]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
re GNATS gcj/12 (gcj accepts invalid code where an exception must be caught/thrown)
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
34792e82 2 Copyright (C) 1992, 93-8, 1999 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
f045b2c9
RS
21
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27/* Names to predefine in the preprocessor for this target machine. */
28
a238cd8b 29#define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 -D_LONG_LONG \
84b49fa7 30-Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
f045b2c9
RS
31
32/* Print subsidiary information on the compiler version in use. */
33#define TARGET_VERSION ;
34
8e3f41e7
MM
35/* Default string to use for cpu if not specified. */
36#ifndef TARGET_CPU_DEFAULT
37#define TARGET_CPU_DEFAULT ((char *)0)
38#endif
39
fdaff8ba
RS
40/* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
b4d6689b
RK
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
f045b2c9 47
841faeed 48/* #define ASM_SPEC "-u %(asm_cpu)" */
f045b2c9 49
84b49fa7
RK
50/* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
841faeed
MM
53#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
956d6950 55/* Common CPP definitions used by CPP_SPEC among the various targets
841faeed
MM
56 for handling -mcpu=xxx switches. */
57#define CPP_CPU_SPEC \
58"%{!mcpu*: \
84b49fa7
RK
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
841faeed 63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
84b49fa7
RK
64%{mcpu=common: -D_ARCH_COM} \
65%{mcpu=power: -D_ARCH_PWR} \
8e3f41e7 66%{mcpu=power2: -D_ARCH_PWR2} \
84b49fa7
RK
67%{mcpu=powerpc: -D_ARCH_PPC} \
68%{mcpu=rios: -D_ARCH_PWR} \
69%{mcpu=rios1: -D_ARCH_PWR} \
70%{mcpu=rios2: -D_ARCH_PWR2} \
71%{mcpu=rsc: -D_ARCH_PWR} \
72%{mcpu=rsc1: -D_ARCH_PWR} \
b91d2c10 73%{mcpu=401: -D_ARCH_PPC} \
49a0b204 74%{mcpu=403: -D_ARCH_PPC} \
cf27b467 75%{mcpu=505: -D_ARCH_PPC} \
84b49fa7 76%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
841faeed 77%{mcpu=602: -D_ARCH_PPC} \
fada905b
MM
78%{mcpu=603: -D_ARCH_PPC} \
79%{mcpu=603e: -D_ARCH_PPC} \
b91d2c10 80%{mcpu=ec603e: -D_ARCH_PPC} \
fada905b 81%{mcpu=604: -D_ARCH_PPC} \
b91d2c10 82%{mcpu=604e: -D_ARCH_PPC} \
cf27b467 83%{mcpu=620: -D_ARCH_PPC} \
bef84347
VM
84%{mcpu=740: -D_ARCH_PPC} \
85%{mcpu=750: -D_ARCH_PPC} \
86%{mcpu=801: -D_ARCH_PPC} \
cf27b467 87%{mcpu=821: -D_ARCH_PPC} \
b91d2c10 88%{mcpu=823: -D_ARCH_PPC} \
cf27b467 89%{mcpu=860: -D_ARCH_PPC}"
84b49fa7 90
841faeed
MM
91#ifndef CPP_DEFAULT_SPEC
92#define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
93#endif
94
95#ifndef CPP_SYSV_SPEC
96#define CPP_SYSV_SPEC ""
97#endif
98
99#ifndef CPP_ENDIAN_SPEC
100#define CPP_ENDIAN_SPEC ""
101#endif
102
c81bebd7
MM
103#ifndef CPP_ENDIAN_DEFAULT_SPEC
104#define CPP_ENDIAN_DEFAULT_SPEC ""
105#endif
106
841faeed
MM
107#ifndef CPP_SYSV_DEFAULT_SPEC
108#define CPP_SYSV_DEFAULT_SPEC ""
109#endif
110
956d6950 111/* Common ASM definitions used by ASM_SPEC among the various targets
841faeed
MM
112 for handling -mcpu=xxx switches. */
113#define ASM_CPU_SPEC \
114"%{!mcpu*: \
115 %{mpower: %{!mpower2: -mpwr}} \
116 %{mpower2: -mpwrx} \
117 %{mpowerpc*: -mppc} \
118 %{mno-power: %{!mpowerpc*: -mcom}} \
119 %{!mno-power: %{!mpower2: %(asm_default)}}} \
120%{mcpu=common: -mcom} \
121%{mcpu=power: -mpwr} \
122%{mcpu=power2: -mpwrx} \
123%{mcpu=powerpc: -mppc} \
124%{mcpu=rios: -mpwr} \
125%{mcpu=rios1: -mpwr} \
126%{mcpu=rios2: -mpwrx} \
127%{mcpu=rsc: -mpwr} \
128%{mcpu=rsc1: -mpwr} \
b91d2c10 129%{mcpu=401: -mppc} \
841faeed
MM
130%{mcpu=403: -mppc} \
131%{mcpu=505: -mppc} \
132%{mcpu=601: -m601} \
133%{mcpu=602: -mppc} \
134%{mcpu=603: -mppc} \
135%{mcpu=603e: -mppc} \
b91d2c10 136%{mcpu=ec603e: -mppc} \
841faeed 137%{mcpu=604: -mppc} \
b91d2c10 138%{mcpu=604e: -mppc} \
841faeed 139%{mcpu=620: -mppc} \
bef84347
VM
140%{mcpu=740: -mppc} \
141%{mcpu=750: -mppc} \
142%{mcpu=801: -mppc} \
841faeed 143%{mcpu=821: -mppc} \
b91d2c10 144%{mcpu=823: -mppc} \
841faeed
MM
145%{mcpu=860: -mppc}"
146
147#ifndef ASM_DEFAULT_SPEC
fba29a8c 148#define ASM_DEFAULT_SPEC ""
841faeed
MM
149#endif
150
151/* This macro defines names of additional specifications to put in the specs
152 that can be used in various specifications like CC1_SPEC. Its definition
153 is an initializer with a subgrouping for each command option.
154
155 Each subgrouping contains a string constant, that defines the
156 specification name, and a string constant that used by the GNU CC driver
157 program.
158
159 Do not define this macro if it does not need to do anything. */
160
7509c759
MM
161#ifndef SUBTARGET_EXTRA_SPECS
162#define SUBTARGET_EXTRA_SPECS
163#endif
164
c81bebd7
MM
165#define EXTRA_SPECS \
166 { "cpp_cpu", CPP_CPU_SPEC }, \
167 { "cpp_default", CPP_DEFAULT_SPEC }, \
168 { "cpp_sysv", CPP_SYSV_SPEC }, \
169 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
170 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
171 { "cpp_endian", CPP_ENDIAN_SPEC }, \
172 { "asm_cpu", ASM_CPU_SPEC }, \
173 { "asm_default", ASM_DEFAULT_SPEC }, \
174 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
175 { "link_libg", LINK_LIBG_SPEC }, \
7509c759
MM
176 SUBTARGET_EXTRA_SPECS
177
7509c759
MM
178/* Default location of syscalls.exp under AIX */
179#ifndef CROSS_COMPILE
180#define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
181#else
182#define LINK_SYSCALLS_SPEC ""
183#endif
184
185/* Default location of libg.exp under AIX */
186#ifndef CROSS_COMPILE
187#define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
188#else
189#define LINK_LIBG_SPEC ""
190#endif
191
f045b2c9
RS
192/* Define the options for the binder: Start text at 512, align all segments
193 to 512 bytes, and warn if there is text relocation.
194
195 The -bhalt:4 option supposedly changes the level at which ld will abort,
196 but it also suppresses warnings about multiply defined symbols and is
197 used by the AIX cc command. So we use it here.
198
199 -bnodelcsect undoes a poor choice of default relating to multiply-defined
52c0eaf8
JM
200 csects. See AIX documentation for more information about this.
201
202 -bM:SRE tells the linker that the output file is Shared REusable. Note
203 that to actually build a shared library you will also need to specify an
204 export list with the -Wl,-bE option. */
f045b2c9 205
c1950f1c 206#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
7509c759
MM
207 %{static:-bnso %(link_syscalls) } \
208 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
f045b2c9 209
58a39e45
RS
210/* Profiled library versions are used by linking with special directories. */
211#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
788d9012 212 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
f045b2c9
RS
213
214/* gcc must do the search itself to find libgcc.a, not use -l. */
046b1537 215#define LIBGCC_SPEC "libgcc.a%s"
f045b2c9
RS
216
217/* Don't turn -B into -L if the argument specifies a relative file name. */
218#define RELATIVE_PREFIX_NOT_LINKDIR
219
fb623df5 220/* Architecture type. */
f045b2c9 221
fb623df5
RK
222extern int target_flags;
223
224/* Use POWER architecture instructions and MQ register. */
38c1f2d7 225#define MASK_POWER 0x00000001
fb623df5 226
6febd581 227/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 228#define MASK_POWER2 0x00000002
6febd581 229
fb623df5 230/* Use PowerPC architecture instructions. */
38c1f2d7 231#define MASK_POWERPC 0x00000004
6febd581 232
583cf4db 233/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 234#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
235
236/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 237#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 238
fb623df5 239/* Use PowerPC-64 architecture instructions. */
38c1f2d7 240#define MASK_POWERPC64 0x00000020
f045b2c9 241
fb623df5 242/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 243#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
244
245/* Disable placing fp constants in the TOC; can be turned on when the
246 TOC overflows. */
38c1f2d7 247#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 248
0b9ccabc
RK
249/* Disable placing symbol+offset constants in the TOC; can be turned on when
250 the TOC overflows. */
38c1f2d7 251#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 252
fb623df5 253/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
254 there are more than 16K unique variables/constants in an executable. With
255 this option, linking fails only if there are more than 16K modules, or
256 if there are more than 16K unique variables/constant in a single module.
