]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
[multiple changes]
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
602ea4d3
JJ
3 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6a7ec0a7 5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 6
5de601cf 7 This file is part of GCC.
f045b2c9 8
5de601cf
NC
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 2, or (at your
12 option) any later version.
f045b2c9 13
5de601cf
NC
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
f045b2c9 18
5de601cf
NC
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the
39d14dda
KC
21 Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
22 MA 02110-1301, USA. */
f045b2c9
RS
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
85b776df
AM
44/* Control whether function entry points use a "dot" symbol when
45 ABI_AIX. */
46#define DOT_SYMBOLS 1
47
8e3f41e7
MM
48/* Default string to use for cpu if not specified. */
49#ifndef TARGET_CPU_DEFAULT
50#define TARGET_CPU_DEFAULT ((char *)0)
51#endif
52
f565b0a1 53/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 54#ifdef CONFIG_PPC405CR
f565b0a1
DE
55#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
56#else
57#define PPC405_ERRATUM77 0
58#endif
59
f984d8df
DB
60/* Common ASM definitions used by ASM_SPEC among the various targets
61 for handling -mcpu=xxx switches. */
62#define ASM_CPU_SPEC \
63"%{!mcpu*: \
64 %{mpower: %{!mpower2: -mpwr}} \
65 %{mpower2: -mpwrx} \
93ae5495
AM
66 %{mpowerpc64*: -mppc64} \
67 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
f984d8df 68 %{mno-power: %{!mpowerpc*: -mcom}} \
93ae5495 69 %{!mno-power: %{!mpower*: %(asm_default)}}} \
f984d8df
DB
70%{mcpu=common: -mcom} \
71%{mcpu=power: -mpwr} \
72%{mcpu=power2: -mpwrx} \
93ae5495 73%{mcpu=power3: -mppc64} \
957e9e48 74%{mcpu=power4: -mpower4} \
93ae5495 75%{mcpu=power5: -mpower4} \
9719f3b7 76%{mcpu=power5+: -mpower4} \
f984d8df
DB
77%{mcpu=powerpc: -mppc} \
78%{mcpu=rios: -mpwr} \
79%{mcpu=rios1: -mpwr} \
80%{mcpu=rios2: -mpwrx} \
81%{mcpu=rsc: -mpwr} \
82%{mcpu=rsc1: -mpwr} \
93ae5495 83%{mcpu=rs64a: -mppc64} \
f984d8df 84%{mcpu=401: -mppc} \
61a8515c
JS
85%{mcpu=403: -m403} \
86%{mcpu=405: -m405} \
2c9d95ef
DE
87%{mcpu=405fp: -m405} \
88%{mcpu=440: -m440} \
89%{mcpu=440fp: -m440} \
f984d8df
DB
90%{mcpu=505: -mppc} \
91%{mcpu=601: -m601} \
92%{mcpu=602: -mppc} \
93%{mcpu=603: -mppc} \
94%{mcpu=603e: -mppc} \
95%{mcpu=ec603e: -mppc} \
96%{mcpu=604: -mppc} \
97%{mcpu=604e: -mppc} \
93ae5495
AM
98%{mcpu=620: -mppc64} \
99%{mcpu=630: -mppc64} \
f984d8df
DB
100%{mcpu=740: -mppc} \
101%{mcpu=750: -mppc} \
49ffe578 102%{mcpu=G3: -mppc} \
93ae5495
AM
103%{mcpu=7400: -mppc -maltivec} \
104%{mcpu=7450: -mppc -maltivec} \
105%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
106%{mcpu=801: -mppc} \
107%{mcpu=821: -mppc} \
108%{mcpu=823: -mppc} \
775db490 109%{mcpu=860: -mppc} \
93ae5495
AM
110%{mcpu=970: -mpower4 -maltivec} \
111%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 112%{mcpu=8540: -me500} \
93ae5495
AM
113%{maltivec: -maltivec} \
114-many"
f984d8df
DB
115
116#define CPP_DEFAULT_SPEC ""
117
118#define ASM_DEFAULT_SPEC ""
119
841faeed
MM
120/* This macro defines names of additional specifications to put in the specs
121 that can be used in various specifications like CC1_SPEC. Its definition
122 is an initializer with a subgrouping for each command option.
123
124 Each subgrouping contains a string constant, that defines the
5de601cf 125 specification name, and a string constant that used by the GCC driver
841faeed
MM
126 program.
127
128 Do not define this macro if it does not need to do anything. */
129
7509c759 130#define SUBTARGET_EXTRA_SPECS
7509c759 131
c81bebd7 132#define EXTRA_SPECS \
c81bebd7 133 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
134 { "asm_cpu", ASM_CPU_SPEC }, \
135 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
136 SUBTARGET_EXTRA_SPECS
137
fb623df5 138/* Architecture type. */
f045b2c9 139
bb22512c 140/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 141 optional field operand for mfcr. */
fb623df5 142
78f5898b 143#ifndef HAVE_AS_MFCRF
432218ba 144#undef TARGET_MFCRF
ffa22984
DE
145#define TARGET_MFCRF 0
146#endif
147
0fa2e4df 148/* Define TARGET_POPCNTB if the target assembler does not support the
432218ba
DE
149 popcount byte instruction. */
150
151#ifndef HAVE_AS_POPCNTB
152#undef TARGET_POPCNTB
153#define TARGET_POPCNTB 0
154#endif
155
9719f3b7
DE
156/* Define TARGET_FPRND if the target assembler does not support the
157 fp rounding instructions. */
158
159#ifndef HAVE_AS_FPRND
160#undef TARGET_FPRND
161#define TARGET_FPRND 0
162#endif
163
7f970b70
AM
164#ifndef TARGET_SECURE_PLT
165#define TARGET_SECURE_PLT 0
166#endif
167
2f3e5814 168#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 169
c4501e62
JJ
170#ifndef HAVE_AS_TLS
171#define HAVE_AS_TLS 0
172#endif
173
48d72335
DE
174/* Return 1 for a symbol ref for a thread-local storage symbol. */
175#define RS6000_SYMBOL_REF_TLS_P(RTX) \
176 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
177
996ed075
JJ
178#ifdef IN_LIBGCC2
179/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 180#if defined (__64BIT__) || defined (__powerpc64__)
78f5898b 181#undef TARGET_POWERPC64
996ed075
JJ
182#define TARGET_POWERPC64 1
183#else
78f5898b 184#undef TARGET_POWERPC64
996ed075
JJ
185#define TARGET_POWERPC64 0
186#endif
b6c9286a 187#else
78f5898b 188 /* The option machinery will define this. */
b6c9286a
MM
189#endif
190
938937d8 191#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d 192
cac8ce95 193/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 194enum processor_type
bef84347
VM
195 {
196 PROCESSOR_RIOS1,
197 PROCESSOR_RIOS2,
3cb999d8 198 PROCESSOR_RS64A,
bef84347
VM
199 PROCESSOR_MPCCORE,
200 PROCESSOR_PPC403,
fe7f5677 201 PROCESSOR_PPC405,
b54cf83a 202 PROCESSOR_PPC440,
bef84347
VM
203 PROCESSOR_PPC601,
204 PROCESSOR_PPC603,
205 PROCESSOR_PPC604,
206 PROCESSOR_PPC604e,
207 PROCESSOR_PPC620,
3cb999d8 208 PROCESSOR_PPC630,
ed947a96
DJ
209 PROCESSOR_PPC750,
210 PROCESSOR_PPC7400,
309323c2 211 PROCESSOR_PPC7450,
a3170dc6 212 PROCESSOR_PPC8540,
ec507f2d
DE
213 PROCESSOR_POWER4,
214 PROCESSOR_POWER5
bef84347 215};
fb623df5
RK
216
217extern enum processor_type rs6000_cpu;
218
219/* Recast the processor type to the cpu attribute. */
220#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
221
8482e358 222/* Define generic processor types based upon current deployment. */
3cb999d8
DE
223#define PROCESSOR_COMMON PROCESSOR_PPC601
224#define PROCESSOR_POWER PROCESSOR_RIOS1
225#define PROCESSOR_POWERPC PROCESSOR_PPC604
226#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 227
fb623df5 228/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
229#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
230#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 231
6febd581
RK
232/* Specify the dialect of assembler to use. New mnemonics is dialect one
233 and the old mnemonics are dialect zero. */
9ebbca7d 234#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 235
569fa502
DN
236/* Types of costly dependences. */
237enum rs6000_dependence_cost
238 {
239 max_dep_latency = 1000,
240 no_dep_costly,
241 all_deps_costly,
242 true_store_to_load_dep_costly,
243 store_to_load_dep_costly
244 };
245
cbe26ab8
DN
246/* Types of nop insertion schemes in sched target hook sched_finish. */
247enum rs6000_nop_insertion
248 {
249 sched_finish_regroup_exact = 1000,
250 sched_finish_pad_groups,
251 sched_finish_none
252 };
253
254/* Dispatch group termination caused by an insn. */
255enum group_termination
256 {
257 current_group,
258 previous_group
259 };
260
7816bea0
DJ
261/* Support for a compile-time default CPU, et cetera. The rules are:
262 --with-cpu is ignored if -mcpu is specified.
263 --with-tune is ignored if -mtune is specified.
264 --with-float is ignored if -mhard-float or -msoft-float are
265 specified. */
266#define OPTION_DEFAULT_SPECS \
267 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
268 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
269 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
270
ff222560 271/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
272struct rs6000_cpu_select
273{
815cdc52
MM
274 const char *string;
275 const char *name;
8e3f41e7
MM
276 int set_tune_p;
277 int set_arch_p;
278};
279
280extern struct rs6000_cpu_select rs6000_select[];
fb623df5 281
38c1f2d7 282/* Debug support */
0ac081f6 283extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
38c1f2d7
MM
284extern int rs6000_debug_stack; /* debug stack applications */
285extern int rs6000_debug_arg; /* debug argument handling */
286
287#define TARGET_DEBUG_STACK rs6000_debug_stack
288#define TARGET_DEBUG_ARG rs6000_debug_arg
289
57ac7be9
AM
290extern const char *rs6000_traceback_name; /* Type of traceback table. */
291
6fa3f289
ZW
292/* These are separate from target_flags because we've run out of bits
293 there. */
6fa3f289 294extern int rs6000_long_double_type_size;
602ea4d3 295extern int rs6000_ieeequad;
6fa3f289 296extern int rs6000_altivec_abi;
a3170dc6 297extern int rs6000_spe_abi;
5da702b1 298extern int rs6000_float_gprs;
025d9908 299extern int rs6000_alignment_flags;
cbe26ab8
DN
300extern const char *rs6000_sched_insert_nops_str;
301extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
025d9908
KH
302
303/* Alignment options for fields in structures for sub-targets following
304 AIX-like ABI.
305 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
306 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
307
308 Override the macro definitions when compiling libobjc to avoid undefined
309 reference to rs6000_alignment_flags due to library's use of GCC alignment
310 macros which use the macros below. */
f676971a 311
025d9908
KH
312#ifndef IN_TARGET_LIBS
313#define MASK_ALIGN_POWER 0x00000000
314#define MASK_ALIGN_NATURAL 0x00000001
315#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
316#else
317#define TARGET_ALIGN_NATURAL 0
318#endif
6fa3f289
ZW
319
320#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
602ea4d3 321#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289
ZW
322#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
323
a3170dc6
AH
324#define TARGET_SPE_ABI 0
325#define TARGET_SPE 0
993f19a8 326#define TARGET_E500 0
a3170dc6
AH
327#define TARGET_ISEL 0
328#define TARGET_FPRS 1
4d4cbc0e
AH
329#define TARGET_E500_SINGLE 0
330#define TARGET_E500_DOUBLE 0
a3170dc6 331
fb623df5
RK
332/* Sometimes certain combinations of command options do not make sense
333 on a particular target machine. You can define a macro
334 `OVERRIDE_OPTIONS' to take account of this. This macro, if
335 defined, is executed once just after all the command options have
336 been parsed.
337
ffa22984 338 Do not use this macro to turn on various extra optimizations for
5accd822
DE
339 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
340
fb623df5
RK
341 On the RS/6000 this is used to define the target cpu type. */
342
8e3f41e7 343#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 344
5accd822
DE
345/* Define this to change the optimizations performed by default. */
346#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
347
4c4eb375
GK
348/* Show we can debug even without a frame pointer. */
349#define CAN_DEBUG_WITHOUT_FP
350
a5c76ee6 351/* Target pragma. */
c58b209a
NB
352#define REGISTER_TARGET_PRAGMAS() do { \
353 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
2fab365e 354 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
a5c76ee6
ZW
355} while (0)
356
4c4eb375
GK
357/* Target #defines. */
358#define TARGET_CPU_CPP_BUILTINS() \
359 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
360
361/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
362 we're compiling for. Some configurations may need to override it. */
363#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
364 do \
365 { \
366 if (BYTES_BIG_ENDIAN) \
367 { \
368 builtin_define ("__BIG_ENDIAN__"); \
369 builtin_define ("_BIG_ENDIAN"); \
370 builtin_assert ("machine=bigendian"); \
371 } \
372 else \
373 { \
374 builtin_define ("__LITTLE_ENDIAN__"); \
375 builtin_define ("_LITTLE_ENDIAN"); \
376 builtin_assert ("machine=littleendian"); \
377 } \
378 } \
379 while (0)
f045b2c9 380\f
4c4eb375 381/* Target machine storage layout. */
f045b2c9 382
13d39dbc 383/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 384 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
385 the value is constrained to be within the bounds of the declared
386 type, but kept valid in the wider mode. The signedness of the
387 extension may differ from that of the type. */
388
39403d82
DE
389#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
390 if (GET_MODE_CLASS (MODE) == MODE_INT \
391 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
b78d48dd 392 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 393
f045b2c9 394/* Define this if most significant bit is lowest numbered
82e41834
KH
395 in instructions that operate on numbered bit-fields. */
396/* That is true on RS/6000. */
f045b2c9
RS
397#define BITS_BIG_ENDIAN 1
398
399/* Define this if most significant byte of a word is the lowest numbered. */
400/* That is true on RS/6000. */
401#define BYTES_BIG_ENDIAN 1
402
403/* Define this if most significant word of a multiword number is lowest
c81bebd7 404 numbered.
f045b2c9
RS
405
406 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 407 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
408#define WORDS_BIG_ENDIAN 1
409
2e360ab3 410#define MAX_BITS_PER_WORD 64
f045b2c9
RS
411
412/* Width of a word, in units (bytes). */
c1aa3958 413#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
414#ifdef IN_LIBGCC2
415#define MIN_UNITS_PER_WORD UNITS_PER_WORD
416#else
ef0e53ce 417#define MIN_UNITS_PER_WORD 4
f34fc46e 418#endif
2e360ab3 419#define UNITS_PER_FP_WORD 8
0ac081f6 420#define UNITS_PER_ALTIVEC_WORD 16
a3170dc6 421#define UNITS_PER_SPE_WORD 8
f045b2c9 422
915f619f
JW
423/* Type used for ptrdiff_t, as a string used in a declaration. */
424#define PTRDIFF_TYPE "int"
425
058ef853
DE
426/* Type used for size_t, as a string used in a declaration. */
427#define SIZE_TYPE "long unsigned int"
428
f045b2c9
RS
429/* Type used for wchar_t, as a string used in a declaration. */
430#define WCHAR_TYPE "short unsigned int"
431
432/* Width of wchar_t in bits. */
433#define WCHAR_TYPE_SIZE 16
434
9e654916
RK
435/* A C expression for the size in bits of the type `short' on the
436 target machine. If you don't define this, the default is half a
437 word. (If this would be less than one storage unit, it is
438 rounded up to one unit.) */
439#define SHORT_TYPE_SIZE 16
440
441/* A C expression for the size in bits of the type `int' on the
442 target machine. If you don't define this, the default is one
443 word. */
19d2d16f 444#define INT_TYPE_SIZE 32
9e654916
RK
445
446/* A C expression for the size in bits of the type `long' on the
447 target machine. If you don't define this, the default is one
448 word. */
2f3e5814 449#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
450
451/* A C expression for the size in bits of the type `long long' on the
452 target machine. If you don't define this, the default is two
453 words. */
454#define LONG_LONG_TYPE_SIZE 64
455
9e654916
RK
456/* A C expression for the size in bits of the type `float' on the
457 target machine. If you don't define this, the default is one
458 word. */
459#define FLOAT_TYPE_SIZE 32
460
461/* A C expression for the size in bits of the type `double' on the
462 target machine. If you don't define this, the default is two
463 words. */
464#define DOUBLE_TYPE_SIZE 64
465
466/* A C expression for the size in bits of the type `long double' on
467 the target machine. If you don't define this, the default is two
468 words. */
6fa3f289 469#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 470
06f4e019
DE
471/* Define this to set long double type size to use in libgcc2.c, which can
472 not depend on target_flags. */
473#ifdef __LONG_DOUBLE_128__
474#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
475#else
476#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
477#endif
9e654916 478
5b8f5865
DE
479/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
480#define WIDEST_HARDWARE_FP_SIZE 64
481
f045b2c9
RS
482/* Width in bits of a pointer.
