and CR register only
868 can hold CC modes. We cannot put TImode anywhere except general
82e41834 869 register and it must be able to fit within the register set. */
f045b2c9 870
802a0058
MM
871#define HARD_REGNO_MODE_OK(REGNO, MODE) \
872 (FP_REGNO_P (REGNO) ? \
873 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
874 || (GET_MODE_CLASS (MODE) == MODE_INT \
875 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 876 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
802a0058 877 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 878 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
802a0058 879 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 880 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
881 : 1)
882
883/* Value is 1 if it is a good idea to tie two pseudo registers
884 when one has mode MODE1 and one has mode MODE2.
885 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
886 for any hard reg, then this must be 0 for correct output. */
887#define MODES_TIEABLE_P(MODE1, MODE2) \
888 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
889 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
890 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
891 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
892 : GET_MODE_CLASS (MODE1) == MODE_CC \
893 ? GET_MODE_CLASS (MODE2) == MODE_CC \
894 : GET_MODE_CLASS (MODE2) == MODE_CC \
895 ? GET_MODE_CLASS (MODE1) == MODE_CC \
0ac081f6
AH
896 : ALTIVEC_VECTOR_MODE (MODE1) \
897 ? ALTIVEC_VECTOR_MODE (MODE2) \
898 : ALTIVEC_VECTOR_MODE (MODE2) \
899 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
900 : 1)
901
902/* A C expression returning the cost of moving data from a register of class
903 CLASS1 to one of CLASS2.
904
905 On the RS/6000, copying between floating-point and fixed-point
906 registers is expensive. */
907
cf011243 908#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
0ac081f6 909 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
f045b2c9
RS
910 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
911 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
0ac081f6
AH
912 : (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
913 : (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
a4b970a0 914 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
915 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
916 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 917 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 918 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 919 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
920 : 2)
921
922/* A C expressions returning the cost of moving data of MODE from a register to
923 or from memory.
924
925 On the RS/6000, bump this up a bit. */
926
e1565e65
DE
927#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
928 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
ab4a5fc9
RK
929 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
930 ? 3 : 2) \
931 + 4)
f045b2c9
RS
932
933/* Specify the cost of a branch insn; roughly the number of extra insns that
934 should be added to avoid a branch.
935
ef457bda 936 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
937 unscheduled conditional branch. */
938
ef457bda 939#define BRANCH_COST 3
f045b2c9 940
6febd581
RK
941/* Define this macro to change register usage conditional on target flags.
942 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 943 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 944 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
945 Conditionally disable FPRs. */
946
8d30c4ee
FS
947#define CONDITIONAL_REGISTER_USAGE \
948{ \
e9e4208a 949 int i; \
8d30c4ee
FS
950 if (! TARGET_POWER) \
951 fixed_regs[64] = 1; \
952 if (TARGET_64BIT) \
289e96b2
AH
953 fixed_regs[13] = call_used_regs[13] \
954 = call_really_used_regs[13] = 1; \
8d30c4ee
FS
955 if (TARGET_SOFT_FLOAT) \
956 for (i = 32; i < 64; i++) \
289e96b2
AH
957 fixed_regs[i] = call_used_regs[i] \
958 = call_really_used_regs[i] = 1; \
1db02437
FS
959 if (DEFAULT_ABI == ABI_V4 \
960 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
961 && flag_pic == 1) \
962 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
963 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
964 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
965 if (DEFAULT_ABI == ABI_DARWIN \
966 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
967 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
968 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
969 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
970 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
5f004351
AH
971 if (TARGET_ALTIVEC) \
972 global_regs[VSCR_REGNO] = 1; \
2473ee11 973 if (! TARGET_ALTIVEC) \
c1f11548
DE
974 { \
975 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
976 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
977 call_really_used_regs[VRSAVE_REGNO] = 1; \
978 } \
0ac081f6 979 if (TARGET_ALTIVEC_ABI) \
2473ee11 980 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 981 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 982}
6febd581 983
f045b2c9
RS
984/* Specify the registers used for certain standard purposes.
985 The values of these macros are register numbers. */
986
987/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
988/* #define PC_REGNUM */
989
990/* Register to use for pushing function arguments. */
991#define STACK_POINTER_REGNUM 1
992
993/* Base register for access to local variables of the function. */
994#define FRAME_POINTER_REGNUM 31
995
996/* Value should be nonzero if functions must have frame pointers.
997 Zero means the frame pointer need not be set up (and parms
998 may be accessed via the stack pointer) in functions that seem suitable.
999 This is computed in `reload', in reload1.c. */
1000#define FRAME_POINTER_REQUIRED 0
1001
1002/* Base register for access to arguments of the function. */
1003#define ARG_POINTER_REGNUM 67
1004
1005/* Place to put static chain when calling a function that requires it. */
1006#define STATIC_CHAIN_REGNUM 11
1007
82e41834 1008/* Link register number. */
9ebbca7d 1009#define LINK_REGISTER_REGNUM 65
b6c9286a 1010
82e41834 1011/* Count register number. */
9ebbca7d 1012#define COUNT_REGISTER_REGNUM 66
802a0058 1013
f045b2c9
RS
1014/* Place that structure value return address is placed.
1015
1016 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1017#define STRUCT_VALUE 0
f045b2c9
RS
1018\f
1019/* Define the classes of registers for register constraints in the
1020 machine description. Also define ranges of constants.
1021
1022 One of the classes must always be named ALL_REGS and include all hard regs.
1023 If there is more than one class, another class must be named NO_REGS
1024 and contain no registers.
1025
1026 The name GENERAL_REGS must be the name of a class (or an alias for
1027 another name such as ALL_REGS). This is the class of registers
1028 that is allowed by "g" or "r" in a register constraint.
1029 Also, registers outside this class are allocated only when
1030 instructions express preferences for them.
1031
1032 The classes must be numbered in nondecreasing order; that is,
1033 a larger-numbered class must never be contained completely
1034 in a smaller-numbered class.
1035
1036 For any two classes, it is very desirable that there be another
1037 class that represents their union. */
c81bebd7 1038
f045b2c9
RS
1039/* The RS/6000 has three types of registers, fixed-point, floating-point,
1040 and condition registers, plus three special registers, MQ, CTR, and the
1041 link register.
1042
1043 However, r0 is special in that it cannot be used as a base register.
1044 So make a class for registers valid as base registers.
1045
1046 Also, cr0 is the only condition code register that can be used in
0d86f538 1047 arithmetic insns, so make a separate class for it. */
f045b2c9 1048
ebedb4dd
MM
1049enum reg_class
1050{
1051 NO_REGS,
ebedb4dd
MM
1052 BASE_REGS,
1053 GENERAL_REGS,
1054 FLOAT_REGS,
0ac081f6
AH
1055 ALTIVEC_REGS,
1056 VRSAVE_REGS,
5f004351 1057 VSCR_REGS,
ebedb4dd
MM
1058 NON_SPECIAL_REGS,
1059 MQ_REGS,
1060 LINK_REGS,
1061 CTR_REGS,
1062 LINK_OR_CTR_REGS,
1063 SPECIAL_REGS,
1064 SPEC_OR_GEN_REGS,
1065 CR0_REGS,
ebedb4dd
MM
1066 CR_REGS,
1067 NON_FLOAT_REGS,
9ebbca7d 1068 XER_REGS,
ebedb4dd
MM
1069 ALL_REGS,
1070 LIM_REG_CLASSES
1071};
f045b2c9
RS
1072
1073#define N_REG_CLASSES (int) LIM_REG_CLASSES
1074
82e41834 1075/* Give names of register classes as strings for dump file. */
f045b2c9 1076
ebedb4dd
MM
1077#define REG_CLASS_NAMES \
1078{ \
1079 "NO_REGS", \
ebedb4dd
MM
1080 "BASE_REGS", \
1081 "GENERAL_REGS", \
1082 "FLOAT_REGS", \
0ac081f6
AH
1083 "ALTIVEC_REGS", \
1084 "VRSAVE_REGS", \
5f004351 1085 "VSCR_REGS", \
ebedb4dd
MM
1086 "NON_SPECIAL_REGS", \
1087 "MQ_REGS", \
1088 "LINK_REGS", \
1089 "CTR_REGS", \
1090 "LINK_OR_CTR_REGS", \
1091 "SPECIAL_REGS", \
1092 "SPEC_OR_GEN_REGS", \
1093 "CR0_REGS", \
ebedb4dd
MM
1094 "CR_REGS", \
1095 "NON_FLOAT_REGS", \
9ebbca7d 1096 "XER_REGS", \
ebedb4dd
MM
1097 "ALL_REGS" \
1098}
f045b2c9
RS
1099
1100/* Define which registers fit in which classes.
1101 This is an initializer for a vector of HARD_REG_SET
1102 of length N_REG_CLASSES. */
1103
0ac081f6
AH
1104#define REG_CLASS_CONTENTS \
1105{ \
1106 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1107 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1108 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1109 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1110 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1111 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1112 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
0ac081f6
AH
1113 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1114 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1115 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1116 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1117 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1118 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1119 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1120 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1121 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1122 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1123 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1124 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1125}
f045b2c9
RS
1126
1127/* The same information, inverted:
1128 Return the class number of the smallest class containing
1129 reg number REGNO. This could be a conditional expression
1130 or could index an array. */
1131
0d86f538
GK
1132#define REGNO_REG_CLASS(REGNO) \
1133 ((REGNO) == 0 ? GENERAL_REGS \
1134 : (REGNO) < 32 ? BASE_REGS \
1135 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1136 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1137 : (REGNO) == CR0_REGNO ? CR0_REGS \
1138 : CR_REGNO_P (REGNO) ? CR_REGS \
1139 : (REGNO) == MQ_REGNO ? MQ_REGS \
1140 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1141 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1142 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1143 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1144 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
5f004351 1145 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
f045b2c9
RS
1146 : NO_REGS)
1147
1148/* The class value for index registers, and the one for base regs. */
1149#define INDEX_REG_CLASS GENERAL_REGS
1150#define BASE_REG_CLASS BASE_REGS
1151
1152/* Get reg_class from a letter such as appears in the machine description. */
1153
1154#define REG_CLASS_FROM_LETTER(C) \
1155 ((C) == 'f' ? FLOAT_REGS \
1156 : (C) == 'b' ? BASE_REGS \
1157 : (C) == 'h' ? SPECIAL_REGS \
1158 : (C) == 'q' ? MQ_REGS \
1159 : (C) == 'c' ? CTR_REGS \
1160 : (C) == 'l' ? LINK_REGS \
0ac081f6 1161 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1162 : (C) == 'x' ? CR0_REGS \
1163 : (C) == 'y' ? CR_REGS \
9ebbca7d 1164 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1165 : NO_REGS)
1166
1167/* The letters I, J, K, L, M, N, and P in a register constraint string
1168 can be used to stand for particular ranges of immediate operands.
