]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
re PR fortran/78026 (ICE in gfc_resolve_omp_declare_simd, at fortran/openmp.c:5190)
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
818ab71a 2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 4
5de601cf 5 This file is part of GCC.
f045b2c9 6
5de601cf
NC
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
5de601cf 10 option) any later version.
f045b2c9 11
5de601cf
NC
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f045b2c9 16
748086b7
JJ
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 24 <http://www.gnu.org/licenses/>. */
f045b2c9
RS
25
26/* Note that some other tm.h files include this one and then override
9ebbca7d 27 many of the definitions. */
f045b2c9 28
fd438373
MM
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
9ebbca7d
GK
33/* Definitions for the object file format. These are set at
34 compile-time. */
f045b2c9 35
9ebbca7d
GK
36#define OBJECT_XCOFF 1
37#define OBJECT_ELF 2
38#define OBJECT_PEF 3
ee890fe2 39#define OBJECT_MACHO 4
f045b2c9 40
9ebbca7d 41#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 42#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 43#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 44#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 45
2bfcf297
DB
46#ifndef TARGET_AIX
47#define TARGET_AIX 0
48#endif
49
78009d9f
MM
50#ifndef TARGET_AIX_OS
51#define TARGET_AIX_OS 0
52#endif
53
85b776df
AM
54/* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56#define DOT_SYMBOLS 1
57
8e3f41e7
MM
58/* Default string to use for cpu if not specified. */
59#ifndef TARGET_CPU_DEFAULT
60#define TARGET_CPU_DEFAULT ((char *)0)
61#endif
62
f565b0a1 63/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 64#ifdef CONFIG_PPC405CR
f565b0a1
DE
65#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66#else
67#define PPC405_ERRATUM77 0
68#endif
69
96038623
DE
70#ifndef TARGET_PAIRED_FLOAT
71#define TARGET_PAIRED_FLOAT 0
72#endif
73
cd679487
BE
74#ifdef HAVE_AS_POPCNTB
75#define ASM_CPU_POWER5_SPEC "-mpower5"
76#else
77#define ASM_CPU_POWER5_SPEC "-mpower4"
78#endif
79
80#ifdef HAVE_AS_DFP
81#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82#else
83#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84#endif
85
cacf1ca8 86#ifdef HAVE_AS_POPCNTD
d40c9e33
PB
87#define ASM_CPU_POWER7_SPEC "-mpower7"
88#else
89#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90#endif
91
428bffcb
PB
92#ifdef HAVE_AS_POWER8
93#define ASM_CPU_POWER8_SPEC "-mpower8"
94#else
f62511da 95#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
428bffcb
PB
96#endif
97
d1f0d376
MM
98#ifdef HAVE_AS_POWER9
99#define ASM_CPU_POWER9_SPEC "-mpower9"
100#else
101#define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102#endif
103
47f67e51
PB
104#ifdef HAVE_AS_DCI
105#define ASM_CPU_476_SPEC "-m476"
106#else
107#define ASM_CPU_476_SPEC "-mpower4"
108#endif
109
cacf1ca8
MM
110/* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
f984d8df
DB
114#define ASM_CPU_SPEC \
115"%{!mcpu*: \
93ae5495 116 %{mpowerpc64*: -mppc64} \
a441dedb 117 %{!mpowerpc64*: %(asm_default)}} \
cacf1ca8 118%{mcpu=native: %(asm_cpu_native)} \
d296e02e 119%{mcpu=cell: -mcell} \
93ae5495 120%{mcpu=power3: -mppc64} \
957e9e48 121%{mcpu=power4: -mpower4} \
cd679487
BE
122%{mcpu=power5: %(asm_cpu_power5)} \
123%{mcpu=power5+: %(asm_cpu_power5)} \
124%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
d40c9e33 126%{mcpu=power7: %(asm_cpu_power7)} \
428bffcb 127%{mcpu=power8: %(asm_cpu_power8)} \
d1f0d376 128%{mcpu=power9: %(asm_cpu_power9)} \
ebde32fd 129%{mcpu=a2: -ma2} \
f984d8df 130%{mcpu=powerpc: -mppc} \
fa17b3db 131%{mcpu=powerpc64le: %(asm_cpu_power8)} \
93ae5495 132%{mcpu=rs64a: -mppc64} \
f984d8df 133%{mcpu=401: -mppc} \
61a8515c
JS
134%{mcpu=403: -m403} \
135%{mcpu=405: -m405} \
2c9d95ef
DE
136%{mcpu=405fp: -m405} \
137%{mcpu=440: -m440} \
138%{mcpu=440fp: -m440} \
4adf8008
PB
139%{mcpu=464: -m440} \
140%{mcpu=464fp: -m440} \
47f67e51
PB
141%{mcpu=476: %(asm_cpu_476)} \
142%{mcpu=476fp: %(asm_cpu_476)} \
f984d8df
DB
143%{mcpu=505: -mppc} \
144%{mcpu=601: -m601} \
145%{mcpu=602: -mppc} \
146%{mcpu=603: -mppc} \
147%{mcpu=603e: -mppc} \
148%{mcpu=ec603e: -mppc} \
149%{mcpu=604: -mppc} \
150%{mcpu=604e: -mppc} \
93ae5495
AM
151%{mcpu=620: -mppc64} \
152%{mcpu=630: -mppc64} \
f984d8df
DB
153%{mcpu=740: -mppc} \
154%{mcpu=750: -mppc} \
49ffe578 155%{mcpu=G3: -mppc} \
93ae5495
AM
156%{mcpu=7400: -mppc -maltivec} \
157%{mcpu=7450: -mppc -maltivec} \
158%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
159%{mcpu=801: -mppc} \
160%{mcpu=821: -mppc} \
161%{mcpu=823: -mppc} \
775db490 162%{mcpu=860: -mppc} \
93ae5495
AM
163%{mcpu=970: -mpower4 -maltivec} \
164%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 165%{mcpu=8540: -me500} \
5ca0373f 166%{mcpu=8548: -me500} \
fa41c305
EW
167%{mcpu=e300c2: -me300} \
168%{mcpu=e300c3: -me300} \
edae5fe3 169%{mcpu=e500mc: -me500mc} \
b17f98b1 170%{mcpu=e500mc64: -me500mc64} \
683ed19e
EW
171%{mcpu=e5500: -me5500} \
172%{mcpu=e6500: -me6500} \
93ae5495 173%{maltivec: -maltivec} \
2c9ccc21 174%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
0258b6e4 175%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
93ae5495 176-many"
f984d8df
DB
177
178#define CPP_DEFAULT_SPEC ""
179
180#define ASM_DEFAULT_SPEC ""
181
841faeed
MM
182/* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
5de601cf 187 specification name, and a string constant that used by the GCC driver
841faeed
MM
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
7509c759 192#define SUBTARGET_EXTRA_SPECS
7509c759 193
c81bebd7 194#define EXTRA_SPECS \
c81bebd7 195 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7 196 { "asm_cpu", ASM_CPU_SPEC }, \
cacf1ca8 197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
c81bebd7 198 { "asm_default", ASM_DEFAULT_SPEC }, \
0eab6840 199 { "cc1_cpu", CC1_CPU_SPEC }, \
cd679487
BE
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
d40c9e33 202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
428bffcb 203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
d1f0d376 204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
47f67e51 205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
7509c759
MM
206 SUBTARGET_EXTRA_SPECS
207
0eab6840
DE
208/* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212/* In driver-rs6000.c. */
213extern const char *host_detect_local_cpu (int argc, const char **argv);
214#define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216#define HAVE_LOCAL_CPU_DETECT
cacf1ca8
MM
217#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219#else
220#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
0eab6840
DE
221#endif
222
ee7caeb3
DE
223#ifndef CC1_CPU_SPEC
224#ifdef HAVE_LOCAL_CPU_DETECT
0eab6840
DE
225#define CC1_CPU_SPEC \
226"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
ee7caeb3
DE
228#else
229#define CC1_CPU_SPEC ""
230#endif
0eab6840
DE
231#endif
232
fb623df5 233/* Architecture type. */
f045b2c9 234
bb22512c 235/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 236 optional field operand for mfcr. */
fb623df5 237
78f5898b 238#ifndef HAVE_AS_MFCRF
432218ba 239#undef TARGET_MFCRF
ffa22984
DE
240#define TARGET_MFCRF 0
241#endif
242
0fa2e4df 243/* Define TARGET_POPCNTB if the target assembler does not support the
432218ba
DE
244 popcount byte instruction. */
245
246#ifndef HAVE_AS_POPCNTB
247#undef TARGET_POPCNTB
248#define TARGET_POPCNTB 0
249#endif
250
9719f3b7
DE
251/* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254#ifndef HAVE_AS_FPRND
255#undef TARGET_FPRND
256#define TARGET_FPRND 0
257#endif
258
b639c3c2
JJ
259/* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262#ifndef HAVE_AS_CMPB
263#undef TARGET_CMPB
264#define TARGET_CMPB 0
265#endif
266
44cd321e
PS
267/* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270#ifndef HAVE_AS_MFPGPR
271#undef TARGET_MFPGPR
272#define TARGET_MFPGPR 0
273#endif
274
b639c3c2
JJ
275/* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277#ifndef HAVE_AS_DFP
278#undef TARGET_DFP
279#define TARGET_DFP 0
280#endif
281
cacf1ca8
MM
282/* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285#ifndef HAVE_AS_POPCNTD
286#undef TARGET_POPCNTD
287#define TARGET_POPCNTD 0
288#endif
289
f62511da
MM
290/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294#ifndef HAVE_AS_POWER8
295#undef TARGET_DIRECT_MOVE
296#undef TARGET_CRYPTO
0258b6e4 297#undef TARGET_HTM
f62511da
MM
298#undef TARGET_P8_VECTOR
299#define TARGET_DIRECT_MOVE 0
300#define TARGET_CRYPTO 0
0258b6e4 301#define TARGET_HTM 0
f62511da
MM
302#define TARGET_P8_VECTOR 0
303#endif
304
caea59ff
KN
305/* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
309
310#ifndef HAVE_AS_POWER9
311#undef TARGET_FLOAT128_HW
312#undef TARGET_MODULO
313#undef TARGET_P9_VECTOR
314#undef TARGET_P9_MINMAX
315#undef TARGET_P9_DFORM_SCALAR
316#undef TARGET_P9_DFORM_VECTOR
5a3a6a5e 317#undef TARGET_P9_MISC
caea59ff
KN
318#define TARGET_FLOAT128_HW 0
319#define TARGET_MODULO 0
320#define TARGET_P9_VECTOR 0
321#define TARGET_P9_MINMAX 0
322#define TARGET_P9_DFORM_SCALAR 0
323#define TARGET_P9_DFORM_VECTOR 0
5a3a6a5e 324#define TARGET_P9_MISC 0
caea59ff
KN
325#endif
326
cacf1ca8
MM
327/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
328 not, generate the lwsync code as an integer constant. */
329#ifdef HAVE_AS_LWSYNC
330#define TARGET_LWSYNC_INSTRUCTION 1
331#else
332#define TARGET_LWSYNC_INSTRUCTION 0
333#endif
334
9752c4ad
AM
335/* Define TARGET_TLS_MARKERS if the target assembler does not support
336 arg markers for __tls_get_addr calls. */
337#ifndef HAVE_AS_TLS_MARKERS
338#undef TARGET_TLS_MARKERS
339#define TARGET_TLS_MARKERS 0
340#else
341#define TARGET_TLS_MARKERS tls_markers
342#endif
343
7f970b70
AM
344#ifndef TARGET_SECURE_PLT
345#define TARGET_SECURE_PLT 0
346#endif
347
070b27da
AM
348#ifndef TARGET_CMODEL
349#define TARGET_CMODEL CMODEL_SMALL
350#endif
351
2f3e5814 352#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 353
c4501e62
JJ
354#ifndef HAVE_AS_TLS
355#define HAVE_AS_TLS 0
356#endif
357
be26142a
PB
358#ifndef TARGET_LINK_STACK
359#define TARGET_LINK_STACK 0
360#endif
361
362#ifndef SET_TARGET_LINK_STACK
363#define SET_TARGET_LINK_STACK(X) do { } while (0)
364#endif
365
08213983
MM
366#ifndef TARGET_FLOAT128_ENABLE_TYPE
367#define TARGET_FLOAT128_ENABLE_TYPE 0
368#endif
369
48d72335
DE
370/* Return 1 for a symbol ref for a thread-local storage symbol. */
371#define RS6000_SYMBOL_REF_TLS_P(RTX) \
372 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
373
996ed075
JJ
374#ifdef IN_LIBGCC2
375/* For libgcc2 we make sure this is a compile time constant */
67796c1f 376#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
78f5898b 377#undef TARGET_POWERPC64
996ed075
JJ
378#define TARGET_POWERPC64 1
379#else
78f5898b 380#undef TARGET_POWERPC64
996ed075
JJ
381#define TARGET_POWERPC64 0
382#endif
b6c9286a 383#else
78f5898b 384 /* The option machinery will define this. */
b6c9286a
MM
385#endif
386
c28a7c24 387#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
9ebbca7d 388
696e45ba
ME
389/* FPU operations supported.