257
258 This is at the cost of having 2 extra loads and one extra store per
956d6950 259 function, and one less allocable register. */
38c1f2d7 260#define MASK_MINIMAL_TOC 0x00000200
642a35f1 261
9e654916 262/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
38c1f2d7 263#define MASK_64BIT 0x00000400
9e654916 264
f85f4585 265/* Disable use of FPRs. */
38c1f2d7 266#define MASK_SOFT_FLOAT 0x00000800
f85f4585 267
4d30c363 268/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
269#define MASK_MULTIPLE 0x00001000
270#define MASK_MULTIPLE_SET 0x00002000
4d30c363 271
7e69e155 272/* Use string instructions for block moves */
38c1f2d7
MM
273#define MASK_STRING 0x00004000
274#define MASK_STRING_SET 0x00008000
7e69e155 275
38c1f2d7
MM
276/* Disable update form of load/store */
277#define MASK_NO_UPDATE 0x00010000
278
279/* Disable fused multiply/add operations */
280#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 281
7e69e155
MM
282#define TARGET_POWER (target_flags & MASK_POWER)
283#define TARGET_POWER2 (target_flags & MASK_POWER2)
284#define TARGET_POWERPC (target_flags & MASK_POWERPC)
285#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
286#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
287#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
288#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
289#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
290#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
291#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
292#define TARGET_64BIT (target_flags & MASK_64BIT)
293#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
294#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
295#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
296#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 297#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
298#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
299#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
7e69e155 300
2f3e5814 301#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 302#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
303#define TARGET_UPDATE (! TARGET_NO_UPDATE)
304#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 305
4697a36c
MM
306/* Pseudo target to indicate whether the object format is ELF
307 (to get around not having conditional compilation in the md file) */
308#ifndef TARGET_ELF
309#define TARGET_ELF 0
310#endif
311
312/* If this isn't V.4, don't support -mno-toc. */
313#ifndef TARGET_NO_TOC
314#define TARGET_NO_TOC 0
315#define TARGET_TOC 1
316#endif
317
b6c9286a
MM
318/* Pseudo target to say whether this is Windows NT */
319#ifndef TARGET_WINDOWS_NT
320#define TARGET_WINDOWS_NT 0
321#endif
322
323/* Pseudo target to say whether this is MAC */
324#ifndef TARGET_MACOS
325#define TARGET_MACOS 0
326#endif
327
328/* Pseudo target to say whether this is AIX */
329#ifndef TARGET_AIX
330#if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
331#define TARGET_AIX 0
332#else
333#define TARGET_AIX 1
334#endif
335#endif
336
a3950905
MM
337#ifndef TARGET_XL_CALL
338#define TARGET_XL_CALL 0
339#endif
340
fb623df5 341/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 342
fb623df5 343 Macro to define tables used to set the flags.
f045b2c9
RS
344 This is a list in braces of pairs in braces,
345 each pair being { "NAME", VALUE }
346 where VALUE is the bits to set or minus the bits to clear.
347 An empty string NAME is used to identify the default VALUE. */
348
4d30c363
MM
349/* This is meant to be redefined in the host dependent files */
350#ifndef SUBTARGET_SWITCHES
351#define SUBTARGET_SWITCHES
352#endif
353
938937d8
MM
354#define TARGET_SWITCHES \
355 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
356 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
357 | MASK_POWER2)}, \
358 {"no-power2", - MASK_POWER2}, \
359 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
360 | MASK_STRING)}, \
361 {"powerpc", MASK_POWERPC}, \
362 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
363 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
364 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
365 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
366 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
367 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
a260abc9
DE
368 {"powerpc64", MASK_POWERPC64}, \
369 {"no-powerpc64", - MASK_POWERPC64}, \
938937d8
MM
370 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
371 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
372 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
373 | MASK_MINIMAL_TOC)}, \
374 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
375 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
376 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
377 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
378 {"minimal-toc", MASK_MINIMAL_TOC}, \
379 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
380 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
381 {"hard-float", - MASK_SOFT_FLOAT}, \
382 {"soft-float", MASK_SOFT_FLOAT}, \
383 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
384 {"no-multiple", - MASK_MULTIPLE}, \
385 {"no-multiple", MASK_MULTIPLE_SET}, \
386 {"string", MASK_STRING | MASK_STRING_SET}, \
387 {"no-string", - MASK_STRING}, \
bbdd88df 388 {"no-string", MASK_STRING_SET}, \
38c1f2d7
MM
389 {"update", - MASK_NO_UPDATE}, \
390 {"no-update", MASK_NO_UPDATE}, \
391 {"fused-madd", - MASK_NO_FUSED_MADD}, \
392 {"no-fused-madd", MASK_NO_FUSED_MADD}, \
938937d8 393 SUBTARGET_SWITCHES \
fb623df5
RK
394 {"", TARGET_DEFAULT}}
395
938937d8 396#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
fb623df5 397
cac8ce95 398/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 399enum processor_type
bef84347
VM
400 {
401 PROCESSOR_RIOS1,
402 PROCESSOR_RIOS2,
403 PROCESSOR_MPCCORE,
404 PROCESSOR_PPC403,
405 PROCESSOR_PPC601,
406 PROCESSOR_PPC603,
407 PROCESSOR_PPC604,
408 PROCESSOR_PPC604e,
409 PROCESSOR_PPC620,
410 PROCESSOR_PPC750
411};
fb623df5
RK
412
413extern enum processor_type rs6000_cpu;
414
415/* Recast the processor type to the cpu attribute. */
416#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
417
8482e358 418/* Define generic processor types based upon current deployment. */
8e3f41e7 419#define PROCESSOR_COMMON PROCESSOR_PPC601
8482e358 420#define PROCESSOR_POWER PROCESSOR_RIOS1
8e3f41e7 421#define PROCESSOR_POWERPC PROCESSOR_PPC604
6e151478 422
fb623df5 423/* Define the default processor. This is overridden by other tm.h files. */
f86fe1fb 424#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
fb623df5 425
6febd581
RK
426/* Specify the dialect of assembler to use. New mnemonics is dialect one
427 and the old mnemonics are dialect zero. */
428#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
429
fb623df5
RK
430/* This macro is similar to `TARGET_SWITCHES' but defines names of
431 command options that have values. Its definition is an
432 initializer with a subgrouping for each command option.
433
434 Each subgrouping contains a string constant, that defines the
435 fixed part of the option name, and the address of a variable.
436 The variable, type `char *', is set to the variable part of the
437 given option if the fixed part matches. The actual option name
438 is made by appending `-m' to the specified name.
439
440 Here is an example which defines `-mshort-data-NUMBER'. If the
441 given option is `-mshort-data-512', the variable `m88k_short_data'
442 will be set to the string `"512"'.
443
444 extern char *m88k_short_data;
445 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
446
956d6950 447/* This is meant to be overridden in target specific files. */
b6c9286a
MM
448#ifndef SUBTARGET_OPTIONS
449#define SUBTARGET_OPTIONS
450#endif
451
8e3f41e7
MM
452#define TARGET_OPTIONS \
453{ \
454 {"cpu=", &rs6000_select[1].string}, \
455 {"tune=", &rs6000_select[2].string}, \
38c1f2d7
MM
456 {"debug-", &rs6000_debug_name}, \
457 {"debug=", &rs6000_debug_name}, \
8e3f41e7 458 SUBTARGET_OPTIONS \
b6c9286a 459}
fb623df5 460
ff222560 461/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
462struct rs6000_cpu_select
463{
815cdc52
MM
464 const char *string;
465 const char *name;
8e3f41e7
MM
466 int set_tune_p;
467 int set_arch_p;
468};
469
470extern struct rs6000_cpu_select rs6000_select[];
fb623df5 471
38c1f2d7 472/* Debug support */
815cdc52 473extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
38c1f2d7
MM
474extern int rs6000_debug_stack; /* debug stack applications */
475extern int rs6000_debug_arg; /* debug argument handling */
476
477#define TARGET_DEBUG_STACK rs6000_debug_stack
478#define TARGET_DEBUG_ARG rs6000_debug_arg
479
fb623df5
RK
480/* Sometimes certain combinations of command options do not make sense
481 on a particular target machine. You can define a macro
482 `OVERRIDE_OPTIONS' to take account of this. This macro, if
483 defined, is executed once just after all the command options have
484 been parsed.