1169 This macro defines what the ranges are.
1170 C is the letter, and VALUE is a constant value.
1171 Return 1 if VALUE is in the range specified by C.
1172
9615f239 1173 `I' is a signed 16-bit constant
f045b2c9
RS
1174 `J' is a constant with only the high-order 16 bits non-zero
1175 `K' is a constant with only the low-order 16 bits non-zero
9615f239 1176 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1177 `M' is a constant that is greater than 31
2bfcf297 1178 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1179 `O' is the constant zero
1180 `P' is a constant whose negation is a signed 16-bit constant */
1181
5b6f7b96
RK
1182#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1183 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1184 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1185 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1186 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1187 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1188 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1189 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1190 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1191 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1192 : 0)
1193
1194/* Similar, but for floating constants, and defining letters G and H.
1195 Here VALUE is the CONST_DOUBLE rtx itself.
1196
1197 We flag for special constants when we can copy the constant into
4e74d8ec 1198 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1199
c4c40373 1200 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1201
1202#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1203 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1204 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1205 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1206 : 0)
f045b2c9
RS
1207
1208/* Optional extra constraints for this machine.
1209
b6c9286a
MM
1210 'Q' means that is a memory operand that is just an offset from a reg.
1211 'R' is for AIX TOC entries.
a260abc9 1212 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1213 'T' is a constant that can be placed into a 32-bit mask operand
88228c4b 1214 'U' is for V.4 small data references. */
f045b2c9 1215
e8a8bc24
RK
1216#define EXTRA_CONSTRAINT(OP, C) \
1217 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1218 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b1765bde
DE
1219 : (C) == 'S' ? mask64_operand (OP, DImode) \
1220 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1221 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1222 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1223 : 0)
f045b2c9
RS
1224
1225/* Given an rtx X being reloaded into a reg required to be
1226 in class CLASS, return the class of reg to actually use.
1227 In general this is just CLASS; but on some machines
c81bebd7 1228 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1229
1230 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1231 floating-point CONST_DOUBLE to force it to be copied to memory.
1232
1233 We also don't want to reload integer values into floating-point
1234 registers if we can at all help it. In fact, this can
1235 cause reload to abort, if it tries to generate a reload of CTR
1236 into a FP register and discovers it doesn't have the memory location
1237 required.
1238
1239 ??? Would it be a good idea to have reload do the converse, that is
1240 try to reload floating modes into FP registers if possible?
1241 */
f045b2c9 1242
802a0058 1243#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1244 (((GET_CODE (X) == CONST_DOUBLE \
1245 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1246 ? NO_REGS \
1247 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1248 && (CLASS) == NON_SPECIAL_REGS) \
1249 ? GENERAL_REGS \
1250 : (CLASS)))
c81bebd7 1251
f045b2c9
RS
1252/* Return the register class of a scratch register needed to copy IN into
1253 or out of a register in CLASS in MODE. If it can be done directly,
1254 NO_REGS is returned. */
1255
1256#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1257 secondary_reload_class (CLASS, MODE, IN)
1258
0ac081f6
AH
1259/* If we are copying between FP or AltiVec registers and anything
1260 else, we need a memory location. */
7ea555a4 1261
0ac081f6
AH
1262#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1263 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1264 || (CLASS2) == FLOAT_REGS \
1265 || (CLASS1) == ALTIVEC_REGS \
1266 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1267
f045b2c9
RS
1268/* Return the maximum number of consecutive registers
1269 needed to represent mode MODE in a register of class CLASS.
1270
1271 On RS/6000, this is the size of MODE in words,
1272 except in the FP regs, where a single reg is enough for two words. */
802a0058 1273#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1274 (((CLASS) == FLOAT_REGS) \
2e360ab3 1275 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1276 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1277
1278/* If defined, gives a class of registers that cannot be used as the
02188693 1279 operand of a SUBREG that changes the mode of the object illegally. */
580d3230 1280
02188693
RH
1281#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
1282
1283/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1284
1285#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1286 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
f045b2c9
RS
1287\f
1288/* Stack layout; function entry, exit and calling. */
1289
6b67933e
RK
1290/* Enumeration to give which calling sequence to use. */
1291enum rs6000_abi {
1292 ABI_NONE,
1293 ABI_AIX, /* IBM's AIX */
f607bc57
ZW
1294 ABI_AIX_NODESC, /* AIX calling sequence minus
1295 function descriptors */
b6c9286a 1296 ABI_V4, /* System V.4/eabi */
ee890fe2 1297 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1298};
1299
b6c9286a
MM
1300extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1301
4697a36c
MM
1302/* Structure used to define the rs6000 stack */
1303typedef struct rs6000_stack {
1304 int first_gp_reg_save; /* first callee saved GP register used */
1305 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1306 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1307 int lr_save_p; /* true if the link reg needs to be saved */
1308 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1309 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1310 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1311 int push_p; /* true if we need to allocate stack space */
1312 int calls_p; /* true if the function makes any calls */
6b67933e 1313 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1314 int gp_save_offset; /* offset to save GP regs from initial SP */
1315 int fp_save_offset; /* offset to save FP regs from initial SP */
00b960c7 1316 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
4697a36c
MM
1317 int lr_save_offset; /* offset to save LR from initial SP */
1318 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1319 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
b6c9286a 1320 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1321 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1322 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1323 int reg_size; /* register size (4 or 8) */
1324 int varargs_size; /* size to hold V.4 args passed in regs */
1325 int vars_size; /* variable save area size */
1326 int parm_size; /* outgoing parameter size */
1327 int save_size; /* save area size */
1328 int fixed_size; /* fixed size of stack frame */
1329 int gp_size; /* size of saved GP registers */
1330 int fp_size; /* size of saved FP registers */
00b960c7 1331 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1332 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1333 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1334 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1335 int altivec_padding_size; /* size of altivec alignment padding if
1336 not in save_size */
b6c9286a 1337 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1338 int total_size; /* total bytes allocated for stack */
1339} rs6000_stack_t;
1340
f045b2c9
RS
1341/* Define this if pushing a word on the stack
1342 makes the stack pointer a smaller address. */
1343#define STACK_GROWS_DOWNWARD
1344
1345/* Define this if the nominal address of the stack frame
1346 is at the high-address end of the local variables;
1347 that is, each additional local variable allocated
1348 goes at a more negative offset in the frame.
1349
1350 On the RS/6000, we grow upwards, from the area after the outgoing
1351 arguments. */
1352/* #define FRAME_GROWS_DOWNWARD */
1353
4697a36c 1354/* Size of the outgoing register save area */
9ebbca7d 1355#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1356 || DEFAULT_ABI == ABI_AIX_NODESC \
1357 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1358 ? (TARGET_64BIT ? 64 : 32) \
1359 : 0)
4697a36c
MM
1360
1361/* Size of the fixed area on the stack */
9ebbca7d 1362#define RS6000_SAVE_AREA \
ee890fe2 1363 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1364 << (TARGET_64BIT ? 1 : 0))
4697a36c 1365
97f6e72f
DE
1366/* MEM representing address to save the TOC register */
1367#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1368 plus_constant (stack_pointer_rtx, \
1369 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1370
4697a36c
MM
1371/* Size of the V.4 varargs area if needed */
1372#define RS6000_VARARGS_AREA 0
1373
4697a36c 1374/* Align an address */
ed33106f 1375#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1376
1377/* Size of V.4 varargs area in bytes */
1378#define RS6000_VARARGS_SIZE \
2f3e5814 1379 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1380
f045b2c9
RS
1381/* Offset within stack frame to start allocating local variables at.
1382 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1383 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1384 of the first local allocated.
f045b2c9
RS
1385
1386 On the RS/6000, the frame pointer is the same as the stack pointer,
1387 except for dynamic allocations. So we start after the fixed area and
1388 outgoing parameter area. */
1389
802a0058 1390#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1391 (RS6000_ALIGN (current_function_outgoing_args_size, \
1392 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1393 + RS6000_VARARGS_AREA \
1394 + RS6000_SAVE_AREA)
1395
1396/* Offset from the stack pointer register to an item dynamically
1397 allocated on the stack, e.g., by `alloca'.
1398
1399 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1400 length of the outgoing arguments. The default is correct for most
1401 machines. See `function.c' for details. */
1402#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1403 (RS6000_ALIGN (current_function_outgoing_args_size, \
1404 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1405 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1406
1407/* If we generate an insn to push BYTES bytes,
1408 this says how many the stack pointer really advances by.
1409 On RS/6000, don't define this because there are no push insns. */
1410/* #define PUSH_ROUNDING(BYTES) */
1411
1412/* Offset of first parameter from the argument pointer register value.
1413 On the RS/6000, we define the argument pointer to the start of the fixed
1414 area. */
4697a36c 1415#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1416
62153b61
JM
1417/* Offset from the argument pointer register value to the top of
1418 stack. This is different from FIRST_PARM_OFFSET because of the
1419 register save area. */
1420#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1421
f045b2c9
RS
1422/* Define this if stack space is still allocated for a parameter passed
1423 in a register. The value is the number of bytes allocated to this
1424 area. */
4697a36c 1425#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1426
1427/* Define this if the above stack space is to be considered part of the
1428 space allocated by the caller. */
1429#define OUTGOING_REG_PARM_STACK_SPACE
1430
1431/* This is the difference between the logical top of stack and the actual sp.
1432
82e41834 1433 For the RS/6000, sp points past the fixed area. */
4697a36c 1434#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1435
1436/* Define this if the maximum size of all the outgoing args is to be
1437 accumulated and pushed during the prologue. The amount can be
1438 found in the variable current_function_outgoing_args_size. */
f73ad30e 1439#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1440
1441/* Value is the number of bytes of arguments automatically
1442 popped when returning from a subroutine call.
8b109b37 1443 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1444 FUNTYPE is the data type of the function (as a tree),
1445 or for a library call it is an identifier node for the subroutine name.
1446 SIZE is the number of bytes of arguments passed on the stack. */
1447
8b109b37 1448#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1449
1450/* Define how to find the value returned by a function.
1451 VALTYPE is the data type of the value (as a tree).
1452 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1453 otherwise, FUNC is 0.
