]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
c++config (__USE_MALLOC): Report case where the user improperly defined it on the...
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
16c484c7 3 2000, 2001, 2002 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
f045b2c9
RS
22
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
8e3f41e7
MM
44/* Default string to use for cpu if not specified. */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
f984d8df
DB
49/* Common CPP definitions used by CPP_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51#define CPP_CPU_SPEC \
52"%{!mcpu*: \
53 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
54 %{mpower2: -D_ARCH_PWR2} \
55 %{mpowerpc*: -D_ARCH_PPC} \
56 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
57 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
58%{mcpu=common: -D_ARCH_COM} \
59%{mcpu=power: -D_ARCH_PWR} \
60%{mcpu=power2: -D_ARCH_PWR2} \
61%{mcpu=powerpc: -D_ARCH_PPC} \
62%{mcpu=rios: -D_ARCH_PWR} \
63%{mcpu=rios1: -D_ARCH_PWR} \
64%{mcpu=rios2: -D_ARCH_PWR2} \
65%{mcpu=rsc: -D_ARCH_PWR} \
66%{mcpu=rsc1: -D_ARCH_PWR} \
67%{mcpu=401: -D_ARCH_PPC} \
68%{mcpu=403: -D_ARCH_PPC} \
3b370352 69%{mcpu=405: -D_ARCH_PPC} \
f984d8df
DB
70%{mcpu=505: -D_ARCH_PPC} \
71%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
72%{mcpu=602: -D_ARCH_PPC} \
73%{mcpu=603: -D_ARCH_PPC} \
74%{mcpu=603e: -D_ARCH_PPC} \
75%{mcpu=ec603e: -D_ARCH_PPC} \
76%{mcpu=604: -D_ARCH_PPC} \
77%{mcpu=604e: -D_ARCH_PPC} \
78%{mcpu=620: -D_ARCH_PPC} \
79%{mcpu=740: -D_ARCH_PPC} \
fd3b43f2 80%{mcpu=7400: -D_ARCH_PPC} \
f18c054f 81%{mcpu=7450: -D_ARCH_PPC} \
f984d8df
DB
82%{mcpu=750: -D_ARCH_PPC} \
83%{mcpu=801: -D_ARCH_PPC} \
84%{mcpu=821: -D_ARCH_PPC} \
85%{mcpu=823: -D_ARCH_PPC} \
0ac081f6
AH
86%{mcpu=860: -D_ARCH_PPC} \
87%{maltivec: -D__ALTIVEC__}"
f984d8df
DB
88
89/* Common ASM definitions used by ASM_SPEC among the various targets
90 for handling -mcpu=xxx switches. */
91#define ASM_CPU_SPEC \
92"%{!mcpu*: \
93 %{mpower: %{!mpower2: -mpwr}} \
94 %{mpower2: -mpwrx} \
95 %{mpowerpc*: -mppc} \
96 %{mno-power: %{!mpowerpc*: -mcom}} \
97 %{!mno-power: %{!mpower2: %(asm_default)}}} \
98%{mcpu=common: -mcom} \
99%{mcpu=power: -mpwr} \
100%{mcpu=power2: -mpwrx} \
101%{mcpu=powerpc: -mppc} \
102%{mcpu=rios: -mpwr} \
103%{mcpu=rios1: -mpwr} \
104%{mcpu=rios2: -mpwrx} \
105%{mcpu=rsc: -mpwr} \
106%{mcpu=rsc1: -mpwr} \
107%{mcpu=401: -mppc} \
108%{mcpu=403: -mppc} \
3b370352 109%{mcpu=405: -mppc} \
f984d8df
DB
110%{mcpu=505: -mppc} \
111%{mcpu=601: -m601} \
112%{mcpu=602: -mppc} \
113%{mcpu=603: -mppc} \
114%{mcpu=603e: -mppc} \
115%{mcpu=ec603e: -mppc} \
116%{mcpu=604: -mppc} \
117%{mcpu=604e: -mppc} \
118%{mcpu=620: -mppc} \
119%{mcpu=740: -mppc} \
fd3b43f2 120%{mcpu=7400: -mppc} \
f18c054f 121%{mcpu=7450: -mppc} \
f984d8df
DB
122%{mcpu=750: -mppc} \
123%{mcpu=801: -mppc} \
124%{mcpu=821: -mppc} \
125%{mcpu=823: -mppc} \
775db490
AH
126%{mcpu=860: -mppc} \
127%{maltivec: -maltivec}"
f984d8df
DB
128
129#define CPP_DEFAULT_SPEC ""
130
131#define ASM_DEFAULT_SPEC ""
132
841faeed
MM
133/* This macro defines names of additional specifications to put in the specs
134 that can be used in various specifications like CC1_SPEC. Its definition
135 is an initializer with a subgrouping for each command option.
136
137 Each subgrouping contains a string constant, that defines the
138 specification name, and a string constant that used by the GNU CC driver
139 program.
140
141 Do not define this macro if it does not need to do anything. */
142
7509c759 143#define SUBTARGET_EXTRA_SPECS
7509c759 144
c81bebd7
MM
145#define EXTRA_SPECS \
146 { "cpp_cpu", CPP_CPU_SPEC }, \
147 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
148 { "asm_cpu", ASM_CPU_SPEC }, \
149 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
150 SUBTARGET_EXTRA_SPECS
151
fb623df5 152/* Architecture type. */
f045b2c9 153
fb623df5
RK
154extern int target_flags;
155
156/* Use POWER architecture instructions and MQ register. */
38c1f2d7 157#define MASK_POWER 0x00000001
fb623df5 158
6febd581 159/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 160#define MASK_POWER2 0x00000002
6febd581 161
fb623df5 162/* Use PowerPC architecture instructions. */
38c1f2d7 163#define MASK_POWERPC 0x00000004
6febd581 164
583cf4db 165/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 166#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
167
168/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 169#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 170
fb623df5 171/* Use PowerPC-64 architecture instructions. */
38c1f2d7 172#define MASK_POWERPC64 0x00000020
f045b2c9 173
fb623df5 174/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 175#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
176
177/* Disable placing fp constants in the TOC; can be turned on when the
178 TOC overflows. */
38c1f2d7 179#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 180
0b9ccabc
RK
181/* Disable placing symbol+offset constants in the TOC; can be turned on when
182 the TOC overflows. */
38c1f2d7 183#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 184
fb623df5 185/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
186 there are more than 16K unique variables/constants in an executable. With
187 this option, linking fails only if there are more than 16K modules, or
188 if there are more than 16K unique variables/constant in a single module.
189
190 This is at the cost of having 2 extra loads and one extra store per
956d6950 191 function, and one less allocable register. */
38c1f2d7 192#define MASK_MINIMAL_TOC 0x00000200
642a35f1 193
b1765bde 194/* Nonzero for the 64bit model: longs and pointers are 64 bits. */
38c1f2d7 195#define MASK_64BIT 0x00000400
9e654916 196
f85f4585 197/* Disable use of FPRs. */
38c1f2d7 198#define MASK_SOFT_FLOAT 0x00000800
f85f4585 199
4d30c363 200/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
201#define MASK_MULTIPLE 0x00001000
202#define MASK_MULTIPLE_SET 0x00002000
4d30c363 203
7e69e155 204/* Use string instructions for block moves */
38c1f2d7
MM
205#define MASK_STRING 0x00004000
206#define MASK_STRING_SET 0x00008000
7e69e155 207
38c1f2d7
MM
208/* Disable update form of load/store */
209#define MASK_NO_UPDATE 0x00010000
210
211/* Disable fused multiply/add operations */
212#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 213
9ebbca7d
GK
214/* Nonzero if we need to schedule the prolog and epilog. */
215#define MASK_SCHED_PROLOG 0x00040000
216
0ac081f6
AH
217/* Use AltiVec instructions. */
218#define MASK_ALTIVEC 0x00080000
219
6fa3f289
ZW
220/* Return small structures in memory (as the AIX ABI requires). */
221#define MASK_AIX_STRUCT_RET 0x00100000
222#define MASK_AIX_STRUCT_RET_SET 0x00200000
0ac081f6 223
6fa3f289
ZW
224/* The only remaining free bit is 0x00400000. sysv4.h uses
225 0x00800000 -> 0x40000000, and 0x80000000 is not available
226 because target_flags is signed. */
06f4e019 227
7e69e155
MM
228#define TARGET_POWER (target_flags & MASK_POWER)
229#define TARGET_POWER2 (target_flags & MASK_POWER2)
230#define TARGET_POWERPC (target_flags & MASK_POWERPC)
231#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
232#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
233#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
234#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
235#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
236#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
237#define TARGET_64BIT (target_flags & MASK_64BIT)
238#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
239#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
240#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
241#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 242#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
243#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
244#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 245#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 246#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 247#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 248
2f3e5814 249#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 250#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
251#define TARGET_UPDATE (! TARGET_NO_UPDATE)
252#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 253
996ed075
JJ
254#ifdef IN_LIBGCC2
255/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 256#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
257#define TARGET_POWERPC64 1
258#else
259#define TARGET_POWERPC64 0
260#endif
b6c9286a 261#else
9ebbca7d 262#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
263#endif
264
a3950905 265#define TARGET_XL_CALL 0
a3950905 266
fb623df5 267/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 268
fb623df5 269 Macro to define tables used to set the flags.
f045b2c9
RS
270 This is a list in braces of pairs in braces,
271 each pair being { "NAME", VALUE }
272 where VALUE is the bits to set or minus the bits to clear.
273 An empty string NAME is used to identify the default VALUE. */
274
938937d8 275#define TARGET_SWITCHES \
9ebbca7d 276 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 277 N_("Use POWER instruction set")}, \
938937d8 278 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 279 | MASK_POWER2), \
047142d3 280 N_("Use POWER2 instruction set")}, \
9ebbca7d 281 {"no-power2", - MASK_POWER2, \
047142d3 282 N_("Do not use POWER2 instruction set")}, \
938937d8 283 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 284 | MASK_STRING), \
047142d3 285 N_("Do not use POWER instruction set")}, \
9ebbca7d 286 {"powerpc", MASK_POWERPC, \
047142d3 287 N_("Use PowerPC instruction set")}, \
938937d8 288 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 289 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 290 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 291 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 292 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 293 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 294 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 295 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 296 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 297 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 298 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 299 {"powerpc64", MASK_POWERPC64, \
047142d3 300 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 301 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 302 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 303 {"altivec", MASK_ALTIVEC , \
c725bd79 304 N_("Use AltiVec instructions")}, \
f18c054f 305 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 306 N_("Don't use AltiVec instructions")}, \
9ebbca7d 307 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 308 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 309 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 310 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 311 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 312 | MASK_MINIMAL_TOC), \
047142d3 313 N_("Put everything in the regular TOC")}, \
9ebbca7d 314 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 315 N_("Place floating point constants in TOC")}, \
9ebbca7d 316 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 317 N_("Don't place floating point constants in TOC")},\
9ebbca7d 318 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 319 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 320 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 321 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
322 {"minimal-toc", MASK_MINIMAL_TOC, \
323 "Use only one TOC entry per procedure"}, \
324 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 325 ""}, \
9ebbca7d 326 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 327 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 328 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 329 N_("Use hardware fp")}, \
9ebbca7d 330 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 331 N_("Do not use hardware fp")}, \
9ebbca7d 332 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
047142d3 333 N_("Generate load/store multiple instructions")}, \
9ebbca7d 334 {"no-multiple", - MASK_MULTIPLE, \
047142d3 335 N_("Do not generate load/store multiple instructions")},\
9ebbca7d 336 {"no-multiple", MASK_MULTIPLE_SET, \
047142d3 337 ""}, \
9ebbca7d 338 {"string", MASK_STRING | MASK_STRING_SET, \
047142d3 339 N_("Generate string instructions for block moves")},\
9ebbca7d 340 {"no-string", - MASK_STRING, \
047142d3 341 N_("Do not generate string instructions for block moves")},\
9ebbca7d 342 {"no-string", MASK_STRING_SET, \
047142d3 343 ""}, \
9ebbca7d 344 {"update", - MASK_NO_UPDATE, \
047142d3 345 N_("Generate load/store with update instructions")},\
9ebbca7d 346 {"no-update", MASK_NO_UPDATE, \
047142d3 347 N_("Do not generate load/store with update instructions")},\
9ebbca7d 348 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 349 N_("Generate fused multiply/add instructions")},\
9ebbca7d 350 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 351 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
352 {"sched-prolog", MASK_SCHED_PROLOG, \
353 ""}, \
354 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 355 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
356 {"sched-epilog", MASK_SCHED_PROLOG, \
357 ""}, \
358 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
359 ""}, \
6fa3f289
ZW
360 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
361 N_("Return all structures in memory (AIX default)")},\
362 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
363 N_("Return small structures in registers (SVR4 default)")},\
364 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
365 ""},\
366 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
367 ""},\
368 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
369 ""},\
370 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
371 ""},\
938937d8 372 SUBTARGET_SWITCHES \
9ebbca7d
GK
373 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
374 ""}}
fb623df5 375
938937d8 376#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
377
378/* This is meant to be redefined in the host dependent files */
379#define SUBTARGET_SWITCHES
fb623df5 380
cac8ce95 381/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 382enum processor_type
bef84347
VM
383 {
384 PROCESSOR_RIOS1,
385 PROCESSOR_RIOS2,
3cb999d8 386 PROCESSOR_RS64A,
bef84347
VM
387 PROCESSOR_MPCCORE,
388 PROCESSOR_PPC403,
fe7f5677 389 PROCESSOR_PPC405,
bef84347
VM
390 PROCESSOR_PPC601,
391 PROCESSOR_PPC603,
392 PROCESSOR_PPC604,
393 PROCESSOR_PPC604e,
394 PROCESSOR_PPC620,
3cb999d8 395 PROCESSOR_PPC630,
ed947a96
DJ
396 PROCESSOR_PPC750,
397 PROCESSOR_PPC7400,
398 PROCESSOR_PPC7450
bef84347 399};
fb623df5
RK
400
401extern enum processor_type rs6000_cpu;
402
403/* Recast the processor type to the cpu attribute. */
404#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
405
8482e358 406/* Define generic processor types based upon current deployment. */
3cb999d8
DE
407#define PROCESSOR_COMMON PROCESSOR_PPC601
408#define PROCESSOR_POWER PROCESSOR_RIOS1
409#define PROCESSOR_POWERPC PROCESSOR_PPC604
410#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 411
fb623df5 412/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
413#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
414#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 415
6febd581
RK
416/* Specify the dialect of assembler to use. New mnemonics is dialect one
417 and the old mnemonics are dialect zero. */
9ebbca7d 418#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 419
956d6950 420/* This is meant to be overridden in target specific files. */
b6c9286a 421#define SUBTARGET_OPTIONS
b6c9286a 422
9ebbca7d
GK
423#define TARGET_OPTIONS \
424{ \
047142d3
PT
425 {"cpu=", &rs6000_select[1].string, \
426 N_("Use features of and schedule code for given CPU") }, \
427 {"tune=", &rs6000_select[2].string, \
428 N_("Schedule code for given CPU") }, \
429 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
0ac081f6 430 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
6fa3f289
ZW
431 {"long-double-", &rs6000_long_double_size_string, \
432 N_("Specify size of long double (64 or 128 bits)") }, \
08b57fb3
AH
433 {"vrsave=", &rs6000_altivec_vrsave_string, \
434 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
a5c76ee6
ZW
435 {"longcall", &rs6000_longcall_switch, \
436 N_("Avoid all range limits on call instructions") }, \
437 {"no-longcall", &rs6000_longcall_switch, "" }, \
9ebbca7d 438 SUBTARGET_OPTIONS \
b6c9286a 439}
fb623df5 440
ff222560 441/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
442struct rs6000_cpu_select
443{
815cdc52
MM
444 const char *string;
445 const char *name;
8e3f41e7
MM
446 int set_tune_p;
447 int set_arch_p;
448};
449
450extern struct rs6000_cpu_select rs6000_select[];
fb623df5 451
38c1f2d7 452/* Debug support */
0ac081f6 453extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 454extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
455extern int rs6000_debug_stack; /* debug stack applications */
456extern int rs6000_debug_arg; /* debug argument handling */
457
458#define TARGET_DEBUG_STACK rs6000_debug_stack
459#define TARGET_DEBUG_ARG rs6000_debug_arg
460
6fa3f289
ZW
461/* These are separate from target_flags because we've run out of bits
462 there. */
463extern const char *rs6000_long_double_size_string;
464extern int rs6000_long_double_type_size;
465extern int rs6000_altivec_abi;
08b57fb3
AH
466extern const char *rs6000_altivec_vrsave_string;
467extern int rs6000_altivec_vrsave;
a5c76ee6
ZW
468extern const char *rs6000_longcall_switch;
469extern int rs6000_default_long_calls;
6fa3f289
ZW
470
471#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
472#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
08b57fb3 473#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
6fa3f289 474
fb623df5
RK
475/* Sometimes certain combinations of command options do not make sense
476 on a particular target machine. You can define a macro
477 `OVERRIDE_OPTIONS' to take account of this. This macro, if
478 defined, is executed once just after all the command options have
479 been parsed.