485
5accd822
DE
486 Don't use this macro to turn on various extra optimizations for
487 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
488
fb623df5
RK
489 On the RS/6000 this is used to define the target cpu type. */
490
8e3f41e7 491#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 492
5accd822
DE
493/* Define this to change the optimizations performed by default. */
494#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
495
496
4f074454
RK
497/* Show we can debug even without a frame pointer. */
498#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
499\f
500/* target machine storage layout */
501
df44fa77
RK
502/* Define to support cross compilation to an RS6000 target. */
503#define REAL_ARITHMETIC
504
13d39dbc 505/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 506 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
507 the value is constrained to be within the bounds of the declared
508 type, but kept valid in the wider mode. The signedness of the
509 extension may differ from that of the type. */
510
39403d82
DE
511#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
512 if (GET_MODE_CLASS (MODE) == MODE_INT \
513 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
514 (MODE) = (! TARGET_POWERPC64 ? SImode : DImode);
515
516/* Define this if function arguments should also be promoted using the above
517 procedure. */
518
519#define PROMOTE_FUNCTION_ARGS
520
521/* Likewise, if the function return value is promoted. */
522
523#define PROMOTE_FUNCTION_RETURN
ef457bda 524
f045b2c9
RS
525/* Define this if most significant bit is lowest numbered
526 in instructions that operate on numbered bit-fields. */
527/* That is true on RS/6000. */
528#define BITS_BIG_ENDIAN 1
529
530/* Define this if most significant byte of a word is the lowest numbered. */
531/* That is true on RS/6000. */
532#define BYTES_BIG_ENDIAN 1
533
534/* Define this if most significant word of a multiword number is lowest
c81bebd7 535 numbered.
f045b2c9
RS
536
537 For RS/6000 we can decide arbitrarily since there are no machine
538 instructions for them. Might as well be consistent with bits and bytes. */
539#define WORDS_BIG_ENDIAN 1
540
fdaff8ba 541/* number of bits in an addressable storage unit */
f045b2c9
RS
542#define BITS_PER_UNIT 8
543
544/* Width in bits of a "word", which is the contents of a machine register.
545 Note that this is not necessarily the width of data type `int';
546 if using 16-bit ints on a 68000, this would still be 32.
547 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 548#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 549#define MAX_BITS_PER_WORD 64
f045b2c9
RS
550
551/* Width of a word, in units (bytes). */
2f3e5814 552#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 553#define MIN_UNITS_PER_WORD 4
2e360ab3 554#define UNITS_PER_FP_WORD 8
f045b2c9 555
915f619f
JW
556/* Type used for ptrdiff_t, as a string used in a declaration. */
557#define PTRDIFF_TYPE "int"
558
f045b2c9
RS
559/* Type used for wchar_t, as a string used in a declaration. */
560#define WCHAR_TYPE "short unsigned int"
561
562/* Width of wchar_t in bits. */
563#define WCHAR_TYPE_SIZE 16
564
9e654916
RK
565/* A C expression for the size in bits of the type `short' on the
566 target machine. If you don't define this, the default is half a
567 word. (If this would be less than one storage unit, it is
568 rounded up to one unit.) */
569#define SHORT_TYPE_SIZE 16
570
571/* A C expression for the size in bits of the type `int' on the
572 target machine. If you don't define this, the default is one
573 word. */
19d2d16f 574#define INT_TYPE_SIZE 32
9e654916
RK
575
576/* A C expression for the size in bits of the type `long' on the
577 target machine. If you don't define this, the default is one
578 word. */
2f3e5814 579#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
580#define MAX_LONG_TYPE_SIZE 64
581
582/* A C expression for the size in bits of the type `long long' on the
583 target machine. If you don't define this, the default is two
584 words. */
585#define LONG_LONG_TYPE_SIZE 64
586
587/* A C expression for the size in bits of the type `char' on the
588 target machine. If you don't define this, the default is one
589 quarter of a word. (If this would be less than one storage unit,
590 it is rounded up to one unit.) */
591#define CHAR_TYPE_SIZE BITS_PER_UNIT
592
593/* A C expression for the size in bits of the type `float' on the
594 target machine. If you don't define this, the default is one
595 word. */
596#define FLOAT_TYPE_SIZE 32
597
598/* A C expression for the size in bits of the type `double' on the
599 target machine. If you don't define this, the default is two
600 words. */
601#define DOUBLE_TYPE_SIZE 64
602
603/* A C expression for the size in bits of the type `long double' on
604 the target machine. If you don't define this, the default is two
605 words. */
606#define LONG_DOUBLE_TYPE_SIZE 64
607
f045b2c9
RS
608/* Width in bits of a pointer.
609 See also the macro `Pmode' defined below. */
2f3e5814 610#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
611
612/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 613#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
614
615/* Boundary (in *bits*) on which stack pointer should be aligned. */
a260abc9 616#define STACK_BOUNDARY (TARGET_32BIT ? 64 : 128)
f045b2c9
RS
617
618/* Allocation boundary (in *bits*) for the code of a function. */
619#define FUNCTION_BOUNDARY 32
620
621/* No data type wants to be aligned rounder than this. */
b73fd26c
DE
622#define BIGGEST_ALIGNMENT 64
623
6bc3403c
DE
624/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
625#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
a260abc9
DE
626 (TYPE_MODE (TREE_CODE (TREE_TYPE (FIELD)) == ARRAY_TYPE \
627 ? get_inner_array_type (FIELD) \
628 : TREE_TYPE (FIELD)) == DFmode \
629 ? MIN ((COMPUTED), 32) : (COMPUTED))
f045b2c9
RS
630
631/* Alignment of field after `int : 0' in a structure. */
632#define EMPTY_FIELD_BOUNDARY 32
633
634/* Every structure's size must be a multiple of this. */
635#define STRUCTURE_SIZE_BOUNDARY 8
636
637/* A bitfield declared as `int' forces `int' alignment for the struct. */
638#define PCC_BITFIELD_TYPE_MATTERS 1
639
6bc3403c
DE
640/* AIX increases natural record alignment to doubleword if the first
641 field is an FP double while the FP fields remain word aligned. */
642#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
643 ((TREE_CODE (STRUCT) == RECORD_TYPE \
644 || TREE_CODE (STRUCT) == UNION_TYPE \
645 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
02bef6da 646 && TYPE_FIELDS (STRUCT) != 0 \
6bc3403c
DE
647 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
648 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
649 : MAX ((COMPUTED), (SPECIFIED)))
650
f045b2c9
RS
651/* Make strings word-aligned so strcpy from constants will be faster. */
652#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
653 (TREE_CODE (EXP) == STRING_CST \
654 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
655
656/* Make arrays of chars word-aligned for the same reasons. */
657#define DATA_ALIGNMENT(TYPE, ALIGN) \
658 (TREE_CODE (TYPE) == ARRAY_TYPE \
659 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
660 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
661
fdaff8ba 662/* Non-zero if move instructions will actually fail to work
f045b2c9 663 when given unaligned data. */
fdaff8ba 664#define STRICT_ALIGNMENT 0
f045b2c9
RS
665\f
666/* Standard register usage. */
667
668/* Number of actual hardware registers.
669 The hardware registers are assigned numbers for the compiler
670 from 0 to just below FIRST_PSEUDO_REGISTER.
671 All registers that the compiler knows about must be given numbers,
672 even those that are not normally considered general registers.
673
674 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
675 an MQ register, a count register, a link register, and 8 condition
676 register fields, which we view here as separate registers.
677
678 In addition, the difference between the frame and argument pointers is
679 a function of the number of registers saved, so we need to have a
680 register for AP that will later be eliminated in favor of SP or FP.
802a0058 681 This is a normal register, but it is fixed.
f045b2c9 682
802a0058
MM
683 We also create a pseudo register for float/int conversions, that will
684 really represent the memory location used. It is represented here as
685 a register, in order to work around problems in allocating stack storage
686 in inline functions. */
687
688#define FIRST_PSEUDO_REGISTER 77
f045b2c9
RS
689
690/* 1 for registers that have pervasive standard uses
691 and are not available for the register allocator.
692
c81bebd7 693 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
f045b2c9 694
a127c4e5
RK
695 cr5 is not supposed to be used.
696
697 On System V implementations, r13 is fixed and not available for use. */
698
699#ifndef FIXED_R13
700#define FIXED_R13 0
701#endif
f045b2c9
RS
702
703#define FIXED_REGISTERS \
a127c4e5 704 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
705 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
707 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 708 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
f045b2c9
RS
709
710/* 1 for registers not available across function calls.
711 These must include the FIXED_REGISTERS and also any
712 registers that can be used without being saved.
713 The latter must include the registers where values are returned
714 and the register where structure-value addresses are passed.
715 Aside from that, you can include as many other registers as you like. */
716
717#define CALL_USED_REGISTERS \
a127c4e5 718 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
719 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
720 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
721 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 722 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
f045b2c9
RS
723
724/* List the order in which to allocate registers. Each register must be
725 listed once, even those in FIXED_REGISTERS.