483 See also the macro `Pmode' defined below. */
2f3e5814 484#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
485
486/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 487#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
488
489/* Boundary (in *bits*) on which stack pointer should be aligned. */
19fb36e3
AM
490#define STACK_BOUNDARY \
491 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
492
493/* Allocation boundary (in *bits*) for the code of a function. */
494#define FUNCTION_BOUNDARY 32
495
496/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
497#define BIGGEST_ALIGNMENT 128
498
499/* A C expression to compute the alignment for a variables in the
500 local store. TYPE is the data type, and ALIGN is the alignment
501 that the object would ordinarily have. */
502#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a3170dc6 503 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
f82f556d 504 (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 : \
a3170dc6 505 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
b73fd26c 506
f045b2c9
RS
507/* Alignment of field after `int : 0' in a structure. */
508#define EMPTY_FIELD_BOUNDARY 32
509
510/* Every structure's size must be a multiple of this. */
511#define STRUCTURE_SIZE_BOUNDARY 8
512
a3170dc6
AH
513/* Return 1 if a structure or array containing FIELD should be
514 accessed using `BLKMODE'.
515
516 For the SPE, simd types are V2SI, and gcc can be tempted to put the
517 entire thing in a DI and use subregs to access the internals.
518 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
519 back-end. Because a single GPR can hold a V2SI, but not a DI, the
520 best thing to do is set structs to BLKmode and avoid Severe Tire
de334ef6
AH
521 Damage.
522
523 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
524 fit into 1, whereas DI still needs two. */
a3170dc6 525#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
de334ef6
AH
526 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
527 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
a3170dc6 528
43a88a8c 529/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
530#define PCC_BITFIELD_TYPE_MATTERS 1
531
69ef87e2
AH
532/* Make strings word-aligned so strcpy from constants will be faster.
533 Make vector constants quadword aligned. */
534#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
535 (TREE_CODE (EXP) == STRING_CST \
536 && (ALIGN) < BITS_PER_WORD \
537 ? BITS_PER_WORD \
538 : (ALIGN))
f045b2c9 539
0ac081f6 540/* Make arrays of chars word-aligned for the same reasons.
f82f556d
AH
541 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
542 64 bits. */
f045b2c9 543#define DATA_ALIGNMENT(TYPE, ALIGN) \
a3170dc6 544 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
f82f556d 545 : (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 \
0ac081f6 546 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
547 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
548 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
549
a0ab749a 550/* Nonzero if move instructions will actually fail to work
f045b2c9 551 when given unaligned data. */
fdaff8ba 552#define STRICT_ALIGNMENT 0
e1565e65
DE
553
554/* Define this macro to be the value 1 if unaligned accesses have a cost
555 many times greater than aligned accesses, for example if they are
556 emulated in a trap handler. */
41543739
GK
557#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
558 (STRICT_ALIGNMENT \
fcce224d
DE
559 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
560 || (MODE) == DImode) \
41543739 561 && (ALIGN) < 32))
f045b2c9
RS
562\f
563/* Standard register usage. */
564
565/* Number of actual hardware registers.
566 The hardware registers are assigned numbers for the compiler
567 from 0 to just below FIRST_PSEUDO_REGISTER.
568 All registers that the compiler knows about must be given numbers,
569 even those that are not normally considered general registers.
570
571 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
572 an MQ register, a count register, a link register, and 8 condition
07488f32
ZW
573 register fields, which we view here as separate registers. AltiVec
574 adds 32 vector registers and a VRsave register.
f045b2c9
RS
575
576 In addition, the difference between the frame and argument pointers is
577 a function of the number of registers saved, so we need to have a
578 register for AP that will later be eliminated in favor of SP or FP.
802a0058 579 This is a normal register, but it is fixed.
f045b2c9 580
802a0058
MM
581 We also create a pseudo register for float/int conversions, that will
582 really represent the memory location used. It is represented here as
583 a register, in order to work around problems in allocating stack storage
7d5175e1 584 in inline functions.
802a0058 585
7d5175e1
JJ
586 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
587 pointer, which is eventually eliminated in favor of SP or FP. */
588
589#define FIRST_PSEUDO_REGISTER 114
f045b2c9 590
d6a7951f 591/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 592#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 593
93c9d1ba 594/* Add 32 dwarf columns for synthetic SPE registers. */
7d5175e1 595#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
c19de7aa 596
93c9d1ba
AM
597/* The SPE has an additional 32 synthetic registers, with DWARF debug
598 info numbering for these registers starting at 1200. While eh_frame
599 register numbering need not be the same as the debug info numbering,
600 we choose to number these regs for eh_frame at 1200 too. This allows
601 future versions of the rs6000 backend to add hard registers and
602 continue to use the gcc hard register numbering for eh_frame. If the
603 extra SPE registers in eh_frame were numbered starting from the
604 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
605 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
606 avoid invalidating older SPE eh_frame info.
607
608 We must map them here to avoid huge unwinder tables mostly consisting
f676971a 609 of unused space. */
93c9d1ba 610#define DWARF_REG_TO_UNWIND_COLUMN(r) \
7d5175e1 611 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
93c9d1ba
AM
612
613/* Use gcc hard register numbering for eh_frame. */
614#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 615
f045b2c9
RS
616/* 1 for registers that have pervasive standard uses
617 and are not available for the register allocator.
618
5dead3e5
DJ
619 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
620 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 621
a127c4e5
RK
622 cr5 is not supposed to be used.
623
624 On System V implementations, r13 is fixed and not available for use. */
625
f045b2c9 626#define FIXED_REGISTERS \
5dead3e5 627 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
628 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
629 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
630 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
631 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
632 /* AltiVec registers. */ \
633 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
634 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 635 1, 1 \
7d5175e1 636 , 1, 1, 1 \
0ac081f6 637}
f045b2c9
RS
638
639/* 1 for registers not available across function calls.
640 These must include the FIXED_REGISTERS and also any
641 registers that can be used without being saved.
642 The latter must include the registers where values are returned
643 and the register where structure-value addresses are passed.
644 Aside from that, you can include as many other registers as you like. */
645
646#define CALL_USED_REGISTERS \
a127c4e5 647 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
648 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
649 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
650 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
651 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
652 /* AltiVec registers. */ \
653 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
654 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 655 1, 1 \
7d5175e1 656 , 1, 1, 1 \
0ac081f6
AH
657}
658
289e96b2
AH
659/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
660 the entire set of `FIXED_REGISTERS' be included.
661 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
662 This macro is optional. If not specified, it defaults to the value
663 of `CALL_USED_REGISTERS'. */
f676971a 664
289e96b2
AH
665#define CALL_REALLY_USED_REGISTERS \
666 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
667 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
668 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
669 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
670 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
671 /* AltiVec registers. */ \
672 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
673 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 674 0, 0 \
7d5175e1 675 , 0, 0, 0 \
289e96b2 676}
f045b2c9 677
9ebbca7d
GK
678#define MQ_REGNO 64
679#define CR0_REGNO 68
680#define CR1_REGNO 69
681#define CR2_REGNO 70
682#define CR3_REGNO 71
683#define CR4_REGNO 72
684#define MAX_CR_REGNO 75
685#define XER_REGNO 76
0ac081f6
AH
686#define FIRST_ALTIVEC_REGNO 77
687#define LAST_ALTIVEC_REGNO 108
28bcfd4d 688#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 689#define VRSAVE_REGNO 109
5f004351 690#define VSCR_REGNO 110
a3170dc6
AH
691#define SPE_ACC_REGNO 111
692#define SPEFSCR_REGNO 112
9ebbca7d 693
d62294f5
FJ
694#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
695#define FIRST_SAVED_FP_REGNO (14+32)
696#define FIRST_SAVED_GP_REGNO 13
697
f045b2c9
RS
698/* List the order in which to allocate registers. Each register must be
699 listed once, even those in FIXED_REGISTERS.
700
701 We allocate in the following order:
702 fp0 (not saved or used for anything)
703 fp13 - fp2 (not saved; incoming fp arg registers)
704 fp1 (not saved; return value)
9390387d 705 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
706 cr7, cr6 (not saved or special)
707 cr1 (not saved, but used for FP operations)
f045b2c9 708 cr0 (not saved, but used for arithmetic operations)
5accd822 709 cr4, cr3, cr2 (saved)
9390387d 710 r0 (not saved; cannot be base reg)
f045b2c9
RS
711 r9 (not saved; best for TImode)
712 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
9390387d 713 r3 (not saved; return value register)
f045b2c9
RS
714 r31 - r13 (saved; order given to save least number)
715 r12 (not saved; if used for DImode or DFmode would use r13)
716 mq (not saved; best to use it if we can)
717 ctr (not saved; when we have the choice ctr is better)
718 lr (saved)
9390387d
AM
719 cr5, r1, r2, ap, xer (fixed)
720 v0 - v1 (not saved or used for anything)
721 v13 - v3 (not saved; incoming vector arg registers)
722 v2 (not saved; incoming vector arg reg; return value)
723 v19 - v14 (not saved or used for anything)
724 v31 - v20 (saved; order given to save least number)
725 vrsave, vscr (fixed)
a3170dc6 726 spe_acc, spefscr (fixed)
7d5175e1 727 sfp (fixed)
0ac081f6 728*/
f676971a 729
6b13641d
DJ
730#if FIXED_R2 == 1
731#define MAYBE_R2_AVAILABLE
732#define MAYBE_R2_FIXED 2,
733#else
734#define MAYBE_R2_AVAILABLE 2,
735#define MAYBE_R2_FIXED
736#endif
f045b2c9 737
9390387d
AM
738#define REG_ALLOC_ORDER \
739 {32, \
740 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
741 33, \
742 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
743 50, 49, 48, 47, 46, \
744 75, 74, 69, 68, 72, 71, 70, \
745 0, MAYBE_R2_AVAILABLE \
746 9, 11, 10, 8, 7, 6, 5, 4, \
747 3, \
748 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
749 18, 17, 16, 15, 14, 13, 12, \
750 64, 66, 65, \
751 73, 1, MAYBE_R2_FIXED 67, 76, \
752 /* AltiVec registers. */ \
753 77, 78, \
754 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
755 79, \
756 96, 95, 94, 93, 92, 91, \
757 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
758 109, 110, \
7d5175e1 759 111, 112, 113 \
0ac081f6 760}
f045b2c9
RS
761
762/* True if register is floating-point. */
763#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
764
765/* True if register is a condition register. */
766#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
767
815cdc52
MM
768/* True if register is a condition register, but not cr0. */
769#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
770
f045b2c9 771/* True if register is an integer register. */
7d5175e1
JJ
772#define INT_REGNO_P(N) \
773 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 774
a3170dc6
AH
775/* SPE SIMD registers are just the GPRs. */
776#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
777
0d86f538 778/* True if register is the XER register. */
9ebbca7d 779#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 780
0ac081f6
AH
781/* True if register is an AltiVec register. */
782#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
783
f045b2c9 784/* Return number of consecutive hard regs needed starting at reg REGNO
d8ecbcdb
AH
785 to hold something of mode MODE. */
786
787#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
0e67400a
FJ
788
789#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
790 ((TARGET_32BIT && TARGET_POWERPC64 \
2e6c9641 791 && (GET_MODE_SIZE (MODE) > 4) \
0e67400a 792 && INT_REGNO_P (REGNO)) ? 1 : 0)
f045b2c9 793
0ac081f6 794#define ALTIVEC_VECTOR_MODE(MODE) \
cb2a532e
AH
795 ((MODE) == V16QImode \
796 || (MODE) == V8HImode \
797 || (MODE) == V4SFmode \
6e1f54e2 798 || (MODE) == V4SImode)
0ac081f6 799
a3170dc6
AH
800#define SPE_VECTOR_MODE(MODE) \
801 ((MODE) == V4HImode \
802 || (MODE) == V2SFmode \
00a892b8 803 || (MODE) == V1DImode \
a3170dc6
AH
804 || (MODE) == V2SImode)
805
c4336539
PB
806#define UNITS_PER_SIMD_WORD \
807 (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
808 : (TARGET_SPE ? UNITS_PER_SPE_WORD : UNITS_PER_WORD))
0bf43309 809
0d1fbc8c
AH
810/* Value is TRUE if hard register REGNO can hold a value of
811 machine-mode MODE. */
812#define HARD_REGNO_MODE_OK(REGNO, MODE) \
813 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
f045b2c9
RS
814
815/* Value is 1 if it is a good idea to tie two pseudo registers
816 when one has mode MODE1 and one has mode MODE2.
817 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
818 for any hard reg, then this must be 0 for correct output. */
819#define MODES_TIEABLE_P(MODE1, MODE2) \
ebb109ad
BE
820 (SCALAR_FLOAT_MODE_P (MODE1) \
821 ? SCALAR_FLOAT_MODE_P (MODE2) \
822 : SCALAR_FLOAT_MODE_P (MODE2) \
823 ? SCALAR_FLOAT_MODE_P (MODE1) \
f045b2c9
RS
824 : GET_MODE_CLASS (MODE1) == MODE_CC \
825 ? GET_MODE_CLASS (MODE2) == MODE_CC \
826 : GET_MODE_CLASS (MODE2) == MODE_CC \
827 ? GET_MODE_CLASS (MODE1) == MODE_CC \
4dcc01f3
AH
828 : SPE_VECTOR_MODE (MODE1) \
829 ? SPE_VECTOR_MODE (MODE2) \
830 : SPE_VECTOR_MODE (MODE2) \
831 ? SPE_VECTOR_MODE (MODE1) \
0ac081f6
AH
832 : ALTIVEC_VECTOR_MODE (MODE1) \
833 ? ALTIVEC_VECTOR_MODE (MODE2) \
834 : ALTIVEC_VECTOR_MODE (MODE2) \
835 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
836 : 1)
837
c8ae788f
SB
838/* Post-reload, we can't use any new AltiVec registers, as we already
839 emitted the vrsave mask. */
840
841#define HARD_REGNO_RENAME_OK(SRC, DST) \
842 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
843
f045b2c9 844/* A C expression returning the cost of moving data from a register of class
34bb030a 845 CLASS1 to one of CLASS2. */
f045b2c9 846
34bb030a 847#define REGISTER_MOVE_COST rs6000_register_move_cost
f045b2c9 848
34bb030a
DE
849/* A C expressions returning the cost of moving data of MODE from a register to
850 or from memory. */
f045b2c9 851
34bb030a 852#define MEMORY_MOVE_COST rs6000_memory_move_cost
f045b2c9
RS
853
854/* Specify the cost of a branch insn; roughly the number of extra insns that
855 should be added to avoid a branch.
856
ef457bda 857 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
858 unscheduled conditional branch. */
859
ef457bda 860#define BRANCH_COST 3
f045b2c9 861
85e50b6b 862/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 863 performance for removing short circuiting from the logical ops. */
85e50b6b 864
b8610a53 865#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6
AH
866
867/* A fixed register used at prologue and epilogue generation to fix
868 addressing modes. The SPE needs heavy addressing fixes at the last
869 minute, and it's best to save a register for it.
870
871 AltiVec also needs fixes, but we've gotten around using r11, which
872 is actually wrong because when use_backchain_to_restore_sp is true,
873 we end up clobbering r11.