1454
c81bebd7 1455 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1456 fp1, unless -msoft-float. */
f045b2c9 1457
39403d82
DE
1458#define FUNCTION_VALUE(VALTYPE, FUNC) \
1459 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1460 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1461 || POINTER_TYPE_P (VALTYPE) \
1462 ? word_mode : TYPE_MODE (VALTYPE), \
16861f33
AH
1463 TREE_CODE (VALTYPE) == VECTOR_TYPE \
1464 && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN \
0ac081f6 1465 : TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT \
e9cf9523 1466 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9
RS
1467
1468/* Define how to find the value returned by a library function
1469 assuming the value has mode MODE. */
1470
0ac081f6
AH
1471#define LIBCALL_VALUE(MODE) \
1472 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1473 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1474 && TARGET_HARD_FLOAT \
1475 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9 1476
6fa3f289
ZW
1477/* The AIX ABI for the RS/6000 specifies that all structures are
1478 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1479 specifies that structures <= 8 bytes are returned in r3/r4, but a
1480 draft put them in memory, and GCC used to implement the draft
1481 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1482 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1483 compatibility can change DRAFT_V4_STRUCT_RET to override the
1484 default, and -m switches get the final word. See
52acbdcb
ZW
1485 rs6000_override_options for more details.
1486
1487 int_size_in_bytes returns -1 for variable size objects, which go in
1488 memory always. The cast to unsigned makes -1 > 8. */
1489
6fa3f289
ZW
1490#define RETURN_IN_MEMORY(TYPE) \
1491 (AGGREGATE_TYPE_P (TYPE) && \
52acbdcb 1492 (TARGET_AIX_STRUCT_RET || \
0c769cf8 1493 (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8))
f045b2c9 1494
6fa3f289
ZW
1495/* DRAFT_V4_STRUCT_RET defaults off. */
1496#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1497
1498/* Let RETURN_IN_MEMORY control what happens. */
1499#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1500
a260abc9 1501/* Mode of stack savearea.
dfdfa60f
DE
1502 FUNCTION is VOIDmode because calling convention maintains SP.
1503 BLOCK needs Pmode for SP.
a260abc9
DE
1504 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1505#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1506 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1507 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1508
4697a36c
MM
1509/* Minimum and maximum general purpose registers used to hold arguments. */
1510#define GP_ARG_MIN_REG 3
1511#define GP_ARG_MAX_REG 10
1512#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1513
1514/* Minimum and maximum floating point registers used to hold arguments. */
1515#define FP_ARG_MIN_REG 33
7509c759
MM
1516#define FP_ARG_AIX_MAX_REG 45
1517#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1518#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1519 || DEFAULT_ABI == ABI_AIX_NODESC \
1520 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1521 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1522#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1523
0ac081f6
AH
1524/* Minimum and maximum AltiVec registers used to hold arguments. */
1525#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1526#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1527#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1528
4697a36c
MM
1529/* Return registers */
1530#define GP_ARG_RETURN GP_ARG_MIN_REG
1531#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1532#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1533
7509c759 1534/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1535#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1536/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1537#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1538#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1539#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1540
f045b2c9
RS
1541/* 1 if N is a possible register number for a function value
1542 as seen by the caller.
1543
0ac081f6
AH
1544 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1545#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1546 || ((N) == FP_ARG_RETURN) \
1547 || (TARGET_ALTIVEC && \
1548 (N) == ALTIVEC_ARG_RETURN))
f045b2c9
RS
1549
1550/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1551 On RS/6000, these are r3-r10 and fp1-fp13.
1552 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1553#define FUNCTION_ARG_REGNO_P(N) \
b1765bde 1554 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
0ac081f6 1555 || (TARGET_ALTIVEC && \
1a3ab9e1 1556 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
6d0f55e6 1557 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1558
f045b2c9 1559\f
00dba523
NC
1560/* A C structure for machine-specific, per-function data.
1561 This is added to the cfun structure. */
1562typedef struct machine_function
1563{
1564 /* Whether a System V.4 varargs area was created. */
1565 int sysv_varargs_p;
71f123ca
FS
1566 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1567 int ra_needs_full_frame;
00dba523
NC
1568} machine_function;
1569
f045b2c9
RS
1570/* Define a data type for recording info about an argument list
1571 during the scan of that argument list. This data type should
1572 hold all necessary information about the function itself
1573 and about the args processed so far, enough to enable macros
1574 such as FUNCTION_ARG to determine where the next arg should go.
1575
1576 On the RS/6000, this is a structure. The first element is the number of
1577 total argument words, the second is used to store the next
1578 floating-point register number, and the third says how many more args we
4697a36c
MM
1579 have prototype types for.
1580
4cc833b7
RH
1581 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1582 the next availible GP register, `fregno' is the next available FP
1583 register, and `words' is the number of words used on the stack.
1584
bd227acc 1585 The varargs/stdarg support requires that this structure's size
4cc833b7 1586 be a multiple of sizeof(int). */
4697a36c
MM
1587
1588typedef struct rs6000_args
1589{
4cc833b7 1590 int words; /* # words used for passing GP registers */
6a4cee5f 1591 int fregno; /* next available FP register */
0ac081f6 1592 int vregno; /* next available AltiVec register */
6a4cee5f
MM
1593 int nargs_prototype; /* # args left in the current prototype */
1594 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1595 int prototype; /* Whether a prototype was defined */
1596 int call_cookie; /* Do special things for this call */
4cc833b7 1597 int sysv_gregno; /* next available GP register */
4697a36c 1598} CUMULATIVE_ARGS;
f045b2c9
RS
1599
1600/* Define intermediate macro to compute the size (in registers) of an argument
1601 for the RS/6000. */
1602
d34c5b80
DE
1603#define RS6000_ARG_SIZE(MODE, TYPE) \
1604((MODE) != BLKmode \
c5d71f39 1605 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
0c769cf8 1606 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1607
1608/* Initialize a variable CUM of type CUMULATIVE_ARGS
1609 for a call to a function whose data type is FNTYPE.
1610 For a library call, FNTYPE is 0. */
1611
2c7ee1a6 1612#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1613 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1614
1615/* Similar, but when scanning the definition of a procedure. We always
1616 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1617
4697a36c
MM
1618#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1619 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1620
1621/* Update the data in CUM to advance over an argument
1622 of mode MODE and data type TYPE.
1623 (TYPE is null for libcalls where that information may not be available.) */
1624
1625#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1626 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1627
1628/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1629#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1630 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1631 && (CUM).fregno <= FP_ARG_MAX_REG \
1632 && TARGET_HARD_FLOAT)
f045b2c9 1633
0ac081f6
AH
1634/* Non-zero if we can use an AltiVec register to pass this arg. */
1635#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1636 (ALTIVEC_VECTOR_MODE (MODE) \
1637 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1638 && TARGET_ALTIVEC_ABI)
1639
f045b2c9
RS
1640/* Determine where to put an argument to a function.
1641 Value is zero to push the argument on the stack,
1642 or a hard register in which to store the argument.
1643
1644 MODE is the argument's machine mode.
1645 TYPE is the data type of the argument (as a tree).
1646 This is null for libcalls where that information may
1647 not be available.
1648 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1649 the preceding args and about the function being called.
1650 NAMED is nonzero if this argument is a named parameter
1651 (otherwise it is an extra parameter matching an ellipsis).
1652
1653 On RS/6000 the first eight words of non-FP are normally in registers
1654 and the rest are pushed. The first 13 FP args are in registers.
1655
1656 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1657 both an FP and integer register (or possibly FP reg and stack). Library
1658 functions (when TYPE is zero) always have the proper types for args,
1659 so we can pass the FP value just in one register. emit_library_function
1660 doesn't support EXPR_LIST anyway. */
f045b2c9 1661
4697a36c
MM
1662#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1663 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1664
1665/* For an arg passed partly in registers and partly in memory,
1666 this is the number of registers used.
1667 For args passed entirely in registers or entirely in memory, zero. */
1668
4697a36c
MM
1669#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1670 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1671
1672/* A C expression that indicates when an argument must be passed by
1673 reference. If nonzero for an argument, a copy of that argument is
1674 made in memory and a pointer to the argument is passed instead of
1675 the argument itself. The pointer is passed in whatever way is
82e41834 1676 appropriate for passing a pointer to that type. */
4697a36c
MM
1677
1678#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1679 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1680
c229cba9
DE
1681/* If defined, a C expression which determines whether, and in which
1682 direction, to pad out an argument with extra space. The value
1683 should be of type `enum direction': either `upward' to pad above
1684 the argument, `downward' to pad below, or `none' to inhibit
1685 padding. */
1686
9ebbca7d 1687#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1688
b6c9286a 1689/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1690 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1691 PARM_BOUNDARY is used for all arguments. */
1692
1693#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1694 function_arg_boundary (MODE, TYPE)
1695
f045b2c9 1696/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1697 variable number of arguments.
f045b2c9
RS
1698
1699 CUM is as above.
1700
1701 MODE and TYPE are the mode and type of the current parameter.
1702
1703 PRETEND_SIZE is a variable that should be set to the amount of stack
1704 that must be pushed by the prolog to pretend that our caller pushed
1705 it.
1706
1707 Normally, this macro will push all remaining incoming registers on the
1708 stack and set PRETEND_SIZE to the length of the registers pushed. */
1709
4697a36c
MM
1710#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1711 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1712
dfafc897
FS
1713/* Define the `__builtin_va_list' type for the ABI. */
1714#define BUILD_VA_LIST_TYPE(VALIST) \
1715 (VALIST) = rs6000_build_va_list ()
4697a36c 1716
dfafc897
FS
1717/* Implement `va_start' for varargs and stdarg. */
1718#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1719 rs6000_va_start (stdarg, valist, nextarg)
1720
1721/* Implement `va_arg'. */
1722#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1723 rs6000_va_arg (valist, type)
f045b2c9 1724
2a55fd42
DE
1725/* For AIX, the rule is that structures are passed left-aligned in
1726 their stack slot. However, GCC does not presently do this:
1727 structures which are the same size as integer types are passed
1728 right-aligned, as if they were in fact integers. This only
1729 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1730 ABI_V4 does not use std_expand_builtin_va_arg. */
1731#define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1732
d34c5b80
DE
1733/* Define this macro to be a nonzero value if the location where a function
1734 argument is passed depends on whether or not it is a named argument. */
1735#define STRICT_ARGUMENT_NAMING 1
1736
f045b2c9 1737/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1738 for profiling a function entry. */
f045b2c9
RS
1739
1740#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1741 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1742
1743/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1744 the stack pointer does not matter. No definition is equivalent to
1745 always zero.