726
727 We allocate in the following order:
728 fp0 (not saved or used for anything)
729 fp13 - fp2 (not saved; incoming fp arg registers)
730 fp1 (not saved; return value)
731 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
732 cr7, cr6 (not saved or special)
733 cr1 (not saved, but used for FP operations)
f045b2c9 734 cr0 (not saved, but used for arithmetic operations)
5accd822 735 cr4, cr3, cr2 (saved)
f045b2c9
RS
736 r0 (not saved; cannot be base reg)
737 r9 (not saved; best for TImode)
738 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
739 r3 (not saved; return value register)
740 r31 - r13 (saved; order given to save least number)
741 r12 (not saved; if used for DImode or DFmode would use r13)
742 mq (not saved; best to use it if we can)
743 ctr (not saved; when we have the choice ctr is better)
744 lr (saved)
1427100a 745 cr5, r1, r2, ap, fpmem (fixed) */
f045b2c9
RS
746
747#define REG_ALLOC_ORDER \
748 {32, \
749 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
750 33, \
751 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
752 50, 49, 48, 47, 46, \
5accd822 753 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
754 0, \
755 9, 11, 10, 8, 7, 6, 5, 4, \
756 3, \
757 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
758 18, 17, 16, 15, 14, 13, 12, \
759 64, 66, 65, \
802a0058 760 73, 1, 2, 67, 76}
f045b2c9
RS
761
762/* True if register is floating-point. */
763#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
764
765/* True if register is a condition register. */
766#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
767
815cdc52
MM
768/* True if register is condition register 0. */
769#define CR0_REGNO_P(N) ((N) == 68)
770
771/* True if register is a condition register, but not cr0. */
772#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
773
f045b2c9
RS
774/* True if register is an integer register. */
775#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
776
802a0058
MM
777/* True if register is the temporary memory location used for int/float
778 conversion. */
779#define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
780
f045b2c9
RS
781/* Return number of consecutive hard regs needed starting at reg REGNO
782 to hold something of mode MODE.
783 This is ordinarily the length in words of a value of mode MODE
784 but can be less for certain modes in special long registers.
785
a260abc9
DE
786 POWER and PowerPC GPRs hold 32 bits worth;
787 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 788
802a0058
MM
789#define HARD_REGNO_NREGS(REGNO, MODE) \
790 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
2e360ab3 791 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9
RS
792 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
793
794/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
795 For POWER and PowerPC, the GPRs can hold any mode, but the float
796 registers only can hold floating modes and DImode, and CR register only
797 can hold CC modes. We cannot put TImode anywhere except general
798 register and it must be able to fit within the register set. */
f045b2c9 799
802a0058
MM
800#define HARD_REGNO_MODE_OK(REGNO, MODE) \
801 (FP_REGNO_P (REGNO) ? \
802 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
803 || (GET_MODE_CLASS (MODE) == MODE_INT \
804 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
805 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
806 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
807 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 808 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
809 : 1)
810
811/* Value is 1 if it is a good idea to tie two pseudo registers
812 when one has mode MODE1 and one has mode MODE2.
813 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
814 for any hard reg, then this must be 0 for correct output. */
815#define MODES_TIEABLE_P(MODE1, MODE2) \
816 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
817 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
818 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
819 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
820 : GET_MODE_CLASS (MODE1) == MODE_CC \
821 ? GET_MODE_CLASS (MODE2) == MODE_CC \
822 : GET_MODE_CLASS (MODE2) == MODE_CC \
823 ? GET_MODE_CLASS (MODE1) == MODE_CC \
824 : 1)
825
826/* A C expression returning the cost of moving data from a register of class
827 CLASS1 to one of CLASS2.
828
829 On the RS/6000, copying between floating-point and fixed-point
830 registers is expensive. */
831
832#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
833 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
834 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
835 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
a4b970a0 836 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
837 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
838 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 839 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 840 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 841 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
842 : 2)
843
844/* A C expressions returning the cost of moving data of MODE from a register to
845 or from memory.
846
847 On the RS/6000, bump this up a bit. */
848
cbd5b9a2 849#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
ab4a5fc9
RK
850 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
851 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
852 ? 3 : 2) \
853 + 4)
f045b2c9
RS
854
855/* Specify the cost of a branch insn; roughly the number of extra insns that
856 should be added to avoid a branch.
857
ef457bda 858 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
859 unscheduled conditional branch. */
860
ef457bda 861#define BRANCH_COST 3
f045b2c9 862
5a5e4c2c
RK
863/* A C statement (sans semicolon) to update the integer variable COST
864 based on the relationship between INSN that is dependent on
865 DEP_INSN through the dependence LINK. The default is to make no
866 adjustment to COST. On the RS/6000, ignore the cost of anti- and
867 output-dependencies. In fact, output dependencies on the CR do have
868 a cost, but it is probably not worthwhile to track it. */
869
870#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
b0634e74 871 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
5a5e4c2c 872
bef84347
VM
873/* A C statement (sans semicolon) to update the integer scheduling priority
874 INSN_PRIORITY (INSN). Reduce the priority to execute the INSN earlier,
875 increase the priority to execute INSN later. Do not define this macro if
876 you do not need to adjust the scheduling priorities of insns. */
877
878#define ADJUST_PRIORITY(INSN) \
879 INSN_PRIORITY (INSN) = rs6000_adjust_priority (INSN, INSN_PRIORITY (INSN))
880
6febd581
RK
881/* Define this macro to change register usage conditional on target flags.
882 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 883 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 884 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
885 Conditionally disable FPRs. */
886
8d30c4ee
FS
887#define CONDITIONAL_REGISTER_USAGE \
888{ \
889 if (! TARGET_POWER) \
890 fixed_regs[64] = 1; \
891 if (TARGET_64BIT) \
892 fixed_regs[13] = call_used_regs[13] = 1; \
893 if (TARGET_SOFT_FLOAT) \
894 for (i = 32; i < 64; i++) \
895 fixed_regs[i] = call_used_regs[i] = 1; \
896 if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
897 && flag_pic == 1) \
898 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
899 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
f85f4585 900}
6febd581 901
f045b2c9
RS
902/* Specify the registers used for certain standard purposes.
903 The values of these macros are register numbers. */
904
905/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
906/* #define PC_REGNUM */
907
908/* Register to use for pushing function arguments. */
909#define STACK_POINTER_REGNUM 1
910
911/* Base register for access to local variables of the function. */
912#define FRAME_POINTER_REGNUM 31
913
914/* Value should be nonzero if functions must have frame pointers.
915 Zero means the frame pointer need not be set up (and parms
916 may be accessed via the stack pointer) in functions that seem suitable.
917 This is computed in `reload', in reload1.c. */
918#define FRAME_POINTER_REQUIRED 0
919
920/* Base register for access to arguments of the function. */
921#define ARG_POINTER_REGNUM 67
922
923/* Place to put static chain when calling a function that requires it. */
924#define STATIC_CHAIN_REGNUM 11
925
b6c9286a
MM
926/* count register number for special purposes */
927#define COUNT_REGISTER_REGNUM 66
928
802a0058
MM
929/* Special register that represents memory, used for float/int conversions. */
930#define FPMEM_REGNUM 76
931
f045b2c9
RS
932/* Place that structure value return address is placed.
933
934 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 935#define STRUCT_VALUE 0
f045b2c9
RS
936\f
937/* Define the classes of registers for register constraints in the
938 machine description. Also define ranges of constants.
939
940 One of the classes must always be named ALL_REGS and include all hard regs.
941 If there is more than one class, another class must be named NO_REGS
942 and contain no registers.
943
944 The name GENERAL_REGS must be the name of a class (or an alias for
945 another name such as ALL_REGS). This is the class of registers
946 that is allowed by "g" or "r" in a register constraint.
947 Also, registers outside this class are allocated only when
948 instructions express preferences for them.
949
950 The classes must be numbered in nondecreasing order; that is,
951 a larger-numbered class must never be contained completely
952 in a smaller-numbered class.
953
954 For any two classes, it is very desirable that there be another
955 class that represents their union. */
c81bebd7 956
f045b2c9
RS
957/* The RS/6000 has three types of registers, fixed-point, floating-point,
958 and condition registers, plus three special registers, MQ, CTR, and the
959 link register.
960
961 However, r0 is special in that it cannot be used as a base register.
962 So make a class for registers valid as base registers.
963
964 Also, cr0 is the only condition code register that can be used in
802a0058
MM
965 arithmetic insns, so make a separate class for it.