874
875 The AltiVec case needs to be fixed. Dunno if we should break ABI
b6d08ca1 876 compatibility and reserve a register for it as well.. */
a3170dc6
AH
877
878#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
879
2aa4498c
AH
880/* Define this macro to change register usage conditional on target
881 flags. */
f85f4585 882
2aa4498c 883#define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
6febd581 884
f045b2c9
RS
885/* Specify the registers used for certain standard purposes.
886 The values of these macros are register numbers. */
887
888/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
889/* #define PC_REGNUM */
890
891/* Register to use for pushing function arguments. */
892#define STACK_POINTER_REGNUM 1
893
894/* Base register for access to local variables of the function. */
7d5175e1
JJ
895#define HARD_FRAME_POINTER_REGNUM 31
896
897/* Base register for access to local variables of the function. */
898#define FRAME_POINTER_REGNUM 113
f045b2c9
RS
899
900/* Value should be nonzero if functions must have frame pointers.
901 Zero means the frame pointer need not be set up (and parms
902 may be accessed via the stack pointer) in functions that seem suitable.
903 This is computed in `reload', in reload1.c. */
904#define FRAME_POINTER_REQUIRED 0
905
906/* Base register for access to arguments of the function. */
907#define ARG_POINTER_REGNUM 67
908
909/* Place to put static chain when calling a function that requires it. */
910#define STATIC_CHAIN_REGNUM 11
911
82e41834 912/* Link register number. */
9ebbca7d 913#define LINK_REGISTER_REGNUM 65
b6c9286a 914
82e41834 915/* Count register number. */
9ebbca7d 916#define COUNT_REGISTER_REGNUM 66
f045b2c9
RS
917\f
918/* Define the classes of registers for register constraints in the
919 machine description. Also define ranges of constants.
920
921 One of the classes must always be named ALL_REGS and include all hard regs.
922 If there is more than one class, another class must be named NO_REGS
923 and contain no registers.
924
925 The name GENERAL_REGS must be the name of a class (or an alias for
926 another name such as ALL_REGS). This is the class of registers
927 that is allowed by "g" or "r" in a register constraint.
928 Also, registers outside this class are allocated only when
929 instructions express preferences for them.
930
931 The classes must be numbered in nondecreasing order; that is,
932 a larger-numbered class must never be contained completely
933 in a smaller-numbered class.
934
935 For any two classes, it is very desirable that there be another
936 class that represents their union. */
c81bebd7 937
f045b2c9
RS
938/* The RS/6000 has three types of registers, fixed-point, floating-point,
939 and condition registers, plus three special registers, MQ, CTR, and the
07488f32 940 link register. AltiVec adds a vector register class.
f045b2c9
RS
941
942 However, r0 is special in that it cannot be used as a base register.
943 So make a class for registers valid as base registers.
944
945 Also, cr0 is the only condition code register that can be used in
0d86f538 946 arithmetic insns, so make a separate class for it. */
f045b2c9 947
ebedb4dd
MM
948enum reg_class
949{
950 NO_REGS,
ebedb4dd
MM
951 BASE_REGS,
952 GENERAL_REGS,
953 FLOAT_REGS,
0ac081f6
AH
954 ALTIVEC_REGS,
955 VRSAVE_REGS,
5f004351 956 VSCR_REGS,
a3170dc6
AH
957 SPE_ACC_REGS,
958 SPEFSCR_REGS,
ebedb4dd
MM
959 NON_SPECIAL_REGS,
960 MQ_REGS,
961 LINK_REGS,
962 CTR_REGS,
963 LINK_OR_CTR_REGS,
964 SPECIAL_REGS,
965 SPEC_OR_GEN_REGS,
966 CR0_REGS,
ebedb4dd
MM
967 CR_REGS,
968 NON_FLOAT_REGS,
9ebbca7d 969 XER_REGS,
ebedb4dd
MM
970 ALL_REGS,
971 LIM_REG_CLASSES
972};
f045b2c9
RS
973
974#define N_REG_CLASSES (int) LIM_REG_CLASSES
975
82e41834 976/* Give names of register classes as strings for dump file. */
f045b2c9 977
ebedb4dd
MM
978#define REG_CLASS_NAMES \
979{ \
980 "NO_REGS", \
ebedb4dd
MM
981 "BASE_REGS", \
982 "GENERAL_REGS", \
983 "FLOAT_REGS", \
0ac081f6
AH
984 "ALTIVEC_REGS", \
985 "VRSAVE_REGS", \
5f004351 986 "VSCR_REGS", \
a3170dc6
AH
987 "SPE_ACC_REGS", \
988 "SPEFSCR_REGS", \
ebedb4dd
MM
989 "NON_SPECIAL_REGS", \
990 "MQ_REGS", \
991 "LINK_REGS", \
992 "CTR_REGS", \
993 "LINK_OR_CTR_REGS", \
994 "SPECIAL_REGS", \
995 "SPEC_OR_GEN_REGS", \
996 "CR0_REGS", \
ebedb4dd
MM
997 "CR_REGS", \
998 "NON_FLOAT_REGS", \
9ebbca7d 999 "XER_REGS", \
ebedb4dd
MM
1000 "ALL_REGS" \
1001}
f045b2c9
RS
1002
1003/* Define which registers fit in which classes.
1004 This is an initializer for a vector of HARD_REG_SET
1005 of length N_REG_CLASSES. */
1006
0ac081f6
AH
1007#define REG_CLASS_CONTENTS \
1008{ \
1009 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
7d5175e1
JJ
1010 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1011 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
0ac081f6 1012 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1013 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1014 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1015 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
a3170dc6
AH
1016 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1017 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
7d5175e1 1018 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
0ac081f6
AH
1019 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1020 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1021 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1022 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1023 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
7d5175e1 1024 { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
0ac081f6
AH
1025 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1026 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1027 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1028 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
7d5175e1 1029 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
ebedb4dd 1030}
f045b2c9
RS
1031
1032/* The same information, inverted:
1033 Return the class number of the smallest class containing
1034 reg number REGNO. This could be a conditional expression
1035 or could index an array. */
1036
0d86f538
GK
1037#define REGNO_REG_CLASS(REGNO) \
1038 ((REGNO) == 0 ? GENERAL_REGS \
1039 : (REGNO) < 32 ? BASE_REGS \
1040 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1041 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1042 : (REGNO) == CR0_REGNO ? CR0_REGS \
1043 : CR_REGNO_P (REGNO) ? CR_REGS \
1044 : (REGNO) == MQ_REGNO ? MQ_REGS \
1045 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1046 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1047 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1048 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1049 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
7d5175e1 1050 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
a3170dc6
AH
1051 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1052 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
7d5175e1 1053 : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS \
f045b2c9
RS
1054 : NO_REGS)
1055
1056/* The class value for index registers, and the one for base regs. */
1057#define INDEX_REG_CLASS GENERAL_REGS
1058#define BASE_REG_CLASS BASE_REGS
1059
1060/* Get reg_class from a letter such as appears in the machine description. */
1061
1062#define REG_CLASS_FROM_LETTER(C) \
a6645c18 1063 ((C) == 'f' ? ((TARGET_HARD_FLOAT && TARGET_FPRS) ? FLOAT_REGS : NO_REGS) \
f045b2c9
RS
1064 : (C) == 'b' ? BASE_REGS \
1065 : (C) == 'h' ? SPECIAL_REGS \
1066 : (C) == 'q' ? MQ_REGS \
1067 : (C) == 'c' ? CTR_REGS \
1068 : (C) == 'l' ? LINK_REGS \
0ac081f6 1069 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1070 : (C) == 'x' ? CR0_REGS \
1071 : (C) == 'y' ? CR_REGS \
9ebbca7d 1072 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1073 : NO_REGS)
1074
1075/* The letters I, J, K, L, M, N, and P in a register constraint string
1076 can be used to stand for particular ranges of immediate operands.
1077 This macro defines what the ranges are.
1078 C is the letter, and VALUE is a constant value.
1079 Return 1 if VALUE is in the range specified by C.
1080
9615f239 1081 `I' is a signed 16-bit constant
a0ab749a
KH
1082 `J' is a constant with only the high-order 16 bits nonzero
1083 `K' is a constant with only the low-order 16 bits nonzero
9615f239 1084 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1085 `M' is a constant that is greater than 31
2bfcf297 1086 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1087 `O' is the constant zero
1088 `P' is a constant whose negation is a signed 16-bit constant */
1089
5b6f7b96
RK
1090#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1091 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1092 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1093 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1094 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1095 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1096 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1097 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1098 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1099 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1100 : 0)
1101
1102/* Similar, but for floating constants, and defining letters G and H.
1103 Here VALUE is the CONST_DOUBLE rtx itself.
1104
1105 We flag for special constants when we can copy the constant into
4e74d8ec 1106 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1107
c4c40373 1108 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1109
1110#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1111 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1112 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1113 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1114 : 0)
f045b2c9
RS
1115
1116/* Optional extra constraints for this machine.
1117
b6c9286a
MM
1118 'Q' means that is a memory operand that is just an offset from a reg.
1119 'R' is for AIX TOC entries.
1990cd79
AM
1120 'S' is a constant that can be placed into a 64-bit mask operand.
1121 'T' is a constant that can be placed into a 32-bit mask operand.
0ba1b2ff 1122 'U' is for V.4 small data references.
d744e06e 1123 'W' is a vector constant that can be easily generated (no mem refs).
569b7f6a 1124 'Y' is an indexed or word-aligned displacement memory operand.
da4c340c 1125 'Z' is an indexed or indirect memory operand.
3256a76e 1126 'a' is an indexed or indirect address operand.
1990cd79
AM
1127 't' is for AND masks that can be performed by two rldic{l,r} insns
1128 (but excluding those that could match other constraints of anddi3.) */
f045b2c9 1129
e8a8bc24
RK
1130#define EXTRA_CONSTRAINT(OP, C) \
1131 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
4d588c14 1132 : (C) == 'R' ? legitimate_constant_pool_address_p (OP) \
1990cd79
AM
1133 : (C) == 'S' ? mask64_operand (OP, DImode) \
1134 : (C) == 'T' ? mask_operand (OP, GET_MODE (OP)) \
f607bc57 1135 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1136 && small_data_operand (OP, GET_MODE (OP))) \
0ba1b2ff
AM
1137 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1138 && (fixed_regs[CR0_REGNO] \
1139 || !logical_operand (OP, DImode)) \
1990cd79
AM
1140 && !mask_operand (OP, DImode) \
1141 && !mask64_operand (OP, DImode)) \
d744e06e 1142 : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP))) \
d2288d5d 1143 : (C) == 'Y' ? (word_offset_memref_operand (OP, GET_MODE (OP))) \
da4c340c 1144 : (C) == 'Z' ? (indexed_or_indirect_operand (OP, GET_MODE (OP))) \
3256a76e 1145 : (C) == 'a' ? (indexed_or_indirect_address (OP, GET_MODE (OP))) \
e8a8bc24 1146 : 0)
f045b2c9 1147
59b9a953 1148/* Define which constraints are memory constraints. Tell reload
f676971a 1149 that any memory address can be reloaded by copying the
d2288d5d
HP
1150 memory address into a base register if required. */
1151
1152#define EXTRA_MEMORY_CONSTRAINT(C, STR) \
da4c340c 1153 ((C) == 'Q' || (C) == 'Y' || (C) == 'Z')
d2288d5d 1154
3256a76e
DE
1155/* Define which constraints should be treated like address constraints
1156 by the reload pass. */
1157
1158#define EXTRA_ADDRESS_CONSTRAINT(C, STR) \
1159 ((C) == 'a')
1160
f045b2c9
RS
1161/* Given an rtx X being reloaded into a reg required to be
1162 in class CLASS, return the class of reg to actually use.
1163 In general this is just CLASS; but on some machines
c81bebd7 1164 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1165
1166 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1167 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1168
1169 We also don't want to reload integer values into floating-point
1170 registers if we can at all help it. In fact, this can
37409796 1171 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1172 into a FP register and discovers it doesn't have the memory location
1173 required.
1174
1175 ??? Would it be a good idea to have reload do the converse, that is
1176 try to reload floating modes into FP registers if possible?
1177 */
f045b2c9 1178
802a0058 1179#define PREFERRED_RELOAD_CLASS(X,CLASS) \
343f6bbf
DE
1180 ((CONSTANT_P (X) \
1181 && reg_classes_intersect_p ((CLASS), FLOAT_REGS)) \
1182 ? NO_REGS \
1183 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1184 && (CLASS) == NON_SPECIAL_REGS) \
1185 ? GENERAL_REGS \
1186 : (CLASS))
c81bebd7 1187
f045b2c9
RS
1188/* Return the register class of a scratch register needed to copy IN into
1189 or out of a register in CLASS in MODE. If it can be done directly,
1190 NO_REGS is returned. */
1191
1192#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
3c4774e0 1193 rs6000_secondary_reload_class (CLASS, MODE, IN)
f045b2c9 1194
0ac081f6
AH
1195/* If we are copying between FP or AltiVec registers and anything
1196 else, we need a memory location. */
7ea555a4 1197
0ac081f6
AH
1198#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1199 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1200 || (CLASS2) == FLOAT_REGS \
1201 || (CLASS1) == ALTIVEC_REGS \
1202 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1203
f045b2c9
RS
1204/* Return the maximum number of consecutive registers
1205 needed to represent mode MODE in a register of class CLASS.
1206
1207 On RS/6000, this is the size of MODE in words,
1208 except in the FP regs, where a single reg is enough for two words. */
802a0058 1209#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1210 (((CLASS) == FLOAT_REGS) \
2e360ab3 1211 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
54b695e7
AH
1212 : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS && (MODE) == DFmode) \
1213 ? 1 \
c1aa3958 1214 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230 1215
580d3230 1216
cff9f8d5 1217/* Return a class of registers that cannot change FROM mode to TO mode. */
02188693 1218
a9baceb1 1219#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
602ea4d3
JJ
1220 (!TARGET_IEEEQUAD \
1221 && GET_MODE_SIZE (FROM) >= 8 && GET_MODE_SIZE (TO) >= 8 \
a9baceb1
GK
1222 ? 0 \
1223 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1224 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
f82f556d
AH
1225 : (TARGET_E500_DOUBLE && (((TO) == DFmode) + ((FROM) == DFmode)) == 1) \
1226 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
54b695e7
AH
1227 : (TARGET_E500_DOUBLE && (((TO) == DImode) + ((FROM) == DImode)) == 1) \
1228 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
28636c6e 1229 : (TARGET_SPE && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1) \
a9baceb1 1230 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
b0c42aed 1231 : 0)
02188693 1232
f045b2c9
RS
1233/* Stack layout; function entry, exit and calling. */
1234
6b67933e
RK
1235/* Enumeration to give which calling sequence to use. */
1236enum rs6000_abi {
1237 ABI_NONE,
1238 ABI_AIX, /* IBM's AIX */
b6c9286a 1239 ABI_V4, /* System V.4/eabi */
ee890fe2 1240 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1241};
1242
b6c9286a
MM
1243extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1244
f045b2c9
RS
1245/* Define this if pushing a word on the stack
1246 makes the stack pointer a smaller address. */
1247#define STACK_GROWS_DOWNWARD
1248
327e5343
FJ
1249/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1250#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1251
a4d05547 1252/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1253 is at the high-address end of the local variables;
1254 that is, each additional local variable allocated
1255 goes at a more negative offset in the frame.
1256
1257 On the RS/6000, we grow upwards, from the area after the outgoing
1258 arguments. */
3aebbe5f 1259#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
f045b2c9 1260
4697a36c 1261/* Size of the outgoing register save area */
9ebbca7d 1262#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1263 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1264 ? (TARGET_64BIT ? 64 : 32) \
1265 : 0)
4697a36c
MM
1266
1267/* Size of the fixed area on the stack */
9ebbca7d 1268#define RS6000_SAVE_AREA \
50d440bc 1269 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1270 << (TARGET_64BIT ? 1 : 0))
4697a36c 1271
97f6e72f
DE
1272/* MEM representing address to save the TOC register */
1273#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1274 plus_constant (stack_pointer_rtx, \
1275 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1276
4697a36c 1277/* Align an address */
ed33106f 1278#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c 1279
f045b2c9
RS
1280/* Offset within stack frame to start allocating local variables at.