480
5accd822
DE
481 Don't use this macro to turn on various extra optimizations for
482 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
483
fb623df5
RK
484 On the RS/6000 this is used to define the target cpu type. */
485
8e3f41e7 486#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 487
5accd822
DE
488/* Define this to change the optimizations performed by default. */
489#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
490
a5c76ee6
ZW
491/* Target pragma. */
492#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
493 cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
494} while (0)
495
4f074454
RK
496/* Show we can debug even without a frame pointer. */
497#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
498\f
499/* target machine storage layout */
500
13d39dbc 501/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 502 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
503 the value is constrained to be within the bounds of the declared
504 type, but kept valid in the wider mode. The signedness of the
505 extension may differ from that of the type. */
506
39403d82
DE
507#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
508 if (GET_MODE_CLASS (MODE) == MODE_INT \
509 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 510 (MODE) = word_mode;
39403d82
DE
511
512/* Define this if function arguments should also be promoted using the above
513 procedure. */
514
515#define PROMOTE_FUNCTION_ARGS
516
517/* Likewise, if the function return value is promoted. */
518
519#define PROMOTE_FUNCTION_RETURN
ef457bda 520
f045b2c9 521/* Define this if most significant bit is lowest numbered
82e41834
KH
522 in instructions that operate on numbered bit-fields. */
523/* That is true on RS/6000. */
f045b2c9
RS
524#define BITS_BIG_ENDIAN 1
525
526/* Define this if most significant byte of a word is the lowest numbered. */
527/* That is true on RS/6000. */
528#define BYTES_BIG_ENDIAN 1
529
530/* Define this if most significant word of a multiword number is lowest
c81bebd7 531 numbered.
f045b2c9
RS
532
533 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 534 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
535#define WORDS_BIG_ENDIAN 1
536
2e360ab3 537#define MAX_BITS_PER_WORD 64
f045b2c9
RS
538
539/* Width of a word, in units (bytes). */
2f3e5814 540#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 541#define MIN_UNITS_PER_WORD 4
2e360ab3 542#define UNITS_PER_FP_WORD 8
0ac081f6 543#define UNITS_PER_ALTIVEC_WORD 16
f045b2c9 544
915f619f
JW
545/* Type used for ptrdiff_t, as a string used in a declaration. */
546#define PTRDIFF_TYPE "int"
547
058ef853
DE
548/* Type used for size_t, as a string used in a declaration. */
549#define SIZE_TYPE "long unsigned int"
550
f045b2c9
RS
551/* Type used for wchar_t, as a string used in a declaration. */
552#define WCHAR_TYPE "short unsigned int"
553
554/* Width of wchar_t in bits. */
555#define WCHAR_TYPE_SIZE 16
556
9e654916
RK
557/* A C expression for the size in bits of the type `short' on the
558 target machine. If you don't define this, the default is half a
559 word. (If this would be less than one storage unit, it is
560 rounded up to one unit.) */
561#define SHORT_TYPE_SIZE 16
562
563/* A C expression for the size in bits of the type `int' on the
564 target machine. If you don't define this, the default is one
565 word. */
19d2d16f 566#define INT_TYPE_SIZE 32
9e654916
RK
567
568/* A C expression for the size in bits of the type `long' on the
569 target machine. If you don't define this, the default is one
570 word. */
2f3e5814 571#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
572#define MAX_LONG_TYPE_SIZE 64
573
574/* A C expression for the size in bits of the type `long long' on the
575 target machine. If you don't define this, the default is two
576 words. */
577#define LONG_LONG_TYPE_SIZE 64
578
9e654916
RK
579/* A C expression for the size in bits of the type `float' on the
580 target machine. If you don't define this, the default is one
581 word. */
582#define FLOAT_TYPE_SIZE 32
583
584/* A C expression for the size in bits of the type `double' on the
585 target machine. If you don't define this, the default is two
586 words. */
587#define DOUBLE_TYPE_SIZE 64
588
589/* A C expression for the size in bits of the type `long double' on
590 the target machine. If you don't define this, the default is two
591 words. */
6fa3f289 592#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
593
594/* Constant which presents upper bound of the above value. */
595#define MAX_LONG_DOUBLE_TYPE_SIZE 128
596
597/* Define this to set long double type size to use in libgcc2.c, which can
598 not depend on target_flags. */
599#ifdef __LONG_DOUBLE_128__
600#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
601#else
602#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
603#endif
9e654916 604
f045b2c9
RS
605/* Width in bits of a pointer.
606 See also the macro `Pmode' defined below. */
2f3e5814 607#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
608
609/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 610#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
611
612/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 613#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
614
615/* Allocation boundary (in *bits*) for the code of a function. */
616#define FUNCTION_BOUNDARY 32
617
618/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
619#define BIGGEST_ALIGNMENT 128
620
621/* A C expression to compute the alignment for a variables in the
622 local store. TYPE is the data type, and ALIGN is the alignment
623 that the object would ordinarily have. */
624#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a4edd584 625 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : ALIGN)
b73fd26c 626
f045b2c9
RS
627/* Alignment of field after `int : 0' in a structure. */
628#define EMPTY_FIELD_BOUNDARY 32
629
630/* Every structure's size must be a multiple of this. */
631#define STRUCTURE_SIZE_BOUNDARY 8
632
633/* A bitfield declared as `int' forces `int' alignment for the struct. */
634#define PCC_BITFIELD_TYPE_MATTERS 1
635
69ef87e2
AH
636/* Make strings word-aligned so strcpy from constants will be faster.
637 Make vector constants quadword aligned. */
638#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
639 (TREE_CODE (EXP) == STRING_CST \
640 && (ALIGN) < BITS_PER_WORD \
641 ? BITS_PER_WORD \
642 : (ALIGN))
f045b2c9 643
0ac081f6
AH
644/* Make arrays of chars word-aligned for the same reasons.
645 Align vectors to 128 bits. */
f045b2c9 646#define DATA_ALIGNMENT(TYPE, ALIGN) \
0ac081f6
AH
647 (TREE_CODE (TYPE) == VECTOR_TYPE ? 128 \
648 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
649 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
650 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
651
fdaff8ba 652/* Non-zero if move instructions will actually fail to work
f045b2c9 653 when given unaligned data. */
fdaff8ba 654#define STRICT_ALIGNMENT 0
e1565e65
DE
655
656/* Define this macro to be the value 1 if unaligned accesses have a cost
657 many times greater than aligned accesses, for example if they are
658 emulated in a trap handler. */
41543739
GK
659#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
660 (STRICT_ALIGNMENT \
661 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
662 && (ALIGN) < 32))
f045b2c9
RS
663\f
664/* Standard register usage. */
665
666/* Number of actual hardware registers.
667 The hardware registers are assigned numbers for the compiler
668 from 0 to just below FIRST_PSEUDO_REGISTER.
669 All registers that the compiler knows about must be given numbers,
670 even those that are not normally considered general registers.
671
672 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
673 an MQ register, a count register, a link register, and 8 condition
674 register fields, which we view here as separate registers.
675
676 In addition, the difference between the frame and argument pointers is
677 a function of the number of registers saved, so we need to have a
678 register for AP that will later be eliminated in favor of SP or FP.
802a0058 679 This is a normal register, but it is fixed.
f045b2c9 680
802a0058
MM
681 We also create a pseudo register for float/int conversions, that will
682 really represent the memory location used. It is represented here as
683 a register, in order to work around problems in allocating stack storage
684 in inline functions. */
685
0ac081f6 686#define FIRST_PSEUDO_REGISTER 110
f045b2c9 687
d6a7951f 688/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 689#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 690
f045b2c9
RS
691/* 1 for registers that have pervasive standard uses
692 and are not available for the register allocator.
693
5dead3e5
DJ
694 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
695 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 696
a127c4e5
RK
697 cr5 is not supposed to be used.
698
699 On System V implementations, r13 is fixed and not available for use. */
700
f045b2c9 701#define FIXED_REGISTERS \
5dead3e5 702 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
703 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
704 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
705 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
706 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
707 /* AltiVec registers. */ \
708 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
709 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
2473ee11 710 1 \
0ac081f6 711}
f045b2c9
RS
712
713/* 1 for registers not available across function calls.
714 These must include the FIXED_REGISTERS and also any
715 registers that can be used without being saved.
716 The latter must include the registers where values are returned
717 and the register where structure-value addresses are passed.
718 Aside from that, you can include as many other registers as you like. */
719
720#define CALL_USED_REGISTERS \
a127c4e5 721 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
722 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
723 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
724 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
725 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
726 /* AltiVec registers. */ \
727 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
728 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
2473ee11 729 1 \
0ac081f6
AH
730}
731
289e96b2
AH
732/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
733 the entire set of `FIXED_REGISTERS' be included.
734 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
735 This macro is optional. If not specified, it defaults to the value
736 of `CALL_USED_REGISTERS'. */
737
738#define CALL_REALLY_USED_REGISTERS \
739 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
741 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
742 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
743 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
744 /* AltiVec registers. */ \
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
747 0 \
748}
f045b2c9 749
9ebbca7d
GK
750#define MQ_REGNO 64
751#define CR0_REGNO 68
752#define CR1_REGNO 69
753#define CR2_REGNO 70
754#define CR3_REGNO 71
755#define CR4_REGNO 72
756#define MAX_CR_REGNO 75
757#define XER_REGNO 76
0ac081f6
AH
758#define FIRST_ALTIVEC_REGNO 77
759#define LAST_ALTIVEC_REGNO 108
28bcfd4d 760#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 761#define VRSAVE_REGNO 109
9ebbca7d 762
f045b2c9
RS
763/* List the order in which to allocate registers. Each register must be
764 listed once, even those in FIXED_REGISTERS.
765
766 We allocate in the following order:
767 fp0 (not saved or used for anything)
768 fp13 - fp2 (not saved; incoming fp arg registers)
769 fp1 (not saved; return value)
770 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
771 cr7, cr6 (not saved or special)
772 cr1 (not saved, but used for FP operations)
f045b2c9 773 cr0 (not saved, but used for arithmetic operations)
5accd822 774 cr4, cr3, cr2 (saved)
f045b2c9
RS
775 r0 (not saved; cannot be base reg)
776 r9 (not saved; best for TImode)
777 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
778 r3 (not saved; return value register)
779 r31 - r13 (saved; order given to save least number)
780 r12 (not saved; if used for DImode or DFmode would use r13)
781 mq (not saved; best to use it if we can)
782 ctr (not saved; when we have the choice ctr is better)
783 lr (saved)
0ac081f6
AH
784 cr5, r1, r2, ap, xer, vrsave (fixed)
785
786 AltiVec registers:
787 v0 - v1 (not saved or used for anything)
788 v13 - v3 (not saved; incoming vector arg registers)
789 v2 (not saved; incoming vector arg reg; return value)
790 v19 - v14 (not saved or used for anything)
791 v31 - v20 (saved; order given to save least number)
792*/
793
f045b2c9
RS
794
795#define REG_ALLOC_ORDER \
796 {32, \
797 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
798 33, \
799 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
800 50, 49, 48, 47, 46, \
5accd822 801 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
802 0, \
803 9, 11, 10, 8, 7, 6, 5, 4, \
804 3, \
805 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
806 18, 17, 16, 15, 14, 13, 12, \
807 64, 66, 65, \
0ac081f6
AH
808 73, 1, 2, 67, 76, \
809 /* AltiVec registers. */ \
810 77, 78, \
811 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
812 79, \
813 96, 95, 94, 93, 92, 91, \
58568475
AH
814 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
815 97, 109 \
0ac081f6 816}
f045b2c9
RS
817
818/* True if register is floating-point. */
819#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
820
821/* True if register is a condition register. */
822#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
823
815cdc52
MM
824/* True if register is a condition register, but not cr0. */
825#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
826
f045b2c9 827/* True if register is an integer register. */
9ebbca7d 828#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 829
0d86f538 830/* True if register is the XER register. */
9ebbca7d 831#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 832
0ac081f6
AH
833/* True if register is an AltiVec register. */
834#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
835
f045b2c9
RS
836/* Return number of consecutive hard regs needed starting at reg REGNO
837 to hold something of mode MODE.