966
956d6950 967 There is a special 'register' (76), which is not a register, but a
802a0058
MM
968 placeholder for memory allocated to convert between floating point and
969 integral types. This works around a problem where if we allocate memory
970 with allocate_stack_{local,temp} and the function is an inline function, the
971 memory allocated will clobber memory in the caller. So we use a special
972 register, and if that is used, we allocate stack space for it. */
f045b2c9 973
ebedb4dd
MM
974enum reg_class
975{
976 NO_REGS,
ebedb4dd
MM
977 BASE_REGS,
978 GENERAL_REGS,
979 FLOAT_REGS,
980 NON_SPECIAL_REGS,
981 MQ_REGS,
982 LINK_REGS,
983 CTR_REGS,
984 LINK_OR_CTR_REGS,
985 SPECIAL_REGS,
986 SPEC_OR_GEN_REGS,
987 CR0_REGS,
ebedb4dd
MM
988 CR_REGS,
989 NON_FLOAT_REGS,
802a0058
MM
990 FPMEM_REGS,
991 FLOAT_OR_FPMEM_REGS,
ebedb4dd
MM
992 ALL_REGS,
993 LIM_REG_CLASSES
994};
f045b2c9
RS
995
996#define N_REG_CLASSES (int) LIM_REG_CLASSES
997
998/* Give names of register classes as strings for dump file. */
999
ebedb4dd
MM
1000#define REG_CLASS_NAMES \
1001{ \
1002 "NO_REGS", \
ebedb4dd
MM
1003 "BASE_REGS", \
1004 "GENERAL_REGS", \
1005 "FLOAT_REGS", \
1006 "NON_SPECIAL_REGS", \
1007 "MQ_REGS", \
1008 "LINK_REGS", \
1009 "CTR_REGS", \
1010 "LINK_OR_CTR_REGS", \
1011 "SPECIAL_REGS", \
1012 "SPEC_OR_GEN_REGS", \
1013 "CR0_REGS", \
ebedb4dd
MM
1014 "CR_REGS", \
1015 "NON_FLOAT_REGS", \
802a0058
MM
1016 "FPMEM_REGS", \
1017 "FLOAT_OR_FPMEM_REGS", \
ebedb4dd
MM
1018 "ALL_REGS" \
1019}
f045b2c9
RS
1020
1021/* Define which registers fit in which classes.
1022 This is an initializer for a vector of HARD_REG_SET
1023 of length N_REG_CLASSES. */
1024
ebedb4dd
MM
1025#define REG_CLASS_CONTENTS \
1026{ \
1027 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
ebedb4dd
MM
1028 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
1029 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
1030 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
1031 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
1032 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
1033 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
1034 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
1035 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
1036 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
1037 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
1038 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
ebedb4dd
MM
1039 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
1040 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
802a0058
MM
1041 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
1042 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
1043 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
ebedb4dd 1044}
f045b2c9
RS
1045
1046/* The same information, inverted:
1047 Return the class number of the smallest class containing
1048 reg number REGNO. This could be a conditional expression
1049 or could index an array. */
1050
802a0058
MM
1051#define REGNO_REG_CLASS(REGNO) \
1052 ((REGNO) == 0 ? GENERAL_REGS \
1053 : (REGNO) < 32 ? BASE_REGS \
1054 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1055 : (REGNO) == 68 ? CR0_REGS \
1056 : CR_REGNO_P (REGNO) ? CR_REGS \
1057 : (REGNO) == 64 ? MQ_REGS \
1058 : (REGNO) == 65 ? LINK_REGS \
1059 : (REGNO) == 66 ? CTR_REGS \
1060 : (REGNO) == 67 ? BASE_REGS \
1061 : (REGNO) == 76 ? FPMEM_REGS \
f045b2c9
RS
1062 : NO_REGS)
1063
1064/* The class value for index registers, and the one for base regs. */
1065#define INDEX_REG_CLASS GENERAL_REGS
1066#define BASE_REG_CLASS BASE_REGS
1067
1068/* Get reg_class from a letter such as appears in the machine description. */
1069
1070#define REG_CLASS_FROM_LETTER(C) \
1071 ((C) == 'f' ? FLOAT_REGS \
1072 : (C) == 'b' ? BASE_REGS \
1073 : (C) == 'h' ? SPECIAL_REGS \
1074 : (C) == 'q' ? MQ_REGS \
1075 : (C) == 'c' ? CTR_REGS \
1076 : (C) == 'l' ? LINK_REGS \
1077 : (C) == 'x' ? CR0_REGS \
1078 : (C) == 'y' ? CR_REGS \
802a0058 1079 : (C) == 'z' ? FPMEM_REGS \
f045b2c9
RS
1080 : NO_REGS)
1081
1082/* The letters I, J, K, L, M, N, and P in a register constraint string
1083 can be used to stand for particular ranges of immediate operands.
1084 This macro defines what the ranges are.
1085 C is the letter, and VALUE is a constant value.
1086 Return 1 if VALUE is in the range specified by C.
1087
9615f239 1088 `I' is a signed 16-bit constant
f045b2c9
RS
1089 `J' is a constant with only the high-order 16 bits non-zero
1090 `K' is a constant with only the low-order 16 bits non-zero
9615f239 1091 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9
RS
1092 `M' is a constant that is greater than 31
1093 `N' is a constant that is an exact power of two
1094 `O' is the constant zero
1095 `P' is a constant whose negation is a signed 16-bit constant */
1096
5b6f7b96
RK
1097#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1098 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
19684119 1099 : (C) == 'J' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1100 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1101 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1102 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96
RK
1103 : (C) == 'M' ? (VALUE) > 31 \
1104 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1105 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1106 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1107 : 0)
1108
1109/* Similar, but for floating constants, and defining letters G and H.
1110 Here VALUE is the CONST_DOUBLE rtx itself.
1111
1112 We flag for special constants when we can copy the constant into
4e74d8ec 1113 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1114
c4c40373 1115 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1116
1117#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1118 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1119 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1120 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1121 : 0)
f045b2c9
RS
1122
1123/* Optional extra constraints for this machine.
1124
b6c9286a
MM
1125 'Q' means that is a memory operand that is just an offset from a reg.
1126 'R' is for AIX TOC entries.
a260abc9 1127 'S' is a constant that can be placed into a 64-bit mask operand
9615f239 1128 'T' is a consatnt that can be placed into a 32-bit mask operand
88228c4b 1129 'U' is for V.4 small data references. */
f045b2c9 1130
e8a8bc24
RK
1131#define EXTRA_CONSTRAINT(OP, C) \
1132 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1133 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
a260abc9 1134 : (C) == 'S' ? mask64_operand (OP, VOIDmode) \
9615f239 1135 : (C) == 'T' ? mask_operand (OP, VOIDmode) \
c81bebd7
MM
1136 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1137 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1138 : 0)
f045b2c9
RS
1139
1140/* Given an rtx X being reloaded into a reg required to be
1141 in class CLASS, return the class of reg to actually use.
1142 In general this is just CLASS; but on some machines
c81bebd7 1143 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1144
1145 On the RS/6000, we have to return NO_REGS when we want to reload a
1146 floating-point CONST_DOUBLE to force it to be copied to memory. */
1147
802a0058 1148#define PREFERRED_RELOAD_CLASS(X,CLASS) \
f045b2c9
RS
1149 ((GET_CODE (X) == CONST_DOUBLE \
1150 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1151 ? NO_REGS : (CLASS))
c81bebd7 1152
f045b2c9
RS
1153/* Return the register class of a scratch register needed to copy IN into
1154 or out of a register in CLASS in MODE. If it can be done directly,
1155 NO_REGS is returned. */
1156
1157#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1158 secondary_reload_class (CLASS, MODE, IN)
1159
7ea555a4
RK
1160/* If we are copying between FP registers and anything else, we need a memory
1161 location. */
1162
1163#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1164 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1165
f045b2c9
RS
1166/* Return the maximum number of consecutive registers
1167 needed to represent mode MODE in a register of class CLASS.
1168
1169 On RS/6000, this is the size of MODE in words,
1170 except in the FP regs, where a single reg is enough for two words. */
802a0058
MM
1171#define CLASS_MAX_NREGS(CLASS, MODE) \
1172 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1173 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
2e360ab3 1174 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1175 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1176
1177/* If defined, gives a class of registers that cannot be used as the
1178 operand of a SUBREG that changes the size of the object. */
1179
802a0058 1180#define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
f045b2c9
RS
1181\f
1182/* Stack layout; function entry, exit and calling. */
1183
6b67933e
RK
1184/* Enumeration to give which calling sequence to use. */
1185enum rs6000_abi {
1186 ABI_NONE,
1187 ABI_AIX, /* IBM's AIX */
b6c9286a
MM
1188 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1189 ABI_V4, /* System V.4/eabi */
c81bebd7
MM
1190 ABI_NT, /* Windows/NT */
1191 ABI_SOLARIS /* Solaris */
6b67933e
RK
1192};
1193
b6c9286a
MM
1194extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1195
1196/* Default ABI to compile code for */
1197#ifndef DEFAULT_ABI
1198#define DEFAULT_ABI ABI_AIX
fb19c17f
RK
1199/* The prefix to add to user-visible assembler symbols. */
1200#define USER_LABEL_PREFIX "."