1281 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1282 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1283 of the first local allocated.
f045b2c9
RS
1284
1285 On the RS/6000, the frame pointer is the same as the stack pointer,
1286 except for dynamic allocations. So we start after the fixed area and
1287 outgoing parameter area. */
1288
802a0058 1289#define STARTING_FRAME_OFFSET \
7d5175e1
JJ
1290 (FRAME_GROWS_DOWNWARD \
1291 ? 0 \
1292 : (RS6000_ALIGN (current_function_outgoing_args_size, \
1293 TARGET_ALTIVEC ? 16 : 8) \
7d5175e1 1294 + RS6000_SAVE_AREA))
802a0058
MM
1295
1296/* Offset from the stack pointer register to an item dynamically
1297 allocated on the stack, e.g., by `alloca'.
1298
1299 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1300 length of the outgoing arguments. The default is correct for most
1301 machines. See `function.c' for details. */
1302#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1303 (RS6000_ALIGN (current_function_outgoing_args_size, \
1304 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1305 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1306
1307/* If we generate an insn to push BYTES bytes,
1308 this says how many the stack pointer really advances by.
1309 On RS/6000, don't define this because there are no push insns. */
1310/* #define PUSH_ROUNDING(BYTES) */
1311
1312/* Offset of first parameter from the argument pointer register value.
1313 On the RS/6000, we define the argument pointer to the start of the fixed
1314 area. */
4697a36c 1315#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1316
62153b61
JM
1317/* Offset from the argument pointer register value to the top of
1318 stack. This is different from FIRST_PARM_OFFSET because of the
1319 register save area. */
1320#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1321
f045b2c9
RS
1322/* Define this if stack space is still allocated for a parameter passed
1323 in a register. The value is the number of bytes allocated to this
1324 area. */
4697a36c 1325#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1326
1327/* Define this if the above stack space is to be considered part of the
1328 space allocated by the caller. */
1329#define OUTGOING_REG_PARM_STACK_SPACE
1330
1331/* This is the difference between the logical top of stack and the actual sp.
1332
82e41834 1333 For the RS/6000, sp points past the fixed area. */
4697a36c 1334#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1335
1336/* Define this if the maximum size of all the outgoing args is to be
1337 accumulated and pushed during the prologue. The amount can be
1338 found in the variable current_function_outgoing_args_size. */
f73ad30e 1339#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1340
1341/* Value is the number of bytes of arguments automatically
1342 popped when returning from a subroutine call.
8b109b37 1343 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1344 FUNTYPE is the data type of the function (as a tree),
1345 or for a library call it is an identifier node for the subroutine name.
1346 SIZE is the number of bytes of arguments passed on the stack. */
1347
8b109b37 1348#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1349
1350/* Define how to find the value returned by a function.
1351 VALTYPE is the data type of the value (as a tree).
1352 If the precise function being called is known, FUNC is its FUNCTION_DECL;
a6ebc39a
AH
1353 otherwise, FUNC is 0. */
1354
1355#define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
f045b2c9
RS
1356
1357/* Define how to find the value returned by a library function
1358 assuming the value has mode MODE. */
1359
ded9bf77 1360#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1361
6fa3f289
ZW
1362/* DRAFT_V4_STRUCT_RET defaults off. */
1363#define DRAFT_V4_STRUCT_RET 0
f607bc57 1364
bd5bd7ac 1365/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1366#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1367
a260abc9 1368/* Mode of stack savearea.
dfdfa60f
DE
1369 FUNCTION is VOIDmode because calling convention maintains SP.
1370 BLOCK needs Pmode for SP.
a260abc9
DE
1371 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1372#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1373 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1374 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1375
4697a36c
MM
1376/* Minimum and maximum general purpose registers used to hold arguments. */
1377#define GP_ARG_MIN_REG 3
1378#define GP_ARG_MAX_REG 10
1379#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1380
1381/* Minimum and maximum floating point registers used to hold arguments. */
1382#define FP_ARG_MIN_REG 33
7509c759
MM
1383#define FP_ARG_AIX_MAX_REG 45
1384#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1385#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1386 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1387 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1388#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1389
0ac081f6
AH
1390/* Minimum and maximum AltiVec registers used to hold arguments. */
1391#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1392#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1393#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1394
4697a36c
MM
1395/* Return registers */
1396#define GP_ARG_RETURN GP_ARG_MIN_REG
1397#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1398#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1399
7509c759 1400/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1401#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1402/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1403#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1404#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1405#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1406#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1407
f57fe068
AM
1408/* We don't have prologue and epilogue functions to save/restore
1409 everything for most ABIs. */
1410#define WORLD_SAVE_P(INFO) 0
1411
f045b2c9
RS
1412/* 1 if N is a possible register number for a function value
1413 as seen by the caller.
1414
0ac081f6 1415 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1416#define FUNCTION_VALUE_REGNO_P(N) \
1417 ((N) == GP_ARG_RETURN \
b2df7d08 1418 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
44688022 1419 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1420
1421/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1422 On RS/6000, these are r3-r10 and fp1-fp13.
1423 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1424#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1425 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1426 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
44688022 1427 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
e87a88d3 1428 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
b2df7d08 1429 && TARGET_HARD_FLOAT && TARGET_FPRS))
f045b2c9
RS
1430\f
1431/* Define a data type for recording info about an argument list
1432 during the scan of that argument list. This data type should
1433 hold all necessary information about the function itself
1434 and about the args processed so far, enough to enable macros
1435 such as FUNCTION_ARG to determine where the next arg should go.
1436
1437 On the RS/6000, this is a structure. The first element is the number of
1438 total argument words, the second is used to store the next
1439 floating-point register number, and the third says how many more args we
4697a36c
MM
1440 have prototype types for.
1441
4cc833b7 1442 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1443 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1444 register, and `words' is the number of words used on the stack.
1445
bd227acc 1446 The varargs/stdarg support requires that this structure's size
4cc833b7 1447 be a multiple of sizeof(int). */
4697a36c
MM
1448
1449typedef struct rs6000_args
1450{
4cc833b7 1451 int words; /* # words used for passing GP registers */
6a4cee5f 1452 int fregno; /* next available FP register */
0ac081f6 1453 int vregno; /* next available AltiVec register */
6a4cee5f 1454 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1455 int prototype; /* Whether a prototype was defined */
a6c9bed4 1456 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1457 int call_cookie; /* Do special things for this call */
4cc833b7 1458 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1459 int intoffset; /* running offset in struct (darwin64) */
1460 int use_stack; /* any part of struct on stack (darwin64) */
1461 int named; /* false for varargs params */
4697a36c 1462} CUMULATIVE_ARGS;
f045b2c9 1463
f045b2c9
RS
1464/* Initialize a variable CUM of type CUMULATIVE_ARGS
1465 for a call to a function whose data type is FNTYPE.
1466 For a library call, FNTYPE is 0. */
1467
0f6937fe
AM
1468#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1469 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
f045b2c9
RS
1470
1471/* Similar, but when scanning the definition of a procedure. We always
1472 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1473
0f6937fe
AM
1474#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1475 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
b9599e46
FS
1476
1477/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1478
1479#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
0f6937fe 1480 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
f045b2c9
RS
1481
1482/* Update the data in CUM to advance over an argument
1483 of mode MODE and data type TYPE.
1484 (TYPE is null for libcalls where that information may not be available.) */
1485
1486#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
594a51fe 1487 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
f045b2c9 1488
f045b2c9
RS
1489/* Determine where to put an argument to a function.
1490 Value is zero to push the argument on the stack,
1491 or a hard register in which to store the argument.
1492
1493 MODE is the argument's machine mode.
1494 TYPE is the data type of the argument (as a tree).
1495 This is null for libcalls where that information may
1496 not be available.
1497 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1498 the preceding args and about the function being called.
1499 NAMED is nonzero if this argument is a named parameter
1500 (otherwise it is an extra parameter matching an ellipsis).
1501
1502 On RS/6000 the first eight words of non-FP are normally in registers
1503 and the rest are pushed. The first 13 FP args are in registers.
1504
1505 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1506 both an FP and integer register (or possibly FP reg and stack). Library
1507 functions (when TYPE is zero) always have the proper types for args,
1508 so we can pass the FP value just in one register. emit_library_function
1509 doesn't support EXPR_LIST anyway. */
f045b2c9 1510
4697a36c
MM
1511#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1512 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9 1513
c229cba9
DE
1514/* If defined, a C expression which determines whether, and in which
1515 direction, to pad out an argument with extra space. The value
1516 should be of type `enum direction': either `upward' to pad above
1517 the argument, `downward' to pad below, or `none' to inhibit
1518 padding. */
1519
9ebbca7d 1520#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1521
b6c9286a 1522/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1523 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1524 PARM_BOUNDARY is used for all arguments. */
1525
1526#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1527 function_arg_boundary (MODE, TYPE)
1528
dfafc897 1529/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1530#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1531 rs6000_va_start (valist, nextarg)
dfafc897 1532
6e985040
AM
1533#define PAD_VARARGS_DOWN \
1534 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1535
f045b2c9 1536/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1537 for profiling a function entry. */
f045b2c9
RS
1538
1539#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1540 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1541
1542/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1543 the stack pointer does not matter. No definition is equivalent to
1544 always zero.
1545
a0ab749a 1546 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1547 its backpointer, which we maintain. */
1548#define EXIT_IGNORE_STACK 1
1549
a701949a
FS
1550/* Define this macro as a C expression that is nonzero for registers
1551 that are used by the epilogue or the return' pattern. The stack
1552 and frame pointer registers are already be assumed to be used as
1553 needed. */
1554
83720594
RH
1555#define EPILOGUE_USES(REGNO) \
1556 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1557 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1558 || (current_function_calls_eh_return \
3553b09d 1559 && TARGET_AIX \
ff3867ae 1560 && (REGNO) == 2))
2bfcf297 1561
f045b2c9 1562\f
eaf1bcf1 1563/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1564
1565/* Length in units of the trampoline for entering a nested function. */
1566
b6c9286a 1567#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1568
1569/* Emit RTL insns to initialize the variable parts of a trampoline.
1570 FNADDR is an RTX for the address of the function's pure code.
1571 CXT is an RTX for the static chain value for the function. */
1572
1573#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1574 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1575\f
f33985c6
MS
1576/* Definitions for __builtin_return_address and __builtin_frame_address.
1577 __builtin_return_address (0) should give link register (65), enable
82e41834 1578 this. */
f33985c6
MS
1579/* This should be uncommented, so that the link register is used, but
1580 currently this would result in unmatched insns and spilling fixed
1581 registers so we'll leave it for another day. When these problems are
1582 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1583 (mrs) */
1584/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1585
b6c9286a
MM
1586/* Number of bytes into the frame return addresses can be found. See
1587 rs6000_stack_info in rs6000.c for more information on how the different
1588 abi's store the return address. */
1589#define RETURN_ADDRESS_OFFSET \
1590 ((DEFAULT_ABI == ABI_AIX \
50d440bc 1591 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1592 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1593 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1594
f33985c6
MS
1595/* The current return address is in link register (65). The return address
1596 of anything farther back is accessed normally at an offset of 8 from the
1597 frame pointer. */
71f123ca
FS
1598#define RETURN_ADDR_RTX(COUNT, FRAME) \
1599 (rs6000_return_addr (COUNT, FRAME))
1600
f33985c6 1601\f
f045b2c9
RS
1602/* Definitions for register eliminations.
1603
1604 We have two registers that can be eliminated on the RS/6000. First, the
1605 frame pointer register can often be eliminated in favor of the stack
1606 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1607 eliminated; it is replaced with either the stack or frame pointer.
1608
1609 In addition, we use the elimination mechanism to see if r30 is needed
1610 Initially we assume that it isn't. If it is, we spill it. This is done
1611 by making it an eliminable register. We replace it with itself so that
1612 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1613
1614/* This is an array of structures. Each structure initializes one pair
1615 of eliminable registers. The "from" register number is given first,
1616 followed by "to". Eliminations of the same "from" register are listed
1617 in order of preference. */
7d5175e1
JJ
1618#define ELIMINABLE_REGS \
1619{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1620 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1621 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1622 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1623 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 1624 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9
RS
1625
1626/* Given FROM and TO register numbers, say whether this elimination is allowed.
1627 Frame pointer elimination is automatically handled.
1628
1629 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1630 to convert ap into fp, not sp.
1631
abc95ed3 1632 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1633 references. */
f045b2c9 1634
97b23853
GK
1635#define CAN_ELIMINATE(FROM, TO) \
1636 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1637 ? ! frame_pointer_needed \
1638 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1639 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1640 : 1)
1641
1642/* Define the offset between two registers, one to be eliminated, and the other
1643 its replacement, at the start of a routine. */
d1d0c603
JJ
1644#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1645 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1646\f
1647/* Addressing modes, and classification of registers for them. */
1648
940da324
JL
1649#define HAVE_PRE_DECREMENT 1
1650#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1651
1652/* Macros to check register numbers against specific register classes. */
1653
1654/* These assume that REGNO is a hard or pseudo reg number.
1655 They give nonzero only if REGNO is a hard reg of the suitable class
1656 or a pseudo reg currently allocated to a suitable hard reg.
1657 Since they use reg_renumber, they are safe only once reg_renumber
1658 has been allocated, which happens in local-alloc.c. */
1659
1660#define REGNO_OK_FOR_INDEX_P(REGNO) \
1661((REGNO) < FIRST_PSEUDO_REGISTER \
1662 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 1663 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1664 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
1665 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1666 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
1667
1668#define REGNO_OK_FOR_BASE_P(REGNO) \
1669((REGNO) < FIRST_PSEUDO_REGISTER \
1670 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 1671 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1672 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
1673 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1674 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
1675\f
1676/* Maximum number of registers that can appear in a valid memory address. */
1677
1678#define MAX_REGS_PER_ADDRESS 2
1679
1680/* Recognize any constant value that is a valid address. */
1681
6eff269e
BK
1682#define CONSTANT_ADDRESS_P(X) \
1683 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1684 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1685 || GET_CODE (X) == HIGH)
f045b2c9
RS
1686
1687/* Nonzero if the constant value X is a legitimate general operand.
1688 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1689
1690 On the RS/6000, all integer constants are acceptable, most won't be valid
1691 for particular insns, though. Only easy FP constants are
1692 acceptable. */
1693
1694#define LEGITIMATE_CONSTANT_P(X) \
49a2166f
AH
1695 (((GET_CODE (X) != CONST_DOUBLE \
1696 && GET_CODE (X) != CONST_VECTOR) \
1697 || GET_MODE (X) == VOIDmode \
c4501e62 1698 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
49a2166f
AH
1699 || easy_fp_constant (X, GET_MODE (X)) \
1700 || easy_vector_constant (X, GET_MODE (X))) \
c4501e62 1701 && !rs6000_tls_referenced_p (X))
f045b2c9 1702
48d72335 1703#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3
PB
1704#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1705 && EASY_VECTOR_15((n) >> 1))
48d72335 1706
f045b2c9
RS
1707/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1708 and check its validity for a certain class.
1709 We have two alternate definitions for each of them.
1710 The usual definition accepts all pseudo regs; the other rejects
1711 them unless they have been allocated suitable hard regs.
1712 The symbol REG_OK_STRICT causes the latter definition to be used.
1713
1714 Most source files want to accept pseudo regs in the hope that
1715 they will get allocated to the class that the insn wants them to be in.
1716 Source files for reload pass need to be strict.
1717 After reload, it makes no difference, since pseudo regs have
1718 been eliminated by then. */
1719
258bfae2
FS
1720#ifdef REG_OK_STRICT
1721# define REG_OK_STRICT_FLAG 1
1722#else
1723# define REG_OK_STRICT_FLAG 0
1724#endif
f045b2c9
RS
1725
1726/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1727 or if it is a pseudo reg in the non-strict case. */
1728#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
9024f4b8
AM
1729 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1730 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
f045b2c9
RS
1731
1732/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
1733 or if it is a pseudo reg in the non-strict case. */
1734#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
9024f4b8
AM
1735 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1736 || REGNO_OK_FOR_BASE_P (REGNO (X)))
f045b2c9 1737
258bfae2
FS
1738#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1739#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
1740\f
1741/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1742 that is a valid memory address for an instruction.