838 This is ordinarily the length in words of a value of mode MODE
839 but can be less for certain modes in special long registers.
840
a260abc9
DE
841 POWER and PowerPC GPRs hold 32 bits worth;
842 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 843
802a0058 844#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 845 (FP_REGNO_P (REGNO) \
2e360ab3 846 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
0ac081f6
AH
847 : ALTIVEC_REGNO_P (REGNO) \
848 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
849 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
850
0ac081f6
AH
851#define ALTIVEC_VECTOR_MODE(MODE) \
852 ((MODE) == V16QImode \
853 || (MODE) == V8HImode \
854 || (MODE) == V4SFmode \
855 || (MODE) == V4SImode)
856
857/* Define this macro to be nonzero if the port is prepared to handle
858 insns involving vector mode MODE. At the very least, it must have
859 move patterns for this mode. */
860
861#define VECTOR_MODE_SUPPORTED_P(MODE) \
862 (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE))
863
f045b2c9 864/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
865 For POWER and PowerPC, the GPRs can hold any mode, but the float
866 registers only can hold floating modes and DImode, and CR register only
867 can hold CC modes. We cannot put TImode anywhere except general
82e41834 868 register and it must be able to fit within the register set. */
f045b2c9 869
802a0058
MM
870#define HARD_REGNO_MODE_OK(REGNO, MODE) \
871 (FP_REGNO_P (REGNO) ? \
872 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
873 || (GET_MODE_CLASS (MODE) == MODE_INT \
874 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 875 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
802a0058 876 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 877 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
802a0058 878 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 879 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
880 : 1)
881
882/* Value is 1 if it is a good idea to tie two pseudo registers
883 when one has mode MODE1 and one has mode MODE2.
884 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
885 for any hard reg, then this must be 0 for correct output. */
886#define MODES_TIEABLE_P(MODE1, MODE2) \
887 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
888 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
889 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
890 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
891 : GET_MODE_CLASS (MODE1) == MODE_CC \
892 ? GET_MODE_CLASS (MODE2) == MODE_CC \
893 : GET_MODE_CLASS (MODE2) == MODE_CC \
894 ? GET_MODE_CLASS (MODE1) == MODE_CC \
0ac081f6
AH
895 : ALTIVEC_VECTOR_MODE (MODE1) \
896 ? ALTIVEC_VECTOR_MODE (MODE2) \
897 : ALTIVEC_VECTOR_MODE (MODE2) \
898 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
899 : 1)
900
901/* A C expression returning the cost of moving data from a register of class
902 CLASS1 to one of CLASS2.
903
904 On the RS/6000, copying between floating-point and fixed-point
905 registers is expensive. */
906
cf011243 907#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
0ac081f6 908 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
f045b2c9
RS
909 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
910 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
0ac081f6
AH
911 : (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
912 : (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
a4b970a0 913 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
914 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
915 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 916 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 917 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 918 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
919 : 2)
920
921/* A C expressions returning the cost of moving data of MODE from a register to
922 or from memory.
923
924 On the RS/6000, bump this up a bit. */
925
e1565e65
DE
926#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
927 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
ab4a5fc9
RK
928 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
929 ? 3 : 2) \
930 + 4)
f045b2c9
RS
931
932/* Specify the cost of a branch insn; roughly the number of extra insns that
933 should be added to avoid a branch.
934
ef457bda 935 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
936 unscheduled conditional branch. */
937
ef457bda 938#define BRANCH_COST 3
f045b2c9 939
6febd581
RK
940/* Define this macro to change register usage conditional on target flags.
941 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 942 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 943 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
944 Conditionally disable FPRs. */
945
8d30c4ee
FS
946#define CONDITIONAL_REGISTER_USAGE \
947{ \
e9e4208a 948 int i; \
8d30c4ee
FS
949 if (! TARGET_POWER) \
950 fixed_regs[64] = 1; \
951 if (TARGET_64BIT) \
289e96b2
AH
952 fixed_regs[13] = call_used_regs[13] \
953 = call_really_used_regs[13] = 1; \
8d30c4ee
FS
954 if (TARGET_SOFT_FLOAT) \
955 for (i = 32; i < 64; i++) \
289e96b2
AH
956 fixed_regs[i] = call_used_regs[i] \
957 = call_really_used_regs[i] = 1; \
1db02437
FS
958 if (DEFAULT_ABI == ABI_V4 \
959 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
960 && flag_pic == 1) \
961 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
962 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
963 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
964 if (DEFAULT_ABI == ABI_DARWIN \
965 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
966 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
967 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
968 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
969 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
2473ee11 970 if (! TARGET_ALTIVEC) \
c1f11548
DE
971 { \
972 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
973 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
974 call_really_used_regs[VRSAVE_REGNO] = 1; \
975 } \
0ac081f6 976 if (TARGET_ALTIVEC_ABI) \
2473ee11 977 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 978 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 979}
6febd581 980
f045b2c9
RS
981/* Specify the registers used for certain standard purposes.
982 The values of these macros are register numbers. */
983
984/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
985/* #define PC_REGNUM */
986
987/* Register to use for pushing function arguments. */
988#define STACK_POINTER_REGNUM 1
989
990/* Base register for access to local variables of the function. */
991#define FRAME_POINTER_REGNUM 31
992
993/* Value should be nonzero if functions must have frame pointers.
994 Zero means the frame pointer need not be set up (and parms
995 may be accessed via the stack pointer) in functions that seem suitable.
996 This is computed in `reload', in reload1.c. */
997#define FRAME_POINTER_REQUIRED 0
998
999/* Base register for access to arguments of the function. */
1000#define ARG_POINTER_REGNUM 67
1001
1002/* Place to put static chain when calling a function that requires it. */
1003#define STATIC_CHAIN_REGNUM 11
1004
82e41834 1005/* Link register number. */
9ebbca7d 1006#define LINK_REGISTER_REGNUM 65
b6c9286a 1007
82e41834 1008/* Count register number. */
9ebbca7d 1009#define COUNT_REGISTER_REGNUM 66
802a0058 1010
f045b2c9
RS
1011/* Place that structure value return address is placed.
1012
1013 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1014#define STRUCT_VALUE 0
f045b2c9
RS
1015\f
1016/* Define the classes of registers for register constraints in the
1017 machine description. Also define ranges of constants.
1018
1019 One of the classes must always be named ALL_REGS and include all hard regs.
1020 If there is more than one class, another class must be named NO_REGS
1021 and contain no registers.
1022
1023 The name GENERAL_REGS must be the name of a class (or an alias for
1024 another name such as ALL_REGS). This is the class of registers
1025 that is allowed by "g" or "r" in a register constraint.
1026 Also, registers outside this class are allocated only when
1027 instructions express preferences for them.
1028
1029 The classes must be numbered in nondecreasing order; that is,
1030 a larger-numbered class must never be contained completely
1031 in a smaller-numbered class.
1032
1033 For any two classes, it is very desirable that there be another
1034 class that represents their union. */
c81bebd7 1035
f045b2c9
RS
1036/* The RS/6000 has three types of registers, fixed-point, floating-point,
1037 and condition registers, plus three special registers, MQ, CTR, and the
1038 link register.
1039
1040 However, r0 is special in that it cannot be used as a base register.
1041 So make a class for registers valid as base registers.
1042
1043 Also, cr0 is the only condition code register that can be used in
0d86f538 1044 arithmetic insns, so make a separate class for it. */
f045b2c9 1045
ebedb4dd
MM
1046enum reg_class
1047{
1048 NO_REGS,
ebedb4dd
MM
1049 BASE_REGS,
1050 GENERAL_REGS,
1051 FLOAT_REGS,
0ac081f6
AH
1052 ALTIVEC_REGS,
1053 VRSAVE_REGS,
ebedb4dd
MM
1054 NON_SPECIAL_REGS,
1055 MQ_REGS,
1056 LINK_REGS,
1057 CTR_REGS,
1058 LINK_OR_CTR_REGS,
1059 SPECIAL_REGS,
1060 SPEC_OR_GEN_REGS,
1061 CR0_REGS,
ebedb4dd
MM
1062 CR_REGS,
1063 NON_FLOAT_REGS,
9ebbca7d 1064 XER_REGS,
ebedb4dd
MM
1065 ALL_REGS,
1066 LIM_REG_CLASSES
1067};
f045b2c9
RS
1068
1069#define N_REG_CLASSES (int) LIM_REG_CLASSES
1070
82e41834 1071/* Give names of register classes as strings for dump file. */
f045b2c9 1072
ebedb4dd
MM
1073#define REG_CLASS_NAMES \
1074{ \
1075 "NO_REGS", \
ebedb4dd
MM
1076 "BASE_REGS", \
1077 "GENERAL_REGS", \
1078 "FLOAT_REGS", \
0ac081f6
AH
1079 "ALTIVEC_REGS", \
1080 "VRSAVE_REGS", \
ebedb4dd
MM
1081 "NON_SPECIAL_REGS", \
1082 "MQ_REGS", \
1083 "LINK_REGS", \
1084 "CTR_REGS", \
1085 "LINK_OR_CTR_REGS", \
1086 "SPECIAL_REGS", \
1087 "SPEC_OR_GEN_REGS", \
1088 "CR0_REGS", \
ebedb4dd
MM
1089 "CR_REGS", \
1090 "NON_FLOAT_REGS", \
9ebbca7d 1091 "XER_REGS", \
ebedb4dd
MM
1092 "ALL_REGS" \
1093}
f045b2c9
RS
1094
1095/* Define which registers fit in which classes.
1096 This is an initializer for a vector of HARD_REG_SET
1097 of length N_REG_CLASSES. */
1098
0ac081f6
AH
1099#define REG_CLASS_CONTENTS \
1100{ \
1101 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1102 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1103 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1104 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1105 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1106 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
0ac081f6
AH
1107 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1108 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1109 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1110 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1111 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1112 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1113 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1114 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1115 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1116 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1117 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1118 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1119}
f045b2c9
RS
1120
1121/* The same information, inverted:
1122 Return the class number of the smallest class containing
1123 reg number REGNO. This could be a conditional expression
1124 or could index an array. */
1125
0d86f538
GK
1126#define REGNO_REG_CLASS(REGNO) \
1127 ((REGNO) == 0 ? GENERAL_REGS \
1128 : (REGNO) < 32 ? BASE_REGS \
1129 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1130 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1131 : (REGNO) == CR0_REGNO ? CR0_REGS \
1132 : CR_REGNO_P (REGNO) ? CR_REGS \
1133 : (REGNO) == MQ_REGNO ? MQ_REGS \
1134 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1135 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1136 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1137 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1138 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
f045b2c9
RS
1139 : NO_REGS)
1140
1141/* The class value for index registers, and the one for base regs. */
1142#define INDEX_REG_CLASS GENERAL_REGS
1143#define BASE_REG_CLASS BASE_REGS
1144
1145/* Get reg_class from a letter such as appears in the machine description. */
1146
1147#define REG_CLASS_FROM_LETTER(C) \
1148 ((C) == 'f' ? FLOAT_REGS \
1149 : (C) == 'b' ? BASE_REGS \
1150 : (C) == 'h' ? SPECIAL_REGS \
1151 : (C) == 'q' ? MQ_REGS \
1152 : (C) == 'c' ? CTR_REGS \
1153 : (C) == 'l' ? LINK_REGS \
0ac081f6 1154 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1155 : (C) == 'x' ? CR0_REGS \
1156 : (C) == 'y' ? CR_REGS \
9ebbca7d 1157 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1158 : NO_REGS)
1159
1160/* The letters I, J, K, L, M, N, and P in a register constraint string
1161 can be used to stand for particular ranges of immediate operands.
1162 This macro defines what the ranges are.
1163 C is the letter, and VALUE is a constant value.
1164 Return 1 if VALUE is in the range specified by C.
1165
9615f239 1166 `I' is a signed 16-bit constant
f045b2c9
RS
1167 `J' is a constant with only the high-order 16 bits non-zero
1168 `K' is a constant with only the low-order 16 bits non-zero
9615f239 1169 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1170 `M' is a constant that is greater than 31
2bfcf297 1171 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1172 `O' is the constant zero
1173 `P' is a constant whose negation is a signed 16-bit constant */
1174
5b6f7b96
RK
1175#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1176 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1177 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1178 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1179 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1180 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1181 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1182 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1183 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1184 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1185 : 0)
1186
1187/* Similar, but for floating constants, and defining letters G and H.
1188 Here VALUE is the CONST_DOUBLE rtx itself.
1189
1190 We flag for special constants when we can copy the constant into
4e74d8ec 1191 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1192
c4c40373 1193 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1194
1195#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1196 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1197 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1198 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1199 : 0)
f045b2c9
RS
1200
1201/* Optional extra constraints for this machine.
1202
b6c9286a
MM
1203 'Q' means that is a memory operand that is just an offset from a reg.
1204 'R' is for AIX TOC entries.
a260abc9 1205 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1206 'T' is a constant that can be placed into a 32-bit mask operand
88228c4b 1207 'U' is for V.4 small data references. */
f045b2c9 1208
e8a8bc24
RK
1209#define EXTRA_CONSTRAINT(OP, C) \
1210 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1211 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b1765bde
DE
1212 : (C) == 'S' ? mask64_operand (OP, DImode) \
1213 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1214 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1215 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1216 : 0)
f045b2c9
RS
1217
1218/* Given an rtx X being reloaded into a reg required to be
1219 in class CLASS, return the class of reg to actually use.
1220 In general this is just CLASS; but on some machines
c81bebd7 1221 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1222
1223 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1224 floating-point CONST_DOUBLE to force it to be copied to memory.