390 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
391 also test TARGET_HARD_FLOAT. */
392#define TARGET_SINGLE_FLOAT 1
393#define TARGET_DOUBLE_FLOAT 1
394#define TARGET_SINGLE_FPU 0
395#define TARGET_SIMPLE_FPU 0
0bb7b92e 396#define TARGET_XILINX_FPU 0
696e45ba 397
fb623df5
RK
398/* Recast the processor type to the cpu attribute. */
399#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
400
8482e358 401/* Define generic processor types based upon current deployment. */
3cb999d8 402#define PROCESSOR_COMMON PROCESSOR_PPC601
3cb999d8
DE
403#define PROCESSOR_POWERPC PROCESSOR_PPC604
404#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 405
fb623df5 406/* Define the default processor. This is overridden by other tm.h files. */
f3061fa4 407#define PROCESSOR_DEFAULT PROCESSOR_PPC603
3cb999d8 408#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 409
59ac9a55
JJ
410/* Specify the dialect of assembler to use. Only new mnemonics are supported
411 starting with GCC 4.8, i.e. just one dialect, but for backwards
412 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
413 defined. */
414#define ASSEMBLER_DIALECT 1
415
38c1f2d7 416/* Debug support */
fd438373
MM
417#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
418#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
419#define MASK_DEBUG_REG 0x04 /* debug register handling */
420#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
421#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
422#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
7fa14a01 423#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
fd438373
MM
424#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
425 | MASK_DEBUG_ARG \
426 | MASK_DEBUG_REG \
427 | MASK_DEBUG_ADDR \
428 | MASK_DEBUG_COST \
7fa14a01
MM
429 | MASK_DEBUG_TARGET \
430 | MASK_DEBUG_BUILTIN)
fd438373
MM
431
432#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
433#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
434#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
435#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
436#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
437#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
7fa14a01 438#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
cacf1ca8 439
2c83faf8
MM
440/* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
441 long double format that uses a pair of doubles, or IEEE 128-bit floating
442 point. KFmode was added as a way to represent IEEE 128-bit floating point,
443 even if the default for long double is the IBM long double format.
444 Similarly IFmode is the IBM long double format even if the default is IEEE
445 128-bit. */
446#define FLOAT128_IEEE_P(MODE) \
4304ccfd
MM
447 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
448 || ((MODE) == KFmode) || ((MODE) == KCmode))
2c83faf8
MM
449
450#define FLOAT128_IBM_P(MODE) \
4304ccfd
MM
451 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
452 || ((MODE) == IFmode) || ((MODE) == ICmode))
2c83faf8
MM
453
454/* Helper macros to say whether a 128-bit floating point type can go in a
455 single vector register, or whether it needs paired scalar values. */
08213983 456#define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
2c83faf8
MM
457
458#define FLOAT128_2REG_P(MODE) \
459 (FLOAT128_IBM_P (MODE) \
460 || ((MODE) == TDmode) \
08213983 461 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
2c83faf8
MM
462
463/* Return true for floating point that does not use a vector register. */
464#define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
465 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
466
f62511da 467/* Describe the vector unit used for arithmetic operations. */
cacf1ca8
MM
468extern enum rs6000_vector rs6000_vector_unit[];
469
470#define VECTOR_UNIT_NONE_P(MODE) \
471 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
472
473#define VECTOR_UNIT_VSX_P(MODE) \
474 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
475
f62511da
MM
476#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
477 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
478
cacf1ca8
MM
479#define VECTOR_UNIT_ALTIVEC_P(MODE) \
480 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
481
f62511da
MM
482#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
483 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
484 (int)VECTOR_VSX, \
485 (int)VECTOR_P8_VECTOR))
486
487/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
488 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
489 compatible, so allow it as well, rather than changing all of the uses of the
490 macro. */
cacf1ca8 491#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
492 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
493 (int)VECTOR_ALTIVEC, \
494 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
495
496/* Describe whether to use VSX loads or Altivec loads. For now, just use the
497 same unit as the vector unit we are using, but we may want to migrate to
498 using VSX style loads even for types handled by altivec. */
499extern enum rs6000_vector rs6000_vector_mem[];
500
501#define VECTOR_MEM_NONE_P(MODE) \
502 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
503
504#define VECTOR_MEM_VSX_P(MODE) \
505 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
506
f62511da
MM
507#define VECTOR_MEM_P8_VECTOR_P(MODE) \
508 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
509
cacf1ca8
MM
510#define VECTOR_MEM_ALTIVEC_P(MODE) \
511 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
512
f62511da
MM
513#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
514 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
515 (int)VECTOR_VSX, \
516 (int)VECTOR_P8_VECTOR))
517
cacf1ca8 518#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
519 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
520 (int)VECTOR_ALTIVEC, \
521 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
522
523/* Return the alignment of a given vector type, which is set based on the
524 vector unit use. VSX for instance can load 32 or 64 bit aligned words
525 without problems, while Altivec requires 128-bit aligned vectors. */
526extern int rs6000_vector_align[];
527
528#define VECTOR_ALIGN(MODE) \
529 ((rs6000_vector_align[(MODE)] != 0) \
530 ? rs6000_vector_align[(MODE)] \
531 : (int)GET_MODE_BITSIZE ((MODE)))
532
6edc217d
BS
533/* Determine the element order to use for vector instructions. By
534 default we use big-endian element order when targeting big-endian,
535 and little-endian element order when targeting little-endian. For
536 programs being ported from BE Power to LE Power, it can sometimes
537 be useful to use big-endian element order when targeting little-endian.
538 This is set via -maltivec=be, for example. */
539#define VECTOR_ELT_ORDER_BIG \
540 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
541
117f16fb
MM
542/* Element number of the 64-bit value in a 128-bit vector that can be accessed
543 with scalar instructions. */
544#define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
545
dd551aa1
MM
546/* Element number of the 64-bit value in a 128-bit vector that can be accessed
547 with the ISA 3.0 MFVSRLD instructions. */
548#define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
549
025d9908
KH
550/* Alignment options for fields in structures for sub-targets following
551 AIX-like ABI.
552 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
553 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
554
555 Override the macro definitions when compiling libobjc to avoid undefined
556 reference to rs6000_alignment_flags due to library's use of GCC alignment
557 macros which use the macros below. */
f676971a 558
025d9908
KH
559#ifndef IN_TARGET_LIBS
560#define MASK_ALIGN_POWER 0x00000000
561#define MASK_ALIGN_NATURAL 0x00000001
562#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
563#else
564#define TARGET_ALIGN_NATURAL 0
565#endif
6fa3f289
ZW
566
567#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
602ea4d3 568#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289 569#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
cacf1ca8 570#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
6fa3f289 571
a3170dc6
AH
572#define TARGET_SPE_ABI 0
573#define TARGET_SPE 0
cacf1ca8 574#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
a3170dc6 575#define TARGET_FPRS 1
4d4cbc0e
AH
576#define TARGET_E500_SINGLE 0
577#define TARGET_E500_DOUBLE 0
eca0d5e8 578#define CHECK_E500_OPTIONS do { } while (0)
a3170dc6 579
7042fe5e
MM
580/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
581 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
582 XILINX. */
c3f8384f
MM
583#define TARGET_FCFID (TARGET_POWERPC64 \
584 || TARGET_PPC_GPOPT /* 970/power4 */ \
585 || TARGET_POPCNTB /* ISA 2.02 */ \
586 || TARGET_CMPB /* ISA 2.05 */ \
587 || TARGET_POPCNTD /* ISA 2.06 */ \
7042fe5e
MM
588 || TARGET_XILINX_FPU)
589
590#define TARGET_FCTIDZ TARGET_FCFID
591#define TARGET_STFIWX TARGET_PPC_GFXOPT
592#define TARGET_LFIWAX TARGET_CMPB
593#define TARGET_LFIWZX TARGET_POPCNTD
594#define TARGET_FCFIDS TARGET_POPCNTD
595#define TARGET_FCFIDU TARGET_POPCNTD
596#define TARGET_FCFIDUS TARGET_POPCNTD
597#define TARGET_FCTIDUZ TARGET_POPCNTD
598#define TARGET_FCTIWUZ TARGET_POPCNTD
0299bc72
MM
599#define TARGET_CTZ TARGET_MODULO
600#define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
dd551aa1 601#define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
7042fe5e 602
f62511da
MM
603#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
604#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
a16a872d 605#define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
dd551aa1
MM
606#define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
607 && TARGET_POWERPC64)
c5e74d9d 608#define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
c5e74d9d 609 && TARGET_UPPER_REGS_DI && TARGET_POWERPC64)
87b44b83
AS
610/* This wants to be set for p8 and newer. On p7, overlapping unaligned
611 loads are slow. */
612#define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
f62511da
MM
613
614/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
615 in power7, so conditionalize them on p8 features. TImode syncs need quad
616 memory support. */
b846c948
MM
617#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
618 || TARGET_QUAD_MEMORY_ATOMIC \
619 || TARGET_DIRECT_MOVE)
620
621#define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
f62511da 622
c6d5ff83
MM
623/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
624 to allocate the SDmode stack slot to get the value into the proper location
625 in the register. */
626#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
627
21316320
MM
628/* ISA 3.0 has new min/max functions that don't need fast math that are being
629 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
630 answers if the arguments are not in the normal range. */
631#define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
632 && (TARGET_P9_MINMAX || !flag_trapping_math))
633
634#define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
635 && (TARGET_P9_MINMAX || !flag_trapping_math))
636
4d967549
MM
637/* In switching from using target_flags to using rs6000_isa_flags, the options
638 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
639 OPTION_MASK_<xxx> back into MASK_<xxx>. */
640#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
641#define MASK_CMPB OPTION_MASK_CMPB
f62511da 642#define MASK_CRYPTO OPTION_MASK_CRYPTO
4d967549 643#define MASK_DFP OPTION_MASK_DFP
f62511da 644#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
4d967549
MM
645#define MASK_DLMZB OPTION_MASK_DLMZB
646#define MASK_EABI OPTION_MASK_EABI
08213983 647#define MASK_FLOAT128_TYPE OPTION_MASK_FLOAT128_TYPE
4d967549 648#define MASK_FPRND OPTION_MASK_FPRND
f62511da 649#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
4d967549 650#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
0258b6e4 651#define MASK_HTM OPTION_MASK_HTM
4d967549
MM
652#define MASK_ISEL OPTION_MASK_ISEL
653#define MASK_MFCRF OPTION_MASK_MFCRF
654#define MASK_MFPGPR OPTION_MASK_MFPGPR
655#define MASK_MULHW OPTION_MASK_MULHW
656#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
657#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
f62511da 658#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
8fa97501 659#define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
5a3a6a5e 660#define MASK_P9_MISC OPTION_MASK_P9_MISC
4d967549
MM
661#define MASK_POPCNTB OPTION_MASK_POPCNTB
662#define MASK_POPCNTD OPTION_MASK_POPCNTD
663#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
664#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
665#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
666#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
667#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
668#define MASK_STRING OPTION_MASK_STRING
669#define MASK_UPDATE OPTION_MASK_UPDATE
670#define MASK_VSX OPTION_MASK_VSX
c6d5ff83 671#define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
4d967549
MM
672
673#ifndef IN_LIBGCC2
674#define MASK_POWERPC64 OPTION_MASK_POWERPC64
675#endif
676
677#ifdef TARGET_64BIT
678#define MASK_64BIT OPTION_MASK_64BIT
679#endif
680
4d967549
MM
681#ifdef TARGET_LITTLE_ENDIAN
682#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
683#endif
684
4d967549
MM
685#ifdef TARGET_REGNAMES
686#define MASK_REGNAMES OPTION_MASK_REGNAMES
687#endif
688
689#ifdef TARGET_PROTOTYPE
690#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
691#endif
692
4f45da44
KN
693#ifdef TARGET_MODULO
694#define RS6000_BTM_MODULO OPTION_MASK_MODULO
695#endif
696
697
7fa14a01
MM
698/* For power systems, we want to enable Altivec and VSX builtins even if the
699 user did not use -maltivec or -mvsx to allow the builtins to be used inside
700 of #pragma GCC target or the target attribute to change the code level for a
701 given system. The SPE and Paired builtins are only enabled if you configure
702 the compiler for those builtins, and those machines don't support altivec or
703 VSX. */
704
705#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
706 && ((TARGET_POWERPC64 \
c3f8384f 707 || TARGET_PPC_GPOPT /* 970/power4 */ \
7fa14a01
MM
708 || TARGET_POPCNTB /* ISA 2.02 */ \
709 || TARGET_CMPB /* ISA 2.05 */ \
710 || TARGET_POPCNTD /* ISA 2.06 */ \
711 || TARGET_ALTIVEC \
f93bc5b3
PB
712 || TARGET_VSX \
713 || TARGET_HARD_FLOAT)))
7fa14a01 714
a7c6c6d6
OH
715/* E500 cores only support plain "sync", not lwsync. */
716#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
717 || rs6000_cpu == PROCESSOR_PPC8548)
7fa14a01
MM
718
719
0609bdf2
MM
720/* Whether SF/DF operations are supported on the E500. */
721#define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
722 && !TARGET_FPRS)
723
724#define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
725 && !TARGET_FPRS && TARGET_E500_DOUBLE)
726
026c3cfd 727/* Whether SF/DF operations are supported by the normal floating point unit
0609bdf2
MM
728 (or the vector/scalar unit). */
729#define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
730 && TARGET_SINGLE_FLOAT)
731
732#define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
733 && TARGET_DOUBLE_FLOAT)
734
735/* Whether SF/DF operations are supported by any hardware. */
736#define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
737#define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
738
92902797
MM
739/* Which machine supports the various reciprocal estimate instructions. */
740#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
741 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
742
743#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
744 && TARGET_DOUBLE_FLOAT \
745 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
746
747#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
748 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
749
750#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
751 && TARGET_DOUBLE_FLOAT \
752 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
753
0299bc72
MM
754/* Conditions to allow TOC fusion for loading/storing integers. */
755#define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
756 && TARGET_TOC_FUSION \
757 && (TARGET_CMODEL != CMODEL_SMALL) \
758 && TARGET_POWERPC64)
759
760/* Conditions to allow TOC fusion for loading/storing floating point. */
761#define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
762 && TARGET_TOC_FUSION \
763 && (TARGET_CMODEL != CMODEL_SMALL) \
764 && TARGET_POWERPC64 \
765 && TARGET_HARD_FLOAT \
766 && TARGET_FPRS \
767 && TARGET_SINGLE_FLOAT \
768 && TARGET_DOUBLE_FLOAT)
769
6019c0fc
MM
770/* Macro to say whether we can do optimizations where we need to do parts of
771 the calculation in 64-bit GPRs and then is transfered to the vector
772 registers. Do not allow -maltivec=be for these optimizations, because it
773 adds to the complexity of the code. */
e0d32185
MM
774#define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
775 && TARGET_P8_VECTOR \
776 && TARGET_POWERPC64 \
6019c0fc
MM
777 && TARGET_UPPER_REGS_DI \
778 && (rs6000_altivec_element_order != 2))
e0d32185 779
92902797
MM
780/* Whether the various reciprocal divide/square root estimate instructions
781 exist, and whether we should automatically generate code for the instruction
782 by default. */
783#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
784#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
785#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
786#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
787
788extern unsigned char rs6000_recip_bits[];
789
790#define RS6000_RECIP_HAVE_RE_P(MODE) \
791 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
792
793#define RS6000_RECIP_AUTO_RE_P(MODE) \
794 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
795
796#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
797 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
798
799#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
800 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
801
c5387660
JM
802/* The default CPU for TARGET_OPTION_OVERRIDE. */
803#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
f045b2c9 804
a5c76ee6 805/* Target pragma. */
c58b209a
NB
806#define REGISTER_TARGET_PRAGMAS() do { \
807 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
fd438373 808 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
2fab365e 809 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
7fa14a01 810 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
a5c76ee6
ZW
811} while (0)
812
4c4eb375
GK
813/* Target #defines. */
814#define TARGET_CPU_CPP_BUILTINS() \
815 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
816
817/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
818 we're compiling for. Some configurations may need to override it. */
819#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
820 do \
821 { \
822 if (BYTES_BIG_ENDIAN) \
823 { \
824 builtin_define ("__BIG_ENDIAN__"); \
825 builtin_define ("_BIG_ENDIAN"); \
826 builtin_assert ("machine=bigendian"); \
827 } \
828 else \
829 { \
830 builtin_define ("__LITTLE_ENDIAN__"); \
831 builtin_define ("_LITTLE_ENDIAN"); \
832 builtin_assert ("machine=littleendian"); \
833 } \
834 } \
835 while (0)
f045b2c9 836\f
4c4eb375 837/* Target machine storage layout. */
f045b2c9 838
13d39dbc 839/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 840 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
841 the value is constrained to be within the bounds of the declared
842 type, but kept valid in the wider mode. The signedness of the
843 extension may differ from that of the type. */
844
39403d82
DE
845#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
846 if (GET_MODE_CLASS (MODE) == MODE_INT \
96922e4c 847 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
b78d48dd 848 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 849
f045b2c9 850/* Define this if most significant bit is lowest numbered
82e41834
KH
851 in instructions that operate on numbered bit-fields. */
852/* That is true on RS/6000. */
f045b2c9
RS
853#define BITS_BIG_ENDIAN 1
854
855/* Define this if most significant byte of a word is the lowest numbered. */
856/* That is true on RS/6000. */
857#define BYTES_BIG_ENDIAN 1
858
859/* Define this if most significant word of a multiword number is lowest
c81bebd7 860 numbered.