1743 The MODE argument is the machine mode for the MEM expression
1744 that wants to use this address.
1745
26ba43b9 1746 On the RS/6000, there are four valid addresses: a SYMBOL_REF that
f045b2c9
RS
1747 refers to a constant pool entry of an address (or the sum of it
1748 plus a constant), a short (16-bit signed) constant plus a register,
1749 the sum of two registers, or a register indirect, possibly with an
5bdc5878 1750 auto-increment. For DFmode and DImode with a constant plus register,
2f3e5814 1751 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1752 word aligned.
1753
1754 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1755 32-bit DImode, TImode), indexed addressing cannot be used because
1756 adjacent memory cells are accessed by adding word-sized offsets
1757 during assembly output. */
f045b2c9 1758
258bfae2
FS
1759#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1760{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
1761 goto ADDR; \
f045b2c9
RS
1762}
1763\f
1764/* Try machine-dependent ways of modifying an illegitimate address
1765 to be legitimate. If we find one, return the new, valid address.
1766 This macro is used in only one place: `memory_address' in explow.c.
1767
1768 OLDX is the address as it was before break_out_memory_refs was called.
1769 In some cases it is useful to look at this to decide what needs to be done.
1770
1771 MODE and WIN are passed so that this macro can use
1772 GO_IF_LEGITIMATE_ADDRESS.
1773
1774 It is always safe for this macro to do nothing. It exists to recognize
1775 opportunities to optimize the output.
1776
1777 On RS/6000, first check for the sum of a register with a constant
1778 integer that is out of range. If so, generate code to add the
1779 constant with the low-order 16 bits masked to the register and force
1780 this result into another register (this can be done with `cau').
c81bebd7 1781 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1782 possibility of bit 16 being a one.
1783
1784 Then check for the sum of a register and something not constant, try to
1785 load the other things into a register and return the sum. */
1786
9ebbca7d
GK
1787#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1788{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
1789 if (result != NULL_RTX) \
1790 { \
1791 (X) = result; \
1792 goto WIN; \
1793 } \
f045b2c9
RS
1794}
1795
a260abc9
DE
1796/* Try a machine-dependent way of reloading an illegitimate address
1797 operand. If we find one, push the reload and jump to WIN. This
1798 macro is used in only one place: `find_reloads_address' in reload.c.
1799
f676971a 1800 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 1801 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 1802
a9098fd0
GK
1803#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1804do { \
24ea750e
DJ
1805 int win; \
1806 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
1807 (int)(TYPE), (IND_LEVELS), &win); \
1808 if ( win ) \
1809 goto WIN; \
a260abc9
DE
1810} while (0)
1811
f045b2c9 1812/* Go to LABEL if ADDR (a legitimate address expression)
4d588c14 1813 has an effect that depends on the machine mode it is used for. */
f045b2c9
RS
1814
1815#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
4d588c14
RH
1816do { \
1817 if (rs6000_mode_dependent_address (ADDR)) \
f045b2c9 1818 goto LABEL; \
4d588c14 1819} while (0)
766a866c
MM
1820\f
1821/* The register number of the register used to address a table of
1822 static data addresses in memory. In some cases this register is
1823 defined by a processor's "application binary interface" (ABI).
1824 When this macro is defined, RTL is generated for this register
1825 once, as with the stack pointer and frame pointer registers. If
1826 this macro is not defined, it is up to the machine-dependent files
1827 to allocate such a register (if necessary). */
1828
1db02437
FS
1829#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1830#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 1831
97b23853 1832#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 1833
766a866c
MM
1834/* Define this macro if the register defined by
1835 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 1836 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
1837
1838/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1839
766a866c
MM
1840/* A C expression that is nonzero if X is a legitimate immediate
1841 operand on the target machine when generating position independent
1842 code. You can assume that X satisfies `CONSTANT_P', so you need
1843 not check this. You can also assume FLAG_PIC is true, so you need
1844 not check it either. You need not define this macro if all
1845 constants (including `SYMBOL_REF') can be immediate operands when
1846 generating position independent code. */
1847
1848/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
1849\f
1850/* Define this if some processing needs to be done immediately before
4255474b 1851 emitting code for an insn. */
f045b2c9 1852
4255474b 1853/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
1854
1855/* Specify the machine mode that this machine uses
1856 for the index in the tablejump instruction. */
e1565e65 1857#define CASE_VECTOR_MODE SImode
f045b2c9 1858
18543a22
ILT
1859/* Define as C expression which evaluates to nonzero if the tablejump
1860 instruction expects the table to contain offsets from the address of the
1861 table.
82e41834 1862 Do not define this if the table should contain absolute addresses. */
18543a22 1863#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 1864
f045b2c9
RS
1865/* Define this as 1 if `char' should by default be signed; else as 0. */
1866#define DEFAULT_SIGNED_CHAR 0
1867
1868/* This flag, if defined, says the same insns that convert to a signed fixnum
1869 also convert validly to an unsigned one. */
1870
1871/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1872
c1618c0c
DE
1873/* An integer expression for the size in bits of the largest integer machine
1874 mode that should actually be used. */
1875
1876/* Allow pairs of registers to be used, which is the intent of the default. */
1877#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1878
f045b2c9
RS
1879/* Max number of bytes we can move from memory to memory
1880 in one reasonably fast instruction. */
2f3e5814 1881#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 1882#define MAX_MOVE_MAX 8
f045b2c9
RS
1883
1884/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 1885 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
1886 is undesirable. */
1887#define SLOW_BYTE_ACCESS 1
1888
9a63901f
RK
1889/* Define if operations between registers always perform the operation
1890 on the full register even if a narrower mode is specified. */
1891#define WORD_REGISTER_OPERATIONS
1892
1893/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1894 will either zero-extend or sign-extend. The value of this macro should
1895 be the code that says which one of the two operations is implicitly
f822d252 1896 done, UNKNOWN if none. */
9a63901f 1897#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
1898
1899/* Define if loading short immediate values into registers sign extends. */
1900#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 1901\f
f045b2c9
RS
1902/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1903 is done just by pretending it is already truncated. */
1904#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1905
94993909 1906/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122
DE
1907#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1908 ((VALUE) = ((MODE) == SImode ? 32 : 64))
1909
94993909
DE
1910/* The CTZ patterns return -1 for input of zero. */
1911#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
1912
f045b2c9
RS
1913/* Specify the machine mode that pointers have.
1914 After generation of rtl, the compiler makes no further distinction
1915 between pointers and any other objects of this machine mode. */
2f3e5814 1916#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9 1917
a3c9585f 1918/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
1919#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1920
f045b2c9 1921/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 1922 Doesn't matter on RS/6000. */
5b71a4e7 1923#define FUNCTION_MODE SImode
f045b2c9
RS
1924
1925/* Define this if addresses of constant functions
1926 shouldn't be put through pseudo regs where they can be cse'd.
1927 Desirable on machines where ordinary constants are expensive
1928 but a CALL with constant address is cheap. */
1929#define NO_FUNCTION_CSE
1930
d969caf8 1931/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
1932 few bits.
1933
1934 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1935 have been dropped from the PowerPC architecture. */
1936
4697a36c 1937#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 1938
f045b2c9
RS
1939/* Adjust the length of an INSN. LENGTH is the currently-computed length and
1940 should be adjusted to reflect any required changes. This macro is used when
1941 there is some systematic length adjustment required that would be difficult
1942 to express in the length attribute. */
1943
1944/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1945
39a10a29
GK
1946/* Given a comparison code (EQ, NE, etc.) and the first operand of a
1947 COMPARE, return the mode to be used for the comparison. For
1948 floating-point, CCFPmode should be used. CCUNSmode should be used
1949 for unsigned comparisons. CCEQmode should be used when we are
1950 doing an inequality comparison on the result of a
1951 comparison. CCmode should be used in all other cases. */
c5defebb 1952
b565a316 1953#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 1954 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 1955 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 1956 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 1957 ? CCEQmode : CCmode))
f045b2c9 1958
b39358e1
GK
1959/* Can the condition code MODE be safely reversed? This is safe in
1960 all cases on this port, because at present it doesn't use the
1961 trapping FP comparisons (fcmpo). */
1962#define REVERSIBLE_CC_MODE(MODE) 1
1963
1964/* Given a condition code and a mode, return the inverse condition. */
1965#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1966
f045b2c9 1967/* Define the information needed to generate branch and scc insns. This is
b39358e1 1968 stored from the compare operation. */
f045b2c9 1969
e2500fed
GK
1970extern GTY(()) rtx rs6000_compare_op0;
1971extern GTY(()) rtx rs6000_compare_op1;
f045b2c9 1972extern int rs6000_compare_fp_p;
f045b2c9
RS
1973\f
1974/* Control the assembler format that we output. */
1975
1b279f39
DE
1976/* A C string constant describing how to begin a comment in the target
1977 assembler language. The compiler assumes that the comment will end at
1978 the end of the line. */
1979#define ASM_COMMENT_START " #"
6b67933e 1980
38c1f2d7
MM
1981/* Flag to say the TOC is initialized */
1982extern int toc_initialized;
1983
f045b2c9
RS
1984/* Macro to output a special constant pool entry. Go to WIN if we output
1985 it. Otherwise, it is written the usual way.
1986
1987 On the RS/6000, toc entries are handled this way. */
1988
a9098fd0
GK
1989#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1990{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1991 { \
1992 output_toc (FILE, X, LABELNO, MODE); \
1993 goto WIN; \
1994 } \
f045b2c9
RS
1995}
1996
ebd97b96
DE
1997#ifdef HAVE_GAS_WEAK
1998#define RS6000_WEAK 1
1999#else
2000#define RS6000_WEAK 0
2001#endif
290ad355 2002
79c4e63f
AM
2003#if RS6000_WEAK
2004/* Used in lieu of ASM_WEAKEN_LABEL. */
2005#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2006 do \
2007 { \
2008 fputs ("\t.weak\t", (FILE)); \
85b776df 2009 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2010 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2011 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f 2012 { \
cbaaba19
DE
2013 if (TARGET_XCOFF) \
2014 fputs ("[DS]", (FILE)); \
ca734b39 2015 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2016 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2017 } \
2018 fputc ('\n', (FILE)); \
2019 if (VAL) \
2020 { \
2021 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2022 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2023 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2024 { \
2025 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2026 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2027 fputs (",.", (FILE)); \
cbaaba19 2028 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2029 fputc ('\n', (FILE)); \
2030 } \
2031 } \
2032 } \
2033 while (0)
2034#endif
2035
ff2d10c1
AO
2036#if HAVE_GAS_WEAKREF
2037#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2038 do \
2039 { \
2040 fputs ("\t.weakref\t", (FILE)); \
2041 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2042 fputs (", ", (FILE)); \
2043 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2044 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2045 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2046 { \
2047 fputs ("\n\t.weakref\t.", (FILE)); \
2048 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2049 fputs (", .", (FILE)); \
2050 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2051 } \
2052 fputc ('\n', (FILE)); \
2053 } while (0)
2054#endif
2055
79c4e63f
AM
2056/* This implements the `alias' attribute. */
2057#undef ASM_OUTPUT_DEF_FROM_DECLS
2058#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2059 do \
2060 { \
2061 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2062 const char *name = IDENTIFIER_POINTER (TARGET); \
2063 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2064 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2065 { \
2066 if (TREE_PUBLIC (DECL)) \
2067 { \
2068 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2069 { \
2070 fputs ("\t.globl\t.", FILE); \
cbaaba19 2071 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2072 putc ('\n', FILE); \
2073 } \
2074 } \
2075 else if (TARGET_XCOFF) \
2076 { \
2077 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2078 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2079 putc ('\n', FILE); \
2080 } \
2081 fputs ("\t.set\t.", FILE); \
cbaaba19 2082 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2083 fputs (",.", FILE); \
cbaaba19 2084 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2085 fputc ('\n', FILE); \
2086 } \
2087 ASM_OUTPUT_DEF (FILE, alias, name); \
2088 } \
2089 while (0)
290ad355 2090
1bc7c5b6
ZW
2091#define TARGET_ASM_FILE_START rs6000_file_start
2092
f045b2c9
RS
2093/* Output to assembler file text saying following lines
2094 may contain character constants, extra white space, comments, etc. */
2095
2096#define ASM_APP_ON ""
2097
2098/* Output to assembler file text saying following lines
2099 no longer contain unusual constructs. */
2100
2101#define ASM_APP_OFF ""
2102
f045b2c9
RS
2103/* How to refer to registers in assembler output.