1746
1747 On the RS/6000, this is non-zero because we can restore the stack from
1748 its backpointer, which we maintain. */
1749#define EXIT_IGNORE_STACK 1
1750
a701949a
FS
1751/* Define this macro as a C expression that is nonzero for registers
1752 that are used by the epilogue or the return' pattern. The stack
1753 and frame pointer registers are already be assumed to be used as
1754 needed. */
1755
83720594
RH
1756#define EPILOGUE_USES(REGNO) \
1757 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1758 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1759 || (current_function_calls_eh_return \
3553b09d 1760 && TARGET_AIX \
83720594 1761 && (REGNO) == TOC_REGISTER))
2bfcf297 1762
f045b2c9 1763\f
eaf1bcf1 1764/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1765
1766/* Length in units of the trampoline for entering a nested function. */
1767
b6c9286a 1768#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1769
1770/* Emit RTL insns to initialize the variable parts of a trampoline.
1771 FNADDR is an RTX for the address of the function's pure code.
1772 CXT is an RTX for the static chain value for the function. */
1773
1774#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1775 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1776\f
f33985c6
MS
1777/* Definitions for __builtin_return_address and __builtin_frame_address.
1778 __builtin_return_address (0) should give link register (65), enable
82e41834 1779 this. */
f33985c6
MS
1780/* This should be uncommented, so that the link register is used, but
1781 currently this would result in unmatched insns and spilling fixed
1782 registers so we'll leave it for another day. When these problems are
1783 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1784 (mrs) */
1785/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1786
b6c9286a
MM
1787/* Number of bytes into the frame return addresses can be found. See
1788 rs6000_stack_info in rs6000.c for more information on how the different
1789 abi's store the return address. */
1790#define RETURN_ADDRESS_OFFSET \
1791 ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1792 || DEFAULT_ABI == ABI_DARWIN \
05ef2698 1793 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1794 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1795 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1796
f33985c6
MS
1797/* The current return address is in link register (65). The return address
1798 of anything farther back is accessed normally at an offset of 8 from the
1799 frame pointer. */
71f123ca
FS
1800#define RETURN_ADDR_RTX(COUNT, FRAME) \
1801 (rs6000_return_addr (COUNT, FRAME))
1802
f33985c6 1803\f
f045b2c9
RS
1804/* Definitions for register eliminations.
1805
1806 We have two registers that can be eliminated on the RS/6000. First, the
1807 frame pointer register can often be eliminated in favor of the stack
1808 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1809 eliminated; it is replaced with either the stack or frame pointer.
1810
1811 In addition, we use the elimination mechanism to see if r30 is needed
1812 Initially we assume that it isn't. If it is, we spill it. This is done
1813 by making it an eliminable register. We replace it with itself so that
1814 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1815
1816/* This is an array of structures. Each structure initializes one pair
1817 of eliminable registers. The "from" register number is given first,
1818 followed by "to". Eliminations of the same "from" register are listed
1819 in order of preference. */
1820#define ELIMINABLE_REGS \
1821{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1822 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1823 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1824 { 30, 30} }
f045b2c9
RS
1825
1826/* Given FROM and TO register numbers, say whether this elimination is allowed.
1827 Frame pointer elimination is automatically handled.
1828
1829 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1830 to convert ap into fp, not sp.
1831
abc95ed3 1832 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1833 references. */
f045b2c9
RS
1834
1835#define CAN_ELIMINATE(FROM, TO) \
1836 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1837 ? ! frame_pointer_needed \
4697a36c 1838 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1839 : 1)
1840
1841/* Define the offset between two registers, one to be eliminated, and the other
1842 its replacement, at the start of a routine. */
1843#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1844{ \
4697a36c 1845 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1846 \
1847 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1848 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1849 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1850 (OFFSET) = info->total_size; \
1851 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1852 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1853 else if ((FROM) == 30) \
1854 (OFFSET) = 0; \
f045b2c9
RS
1855 else \
1856 abort (); \
1857}
1858\f
1859/* Addressing modes, and classification of registers for them. */
1860
940da324
JL
1861/* #define HAVE_POST_INCREMENT 0 */
1862/* #define HAVE_POST_DECREMENT 0 */
f045b2c9 1863
940da324
JL
1864#define HAVE_PRE_DECREMENT 1
1865#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1866
1867/* Macros to check register numbers against specific register classes. */
1868
1869/* These assume that REGNO is a hard or pseudo reg number.
1870 They give nonzero only if REGNO is a hard reg of the suitable class
1871 or a pseudo reg currently allocated to a suitable hard reg.
1872 Since they use reg_renumber, they are safe only once reg_renumber
1873 has been allocated, which happens in local-alloc.c. */
1874
1875#define REGNO_OK_FOR_INDEX_P(REGNO) \
1876((REGNO) < FIRST_PSEUDO_REGISTER \
1877 ? (REGNO) <= 31 || (REGNO) == 67 \
1878 : (reg_renumber[REGNO] >= 0 \
1879 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1880
1881#define REGNO_OK_FOR_BASE_P(REGNO) \
1882((REGNO) < FIRST_PSEUDO_REGISTER \
1883 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1884 : (reg_renumber[REGNO] > 0 \
1885 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1886\f
1887/* Maximum number of registers that can appear in a valid memory address. */
1888
1889#define MAX_REGS_PER_ADDRESS 2
1890
1891/* Recognize any constant value that is a valid address. */
1892
6eff269e
BK
1893#define CONSTANT_ADDRESS_P(X) \
1894 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1895 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1896 || GET_CODE (X) == HIGH)
f045b2c9
RS
1897
1898/* Nonzero if the constant value X is a legitimate general operand.
1899 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1900
1901 On the RS/6000, all integer constants are acceptable, most won't be valid
1902 for particular insns, though. Only easy FP constants are
1903 acceptable. */
1904
1905#define LEGITIMATE_CONSTANT_P(X) \
1906 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1907 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1908 || easy_fp_constant (X, GET_MODE (X)))
1909
1910/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1911 and check its validity for a certain class.
1912 We have two alternate definitions for each of them.
1913 The usual definition accepts all pseudo regs; the other rejects
1914 them unless they have been allocated suitable hard regs.
1915 The symbol REG_OK_STRICT causes the latter definition to be used.
1916
1917 Most source files want to accept pseudo regs in the hope that
1918 they will get allocated to the class that the insn wants them to be in.
1919 Source files for reload pass need to be strict.
1920 After reload, it makes no difference, since pseudo regs have
1921 been eliminated by then. */
1922
258bfae2
FS
1923#ifdef REG_OK_STRICT
1924# define REG_OK_STRICT_FLAG 1
1925#else
1926# define REG_OK_STRICT_FLAG 0
1927#endif
f045b2c9
RS
1928
1929/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1930 or if it is a pseudo reg in the non-strict case. */
1931#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1932 ((! (STRICT) \
1933 && (REGNO (X) <= 31 \
1934 || REGNO (X) == ARG_POINTER_REGNUM \
1935 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1936 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
1937
1938/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
1939 or if it is a pseudo reg in the non-strict case. */
1940#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1941 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 1942
258bfae2
FS
1943#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1944#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
1945\f
1946/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1947 that is a valid memory address for an instruction.
1948 The MODE argument is the machine mode for the MEM expression
1949 that wants to use this address.
1950
1951 On the RS/6000, there are four valid address: a SYMBOL_REF that
1952 refers to a constant pool entry of an address (or the sum of it
1953 plus a constant), a short (16-bit signed) constant plus a register,
1954 the sum of two registers, or a register indirect, possibly with an
1955 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 1956 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1957 word aligned.
1958
1959 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1960 32-bit DImode, TImode), indexed addressing cannot be used because
1961 adjacent memory cells are accessed by adding word-sized offsets
1962 during assembly output. */
f045b2c9 1963
9ebbca7d
GK
1964#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
1965
1966#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
f045b2c9
RS
1967
1968#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
9ebbca7d
GK
1969 (TARGET_TOC \
1970 && GET_CODE (X) == PLUS \
1971 && GET_CODE (XEXP (X, 0)) == REG \
1972 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
1973 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
f045b2c9 1974
7509c759 1975#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
f607bc57 1976 (DEFAULT_ABI == ABI_V4 \
81795281 1977 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1978 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1979 && small_data_operand (X, MODE))
7509c759 1980
258bfae2 1981#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
f045b2c9 1982 (GET_CODE (X) == CONST_INT \
5b6f7b96 1983 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9 1984
258bfae2
FS
1985#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
1986 (GET_CODE (X) == PLUS \
1987 && GET_CODE (XEXP (X, 0)) == REG \
1988 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
1989 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
37fa124a
AM
1990 && (! ALTIVEC_VECTOR_MODE (MODE) \
1991 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
258bfae2
FS
1992 && (((MODE) != DFmode && (MODE) != DImode) \
1993 || (TARGET_32BIT \
1994 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1995 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1996 && ((MODE) != TImode \
1997 || (TARGET_32BIT \
1998 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1999 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1465faec 2000 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9 2001
258bfae2
FS
2002#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2003 (GET_CODE (X) == PLUS \
2004 && GET_CODE (XEXP (X, 0)) == REG \
2005 && GET_CODE (XEXP (X, 1)) == REG \
2006 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2007 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2008 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2009 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2010
2011#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2012 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2013
6ac7bf2c
GK
2014#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2015 (TARGET_ELF \
2016 && ! flag_pic && ! TARGET_TOC \
2017 && GET_MODE_NUNITS (MODE) == 1 \
2018 && (GET_MODE_BITSIZE (MODE) <= 32 \
c3bb62b9 2019 || (TARGET_HARD_FLOAT && (MODE) == DFmode)) \
6ac7bf2c
GK
2020 && GET_CODE (X) == LO_SUM \
2021 && GET_CODE (XEXP (X, 0)) == REG \
2022 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
4697a36c
MM
2023 && CONSTANT_P (XEXP (X, 1)))
2024
258bfae2
FS
2025#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2026{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2027 goto ADDR; \
f045b2c9
RS
2028}
2029\f
2030/* Try machine-dependent ways of modifying an illegitimate address
2031 to be legitimate. If we find one, return the new, valid address.
2032 This macro is used in only one place: `memory_address' in explow.c.
2033
2034 OLDX is the address as it was before break_out_memory_refs was called.
2035 In some cases it is useful to look at this to decide what needs to be done.
2036
2037 MODE and WIN are passed so that this macro can use
2038 GO_IF_LEGITIMATE_ADDRESS.
2039
2040 It is always safe for this macro to do nothing. It exists to recognize
2041 opportunities to optimize the output.