f045b2c9
RS
861
862 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 863 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
864#define WORDS_BIG_ENDIAN 1
865
50751417
AM
866/* This says that for the IBM long double the larger magnitude double
867 comes first. It's really a two element double array, and arrays
868 don't index differently between little- and big-endian. */
869#define LONG_DOUBLE_LARGE_FIRST 1
870
2e360ab3 871#define MAX_BITS_PER_WORD 64
f045b2c9
RS
872
873/* Width of a word, in units (bytes). */
c1aa3958 874#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
875#ifdef IN_LIBGCC2
876#define MIN_UNITS_PER_WORD UNITS_PER_WORD
877#else
ef0e53ce 878#define MIN_UNITS_PER_WORD 4
f34fc46e 879#endif
2e360ab3 880#define UNITS_PER_FP_WORD 8
0ac081f6 881#define UNITS_PER_ALTIVEC_WORD 16
cacf1ca8 882#define UNITS_PER_VSX_WORD 16
a3170dc6 883#define UNITS_PER_SPE_WORD 8
96038623 884#define UNITS_PER_PAIRED_WORD 8
f045b2c9 885
915f619f
JW
886/* Type used for ptrdiff_t, as a string used in a declaration. */
887#define PTRDIFF_TYPE "int"
888
058ef853
DE
889/* Type used for size_t, as a string used in a declaration. */
890#define SIZE_TYPE "long unsigned int"
891
f045b2c9
RS
892/* Type used for wchar_t, as a string used in a declaration. */
893#define WCHAR_TYPE "short unsigned int"
894
895/* Width of wchar_t in bits. */
896#define WCHAR_TYPE_SIZE 16
897
9e654916
RK
898/* A C expression for the size in bits of the type `short' on the
899 target machine. If you don't define this, the default is half a
900 word. (If this would be less than one storage unit, it is
901 rounded up to one unit.) */
902#define SHORT_TYPE_SIZE 16
903
904/* A C expression for the size in bits of the type `int' on the
905 target machine. If you don't define this, the default is one
906 word. */
19d2d16f 907#define INT_TYPE_SIZE 32
9e654916
RK
908
909/* A C expression for the size in bits of the type `long' on the
910 target machine. If you don't define this, the default is one
911 word. */
2f3e5814 912#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
913
914/* A C expression for the size in bits of the type `long long' on the
915 target machine. If you don't define this, the default is two
916 words. */
917#define LONG_LONG_TYPE_SIZE 64
918
9e654916
RK
919/* A C expression for the size in bits of the type `float' on the
920 target machine. If you don't define this, the default is one
921 word. */
922#define FLOAT_TYPE_SIZE 32
923
924/* A C expression for the size in bits of the type `double' on the
925 target machine. If you don't define this, the default is two
926 words. */
927#define DOUBLE_TYPE_SIZE 64
928
929/* A C expression for the size in bits of the type `long double' on
930 the target machine. If you don't define this, the default is two
931 words. */
6fa3f289 932#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 933
5b8f5865
DE
934/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
935#define WIDEST_HARDWARE_FP_SIZE 64
936
f045b2c9
RS
937/* Width in bits of a pointer.
938 See also the macro `Pmode' defined below. */
cacf1ca8
MM
939extern unsigned rs6000_pointer_size;
940#define POINTER_SIZE rs6000_pointer_size
f045b2c9
RS
941
942/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 943#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
944
945/* Boundary (in *bits*) on which stack pointer should be aligned. */
cacf1ca8
MM
946#define STACK_BOUNDARY \
947 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
948 ? 64 : 128)
f045b2c9
RS
949
950/* Allocation boundary (in *bits*) for the code of a function. */
951#define FUNCTION_BOUNDARY 32
952
953/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
954#define BIGGEST_ALIGNMENT 128
955
f045b2c9
RS
956/* Alignment of field after `int : 0' in a structure. */
957#define EMPTY_FIELD_BOUNDARY 32
958
959/* Every structure's size must be a multiple of this. */
960#define STRUCTURE_SIZE_BOUNDARY 8
961
43a88a8c 962/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
963#define PCC_BITFIELD_TYPE_MATTERS 1
964
69eff9da
AM
965enum data_align { align_abi, align_opt, align_both };
966
967/* A C expression to compute the alignment for a variables in the
968 local store. TYPE is the data type, and ALIGN is the alignment
969 that the object would ordinarily have. */
970#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
971 rs6000_data_alignment (TYPE, ALIGN, align_both)
972
973/* Make strings word-aligned so strcpy from constants will be faster. */
69ef87e2
AH
974#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
975 (TREE_CODE (EXP) == STRING_CST \
153fbec8 976 && (STRICT_ALIGNMENT || !optimize_size) \
69ef87e2
AH
977 && (ALIGN) < BITS_PER_WORD \
978 ? BITS_PER_WORD \
979 : (ALIGN))
f045b2c9 980
69eff9da
AM
981/* Make arrays of chars word-aligned for the same reasons. */
982#define DATA_ALIGNMENT(TYPE, ALIGN) \
983 rs6000_data_alignment (TYPE, ALIGN, align_opt)
984
985/* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
f82f556d 986 64 bits. */
69eff9da
AM
987#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
988 rs6000_data_alignment (TYPE, ALIGN, align_abi)
f045b2c9 989
a0ab749a 990/* Nonzero if move instructions will actually fail to work
f045b2c9 991 when given unaligned data. */
fdaff8ba 992#define STRICT_ALIGNMENT 0
e1565e65
DE
993
994/* Define this macro to be the value 1 if unaligned accesses have a cost
995 many times greater than aligned accesses, for example if they are
996 emulated in a trap handler. */
cacf1ca8
MM
997/* Altivec vector memory instructions simply ignore the low bits; SPE vector
998 memory instructions trap on unaligned accesses; VSX memory instructions are
999 aligned to 4 or 8 bytes. */
41543739
GK
1000#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
1001 (STRICT_ALIGNMENT \
860271ec
AM
1002 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
1003 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
1004 || ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
1005 && (int) (ALIGN) < VECTOR_ALIGN (MODE)))))
cacf1ca8 1006
f045b2c9
RS
1007\f
1008/* Standard register usage. */
1009
1010/* Number of actual hardware registers.
1011 The hardware registers are assigned numbers for the compiler
1012 from 0 to just below FIRST_PSEUDO_REGISTER.
1013 All registers that the compiler knows about must be given numbers,
1014 even those that are not normally considered general registers.
1015
1016 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
462f7901
SB
1017 a count register, a link register, and 8 condition register fields,
1018 which we view here as separate registers. AltiVec adds 32 vector
1019 registers and a VRsave register.
f045b2c9
RS
1020
1021 In addition, the difference between the frame and argument pointers is
1022 a function of the number of registers saved, so we need to have a
1023 register for AP that will later be eliminated in favor of SP or FP.
802a0058 1024 This is a normal register, but it is fixed.
f045b2c9 1025
802a0058
MM
1026 We also create a pseudo register for float/int conversions, that will
1027 really represent the memory location used. It is represented here as
1028 a register, in order to work around problems in allocating stack storage
7d5175e1 1029 in inline functions.
802a0058 1030
7d5175e1 1031 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
7a5add18
PB
1032 pointer, which is eventually eliminated in favor of SP or FP.
1033
1034 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
7d5175e1 1035
23742a9e 1036#define FIRST_PSEUDO_REGISTER 149
f045b2c9 1037
d6a7951f 1038/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 1039#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 1040
23742a9e
RAR
1041/* True if register is an SPE High register. */
1042#define SPE_HIGH_REGNO_P(N) \
1043 ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
1044
1045/* SPE high registers added as hard regs.
1046 The sfp register and 3 HTM registers
1047 aren't included in DWARF_FRAME_REGISTERS. */
1048#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
c19de7aa 1049
93c9d1ba
AM
1050/* The SPE has an additional 32 synthetic registers, with DWARF debug
1051 info numbering for these registers starting at 1200. While eh_frame
1052 register numbering need not be the same as the debug info numbering,
23742a9e 1053 we choose to number these regs for eh_frame at 1200 too.
93c9d1ba
AM
1054
1055 We must map them here to avoid huge unwinder tables mostly consisting
f676971a 1056 of unused space. */
93c9d1ba 1057#define DWARF_REG_TO_UNWIND_COLUMN(r) \
23742a9e 1058 ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
93c9d1ba 1059
ed1cf8ff 1060/* Use standard DWARF numbering for DWARF debugging information. */
3d36d470 1061#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
ed1cf8ff 1062
93c9d1ba 1063/* Use gcc hard register numbering for eh_frame. */
3d36d470 1064#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 1065
ed1cf8ff
GK
1066/* Map register numbers held in the call frame info that gcc has
1067 collected using DWARF_FRAME_REGNUM to those that should be output in
3d36d470
UW
1068 .debug_frame and .eh_frame. */
1069#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1070 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
ed1cf8ff 1071
f045b2c9
RS
1072/* 1 for registers that have pervasive standard uses
1073 and are not available for the register allocator.
1074
5dead3e5
DJ
1075 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1076 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 1077
a127c4e5
RK
1078 On System V implementations, r13 is fixed and not available for use. */
1079
f045b2c9 1080#define FIXED_REGISTERS \
5dead3e5 1081 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
1082 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1083 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1084 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
36bd0c3e 1085 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
0ac081f6
AH
1086 /* AltiVec registers. */ \
1087 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1088 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1089 1, 1 \
23742a9e
RAR
1090 , 1, 1, 1, 1, 1, 1, \
1091 /* SPE High registers. */ \
1092 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1093 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6 1094}
f045b2c9
RS
1095
1096/* 1 for registers not available across function calls.
1097 These must include the FIXED_REGISTERS and also any
1098 registers that can be used without being saved.
1099 The latter must include the registers where values are returned
1100 and the register where structure-value addresses are passed.
1101 Aside from that, you can include as many other registers as you like. */
1102
1103#define CALL_USED_REGISTERS \
a127c4e5 1104 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
1105 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1106 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1107 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
1108 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1109 /* AltiVec registers. */ \
1110 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1111 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1112 1, 1 \
23742a9e
RAR
1113 , 1, 1, 1, 1, 1, 1, \
1114 /* SPE High registers. */ \
1115 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1116 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6
AH
1117}
1118
289e96b2
AH
1119/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1120 the entire set of `FIXED_REGISTERS' be included.
1121 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1122 This macro is optional. If not specified, it defaults to the value
1123 of `CALL_USED_REGISTERS'. */
f676971a 1124
289e96b2
AH
1125#define CALL_REALLY_USED_REGISTERS \
1126 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1127 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1128 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1129 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0b390d60 1130 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
289e96b2
AH
1131 /* AltiVec registers. */ \
1132 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1133 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1134 0, 0 \
23742a9e
RAR
1135 , 0, 0, 0, 0, 0, 0, \
1136 /* SPE High registers. */ \
1137 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1138 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
289e96b2 1139}
f045b2c9 1140
28bcfd4d 1141#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
9ebbca7d 1142
d62294f5 1143#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
b427dd7a
AM
1144#define FIRST_SAVED_FP_REGNO (14+32)
1145#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
d62294f5 1146
f045b2c9
RS
1147/* List the order in which to allocate registers. Each register must be
1148 listed once, even those in FIXED_REGISTERS.