2104 This sequence is indexed by compiler's hard-register-number (see above). */
2105
82e41834 2106extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2107
2108#define REGISTER_NAMES \
2109{ \
2110 &rs6000_reg_names[ 0][0], /* r0 */ \
2111 &rs6000_reg_names[ 1][0], /* r1 */ \
2112 &rs6000_reg_names[ 2][0], /* r2 */ \
2113 &rs6000_reg_names[ 3][0], /* r3 */ \
2114 &rs6000_reg_names[ 4][0], /* r4 */ \
2115 &rs6000_reg_names[ 5][0], /* r5 */ \
2116 &rs6000_reg_names[ 6][0], /* r6 */ \
2117 &rs6000_reg_names[ 7][0], /* r7 */ \
2118 &rs6000_reg_names[ 8][0], /* r8 */ \
2119 &rs6000_reg_names[ 9][0], /* r9 */ \
2120 &rs6000_reg_names[10][0], /* r10 */ \
2121 &rs6000_reg_names[11][0], /* r11 */ \
2122 &rs6000_reg_names[12][0], /* r12 */ \
2123 &rs6000_reg_names[13][0], /* r13 */ \
2124 &rs6000_reg_names[14][0], /* r14 */ \
2125 &rs6000_reg_names[15][0], /* r15 */ \
2126 &rs6000_reg_names[16][0], /* r16 */ \
2127 &rs6000_reg_names[17][0], /* r17 */ \
2128 &rs6000_reg_names[18][0], /* r18 */ \
2129 &rs6000_reg_names[19][0], /* r19 */ \
2130 &rs6000_reg_names[20][0], /* r20 */ \
2131 &rs6000_reg_names[21][0], /* r21 */ \
2132 &rs6000_reg_names[22][0], /* r22 */ \
2133 &rs6000_reg_names[23][0], /* r23 */ \
2134 &rs6000_reg_names[24][0], /* r24 */ \
2135 &rs6000_reg_names[25][0], /* r25 */ \
2136 &rs6000_reg_names[26][0], /* r26 */ \
2137 &rs6000_reg_names[27][0], /* r27 */ \
2138 &rs6000_reg_names[28][0], /* r28 */ \
2139 &rs6000_reg_names[29][0], /* r29 */ \
2140 &rs6000_reg_names[30][0], /* r30 */ \
2141 &rs6000_reg_names[31][0], /* r31 */ \
2142 \
2143 &rs6000_reg_names[32][0], /* fr0 */ \
2144 &rs6000_reg_names[33][0], /* fr1 */ \
2145 &rs6000_reg_names[34][0], /* fr2 */ \
2146 &rs6000_reg_names[35][0], /* fr3 */ \
2147 &rs6000_reg_names[36][0], /* fr4 */ \
2148 &rs6000_reg_names[37][0], /* fr5 */ \
2149 &rs6000_reg_names[38][0], /* fr6 */ \
2150 &rs6000_reg_names[39][0], /* fr7 */ \
2151 &rs6000_reg_names[40][0], /* fr8 */ \
2152 &rs6000_reg_names[41][0], /* fr9 */ \
2153 &rs6000_reg_names[42][0], /* fr10 */ \
2154 &rs6000_reg_names[43][0], /* fr11 */ \
2155 &rs6000_reg_names[44][0], /* fr12 */ \
2156 &rs6000_reg_names[45][0], /* fr13 */ \
2157 &rs6000_reg_names[46][0], /* fr14 */ \
2158 &rs6000_reg_names[47][0], /* fr15 */ \
2159 &rs6000_reg_names[48][0], /* fr16 */ \
2160 &rs6000_reg_names[49][0], /* fr17 */ \
2161 &rs6000_reg_names[50][0], /* fr18 */ \
2162 &rs6000_reg_names[51][0], /* fr19 */ \
2163 &rs6000_reg_names[52][0], /* fr20 */ \
2164 &rs6000_reg_names[53][0], /* fr21 */ \
2165 &rs6000_reg_names[54][0], /* fr22 */ \
2166 &rs6000_reg_names[55][0], /* fr23 */ \
2167 &rs6000_reg_names[56][0], /* fr24 */ \
2168 &rs6000_reg_names[57][0], /* fr25 */ \
2169 &rs6000_reg_names[58][0], /* fr26 */ \
2170 &rs6000_reg_names[59][0], /* fr27 */ \
2171 &rs6000_reg_names[60][0], /* fr28 */ \
2172 &rs6000_reg_names[61][0], /* fr29 */ \
2173 &rs6000_reg_names[62][0], /* fr30 */ \
2174 &rs6000_reg_names[63][0], /* fr31 */ \
2175 \
2176 &rs6000_reg_names[64][0], /* mq */ \
2177 &rs6000_reg_names[65][0], /* lr */ \
2178 &rs6000_reg_names[66][0], /* ctr */ \
2179 &rs6000_reg_names[67][0], /* ap */ \
2180 \
2181 &rs6000_reg_names[68][0], /* cr0 */ \
2182 &rs6000_reg_names[69][0], /* cr1 */ \
2183 &rs6000_reg_names[70][0], /* cr2 */ \
2184 &rs6000_reg_names[71][0], /* cr3 */ \
2185 &rs6000_reg_names[72][0], /* cr4 */ \
2186 &rs6000_reg_names[73][0], /* cr5 */ \
2187 &rs6000_reg_names[74][0], /* cr6 */ \
2188 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2189 \
9ebbca7d 2190 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2191 \
2192 &rs6000_reg_names[77][0], /* v0 */ \
2193 &rs6000_reg_names[78][0], /* v1 */ \
2194 &rs6000_reg_names[79][0], /* v2 */ \
2195 &rs6000_reg_names[80][0], /* v3 */ \
2196 &rs6000_reg_names[81][0], /* v4 */ \
2197 &rs6000_reg_names[82][0], /* v5 */ \
2198 &rs6000_reg_names[83][0], /* v6 */ \
2199 &rs6000_reg_names[84][0], /* v7 */ \
2200 &rs6000_reg_names[85][0], /* v8 */ \
2201 &rs6000_reg_names[86][0], /* v9 */ \
2202 &rs6000_reg_names[87][0], /* v10 */ \
2203 &rs6000_reg_names[88][0], /* v11 */ \
2204 &rs6000_reg_names[89][0], /* v12 */ \
2205 &rs6000_reg_names[90][0], /* v13 */ \
2206 &rs6000_reg_names[91][0], /* v14 */ \
2207 &rs6000_reg_names[92][0], /* v15 */ \
2208 &rs6000_reg_names[93][0], /* v16 */ \
2209 &rs6000_reg_names[94][0], /* v17 */ \
2210 &rs6000_reg_names[95][0], /* v18 */ \
2211 &rs6000_reg_names[96][0], /* v19 */ \
2212 &rs6000_reg_names[97][0], /* v20 */ \
2213 &rs6000_reg_names[98][0], /* v21 */ \
2214 &rs6000_reg_names[99][0], /* v22 */ \
2215 &rs6000_reg_names[100][0], /* v23 */ \
2216 &rs6000_reg_names[101][0], /* v24 */ \
2217 &rs6000_reg_names[102][0], /* v25 */ \
2218 &rs6000_reg_names[103][0], /* v26 */ \
2219 &rs6000_reg_names[104][0], /* v27 */ \
2220 &rs6000_reg_names[105][0], /* v28 */ \
2221 &rs6000_reg_names[106][0], /* v29 */ \
2222 &rs6000_reg_names[107][0], /* v30 */ \
2223 &rs6000_reg_names[108][0], /* v31 */ \
2224 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2225 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2226 &rs6000_reg_names[111][0], /* spe_acc */ \
2227 &rs6000_reg_names[112][0], /* spefscr */ \
7d5175e1 2228 &rs6000_reg_names[113][0], /* sfp */ \
c81bebd7
MM
2229}
2230
f045b2c9
RS
2231/* Table of additional register names to use in user input. */
2232
2233#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2234 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2235 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2236 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2237 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2238 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2239 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2240 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2241 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2242 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2243 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2244 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2245 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2246 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2247 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2248 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2249 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2250 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2251 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2252 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2253 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2254 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2255 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2256 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2257 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2258 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2259 {"spe_acc", 111}, {"spefscr", 112}, \
c4d38ccb
MM
2260 /* no additional names for: mq, lr, ctr, ap */ \
2261 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2262 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2263 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2264
0da40b09
RK
2265/* Text to write out after a CALL that may be replaced by glue code by
2266 the loader. This depends on the AIX version. */
2267#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2268
f045b2c9
RS
2269/* This is how to output an element of a case-vector that is relative. */
2270
e1565e65 2271#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2272 do { char buf[100]; \
e1565e65 2273 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2274 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2275 assemble_name (FILE, buf); \
19d2d16f 2276 putc ('-', FILE); \
3daf36a4
ILT
2277 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2278 assemble_name (FILE, buf); \
19d2d16f 2279 putc ('\n', FILE); \
3daf36a4 2280 } while (0)
f045b2c9
RS
2281
2282/* This is how to output an assembler line
2283 that says to advance the location counter
2284 to a multiple of 2**LOG bytes. */
2285
2286#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2287 if ((LOG) != 0) \
2288 fprintf (FILE, "\t.align %d\n", (LOG))
2289
9ebbca7d
GK
2290/* Pick up the return address upon entry to a procedure. Used for
2291 dwarf2 unwind information. This also enables the table driven
2292 mechanism. */
2293
2294#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2295#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2296
83720594
RH
2297/* Describe how we implement __builtin_eh_return. */
2298#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2299#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2300
f045b2c9
RS
2301/* Print operand X (an rtx) in assembler syntax to file FILE.
2302 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2303 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2304
2305#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2306
2307/* Define which CODE values are valid. */
2308
c81bebd7 2309#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c4501e62 2310 ((CODE) == '.' || (CODE) == '&')
f045b2c9
RS
2311
2312/* Print a memory address as an operand to reference that memory location. */
2313
2314#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2315
b6c9286a
MM
2316/* uncomment for disabling the corresponding default options */
2317/* #define MACHINE_no_sched_interblock */
2318/* #define MACHINE_no_sched_speculative */
2319/* #define MACHINE_no_sched_speculative_load */
2320
766a866c
MM
2321/* General flags. */
2322extern int flag_pic;
354b734b
MM
2323extern int optimize;
2324extern int flag_expensive_optimizations;
a7df97e6 2325extern int frame_pointer_needed;
0ac081f6
AH
2326
2327enum rs6000_builtins
2328{
2329 /* AltiVec builtins. */
f18c054f
DB
2330 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2331 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2332 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2333 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2334 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2335 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2336 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2337 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2338 ALTIVEC_BUILTIN_VADDUBM,
2339 ALTIVEC_BUILTIN_VADDUHM,
2340 ALTIVEC_BUILTIN_VADDUWM,
2341 ALTIVEC_BUILTIN_VADDFP,
2342 ALTIVEC_BUILTIN_VADDCUW,
2343 ALTIVEC_BUILTIN_VADDUBS,
2344 ALTIVEC_BUILTIN_VADDSBS,
2345 ALTIVEC_BUILTIN_VADDUHS,
2346 ALTIVEC_BUILTIN_VADDSHS,
2347 ALTIVEC_BUILTIN_VADDUWS,
2348 ALTIVEC_BUILTIN_VADDSWS,
2349 ALTIVEC_BUILTIN_VAND,
2350 ALTIVEC_BUILTIN_VANDC,
2351 ALTIVEC_BUILTIN_VAVGUB,
2352 ALTIVEC_BUILTIN_VAVGSB,
2353 ALTIVEC_BUILTIN_VAVGUH,
2354 ALTIVEC_BUILTIN_VAVGSH,
2355 ALTIVEC_BUILTIN_VAVGUW,
2356 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2357 ALTIVEC_BUILTIN_VCFUX,
2358 ALTIVEC_BUILTIN_VCFSX,
2359 ALTIVEC_BUILTIN_VCTSXS,
2360 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2361 ALTIVEC_BUILTIN_VCMPBFP,
2362 ALTIVEC_BUILTIN_VCMPEQUB,
2363 ALTIVEC_BUILTIN_VCMPEQUH,
2364 ALTIVEC_BUILTIN_VCMPEQUW,
2365 ALTIVEC_BUILTIN_VCMPEQFP,
2366 ALTIVEC_BUILTIN_VCMPGEFP,
2367 ALTIVEC_BUILTIN_VCMPGTUB,
2368 ALTIVEC_BUILTIN_VCMPGTSB,
2369 ALTIVEC_BUILTIN_VCMPGTUH,
2370 ALTIVEC_BUILTIN_VCMPGTSH,
2371 ALTIVEC_BUILTIN_VCMPGTUW,
2372 ALTIVEC_BUILTIN_VCMPGTSW,
2373 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2374 ALTIVEC_BUILTIN_VEXPTEFP,
2375 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2376 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2377 ALTIVEC_BUILTIN_VMAXUB,
2378 ALTIVEC_BUILTIN_VMAXSB,
2379 ALTIVEC_BUILTIN_VMAXUH,
2380 ALTIVEC_BUILTIN_VMAXSH,
2381 ALTIVEC_BUILTIN_VMAXUW,
2382 ALTIVEC_BUILTIN_VMAXSW,