2042
2043 On RS/6000, first check for the sum of a register with a constant
2044 integer that is out of range. If so, generate code to add the
2045 constant with the low-order 16 bits masked to the register and force
2046 this result into another register (this can be done with `cau').
c81bebd7 2047 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2048 possibility of bit 16 being a one.
2049
2050 Then check for the sum of a register and something not constant, try to
2051 load the other things into a register and return the sum. */
2052
9ebbca7d
GK
2053#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2054{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2055 if (result != NULL_RTX) \
2056 { \
2057 (X) = result; \
2058 goto WIN; \
2059 } \
f045b2c9
RS
2060}
2061
a260abc9
DE
2062/* Try a machine-dependent way of reloading an illegitimate address
2063 operand. If we find one, push the reload and jump to WIN. This
2064 macro is used in only one place: `find_reloads_address' in reload.c.
2065
24ea750e
DJ
2066 Implemented on rs6000 by rs6000_legitimize_reload_address.
2067 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2068
a9098fd0
GK
2069#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2070do { \
24ea750e
DJ
2071 int win; \
2072 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2073 (int)(TYPE), (IND_LEVELS), &win); \
2074 if ( win ) \
2075 goto WIN; \
a260abc9
DE
2076} while (0)
2077
f045b2c9
RS
2078/* Go to LABEL if ADDR (a legitimate address expression)
2079 has an effect that depends on the machine mode it is used for.
2080
2081 On the RS/6000 this is true if the address is valid with a zero offset
2082 but not with an offset of four (this means it cannot be used as an
2083 address for DImode or DFmode) or is a pre-increment or decrement. Since
2084 we know it is valid, we just check for an address that is not valid with
2085 an offset of four. */
2086
2087#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2088{ if (GET_CODE (ADDR) == PLUS \
2089 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2090 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2091 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2092 goto LABEL; \
38c1f2d7 2093 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2094 goto LABEL; \
38c1f2d7 2095 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2096 goto LABEL; \
4697a36c
MM
2097 if (GET_CODE (ADDR) == LO_SUM) \
2098 goto LABEL; \
f045b2c9 2099}
766a866c
MM
2100\f
2101/* The register number of the register used to address a table of
2102 static data addresses in memory. In some cases this register is
2103 defined by a processor's "application binary interface" (ABI).
2104 When this macro is defined, RTL is generated for this register
2105 once, as with the stack pointer and frame pointer registers. If
2106 this macro is not defined, it is up to the machine-dependent files
2107 to allocate such a register (if necessary). */
2108
1db02437
FS
2109#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2110#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2111
9ebbca7d
GK
2112#define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
2113
766a866c
MM
2114/* Define this macro if the register defined by
2115 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2116 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2117
2118/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2119
2120/* By generating position-independent code, when two different
2121 programs (A and B) share a common library (libC.a), the text of
2122 the library can be shared whether or not the library is linked at
2123 the same address for both programs. In some of these
2124 environments, position-independent code requires not only the use
2125 of different addressing modes, but also special code to enable the
2126 use of these addressing modes.
2127
2128 The `FINALIZE_PIC' macro serves as a hook to emit these special
2129 codes once the function is being compiled into assembly code, but
2130 not before. (It is not done before, because in the case of
2131 compiling an inline function, it would lead to multiple PIC
2132 prologues being included in functions which used inline functions
2133 and were compiled to assembly language.) */
2134
8d30c4ee 2135/* #define FINALIZE_PIC */
766a866c 2136
766a866c
MM
2137/* A C expression that is nonzero if X is a legitimate immediate
2138 operand on the target machine when generating position independent
2139 code. You can assume that X satisfies `CONSTANT_P', so you need
2140 not check this. You can also assume FLAG_PIC is true, so you need
2141 not check it either. You need not define this macro if all
2142 constants (including `SYMBOL_REF') can be immediate operands when
2143 generating position independent code. */
2144
2145/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2146
30ea98f1
MM
2147/* In rare cases, correct code generation requires extra machine
2148 dependent processing between the second jump optimization pass and
2149 delayed branch scheduling. On those machines, define this macro
9ebbca7d 2150 as a C statement to act on the code starting at INSN. */
30ea98f1 2151
9ebbca7d 2152/* #define MACHINE_DEPENDENT_REORG(INSN) */
30ea98f1 2153
f045b2c9
RS
2154\f
2155/* Define this if some processing needs to be done immediately before
4255474b 2156 emitting code for an insn. */
f045b2c9 2157
4255474b 2158/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2159
2160/* Specify the machine mode that this machine uses
2161 for the index in the tablejump instruction. */
e1565e65 2162#define CASE_VECTOR_MODE SImode
f045b2c9 2163
18543a22
ILT
2164/* Define as C expression which evaluates to nonzero if the tablejump
2165 instruction expects the table to contain offsets from the address of the
2166 table.
82e41834 2167 Do not define this if the table should contain absolute addresses. */
18543a22 2168#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2169
f045b2c9
RS
2170/* Define this as 1 if `char' should by default be signed; else as 0. */
2171#define DEFAULT_SIGNED_CHAR 0
2172
2173/* This flag, if defined, says the same insns that convert to a signed fixnum
2174 also convert validly to an unsigned one. */
2175
2176/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2177
2178/* Max number of bytes we can move from memory to memory
2179 in one reasonably fast instruction. */
2f3e5814 2180#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2181#define MAX_MOVE_MAX 8
f045b2c9
RS
2182
2183/* Nonzero if access to memory by bytes is no faster than for words.
2184 Also non-zero if doing byte operations (specifically shifts) in registers
2185 is undesirable. */
2186#define SLOW_BYTE_ACCESS 1
2187
9a63901f
RK
2188/* Define if operations between registers always perform the operation
2189 on the full register even if a narrower mode is specified. */
2190#define WORD_REGISTER_OPERATIONS
2191
2192/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2193 will either zero-extend or sign-extend. The value of this macro should
2194 be the code that says which one of the two operations is implicitly
2195 done, NIL if none. */
2196#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2197
2198/* Define if loading short immediate values into registers sign extends. */
2199#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2200\f
f045b2c9
RS
2201/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2202 is done just by pretending it is already truncated. */
2203#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2204
2205/* Specify the machine mode that pointers have.
2206 After generation of rtl, the compiler makes no further distinction
2207 between pointers and any other objects of this machine mode. */
2f3e5814 2208#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2209
2210/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2211 Doesn't matter on RS/6000. */
2f3e5814 2212#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2213
2214/* Define this if addresses of constant functions
2215 shouldn't be put through pseudo regs where they can be cse'd.
2216 Desirable on machines where ordinary constants are expensive
2217 but a CALL with constant address is cheap. */
2218#define NO_FUNCTION_CSE
2219
d969caf8 2220/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2221 few bits.
2222
2223 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2224 have been dropped from the PowerPC architecture. */
2225
4697a36c 2226#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2227
f045b2c9
RS
2228/* Compute the cost of computing a constant rtl expression RTX
2229 whose rtx-code is CODE. The body of this macro is a portion
2230 of a switch statement. If the code is computed here,
2231 return it with a return statement. Otherwise, break from the switch.
2232
01554f00 2233 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2234 always returns 0. */
2235
4697a36c 2236#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2237 case CONST_INT: \
2238 case CONST: \
2239 case LABEL_REF: \
2240 case SYMBOL_REF: \
2241 case CONST_DOUBLE: \
4697a36c 2242 case HIGH: \
f045b2c9
RS
2243 return 0;
2244
2245/* Provide the costs of a rtl expression. This is in the body of a
2246 switch on CODE. */
2247
38c1f2d7
MM
2248#define RTX_COSTS(X,CODE,OUTER_CODE) \
2249 case PLUS: \
2250 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2251 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2252 + 0x8000) >= 0x10000) \
296b8152 2253 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2254 ? COSTS_N_INSNS (2) \
2255 : COSTS_N_INSNS (1)); \
2256 case AND: \
38c1f2d7
MM
2257 case IOR: \
2258 case XOR: \
a260abc9
DE
2259 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2260 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2261 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2262 ? COSTS_N_INSNS (2) \
2263 : COSTS_N_INSNS (1)); \
2264 case MULT: \
2265 switch (rs6000_cpu) \
2266 { \
2267 case PROCESSOR_RIOS1: \
fe7f5677 2268 case PROCESSOR_PPC405: \
38c1f2d7
MM
2269 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2270 ? COSTS_N_INSNS (5) \
2271 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2272 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
3cb999d8
DE
2273 case PROCESSOR_RS64A: \
2274 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2275 ? GET_MODE (XEXP (X, 1)) != DImode \
2276 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2277 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
fe7f5677 2278 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
38c1f2d7
MM
2279 case PROCESSOR_RIOS2: \
2280 case PROCESSOR_MPCCORE: \
5a41b476 2281 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2282 return COSTS_N_INSNS (2); \
2283 case PROCESSOR_PPC601: \
2284 return COSTS_N_INSNS (5); \
2285 case PROCESSOR_PPC603: \
7960cfbb 2286 case PROCESSOR_PPC7400: \
bef84347 2287 case PROCESSOR_PPC750: \
38c1f2d7
MM
2288 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2289 ? COSTS_N_INSNS (5) \
2290 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2291 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
fd3b43f2
DJ
2292 case PROCESSOR_PPC7450: \
2293 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2294 ? COSTS_N_INSNS (4) \
2295 : COSTS_N_INSNS (3)); \
38c1f2d7
MM
2296 case PROCESSOR_PPC403: \
2297 case PROCESSOR_PPC604: \
38c1f2d7 2298 return COSTS_N_INSNS (4); \
3cb999d8
DE
2299 case PROCESSOR_PPC620: \
2300 case PROCESSOR_PPC630: \
2301 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2302 ? GET_MODE (XEXP (X, 1)) != DImode \
fe7f5677 2303 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
3cb999d8
DE
2304 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2305 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
38c1f2d7
MM
2306 } \
2307 case DIV: \
2308 case MOD: \
2309 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2310 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2311 return COSTS_N_INSNS (2); \
2312 /* otherwise fall through to normal divide. */ \
2313 case UDIV: \
2314 case UMOD: \
2315 switch (rs6000_cpu) \
2316 { \
2317 case PROCESSOR_RIOS1: \
2318 return COSTS_N_INSNS (19); \
2319 case PROCESSOR_RIOS2: \
2320 return COSTS_N_INSNS (13); \
3cb999d8
DE
2321 case PROCESSOR_RS64A: \
2322 return (GET_MODE (XEXP (X, 1)) != DImode \
2323 ? COSTS_N_INSNS (65) \
2324 : COSTS_N_INSNS (67)); \
38c1f2d7
MM
2325 case PROCESSOR_MPCCORE: \
2326 return COSTS_N_INSNS (6); \
2327 case PROCESSOR_PPC403: \
2328 return COSTS_N_INSNS (33); \
fe7f5677
DE
2329 case PROCESSOR_PPC405: \
2330 return COSTS_N_INSNS (35); \
38c1f2d7
MM
2331 case PROCESSOR_PPC601: \
2332 return COSTS_N_INSNS (36); \
2333 case PROCESSOR_PPC603: \
2334 return COSTS_N_INSNS (37); \
2335 case PROCESSOR_PPC604: \
5a41b476 2336 case PROCESSOR_PPC604e: \
38c1f2d7 2337 return COSTS_N_INSNS (20); \
3cb999d8
DE
2338 case PROCESSOR_PPC620: \
2339 case PROCESSOR_PPC630: \
2340 return (GET_MODE (XEXP (X, 1)) != DImode \
2341 ? COSTS_N_INSNS (21) \
2342 : COSTS_N_INSNS (37)); \
bef84347 2343 case PROCESSOR_PPC750: \
ed947a96 2344 case PROCESSOR_PPC7400: \
bef84347 2345 return COSTS_N_INSNS (19); \
ed947a96
DJ
2346 case PROCESSOR_PPC7450: \
2347 return COSTS_N_INSNS (23); \
38c1f2d7
MM
2348 } \
2349 case FFS: \
2350 return COSTS_N_INSNS (4); \
2351 case MEM: \
f045b2c9
RS
2352 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2353 return 5;
2354
2355/* Compute the cost of an address. This is meant to approximate the size
2356 and/or execution delay of an insn using that address. If the cost is
2357 approximated by the RTL complexity, including CONST_COSTS above, as
2358 is usually the case for CISC machines, this macro should not be defined.