1149
1150 We allocate in the following order:
1151 fp0 (not saved or used for anything)
1152 fp13 - fp2 (not saved; incoming fp arg registers)
1153 fp1 (not saved; return value)
9390387d 1154 fp31 - fp14 (saved; order given to save least number)
36bd0c3e
SB
1155 cr7, cr5 (not saved or special)
1156 cr6 (not saved, but used for vector operations)
5accd822 1157 cr1 (not saved, but used for FP operations)
f045b2c9 1158 cr0 (not saved, but used for arithmetic operations)
5accd822 1159 cr4, cr3, cr2 (saved)
f045b2c9 1160 r9 (not saved; best for TImode)
d44b26bd 1161 r10, r8-r4 (not saved; highest first for less conflict with params)
9390387d 1162 r3 (not saved; return value register)
d44b26bd
AM
1163 r11 (not saved; later alloc to help shrink-wrap)
1164 r0 (not saved; cannot be base reg)
f045b2c9
RS
1165 r31 - r13 (saved; order given to save least number)
1166 r12 (not saved; if used for DImode or DFmode would use r13)
f045b2c9
RS
1167 ctr (not saved; when we have the choice ctr is better)
1168 lr (saved)
36bd0c3e 1169 r1, r2, ap, ca (fixed)
9390387d
AM
1170 v0 - v1 (not saved or used for anything)
1171 v13 - v3 (not saved; incoming vector arg registers)
1172 v2 (not saved; incoming vector arg reg; return value)
1173 v19 - v14 (not saved or used for anything)
1174 v31 - v20 (saved; order given to save least number)
1175 vrsave, vscr (fixed)
a3170dc6 1176 spe_acc, spefscr (fixed)
7d5175e1 1177 sfp (fixed)
0258b6e4
PB
1178 tfhar (fixed)
1179 tfiar (fixed)
1180 texasr (fixed)
0ac081f6 1181*/
f676971a 1182
6b13641d
DJ
1183#if FIXED_R2 == 1
1184#define MAYBE_R2_AVAILABLE
1185#define MAYBE_R2_FIXED 2,
1186#else
1187#define MAYBE_R2_AVAILABLE 2,
1188#define MAYBE_R2_FIXED
1189#endif
f045b2c9 1190
d44b26bd
AM
1191#if FIXED_R13 == 1
1192#define EARLY_R12 12,
1193#define LATE_R12
1194#else
1195#define EARLY_R12
1196#define LATE_R12 12,
1197#endif
1198
9390387d
AM
1199#define REG_ALLOC_ORDER \
1200 {32, \
f62511da
MM
1201 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1202 /* not use fr14 which is a saved register. */ \
1203 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
9390387d
AM
1204 33, \
1205 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1206 50, 49, 48, 47, 46, \
36bd0c3e 1207 75, 73, 74, 69, 68, 72, 71, 70, \
d44b26bd
AM
1208 MAYBE_R2_AVAILABLE \
1209 9, 10, 8, 7, 6, 5, 4, \
1210 3, EARLY_R12 11, 0, \
9390387d 1211 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
d44b26bd 1212 18, 17, 16, 15, 14, 13, LATE_R12 \
462f7901 1213 66, 65, \
36bd0c3e 1214 1, MAYBE_R2_FIXED 67, 76, \
9390387d
AM
1215 /* AltiVec registers. */ \
1216 77, 78, \
1217 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1218 79, \
1219 96, 95, 94, 93, 92, 91, \
1220 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1221 109, 110, \
23742a9e
RAR
1222 111, 112, 113, 114, 115, 116, \
1223 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, \
1224 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, \
1225 141, 142, 143, 144, 145, 146, 147, 148 \
0ac081f6 1226}
f045b2c9
RS
1227
1228/* True if register is floating-point. */
1229#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1230
1231/* True if register is a condition register. */
1de43f85 1232#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
f045b2c9 1233
815cdc52 1234/* True if register is a condition register, but not cr0. */
1de43f85 1235#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
815cdc52 1236
f045b2c9 1237/* True if register is an integer register. */
7d5175e1
JJ
1238#define INT_REGNO_P(N) \
1239 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 1240
a3170dc6
AH
1241/* SPE SIMD registers are just the GPRs. */
1242#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1243
96038623
DE
1244/* PAIRED SIMD registers are just the FPRs. */
1245#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1246
f6b5d695
SB
1247/* True if register is the CA register. */
1248#define CA_REGNO_P(N) ((N) == CA_REGNO)
802a0058 1249
0ac081f6
AH
1250/* True if register is an AltiVec register. */
1251#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1252
cacf1ca8
MM
1253/* True if register is a VSX register. */
1254#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1255
1256/* Alternate name for any vector register supporting floating point, no matter
1257 which instruction set(s) are available. */
1258#define VFLOAT_REGNO_P(N) \
1259 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1260
1261/* Alternate name for any vector register supporting integer, no matter which
1262 instruction set(s) are available. */
1263#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1264
1265/* Alternate name for any vector register supporting logical operations, no
dd7a40e1
MM
1266 matter which instruction set(s) are available. Allow GPRs as well as the
1267 vector registers. */
f62511da 1268#define VLOGICAL_REGNO_P(N) \
dd7a40e1
MM
1269 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1270 || (TARGET_VSX && FP_REGNO_P (N))) \
cacf1ca8 1271
f045b2c9 1272/* Return number of consecutive hard regs needed starting at reg REGNO
d8ecbcdb
AH
1273 to hold something of mode MODE. */
1274
cacf1ca8 1275#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
0e67400a 1276
79eefb0d 1277/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
5ec6aff2
MM
1278 enough space to account for vectors in FP regs. However, TFmode/TDmode
1279 should not use VSX instructions to do a caller save. */
dbcc9f08
MM
1280#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1281 (TARGET_VSX \
1282 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
5ec6aff2
MM
1283 && FP_REGNO_P (REGNO) \
1284 ? V2DFmode \
c4e9cff6
AM
1285 : TARGET_E500_DOUBLE && (MODE) == SImode \
1286 ? SImode \
bbdb5098 1287 : TARGET_E500_DOUBLE && ((MODE) == VOIDmode || (MODE) == DFmode) \
5ec6aff2 1288 ? DFmode \
2c83faf8 1289 : !TARGET_E500_DOUBLE && FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
bbdb5098
MR
1290 ? DFmode \
1291 : !TARGET_E500_DOUBLE && (MODE) == TDmode && FP_REGNO_P (REGNO) \
5ec6aff2 1292 ? DImode \
79eefb0d
PH
1293 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1294
3fc841c8
MM
1295#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1296 (((TARGET_32BIT && TARGET_POWERPC64 \
1297 && (GET_MODE_SIZE (MODE) > 4) \
1298 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1299 || (TARGET_VSX && FP_REGNO_P (REGNO) \
2c83faf8 1300 && GET_MODE_SIZE (MODE) > 8 && !FLOAT128_2REG_P (MODE)))
f045b2c9 1301
cacf1ca8
MM
1302#define VSX_VECTOR_MODE(MODE) \
1303 ((MODE) == V4SFmode \
1304 || (MODE) == V2DFmode) \
1305
bdb60a10
MM
1306/* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1307 really a vector, but we want to treat it as a vector for moves, and
1308 such. */
1309
1310#define ALTIVEC_VECTOR_MODE(MODE) \
1311 ((MODE) == V16QImode \
1312 || (MODE) == V8HImode \
1313 || (MODE) == V4SFmode \
1314 || (MODE) == V4SImode \
1315 || FLOAT128_VECTOR_P (MODE))
0ac081f6 1316
dbcc9f08
MM
1317#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1318 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
a16a872d 1319 || (MODE) == V2DImode || (MODE) == V1TImode)
dbcc9f08 1320
a3170dc6
AH
1321#define SPE_VECTOR_MODE(MODE) \
1322 ((MODE) == V4HImode \
1323 || (MODE) == V2SFmode \
00a892b8 1324 || (MODE) == V1DImode \
a3170dc6
AH
1325 || (MODE) == V2SImode)
1326
96038623
DE
1327#define PAIRED_VECTOR_MODE(MODE) \
1328 ((MODE) == V2SFmode)
1329
0d1fbc8c
AH
1330/* Value is TRUE if hard register REGNO can hold a value of
1331 machine-mode MODE. */
1332#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1333 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
f045b2c9
RS
1334
1335/* Value is 1 if it is a good idea to tie two pseudo registers
1336 when one has mode MODE1 and one has mode MODE2.
1337 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
f161bfd3
MM
1338 for any hard reg, then this must be 0 for correct output.
1339
1340 PTImode cannot tie with other modes because PTImode is restricted to even
1341 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
bdb60a10
MM
1342 57744).
1343
1344 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
1345 128-bit floating point on VSX systems ties with other vectors. */
f62511da 1346#define MODES_TIEABLE_P(MODE1, MODE2) \
f161bfd3
MM
1347 ((MODE1) == PTImode \
1348 ? (MODE2) == PTImode \
1349 : (MODE2) == PTImode \
1350 ? 0 \
bdb60a10
MM
1351 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1352 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1353 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1354 ? 0 \
f161bfd3 1355 : SCALAR_FLOAT_MODE_P (MODE1) \
ebb109ad
BE
1356 ? SCALAR_FLOAT_MODE_P (MODE2) \
1357 : SCALAR_FLOAT_MODE_P (MODE2) \
f161bfd3 1358 ? 0 \
f045b2c9
RS
1359 : GET_MODE_CLASS (MODE1) == MODE_CC \
1360 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1361 : GET_MODE_CLASS (MODE2) == MODE_CC \
f161bfd3 1362 ? 0 \
4dcc01f3
AH
1363 : SPE_VECTOR_MODE (MODE1) \
1364 ? SPE_VECTOR_MODE (MODE2) \
1365 : SPE_VECTOR_MODE (MODE2) \
f161bfd3 1366 ? 0 \
f045b2c9
RS
1367 : 1)
1368
c8ae788f
SB
1369/* Post-reload, we can't use any new AltiVec registers, as we already
1370 emitted the vrsave mask. */
1371
1372#define HARD_REGNO_RENAME_OK(SRC, DST) \
6fb5fa3c 1373 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
c8ae788f 1374
f045b2c9
RS
1375/* Specify the cost of a branch insn; roughly the number of extra insns that
1376 should be added to avoid a branch.
1377
ef457bda 1378 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1379 unscheduled conditional branch. */
1380
3a4fd356 1381#define BRANCH_COST(speed_p, predictable_p) 3
f045b2c9 1382
85e50b6b 1383/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 1384 performance for removing short circuiting from the logical ops. */
85e50b6b 1385
b8610a53 1386#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6 1387
52ff33d0
NF
1388/* A fixed register used at epilogue generation to address SPE registers
1389 with negative offsets. The 64-bit load/store instructions on the SPE
1390 only take positive offsets (and small ones at that), so we need to
1391 reserve a register for consing up negative offsets. */
a3170dc6 1392
52ff33d0 1393#define FIXED_SCRATCH 0
a3170dc6 1394
f045b2c9
RS
1395/* Specify the registers used for certain standard purposes.
1396 The values of these macros are register numbers. */
1397
1398/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1399/* #define PC_REGNUM */
1400
1401/* Register to use for pushing function arguments. */
1402#define STACK_POINTER_REGNUM 1
1403
1404/* Base register for access to local variables of the function. */
7d5175e1
JJ
1405#define HARD_FRAME_POINTER_REGNUM 31
1406
1407/* Base register for access to local variables of the function. */
1408#define FRAME_POINTER_REGNUM 113
f045b2c9 1409
f045b2c9
RS
1410/* Base register for access to arguments of the function. */
1411#define ARG_POINTER_REGNUM 67
1412
1413/* Place to put static chain when calling a function that requires it. */
1414#define STATIC_CHAIN_REGNUM 11
1415
26a2e6ae
PB
1416/* Base register for access to thread local storage variables. */
1417#define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1418
f045b2c9
RS
1419\f
1420/* Define the classes of registers for register constraints in the
1421 machine description. Also define ranges of constants.
1422
1423 One of the classes must always be named ALL_REGS and include all hard regs.
1424 If there is more than one class, another class must be named NO_REGS
1425 and contain no registers.
1426
1427 The name GENERAL_REGS must be the name of a class (or an alias for
1428 another name such as ALL_REGS). This is the class of registers
1429 that is allowed by "g" or "r" in a register constraint.
1430 Also, registers outside this class are allocated only when
1431 instructions express preferences for them.
1432
1433 The classes must be numbered in nondecreasing order; that is,
1434 a larger-numbered class must never be contained completely
1435 in a smaller-numbered class.
1436
1437 For any two classes, it is very desirable that there be another
1438 class that represents their union. */
c81bebd7 1439
cacf1ca8 1440/* The RS/6000 has three types of registers, fixed-point, floating-point, and
462f7901 1441 condition registers, plus three special registers, CTR, and the link
cacf1ca8
MM
1442 register. AltiVec adds a vector register class. VSX registers overlap the
1443 FPR registers and the Altivec registers.
f045b2c9
RS
1444
1445 However, r0 is special in that it cannot be used as a base register.
1446 So make a class for registers valid as base registers.
1447
1448 Also, cr0 is the only condition code register that can be used in
0d86f538 1449 arithmetic insns, so make a separate class for it. */
f045b2c9 1450
ebedb4dd
MM
1451enum reg_class
1452{
1453 NO_REGS,
ebedb4dd
MM
1454 BASE_REGS,
1455 GENERAL_REGS,
1456 FLOAT_REGS,
0ac081f6 1457 ALTIVEC_REGS,
8beb65e3 1458 VSX_REGS,
0ac081f6 1459 VRSAVE_REGS,
5f004351 1460 VSCR_REGS,
a3170dc6
AH
1461 SPE_ACC_REGS,
1462 SPEFSCR_REGS,
0258b6e4 1463 SPR_REGS,
ebedb4dd 1464 NON_SPECIAL_REGS,
ebedb4dd
MM
1465 LINK_REGS,
1466 CTR_REGS,
1467 LINK_OR_CTR_REGS,
1468 SPECIAL_REGS,
1469 SPEC_OR_GEN_REGS,
1470 CR0_REGS,
ebedb4dd
MM
1471 CR_REGS,
1472 NON_FLOAT_REGS,
f6b5d695 1473 CA_REGS,
23742a9e 1474 SPE_HIGH_REGS,
ebedb4dd
MM
1475 ALL_REGS,
1476 LIM_REG_CLASSES
1477};
f045b2c9
RS
1478
1479#define N_REG_CLASSES (int) LIM_REG_CLASSES
1480
82e41834 1481/* Give names of register classes as strings for dump file. */
f045b2c9 1482
ebedb4dd
MM
1483#define REG_CLASS_NAMES \
1484{ \
1485 "NO_REGS", \
ebedb4dd
MM
1486 "BASE_REGS", \
1487 "GENERAL_REGS", \
1488 "FLOAT_REGS", \
0ac081f6 1489 "ALTIVEC_REGS", \
8beb65e3 1490 "VSX_REGS", \
0ac081f6 1491 "VRSAVE_REGS", \
5f004351 1492 "VSCR_REGS", \
a3170dc6
AH
1493 "SPE_ACC_REGS", \
1494 "SPEFSCR_REGS", \
0258b6e4 1495 "SPR_REGS", \
ebedb4dd 1496 "NON_SPECIAL_REGS", \
ebedb4dd
MM
1497 "LINK_REGS", \
1498 "CTR_REGS", \
1499 "LINK_OR_CTR_REGS", \
1500 "SPECIAL_REGS", \
1501 "SPEC_OR_GEN_REGS", \
1502 "CR0_REGS", \
ebedb4dd
MM
1503 "CR_REGS", \
1504 "NON_FLOAT_REGS", \
f6b5d695 1505 "CA_REGS", \
23742a9e 1506 "SPE_HIGH_REGS", \
ebedb4dd
MM
1507 "ALL_REGS" \
1508}
f045b2c9
RS
1509
1510/* Define which registers fit in which classes.