1225
1226 We also don't want to reload integer values into floating-point
1227 registers if we can at all help it. In fact, this can
1228 cause reload to abort, if it tries to generate a reload of CTR
1229 into a FP register and discovers it doesn't have the memory location
1230 required.
1231
1232 ??? Would it be a good idea to have reload do the converse, that is
1233 try to reload floating modes into FP registers if possible?
1234 */
f045b2c9 1235
802a0058 1236#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1237 (((GET_CODE (X) == CONST_DOUBLE \
1238 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1239 ? NO_REGS \
1240 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1241 && (CLASS) == NON_SPECIAL_REGS) \
1242 ? GENERAL_REGS \
1243 : (CLASS)))
c81bebd7 1244
f045b2c9
RS
1245/* Return the register class of a scratch register needed to copy IN into
1246 or out of a register in CLASS in MODE. If it can be done directly,
1247 NO_REGS is returned. */
1248
1249#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1250 secondary_reload_class (CLASS, MODE, IN)
1251
0ac081f6
AH
1252/* If we are copying between FP or AltiVec registers and anything
1253 else, we need a memory location. */
7ea555a4 1254
0ac081f6
AH
1255#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1256 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1257 || (CLASS2) == FLOAT_REGS \
1258 || (CLASS1) == ALTIVEC_REGS \
1259 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1260
f045b2c9
RS
1261/* Return the maximum number of consecutive registers
1262 needed to represent mode MODE in a register of class CLASS.
1263
1264 On RS/6000, this is the size of MODE in words,
1265 except in the FP regs, where a single reg is enough for two words. */
802a0058 1266#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1267 (((CLASS) == FLOAT_REGS) \
2e360ab3 1268 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1269 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1270
1271/* If defined, gives a class of registers that cannot be used as the
02188693 1272 operand of a SUBREG that changes the mode of the object illegally. */
580d3230 1273
02188693
RH
1274#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
1275
1276/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1277
1278#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1279 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
f045b2c9
RS
1280\f
1281/* Stack layout; function entry, exit and calling. */
1282
6b67933e
RK
1283/* Enumeration to give which calling sequence to use. */
1284enum rs6000_abi {
1285 ABI_NONE,
1286 ABI_AIX, /* IBM's AIX */
f607bc57
ZW
1287 ABI_AIX_NODESC, /* AIX calling sequence minus
1288 function descriptors */
b6c9286a 1289 ABI_V4, /* System V.4/eabi */
ee890fe2 1290 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1291};
1292
b6c9286a
MM
1293extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1294
4697a36c
MM
1295/* Structure used to define the rs6000 stack */
1296typedef struct rs6000_stack {
1297 int first_gp_reg_save; /* first callee saved GP register used */
1298 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1299 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1300 int lr_save_p; /* true if the link reg needs to be saved */
1301 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1302 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1303 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1304 int push_p; /* true if we need to allocate stack space */
1305 int calls_p; /* true if the function makes any calls */
6b67933e 1306 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1307 int gp_save_offset; /* offset to save GP regs from initial SP */
1308 int fp_save_offset; /* offset to save FP regs from initial SP */
00b960c7 1309 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
4697a36c
MM
1310 int lr_save_offset; /* offset to save LR from initial SP */
1311 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1312 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
b6c9286a 1313 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1314 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1315 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1316 int reg_size; /* register size (4 or 8) */
1317 int varargs_size; /* size to hold V.4 args passed in regs */
1318 int vars_size; /* variable save area size */
1319 int parm_size; /* outgoing parameter size */
1320 int save_size; /* save area size */
1321 int fixed_size; /* fixed size of stack frame */
1322 int gp_size; /* size of saved GP registers */
1323 int fp_size; /* size of saved FP registers */
00b960c7 1324 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1325 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1326 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1327 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1328 int altivec_padding_size; /* size of altivec alignment padding if
1329 not in save_size */
b6c9286a 1330 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1331 int total_size; /* total bytes allocated for stack */
1332} rs6000_stack_t;
1333
f045b2c9
RS
1334/* Define this if pushing a word on the stack
1335 makes the stack pointer a smaller address. */
1336#define STACK_GROWS_DOWNWARD
1337
1338/* Define this if the nominal address of the stack frame
1339 is at the high-address end of the local variables;
1340 that is, each additional local variable allocated
1341 goes at a more negative offset in the frame.
1342
1343 On the RS/6000, we grow upwards, from the area after the outgoing
1344 arguments. */
1345/* #define FRAME_GROWS_DOWNWARD */
1346
4697a36c 1347/* Size of the outgoing register save area */
9ebbca7d 1348#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1349 || DEFAULT_ABI == ABI_AIX_NODESC \
1350 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1351 ? (TARGET_64BIT ? 64 : 32) \
1352 : 0)
4697a36c
MM
1353
1354/* Size of the fixed area on the stack */
9ebbca7d 1355#define RS6000_SAVE_AREA \
ee890fe2 1356 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1357 << (TARGET_64BIT ? 1 : 0))
4697a36c 1358
97f6e72f
DE
1359/* MEM representing address to save the TOC register */
1360#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1361 plus_constant (stack_pointer_rtx, \
1362 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1363
4697a36c
MM
1364/* Size of the V.4 varargs area if needed */
1365#define RS6000_VARARGS_AREA 0
1366
4697a36c 1367/* Align an address */
ed33106f 1368#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1369
1370/* Size of V.4 varargs area in bytes */
1371#define RS6000_VARARGS_SIZE \
2f3e5814 1372 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1373
f045b2c9
RS
1374/* Offset within stack frame to start allocating local variables at.
1375 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1376 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1377 of the first local allocated.
f045b2c9
RS
1378
1379 On the RS/6000, the frame pointer is the same as the stack pointer,
1380 except for dynamic allocations. So we start after the fixed area and
1381 outgoing parameter area. */
1382
802a0058 1383#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1384 (RS6000_ALIGN (current_function_outgoing_args_size, \
1385 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1386 + RS6000_VARARGS_AREA \
1387 + RS6000_SAVE_AREA)
1388
1389/* Offset from the stack pointer register to an item dynamically
1390 allocated on the stack, e.g., by `alloca'.
1391
1392 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1393 length of the outgoing arguments. The default is correct for most
1394 machines. See `function.c' for details. */
1395#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1396 (RS6000_ALIGN (current_function_outgoing_args_size, \
1397 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1398 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1399
1400/* If we generate an insn to push BYTES bytes,
1401 this says how many the stack pointer really advances by.
1402 On RS/6000, don't define this because there are no push insns. */
1403/* #define PUSH_ROUNDING(BYTES) */
1404
1405/* Offset of first parameter from the argument pointer register value.
1406 On the RS/6000, we define the argument pointer to the start of the fixed
1407 area. */
4697a36c 1408#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1409
62153b61
JM
1410/* Offset from the argument pointer register value to the top of
1411 stack. This is different from FIRST_PARM_OFFSET because of the
1412 register save area. */
1413#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1414
f045b2c9
RS
1415/* Define this if stack space is still allocated for a parameter passed
1416 in a register. The value is the number of bytes allocated to this
1417 area. */
4697a36c 1418#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1419
1420/* Define this if the above stack space is to be considered part of the
1421 space allocated by the caller. */
1422#define OUTGOING_REG_PARM_STACK_SPACE
1423
1424/* This is the difference between the logical top of stack and the actual sp.
1425
82e41834 1426 For the RS/6000, sp points past the fixed area. */
4697a36c 1427#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1428
1429/* Define this if the maximum size of all the outgoing args is to be
1430 accumulated and pushed during the prologue. The amount can be
1431 found in the variable current_function_outgoing_args_size. */
f73ad30e 1432#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1433
1434/* Value is the number of bytes of arguments automatically
1435 popped when returning from a subroutine call.
8b109b37 1436 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1437 FUNTYPE is the data type of the function (as a tree),
1438 or for a library call it is an identifier node for the subroutine name.
1439 SIZE is the number of bytes of arguments passed on the stack. */
1440
8b109b37 1441#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1442
1443/* Define how to find the value returned by a function.
1444 VALTYPE is the data type of the value (as a tree).
1445 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1446 otherwise, FUNC is 0.
1447
c81bebd7 1448 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1449 fp1, unless -msoft-float. */
f045b2c9 1450
39403d82
DE
1451#define FUNCTION_VALUE(VALTYPE, FUNC) \
1452 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1453 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1454 || POINTER_TYPE_P (VALTYPE) \
1455 ? word_mode : TYPE_MODE (VALTYPE), \
0ac081f6
AH
1456 TREE_CODE (VALTYPE) == VECTOR_TYPE ? ALTIVEC_ARG_RETURN \
1457 : TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT \
e9cf9523 1458 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9
RS
1459
1460/* Define how to find the value returned by a library function
1461 assuming the value has mode MODE. */
1462
0ac081f6
AH
1463#define LIBCALL_VALUE(MODE) \
1464 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1465 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1466 && TARGET_HARD_FLOAT \
1467 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9 1468
6fa3f289
ZW
1469/* The AIX ABI for the RS/6000 specifies that all structures are
1470 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1471 specifies that structures <= 8 bytes are returned in r3/r4, but a
1472 draft put them in memory, and GCC used to implement the draft
1473 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1474 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1475 compatibility can change DRAFT_V4_STRUCT_RET to override the
1476 default, and -m switches get the final word. See
52acbdcb
ZW
1477 rs6000_override_options for more details.
1478
1479 int_size_in_bytes returns -1 for variable size objects, which go in
1480 memory always. The cast to unsigned makes -1 > 8. */
1481
6fa3f289
ZW
1482#define RETURN_IN_MEMORY(TYPE) \
1483 (AGGREGATE_TYPE_P (TYPE) && \
52acbdcb 1484 (TARGET_AIX_STRUCT_RET || \
0c769cf8 1485 (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8))
f045b2c9 1486
6fa3f289
ZW
1487/* DRAFT_V4_STRUCT_RET defaults off. */
1488#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1489
1490/* Let RETURN_IN_MEMORY control what happens. */
1491#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1492
a260abc9 1493/* Mode of stack savearea.
dfdfa60f
DE
1494 FUNCTION is VOIDmode because calling convention maintains SP.
1495 BLOCK needs Pmode for SP.
a260abc9
DE
1496 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1497#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1498 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1499 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1500
4697a36c
MM
1501/* Minimum and maximum general purpose registers used to hold arguments. */
1502#define GP_ARG_MIN_REG 3
1503#define GP_ARG_MAX_REG 10
1504#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1505
1506/* Minimum and maximum floating point registers used to hold arguments. */
1507#define FP_ARG_MIN_REG 33
7509c759
MM
1508#define FP_ARG_AIX_MAX_REG 45
1509#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1510#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1511 || DEFAULT_ABI == ABI_AIX_NODESC \
1512 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1513 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1514#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1515
0ac081f6
AH
1516/* Minimum and maximum AltiVec registers used to hold arguments. */
1517#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1518#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1519#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1520
4697a36c
MM
1521/* Return registers */
1522#define GP_ARG_RETURN GP_ARG_MIN_REG
1523#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1524#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1525
7509c759 1526/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1527#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1528/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1529#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1530#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1531#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1532
f045b2c9
RS
1533/* 1 if N is a possible register number for a function value
1534 as seen by the caller.
1535
0ac081f6
AH
1536 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1537#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1538 || ((N) == FP_ARG_RETURN) \
1539 || (TARGET_ALTIVEC && \
1540 (N) == ALTIVEC_ARG_RETURN))
f045b2c9
RS
1541
1542/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1543 On RS/6000, these are r3-r10 and fp1-fp13.
1544 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1545#define FUNCTION_ARG_REGNO_P(N) \
b1765bde 1546 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
0ac081f6 1547 || (TARGET_ALTIVEC && \
1a3ab9e1 1548 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
6d0f55e6 1549 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1550
f045b2c9 1551\f
00dba523
NC
1552/* A C structure for machine-specific, per-function data.
1553 This is added to the cfun structure. */
1554typedef struct machine_function
1555{
1556 /* Whether a System V.4 varargs area was created. */
1557 int sysv_varargs_p;
71f123ca
FS
1558 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1559 int ra_needs_full_frame;
00dba523
NC
1560} machine_function;
1561
f045b2c9
RS
1562/* Define a data type for recording info about an argument list
1563 during the scan of that argument list. This data type should
1564 hold all necessary information about the function itself
1565 and about the args processed so far, enough to enable macros
1566 such as FUNCTION_ARG to determine where the next arg should go.
1567
1568 On the RS/6000, this is a structure. The first element is the number of
1569 total argument words, the second is used to store the next
1570 floating-point register number, and the third says how many more args we
4697a36c
MM
1571 have prototype types for.
1572
4cc833b7
RH
1573 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1574 the next availible GP register, `fregno' is the next available FP
1575 register, and `words' is the number of words used on the stack.
1576
bd227acc 1577 The varargs/stdarg support requires that this structure's size
4cc833b7 1578 be a multiple of sizeof(int). */
4697a36c
MM
1579
1580typedef struct rs6000_args
1581{
4cc833b7 1582 int words; /* # words used for passing GP registers */
6a4cee5f 1583 int fregno; /* next available FP register */
0ac081f6 1584 int vregno; /* next available AltiVec register */
6a4cee5f
MM
1585 int nargs_prototype; /* # args left in the current prototype */
1586 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1587 int prototype; /* Whether a prototype was defined */
1588 int call_cookie; /* Do special things for this call */
4cc833b7 1589 int sysv_gregno; /* next available GP register */
4697a36c 1590} CUMULATIVE_ARGS;
f045b2c9
RS
1591
1592/* Define intermediate macro to compute the size (in registers) of an argument
1593 for the RS/6000. */
1594
d34c5b80
DE
1595#define RS6000_ARG_SIZE(MODE, TYPE) \
1596((MODE) != BLKmode \
c5d71f39 1597 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
0c769cf8 1598 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1599
1600/* Initialize a variable CUM of type CUMULATIVE_ARGS
1601 for a call to a function whose data type is FNTYPE.
1602 For a library call, FNTYPE is 0. */
1603
2c7ee1a6 1604#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1605 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1606
1607/* Similar, but when scanning the definition of a procedure. We always
1608 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1609
4697a36c
MM
1610#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1611 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1612
1613/* Update the data in CUM to advance over an argument
1614 of mode MODE and data type TYPE.