b6c9286a
MM
1201#endif
1202
4697a36c
MM
1203/* Structure used to define the rs6000 stack */
1204typedef struct rs6000_stack {
1205 int first_gp_reg_save; /* first callee saved GP register used */
1206 int first_fp_reg_save; /* first callee saved FP register used */
1207 int lr_save_p; /* true if the link reg needs to be saved */
1208 int cr_save_p; /* true if the CR reg needs to be saved */
b6c9286a 1209 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1210 int push_p; /* true if we need to allocate stack space */
1211 int calls_p; /* true if the function makes any calls */
b6c9286a
MM
1212 int main_p; /* true if this is main */
1213 int main_save_p; /* true if this is main and we need to save args */
802a0058 1214 int fpmem_p; /* true if float/int conversion temp needed */
6b67933e 1215 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1216 int gp_save_offset; /* offset to save GP regs from initial SP */
1217 int fp_save_offset; /* offset to save FP regs from initial SP */
4697a36c
MM
1218 int lr_save_offset; /* offset to save LR from initial SP */
1219 int cr_save_offset; /* offset to save CR from initial SP */
b6c9286a 1220 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1221 int varargs_save_offset; /* offset to save the varargs registers */
b6c9286a 1222 int main_save_offset; /* offset to save main's args */
802a0058 1223 int fpmem_offset; /* offset for float/int conversion temp */
4697a36c
MM
1224 int reg_size; /* register size (4 or 8) */
1225 int varargs_size; /* size to hold V.4 args passed in regs */
1226 int vars_size; /* variable save area size */
1227 int parm_size; /* outgoing parameter size */
b6c9286a 1228 int main_size; /* size to hold saving main's args */
4697a36c
MM
1229 int save_size; /* save area size */
1230 int fixed_size; /* fixed size of stack frame */
1231 int gp_size; /* size of saved GP registers */
1232 int fp_size; /* size of saved FP registers */
1233 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1234 int lr_size; /* size to hold LR if not in save_size */
802a0058 1235 int fpmem_size; /* size to hold float/int conversion */
b6c9286a 1236 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1237 int total_size; /* total bytes allocated for stack */
1238} rs6000_stack_t;
1239
f045b2c9
RS
1240/* Define this if pushing a word on the stack
1241 makes the stack pointer a smaller address. */
1242#define STACK_GROWS_DOWNWARD
1243
1244/* Define this if the nominal address of the stack frame
1245 is at the high-address end of the local variables;
1246 that is, each additional local variable allocated
1247 goes at a more negative offset in the frame.
1248
1249 On the RS/6000, we grow upwards, from the area after the outgoing
1250 arguments. */
1251/* #define FRAME_GROWS_DOWNWARD */
1252
4697a36c 1253/* Size of the outgoing register save area */
2f3e5814 1254#define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
4697a36c
MM
1255
1256/* Size of the fixed area on the stack */
2f3e5814 1257#define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
4697a36c 1258
97f6e72f
DE
1259/* MEM representing address to save the TOC register */
1260#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1261 plus_constant (stack_pointer_rtx, \
1262 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1263
802a0058
MM
1264/* Offset & size for fpmem stack locations used for converting between
1265 float and integral types. */
1266extern int rs6000_fpmem_offset;
1267extern int rs6000_fpmem_size;
1268
4697a36c
MM
1269/* Size of the V.4 varargs area if needed */
1270#define RS6000_VARARGS_AREA 0
1271
1272/* Whether a V.4 varargs area is needed */
1273extern int rs6000_sysv_varargs_p;
1274
1275/* Align an address */
ed33106f 1276#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c 1277
a7df97e6
MM
1278/* Initialize data used by insn expanders. This is called from
1279 init_emit, once for each function, before code is generated. */
1280#define INIT_EXPANDERS rs6000_init_expanders ()
1281
4697a36c
MM
1282/* Size of V.4 varargs area in bytes */
1283#define RS6000_VARARGS_SIZE \
2f3e5814 1284 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1285
f045b2c9
RS
1286/* Offset within stack frame to start allocating local variables at.
1287 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1288 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1289 of the first local allocated.
f045b2c9
RS
1290
1291 On the RS/6000, the frame pointer is the same as the stack pointer,
1292 except for dynamic allocations. So we start after the fixed area and
1293 outgoing parameter area. */
1294
802a0058 1295#define STARTING_FRAME_OFFSET \
ed33106f 1296 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058
MM
1297 + RS6000_VARARGS_AREA \
1298 + RS6000_SAVE_AREA)
1299
1300/* Offset from the stack pointer register to an item dynamically
1301 allocated on the stack, e.g., by `alloca'.
1302
1303 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1304 length of the outgoing arguments. The default is correct for most
1305 machines. See `function.c' for details. */
1306#define STACK_DYNAMIC_OFFSET(FUNDECL) \
ed33106f 1307 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1308 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1309
1310/* If we generate an insn to push BYTES bytes,
1311 this says how many the stack pointer really advances by.
1312 On RS/6000, don't define this because there are no push insns. */
1313/* #define PUSH_ROUNDING(BYTES) */
1314
1315/* Offset of first parameter from the argument pointer register value.
1316 On the RS/6000, we define the argument pointer to the start of the fixed
1317 area. */
4697a36c 1318#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9
RS
1319
1320/* Define this if stack space is still allocated for a parameter passed
1321 in a register. The value is the number of bytes allocated to this
1322 area. */
4697a36c 1323#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1324
1325/* Define this if the above stack space is to be considered part of the
1326 space allocated by the caller. */
1327#define OUTGOING_REG_PARM_STACK_SPACE
1328
1329/* This is the difference between the logical top of stack and the actual sp.
1330
1331 For the RS/6000, sp points past the fixed area. */
4697a36c 1332#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1333
1334/* Define this if the maximum size of all the outgoing args is to be
1335 accumulated and pushed during the prologue. The amount can be
1336 found in the variable current_function_outgoing_args_size. */
1337#define ACCUMULATE_OUTGOING_ARGS
1338
1339/* Value is the number of bytes of arguments automatically
1340 popped when returning from a subroutine call.
8b109b37 1341 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1342 FUNTYPE is the data type of the function (as a tree),
1343 or for a library call it is an identifier node for the subroutine name.
1344 SIZE is the number of bytes of arguments passed on the stack. */
1345
8b109b37 1346#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1347
1348/* Define how to find the value returned by a function.
1349 VALTYPE is the data type of the value (as a tree).
1350 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1351 otherwise, FUNC is 0.
1352
c81bebd7 1353 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1354 fp1, unless -msoft-float. */
f045b2c9 1355
39403d82
DE
1356#define FUNCTION_VALUE(VALTYPE, FUNC) \
1357 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1358 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1359 || POINTER_TYPE_P (VALTYPE) \
1360 ? word_mode : TYPE_MODE (VALTYPE), \
1361 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1362
1363/* Define how to find the value returned by a library function
1364 assuming the value has mode MODE. */
1365
1366#define LIBCALL_VALUE(MODE) \
39403d82
DE
1367 gen_rtx_REG (MODE, \
1368 GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1369
1370/* The definition of this macro implies that there are cases where
1371 a scalar value cannot be returned in registers.
1372
c81bebd7
MM
1373 For the RS/6000, any structure or union type is returned in memory, except for
1374 Solaris, which returns structures <= 8 bytes in registers. */
f045b2c9 1375
c81bebd7
MM
1376#define RETURN_IN_MEMORY(TYPE) \
1377 (TYPE_MODE (TYPE) == BLKmode \
1378 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
f045b2c9 1379
a260abc9 1380/* Mode of stack savearea.
dfdfa60f
DE
1381 FUNCTION is VOIDmode because calling convention maintains SP.
1382 BLOCK needs Pmode for SP.
a260abc9
DE
1383 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1384#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1385 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1386 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1387
4697a36c
MM
1388/* Minimum and maximum general purpose registers used to hold arguments. */
1389#define GP_ARG_MIN_REG 3
1390#define GP_ARG_MAX_REG 10
1391#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1392
1393/* Minimum and maximum floating point registers used to hold arguments. */
1394#define FP_ARG_MIN_REG 33
7509c759
MM
1395#define FP_ARG_AIX_MAX_REG 45
1396#define FP_ARG_V4_MAX_REG 40
1397#define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
4697a36c
MM
1398#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1399
1400/* Return registers */
1401#define GP_ARG_RETURN GP_ARG_MIN_REG
1402#define FP_ARG_RETURN FP_ARG_MIN_REG
1403
7509c759 1404/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f
MM
1405#define CALL_NORMAL 0x00000000 /* no special processing */
1406#define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1407#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1408#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1409#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1410
4697a36c
MM
1411/* Define cutoff for using external functions to save floating point */
1412#define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1413
f045b2c9
RS
1414/* 1 if N is a possible register number for a function value
1415 as seen by the caller.
1416
1417 On RS/6000, this is r3 and fp1. */
4697a36c 1418#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
f045b2c9
RS
1419
1420/* 1 if N is a possible register number for function argument passing.
1421 On RS/6000, these are r3-r10 and fp1-fp13. */
4697a36c
MM
1422#define FUNCTION_ARG_REGNO_P(N) \
1423 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1424 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1425
f045b2c9
RS
1426\f
1427/* Define a data type for recording info about an argument list
1428 during the scan of that argument list. This data type should
1429 hold all necessary information about the function itself
1430 and about the args processed so far, enough to enable macros
1431 such as FUNCTION_ARG to determine where the next arg should go.
1432
1433 On the RS/6000, this is a structure. The first element is the number of
1434 total argument words, the second is used to store the next
1435 floating-point register number, and the third says how many more args we
4697a36c
MM
1436 have prototype types for.