1511 This is an initializer for a vector of HARD_REG_SET
1512 of length N_REG_CLASSES. */
1513
23742a9e
RAR
1514#define REG_CLASS_CONTENTS \
1515{ \
1516 /* NO_REGS. */ \
1517 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1518 /* BASE_REGS. */ \
1519 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1520 /* GENERAL_REGS. */ \
1521 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1522 /* FLOAT_REGS. */ \
1523 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, \
1524 /* ALTIVEC_REGS. */ \
1525 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 }, \
1526 /* VSX_REGS. */ \
1527 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 }, \
1528 /* VRSAVE_REGS. */ \
1529 { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 }, \
1530 /* VSCR_REGS. */ \
1531 { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 }, \
1532 /* SPE_ACC_REGS. */ \
1533 { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 }, \
1534 /* SPEFSCR_REGS. */ \
1535 { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 }, \
1536 /* SPR_REGS. */ \
1537 { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 }, \
1538 /* NON_SPECIAL_REGS. */ \
1539 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 }, \
1540 /* LINK_REGS. */ \
1541 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 }, \
1542 /* CTR_REGS. */ \
1543 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 }, \
1544 /* LINK_OR_CTR_REGS. */ \
1545 { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 }, \
1546 /* SPECIAL_REGS. */ \
1547 { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 }, \
1548 /* SPEC_OR_GEN_REGS. */ \
1549 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 }, \
1550 /* CR0_REGS. */ \
1551 { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 }, \
1552 /* CR_REGS. */ \
1553 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 }, \
1554 /* NON_FLOAT_REGS. */ \
1555 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 }, \
1556 /* CA_REGS. */ \
1557 { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 }, \
1558 /* SPE_HIGH_REGS. */ \
1559 { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff }, \
1560 /* ALL_REGS. */ \
1561 { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff } \
ebedb4dd 1562}
f045b2c9
RS
1563
1564/* The same information, inverted:
1565 Return the class number of the smallest class containing
1566 reg number REGNO. This could be a conditional expression
1567 or could index an array. */
1568
cacf1ca8
MM
1569extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1570
cacf1ca8 1571#define REGNO_REG_CLASS(REGNO) \
e28c2052 1572 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
cacf1ca8
MM
1573 rs6000_regno_regclass[(REGNO)])
1574
a72c65c7
MM
1575/* Register classes for various constraints that are based on the target
1576 switches. */
1577enum r6000_reg_class_enum {
1578 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1579 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1580 RS6000_CONSTRAINT_v, /* Altivec registers */
1581 RS6000_CONSTRAINT_wa, /* Any VSX register */
d5906efc 1582 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
a72c65c7 1583 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
dd551aa1 1584 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
a72c65c7 1585 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
5e8586d7 1586 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
59f5868d
MM
1587 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1588 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1589 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1590 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
c6d5ff83 1591 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
f62511da 1592 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
4e8a3a35 1593 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
c477a667
MM
1594 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1595 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
f62511da 1596 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
a72c65c7 1597 RS6000_CONSTRAINT_ws, /* VSX register for DF */
c6d5ff83 1598 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
5e8586d7
MM
1599 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1600 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1601 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
c6d5ff83 1602 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
5e8586d7 1603 RS6000_CONSTRAINT_wy, /* VSX register for SF */
c6d5ff83 1604 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
a72c65c7
MM
1605 RS6000_CONSTRAINT_MAX
1606};
1607
1608extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
f045b2c9
RS
1609
1610/* The class value for index registers, and the one for base regs. */
1611#define INDEX_REG_CLASS GENERAL_REGS
1612#define BASE_REG_CLASS BASE_REGS
1613
cacf1ca8
MM
1614/* Return whether a given register class can hold VSX objects. */
1615#define VSX_REG_CLASS_P(CLASS) \
1616 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1617
59f5868d
MM
1618/* Return whether a given register class targets general purpose registers. */
1619#define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1620
f045b2c9
RS
1621/* Given an rtx X being reloaded into a reg required to be
1622 in class CLASS, return the class of reg to actually use.
1623 In general this is just CLASS; but on some machines
c81bebd7 1624 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1625
1626 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1627 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1628
1629 We also don't want to reload integer values into floating-point
1630 registers if we can at all help it. In fact, this can
37409796 1631 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1632 into a FP register and discovers it doesn't have the memory location
1633 required.
1634
1635 ??? Would it be a good idea to have reload do the converse, that is
1636 try to reload floating modes into FP registers if possible?
1637 */
f045b2c9 1638
802a0058 1639#define PREFERRED_RELOAD_CLASS(X,CLASS) \
8beb65e3 1640 rs6000_preferred_reload_class_ptr (X, CLASS)
c81bebd7 1641
f045b2c9
RS
1642/* Return the register class of a scratch register needed to copy IN into
1643 or out of a register in CLASS in MODE. If it can be done directly,
1644 NO_REGS is returned. */
1645
1646#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
8beb65e3 1647 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
f045b2c9 1648
0ac081f6 1649/* If we are copying between FP or AltiVec registers and anything
44cd321e
PS
1650 else, we need a memory location. The exception is when we are
1651 targeting ppc64 and the move to/from fpr to gpr instructions
1652 are available.*/
1653
1654#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
8beb65e3 1655 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
7ea555a4 1656
e41b2a33
PB
1657/* For cpus that cannot load/store SDmode values from the 64-bit
1658 FP registers without using a full 64-bit load/store, we need
1659 to allocate a full 64-bit stack slot for them. */
1660
1661#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1662 rs6000_secondary_memory_needed_rtx (MODE)
1663
01b1efaa
VM
1664/* Specify the mode to be used for memory when a secondary memory
1665 location is needed. For cpus that cannot load/store SDmode values
1666 from the 64-bit FP registers without using a full 64-bit
1667 load/store, we need a wider mode. */
1668#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1669 rs6000_secondary_memory_needed_mode (MODE)
1670
f045b2c9
RS
1671/* Return the maximum number of consecutive registers
1672 needed to represent mode MODE in a register of class CLASS.
1673
cacf1ca8
MM
1674 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1675 a single reg is enough for two words, unless we have VSX, where the FP
1676 registers can hold 128 bits. */
1677#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
580d3230 1678
ca0e79d9
AM
1679/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1680
1681#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
8beb65e3 1682 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
02188693 1683
f045b2c9
RS
1684/* Stack layout; function entry, exit and calling. */
1685
1686/* Define this if pushing a word on the stack
1687 makes the stack pointer a smaller address. */
62f9f30b 1688#define STACK_GROWS_DOWNWARD 1
f045b2c9 1689
327e5343
FJ
1690/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1691#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1692
a4d05547 1693/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1694 is at the high-address end of the local variables;
1695 that is, each additional local variable allocated
1696 goes at a more negative offset in the frame.
1697
1698 On the RS/6000, we grow upwards, from the area after the outgoing
1699 arguments. */
de5a5fa1
MP
1700#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1701 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
f045b2c9 1702
4697a36c 1703/* Size of the fixed area on the stack */
9ebbca7d 1704#define RS6000_SAVE_AREA \
b54214fe
UW
1705 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1706 << (TARGET_64BIT ? 1 : 0))
4697a36c 1707
b54214fe
UW
1708/* Stack offset for toc save slot. */
1709#define RS6000_TOC_SAVE_SLOT \
1710 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
b6c9286a 1711
4697a36c 1712/* Align an address */
4f59f9f2 1713#define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
4697a36c 1714
f045b2c9
RS
1715/* Offset within stack frame to start allocating local variables at.
1716 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1717 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1718 of the first local allocated.
f045b2c9
RS
1719
1720 On the RS/6000, the frame pointer is the same as the stack pointer,
1721 except for dynamic allocations. So we start after the fixed area and
1722 outgoing parameter area. */
1723
802a0058 1724#define STARTING_FRAME_OFFSET \
7d5175e1
JJ
1725 (FRAME_GROWS_DOWNWARD \
1726 ? 0 \
cacf1ca8
MM
1727 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1728 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
7d5175e1 1729 + RS6000_SAVE_AREA))
802a0058
MM
1730
1731/* Offset from the stack pointer register to an item dynamically
1732 allocated on the stack, e.g., by `alloca'.
1733
1734 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1735 length of the outgoing arguments. The default is correct for most
1736 machines. See `function.c' for details. */
1737#define STACK_DYNAMIC_OFFSET(FUNDECL) \
cacf1ca8
MM
1738 (RS6000_ALIGN (crtl->outgoing_args_size, \
1739 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
802a0058 1740 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1741
1742/* If we generate an insn to push BYTES bytes,
1743 this says how many the stack pointer really advances by.
1744 On RS/6000, don't define this because there are no push insns. */
1745/* #define PUSH_ROUNDING(BYTES) */
1746
1747/* Offset of first parameter from the argument pointer register value.
1748 On the RS/6000, we define the argument pointer to the start of the fixed
1749 area. */
4697a36c 1750#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1751
62153b61
JM
1752/* Offset from the argument pointer register value to the top of
1753 stack. This is different from FIRST_PARM_OFFSET because of the
1754 register save area. */
1755#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1756
f045b2c9
RS
1757/* Define this if stack space is still allocated for a parameter passed
1758 in a register. The value is the number of bytes allocated to this
1759 area. */
ddbb449f
AM
1760#define REG_PARM_STACK_SPACE(FNDECL) \
1761 rs6000_reg_parm_stack_space ((FNDECL), false)
1762
1763/* Define this macro if space guaranteed when compiling a function body
1764 is different to space required when making a call, a situation that
1765 can arise with K&R style function definitions. */
1766#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1767 rs6000_reg_parm_stack_space ((FNDECL), true)
f045b2c9
RS
1768
1769/* Define this if the above stack space is to be considered part of the
1770 space allocated by the caller. */
81464b2c 1771#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
f045b2c9
RS
1772
1773/* This is the difference between the logical top of stack and the actual sp.
1774
82e41834 1775 For the RS/6000, sp points past the fixed area. */
4697a36c 1776#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1777
1778/* Define this if the maximum size of all the outgoing args is to be
1779 accumulated and pushed during the prologue. The amount can be
38173d38 1780 found in the variable crtl->outgoing_args_size. */
f73ad30e 1781#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9 1782
f045b2c9
RS
1783/* Define how to find the value returned by a library function
1784 assuming the value has mode MODE. */
1785
ded9bf77 1786#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1787
6fa3f289
ZW
1788/* DRAFT_V4_STRUCT_RET defaults off. */
1789#define DRAFT_V4_STRUCT_RET 0
f607bc57 1790
bd5bd7ac 1791/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1792#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1793
a260abc9 1794/* Mode of stack savearea.
dfdfa60f
DE
1795 FUNCTION is VOIDmode because calling convention maintains SP.
1796 BLOCK needs Pmode for SP.
a260abc9
DE
1797 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1798#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f 1799 (LEVEL == SAVE_FUNCTION ? VOIDmode \
c6d5ff83 1800 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
a260abc9 1801
4697a36c
MM
1802/* Minimum and maximum general purpose registers used to hold arguments. */
1803#define GP_ARG_MIN_REG 3
1804#define GP_ARG_MAX_REG 10
1805#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1806
1807/* Minimum and maximum floating point registers used to hold arguments. */
1808#define FP_ARG_MIN_REG 33
7509c759
MM
1809#define FP_ARG_AIX_MAX_REG 45
1810#define FP_ARG_V4_MAX_REG 40
008e32c0
UW
1811#define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1812 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
4697a36c
MM
1813#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1814
0ac081f6
AH
1815/* Minimum and maximum AltiVec registers used to hold arguments. */
1816#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1817#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1818#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1819
b54214fe
UW
1820/* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1821#define AGGR_ARG_NUM_REG 8
1822
4697a36c
MM
1823/* Return registers */
1824#define GP_ARG_RETURN GP_ARG_MIN_REG
1825#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1826#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
b54214fe
UW
1827#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1828 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4304ccfd
MM
1829#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1830 ? (ALTIVEC_ARG_RETURN \
08213983 1831 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
b54214fe 1832 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4697a36c 1833
7509c759 1834/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1835#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1836/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1837#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1838#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1839#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1840#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1841
f57fe068
AM
1842/* We don't have prologue and epilogue functions to save/restore
1843 everything for most ABIs. */
1844#define WORLD_SAVE_P(INFO) 0
1845
f045b2c9
RS
1846/* 1 if N is a possible register number for a function value
1847 as seen by the caller.
1848
0ac081f6 1849 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1850#define FUNCTION_VALUE_REGNO_P(N) \
1851 ((N) == GP_ARG_RETURN \
b54214fe
UW
1852 || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
1853 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1854 || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
1855 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1856
1857/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1858 On RS/6000, these are r3-r10 and fp1-fp13.