1615 (TYPE is null for libcalls where that information may not be available.) */
1616
1617#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1618 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1619
1620/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1621#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1622 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1623 && (CUM).fregno <= FP_ARG_MAX_REG \
1624 && TARGET_HARD_FLOAT)
f045b2c9 1625
0ac081f6
AH
1626/* Non-zero if we can use an AltiVec register to pass this arg. */
1627#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1628 (ALTIVEC_VECTOR_MODE (MODE) \
1629 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1630 && TARGET_ALTIVEC_ABI)
1631
f045b2c9
RS
1632/* Determine where to put an argument to a function.
1633 Value is zero to push the argument on the stack,
1634 or a hard register in which to store the argument.
1635
1636 MODE is the argument's machine mode.
1637 TYPE is the data type of the argument (as a tree).
1638 This is null for libcalls where that information may
1639 not be available.
1640 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1641 the preceding args and about the function being called.
1642 NAMED is nonzero if this argument is a named parameter
1643 (otherwise it is an extra parameter matching an ellipsis).
1644
1645 On RS/6000 the first eight words of non-FP are normally in registers
1646 and the rest are pushed. The first 13 FP args are in registers.
1647
1648 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1649 both an FP and integer register (or possibly FP reg and stack). Library
1650 functions (when TYPE is zero) always have the proper types for args,
1651 so we can pass the FP value just in one register. emit_library_function
1652 doesn't support EXPR_LIST anyway. */
f045b2c9 1653
4697a36c
MM
1654#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1655 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1656
1657/* For an arg passed partly in registers and partly in memory,
1658 this is the number of registers used.
1659 For args passed entirely in registers or entirely in memory, zero. */
1660
4697a36c
MM
1661#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1662 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1663
1664/* A C expression that indicates when an argument must be passed by
1665 reference. If nonzero for an argument, a copy of that argument is
1666 made in memory and a pointer to the argument is passed instead of
1667 the argument itself. The pointer is passed in whatever way is
82e41834 1668 appropriate for passing a pointer to that type. */
4697a36c
MM
1669
1670#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1671 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1672
c229cba9
DE
1673/* If defined, a C expression which determines whether, and in which
1674 direction, to pad out an argument with extra space. The value
1675 should be of type `enum direction': either `upward' to pad above
1676 the argument, `downward' to pad below, or `none' to inhibit
1677 padding. */
1678
9ebbca7d 1679#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1680
b6c9286a 1681/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1682 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1683 PARM_BOUNDARY is used for all arguments. */
1684
1685#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1686 function_arg_boundary (MODE, TYPE)
1687
f045b2c9 1688/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1689 variable number of arguments.
f045b2c9
RS
1690
1691 CUM is as above.
1692
1693 MODE and TYPE are the mode and type of the current parameter.
1694
1695 PRETEND_SIZE is a variable that should be set to the amount of stack
1696 that must be pushed by the prolog to pretend that our caller pushed
1697 it.
1698
1699 Normally, this macro will push all remaining incoming registers on the
1700 stack and set PRETEND_SIZE to the length of the registers pushed. */
1701
4697a36c
MM
1702#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1703 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1704
dfafc897
FS
1705/* Define the `__builtin_va_list' type for the ABI. */
1706#define BUILD_VA_LIST_TYPE(VALIST) \
1707 (VALIST) = rs6000_build_va_list ()
4697a36c 1708
dfafc897
FS
1709/* Implement `va_start' for varargs and stdarg. */
1710#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1711 rs6000_va_start (stdarg, valist, nextarg)
1712
1713/* Implement `va_arg'. */
1714#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1715 rs6000_va_arg (valist, type)
f045b2c9 1716
2a55fd42
DE
1717/* For AIX, the rule is that structures are passed left-aligned in
1718 their stack slot. However, GCC does not presently do this:
1719 structures which are the same size as integer types are passed
1720 right-aligned, as if they were in fact integers. This only
1721 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1722 ABI_V4 does not use std_expand_builtin_va_arg. */
1723#define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1724
d34c5b80
DE
1725/* Define this macro to be a nonzero value if the location where a function
1726 argument is passed depends on whether or not it is a named argument. */
1727#define STRICT_ARGUMENT_NAMING 1
1728
f045b2c9 1729/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1730 for profiling a function entry. */
f045b2c9
RS
1731
1732#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1733 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1734
1735/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1736 the stack pointer does not matter. No definition is equivalent to
1737 always zero.
1738
1739 On the RS/6000, this is non-zero because we can restore the stack from
1740 its backpointer, which we maintain. */
1741#define EXIT_IGNORE_STACK 1
1742
a701949a
FS
1743/* Define this macro as a C expression that is nonzero for registers
1744 that are used by the epilogue or the return' pattern. The stack
1745 and frame pointer registers are already be assumed to be used as
1746 needed. */
1747
83720594
RH
1748#define EPILOGUE_USES(REGNO) \
1749 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1750 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1751 || (current_function_calls_eh_return \
3553b09d 1752 && TARGET_AIX \
83720594 1753 && (REGNO) == TOC_REGISTER))
2bfcf297 1754
f045b2c9 1755\f
eaf1bcf1 1756/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1757
1758/* Length in units of the trampoline for entering a nested function. */
1759
b6c9286a 1760#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1761
1762/* Emit RTL insns to initialize the variable parts of a trampoline.
1763 FNADDR is an RTX for the address of the function's pure code.
1764 CXT is an RTX for the static chain value for the function. */
1765
1766#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1767 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1768\f
f33985c6
MS
1769/* Definitions for __builtin_return_address and __builtin_frame_address.
1770 __builtin_return_address (0) should give link register (65), enable
82e41834 1771 this. */
f33985c6
MS
1772/* This should be uncommented, so that the link register is used, but
1773 currently this would result in unmatched insns and spilling fixed
1774 registers so we'll leave it for another day. When these problems are
1775 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1776 (mrs) */
1777/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1778
b6c9286a
MM
1779/* Number of bytes into the frame return addresses can be found. See
1780 rs6000_stack_info in rs6000.c for more information on how the different
1781 abi's store the return address. */
1782#define RETURN_ADDRESS_OFFSET \
1783 ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1784 || DEFAULT_ABI == ABI_DARWIN \
05ef2698 1785 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1786 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1787 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1788
f33985c6
MS
1789/* The current return address is in link register (65). The return address
1790 of anything farther back is accessed normally at an offset of 8 from the
1791 frame pointer. */
71f123ca
FS
1792#define RETURN_ADDR_RTX(COUNT, FRAME) \
1793 (rs6000_return_addr (COUNT, FRAME))
1794
f33985c6 1795\f
f045b2c9
RS
1796/* Definitions for register eliminations.
1797
1798 We have two registers that can be eliminated on the RS/6000. First, the
1799 frame pointer register can often be eliminated in favor of the stack
1800 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1801 eliminated; it is replaced with either the stack or frame pointer.
1802
1803 In addition, we use the elimination mechanism to see if r30 is needed
1804 Initially we assume that it isn't. If it is, we spill it. This is done
1805 by making it an eliminable register. We replace it with itself so that
1806 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1807
1808/* This is an array of structures. Each structure initializes one pair
1809 of eliminable registers. The "from" register number is given first,
1810 followed by "to". Eliminations of the same "from" register are listed
1811 in order of preference. */
1812#define ELIMINABLE_REGS \
1813{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1814 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1815 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1816 { 30, 30} }
f045b2c9
RS
1817
1818/* Given FROM and TO register numbers, say whether this elimination is allowed.
1819 Frame pointer elimination is automatically handled.
1820
1821 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1822 to convert ap into fp, not sp.
1823
abc95ed3 1824 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1825 references. */
f045b2c9
RS
1826
1827#define CAN_ELIMINATE(FROM, TO) \
1828 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1829 ? ! frame_pointer_needed \
4697a36c 1830 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1831 : 1)
1832
1833/* Define the offset between two registers, one to be eliminated, and the other
1834 its replacement, at the start of a routine. */
1835#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1836{ \
4697a36c 1837 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1838 \
1839 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1840 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1841 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1842 (OFFSET) = info->total_size; \
1843 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1844 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1845 else if ((FROM) == 30) \
1846 (OFFSET) = 0; \
f045b2c9
RS
1847 else \
1848 abort (); \
1849}
1850\f
1851/* Addressing modes, and classification of registers for them. */
1852
940da324
JL
1853/* #define HAVE_POST_INCREMENT 0 */
1854/* #define HAVE_POST_DECREMENT 0 */
f045b2c9 1855
940da324
JL
1856#define HAVE_PRE_DECREMENT 1
1857#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1858
1859/* Macros to check register numbers against specific register classes. */
1860
1861/* These assume that REGNO is a hard or pseudo reg number.
1862 They give nonzero only if REGNO is a hard reg of the suitable class
1863 or a pseudo reg currently allocated to a suitable hard reg.
1864 Since they use reg_renumber, they are safe only once reg_renumber
1865 has been allocated, which happens in local-alloc.c. */
1866
1867#define REGNO_OK_FOR_INDEX_P(REGNO) \
1868((REGNO) < FIRST_PSEUDO_REGISTER \
1869 ? (REGNO) <= 31 || (REGNO) == 67 \
1870 : (reg_renumber[REGNO] >= 0 \
1871 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1872
1873#define REGNO_OK_FOR_BASE_P(REGNO) \
1874((REGNO) < FIRST_PSEUDO_REGISTER \
1875 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1876 : (reg_renumber[REGNO] > 0 \
1877 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1878\f
1879/* Maximum number of registers that can appear in a valid memory address. */
1880
1881#define MAX_REGS_PER_ADDRESS 2
1882
1883/* Recognize any constant value that is a valid address. */
1884
6eff269e
BK
1885#define CONSTANT_ADDRESS_P(X) \
1886 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1887 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1888 || GET_CODE (X) == HIGH)
f045b2c9
RS
1889
1890/* Nonzero if the constant value X is a legitimate general operand.
1891 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1892
1893 On the RS/6000, all integer constants are acceptable, most won't be valid
1894 for particular insns, though. Only easy FP constants are
1895 acceptable. */
1896
1897#define LEGITIMATE_CONSTANT_P(X) \
1898 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1899 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1900 || easy_fp_constant (X, GET_MODE (X)))
1901
1902/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1903 and check its validity for a certain class.
1904 We have two alternate definitions for each of them.
1905 The usual definition accepts all pseudo regs; the other rejects
1906 them unless they have been allocated suitable hard regs.
1907 The symbol REG_OK_STRICT causes the latter definition to be used.
1908
1909 Most source files want to accept pseudo regs in the hope that
1910 they will get allocated to the class that the insn wants them to be in.
1911 Source files for reload pass need to be strict.
1912 After reload, it makes no difference, since pseudo regs have
1913 been eliminated by then. */
1914
258bfae2
FS
1915#ifdef REG_OK_STRICT
1916# define REG_OK_STRICT_FLAG 1
1917#else
1918# define REG_OK_STRICT_FLAG 0
1919#endif
f045b2c9
RS
1920
1921/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1922 or if it is a pseudo reg in the non-strict case. */
1923#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1924 ((! (STRICT) \
1925 && (REGNO (X) <= 31 \
1926 || REGNO (X) == ARG_POINTER_REGNUM \
1927 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1928 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
1929
1930/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
1931 or if it is a pseudo reg in the non-strict case. */
1932#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1933 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 1934
258bfae2
FS
1935#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1936#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
1937\f
1938/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1939 that is a valid memory address for an instruction.
1940 The MODE argument is the machine mode for the MEM expression
1941 that wants to use this address.
1942
1943 On the RS/6000, there are four valid address: a SYMBOL_REF that
1944 refers to a constant pool entry of an address (or the sum of it
1945 plus a constant), a short (16-bit signed) constant plus a register,
1946 the sum of two registers, or a register indirect, possibly with an
1947 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 1948 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1949 word aligned.
1950
1951 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1952 32-bit DImode, TImode), indexed addressing cannot be used because
1953 adjacent memory cells are accessed by adding word-sized offsets
1954 during assembly output. */
f045b2c9 1955
9ebbca7d
GK
1956#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
1957
1958#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
f045b2c9
RS
1959
1960#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
9ebbca7d
GK
1961 (TARGET_TOC \
1962 && GET_CODE (X) == PLUS \
1963 && GET_CODE (XEXP (X, 0)) == REG \
1964 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
1965 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
f045b2c9 1966
7509c759 1967#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
f607bc57 1968 (DEFAULT_ABI == ABI_V4 \
81795281 1969 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1970 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1971 && small_data_operand (X, MODE))
7509c759 1972
258bfae2 1973#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
f045b2c9 1974 (GET_CODE (X) == CONST_INT \
5b6f7b96 1975 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9 1976
258bfae2
FS
1977#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
1978 (GET_CODE (X) == PLUS \
1979 && GET_CODE (XEXP (X, 0)) == REG \
1980 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
1981 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
37fa124a
AM
1982 && (! ALTIVEC_VECTOR_MODE (MODE) \
1983 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
258bfae2
FS
1984 && (((MODE) != DFmode && (MODE) != DImode) \
1985 || (TARGET_32BIT \
1986 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1987 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1988 && ((MODE) != TImode \
1989 || (TARGET_32BIT \
1990 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1991 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1465faec 1992 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9 1993
258bfae2
FS
1994#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
1995 (GET_CODE (X) == PLUS \
1996 && GET_CODE (XEXP (X, 0)) == REG \
1997 && GET_CODE (XEXP (X, 1)) == REG \
1998 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
1999 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2000 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2001 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2002
2003#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2004 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2005
6ac7bf2c
GK
2006#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2007 (TARGET_ELF \
2008 && ! flag_pic && ! TARGET_TOC \
2009 && GET_MODE_NUNITS (MODE) == 1 \
2010 && (GET_MODE_BITSIZE (MODE) <= 32 \
c3bb62b9 2011 || (TARGET_HARD_FLOAT && (MODE) == DFmode)) \
6ac7bf2c
GK
2012 && GET_CODE (X) == LO_SUM \
2013 && GET_CODE (XEXP (X, 0)) == REG \
2014 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
4697a36c
MM
2015 && CONSTANT_P (XEXP (X, 1)))
2016
258bfae2
FS
2017#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2018{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2019 goto ADDR; \
f045b2c9
RS
2020}
2021\f
2022/* Try machine-dependent ways of modifying an illegitimate address
2023 to be legitimate. If we find one, return the new, valid address.