1437
bd227acc
FS
1438 The varargs/stdarg support requires that this structure's size
1439 be a multiple of sizeof(int). */
4697a36c
MM
1440
1441typedef struct rs6000_args
1442{
6a4cee5f
MM
1443 int words; /* # words uses for passing GP registers */
1444 int fregno; /* next available FP register */
1445 int nargs_prototype; /* # args left in the current prototype */
1446 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1447 int prototype; /* Whether a prototype was defined */
1448 int call_cookie; /* Do special things for this call */
4697a36c 1449} CUMULATIVE_ARGS;
f045b2c9
RS
1450
1451/* Define intermediate macro to compute the size (in registers) of an argument
1452 for the RS/6000. */
1453
1454#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1455(! (NAMED) ? 0 \
1456 : (MODE) != BLKmode \
1457 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1458 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1459
1460/* Initialize a variable CUM of type CUMULATIVE_ARGS
1461 for a call to a function whose data type is FNTYPE.
1462 For a library call, FNTYPE is 0. */
1463
2c7ee1a6 1464#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1465 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1466
1467/* Similar, but when scanning the definition of a procedure. We always
1468 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1469
4697a36c
MM
1470#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1471 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1472
1473/* Update the data in CUM to advance over an argument
1474 of mode MODE and data type TYPE.
1475 (TYPE is null for libcalls where that information may not be available.) */
1476
1477#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1478 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1479
1480/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1481#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1482 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1483 && (CUM).fregno <= FP_ARG_MAX_REG \
1484 && TARGET_HARD_FLOAT)
f045b2c9
RS
1485
1486/* Determine where to put an argument to a function.
1487 Value is zero to push the argument on the stack,
1488 or a hard register in which to store the argument.
1489
1490 MODE is the argument's machine mode.
1491 TYPE is the data type of the argument (as a tree).
1492 This is null for libcalls where that information may
1493 not be available.
1494 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1495 the preceding args and about the function being called.
1496 NAMED is nonzero if this argument is a named parameter
1497 (otherwise it is an extra parameter matching an ellipsis).
1498
1499 On RS/6000 the first eight words of non-FP are normally in registers
1500 and the rest are pushed. The first 13 FP args are in registers.
1501
1502 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1503 both an FP and integer register (or possibly FP reg and stack). Library
1504 functions (when TYPE is zero) always have the proper types for args,
1505 so we can pass the FP value just in one register. emit_library_function
1506 doesn't support EXPR_LIST anyway. */
f045b2c9 1507
4697a36c
MM
1508#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1509 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1510
1511/* For an arg passed partly in registers and partly in memory,
1512 this is the number of registers used.
1513 For args passed entirely in registers or entirely in memory, zero. */
1514
4697a36c
MM
1515#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1516 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1517
1518/* A C expression that indicates when an argument must be passed by
1519 reference. If nonzero for an argument, a copy of that argument is
1520 made in memory and a pointer to the argument is passed instead of
1521 the argument itself. The pointer is passed in whatever way is
1522 appropriate for passing a pointer to that type. */
1523
1524#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1525 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1526
c229cba9
DE
1527/* If defined, a C expression which determines whether, and in which
1528 direction, to pad out an argument with extra space. The value
1529 should be of type `enum direction': either `upward' to pad above
1530 the argument, `downward' to pad below, or `none' to inhibit
1531 padding. */
1532
1533#define FUNCTION_ARG_PADDING(MODE, TYPE) \
c4d38ccb 1534 (enum direction) function_arg_padding (MODE, TYPE)
c229cba9 1535
b6c9286a 1536/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1537 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1538 PARM_BOUNDARY is used for all arguments. */
1539
1540#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1541 function_arg_boundary (MODE, TYPE)
1542
f045b2c9 1543/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1544 variable number of arguments.
f045b2c9
RS
1545
1546 CUM is as above.
1547
1548 MODE and TYPE are the mode and type of the current parameter.
1549
1550 PRETEND_SIZE is a variable that should be set to the amount of stack
1551 that must be pushed by the prolog to pretend that our caller pushed
1552 it.
1553
1554 Normally, this macro will push all remaining incoming registers on the
1555 stack and set PRETEND_SIZE to the length of the registers pushed. */
1556
4697a36c
MM
1557#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1558 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1559
1560/* If defined, is a C expression that produces the machine-specific
1561 code for a call to `__builtin_saveregs'. This code will be moved
1562 to the very beginning of the function, before any parameter access
1563 are made. The return value of this function should be an RTX that
1564 contains the value to use as the return of `__builtin_saveregs'.
1565
1566 The argument ARGS is a `tree_list' containing the arguments that
1567 were passed to `__builtin_saveregs'.
1568
1569 If this macro is not defined, the compiler will output an ordinary
1570 call to the library function `__builtin_saveregs'. */
1571
1572#define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1573 expand_builtin_saveregs (ARGS)
f045b2c9
RS
1574
1575/* This macro generates the assembly code for function entry.
1576 FILE is a stdio stream to output the code to.
1577 SIZE is an int: how many units of temporary storage to allocate.
1578 Refer to the array `regs_ever_live' to determine which registers
1579 to save; `regs_ever_live[I]' is nonzero if register number I
1580 is ever used in the function. This macro is responsible for
1581 knowing which registers should not be saved even if used. */
1582
1583#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1584
1585/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1586 for profiling a function entry. */
f045b2c9
RS
1587
1588#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1589 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1590
1591/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1592 the stack pointer does not matter. No definition is equivalent to
1593 always zero.
1594
1595 On the RS/6000, this is non-zero because we can restore the stack from
1596 its backpointer, which we maintain. */
1597#define EXIT_IGNORE_STACK 1
1598
1599/* This macro generates the assembly code for function exit,
1600 on machines that need it. If FUNCTION_EPILOGUE is not defined
1601 then individual return instructions are generated for each
1602 return statement. Args are same as for FUNCTION_PROLOGUE.
1603
1604 The function epilogue should not depend on the current stack pointer!
1605 It should use the frame pointer only. This is mandatory because
1606 of alloca; we also take advantage of it to omit stack adjustments
1607 before returning. */
1608
1609#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
17167fd8
MM
1610
1611/* A C compound statement that outputs the assembler code for a thunk function,
1612 used to implement C++ virtual function calls with multiple inheritance. The
1613 thunk acts as a wrapper around a virtual function, adjusting the implicit
1614 object parameter before handing control off to the real function.
1615
1616 First, emit code to add the integer DELTA to the location that contains the
1617 incoming first argument. Assume that this argument contains a pointer, and
1618 is the one used to pass the `this' pointer in C++. This is the incoming
1619 argument *before* the function prologue, e.g. `%o0' on a sparc. The
1620 addition must preserve the values of all other incoming arguments.
1621
1622 After the addition, emit code to jump to FUNCTION, which is a
1623 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
1624 the return address. Hence returning from FUNCTION will return to whoever
1625 called the current `thunk'.
1626
1627 The effect must be as if FUNCTION had been called directly with the adjusted
1628 first argument. This macro is responsible for emitting all of the code for
1629 a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
1630 invoked.
1631
1632 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
1633 extracted from it.) It might possibly be useful on some targets, but
1634 probably not.
1635
1636 If you do not define this macro, the target-independent code in the C++
1637 frontend will generate a less efficient heavyweight thunk that calls
1638 FUNCTION instead of jumping to it. The generic approach does not support
1639 varargs. */
42820a49 1640#if TARGET_ELF
17167fd8
MM
1641#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1642 output_mi_thunk (FILE, THUNK_FNDECL, DELTA, FUNCTION)
42820a49 1643#endif
f045b2c9 1644\f
eaf1bcf1 1645/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1646
1647/* Length in units of the trampoline for entering a nested function. */
1648
b6c9286a 1649#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1650
1651/* Emit RTL insns to initialize the variable parts of a trampoline.
1652 FNADDR is an RTX for the address of the function's pure code.
1653 CXT is an RTX for the static chain value for the function. */
1654
1655#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1656 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1657\f
7509c759
MM
1658/* If defined, a C expression whose value is nonzero if IDENTIFIER
1659 with arguments ARGS is a valid machine specific attribute for DECL.
1660 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1661
1662#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1663 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1664
1665/* If defined, a C expression whose value is nonzero if IDENTIFIER
1666 with arguments ARGS is a valid machine specific attribute for TYPE.
1667 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1668
1669#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1670 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1671
1672/* If defined, a C expression whose value is zero if the attributes on
1673 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1674 two if they are nearly compatible (which causes a warning to be
1675 generated). */
1676
1677#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1678 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1679
1680/* If defined, a C statement that assigns default attributes to newly
1681 defined TYPE. */
1682
1683#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1684 (rs6000_set_default_type_attributes (TYPE))
1685
1686\f
f33985c6
MS
1687/* Definitions for __builtin_return_address and __builtin_frame_address.