1859 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1860#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1861 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1862 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
44688022 1863 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
e87a88d3 1864 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
b2df7d08 1865 && TARGET_HARD_FLOAT && TARGET_FPRS))
f045b2c9
RS
1866\f
1867/* Define a data type for recording info about an argument list
1868 during the scan of that argument list. This data type should
1869 hold all necessary information about the function itself
1870 and about the args processed so far, enough to enable macros
1871 such as FUNCTION_ARG to determine where the next arg should go.
1872
1873 On the RS/6000, this is a structure. The first element is the number of
1874 total argument words, the second is used to store the next
1875 floating-point register number, and the third says how many more args we
4697a36c
MM
1876 have prototype types for.
1877
4cc833b7 1878 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1879 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1880 register, and `words' is the number of words used on the stack.
1881
bd227acc 1882 The varargs/stdarg support requires that this structure's size
4cc833b7 1883 be a multiple of sizeof(int). */
4697a36c
MM
1884
1885typedef struct rs6000_args
1886{
4cc833b7 1887 int words; /* # words used for passing GP registers */
6a4cee5f 1888 int fregno; /* next available FP register */
0ac081f6 1889 int vregno; /* next available AltiVec register */
6a4cee5f 1890 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1891 int prototype; /* Whether a prototype was defined */
a6c9bed4 1892 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1893 int call_cookie; /* Do special things for this call */
4cc833b7 1894 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1895 int intoffset; /* running offset in struct (darwin64) */
1896 int use_stack; /* any part of struct on stack (darwin64) */
a9ab25e2
IS
1897 int floats_in_gpr; /* count of SFmode floats taking up
1898 GPR space (darwin64) */
0b5383eb 1899 int named; /* false for varargs params */
617718f7 1900 int escapes; /* if function visible outside tu */
bdb60a10 1901 int libcall; /* If this is a compiler generated call. */
4697a36c 1902} CUMULATIVE_ARGS;
f045b2c9 1903
f045b2c9
RS
1904/* Initialize a variable CUM of type CUMULATIVE_ARGS
1905 for a call to a function whose data type is FNTYPE.
1906 For a library call, FNTYPE is 0. */
1907
617718f7
AM
1908#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1909 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1910 N_NAMED_ARGS, FNDECL, VOIDmode)
f045b2c9
RS
1911
1912/* Similar, but when scanning the definition of a procedure. We always
1913 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1914
0f6937fe 1915#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617718f7
AM
1916 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1917 1000, current_function_decl, VOIDmode)
b9599e46
FS
1918
1919/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1920
1921#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
617718f7
AM
1922 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1923 0, NULL_TREE, MODE)
f045b2c9 1924
c229cba9
DE
1925/* If defined, a C expression which determines whether, and in which
1926 direction, to pad out an argument with extra space. The value
1927 should be of type `enum direction': either `upward' to pad above
1928 the argument, `downward' to pad below, or `none' to inhibit
1929 padding. */
1930
9ebbca7d 1931#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1932
6e985040
AM
1933#define PAD_VARARGS_DOWN \
1934 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1935
f045b2c9 1936/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1937 for profiling a function entry. */
f045b2c9
RS
1938
1939#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1940 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1941
1942/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1943 the stack pointer does not matter. No definition is equivalent to
1944 always zero.
1945
a0ab749a 1946 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1947 its backpointer, which we maintain. */
1948#define EXIT_IGNORE_STACK 1
1949
a701949a
FS
1950/* Define this macro as a C expression that is nonzero for registers
1951 that are used by the epilogue or the return' pattern. The stack
1952 and frame pointer registers are already be assumed to be used as
1953 needed. */
1954
83720594 1955#define EPILOGUE_USES(REGNO) \
1de43f85 1956 ((reload_completed && (REGNO) == LR_REGNO) \
b1765bde 1957 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
cacf1ca8 1958 || (crtl->calls_eh_return \
3553b09d 1959 && TARGET_AIX \
ff3867ae 1960 && (REGNO) == 2))
2bfcf297 1961
f045b2c9 1962\f
f045b2c9
RS
1963/* Length in units of the trampoline for entering a nested function. */
1964
b6c9286a 1965#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9 1966\f
f33985c6 1967/* Definitions for __builtin_return_address and __builtin_frame_address.
893fc0a0 1968 __builtin_return_address (0) should give link register (LR_REGNO), enable
82e41834 1969 this. */
f33985c6
MS
1970/* This should be uncommented, so that the link register is used, but
1971 currently this would result in unmatched insns and spilling fixed
1972 registers so we'll leave it for another day. When these problems are
1973 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1974 (mrs) */
1975/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1976
b6c9286a
MM
1977/* Number of bytes into the frame return addresses can be found. See
1978 rs6000_stack_info in rs6000.c for more information on how the different
1979 abi's store the return address. */
008e32c0
UW
1980#define RETURN_ADDRESS_OFFSET \
1981 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
f09d4c33 1982
f33985c6
MS
1983/* The current return address is in link register (65). The return address
1984 of anything farther back is accessed normally at an offset of 8 from the
1985 frame pointer. */
71f123ca
FS
1986#define RETURN_ADDR_RTX(COUNT, FRAME) \
1987 (rs6000_return_addr (COUNT, FRAME))
1988
f33985c6 1989\f
f045b2c9
RS
1990/* Definitions for register eliminations.
1991
1992 We have two registers that can be eliminated on the RS/6000. First, the
1993 frame pointer register can often be eliminated in favor of the stack
1994 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1995 eliminated; it is replaced with either the stack or frame pointer.
1996
1997 In addition, we use the elimination mechanism to see if r30 is needed
1998 Initially we assume that it isn't. If it is, we spill it. This is done
1999 by making it an eliminable register. We replace it with itself so that
2000 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
2001
2002/* This is an array of structures. Each structure initializes one pair
2003 of eliminable registers. The "from" register number is given first,
2004 followed by "to". Eliminations of the same "from" register are listed
2005 in order of preference. */
7d5175e1
JJ
2006#define ELIMINABLE_REGS \
2007{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2008 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2009 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
2010 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2011 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 2012 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9 2013
f045b2c9
RS
2014/* Define the offset between two registers, one to be eliminated, and the other
2015 its replacement, at the start of a routine. */
d1d0c603
JJ
2016#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2017 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
2018\f
2019/* Addressing modes, and classification of registers for them. */
2020
940da324
JL
2021#define HAVE_PRE_DECREMENT 1
2022#define HAVE_PRE_INCREMENT 1
6fb5fa3c
DB
2023#define HAVE_PRE_MODIFY_DISP 1
2024#define HAVE_PRE_MODIFY_REG 1
f045b2c9
RS
2025
2026/* Macros to check register numbers against specific register classes. */
2027
2028/* These assume that REGNO is a hard or pseudo reg number.
2029 They give nonzero only if REGNO is a hard reg of the suitable class
2030 or a pseudo reg currently allocated to a suitable hard reg.
2031 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
2032 has been allocated, which happens in reginfo.c during register
2033 allocation. */
f045b2c9
RS
2034
2035#define REGNO_OK_FOR_INDEX_P(REGNO) \
2036((REGNO) < FIRST_PSEUDO_REGISTER \
2037 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 2038 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 2039 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
2040 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2041 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
2042
2043#define REGNO_OK_FOR_BASE_P(REGNO) \
2044((REGNO) < FIRST_PSEUDO_REGISTER \
2045 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 2046 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 2047 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
2048 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2049 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
c6c3dba9
PB
2050
2051/* Nonzero if X is a hard reg that can be used as an index
2052 or if it is a pseudo reg in the non-strict case. */
2053#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2054 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2055 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
2056
2057/* Nonzero if X is a hard reg that can be used as a base reg
2058 or if it is a pseudo reg in the non-strict case. */
2059#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2060 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2061 || REGNO_OK_FOR_BASE_P (REGNO (X)))
2062
f045b2c9
RS
2063\f
2064/* Maximum number of registers that can appear in a valid memory address. */
2065
2066#define MAX_REGS_PER_ADDRESS 2
2067
2068/* Recognize any constant value that is a valid address. */
2069
6eff269e
BK
2070#define CONSTANT_ADDRESS_P(X) \
2071 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2072 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2073 || GET_CODE (X) == HIGH)
f045b2c9 2074
48d72335 2075#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3 2076#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
76492753
PB
2077 && EASY_VECTOR_15((n) >> 1) \
2078 && ((n) & 1) == 0)
48d72335 2079
29e6733c 2080#define EASY_VECTOR_MSB(n,mode) \
683be46f 2081 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
29e6733c
MM
2082 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
2083
f045b2c9 2084\f
a260abc9
DE
2085/* Try a machine-dependent way of reloading an illegitimate address
2086 operand. If we find one, push the reload and jump to WIN. This
2087 macro is used in only one place: `find_reloads_address' in reload.c.
2088
f676971a 2089 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 2090 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 2091
a9098fd0
GK
2092#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2093do { \
24ea750e 2094 int win; \
8beb65e3 2095 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
24ea750e
DJ
2096 (int)(TYPE), (IND_LEVELS), &win); \
2097 if ( win ) \
2098 goto WIN; \
a260abc9
DE
2099} while (0)
2100
944258eb 2101#define FIND_BASE_TERM rs6000_find_base_term
766a866c
MM
2102\f
2103/* The register number of the register used to address a table of
2104 static data addresses in memory. In some cases this register is
2105 defined by a processor's "application binary interface" (ABI).
2106 When this macro is defined, RTL is generated for this register
2107 once, as with the stack pointer and frame pointer registers. If
2108 this macro is not defined, it is up to the machine-dependent files
2109 to allocate such a register (if necessary). */
2110
1db02437 2111#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
24f77f59
AM
2112#define PIC_OFFSET_TABLE_REGNUM \
2113 (TARGET_TOC ? TOC_REGISTER \
2114 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
2115 : INVALID_REGNUM)
766a866c 2116
97b23853 2117#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2118
766a866c
MM
2119/* Define this macro if the register defined by
2120 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2121 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2122
2123/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2124
766a866c
MM
2125/* A C expression that is nonzero if X is a legitimate immediate
2126 operand on the target machine when generating position independent
2127 code. You can assume that X satisfies `CONSTANT_P', so you need
2128 not check this. You can also assume FLAG_PIC is true, so you need
2129 not check it either. You need not define this macro if all
2130 constants (including `SYMBOL_REF') can be immediate operands when
2131 generating position independent code. */
2132
2133/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
2134\f
2135/* Define this if some processing needs to be done immediately before
4255474b 2136 emitting code for an insn. */
f045b2c9 2137
c921bad8
AP
2138#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
2139 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
f045b2c9
RS
2140
2141/* Specify the machine mode that this machine uses
2142 for the index in the tablejump instruction. */
e1565e65 2143#define CASE_VECTOR_MODE SImode
f045b2c9 2144
18543a22
ILT
2145/* Define as C expression which evaluates to nonzero if the tablejump
2146 instruction expects the table to contain offsets from the address of the
2147 table.
82e41834 2148 Do not define this if the table should contain absolute addresses. */
18543a22 2149#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2150
f045b2c9
RS
2151/* Define this as 1 if `char' should by default be signed; else as 0. */
2152#define DEFAULT_SIGNED_CHAR 0
2153
c1618c0c
DE
2154/* An integer expression for the size in bits of the largest integer machine
2155 mode that should actually be used. */
2156
2157/* Allow pairs of registers to be used, which is the intent of the default. */
2158#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2159
f045b2c9
RS
2160/* Max number of bytes we can move from memory to memory
2161 in one reasonably fast instruction. */
2f3e5814 2162#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2163#define MAX_MOVE_MAX 8
f045b2c9
RS
2164
2165/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2166 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2167 is undesirable. */
2168#define SLOW_BYTE_ACCESS 1
2169
9a63901f
RK
2170/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2171 will either zero-extend or sign-extend. The value of this macro should
2172 be the code that says which one of the two operations is implicitly
f822d252 2173 done, UNKNOWN if none. */
9a63901f 2174#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2175
2176/* Define if loading short immediate values into registers sign extends. */
58f2ae18 2177#define SHORT_IMMEDIATES_SIGN_EXTEND 1
fdaff8ba 2178\f
f045b2c9
RS
2179/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2180 is done just by pretending it is already truncated. */
2181#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2182
94993909 2183/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122 2184#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
14670a74 2185 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
d865b122 2186
0299bc72
MM
2187/* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2188 zero. The hardware instructions added in Power9 return 32 or 64. */
2189#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2190 ((!TARGET_CTZ) \
2191 ? ((VALUE) = -1, 1) \
2192 : ((VALUE) = ((MODE) == SImode ? 32 : 64), 1))
94993909 2193
f045b2c9
RS
2194/* Specify the machine mode that pointers have.
2195 After generation of rtl, the compiler makes no further distinction
2196 between pointers and any other objects of this machine mode. */
cacf1ca8 2197extern unsigned rs6000_pmode;
ef4bddc2 2198#define Pmode ((machine_mode)rs6000_pmode)
f045b2c9 2199
a3c9585f 2200/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
2201#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2202
f045b2c9 2203/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2204 Doesn't matter on RS/6000. */
5b71a4e7 2205#define FUNCTION_MODE SImode
f045b2c9
RS
2206
2207/* Define this if addresses of constant functions
2208 shouldn't be put through pseudo regs where they can be cse'd.
2209 Desirable on machines where ordinary constants are expensive
2210 but a CALL with constant address is cheap. */
1e8552c2 2211#define NO_FUNCTION_CSE 1
f045b2c9 2212
d969caf8 2213/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2214 few bits.