2383 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2384 ALTIVEC_BUILTIN_VMHADDSHS,
2385 ALTIVEC_BUILTIN_VMHRADDSHS,
2386 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2387 ALTIVEC_BUILTIN_VMRGHB,
2388 ALTIVEC_BUILTIN_VMRGHH,
2389 ALTIVEC_BUILTIN_VMRGHW,
2390 ALTIVEC_BUILTIN_VMRGLB,
2391 ALTIVEC_BUILTIN_VMRGLH,
2392 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2393 ALTIVEC_BUILTIN_VMSUMUBM,
2394 ALTIVEC_BUILTIN_VMSUMMBM,
2395 ALTIVEC_BUILTIN_VMSUMUHM,
2396 ALTIVEC_BUILTIN_VMSUMSHM,
2397 ALTIVEC_BUILTIN_VMSUMUHS,
2398 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2399 ALTIVEC_BUILTIN_VMINUB,
2400 ALTIVEC_BUILTIN_VMINSB,
2401 ALTIVEC_BUILTIN_VMINUH,
2402 ALTIVEC_BUILTIN_VMINSH,
2403 ALTIVEC_BUILTIN_VMINUW,
2404 ALTIVEC_BUILTIN_VMINSW,
2405 ALTIVEC_BUILTIN_VMINFP,
2406 ALTIVEC_BUILTIN_VMULEUB,
2407 ALTIVEC_BUILTIN_VMULESB,
2408 ALTIVEC_BUILTIN_VMULEUH,
2409 ALTIVEC_BUILTIN_VMULESH,
2410 ALTIVEC_BUILTIN_VMULOUB,
2411 ALTIVEC_BUILTIN_VMULOSB,
2412 ALTIVEC_BUILTIN_VMULOUH,
2413 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2414 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2415 ALTIVEC_BUILTIN_VNOR,
2416 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2417 ALTIVEC_BUILTIN_VSEL_4SI,
2418 ALTIVEC_BUILTIN_VSEL_4SF,
2419 ALTIVEC_BUILTIN_VSEL_8HI,
2420 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2421 ALTIVEC_BUILTIN_VPERM_4SI,
2422 ALTIVEC_BUILTIN_VPERM_4SF,
2423 ALTIVEC_BUILTIN_VPERM_8HI,
2424 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2425 ALTIVEC_BUILTIN_VPKUHUM,
2426 ALTIVEC_BUILTIN_VPKUWUM,
2427 ALTIVEC_BUILTIN_VPKPX,
2428 ALTIVEC_BUILTIN_VPKUHSS,
2429 ALTIVEC_BUILTIN_VPKSHSS,
2430 ALTIVEC_BUILTIN_VPKUWSS,
2431 ALTIVEC_BUILTIN_VPKSWSS,
2432 ALTIVEC_BUILTIN_VPKUHUS,
2433 ALTIVEC_BUILTIN_VPKSHUS,
2434 ALTIVEC_BUILTIN_VPKUWUS,
2435 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2436 ALTIVEC_BUILTIN_VREFP,
2437 ALTIVEC_BUILTIN_VRFIM,
2438 ALTIVEC_BUILTIN_VRFIN,
2439 ALTIVEC_BUILTIN_VRFIP,
2440 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2441 ALTIVEC_BUILTIN_VRLB,
2442 ALTIVEC_BUILTIN_VRLH,
2443 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2444 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2445 ALTIVEC_BUILTIN_VSLB,
2446 ALTIVEC_BUILTIN_VSLH,
2447 ALTIVEC_BUILTIN_VSLW,
2448 ALTIVEC_BUILTIN_VSL,
2449 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2450 ALTIVEC_BUILTIN_VSPLTB,
2451 ALTIVEC_BUILTIN_VSPLTH,
2452 ALTIVEC_BUILTIN_VSPLTW,
2453 ALTIVEC_BUILTIN_VSPLTISB,
2454 ALTIVEC_BUILTIN_VSPLTISH,
2455 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2456 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2457 ALTIVEC_BUILTIN_VSRH,
2458 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2459 ALTIVEC_BUILTIN_VSRAB,
2460 ALTIVEC_BUILTIN_VSRAH,
2461 ALTIVEC_BUILTIN_VSRAW,
2462 ALTIVEC_BUILTIN_VSR,
2463 ALTIVEC_BUILTIN_VSRO,
2464 ALTIVEC_BUILTIN_VSUBUBM,
2465 ALTIVEC_BUILTIN_VSUBUHM,
2466 ALTIVEC_BUILTIN_VSUBUWM,
2467 ALTIVEC_BUILTIN_VSUBFP,
2468 ALTIVEC_BUILTIN_VSUBCUW,
2469 ALTIVEC_BUILTIN_VSUBUBS,
2470 ALTIVEC_BUILTIN_VSUBSBS,
2471 ALTIVEC_BUILTIN_VSUBUHS,
2472 ALTIVEC_BUILTIN_VSUBSHS,
2473 ALTIVEC_BUILTIN_VSUBUWS,
2474 ALTIVEC_BUILTIN_VSUBSWS,
2475 ALTIVEC_BUILTIN_VSUM4UBS,
2476 ALTIVEC_BUILTIN_VSUM4SBS,
2477 ALTIVEC_BUILTIN_VSUM4SHS,
2478 ALTIVEC_BUILTIN_VSUM2SWS,
2479 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2480 ALTIVEC_BUILTIN_VXOR,
2481 ALTIVEC_BUILTIN_VSLDOI_16QI,
2482 ALTIVEC_BUILTIN_VSLDOI_8HI,
2483 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2484 ALTIVEC_BUILTIN_VSLDOI_4SF,
2485 ALTIVEC_BUILTIN_VUPKHSB,
2486 ALTIVEC_BUILTIN_VUPKHPX,
2487 ALTIVEC_BUILTIN_VUPKHSH,
2488 ALTIVEC_BUILTIN_VUPKLSB,
2489 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 2490 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
2491 ALTIVEC_BUILTIN_MTVSCR,
2492 ALTIVEC_BUILTIN_MFVSCR,
2493 ALTIVEC_BUILTIN_DSSALL,
2494 ALTIVEC_BUILTIN_DSS,
2495 ALTIVEC_BUILTIN_LVSL,
2496 ALTIVEC_BUILTIN_LVSR,
2497 ALTIVEC_BUILTIN_DSTT,
2498 ALTIVEC_BUILTIN_DSTST,
2499 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
2500 ALTIVEC_BUILTIN_DST,
2501 ALTIVEC_BUILTIN_LVEBX,
2502 ALTIVEC_BUILTIN_LVEHX,
2503 ALTIVEC_BUILTIN_LVEWX,
2504 ALTIVEC_BUILTIN_LVXL,
2505 ALTIVEC_BUILTIN_LVX,
2506 ALTIVEC_BUILTIN_STVX,
2507 ALTIVEC_BUILTIN_STVEBX,
2508 ALTIVEC_BUILTIN_STVEHX,
2509 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
2510 ALTIVEC_BUILTIN_STVXL,
2511 ALTIVEC_BUILTIN_VCMPBFP_P,
2512 ALTIVEC_BUILTIN_VCMPEQFP_P,
2513 ALTIVEC_BUILTIN_VCMPEQUB_P,
2514 ALTIVEC_BUILTIN_VCMPEQUH_P,
2515 ALTIVEC_BUILTIN_VCMPEQUW_P,
2516 ALTIVEC_BUILTIN_VCMPGEFP_P,
2517 ALTIVEC_BUILTIN_VCMPGTFP_P,
2518 ALTIVEC_BUILTIN_VCMPGTSB_P,
2519 ALTIVEC_BUILTIN_VCMPGTSH_P,
2520 ALTIVEC_BUILTIN_VCMPGTSW_P,
2521 ALTIVEC_BUILTIN_VCMPGTUB_P,
2522 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
2523 ALTIVEC_BUILTIN_VCMPGTUW_P,
2524 ALTIVEC_BUILTIN_ABSS_V4SI,
2525 ALTIVEC_BUILTIN_ABSS_V8HI,
2526 ALTIVEC_BUILTIN_ABSS_V16QI,
2527 ALTIVEC_BUILTIN_ABS_V4SI,
2528 ALTIVEC_BUILTIN_ABS_V4SF,
2529 ALTIVEC_BUILTIN_ABS_V8HI,
8bb418a3 2530 ALTIVEC_BUILTIN_ABS_V16QI,
7ccf35ed
DN
2531 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2532 ALTIVEC_BUILTIN_MASK_FOR_STORE,
7a4eca66
DE
2533 ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2534 ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2535 ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2536 ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2537 ALTIVEC_BUILTIN_VEC_SET_V4SI,
2538 ALTIVEC_BUILTIN_VEC_SET_V8HI,
2539 ALTIVEC_BUILTIN_VEC_SET_V16QI,
2540 ALTIVEC_BUILTIN_VEC_SET_V4SF,
2541 ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2542 ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2543 ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2544 ALTIVEC_BUILTIN_VEC_EXT_V4SF,
8bb418a3 2545
58646b77
PB
2546 /* Altivec overloaded builtins. */
2547 ALTIVEC_BUILTIN_VCMPEQ_P,
2548 ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2549 ALTIVEC_BUILTIN_VCMPGT_P,
2550 ALTIVEC_BUILTIN_VCMPGE_P,
2551 ALTIVEC_BUILTIN_VEC_ABS,
2552 ALTIVEC_BUILTIN_VEC_ABSS,
2553 ALTIVEC_BUILTIN_VEC_ADD,
2554 ALTIVEC_BUILTIN_VEC_ADDC,
2555 ALTIVEC_BUILTIN_VEC_ADDS,
2556 ALTIVEC_BUILTIN_VEC_AND,
2557 ALTIVEC_BUILTIN_VEC_ANDC,
2558 ALTIVEC_BUILTIN_VEC_AVG,
2559 ALTIVEC_BUILTIN_VEC_CEIL,
2560 ALTIVEC_BUILTIN_VEC_CMPB,
2561 ALTIVEC_BUILTIN_VEC_CMPEQ,
2562 ALTIVEC_BUILTIN_VEC_CMPEQUB,
2563 ALTIVEC_BUILTIN_VEC_CMPEQUH,
2564 ALTIVEC_BUILTIN_VEC_CMPEQUW,
2565 ALTIVEC_BUILTIN_VEC_CMPGE,
2566 ALTIVEC_BUILTIN_VEC_CMPGT,
2567 ALTIVEC_BUILTIN_VEC_CMPLE,
2568 ALTIVEC_BUILTIN_VEC_CMPLT,
2569 ALTIVEC_BUILTIN_VEC_CTF,
2570 ALTIVEC_BUILTIN_VEC_CTS,
2571 ALTIVEC_BUILTIN_VEC_CTU,
2572 ALTIVEC_BUILTIN_VEC_DST,
2573 ALTIVEC_BUILTIN_VEC_DSTST,
2574 ALTIVEC_BUILTIN_VEC_DSTSTT,
2575 ALTIVEC_BUILTIN_VEC_DSTT,
2576 ALTIVEC_BUILTIN_VEC_EXPTE,
2577 ALTIVEC_BUILTIN_VEC_FLOOR,
2578 ALTIVEC_BUILTIN_VEC_LD,
2579 ALTIVEC_BUILTIN_VEC_LDE,
2580 ALTIVEC_BUILTIN_VEC_LDL,
2581 ALTIVEC_BUILTIN_VEC_LOGE,
2582 ALTIVEC_BUILTIN_VEC_LVEBX,
2583 ALTIVEC_BUILTIN_VEC_LVEHX,
2584 ALTIVEC_BUILTIN_VEC_LVEWX,
2585 ALTIVEC_BUILTIN_VEC_LVSL,
2586 ALTIVEC_BUILTIN_VEC_LVSR,
2587 ALTIVEC_BUILTIN_VEC_MADD,
2588 ALTIVEC_BUILTIN_VEC_MADDS,
2589 ALTIVEC_BUILTIN_VEC_MAX,
2590 ALTIVEC_BUILTIN_VEC_MERGEH,
2591 ALTIVEC_BUILTIN_VEC_MERGEL,
2592 ALTIVEC_BUILTIN_VEC_MIN,
2593 ALTIVEC_BUILTIN_VEC_MLADD,
2594 ALTIVEC_BUILTIN_VEC_MPERM,
2595 ALTIVEC_BUILTIN_VEC_MRADDS,
2596 ALTIVEC_BUILTIN_VEC_MRGHB,
2597 ALTIVEC_BUILTIN_VEC_MRGHH,
2598 ALTIVEC_BUILTIN_VEC_MRGHW,
2599 ALTIVEC_BUILTIN_VEC_MRGLB,
2600 ALTIVEC_BUILTIN_VEC_MRGLH,
2601 ALTIVEC_BUILTIN_VEC_MRGLW,
2602 ALTIVEC_BUILTIN_VEC_MSUM,
2603 ALTIVEC_BUILTIN_VEC_MSUMS,
2604 ALTIVEC_BUILTIN_VEC_MTVSCR,
2605 ALTIVEC_BUILTIN_VEC_MULE,
2606 ALTIVEC_BUILTIN_VEC_MULO,
2607 ALTIVEC_BUILTIN_VEC_NMSUB,
2608 ALTIVEC_BUILTIN_VEC_NOR,
2609 ALTIVEC_BUILTIN_VEC_OR,
2610 ALTIVEC_BUILTIN_VEC_PACK,
2611 ALTIVEC_BUILTIN_VEC_PACKPX,
2612 ALTIVEC_BUILTIN_VEC_PACKS,
2613 ALTIVEC_BUILTIN_VEC_PACKSU,
2614 ALTIVEC_BUILTIN_VEC_PERM,
2615 ALTIVEC_BUILTIN_VEC_RE,
2616 ALTIVEC_BUILTIN_VEC_RL,
2617 ALTIVEC_BUILTIN_VEC_ROUND,
2618 ALTIVEC_BUILTIN_VEC_RSQRTE,
2619 ALTIVEC_BUILTIN_VEC_SEL,
2620 ALTIVEC_BUILTIN_VEC_SL,
2621 ALTIVEC_BUILTIN_VEC_SLD,
2622 ALTIVEC_BUILTIN_VEC_SLL,
2623 ALTIVEC_BUILTIN_VEC_SLO,
2624 ALTIVEC_BUILTIN_VEC_SPLAT,
2625 ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2626 ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2627 ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2628 ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2629 ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2630 ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2631 ALTIVEC_BUILTIN_VEC_SPLTB,
2632 ALTIVEC_BUILTIN_VEC_SPLTH,
2633 ALTIVEC_BUILTIN_VEC_SPLTW,
2634 ALTIVEC_BUILTIN_VEC_SR,
2635 ALTIVEC_BUILTIN_VEC_SRA,
2636 ALTIVEC_BUILTIN_VEC_SRL,
2637 ALTIVEC_BUILTIN_VEC_SRO,
2638 ALTIVEC_BUILTIN_VEC_ST,
2639 ALTIVEC_BUILTIN_VEC_STE,
2640 ALTIVEC_BUILTIN_VEC_STL,
2641 ALTIVEC_BUILTIN_VEC_STVEBX,
2642 ALTIVEC_BUILTIN_VEC_STVEHX,
2643 ALTIVEC_BUILTIN_VEC_STVEWX,
2644 ALTIVEC_BUILTIN_VEC_SUB,
2645 ALTIVEC_BUILTIN_VEC_SUBC,
2646 ALTIVEC_BUILTIN_VEC_SUBS,
2647 ALTIVEC_BUILTIN_VEC_SUM2S,
2648 ALTIVEC_BUILTIN_VEC_SUM4S,
2649 ALTIVEC_BUILTIN_VEC_SUMS,
2650 ALTIVEC_BUILTIN_VEC_TRUNC,
2651 ALTIVEC_BUILTIN_VEC_UNPACKH,
2652 ALTIVEC_BUILTIN_VEC_UNPACKL,
2653 ALTIVEC_BUILTIN_VEC_VADDFP,
2654 ALTIVEC_BUILTIN_VEC_VADDSBS,
2655 ALTIVEC_BUILTIN_VEC_VADDSHS,
2656 ALTIVEC_BUILTIN_VEC_VADDSWS,
2657 ALTIVEC_BUILTIN_VEC_VADDUBM,
2658 ALTIVEC_BUILTIN_VEC_VADDUBS,
2659 ALTIVEC_BUILTIN_VEC_VADDUHM,
2660 ALTIVEC_BUILTIN_VEC_VADDUHS,
2661 ALTIVEC_BUILTIN_VEC_VADDUWM,
2662 ALTIVEC_BUILTIN_VEC_VADDUWS,
2663 ALTIVEC_BUILTIN_VEC_VAVGSB,
2664 ALTIVEC_BUILTIN_VEC_VAVGSH,
2665 ALTIVEC_BUILTIN_VEC_VAVGSW,
2666 ALTIVEC_BUILTIN_VEC_VAVGUB,
2667 ALTIVEC_BUILTIN_VEC_VAVGUH,
2668 ALTIVEC_BUILTIN_VEC_VAVGUW,
2669 ALTIVEC_BUILTIN_VEC_VCFSX,
2670 ALTIVEC_BUILTIN_VEC_VCFUX,
2671 ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2672 ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2673 ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2674 ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2675 ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2676 ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2677 ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2678 ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2679 ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2680 ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2681 ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2682 ALTIVEC_BUILTIN_VEC_VMAXFP,
2683 ALTIVEC_BUILTIN_VEC_VMAXSB,
2684 ALTIVEC_BUILTIN_VEC_VMAXSH,
2685 ALTIVEC_BUILTIN_VEC_VMAXSW,
2686 ALTIVEC_BUILTIN_VEC_VMAXUB,
2687 ALTIVEC_BUILTIN_VEC_VMAXUH,
2688 ALTIVEC_BUILTIN_VEC_VMAXUW,
2689 ALTIVEC_BUILTIN_VEC_VMINFP,
2690 ALTIVEC_BUILTIN_VEC_VMINSB,
2691 ALTIVEC_BUILTIN_VEC_VMINSH,
2692 ALTIVEC_BUILTIN_VEC_VMINSW,
2693 ALTIVEC_BUILTIN_VEC_VMINUB,
2694 ALTIVEC_BUILTIN_VEC_VMINUH,
2695 ALTIVEC_BUILTIN_VEC_VMINUW,
2696 ALTIVEC_BUILTIN_VEC_VMRGHB,
2697 ALTIVEC_BUILTIN_VEC_VMRGHH,
2698 ALTIVEC_BUILTIN_VEC_VMRGHW,
2699 ALTIVEC_BUILTIN_VEC_VMRGLB,
2700 ALTIVEC_BUILTIN_VEC_VMRGLH,
2701 ALTIVEC_BUILTIN_VEC_VMRGLW,
2702 ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2703 ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2704 ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2705 ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2706 ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2707 ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2708 ALTIVEC_BUILTIN_VEC_VMULESB,
2709 ALTIVEC_BUILTIN_VEC_VMULESH,
2710 ALTIVEC_BUILTIN_VEC_VMULEUB,
2711 ALTIVEC_BUILTIN_VEC_VMULEUH,