2024 This macro is used in only one place: `memory_address' in explow.c.
2025
2026 OLDX is the address as it was before break_out_memory_refs was called.
2027 In some cases it is useful to look at this to decide what needs to be done.
2028
2029 MODE and WIN are passed so that this macro can use
2030 GO_IF_LEGITIMATE_ADDRESS.
2031
2032 It is always safe for this macro to do nothing. It exists to recognize
2033 opportunities to optimize the output.
2034
2035 On RS/6000, first check for the sum of a register with a constant
2036 integer that is out of range. If so, generate code to add the
2037 constant with the low-order 16 bits masked to the register and force
2038 this result into another register (this can be done with `cau').
c81bebd7 2039 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2040 possibility of bit 16 being a one.
2041
2042 Then check for the sum of a register and something not constant, try to
2043 load the other things into a register and return the sum. */
2044
9ebbca7d
GK
2045#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2046{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2047 if (result != NULL_RTX) \
2048 { \
2049 (X) = result; \
2050 goto WIN; \
2051 } \
f045b2c9
RS
2052}
2053
a260abc9
DE
2054/* Try a machine-dependent way of reloading an illegitimate address
2055 operand. If we find one, push the reload and jump to WIN. This
2056 macro is used in only one place: `find_reloads_address' in reload.c.
2057
24ea750e
DJ
2058 Implemented on rs6000 by rs6000_legitimize_reload_address.
2059 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2060
a9098fd0
GK
2061#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2062do { \
24ea750e
DJ
2063 int win; \
2064 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2065 (int)(TYPE), (IND_LEVELS), &win); \
2066 if ( win ) \
2067 goto WIN; \
a260abc9
DE
2068} while (0)
2069
f045b2c9
RS
2070/* Go to LABEL if ADDR (a legitimate address expression)
2071 has an effect that depends on the machine mode it is used for.
2072
2073 On the RS/6000 this is true if the address is valid with a zero offset
2074 but not with an offset of four (this means it cannot be used as an
2075 address for DImode or DFmode) or is a pre-increment or decrement. Since
2076 we know it is valid, we just check for an address that is not valid with
2077 an offset of four. */
2078
2079#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2080{ if (GET_CODE (ADDR) == PLUS \
2081 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2082 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2083 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2084 goto LABEL; \
38c1f2d7 2085 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2086 goto LABEL; \
38c1f2d7 2087 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2088 goto LABEL; \
4697a36c
MM
2089 if (GET_CODE (ADDR) == LO_SUM) \
2090 goto LABEL; \
f045b2c9 2091}
766a866c
MM
2092\f
2093/* The register number of the register used to address a table of
2094 static data addresses in memory. In some cases this register is
2095 defined by a processor's "application binary interface" (ABI).
2096 When this macro is defined, RTL is generated for this register
2097 once, as with the stack pointer and frame pointer registers. If
2098 this macro is not defined, it is up to the machine-dependent files
2099 to allocate such a register (if necessary). */
2100
1db02437
FS
2101#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2102#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2103
9ebbca7d
GK
2104#define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
2105
766a866c
MM
2106/* Define this macro if the register defined by
2107 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2108 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2109
2110/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2111
2112/* By generating position-independent code, when two different
2113 programs (A and B) share a common library (libC.a), the text of
2114 the library can be shared whether or not the library is linked at
2115 the same address for both programs. In some of these
2116 environments, position-independent code requires not only the use
2117 of different addressing modes, but also special code to enable the
2118 use of these addressing modes.
2119
2120 The `FINALIZE_PIC' macro serves as a hook to emit these special
2121 codes once the function is being compiled into assembly code, but
2122 not before. (It is not done before, because in the case of
2123 compiling an inline function, it would lead to multiple PIC
2124 prologues being included in functions which used inline functions
2125 and were compiled to assembly language.) */
2126
8d30c4ee 2127/* #define FINALIZE_PIC */
766a866c 2128
766a866c
MM
2129/* A C expression that is nonzero if X is a legitimate immediate
2130 operand on the target machine when generating position independent
2131 code. You can assume that X satisfies `CONSTANT_P', so you need
2132 not check this. You can also assume FLAG_PIC is true, so you need
2133 not check it either. You need not define this macro if all
2134 constants (including `SYMBOL_REF') can be immediate operands when
2135 generating position independent code. */
2136
2137/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2138
30ea98f1
MM
2139/* In rare cases, correct code generation requires extra machine
2140 dependent processing between the second jump optimization pass and
2141 delayed branch scheduling. On those machines, define this macro
9ebbca7d 2142 as a C statement to act on the code starting at INSN. */
30ea98f1 2143
9ebbca7d 2144/* #define MACHINE_DEPENDENT_REORG(INSN) */
30ea98f1 2145
f045b2c9
RS
2146\f
2147/* Define this if some processing needs to be done immediately before
4255474b 2148 emitting code for an insn. */
f045b2c9 2149
4255474b 2150/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2151
2152/* Specify the machine mode that this machine uses
2153 for the index in the tablejump instruction. */
e1565e65 2154#define CASE_VECTOR_MODE SImode
f045b2c9 2155
18543a22
ILT
2156/* Define as C expression which evaluates to nonzero if the tablejump
2157 instruction expects the table to contain offsets from the address of the
2158 table.
82e41834 2159 Do not define this if the table should contain absolute addresses. */
18543a22 2160#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2161
f045b2c9
RS
2162/* Define this as 1 if `char' should by default be signed; else as 0. */
2163#define DEFAULT_SIGNED_CHAR 0
2164
2165/* This flag, if defined, says the same insns that convert to a signed fixnum
2166 also convert validly to an unsigned one. */
2167
2168/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2169
2170/* Max number of bytes we can move from memory to memory
2171 in one reasonably fast instruction. */
2f3e5814 2172#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2173#define MAX_MOVE_MAX 8
f045b2c9
RS
2174
2175/* Nonzero if access to memory by bytes is no faster than for words.
2176 Also non-zero if doing byte operations (specifically shifts) in registers
2177 is undesirable. */
2178#define SLOW_BYTE_ACCESS 1
2179
9a63901f
RK
2180/* Define if operations between registers always perform the operation
2181 on the full register even if a narrower mode is specified. */
2182#define WORD_REGISTER_OPERATIONS
2183
2184/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2185 will either zero-extend or sign-extend. The value of this macro should
2186 be the code that says which one of the two operations is implicitly
2187 done, NIL if none. */
2188#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2189
2190/* Define if loading short immediate values into registers sign extends. */
2191#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2192\f
f045b2c9
RS
2193/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2194 is done just by pretending it is already truncated. */
2195#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2196
2197/* Specify the machine mode that pointers have.
2198 After generation of rtl, the compiler makes no further distinction
2199 between pointers and any other objects of this machine mode. */
2f3e5814 2200#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2201
2202/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2203 Doesn't matter on RS/6000. */
2f3e5814 2204#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2205
2206/* Define this if addresses of constant functions
2207 shouldn't be put through pseudo regs where they can be cse'd.
2208 Desirable on machines where ordinary constants are expensive
2209 but a CALL with constant address is cheap. */
2210#define NO_FUNCTION_CSE
2211
d969caf8 2212/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2213 few bits.
2214
2215 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2216 have been dropped from the PowerPC architecture. */
2217
4697a36c 2218#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2219
f045b2c9
RS
2220/* Compute the cost of computing a constant rtl expression RTX
2221 whose rtx-code is CODE. The body of this macro is a portion
2222 of a switch statement. If the code is computed here,
2223 return it with a return statement. Otherwise, break from the switch.
2224
01554f00 2225 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2226 always returns 0. */
2227
4697a36c 2228#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2229 case CONST_INT: \
2230 case CONST: \
2231 case LABEL_REF: \
2232 case SYMBOL_REF: \
2233 case CONST_DOUBLE: \
4697a36c 2234 case HIGH: \
f045b2c9
RS
2235 return 0;
2236
2237/* Provide the costs of a rtl expression. This is in the body of a
2238 switch on CODE. */
2239
38c1f2d7
MM
2240#define RTX_COSTS(X,CODE,OUTER_CODE) \
2241 case PLUS: \
2242 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2243 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2244 + 0x8000) >= 0x10000) \
296b8152 2245 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2246 ? COSTS_N_INSNS (2) \
2247 : COSTS_N_INSNS (1)); \
2248 case AND: \
38c1f2d7
MM
2249 case IOR: \
2250 case XOR: \
a260abc9
DE
2251 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2252 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2253 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2254 ? COSTS_N_INSNS (2) \
2255 : COSTS_N_INSNS (1)); \
2256 case MULT: \
2257 switch (rs6000_cpu) \
2258 { \
2259 case PROCESSOR_RIOS1: \
fe7f5677 2260 case PROCESSOR_PPC405: \
38c1f2d7
MM
2261 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2262 ? COSTS_N_INSNS (5) \
2263 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2264 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
3cb999d8
DE
2265 case PROCESSOR_RS64A: \
2266 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2267 ? GET_MODE (XEXP (X, 1)) != DImode \
2268 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2269 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
fe7f5677 2270 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
38c1f2d7
MM
2271 case PROCESSOR_RIOS2: \
2272 case PROCESSOR_MPCCORE: \
5a41b476 2273 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2274 return COSTS_N_INSNS (2); \
2275 case PROCESSOR_PPC601: \
2276 return COSTS_N_INSNS (5); \
2277 case PROCESSOR_PPC603: \
7960cfbb 2278 case PROCESSOR_PPC7400: \
bef84347 2279 case PROCESSOR_PPC750: \
38c1f2d7
MM
2280 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2281 ? COSTS_N_INSNS (5) \
2282 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2283 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
fd3b43f2
DJ
2284 case PROCESSOR_PPC7450: \
2285 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2286 ? COSTS_N_INSNS (4) \
2287 : COSTS_N_INSNS (3)); \
38c1f2d7
MM
2288 case PROCESSOR_PPC403: \
2289 case PROCESSOR_PPC604: \
38c1f2d7 2290 return COSTS_N_INSNS (4); \
3cb999d8
DE
2291 case PROCESSOR_PPC620: \
2292 case PROCESSOR_PPC630: \
2293 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2294 ? GET_MODE (XEXP (X, 1)) != DImode \
fe7f5677 2295 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
3cb999d8
DE
2296 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2297 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
38c1f2d7
MM
2298 } \
2299 case DIV: \
2300 case MOD: \
2301 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2302 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2303 return COSTS_N_INSNS (2); \
2304 /* otherwise fall through to normal divide. */ \
2305 case UDIV: \
2306 case UMOD: \
2307 switch (rs6000_cpu) \
2308 { \
2309 case PROCESSOR_RIOS1: \
2310 return COSTS_N_INSNS (19); \
2311 case PROCESSOR_RIOS2: \
2312 return COSTS_N_INSNS (13); \
3cb999d8
DE
2313 case PROCESSOR_RS64A: \
2314 return (GET_MODE (XEXP (X, 1)) != DImode \
2315 ? COSTS_N_INSNS (65) \
2316 : COSTS_N_INSNS (67)); \
38c1f2d7
MM
2317 case PROCESSOR_MPCCORE: \
2318 return COSTS_N_INSNS (6); \
2319 case PROCESSOR_PPC403: \
2320 return COSTS_N_INSNS (33); \
fe7f5677
DE
2321 case PROCESSOR_PPC405: \
2322 return COSTS_N_INSNS (35); \
38c1f2d7
MM
2323 case PROCESSOR_PPC601: \
2324 return COSTS_N_INSNS (36); \
2325 case PROCESSOR_PPC603: \
2326 return COSTS_N_INSNS (37); \
2327 case PROCESSOR_PPC604: \
5a41b476 2328 case PROCESSOR_PPC604e: \
38c1f2d7 2329 return COSTS_N_INSNS (20); \
3cb999d8
DE
2330 case PROCESSOR_PPC620: \
2331 case PROCESSOR_PPC630: \
2332 return (GET_MODE (XEXP (X, 1)) != DImode \
2333 ? COSTS_N_INSNS (21) \
2334 : COSTS_N_INSNS (37)); \
bef84347 2335 case PROCESSOR_PPC750: \
ed947a96 2336 case PROCESSOR_PPC7400: \
bef84347 2337 return COSTS_N_INSNS (19); \
ed947a96
DJ
2338 case PROCESSOR_PPC7450: \
2339 return COSTS_N_INSNS (23); \
38c1f2d7
MM
2340 } \
2341 case FFS: \
2342 return COSTS_N_INSNS (4); \
2343 case MEM: \
f045b2c9
RS
2344 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2345 return 5;
2346
2347/* Compute the cost of an address. This is meant to approximate the size
2348 and/or execution delay of an insn using that address. If the cost is
2349 approximated by the RTL complexity, including CONST_COSTS above, as
2350 is usually the case for CISC machines, this macro should not be defined.
2351 For aggressively RISCy machines, only one insn format is allowed, so
2352 this macro should be a constant. The value of this macro only matters
2353 for valid addresses.
2354
2355 For the RS/6000, everything is cost 0. */
2356
2357#define ADDRESS_COST(RTX) 0
2358
2359/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2360 should be adjusted to reflect any required changes. This macro is used when
2361 there is some systematic length adjustment required that would be difficult
2362 to express in the length attribute. */
2363
2364/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2365
2366/* Add any extra modes needed to represent the condition code.