2215
2216 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2217 have been dropped from the PowerPC architecture. */
c28a7c24 2218#define SHIFT_COUNT_TRUNCATED 0
f045b2c9 2219
f045b2c9
RS
2220/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2221 should be adjusted to reflect any required changes. This macro is used when
2222 there is some systematic length adjustment required that would be difficult
2223 to express in the length attribute. */
2224
2225/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2226
39a10a29
GK
2227/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2228 COMPARE, return the mode to be used for the comparison. For
2229 floating-point, CCFPmode should be used. CCUNSmode should be used
2230 for unsigned comparisons. CCEQmode should be used when we are
2231 doing an inequality comparison on the result of a
2232 comparison. CCmode should be used in all other cases. */
c5defebb 2233
b565a316 2234#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 2235 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 2236 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 2237 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 2238 ? CCEQmode : CCmode))
f045b2c9 2239
b39358e1
GK
2240/* Can the condition code MODE be safely reversed? This is safe in
2241 all cases on this port, because at present it doesn't use the
2242 trapping FP comparisons (fcmpo). */
2243#define REVERSIBLE_CC_MODE(MODE) 1
2244
2245/* Given a condition code and a mode, return the inverse condition. */
2246#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2247
f045b2c9
RS
2248\f
2249/* Control the assembler format that we output. */
2250
1b279f39
DE
2251/* A C string constant describing how to begin a comment in the target
2252 assembler language. The compiler assumes that the comment will end at
2253 the end of the line. */
2254#define ASM_COMMENT_START " #"
6b67933e 2255
38c1f2d7
MM
2256/* Flag to say the TOC is initialized */
2257extern int toc_initialized;
2258
f045b2c9
RS
2259/* Macro to output a special constant pool entry. Go to WIN if we output
2260 it. Otherwise, it is written the usual way.
2261
2262 On the RS/6000, toc entries are handled this way. */
2263
a9098fd0
GK
2264#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2265{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2266 { \
2267 output_toc (FILE, X, LABELNO, MODE); \
2268 goto WIN; \
2269 } \
f045b2c9
RS
2270}
2271
ebd97b96
DE
2272#ifdef HAVE_GAS_WEAK
2273#define RS6000_WEAK 1
2274#else
2275#define RS6000_WEAK 0
2276#endif
290ad355 2277
79c4e63f
AM
2278#if RS6000_WEAK
2279/* Used in lieu of ASM_WEAKEN_LABEL. */
2280#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2281 do \
2282 { \
2283 fputs ("\t.weak\t", (FILE)); \
85b776df 2284 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2285 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2286 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f 2287 { \
cbaaba19
DE
2288 if (TARGET_XCOFF) \
2289 fputs ("[DS]", (FILE)); \
ca734b39 2290 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2291 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2292 } \
2293 fputc ('\n', (FILE)); \
2294 if (VAL) \
2295 { \
2296 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2297 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2298 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2299 { \
2300 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2301 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2302 fputs (",.", (FILE)); \
cbaaba19 2303 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2304 fputc ('\n', (FILE)); \
2305 } \
2306 } \
2307 } \
2308 while (0)
2309#endif
2310
ff2d10c1
AO
2311#if HAVE_GAS_WEAKREF
2312#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2313 do \
2314 { \
2315 fputs ("\t.weakref\t", (FILE)); \
2316 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2317 fputs (", ", (FILE)); \
2318 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2319 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2320 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2321 { \
2322 fputs ("\n\t.weakref\t.", (FILE)); \
2323 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2324 fputs (", .", (FILE)); \
2325 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2326 } \
2327 fputc ('\n', (FILE)); \
2328 } while (0)
2329#endif
2330
79c4e63f
AM
2331/* This implements the `alias' attribute. */
2332#undef ASM_OUTPUT_DEF_FROM_DECLS
2333#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2334 do \
2335 { \
2336 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2337 const char *name = IDENTIFIER_POINTER (TARGET); \
2338 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2339 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2340 { \
2341 if (TREE_PUBLIC (DECL)) \
2342 { \
2343 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2344 { \
2345 fputs ("\t.globl\t.", FILE); \
cbaaba19 2346 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2347 putc ('\n', FILE); \
2348 } \
2349 } \
2350 else if (TARGET_XCOFF) \
2351 { \
c167bc5b
DE
2352 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2353 { \
2354 fputs ("\t.lglobl\t.", FILE); \
2355 RS6000_OUTPUT_BASENAME (FILE, alias); \
2356 putc ('\n', FILE); \
2357 fputs ("\t.lglobl\t", FILE); \
2358 RS6000_OUTPUT_BASENAME (FILE, alias); \
2359 putc ('\n', FILE); \
2360 } \
79c4e63f
AM
2361 } \
2362 fputs ("\t.set\t.", FILE); \
cbaaba19 2363 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2364 fputs (",.", FILE); \
cbaaba19 2365 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2366 fputc ('\n', FILE); \
2367 } \
2368 ASM_OUTPUT_DEF (FILE, alias, name); \
2369 } \
2370 while (0)
290ad355 2371
1bc7c5b6
ZW
2372#define TARGET_ASM_FILE_START rs6000_file_start
2373
f045b2c9
RS
2374/* Output to assembler file text saying following lines
2375 may contain character constants, extra white space, comments, etc. */
2376
2377#define ASM_APP_ON ""
2378
2379/* Output to assembler file text saying following lines
2380 no longer contain unusual constructs. */
2381
2382#define ASM_APP_OFF ""
2383
f045b2c9
RS
2384/* How to refer to registers in assembler output.
2385 This sequence is indexed by compiler's hard-register-number (see above). */
2386
82e41834 2387extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2388
2389#define REGISTER_NAMES \
2390{ \
2391 &rs6000_reg_names[ 0][0], /* r0 */ \
2392 &rs6000_reg_names[ 1][0], /* r1 */ \
2393 &rs6000_reg_names[ 2][0], /* r2 */ \
2394 &rs6000_reg_names[ 3][0], /* r3 */ \
2395 &rs6000_reg_names[ 4][0], /* r4 */ \
2396 &rs6000_reg_names[ 5][0], /* r5 */ \
2397 &rs6000_reg_names[ 6][0], /* r6 */ \
2398 &rs6000_reg_names[ 7][0], /* r7 */ \
2399 &rs6000_reg_names[ 8][0], /* r8 */ \
2400 &rs6000_reg_names[ 9][0], /* r9 */ \
2401 &rs6000_reg_names[10][0], /* r10 */ \
2402 &rs6000_reg_names[11][0], /* r11 */ \
2403 &rs6000_reg_names[12][0], /* r12 */ \
2404 &rs6000_reg_names[13][0], /* r13 */ \
2405 &rs6000_reg_names[14][0], /* r14 */ \
2406 &rs6000_reg_names[15][0], /* r15 */ \
2407 &rs6000_reg_names[16][0], /* r16 */ \
2408 &rs6000_reg_names[17][0], /* r17 */ \
2409 &rs6000_reg_names[18][0], /* r18 */ \
2410 &rs6000_reg_names[19][0], /* r19 */ \
2411 &rs6000_reg_names[20][0], /* r20 */ \
2412 &rs6000_reg_names[21][0], /* r21 */ \
2413 &rs6000_reg_names[22][0], /* r22 */ \
2414 &rs6000_reg_names[23][0], /* r23 */ \
2415 &rs6000_reg_names[24][0], /* r24 */ \
2416 &rs6000_reg_names[25][0], /* r25 */ \
2417 &rs6000_reg_names[26][0], /* r26 */ \
2418 &rs6000_reg_names[27][0], /* r27 */ \
2419 &rs6000_reg_names[28][0], /* r28 */ \
2420 &rs6000_reg_names[29][0], /* r29 */ \
2421 &rs6000_reg_names[30][0], /* r30 */ \
2422 &rs6000_reg_names[31][0], /* r31 */ \
2423 \
2424 &rs6000_reg_names[32][0], /* fr0 */ \
2425 &rs6000_reg_names[33][0], /* fr1 */ \
2426 &rs6000_reg_names[34][0], /* fr2 */ \
2427 &rs6000_reg_names[35][0], /* fr3 */ \
2428 &rs6000_reg_names[36][0], /* fr4 */ \
2429 &rs6000_reg_names[37][0], /* fr5 */ \
2430 &rs6000_reg_names[38][0], /* fr6 */ \
2431 &rs6000_reg_names[39][0], /* fr7 */ \
2432 &rs6000_reg_names[40][0], /* fr8 */ \
2433 &rs6000_reg_names[41][0], /* fr9 */ \
2434 &rs6000_reg_names[42][0], /* fr10 */ \
2435 &rs6000_reg_names[43][0], /* fr11 */ \
2436 &rs6000_reg_names[44][0], /* fr12 */ \
2437 &rs6000_reg_names[45][0], /* fr13 */ \
2438 &rs6000_reg_names[46][0], /* fr14 */ \
2439 &rs6000_reg_names[47][0], /* fr15 */ \
2440 &rs6000_reg_names[48][0], /* fr16 */ \
2441 &rs6000_reg_names[49][0], /* fr17 */ \
2442 &rs6000_reg_names[50][0], /* fr18 */ \
2443 &rs6000_reg_names[51][0], /* fr19 */ \
2444 &rs6000_reg_names[52][0], /* fr20 */ \
2445 &rs6000_reg_names[53][0], /* fr21 */ \
2446 &rs6000_reg_names[54][0], /* fr22 */ \
2447 &rs6000_reg_names[55][0], /* fr23 */ \
2448 &rs6000_reg_names[56][0], /* fr24 */ \
2449 &rs6000_reg_names[57][0], /* fr25 */ \
2450 &rs6000_reg_names[58][0], /* fr26 */ \
2451 &rs6000_reg_names[59][0], /* fr27 */ \
2452 &rs6000_reg_names[60][0], /* fr28 */ \
2453 &rs6000_reg_names[61][0], /* fr29 */ \
2454 &rs6000_reg_names[62][0], /* fr30 */ \
2455 &rs6000_reg_names[63][0], /* fr31 */ \
2456 \
462f7901 2457 &rs6000_reg_names[64][0], /* was mq */ \
c81bebd7
MM
2458 &rs6000_reg_names[65][0], /* lr */ \
2459 &rs6000_reg_names[66][0], /* ctr */ \
2460 &rs6000_reg_names[67][0], /* ap */ \
2461 \
2462 &rs6000_reg_names[68][0], /* cr0 */ \
2463 &rs6000_reg_names[69][0], /* cr1 */ \
2464 &rs6000_reg_names[70][0], /* cr2 */ \
2465 &rs6000_reg_names[71][0], /* cr3 */ \
2466 &rs6000_reg_names[72][0], /* cr4 */ \
2467 &rs6000_reg_names[73][0], /* cr5 */ \
2468 &rs6000_reg_names[74][0], /* cr6 */ \
2469 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2470 \
f6b5d695 2471 &rs6000_reg_names[76][0], /* ca */ \
0ac081f6
AH
2472 \
2473 &rs6000_reg_names[77][0], /* v0 */ \
2474 &rs6000_reg_names[78][0], /* v1 */ \
2475 &rs6000_reg_names[79][0], /* v2 */ \
2476 &rs6000_reg_names[80][0], /* v3 */ \
2477 &rs6000_reg_names[81][0], /* v4 */ \
2478 &rs6000_reg_names[82][0], /* v5 */ \
2479 &rs6000_reg_names[83][0], /* v6 */ \
2480 &rs6000_reg_names[84][0], /* v7 */ \
2481 &rs6000_reg_names[85][0], /* v8 */ \
2482 &rs6000_reg_names[86][0], /* v9 */ \
2483 &rs6000_reg_names[87][0], /* v10 */ \
2484 &rs6000_reg_names[88][0], /* v11 */ \
2485 &rs6000_reg_names[89][0], /* v12 */ \
2486 &rs6000_reg_names[90][0], /* v13 */ \
2487 &rs6000_reg_names[91][0], /* v14 */ \
2488 &rs6000_reg_names[92][0], /* v15 */ \
2489 &rs6000_reg_names[93][0], /* v16 */ \
2490 &rs6000_reg_names[94][0], /* v17 */ \
2491 &rs6000_reg_names[95][0], /* v18 */ \
2492 &rs6000_reg_names[96][0], /* v19 */ \
2493 &rs6000_reg_names[97][0], /* v20 */ \
2494 &rs6000_reg_names[98][0], /* v21 */ \
2495 &rs6000_reg_names[99][0], /* v22 */ \
2496 &rs6000_reg_names[100][0], /* v23 */ \
2497 &rs6000_reg_names[101][0], /* v24 */ \
2498 &rs6000_reg_names[102][0], /* v25 */ \
2499 &rs6000_reg_names[103][0], /* v26 */ \
2500 &rs6000_reg_names[104][0], /* v27 */ \
2501 &rs6000_reg_names[105][0], /* v28 */ \
2502 &rs6000_reg_names[106][0], /* v29 */ \
2503 &rs6000_reg_names[107][0], /* v30 */ \
2504 &rs6000_reg_names[108][0], /* v31 */ \
2505 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2506 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2507 &rs6000_reg_names[111][0], /* spe_acc */ \
2508 &rs6000_reg_names[112][0], /* spefscr */ \
7d5175e1 2509 &rs6000_reg_names[113][0], /* sfp */ \
0258b6e4
PB
2510 &rs6000_reg_names[114][0], /* tfhar */ \
2511 &rs6000_reg_names[115][0], /* tfiar */ \
2512 &rs6000_reg_names[116][0], /* texasr */ \
23742a9e
RAR
2513 \
2514 &rs6000_reg_names[117][0], /* SPE rh0. */ \
2515 &rs6000_reg_names[118][0], /* SPE rh1. */ \
2516 &rs6000_reg_names[119][0], /* SPE rh2. */ \
2517 &rs6000_reg_names[120][0], /* SPE rh3. */ \
2518 &rs6000_reg_names[121][0], /* SPE rh4. */ \
2519 &rs6000_reg_names[122][0], /* SPE rh5. */ \
2520 &rs6000_reg_names[123][0], /* SPE rh6. */ \
2521 &rs6000_reg_names[124][0], /* SPE rh7. */ \
2522 &rs6000_reg_names[125][0], /* SPE rh8. */ \
2523 &rs6000_reg_names[126][0], /* SPE rh9. */ \
2524 &rs6000_reg_names[127][0], /* SPE rh10. */ \
2525 &rs6000_reg_names[128][0], /* SPE rh11. */ \
2526 &rs6000_reg_names[129][0], /* SPE rh12. */ \
2527 &rs6000_reg_names[130][0], /* SPE rh13. */ \
2528 &rs6000_reg_names[131][0], /* SPE rh14. */ \
2529 &rs6000_reg_names[132][0], /* SPE rh15. */ \
2530 &rs6000_reg_names[133][0], /* SPE rh16. */ \
2531 &rs6000_reg_names[134][0], /* SPE rh17. */ \
2532 &rs6000_reg_names[135][0], /* SPE rh18. */ \
2533 &rs6000_reg_names[136][0], /* SPE rh19. */ \
2534 &rs6000_reg_names[137][0], /* SPE rh20. */ \
2535 &rs6000_reg_names[138][0], /* SPE rh21. */ \
2536 &rs6000_reg_names[139][0], /* SPE rh22. */ \
2537 &rs6000_reg_names[140][0], /* SPE rh22. */ \
2538 &rs6000_reg_names[141][0], /* SPE rh24. */ \
2539 &rs6000_reg_names[142][0], /* SPE rh25. */ \
2540 &rs6000_reg_names[143][0], /* SPE rh26. */ \
2541 &rs6000_reg_names[144][0], /* SPE rh27. */ \
2542 &rs6000_reg_names[145][0], /* SPE rh28. */ \
2543 &rs6000_reg_names[146][0], /* SPE rh29. */ \
2544 &rs6000_reg_names[147][0], /* SPE rh30. */ \
2545 &rs6000_reg_names[148][0], /* SPE rh31. */ \
c81bebd7
MM
2546}
2547
f045b2c9
RS
2548/* Table of additional register names to use in user input. */
2549
2550#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2551 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2552 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2553 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2554 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2555 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2556 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2557 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2558 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2559 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2560 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2561 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2562 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2563 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2564 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2565 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2566 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2567 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2568 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2569 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2570 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2571 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2572 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2573 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2574 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2575 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2576 {"spe_acc", 111}, {"spefscr", 112}, \
462f7901 2577 /* no additional names for: lr, ctr, ap */ \
c4d38ccb
MM
2578 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2579 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
cacf1ca8 2580 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
f6b5d695
SB
2581 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2582 {"xer", 76}, \
cacf1ca8
MM
2583 /* VSX registers overlaid on top of FR, Altivec registers */ \
2584 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2585 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2586 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2587 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2588 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2589 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2590 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2591 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2592 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2593 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2594 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2595 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2596 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2597 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2598 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