2359 For aggressively RISCy machines, only one insn format is allowed, so
2360 this macro should be a constant. The value of this macro only matters
2361 for valid addresses.
2362
2363 For the RS/6000, everything is cost 0. */
2364
2365#define ADDRESS_COST(RTX) 0
2366
2367/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2368 should be adjusted to reflect any required changes. This macro is used when
2369 there is some systematic length adjustment required that would be difficult
2370 to express in the length attribute. */
2371
2372/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2373
2374/* Add any extra modes needed to represent the condition code.
2375
2376 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2377 are being done and we need a separate mode for floating-point. We also
2378 use a mode for the case when we are comparing the results of two
39a10a29 2379 comparisons, as then only the EQ bit is valid in the register. */
f045b2c9 2380
aa0b4465
ZW
2381#define EXTRA_CC_MODES \
2382 CC(CCUNSmode, "CCUNS") \
2383 CC(CCFPmode, "CCFP") \
2384 CC(CCEQmode, "CCEQ")
f045b2c9 2385
39a10a29
GK
2386/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2387 COMPARE, return the mode to be used for the comparison. For
2388 floating-point, CCFPmode should be used. CCUNSmode should be used
2389 for unsigned comparisons. CCEQmode should be used when we are
2390 doing an inequality comparison on the result of a
2391 comparison. CCmode should be used in all other cases. */
c5defebb 2392
b565a316 2393#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2394 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2395 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2396 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2397 ? CCEQmode : CCmode))
f045b2c9
RS
2398
2399/* Define the information needed to generate branch and scc insns. This is
2400 stored from the compare operation. Note that we can't use "rtx" here
2401 since it hasn't been defined! */
2402
2403extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2404extern int rs6000_compare_fp_p;
f045b2c9
RS
2405\f
2406/* Control the assembler format that we output. */
2407
1b279f39
DE
2408/* A C string constant describing how to begin a comment in the target
2409 assembler language. The compiler assumes that the comment will end at
2410 the end of the line. */
2411#define ASM_COMMENT_START " #"
6b67933e 2412
fdaff8ba
RS
2413/* Implicit library calls should use memcpy, not bcopy, etc. */
2414
2415#define TARGET_MEM_FUNCTIONS
2416
38c1f2d7
MM
2417/* Flag to say the TOC is initialized */
2418extern int toc_initialized;
2419
f045b2c9
RS
2420/* Macro to output a special constant pool entry. Go to WIN if we output
2421 it. Otherwise, it is written the usual way.
2422
2423 On the RS/6000, toc entries are handled this way. */
2424
a9098fd0
GK
2425#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2426{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2427 { \
2428 output_toc (FILE, X, LABELNO, MODE); \
2429 goto WIN; \
2430 } \
f045b2c9
RS
2431}
2432
ebd97b96
DE
2433#ifdef HAVE_GAS_WEAK
2434#define RS6000_WEAK 1
2435#else
2436#define RS6000_WEAK 0
2437#endif
290ad355 2438
79c4e63f
AM
2439#if RS6000_WEAK
2440/* Used in lieu of ASM_WEAKEN_LABEL. */
2441#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2442 do \
2443 { \
2444 fputs ("\t.weak\t", (FILE)); \
cbaaba19 2445 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2446 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2447 && DEFAULT_ABI == ABI_AIX) \
2448 { \
cbaaba19
DE
2449 if (TARGET_XCOFF) \
2450 fputs ("[DS]", (FILE)); \
ca734b39 2451 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2452 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2453 } \
2454 fputc ('\n', (FILE)); \
2455 if (VAL) \
2456 { \
2457 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2458 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2459 && DEFAULT_ABI == ABI_AIX) \
2460 { \
2461 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2462 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2463 fputs (",.", (FILE)); \
cbaaba19 2464 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2465 fputc ('\n', (FILE)); \
2466 } \
2467 } \
2468 } \
2469 while (0)
2470#endif
2471
2472/* This implements the `alias' attribute. */
2473#undef ASM_OUTPUT_DEF_FROM_DECLS
2474#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2475 do \
2476 { \
2477 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2478 const char *name = IDENTIFIER_POINTER (TARGET); \
2479 if (TREE_CODE (DECL) == FUNCTION_DECL \
2480 && DEFAULT_ABI == ABI_AIX) \
2481 { \
2482 if (TREE_PUBLIC (DECL)) \
2483 { \
2484 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2485 { \
2486 fputs ("\t.globl\t.", FILE); \
cbaaba19 2487 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2488 putc ('\n', FILE); \
2489 } \
2490 } \
2491 else if (TARGET_XCOFF) \
2492 { \
2493 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2494 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2495 putc ('\n', FILE); \
2496 } \
2497 fputs ("\t.set\t.", FILE); \
cbaaba19 2498 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2499 fputs (",.", FILE); \
cbaaba19 2500 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2501 fputc ('\n', FILE); \
2502 } \
2503 ASM_OUTPUT_DEF (FILE, alias, name); \
2504 } \
2505 while (0)
290ad355 2506
f045b2c9
RS
2507/* Output to assembler file text saying following lines
2508 may contain character constants, extra white space, comments, etc. */
2509
2510#define ASM_APP_ON ""
2511
2512/* Output to assembler file text saying following lines
2513 no longer contain unusual constructs. */
2514
2515#define ASM_APP_OFF ""
2516
f045b2c9
RS
2517/* How to refer to registers in assembler output.
2518 This sequence is indexed by compiler's hard-register-number (see above). */
2519
82e41834 2520extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2521
2522#define REGISTER_NAMES \
2523{ \
2524 &rs6000_reg_names[ 0][0], /* r0 */ \
2525 &rs6000_reg_names[ 1][0], /* r1 */ \
2526 &rs6000_reg_names[ 2][0], /* r2 */ \
2527 &rs6000_reg_names[ 3][0], /* r3 */ \
2528 &rs6000_reg_names[ 4][0], /* r4 */ \
2529 &rs6000_reg_names[ 5][0], /* r5 */ \
2530 &rs6000_reg_names[ 6][0], /* r6 */ \
2531 &rs6000_reg_names[ 7][0], /* r7 */ \
2532 &rs6000_reg_names[ 8][0], /* r8 */ \
2533 &rs6000_reg_names[ 9][0], /* r9 */ \
2534 &rs6000_reg_names[10][0], /* r10 */ \
2535 &rs6000_reg_names[11][0], /* r11 */ \
2536 &rs6000_reg_names[12][0], /* r12 */ \
2537 &rs6000_reg_names[13][0], /* r13 */ \
2538 &rs6000_reg_names[14][0], /* r14 */ \
2539 &rs6000_reg_names[15][0], /* r15 */ \
2540 &rs6000_reg_names[16][0], /* r16 */ \
2541 &rs6000_reg_names[17][0], /* r17 */ \
2542 &rs6000_reg_names[18][0], /* r18 */ \
2543 &rs6000_reg_names[19][0], /* r19 */ \
2544 &rs6000_reg_names[20][0], /* r20 */ \
2545 &rs6000_reg_names[21][0], /* r21 */ \
2546 &rs6000_reg_names[22][0], /* r22 */ \
2547 &rs6000_reg_names[23][0], /* r23 */ \
2548 &rs6000_reg_names[24][0], /* r24 */ \
2549 &rs6000_reg_names[25][0], /* r25 */ \
2550 &rs6000_reg_names[26][0], /* r26 */ \
2551 &rs6000_reg_names[27][0], /* r27 */ \
2552 &rs6000_reg_names[28][0], /* r28 */ \
2553 &rs6000_reg_names[29][0], /* r29 */ \
2554 &rs6000_reg_names[30][0], /* r30 */ \
2555 &rs6000_reg_names[31][0], /* r31 */ \
2556 \
2557 &rs6000_reg_names[32][0], /* fr0 */ \
2558 &rs6000_reg_names[33][0], /* fr1 */ \
2559 &rs6000_reg_names[34][0], /* fr2 */ \
2560 &rs6000_reg_names[35][0], /* fr3 */ \
2561 &rs6000_reg_names[36][0], /* fr4 */ \
2562 &rs6000_reg_names[37][0], /* fr5 */ \
2563 &rs6000_reg_names[38][0], /* fr6 */ \
2564 &rs6000_reg_names[39][0], /* fr7 */ \
2565 &rs6000_reg_names[40][0], /* fr8 */ \
2566 &rs6000_reg_names[41][0], /* fr9 */ \
2567 &rs6000_reg_names[42][0], /* fr10 */ \
2568 &rs6000_reg_names[43][0], /* fr11 */ \
2569 &rs6000_reg_names[44][0], /* fr12 */ \
2570 &rs6000_reg_names[45][0], /* fr13 */ \
2571 &rs6000_reg_names[46][0], /* fr14 */ \
2572 &rs6000_reg_names[47][0], /* fr15 */ \
2573 &rs6000_reg_names[48][0], /* fr16 */ \
2574 &rs6000_reg_names[49][0], /* fr17 */ \
2575 &rs6000_reg_names[50][0], /* fr18 */ \
2576 &rs6000_reg_names[51][0], /* fr19 */ \
2577 &rs6000_reg_names[52][0], /* fr20 */ \
2578 &rs6000_reg_names[53][0], /* fr21 */ \
2579 &rs6000_reg_names[54][0], /* fr22 */ \
2580 &rs6000_reg_names[55][0], /* fr23 */ \
2581 &rs6000_reg_names[56][0], /* fr24 */ \
2582 &rs6000_reg_names[57][0], /* fr25 */ \
2583 &rs6000_reg_names[58][0], /* fr26 */ \
2584 &rs6000_reg_names[59][0], /* fr27 */ \
2585 &rs6000_reg_names[60][0], /* fr28 */ \
2586 &rs6000_reg_names[61][0], /* fr29 */ \
2587 &rs6000_reg_names[62][0], /* fr30 */ \
2588 &rs6000_reg_names[63][0], /* fr31 */ \
2589 \
2590 &rs6000_reg_names[64][0], /* mq */ \
2591 &rs6000_reg_names[65][0], /* lr */ \
2592 &rs6000_reg_names[66][0], /* ctr */ \
2593 &rs6000_reg_names[67][0], /* ap */ \
2594 \
2595 &rs6000_reg_names[68][0], /* cr0 */ \
2596 &rs6000_reg_names[69][0], /* cr1 */ \
2597 &rs6000_reg_names[70][0], /* cr2 */ \