2367
2368 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2369 are being done and we need a separate mode for floating-point. We also
2370 use a mode for the case when we are comparing the results of two
39a10a29 2371 comparisons, as then only the EQ bit is valid in the register. */
f045b2c9 2372
aa0b4465
ZW
2373#define EXTRA_CC_MODES \
2374 CC(CCUNSmode, "CCUNS") \
2375 CC(CCFPmode, "CCFP") \
2376 CC(CCEQmode, "CCEQ")
f045b2c9 2377
39a10a29
GK
2378/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2379 COMPARE, return the mode to be used for the comparison. For
2380 floating-point, CCFPmode should be used. CCUNSmode should be used
2381 for unsigned comparisons. CCEQmode should be used when we are
2382 doing an inequality comparison on the result of a
2383 comparison. CCmode should be used in all other cases. */
c5defebb 2384
b565a316 2385#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2386 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2387 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2388 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2389 ? CCEQmode : CCmode))
f045b2c9
RS
2390
2391/* Define the information needed to generate branch and scc insns. This is
2392 stored from the compare operation. Note that we can't use "rtx" here
2393 since it hasn't been defined! */
2394
2395extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2396extern int rs6000_compare_fp_p;
f045b2c9
RS
2397\f
2398/* Control the assembler format that we output. */
2399
1b279f39
DE
2400/* A C string constant describing how to begin a comment in the target
2401 assembler language. The compiler assumes that the comment will end at
2402 the end of the line. */
2403#define ASM_COMMENT_START " #"
6b67933e 2404
fdaff8ba
RS
2405/* Implicit library calls should use memcpy, not bcopy, etc. */
2406
2407#define TARGET_MEM_FUNCTIONS
2408
38c1f2d7
MM
2409/* Flag to say the TOC is initialized */
2410extern int toc_initialized;
2411
f045b2c9
RS
2412/* Macro to output a special constant pool entry. Go to WIN if we output
2413 it. Otherwise, it is written the usual way.
2414
2415 On the RS/6000, toc entries are handled this way. */
2416
a9098fd0
GK
2417#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2418{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2419 { \
2420 output_toc (FILE, X, LABELNO, MODE); \
2421 goto WIN; \
2422 } \
f045b2c9
RS
2423}
2424
ebd97b96
DE
2425#ifdef HAVE_GAS_WEAK
2426#define RS6000_WEAK 1
2427#else
2428#define RS6000_WEAK 0
2429#endif
290ad355 2430
79c4e63f
AM
2431#if RS6000_WEAK
2432/* Used in lieu of ASM_WEAKEN_LABEL. */
2433#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2434 do \
2435 { \
2436 fputs ("\t.weak\t", (FILE)); \
2437 assemble_name ((FILE), (NAME)); \
2438 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2439 && DEFAULT_ABI == ABI_AIX) \
2440 { \
ca734b39 2441 fputs ("\n\t.weak\t.", (FILE)); \
79c4e63f
AM
2442 assemble_name ((FILE), (NAME)); \
2443 } \
2444 fputc ('\n', (FILE)); \
2445 if (VAL) \
2446 { \
2447 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2448 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2449 && DEFAULT_ABI == ABI_AIX) \
2450 { \
2451 fputs ("\t.set\t.", (FILE)); \
2452 assemble_name ((FILE), (NAME)); \
2453 fputs (",.", (FILE)); \
2454 assemble_name ((FILE), (VAL)); \
2455 fputc ('\n', (FILE)); \
2456 } \
2457 } \
2458 } \
2459 while (0)
2460#endif
2461
2462/* This implements the `alias' attribute. */
2463#undef ASM_OUTPUT_DEF_FROM_DECLS
2464#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2465 do \
2466 { \
2467 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2468 const char *name = IDENTIFIER_POINTER (TARGET); \
2469 if (TREE_CODE (DECL) == FUNCTION_DECL \
2470 && DEFAULT_ABI == ABI_AIX) \
2471 { \
2472 if (TREE_PUBLIC (DECL)) \
2473 { \
2474 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2475 { \
2476 fputs ("\t.globl\t.", FILE); \
2477 assemble_name (FILE, alias); \
2478 putc ('\n', FILE); \
2479 } \
2480 } \
2481 else if (TARGET_XCOFF) \
2482 { \
2483 fputs ("\t.lglobl\t.", FILE); \
2484 assemble_name (FILE, alias); \
2485 putc ('\n', FILE); \
2486 } \
2487 fputs ("\t.set\t.", FILE); \
2488 assemble_name (FILE, alias); \
2489 fputs (",.", FILE); \
2490 assemble_name (FILE, name); \
2491 fputc ('\n', FILE); \
2492 } \
2493 ASM_OUTPUT_DEF (FILE, alias, name); \
2494 } \
2495 while (0)
290ad355 2496
f045b2c9
RS
2497/* Output to assembler file text saying following lines
2498 may contain character constants, extra white space, comments, etc. */
2499
2500#define ASM_APP_ON ""
2501
2502/* Output to assembler file text saying following lines
2503 no longer contain unusual constructs. */
2504
2505#define ASM_APP_OFF ""
2506
f045b2c9
RS
2507/* How to refer to registers in assembler output.
2508 This sequence is indexed by compiler's hard-register-number (see above). */
2509
82e41834 2510extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2511
2512#define REGISTER_NAMES \
2513{ \
2514 &rs6000_reg_names[ 0][0], /* r0 */ \
2515 &rs6000_reg_names[ 1][0], /* r1 */ \
2516 &rs6000_reg_names[ 2][0], /* r2 */ \
2517 &rs6000_reg_names[ 3][0], /* r3 */ \
2518 &rs6000_reg_names[ 4][0], /* r4 */ \
2519 &rs6000_reg_names[ 5][0], /* r5 */ \
2520 &rs6000_reg_names[ 6][0], /* r6 */ \
2521 &rs6000_reg_names[ 7][0], /* r7 */ \
2522 &rs6000_reg_names[ 8][0], /* r8 */ \
2523 &rs6000_reg_names[ 9][0], /* r9 */ \
2524 &rs6000_reg_names[10][0], /* r10 */ \
2525 &rs6000_reg_names[11][0], /* r11 */ \
2526 &rs6000_reg_names[12][0], /* r12 */ \
2527 &rs6000_reg_names[13][0], /* r13 */ \
2528 &rs6000_reg_names[14][0], /* r14 */ \
2529 &rs6000_reg_names[15][0], /* r15 */ \
2530 &rs6000_reg_names[16][0], /* r16 */ \
2531 &rs6000_reg_names[17][0], /* r17 */ \
2532 &rs6000_reg_names[18][0], /* r18 */ \
2533 &rs6000_reg_names[19][0], /* r19 */ \
2534 &rs6000_reg_names[20][0], /* r20 */ \
2535 &rs6000_reg_names[21][0], /* r21 */ \
2536 &rs6000_reg_names[22][0], /* r22 */ \
2537 &rs6000_reg_names[23][0], /* r23 */ \
2538 &rs6000_reg_names[24][0], /* r24 */ \
2539 &rs6000_reg_names[25][0], /* r25 */ \
2540 &rs6000_reg_names[26][0], /* r26 */ \
2541 &rs6000_reg_names[27][0], /* r27 */ \
2542 &rs6000_reg_names[28][0], /* r28 */ \
2543 &rs6000_reg_names[29][0], /* r29 */ \
2544 &rs6000_reg_names[30][0], /* r30 */ \
2545 &rs6000_reg_names[31][0], /* r31 */ \
2546 \
2547 &rs6000_reg_names[32][0], /* fr0 */ \
2548 &rs6000_reg_names[33][0], /* fr1 */ \
2549 &rs6000_reg_names[34][0], /* fr2 */ \
2550 &rs6000_reg_names[35][0], /* fr3 */ \
2551 &rs6000_reg_names[36][0], /* fr4 */ \
2552 &rs6000_reg_names[37][0], /* fr5 */ \
2553 &rs6000_reg_names[38][0], /* fr6 */ \
2554 &rs6000_reg_names[39][0], /* fr7 */ \
2555 &rs6000_reg_names[40][0], /* fr8 */ \
2556 &rs6000_reg_names[41][0], /* fr9 */ \
2557 &rs6000_reg_names[42][0], /* fr10 */ \
2558 &rs6000_reg_names[43][0], /* fr11 */ \
2559 &rs6000_reg_names[44][0], /* fr12 */ \
2560 &rs6000_reg_names[45][0], /* fr13 */ \
2561 &rs6000_reg_names[46][0], /* fr14 */ \
2562 &rs6000_reg_names[47][0], /* fr15 */ \
2563 &rs6000_reg_names[48][0], /* fr16 */ \
2564 &rs6000_reg_names[49][0], /* fr17 */ \
2565 &rs6000_reg_names[50][0], /* fr18 */ \
2566 &rs6000_reg_names[51][0], /* fr19 */ \
2567 &rs6000_reg_names[52][0], /* fr20 */ \
2568 &rs6000_reg_names[53][0], /* fr21 */ \
2569 &rs6000_reg_names[54][0], /* fr22 */ \
2570 &rs6000_reg_names[55][0], /* fr23 */ \
2571 &rs6000_reg_names[56][0], /* fr24 */ \
2572 &rs6000_reg_names[57][0], /* fr25 */ \
2573 &rs6000_reg_names[58][0], /* fr26 */ \
2574 &rs6000_reg_names[59][0], /* fr27 */ \
2575 &rs6000_reg_names[60][0], /* fr28 */ \
2576 &rs6000_reg_names[61][0], /* fr29 */ \
2577 &rs6000_reg_names[62][0], /* fr30 */ \
2578 &rs6000_reg_names[63][0], /* fr31 */ \
2579 \
2580 &rs6000_reg_names[64][0], /* mq */ \
2581 &rs6000_reg_names[65][0], /* lr */ \
2582 &rs6000_reg_names[66][0], /* ctr */ \
2583 &rs6000_reg_names[67][0], /* ap */ \
2584 \
2585 &rs6000_reg_names[68][0], /* cr0 */ \
2586 &rs6000_reg_names[69][0], /* cr1 */ \
2587 &rs6000_reg_names[70][0], /* cr2 */ \
2588 &rs6000_reg_names[71][0], /* cr3 */ \
2589 &rs6000_reg_names[72][0], /* cr4 */ \
2590 &rs6000_reg_names[73][0], /* cr5 */ \
2591 &rs6000_reg_names[74][0], /* cr6 */ \
2592 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2593 \
9ebbca7d 2594 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2595 \
2596 &rs6000_reg_names[77][0], /* v0 */ \
2597 &rs6000_reg_names[78][0], /* v1 */ \
2598 &rs6000_reg_names[79][0], /* v2 */ \
2599 &rs6000_reg_names[80][0], /* v3 */ \
2600 &rs6000_reg_names[81][0], /* v4 */ \
2601 &rs6000_reg_names[82][0], /* v5 */ \
2602 &rs6000_reg_names[83][0], /* v6 */ \
2603 &rs6000_reg_names[84][0], /* v7 */ \
2604 &rs6000_reg_names[85][0], /* v8 */ \
2605 &rs6000_reg_names[86][0], /* v9 */ \
2606 &rs6000_reg_names[87][0], /* v10 */ \
2607 &rs6000_reg_names[88][0], /* v11 */ \
2608 &rs6000_reg_names[89][0], /* v12 */ \
2609 &rs6000_reg_names[90][0], /* v13 */ \
2610 &rs6000_reg_names[91][0], /* v14 */ \
2611 &rs6000_reg_names[92][0], /* v15 */ \
2612 &rs6000_reg_names[93][0], /* v16 */ \
2613 &rs6000_reg_names[94][0], /* v17 */ \
2614 &rs6000_reg_names[95][0], /* v18 */ \
2615 &rs6000_reg_names[96][0], /* v19 */ \
2616 &rs6000_reg_names[97][0], /* v20 */ \
2617 &rs6000_reg_names[98][0], /* v21 */ \
2618 &rs6000_reg_names[99][0], /* v22 */ \
2619 &rs6000_reg_names[100][0], /* v23 */ \
2620 &rs6000_reg_names[101][0], /* v24 */ \
2621 &rs6000_reg_names[102][0], /* v25 */ \
2622 &rs6000_reg_names[103][0], /* v26 */ \
2623 &rs6000_reg_names[104][0], /* v27 */ \
2624 &rs6000_reg_names[105][0], /* v28 */ \
2625 &rs6000_reg_names[106][0], /* v29 */ \
2626 &rs6000_reg_names[107][0], /* v30 */ \
2627 &rs6000_reg_names[108][0], /* v31 */ \
2628 &rs6000_reg_names[109][0], /* vrsave */ \
c81bebd7
MM
2629}
2630
2631/* print-rtl can't handle the above REGISTER_NAMES, so define the
2632 following for it. Switch to use the alternate names since
2633 they are more mnemonic. */
2634
2635#define DEBUG_REGISTER_NAMES \
2636{ \
802a0058
MM
2637 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2638 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2639 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2640 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2641 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2642 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2643 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2644 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2645 "mq", "lr", "ctr", "ap", \
2646 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
0ac081f6
AH
2647 "xer", \
2648 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2649 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2650 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2651 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2652 "vrsave" \
c81bebd7 2653}
f045b2c9
RS
2654
2655/* Table of additional register names to use in user input. */
2656
2657#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2658 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2659 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2660 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2661 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2662 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2663 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2664 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2665 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2666 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2667 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2668 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2669 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2670 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2671 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2672 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2673 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2674 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2675 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2676 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2677 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2678 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2679 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2680 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2681 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2682 {"vrsave", 109}, \
c4d38ccb
MM
2683 /* no additional names for: mq, lr, ctr, ap */ \
2684 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2685 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2686 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2687
0da40b09
RK
2688/* Text to write out after a CALL that may be replaced by glue code by
2689 the loader. This depends on the AIX version. */
2690#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2691
f045b2c9
RS
2692/* This is how to output an element of a case-vector that is relative. */
2693
e1565e65 2694#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2695 do { char buf[100]; \
e1565e65 2696 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2697 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2698 assemble_name (FILE, buf); \
19d2d16f 2699 putc ('-', FILE); \
3daf36a4
ILT
2700 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2701 assemble_name (FILE, buf); \
19d2d16f 2702 putc ('\n', FILE); \
3daf36a4 2703 } while (0)
f045b2c9
RS
2704
2705/* This is how to output an assembler line
2706 that says to advance the location counter
2707 to a multiple of 2**LOG bytes. */
2708
2709#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2710 if ((LOG) != 0) \
2711 fprintf (FILE, "\t.align %d\n", (LOG))
2712
f045b2c9
RS
2713/* Store in OUTPUT a string (made with alloca) containing
2714 an assembler-name for a local static variable named NAME.
2715 LABELNO is an integer which is different for each call. */
2716
2717#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2718( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2719 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2720
9ebbca7d
GK
2721/* Pick up the return address upon entry to a procedure. Used for
2722 dwarf2 unwind information. This also enables the table driven
2723 mechanism. */
2724
2725#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2726#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2727
83720594
RH
2728/* Describe how we implement __builtin_eh_return. */
2729#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2730#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2731
f045b2c9
RS
2732/* Print operand X (an rtx) in assembler syntax to file FILE.