0258b6e4
PB
2599 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2600 /* Transactional Memory Facility (HTM) Registers. */ \
23742a9e
RAR
2601 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116}, \
2602 /* SPE high registers. */ \
2603 {"rh0", 117}, {"rh1", 118}, {"rh2", 119}, {"rh3", 120}, \
2604 {"rh4", 121}, {"rh5", 122}, {"rh6", 123}, {"rh7", 124}, \
2605 {"rh8", 125}, {"rh9", 126}, {"rh10", 127}, {"rh11", 128}, \
2606 {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132}, \
2607 {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136}, \
2608 {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140}, \
2609 {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144}, \
2610 {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148}, \
2611}
f045b2c9 2612
f045b2c9
RS
2613/* This is how to output an element of a case-vector that is relative. */
2614
e1565e65 2615#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2616 do { char buf[100]; \
e1565e65 2617 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2618 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2619 assemble_name (FILE, buf); \
19d2d16f 2620 putc ('-', FILE); \
3daf36a4
ILT
2621 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2622 assemble_name (FILE, buf); \
19d2d16f 2623 putc ('\n', FILE); \
3daf36a4 2624 } while (0)
f045b2c9
RS
2625
2626/* This is how to output an assembler line
2627 that says to advance the location counter
2628 to a multiple of 2**LOG bytes. */
2629
2630#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2631 if ((LOG) != 0) \
2632 fprintf (FILE, "\t.align %d\n", (LOG))
2633
58082ff6
PH
2634/* How to align the given loop. */
2635#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2636
d28073d4
BS
2637/* Alignment guaranteed by __builtin_malloc. */
2638/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2639 However, specifying the stronger guarantee currently leads to
2640 a regression in SPEC CPU2006 437.leslie3d. The stronger
2641 guarantee should be implemented here once that's fixed. */
2642#define MALLOC_ABI_ALIGNMENT (64)
2643
9ebbca7d
GK
2644/* Pick up the return address upon entry to a procedure. Used for
2645 dwarf2 unwind information. This also enables the table driven
2646 mechanism. */
2647
1de43f85
DE
2648#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2649#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
9ebbca7d 2650
83720594
RH
2651/* Describe how we implement __builtin_eh_return. */
2652#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2653#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2654
f045b2c9
RS
2655/* Print operand X (an rtx) in assembler syntax to file FILE.
2656 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2657 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2658
2659#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2660
2661/* Define which CODE values are valid. */
2662
3cf437d4 2663#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
f045b2c9
RS
2664
2665/* Print a memory address as an operand to reference that memory location. */
2666
2667#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2668
c82846bc
DE
2669/* For switching between functions with different target attributes. */
2670#define SWITCHABLE_TARGET 1
2671
b6c9286a
MM
2672/* uncomment for disabling the corresponding default options */
2673/* #define MACHINE_no_sched_interblock */
2674/* #define MACHINE_no_sched_speculative */
2675/* #define MACHINE_no_sched_speculative_load */
2676
766a866c 2677/* General flags. */
a7df97e6 2678extern int frame_pointer_needed;
0ac081f6 2679
7fa14a01
MM
2680/* Classification of the builtin functions as to which switches enable the
2681 builtin, and what attributes it should have. We used to use the target
2682 flags macros, but we've run out of bits, so we now map the options into new
2683 settings used here. */
2684
2685/* Builtin attributes. */
2686#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2687#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2688#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2689#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2690#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2691#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2692#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2693#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2694#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2695
2696#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
902cb7b1
KN
2697#define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2698 modifies global state. */
4f45da44
KN
2699#define RS6000_BTC_PURE 0x00000200 /* reads global
2700 state/mem and does
2701 not modify global state. */
7fa14a01
MM
2702#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2703#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2704
2705/* Miscellaneous information. */
0258b6e4
PB
2706#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2707#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
01f61a78
PB
2708#define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2709#define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
0258b6e4 2710#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
1c9df37c
MM
2711
2712/* Convenience macros to document the instruction type. */
7fa14a01
MM
2713#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2714#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2715
2716/* Builtin targets. For now, we reuse the masks for those options that are in
8241efd1
PB
2717 target flags, and pick three random bits for SPE, paired and ldbl128 which
2718 aren't in target_flags. */
4b705221 2719#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
7fa14a01
MM
2720#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2721#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
f62511da 2722#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
8fa97501 2723#define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
5a3a6a5e 2724#define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
f62511da 2725#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
0258b6e4 2726#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
7fa14a01
MM
2727#define RS6000_BTM_SPE MASK_STRING /* E500 */
2728#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2729#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2730#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2731#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2732#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2733#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
7fa14a01 2734#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
06b39289 2735#define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
f93bc5b3 2736#define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
8241efd1 2737#define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
4f45da44 2738#define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
08213983 2739#define RS6000_BTM_FLOAT128 MASK_FLOAT128_TYPE /* IEEE 128-bit float. */
7fa14a01
MM
2740
2741#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2742 | RS6000_BTM_VSX \
f62511da 2743 | RS6000_BTM_P8_VECTOR \
8fa97501 2744 | RS6000_BTM_P9_VECTOR \
5a3a6a5e 2745 | RS6000_BTM_P9_MISC \
402e60c5 2746 | RS6000_BTM_MODULO \
f62511da 2747 | RS6000_BTM_CRYPTO \
7fa14a01
MM
2748 | RS6000_BTM_FRE \
2749 | RS6000_BTM_FRES \
2750 | RS6000_BTM_FRSQRTE \
2751 | RS6000_BTM_FRSQRTES \
0258b6e4 2752 | RS6000_BTM_HTM \
7fa14a01 2753 | RS6000_BTM_POPCNTD \
06b39289 2754 | RS6000_BTM_CELL \
f93bc5b3 2755 | RS6000_BTM_DFP \
8241efd1 2756 | RS6000_BTM_HARD_FLOAT \
53605f35
BS
2757 | RS6000_BTM_LDBL128 \
2758 | RS6000_BTM_FLOAT128)
7fa14a01
MM
2759
2760/* Define builtin enum index. */
2761
4f45da44 2762#undef RS6000_BUILTIN_0
7fa14a01
MM
2763#undef RS6000_BUILTIN_1
2764#undef RS6000_BUILTIN_2
2765#undef RS6000_BUILTIN_3
2766#undef RS6000_BUILTIN_A
2767#undef RS6000_BUILTIN_D
2768#undef RS6000_BUILTIN_E
0258b6e4 2769#undef RS6000_BUILTIN_H
7fa14a01
MM
2770#undef RS6000_BUILTIN_P
2771#undef RS6000_BUILTIN_Q
2772#undef RS6000_BUILTIN_S
2773#undef RS6000_BUILTIN_X
2774
4f45da44 2775#define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2776#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2777#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2778#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2779#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2780#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2781#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
0258b6e4 2782#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2783#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2784#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2785#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2786#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
1c9df37c 2787
0ac081f6
AH
2788enum rs6000_builtins
2789{
1c9df37c 2790#include "rs6000-builtin.def"
a72c65c7 2791
58646b77
PB
2792 RS6000_BUILTIN_COUNT
2793};
2794
4f45da44 2795#undef RS6000_BUILTIN_0
7fa14a01
MM
2796#undef RS6000_BUILTIN_1
2797#undef RS6000_BUILTIN_2
2798#undef RS6000_BUILTIN_3
2799#undef RS6000_BUILTIN_A
2800#undef RS6000_BUILTIN_D
2801#undef RS6000_BUILTIN_E
0258b6e4 2802#undef RS6000_BUILTIN_H
7fa14a01
MM
2803#undef RS6000_BUILTIN_P
2804#undef RS6000_BUILTIN_Q
2805#undef RS6000_BUILTIN_S
2806#undef RS6000_BUILTIN_X
1c9df37c 2807
58646b77
PB
2808enum rs6000_builtin_type_index
2809{
2810 RS6000_BTI_NOT_OPAQUE,
2811 RS6000_BTI_opaque_V2SI,
2812 RS6000_BTI_opaque_V2SF,
2813 RS6000_BTI_opaque_p_V2SI,
2814 RS6000_BTI_opaque_V4SI,
2815 RS6000_BTI_V16QI,
a16a872d 2816 RS6000_BTI_V1TI,
58646b77
PB
2817 RS6000_BTI_V2SI,
2818 RS6000_BTI_V2SF,
a72c65c7
MM
2819 RS6000_BTI_V2DI,
2820 RS6000_BTI_V2DF,
58646b77
PB
2821 RS6000_BTI_V4HI,
2822 RS6000_BTI_V4SI,
2823 RS6000_BTI_V4SF,
2824 RS6000_BTI_V8HI,
2825 RS6000_BTI_unsigned_V16QI,
a16a872d 2826 RS6000_BTI_unsigned_V1TI,
58646b77
PB
2827 RS6000_BTI_unsigned_V8HI,
2828 RS6000_BTI_unsigned_V4SI,
a72c65c7 2829 RS6000_BTI_unsigned_V2DI,
58646b77
PB
2830 RS6000_BTI_bool_char, /* __bool char */
2831 RS6000_BTI_bool_short, /* __bool short */
2832 RS6000_BTI_bool_int, /* __bool int */
a72c65c7 2833 RS6000_BTI_bool_long, /* __bool long */
58646b77
PB
2834 RS6000_BTI_pixel, /* __pixel */
2835 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2836 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2837 RS6000_BTI_bool_V4SI, /* __vector __bool int */
a72c65c7 2838 RS6000_BTI_bool_V2DI, /* __vector __bool long */
58646b77
PB
2839 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2840 RS6000_BTI_long, /* long_integer_type_node */
2841 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
c9485473
MM
2842 RS6000_BTI_long_long, /* long_long_integer_type_node */
2843 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
58646b77
PB
2844 RS6000_BTI_INTQI, /* intQI_type_node */
2845 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2846 RS6000_BTI_INTHI, /* intHI_type_node */
2847 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2848 RS6000_BTI_INTSI, /* intSI_type_node */
2849 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
a72c65c7
MM
2850 RS6000_BTI_INTDI, /* intDI_type_node */
2851 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
a16a872d
MM
2852 RS6000_BTI_INTTI, /* intTI_type_node */
2853 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
58646b77 2854 RS6000_BTI_float, /* float_type_node */
a72c65c7 2855 RS6000_BTI_double, /* double_type_node */
06b39289
MM
2856 RS6000_BTI_long_double, /* long_double_type_node */
2857 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2858 RS6000_BTI_dfloat128, /* dfloat128_type_node */
58646b77 2859 RS6000_BTI_void, /* void_type_node */
6712d6fd
MM
2860 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2861 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
53605f35 2862 RS6000_BTI_const_str, /* pointer to const char * */
58646b77 2863 RS6000_BTI_MAX
0ac081f6 2864};
58646b77
PB
2865
2866
2867#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2868#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2869#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2870#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2871#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
a16a872d 2872#define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
a72c65c7
MM
2873#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2874#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
58646b77
PB
2875#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2876#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2877#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2878#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2879#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2880#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2881#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
a16a872d 2882#define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
58646b77
PB
2883#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2884#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
a72c65c7 2885#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
58646b77
PB
2886#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2887#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2888#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
a72c65c7 2889#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
58646b77
PB
2890#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2891#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2892#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2893#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
a72c65c7 2894#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
58646b77
PB
2895#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2896
c9485473
MM
2897#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2898#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
58646b77
PB
2899#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2900#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2901#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2902#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2903#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2904#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2905#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2906#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
a72c65c7
MM
2907#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2908#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
a16a872d
MM
2909#define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2910#define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
58646b77 2911#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
a72c65c7 2912#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
06b39289
MM
2913#define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2914#define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2915#define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
58646b77 2916#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
6712d6fd
MM
2917#define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2918#define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
53605f35 2919#define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
58646b77
PB
2920
2921extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2922extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2923
807e902e 2924#define TARGET_SUPPORTS_WIDE_INT 1
08213983
MM
2925
2926#if (GCC_VERSION >= 3000)
2927#pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2928#endif