2712 ALTIVEC_BUILTIN_VEC_VMULOSB,
2713 ALTIVEC_BUILTIN_VEC_VMULOSH,
2714 ALTIVEC_BUILTIN_VEC_VMULOUB,
2715 ALTIVEC_BUILTIN_VEC_VMULOUH,
2716 ALTIVEC_BUILTIN_VEC_VPKSHSS,
2717 ALTIVEC_BUILTIN_VEC_VPKSHUS,
2718 ALTIVEC_BUILTIN_VEC_VPKSWSS,
2719 ALTIVEC_BUILTIN_VEC_VPKSWUS,
2720 ALTIVEC_BUILTIN_VEC_VPKUHUM,
2721 ALTIVEC_BUILTIN_VEC_VPKUHUS,
2722 ALTIVEC_BUILTIN_VEC_VPKUWUM,
2723 ALTIVEC_BUILTIN_VEC_VPKUWUS,
2724 ALTIVEC_BUILTIN_VEC_VRLB,
2725 ALTIVEC_BUILTIN_VEC_VRLH,
2726 ALTIVEC_BUILTIN_VEC_VRLW,
2727 ALTIVEC_BUILTIN_VEC_VSLB,
2728 ALTIVEC_BUILTIN_VEC_VSLH,
2729 ALTIVEC_BUILTIN_VEC_VSLW,
2730 ALTIVEC_BUILTIN_VEC_VSPLTB,
2731 ALTIVEC_BUILTIN_VEC_VSPLTH,
2732 ALTIVEC_BUILTIN_VEC_VSPLTW,
2733 ALTIVEC_BUILTIN_VEC_VSRAB,
2734 ALTIVEC_BUILTIN_VEC_VSRAH,
2735 ALTIVEC_BUILTIN_VEC_VSRAW,
2736 ALTIVEC_BUILTIN_VEC_VSRB,
2737 ALTIVEC_BUILTIN_VEC_VSRH,
2738 ALTIVEC_BUILTIN_VEC_VSRW,
2739 ALTIVEC_BUILTIN_VEC_VSUBFP,
2740 ALTIVEC_BUILTIN_VEC_VSUBSBS,
2741 ALTIVEC_BUILTIN_VEC_VSUBSHS,
2742 ALTIVEC_BUILTIN_VEC_VSUBSWS,
2743 ALTIVEC_BUILTIN_VEC_VSUBUBM,
2744 ALTIVEC_BUILTIN_VEC_VSUBUBS,
2745 ALTIVEC_BUILTIN_VEC_VSUBUHM,
2746 ALTIVEC_BUILTIN_VEC_VSUBUHS,
2747 ALTIVEC_BUILTIN_VEC_VSUBUWM,
2748 ALTIVEC_BUILTIN_VEC_VSUBUWS,
2749 ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2750 ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2751 ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2752 ALTIVEC_BUILTIN_VEC_VUPKHPX,
2753 ALTIVEC_BUILTIN_VEC_VUPKHSB,
2754 ALTIVEC_BUILTIN_VEC_VUPKHSH,
2755 ALTIVEC_BUILTIN_VEC_VUPKLPX,
2756 ALTIVEC_BUILTIN_VEC_VUPKLSB,
2757 ALTIVEC_BUILTIN_VEC_VUPKLSH,
2758 ALTIVEC_BUILTIN_VEC_XOR,
2759 ALTIVEC_BUILTIN_VEC_STEP,
2760 ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_STEP,
2761
a3170dc6 2762 /* SPE builtins. */
8bb418a3 2763 SPE_BUILTIN_EVADDW,
a3170dc6
AH
2764 SPE_BUILTIN_EVAND,
2765 SPE_BUILTIN_EVANDC,
2766 SPE_BUILTIN_EVDIVWS,
2767 SPE_BUILTIN_EVDIVWU,
2768 SPE_BUILTIN_EVEQV,
2769 SPE_BUILTIN_EVFSADD,
2770 SPE_BUILTIN_EVFSDIV,
2771 SPE_BUILTIN_EVFSMUL,
2772 SPE_BUILTIN_EVFSSUB,
2773 SPE_BUILTIN_EVLDDX,
2774 SPE_BUILTIN_EVLDHX,
2775 SPE_BUILTIN_EVLDWX,
2776 SPE_BUILTIN_EVLHHESPLATX,
2777 SPE_BUILTIN_EVLHHOSSPLATX,
2778 SPE_BUILTIN_EVLHHOUSPLATX,
2779 SPE_BUILTIN_EVLWHEX,
2780 SPE_BUILTIN_EVLWHOSX,
2781 SPE_BUILTIN_EVLWHOUX,
2782 SPE_BUILTIN_EVLWHSPLATX,
2783 SPE_BUILTIN_EVLWWSPLATX,
2784 SPE_BUILTIN_EVMERGEHI,
2785 SPE_BUILTIN_EVMERGEHILO,
2786 SPE_BUILTIN_EVMERGELO,
2787 SPE_BUILTIN_EVMERGELOHI,
2788 SPE_BUILTIN_EVMHEGSMFAA,
2789 SPE_BUILTIN_EVMHEGSMFAN,
2790 SPE_BUILTIN_EVMHEGSMIAA,
2791 SPE_BUILTIN_EVMHEGSMIAN,
2792 SPE_BUILTIN_EVMHEGUMIAA,
2793 SPE_BUILTIN_EVMHEGUMIAN,
2794 SPE_BUILTIN_EVMHESMF,
2795 SPE_BUILTIN_EVMHESMFA,
2796 SPE_BUILTIN_EVMHESMFAAW,
2797 SPE_BUILTIN_EVMHESMFANW,
2798 SPE_BUILTIN_EVMHESMI,
2799 SPE_BUILTIN_EVMHESMIA,
2800 SPE_BUILTIN_EVMHESMIAAW,
2801 SPE_BUILTIN_EVMHESMIANW,
2802 SPE_BUILTIN_EVMHESSF,
2803 SPE_BUILTIN_EVMHESSFA,
2804 SPE_BUILTIN_EVMHESSFAAW,
2805 SPE_BUILTIN_EVMHESSFANW,
2806 SPE_BUILTIN_EVMHESSIAAW,
2807 SPE_BUILTIN_EVMHESSIANW,
2808 SPE_BUILTIN_EVMHEUMI,
2809 SPE_BUILTIN_EVMHEUMIA,
2810 SPE_BUILTIN_EVMHEUMIAAW,
2811 SPE_BUILTIN_EVMHEUMIANW,
2812 SPE_BUILTIN_EVMHEUSIAAW,
2813 SPE_BUILTIN_EVMHEUSIANW,
2814 SPE_BUILTIN_EVMHOGSMFAA,
2815 SPE_BUILTIN_EVMHOGSMFAN,
2816 SPE_BUILTIN_EVMHOGSMIAA,
2817 SPE_BUILTIN_EVMHOGSMIAN,
2818 SPE_BUILTIN_EVMHOGUMIAA,
2819 SPE_BUILTIN_EVMHOGUMIAN,
2820 SPE_BUILTIN_EVMHOSMF,
2821 SPE_BUILTIN_EVMHOSMFA,
2822 SPE_BUILTIN_EVMHOSMFAAW,
2823 SPE_BUILTIN_EVMHOSMFANW,
2824 SPE_BUILTIN_EVMHOSMI,
2825 SPE_BUILTIN_EVMHOSMIA,
2826 SPE_BUILTIN_EVMHOSMIAAW,
2827 SPE_BUILTIN_EVMHOSMIANW,
2828 SPE_BUILTIN_EVMHOSSF,
2829 SPE_BUILTIN_EVMHOSSFA,
2830 SPE_BUILTIN_EVMHOSSFAAW,
2831 SPE_BUILTIN_EVMHOSSFANW,
2832 SPE_BUILTIN_EVMHOSSIAAW,
2833 SPE_BUILTIN_EVMHOSSIANW,
2834 SPE_BUILTIN_EVMHOUMI,
2835 SPE_BUILTIN_EVMHOUMIA,
2836 SPE_BUILTIN_EVMHOUMIAAW,
2837 SPE_BUILTIN_EVMHOUMIANW,
2838 SPE_BUILTIN_EVMHOUSIAAW,
2839 SPE_BUILTIN_EVMHOUSIANW,
2840 SPE_BUILTIN_EVMWHSMF,
2841 SPE_BUILTIN_EVMWHSMFA,
2842 SPE_BUILTIN_EVMWHSMI,
2843 SPE_BUILTIN_EVMWHSMIA,
2844 SPE_BUILTIN_EVMWHSSF,
2845 SPE_BUILTIN_EVMWHSSFA,
2846 SPE_BUILTIN_EVMWHUMI,
2847 SPE_BUILTIN_EVMWHUMIA,
a3170dc6
AH
2848 SPE_BUILTIN_EVMWLSMIAAW,
2849 SPE_BUILTIN_EVMWLSMIANW,
a3170dc6
AH
2850 SPE_BUILTIN_EVMWLSSIAAW,
2851 SPE_BUILTIN_EVMWLSSIANW,
2852 SPE_BUILTIN_EVMWLUMI,
2853 SPE_BUILTIN_EVMWLUMIA,
2854 SPE_BUILTIN_EVMWLUMIAAW,
2855 SPE_BUILTIN_EVMWLUMIANW,
2856 SPE_BUILTIN_EVMWLUSIAAW,
2857 SPE_BUILTIN_EVMWLUSIANW,
2858 SPE_BUILTIN_EVMWSMF,
2859 SPE_BUILTIN_EVMWSMFA,
2860 SPE_BUILTIN_EVMWSMFAA,
2861 SPE_BUILTIN_EVMWSMFAN,
2862 SPE_BUILTIN_EVMWSMI,
2863 SPE_BUILTIN_EVMWSMIA,
2864 SPE_BUILTIN_EVMWSMIAA,
2865 SPE_BUILTIN_EVMWSMIAN,
2866 SPE_BUILTIN_EVMWHSSFAA,
2867 SPE_BUILTIN_EVMWSSF,
2868 SPE_BUILTIN_EVMWSSFA,
2869 SPE_BUILTIN_EVMWSSFAA,
2870 SPE_BUILTIN_EVMWSSFAN,
2871 SPE_BUILTIN_EVMWUMI,
2872 SPE_BUILTIN_EVMWUMIA,
2873 SPE_BUILTIN_EVMWUMIAA,
2874 SPE_BUILTIN_EVMWUMIAN,
2875 SPE_BUILTIN_EVNAND,
2876 SPE_BUILTIN_EVNOR,
2877 SPE_BUILTIN_EVOR,
2878 SPE_BUILTIN_EVORC,
2879 SPE_BUILTIN_EVRLW,
2880 SPE_BUILTIN_EVSLW,
2881 SPE_BUILTIN_EVSRWS,
2882 SPE_BUILTIN_EVSRWU,
2883 SPE_BUILTIN_EVSTDDX,
2884 SPE_BUILTIN_EVSTDHX,
2885 SPE_BUILTIN_EVSTDWX,
2886 SPE_BUILTIN_EVSTWHEX,
2887 SPE_BUILTIN_EVSTWHOX,
2888 SPE_BUILTIN_EVSTWWEX,
2889 SPE_BUILTIN_EVSTWWOX,
2890 SPE_BUILTIN_EVSUBFW,
2891 SPE_BUILTIN_EVXOR,
2892 SPE_BUILTIN_EVABS,
2893 SPE_BUILTIN_EVADDSMIAAW,
2894 SPE_BUILTIN_EVADDSSIAAW,
2895 SPE_BUILTIN_EVADDUMIAAW,
2896 SPE_BUILTIN_EVADDUSIAAW,
2897 SPE_BUILTIN_EVCNTLSW,
2898 SPE_BUILTIN_EVCNTLZW,
2899 SPE_BUILTIN_EVEXTSB,
2900 SPE_BUILTIN_EVEXTSH,
2901 SPE_BUILTIN_EVFSABS,
2902 SPE_BUILTIN_EVFSCFSF,
2903 SPE_BUILTIN_EVFSCFSI,
2904 SPE_BUILTIN_EVFSCFUF,
2905 SPE_BUILTIN_EVFSCFUI,
2906 SPE_BUILTIN_EVFSCTSF,
2907 SPE_BUILTIN_EVFSCTSI,
2908 SPE_BUILTIN_EVFSCTSIZ,
2909 SPE_BUILTIN_EVFSCTUF,
2910 SPE_BUILTIN_EVFSCTUI,
2911 SPE_BUILTIN_EVFSCTUIZ,
2912 SPE_BUILTIN_EVFSNABS,
2913 SPE_BUILTIN_EVFSNEG,
2914 SPE_BUILTIN_EVMRA,
2915 SPE_BUILTIN_EVNEG,
2916 SPE_BUILTIN_EVRNDW,
2917 SPE_BUILTIN_EVSUBFSMIAAW,
2918 SPE_BUILTIN_EVSUBFSSIAAW,
2919 SPE_BUILTIN_EVSUBFUMIAAW,
2920 SPE_BUILTIN_EVSUBFUSIAAW,
2921 SPE_BUILTIN_EVADDIW,
2922 SPE_BUILTIN_EVLDD,
2923 SPE_BUILTIN_EVLDH,
2924 SPE_BUILTIN_EVLDW,
2925 SPE_BUILTIN_EVLHHESPLAT,
2926 SPE_BUILTIN_EVLHHOSSPLAT,
2927 SPE_BUILTIN_EVLHHOUSPLAT,
2928 SPE_BUILTIN_EVLWHE,
2929 SPE_BUILTIN_EVLWHOS,
2930 SPE_BUILTIN_EVLWHOU,
2931 SPE_BUILTIN_EVLWHSPLAT,
2932 SPE_BUILTIN_EVLWWSPLAT,
2933 SPE_BUILTIN_EVRLWI,
2934 SPE_BUILTIN_EVSLWI,
2935 SPE_BUILTIN_EVSRWIS,
2936 SPE_BUILTIN_EVSRWIU,
2937 SPE_BUILTIN_EVSTDD,
2938 SPE_BUILTIN_EVSTDH,
2939 SPE_BUILTIN_EVSTDW,
2940 SPE_BUILTIN_EVSTWHE,
2941 SPE_BUILTIN_EVSTWHO,
2942 SPE_BUILTIN_EVSTWWE,
2943 SPE_BUILTIN_EVSTWWO,
2944 SPE_BUILTIN_EVSUBIFW,
2945
2946 /* Compares. */
2947 SPE_BUILTIN_EVCMPEQ,
2948 SPE_BUILTIN_EVCMPGTS,
2949 SPE_BUILTIN_EVCMPGTU,
2950 SPE_BUILTIN_EVCMPLTS,
2951 SPE_BUILTIN_EVCMPLTU,
2952 SPE_BUILTIN_EVFSCMPEQ,
2953 SPE_BUILTIN_EVFSCMPGT,
2954 SPE_BUILTIN_EVFSCMPLT,
2955 SPE_BUILTIN_EVFSTSTEQ,
2956 SPE_BUILTIN_EVFSTSTGT,
2957 SPE_BUILTIN_EVFSTSTLT,
2958
2959 /* EVSEL compares. */
2960 SPE_BUILTIN_EVSEL_CMPEQ,
2961 SPE_BUILTIN_EVSEL_CMPGTS,
2962 SPE_BUILTIN_EVSEL_CMPGTU,
2963 SPE_BUILTIN_EVSEL_CMPLTS,
2964 SPE_BUILTIN_EVSEL_CMPLTU,
2965 SPE_BUILTIN_EVSEL_FSCMPEQ,
2966 SPE_BUILTIN_EVSEL_FSCMPGT,
2967 SPE_BUILTIN_EVSEL_FSCMPLT,
2968 SPE_BUILTIN_EVSEL_FSTSTEQ,
2969 SPE_BUILTIN_EVSEL_FSTSTGT,
2970 SPE_BUILTIN_EVSEL_FSTSTLT,
2971
2972 SPE_BUILTIN_EVSPLATFI,
2973 SPE_BUILTIN_EVSPLATI,
2974 SPE_BUILTIN_EVMWHSSMAA,
2975 SPE_BUILTIN_EVMWHSMFAA,
2976 SPE_BUILTIN_EVMWHSMIAA,
2977 SPE_BUILTIN_EVMWHUSIAA,
2978 SPE_BUILTIN_EVMWHUMIAA,
2979 SPE_BUILTIN_EVMWHSSFAN,
2980 SPE_BUILTIN_EVMWHSSIAN,
2981 SPE_BUILTIN_EVMWHSMFAN,
2982 SPE_BUILTIN_EVMWHSMIAN,
2983 SPE_BUILTIN_EVMWHUSIAN,
2984 SPE_BUILTIN_EVMWHUMIAN,
2985 SPE_BUILTIN_EVMWHGSSFAA,
2986 SPE_BUILTIN_EVMWHGSMFAA,
2987 SPE_BUILTIN_EVMWHGSMIAA,
2988 SPE_BUILTIN_EVMWHGUMIAA,
2989 SPE_BUILTIN_EVMWHGSSFAN,
2990 SPE_BUILTIN_EVMWHGSMFAN,
2991 SPE_BUILTIN_EVMWHGSMIAN,
2992 SPE_BUILTIN_EVMWHGUMIAN,
2993 SPE_BUILTIN_MTSPEFSCR,
2994 SPE_BUILTIN_MFSPEFSCR,
58646b77
PB
2995 SPE_BUILTIN_BRINC,
2996
2997 RS6000_BUILTIN_COUNT
2998};
2999
3000enum rs6000_builtin_type_index
3001{
3002 RS6000_BTI_NOT_OPAQUE,
3003 RS6000_BTI_opaque_V2SI,
3004 RS6000_BTI_opaque_V2SF,
3005 RS6000_BTI_opaque_p_V2SI,
3006 RS6000_BTI_opaque_V4SI,
3007 RS6000_BTI_V16QI,
3008 RS6000_BTI_V2SI,
3009 RS6000_BTI_V2SF,
3010 RS6000_BTI_V4HI,
3011 RS6000_BTI_V4SI,
3012 RS6000_BTI_V4SF,
3013 RS6000_BTI_V8HI,
3014 RS6000_BTI_unsigned_V16QI,
3015 RS6000_BTI_unsigned_V8HI,
3016 RS6000_BTI_unsigned_V4SI,
3017 RS6000_BTI_bool_char, /* __bool char */
3018 RS6000_BTI_bool_short, /* __bool short */
3019 RS6000_BTI_bool_int, /* __bool int */
3020 RS6000_BTI_pixel, /* __pixel */
3021 RS6000_BTI_bool_V16QI, /* __vector __bool char */
3022 RS6000_BTI_bool_V8HI, /* __vector __bool short */
3023 RS6000_BTI_bool_V4SI, /* __vector __bool int */
3024 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
3025 RS6000_BTI_long, /* long_integer_type_node */
3026 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
3027 RS6000_BTI_INTQI, /* intQI_type_node */
3028 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
3029 RS6000_BTI_INTHI, /* intHI_type_node */
3030 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
3031 RS6000_BTI_INTSI, /* intSI_type_node */
3032 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
3033 RS6000_BTI_float, /* float_type_node */
3034 RS6000_BTI_void, /* void_type_node */
3035 RS6000_BTI_MAX
0ac081f6 3036};
58646b77
PB
3037
3038
3039#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
3040#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
3041#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
3042#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
3043#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
3044#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
3045#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
3046#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
3047#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
3048#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
3049#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
3050#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
3051#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
3052#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
3053#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
3054#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
3055#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
3056#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
3057#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
3058#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
3059#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
3060#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
3061
3062#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
3063#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
3064#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
3065#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
3066#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
3067#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
3068#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
3069#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
3070#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
3071#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
3072
3073extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3074extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
3075