2733 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2734 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2735
2736#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2737
2738/* Define which CODE values are valid. */
2739
c81bebd7 2740#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
6fa3f289 2741 ((CODE) == '.')
f045b2c9
RS
2742
2743/* Print a memory address as an operand to reference that memory location. */
2744
2745#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2746
2747/* Define the codes that are matched by predicates in rs6000.c. */
2748
39a10a29 2749#define PREDICATE_CODES \
a65c591c 2750 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
df15fbc7 2751 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
a65c591c
DE
2752 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2753 LABEL_REF, SUBREG, REG, MEM}}, \
39a10a29
GK
2754 {"short_cint_operand", {CONST_INT}}, \
2755 {"u_short_cint_operand", {CONST_INT}}, \
2756 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2757 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2758 {"gpc_reg_operand", {SUBREG, REG}}, \
2759 {"cc_reg_operand", {SUBREG, REG}}, \
2760 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2761 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2762 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2763 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2764 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2765 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2766 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2767 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2768 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2769 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2770 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2771 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2772 {"easy_fp_constant", {CONST_DOUBLE}}, \
50a0b056 2773 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2774 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2775 {"lwa_operand", {SUBREG, MEM, REG}}, \
2776 {"volatile_mem_operand", {MEM}}, \
2777 {"offsettable_mem_operand", {MEM}}, \
2778 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2779 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2780 {"non_add_cint_operand", {CONST_INT}}, \
2781 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2782 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2783 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2784 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2785 {"mask_operand", {CONST_INT}}, \
2786 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2787 {"count_register_operand", {REG}}, \
2788 {"xer_operand", {REG}}, \
cc4d5fec 2789 {"symbol_ref_operand", {SYMBOL_REF}}, \
39a10a29
GK
2790 {"call_operand", {SYMBOL_REF, REG}}, \
2791 {"current_file_function_operand", {SYMBOL_REF}}, \
2792 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2793 CONST_DOUBLE, SYMBOL_REF}}, \
2794 {"load_multiple_operation", {PARALLEL}}, \
2795 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2796 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2797 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2798 GT, LEU, LTU, GEU, GTU, \
2799 UNORDERED, ORDERED, \
2800 UNGE, UNLE }}, \
2801 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2802 UNORDERED }}, \
2803 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2804 GT, LEU, LTU, GEU, GTU, \
2805 UNORDERED, ORDERED, \
2806 UNGE, UNLE }}, \
2807 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2808 GT, LEU, LTU, GEU, GTU}}, \
2809 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2810 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2811 {"altivec_register_operand", {REG}}, \
50a0b056 2812 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2813
b6c9286a
MM
2814/* uncomment for disabling the corresponding default options */
2815/* #define MACHINE_no_sched_interblock */
2816/* #define MACHINE_no_sched_speculative */
2817/* #define MACHINE_no_sched_speculative_load */
2818
766a866c
MM
2819/* General flags. */
2820extern int flag_pic;
354b734b
MM
2821extern int optimize;
2822extern int flag_expensive_optimizations;
a7df97e6 2823extern int frame_pointer_needed;
0ac081f6
AH
2824
2825enum rs6000_builtins
2826{
2827 /* AltiVec builtins. */
f18c054f
DB
2828 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2829 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2830 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2831 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2832 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2833 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2834 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2835 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2836 ALTIVEC_BUILTIN_VADDUBM,
2837 ALTIVEC_BUILTIN_VADDUHM,
2838 ALTIVEC_BUILTIN_VADDUWM,
2839 ALTIVEC_BUILTIN_VADDFP,
2840 ALTIVEC_BUILTIN_VADDCUW,
2841 ALTIVEC_BUILTIN_VADDUBS,
2842 ALTIVEC_BUILTIN_VADDSBS,
2843 ALTIVEC_BUILTIN_VADDUHS,
2844 ALTIVEC_BUILTIN_VADDSHS,
2845 ALTIVEC_BUILTIN_VADDUWS,
2846 ALTIVEC_BUILTIN_VADDSWS,
2847 ALTIVEC_BUILTIN_VAND,
2848 ALTIVEC_BUILTIN_VANDC,
2849 ALTIVEC_BUILTIN_VAVGUB,
2850 ALTIVEC_BUILTIN_VAVGSB,
2851 ALTIVEC_BUILTIN_VAVGUH,
2852 ALTIVEC_BUILTIN_VAVGSH,
2853 ALTIVEC_BUILTIN_VAVGUW,
2854 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2855 ALTIVEC_BUILTIN_VCFUX,
2856 ALTIVEC_BUILTIN_VCFSX,
2857 ALTIVEC_BUILTIN_VCTSXS,
2858 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2859 ALTIVEC_BUILTIN_VCMPBFP,
2860 ALTIVEC_BUILTIN_VCMPEQUB,
2861 ALTIVEC_BUILTIN_VCMPEQUH,
2862 ALTIVEC_BUILTIN_VCMPEQUW,
2863 ALTIVEC_BUILTIN_VCMPEQFP,
2864 ALTIVEC_BUILTIN_VCMPGEFP,
2865 ALTIVEC_BUILTIN_VCMPGTUB,
2866 ALTIVEC_BUILTIN_VCMPGTSB,
2867 ALTIVEC_BUILTIN_VCMPGTUH,
2868 ALTIVEC_BUILTIN_VCMPGTSH,
2869 ALTIVEC_BUILTIN_VCMPGTUW,
2870 ALTIVEC_BUILTIN_VCMPGTSW,
2871 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2872 ALTIVEC_BUILTIN_VEXPTEFP,
2873 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2874 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2875 ALTIVEC_BUILTIN_VMAXUB,
2876 ALTIVEC_BUILTIN_VMAXSB,
2877 ALTIVEC_BUILTIN_VMAXUH,
2878 ALTIVEC_BUILTIN_VMAXSH,
2879 ALTIVEC_BUILTIN_VMAXUW,
2880 ALTIVEC_BUILTIN_VMAXSW,
2881 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2882 ALTIVEC_BUILTIN_VMHADDSHS,
2883 ALTIVEC_BUILTIN_VMHRADDSHS,
2884 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2885 ALTIVEC_BUILTIN_VMRGHB,
2886 ALTIVEC_BUILTIN_VMRGHH,
2887 ALTIVEC_BUILTIN_VMRGHW,
2888 ALTIVEC_BUILTIN_VMRGLB,
2889 ALTIVEC_BUILTIN_VMRGLH,
2890 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2891 ALTIVEC_BUILTIN_VMSUMUBM,
2892 ALTIVEC_BUILTIN_VMSUMMBM,
2893 ALTIVEC_BUILTIN_VMSUMUHM,
2894 ALTIVEC_BUILTIN_VMSUMSHM,
2895 ALTIVEC_BUILTIN_VMSUMUHS,
2896 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2897 ALTIVEC_BUILTIN_VMINUB,
2898 ALTIVEC_BUILTIN_VMINSB,
2899 ALTIVEC_BUILTIN_VMINUH,
2900 ALTIVEC_BUILTIN_VMINSH,
2901 ALTIVEC_BUILTIN_VMINUW,
2902 ALTIVEC_BUILTIN_VMINSW,
2903 ALTIVEC_BUILTIN_VMINFP,
2904 ALTIVEC_BUILTIN_VMULEUB,
2905 ALTIVEC_BUILTIN_VMULESB,
2906 ALTIVEC_BUILTIN_VMULEUH,
2907 ALTIVEC_BUILTIN_VMULESH,
2908 ALTIVEC_BUILTIN_VMULOUB,
2909 ALTIVEC_BUILTIN_VMULOSB,
2910 ALTIVEC_BUILTIN_VMULOUH,
2911 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2912 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2913 ALTIVEC_BUILTIN_VNOR,
2914 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2915 ALTIVEC_BUILTIN_VSEL_4SI,
2916 ALTIVEC_BUILTIN_VSEL_4SF,
2917 ALTIVEC_BUILTIN_VSEL_8HI,
2918 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2919 ALTIVEC_BUILTIN_VPERM_4SI,
2920 ALTIVEC_BUILTIN_VPERM_4SF,
2921 ALTIVEC_BUILTIN_VPERM_8HI,
2922 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2923 ALTIVEC_BUILTIN_VPKUHUM,
2924 ALTIVEC_BUILTIN_VPKUWUM,
2925 ALTIVEC_BUILTIN_VPKPX,
2926 ALTIVEC_BUILTIN_VPKUHSS,
2927 ALTIVEC_BUILTIN_VPKSHSS,
2928 ALTIVEC_BUILTIN_VPKUWSS,
2929 ALTIVEC_BUILTIN_VPKSWSS,
2930 ALTIVEC_BUILTIN_VPKUHUS,
2931 ALTIVEC_BUILTIN_VPKSHUS,
2932 ALTIVEC_BUILTIN_VPKUWUS,
2933 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2934 ALTIVEC_BUILTIN_VREFP,
2935 ALTIVEC_BUILTIN_VRFIM,
2936 ALTIVEC_BUILTIN_VRFIN,
2937 ALTIVEC_BUILTIN_VRFIP,
2938 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2939 ALTIVEC_BUILTIN_VRLB,
2940 ALTIVEC_BUILTIN_VRLH,
2941 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2942 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2943 ALTIVEC_BUILTIN_VSLB,
2944 ALTIVEC_BUILTIN_VSLH,
2945 ALTIVEC_BUILTIN_VSLW,
2946 ALTIVEC_BUILTIN_VSL,
2947 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2948 ALTIVEC_BUILTIN_VSPLTB,
2949 ALTIVEC_BUILTIN_VSPLTH,
2950 ALTIVEC_BUILTIN_VSPLTW,
2951 ALTIVEC_BUILTIN_VSPLTISB,
2952 ALTIVEC_BUILTIN_VSPLTISH,
2953 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2954 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2955 ALTIVEC_BUILTIN_VSRH,
2956 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2957 ALTIVEC_BUILTIN_VSRAB,
2958 ALTIVEC_BUILTIN_VSRAH,
2959 ALTIVEC_BUILTIN_VSRAW,
2960 ALTIVEC_BUILTIN_VSR,
2961 ALTIVEC_BUILTIN_VSRO,
2962 ALTIVEC_BUILTIN_VSUBUBM,
2963 ALTIVEC_BUILTIN_VSUBUHM,
2964 ALTIVEC_BUILTIN_VSUBUWM,
2965 ALTIVEC_BUILTIN_VSUBFP,
2966 ALTIVEC_BUILTIN_VSUBCUW,
2967 ALTIVEC_BUILTIN_VSUBUBS,
2968 ALTIVEC_BUILTIN_VSUBSBS,
2969 ALTIVEC_BUILTIN_VSUBUHS,
2970 ALTIVEC_BUILTIN_VSUBSHS,
2971 ALTIVEC_BUILTIN_VSUBUWS,
2972 ALTIVEC_BUILTIN_VSUBSWS,
2973 ALTIVEC_BUILTIN_VSUM4UBS,
2974 ALTIVEC_BUILTIN_VSUM4SBS,
2975 ALTIVEC_BUILTIN_VSUM4SHS,
2976 ALTIVEC_BUILTIN_VSUM2SWS,
2977 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2978 ALTIVEC_BUILTIN_VXOR,
2979 ALTIVEC_BUILTIN_VSLDOI_16QI,
2980 ALTIVEC_BUILTIN_VSLDOI_8HI,
2981 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2982 ALTIVEC_BUILTIN_VSLDOI_4SF,
2983 ALTIVEC_BUILTIN_VUPKHSB,
2984 ALTIVEC_BUILTIN_VUPKHPX,
2985 ALTIVEC_BUILTIN_VUPKHSH,
2986 ALTIVEC_BUILTIN_VUPKLSB,
2987 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 2988 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
2989 ALTIVEC_BUILTIN_MTVSCR,
2990 ALTIVEC_BUILTIN_MFVSCR,
2991 ALTIVEC_BUILTIN_DSSALL,
2992 ALTIVEC_BUILTIN_DSS,
2993 ALTIVEC_BUILTIN_LVSL,
2994 ALTIVEC_BUILTIN_LVSR,
2995 ALTIVEC_BUILTIN_DSTT,
2996 ALTIVEC_BUILTIN_DSTST,
2997 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
2998 ALTIVEC_BUILTIN_DST,
2999 ALTIVEC_BUILTIN_LVEBX,
3000 ALTIVEC_BUILTIN_LVEHX,
3001 ALTIVEC_BUILTIN_LVEWX,
3002 ALTIVEC_BUILTIN_LVXL,
3003 ALTIVEC_BUILTIN_LVX,
3004 ALTIVEC_BUILTIN_STVX,
3005 ALTIVEC_BUILTIN_STVEBX,
3006 ALTIVEC_BUILTIN_STVEHX,
3007 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
3008 ALTIVEC_BUILTIN_STVXL,
3009 ALTIVEC_BUILTIN_VCMPBFP_P,
3010 ALTIVEC_BUILTIN_VCMPEQFP_P,
3011 ALTIVEC_BUILTIN_VCMPEQUB_P,
3012 ALTIVEC_BUILTIN_VCMPEQUH_P,
3013 ALTIVEC_BUILTIN_VCMPEQUW_P,
3014 ALTIVEC_BUILTIN_VCMPGEFP_P,
3015 ALTIVEC_BUILTIN_VCMPGTFP_P,
3016 ALTIVEC_BUILTIN_VCMPGTSB_P,
3017 ALTIVEC_BUILTIN_VCMPGTSH_P,
3018 ALTIVEC_BUILTIN_VCMPGTSW_P,
3019 ALTIVEC_BUILTIN_VCMPGTUB_P,
3020 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
3021 ALTIVEC_BUILTIN_VCMPGTUW_P,
3022 ALTIVEC_BUILTIN_ABSS_V4SI,
3023 ALTIVEC_BUILTIN_ABSS_V8HI,
3024 ALTIVEC_BUILTIN_ABSS_V16QI,
3025 ALTIVEC_BUILTIN_ABS_V4SI,
3026 ALTIVEC_BUILTIN_ABS_V4SF,
3027 ALTIVEC_BUILTIN_ABS_V8HI,
3028 ALTIVEC_BUILTIN_ABS_V16QI
0ac081f6 3029};