2598 &rs6000_reg_names[71][0], /* cr3 */ \
2599 &rs6000_reg_names[72][0], /* cr4 */ \
2600 &rs6000_reg_names[73][0], /* cr5 */ \
2601 &rs6000_reg_names[74][0], /* cr6 */ \
2602 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2603 \
9ebbca7d 2604 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2605 \
2606 &rs6000_reg_names[77][0], /* v0 */ \
2607 &rs6000_reg_names[78][0], /* v1 */ \
2608 &rs6000_reg_names[79][0], /* v2 */ \
2609 &rs6000_reg_names[80][0], /* v3 */ \
2610 &rs6000_reg_names[81][0], /* v4 */ \
2611 &rs6000_reg_names[82][0], /* v5 */ \
2612 &rs6000_reg_names[83][0], /* v6 */ \
2613 &rs6000_reg_names[84][0], /* v7 */ \
2614 &rs6000_reg_names[85][0], /* v8 */ \
2615 &rs6000_reg_names[86][0], /* v9 */ \
2616 &rs6000_reg_names[87][0], /* v10 */ \
2617 &rs6000_reg_names[88][0], /* v11 */ \
2618 &rs6000_reg_names[89][0], /* v12 */ \
2619 &rs6000_reg_names[90][0], /* v13 */ \
2620 &rs6000_reg_names[91][0], /* v14 */ \
2621 &rs6000_reg_names[92][0], /* v15 */ \
2622 &rs6000_reg_names[93][0], /* v16 */ \
2623 &rs6000_reg_names[94][0], /* v17 */ \
2624 &rs6000_reg_names[95][0], /* v18 */ \
2625 &rs6000_reg_names[96][0], /* v19 */ \
2626 &rs6000_reg_names[97][0], /* v20 */ \
2627 &rs6000_reg_names[98][0], /* v21 */ \
2628 &rs6000_reg_names[99][0], /* v22 */ \
2629 &rs6000_reg_names[100][0], /* v23 */ \
2630 &rs6000_reg_names[101][0], /* v24 */ \
2631 &rs6000_reg_names[102][0], /* v25 */ \
2632 &rs6000_reg_names[103][0], /* v26 */ \
2633 &rs6000_reg_names[104][0], /* v27 */ \
2634 &rs6000_reg_names[105][0], /* v28 */ \
2635 &rs6000_reg_names[106][0], /* v29 */ \
2636 &rs6000_reg_names[107][0], /* v30 */ \
2637 &rs6000_reg_names[108][0], /* v31 */ \
2638 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2639 &rs6000_reg_names[110][0], /* vscr */ \
c81bebd7
MM
2640}
2641
2642/* print-rtl can't handle the above REGISTER_NAMES, so define the
2643 following for it. Switch to use the alternate names since
2644 they are more mnemonic. */
2645
2646#define DEBUG_REGISTER_NAMES \
2647{ \
802a0058
MM
2648 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2649 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2650 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2651 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2652 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2653 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2654 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2655 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2656 "mq", "lr", "ctr", "ap", \
2657 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
0ac081f6
AH
2658 "xer", \
2659 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2660 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2661 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2662 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
5f004351 2663 "vrsave", "vscr" \
c81bebd7 2664}
f045b2c9
RS
2665
2666/* Table of additional register names to use in user input. */
2667
2668#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2669 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2670 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2671 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2672 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2673 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2674 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2675 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2676 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2677 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2678 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2679 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2680 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2681 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2682 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2683 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2684 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2685 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2686 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2687 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2688 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2689 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2690 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2691 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2692 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2693 {"vrsave", 109}, {"vscr", 110}, \
c4d38ccb
MM
2694 /* no additional names for: mq, lr, ctr, ap */ \
2695 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2696 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2697 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2698
0da40b09
RK
2699/* Text to write out after a CALL that may be replaced by glue code by
2700 the loader. This depends on the AIX version. */
2701#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2702
f045b2c9
RS
2703/* This is how to output an element of a case-vector that is relative. */
2704
e1565e65 2705#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2706 do { char buf[100]; \
e1565e65 2707 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2708 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2709 assemble_name (FILE, buf); \
19d2d16f 2710 putc ('-', FILE); \
3daf36a4
ILT
2711 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2712 assemble_name (FILE, buf); \
19d2d16f 2713 putc ('\n', FILE); \
3daf36a4 2714 } while (0)
f045b2c9
RS
2715
2716/* This is how to output an assembler line
2717 that says to advance the location counter
2718 to a multiple of 2**LOG bytes. */
2719
2720#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2721 if ((LOG) != 0) \
2722 fprintf (FILE, "\t.align %d\n", (LOG))
2723
f045b2c9
RS
2724/* Store in OUTPUT a string (made with alloca) containing
2725 an assembler-name for a local static variable named NAME.
2726 LABELNO is an integer which is different for each call. */
2727
2728#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2729( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2730 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2731
9ebbca7d
GK
2732/* Pick up the return address upon entry to a procedure. Used for
2733 dwarf2 unwind information. This also enables the table driven
2734 mechanism. */
2735
2736#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2737#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2738
83720594
RH
2739/* Describe how we implement __builtin_eh_return. */
2740#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2741#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2742
f045b2c9
RS
2743/* Print operand X (an rtx) in assembler syntax to file FILE.
2744 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2745 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2746
2747#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2748
2749/* Define which CODE values are valid. */
2750
c81bebd7 2751#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
6fa3f289 2752 ((CODE) == '.')
f045b2c9
RS
2753
2754/* Print a memory address as an operand to reference that memory location. */
2755
2756#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2757
2758/* Define the codes that are matched by predicates in rs6000.c. */
2759
39a10a29 2760#define PREDICATE_CODES \
a65c591c 2761 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
df15fbc7 2762 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
a65c591c
DE
2763 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2764 LABEL_REF, SUBREG, REG, MEM}}, \
39a10a29
GK
2765 {"short_cint_operand", {CONST_INT}}, \
2766 {"u_short_cint_operand", {CONST_INT}}, \
2767 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2768 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2769 {"gpc_reg_operand", {SUBREG, REG}}, \
2770 {"cc_reg_operand", {SUBREG, REG}}, \
2771 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2772 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2773 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2774 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2775 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2776 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2777 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2778 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2779 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2780 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2781 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2782 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2783 {"easy_fp_constant", {CONST_DOUBLE}}, \
50a0b056 2784 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2785 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2786 {"lwa_operand", {SUBREG, MEM, REG}}, \
2787 {"volatile_mem_operand", {MEM}}, \
2788 {"offsettable_mem_operand", {MEM}}, \
2789 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2790 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2791 {"non_add_cint_operand", {CONST_INT}}, \
2792 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2793 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2794 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2795 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2796 {"mask_operand", {CONST_INT}}, \
2797 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2798 {"count_register_operand", {REG}}, \
2799 {"xer_operand", {REG}}, \
cc4d5fec 2800 {"symbol_ref_operand", {SYMBOL_REF}}, \
39a10a29
GK
2801 {"call_operand", {SYMBOL_REF, REG}}, \
2802 {"current_file_function_operand", {SYMBOL_REF}}, \
2803 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2804 CONST_DOUBLE, SYMBOL_REF}}, \
2805 {"load_multiple_operation", {PARALLEL}}, \
2806 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2807 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2808 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2809 GT, LEU, LTU, GEU, GTU, \
2810 UNORDERED, ORDERED, \
2811 UNGE, UNLE }}, \
2812 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2813 UNORDERED }}, \
2814 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2815 GT, LEU, LTU, GEU, GTU, \
2816 UNORDERED, ORDERED, \
2817 UNGE, UNLE }}, \
2818 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2819 GT, LEU, LTU, GEU, GTU}}, \
2820 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2821 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2822 {"altivec_register_operand", {REG}}, \
50a0b056 2823 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2824
b6c9286a
MM
2825/* uncomment for disabling the corresponding default options */
2826/* #define MACHINE_no_sched_interblock */
2827/* #define MACHINE_no_sched_speculative */
2828/* #define MACHINE_no_sched_speculative_load */
2829
766a866c
MM
2830/* General flags. */
2831extern int flag_pic;
354b734b
MM
2832extern int optimize;
2833extern int flag_expensive_optimizations;
a7df97e6 2834extern int frame_pointer_needed;
0ac081f6
AH
2835
2836enum rs6000_builtins
2837{
2838 /* AltiVec builtins. */
f18c054f
DB
2839 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2840 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2841 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2842 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2843 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2844 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2845 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2846 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2847 ALTIVEC_BUILTIN_VADDUBM,
2848 ALTIVEC_BUILTIN_VADDUHM,
2849 ALTIVEC_BUILTIN_VADDUWM,
2850 ALTIVEC_BUILTIN_VADDFP,
2851 ALTIVEC_BUILTIN_VADDCUW,
2852 ALTIVEC_BUILTIN_VADDUBS,
2853 ALTIVEC_BUILTIN_VADDSBS,
2854 ALTIVEC_BUILTIN_VADDUHS,
2855 ALTIVEC_BUILTIN_VADDSHS,
2856 ALTIVEC_BUILTIN_VADDUWS,
2857 ALTIVEC_BUILTIN_VADDSWS,
2858 ALTIVEC_BUILTIN_VAND,
2859 ALTIVEC_BUILTIN_VANDC,
2860 ALTIVEC_BUILTIN_VAVGUB,
2861 ALTIVEC_BUILTIN_VAVGSB,
2862 ALTIVEC_BUILTIN_VAVGUH,
2863 ALTIVEC_BUILTIN_VAVGSH,
2864 ALTIVEC_BUILTIN_VAVGUW,
2865 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2866 ALTIVEC_BUILTIN_VCFUX,
2867 ALTIVEC_BUILTIN_VCFSX,
2868 ALTIVEC_BUILTIN_VCTSXS,
2869 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2870 ALTIVEC_BUILTIN_VCMPBFP,
2871 ALTIVEC_BUILTIN_VCMPEQUB,
2872 ALTIVEC_BUILTIN_VCMPEQUH,
2873 ALTIVEC_BUILTIN_VCMPEQUW,
2874 ALTIVEC_BUILTIN_VCMPEQFP,
2875 ALTIVEC_BUILTIN_VCMPGEFP,
2876 ALTIVEC_BUILTIN_VCMPGTUB,
2877 ALTIVEC_BUILTIN_VCMPGTSB,
2878 ALTIVEC_BUILTIN_VCMPGTUH,
2879 ALTIVEC_BUILTIN_VCMPGTSH,
2880 ALTIVEC_BUILTIN_VCMPGTUW,
2881 ALTIVEC_BUILTIN_VCMPGTSW,
2882 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2883 ALTIVEC_BUILTIN_VEXPTEFP,
2884 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2885 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2886 ALTIVEC_BUILTIN_VMAXUB,
2887 ALTIVEC_BUILTIN_VMAXSB,
2888 ALTIVEC_BUILTIN_VMAXUH,
2889 ALTIVEC_BUILTIN_VMAXSH,
2890 ALTIVEC_BUILTIN_VMAXUW,
2891 ALTIVEC_BUILTIN_VMAXSW,
2892 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2893 ALTIVEC_BUILTIN_VMHADDSHS,
2894 ALTIVEC_BUILTIN_VMHRADDSHS,
2895 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2896 ALTIVEC_BUILTIN_VMRGHB,
2897 ALTIVEC_BUILTIN_VMRGHH,
2898 ALTIVEC_BUILTIN_VMRGHW,
2899 ALTIVEC_BUILTIN_VMRGLB,
2900 ALTIVEC_BUILTIN_VMRGLH,
2901 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2902 ALTIVEC_BUILTIN_VMSUMUBM,
2903 ALTIVEC_BUILTIN_VMSUMMBM,
2904 ALTIVEC_BUILTIN_VMSUMUHM,
2905 ALTIVEC_BUILTIN_VMSUMSHM,
2906 ALTIVEC_BUILTIN_VMSUMUHS,
2907 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2908 ALTIVEC_BUILTIN_VMINUB,
2909 ALTIVEC_BUILTIN_VMINSB,
2910 ALTIVEC_BUILTIN_VMINUH,
2911 ALTIVEC_BUILTIN_VMINSH,
2912 ALTIVEC_BUILTIN_VMINUW,
2913 ALTIVEC_BUILTIN_VMINSW,
2914 ALTIVEC_BUILTIN_VMINFP,
2915 ALTIVEC_BUILTIN_VMULEUB,
2916 ALTIVEC_BUILTIN_VMULESB,
2917 ALTIVEC_BUILTIN_VMULEUH,
2918 ALTIVEC_BUILTIN_VMULESH,
2919 ALTIVEC_BUILTIN_VMULOUB,
2920 ALTIVEC_BUILTIN_VMULOSB,
2921 ALTIVEC_BUILTIN_VMULOUH,
2922 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2923 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2924 ALTIVEC_BUILTIN_VNOR,
2925 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2926 ALTIVEC_BUILTIN_VSEL_4SI,
2927 ALTIVEC_BUILTIN_VSEL_4SF,
2928 ALTIVEC_BUILTIN_VSEL_8HI,
2929 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2930 ALTIVEC_BUILTIN_VPERM_4SI,
2931 ALTIVEC_BUILTIN_VPERM_4SF,
2932 ALTIVEC_BUILTIN_VPERM_8HI,
2933 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2934 ALTIVEC_BUILTIN_VPKUHUM,
2935 ALTIVEC_BUILTIN_VPKUWUM,
2936 ALTIVEC_BUILTIN_VPKPX,
2937 ALTIVEC_BUILTIN_VPKUHSS,
2938 ALTIVEC_BUILTIN_VPKSHSS,
2939 ALTIVEC_BUILTIN_VPKUWSS,
2940 ALTIVEC_BUILTIN_VPKSWSS,
2941 ALTIVEC_BUILTIN_VPKUHUS,
2942 ALTIVEC_BUILTIN_VPKSHUS,
2943 ALTIVEC_BUILTIN_VPKUWUS,
2944 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2945 ALTIVEC_BUILTIN_VREFP,
2946 ALTIVEC_BUILTIN_VRFIM,
2947 ALTIVEC_BUILTIN_VRFIN,
2948 ALTIVEC_BUILTIN_VRFIP,
2949 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2950 ALTIVEC_BUILTIN_VRLB,
2951 ALTIVEC_BUILTIN_VRLH,
2952 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2953 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2954 ALTIVEC_BUILTIN_VSLB,
2955 ALTIVEC_BUILTIN_VSLH,
2956 ALTIVEC_BUILTIN_VSLW,
2957 ALTIVEC_BUILTIN_VSL,
2958 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2959 ALTIVEC_BUILTIN_VSPLTB,
2960 ALTIVEC_BUILTIN_VSPLTH,
2961 ALTIVEC_BUILTIN_VSPLTW,
2962 ALTIVEC_BUILTIN_VSPLTISB,
2963 ALTIVEC_BUILTIN_VSPLTISH,
2964 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2965 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2966 ALTIVEC_BUILTIN_VSRH,
2967 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2968 ALTIVEC_BUILTIN_VSRAB,
2969 ALTIVEC_BUILTIN_VSRAH,
2970 ALTIVEC_BUILTIN_VSRAW,
2971 ALTIVEC_BUILTIN_VSR,
2972 ALTIVEC_BUILTIN_VSRO,
2973 ALTIVEC_BUILTIN_VSUBUBM,
2974 ALTIVEC_BUILTIN_VSUBUHM,
2975 ALTIVEC_BUILTIN_VSUBUWM,
2976 ALTIVEC_BUILTIN_VSUBFP,
2977 ALTIVEC_BUILTIN_VSUBCUW,
2978 ALTIVEC_BUILTIN_VSUBUBS,
2979 ALTIVEC_BUILTIN_VSUBSBS,
2980 ALTIVEC_BUILTIN_VSUBUHS,
2981 ALTIVEC_BUILTIN_VSUBSHS,
2982 ALTIVEC_BUILTIN_VSUBUWS,
2983 ALTIVEC_BUILTIN_VSUBSWS,
2984 ALTIVEC_BUILTIN_VSUM4UBS,
2985 ALTIVEC_BUILTIN_VSUM4SBS,
2986 ALTIVEC_BUILTIN_VSUM4SHS,
2987 ALTIVEC_BUILTIN_VSUM2SWS,
2988 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2989 ALTIVEC_BUILTIN_VXOR,
2990 ALTIVEC_BUILTIN_VSLDOI_16QI,
2991 ALTIVEC_BUILTIN_VSLDOI_8HI,
2992 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2993 ALTIVEC_BUILTIN_VSLDOI_4SF,
2994 ALTIVEC_BUILTIN_VUPKHSB,
2995 ALTIVEC_BUILTIN_VUPKHPX,
2996 ALTIVEC_BUILTIN_VUPKHSH,
2997 ALTIVEC_BUILTIN_VUPKLSB,
2998 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 2999 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
3000 ALTIVEC_BUILTIN_MTVSCR,
3001 ALTIVEC_BUILTIN_MFVSCR,
3002 ALTIVEC_BUILTIN_DSSALL,
3003 ALTIVEC_BUILTIN_DSS,
3004 ALTIVEC_BUILTIN_LVSL,
3005 ALTIVEC_BUILTIN_LVSR,
3006 ALTIVEC_BUILTIN_DSTT,
3007 ALTIVEC_BUILTIN_DSTST,
3008 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
3009 ALTIVEC_BUILTIN_DST,
3010 ALTIVEC_BUILTIN_LVEBX,
3011 ALTIVEC_BUILTIN_LVEHX,
3012 ALTIVEC_BUILTIN_LVEWX,
3013 ALTIVEC_BUILTIN_LVXL,
3014 ALTIVEC_BUILTIN_LVX,
3015 ALTIVEC_BUILTIN_STVX,
3016 ALTIVEC_BUILTIN_STVEBX,
3017 ALTIVEC_BUILTIN_STVEHX,
3018 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
3019 ALTIVEC_BUILTIN_STVXL,
3020 ALTIVEC_BUILTIN_VCMPBFP_P,
3021 ALTIVEC_BUILTIN_VCMPEQFP_P,
3022 ALTIVEC_BUILTIN_VCMPEQUB_P,
3023 ALTIVEC_BUILTIN_VCMPEQUH_P,
3024 ALTIVEC_BUILTIN_VCMPEQUW_P,
3025 ALTIVEC_BUILTIN_VCMPGEFP_P,
3026 ALTIVEC_BUILTIN_VCMPGTFP_P,
3027 ALTIVEC_BUILTIN_VCMPGTSB_P,
3028 ALTIVEC_BUILTIN_VCMPGTSH_P,
3029 ALTIVEC_BUILTIN_VCMPGTSW_P,
3030 ALTIVEC_BUILTIN_VCMPGTUB_P,
3031 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
3032 ALTIVEC_BUILTIN_VCMPGTUW_P,
3033 ALTIVEC_BUILTIN_ABSS_V4SI,
3034 ALTIVEC_BUILTIN_ABSS_V8HI,
3035 ALTIVEC_BUILTIN_ABSS_V16QI,
3036 ALTIVEC_BUILTIN_ABS_V4SI,
3037 ALTIVEC_BUILTIN_ABS_V4SF,
3038 ALTIVEC_BUILTIN_ABS_V8HI,
3039 ALTIVEC_BUILTIN_ABS_V16QI
0ac081f6 3040};