1688 __builtin_return_address (0) should give link register (65), enable
1689 this. */
1690/* This should be uncommented, so that the link register is used, but
1691 currently this would result in unmatched insns and spilling fixed
1692 registers so we'll leave it for another day. When these problems are
1693 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1694 (mrs) */
1695/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1696
b6c9286a
MM
1697/* Number of bytes into the frame return addresses can be found. See
1698 rs6000_stack_info in rs6000.c for more information on how the different
1699 abi's store the return address. */
1700#define RETURN_ADDRESS_OFFSET \
1701 ((DEFAULT_ABI == ABI_AIX \
1702 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
c81bebd7
MM
1703 (DEFAULT_ABI == ABI_V4 \
1704 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
b6c9286a
MM
1705 (DEFAULT_ABI == ABI_NT) ? -4 : \
1706 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1707
f33985c6
MS
1708/* The current return address is in link register (65). The return address
1709 of anything farther back is accessed normally at an offset of 8 from the
1710 frame pointer. */
1711#define RETURN_ADDR_RTX(count, frame) \
1712 ((count == -1) \
39403d82
DE
1713 ? gen_rtx_REG (Pmode, 65) \
1714 : gen_rtx_MEM (Pmode, \
f09d4c33 1715 memory_address (Pmode, \
39403d82 1716 plus_constant (copy_to_reg (gen_rtx_MEM (Pmode, \
f09d4c33
RK
1717 memory_address (Pmode, frame))), \
1718 RETURN_ADDRESS_OFFSET))))
f33985c6 1719\f
f045b2c9
RS
1720/* Definitions for register eliminations.
1721
1722 We have two registers that can be eliminated on the RS/6000. First, the
1723 frame pointer register can often be eliminated in favor of the stack
1724 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1725 eliminated; it is replaced with either the stack or frame pointer.
1726
1727 In addition, we use the elimination mechanism to see if r30 is needed
1728 Initially we assume that it isn't. If it is, we spill it. This is done
1729 by making it an eliminable register. We replace it with itself so that
1730 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1731
1732/* This is an array of structures. Each structure initializes one pair
1733 of eliminable registers. The "from" register number is given first,
1734 followed by "to". Eliminations of the same "from" register are listed
1735 in order of preference. */
1736#define ELIMINABLE_REGS \
1737{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1738 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1739 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1740 { 30, 30} }
f045b2c9
RS
1741
1742/* Given FROM and TO register numbers, say whether this elimination is allowed.
1743 Frame pointer elimination is automatically handled.
1744
1745 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1746 to convert ap into fp, not sp.
1747
abc95ed3 1748 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1749 references. */
f045b2c9
RS
1750
1751#define CAN_ELIMINATE(FROM, TO) \
1752 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1753 ? ! frame_pointer_needed \
4697a36c 1754 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1755 : 1)
1756
1757/* Define the offset between two registers, one to be eliminated, and the other
1758 its replacement, at the start of a routine. */
1759#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1760{ \
4697a36c 1761 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1762 \
1763 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1764 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1765 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1766 (OFFSET) = info->total_size; \
1767 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1768 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1769 else if ((FROM) == 30) \
1770 (OFFSET) = 0; \
f045b2c9
RS
1771 else \
1772 abort (); \
1773}
1774\f
1775/* Addressing modes, and classification of registers for them. */
1776
940da324
JL
1777/* #define HAVE_POST_INCREMENT 0 */
1778/* #define HAVE_POST_DECREMENT 0 */
f045b2c9 1779
940da324
JL
1780#define HAVE_PRE_DECREMENT 1
1781#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1782
1783/* Macros to check register numbers against specific register classes. */
1784
1785/* These assume that REGNO is a hard or pseudo reg number.
1786 They give nonzero only if REGNO is a hard reg of the suitable class
1787 or a pseudo reg currently allocated to a suitable hard reg.
1788 Since they use reg_renumber, they are safe only once reg_renumber
1789 has been allocated, which happens in local-alloc.c. */
1790
1791#define REGNO_OK_FOR_INDEX_P(REGNO) \
1792((REGNO) < FIRST_PSEUDO_REGISTER \
1793 ? (REGNO) <= 31 || (REGNO) == 67 \
1794 : (reg_renumber[REGNO] >= 0 \
1795 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1796
1797#define REGNO_OK_FOR_BASE_P(REGNO) \
1798((REGNO) < FIRST_PSEUDO_REGISTER \
1799 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1800 : (reg_renumber[REGNO] > 0 \
1801 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1802\f
1803/* Maximum number of registers that can appear in a valid memory address. */
1804
1805#define MAX_REGS_PER_ADDRESS 2
1806
1807/* Recognize any constant value that is a valid address. */
1808
6eff269e
BK
1809#define CONSTANT_ADDRESS_P(X) \
1810 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1811 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1812 || GET_CODE (X) == HIGH)
f045b2c9
RS
1813
1814/* Nonzero if the constant value X is a legitimate general operand.
1815 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1816
1817 On the RS/6000, all integer constants are acceptable, most won't be valid
1818 for particular insns, though. Only easy FP constants are
1819 acceptable. */
1820
1821#define LEGITIMATE_CONSTANT_P(X) \
1822 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1823 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1824 || easy_fp_constant (X, GET_MODE (X)))
1825
1826/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1827 and check its validity for a certain class.
1828 We have two alternate definitions for each of them.
1829 The usual definition accepts all pseudo regs; the other rejects
1830 them unless they have been allocated suitable hard regs.
1831 The symbol REG_OK_STRICT causes the latter definition to be used.
1832
1833 Most source files want to accept pseudo regs in the hope that
1834 they will get allocated to the class that the insn wants them to be in.
1835 Source files for reload pass need to be strict.
1836 After reload, it makes no difference, since pseudo regs have
1837 been eliminated by then. */
1838
1839#ifndef REG_OK_STRICT
1840
1841/* Nonzero if X is a hard reg that can be used as an index
1842 or if it is a pseudo reg. */
1843#define REG_OK_FOR_INDEX_P(X) \
1844 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1845
1846/* Nonzero if X is a hard reg that can be used as a base reg
1847 or if it is a pseudo reg. */
1848#define REG_OK_FOR_BASE_P(X) \
1849 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1850
1851#else
1852
1853/* Nonzero if X is a hard reg that can be used as an index. */
1854#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1855/* Nonzero if X is a hard reg that can be used as a base reg. */
1856#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1857
1858#endif
1859\f
1860/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1861 that is a valid memory address for an instruction.
1862 The MODE argument is the machine mode for the MEM expression
1863 that wants to use this address.
1864
1865 On the RS/6000, there are four valid address: a SYMBOL_REF that
1866 refers to a constant pool entry of an address (or the sum of it
1867 plus a constant), a short (16-bit signed) constant plus a register,
1868 the sum of two registers, or a register indirect, possibly with an
1869 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 1870 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1871 word aligned.
1872
1873 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1874 32-bit DImode, TImode), indexed addressing cannot be used because
1875 adjacent memory cells are accessed by adding word-sized offsets
1876 during assembly output. */
f045b2c9
RS
1877
1878#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
4697a36c
MM
1879 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1880 && CONSTANT_POOL_ADDRESS_P (X) \
f045b2c9
RS
1881 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1882
a260abc9 1883/* AIX64 guaranteed to have 64 bit TOC alignment. */
f045b2c9
RS
1884#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1885 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
4697a36c
MM
1886 || (TARGET_TOC \
1887 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
f045b2c9
RS
1888 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1889 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1890
7509c759 1891#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
c81bebd7 1892 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
81795281 1893 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1894 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1895 && small_data_operand (X, MODE))
7509c759 1896
f045b2c9
RS
1897#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1898 (GET_CODE (X) == CONST_INT \
5b6f7b96 1899 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9
RS
1900
1901#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1902 (GET_CODE (X) == PLUS \
1903 && GET_CODE (XEXP (X, 0)) == REG \
1904 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1905 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1906 && (((MODE) != DFmode && (MODE) != DImode) \
2f3e5814 1907 || (TARGET_32BIT \
1465faec
DE
1908 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1909 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2f3e5814 1910 && ((MODE) != TImode \
644d82dd 1911 || (TARGET_32BIT \
1465faec
DE
1912 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1913 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1914 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9
RS
1915
1916#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1917 (GET_CODE (X) == PLUS \
1918 && GET_CODE (XEXP (X, 0)) == REG \
1919 && GET_CODE (XEXP (X, 1)) == REG \
1920 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1921 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1922 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1923 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1924
1925#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1926 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1927
4697a36c
MM
1928#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1929 (TARGET_ELF \
81795281 1930 && !flag_pic && !TARGET_TOC \
4697a36c
MM
1931 && (MODE) != DImode \
1932 && (MODE) != TImode \
1933 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1934 && GET_CODE (X) == LO_SUM \
1935 && GET_CODE (XEXP (X, 0)) == REG \
1936 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1937 && CONSTANT_P (XEXP (X, 1)))
1938
f045b2c9
RS
1939#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1940{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1941 goto ADDR; \
0a90c336 1942 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
38c1f2d7 1943 && TARGET_UPDATE \
f045b2c9
RS
1944 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1945 goto ADDR; \
7509c759
MM
1946 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1947 goto ADDR; \
f045b2c9
RS
1948 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1949 goto ADDR; \
1950 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1951 goto ADDR; \
2f3e5814 1952 if ((MODE) != TImode \
1427100a
DE
1953 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
1954 && (TARGET_POWERPC64 || (MODE) != DImode) \
f045b2c9
RS
1955 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1956 goto ADDR; \
4697a36c
MM
1957 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1958 goto ADDR; \
f045b2c9
RS
1959}
1960\f
1961/* Try machine-dependent ways of modifying an illegitimate address
1962 to be legitimate. If we find one, return the new, valid address.
1963 This macro is used in only one place: `memory_address' in explow.c.
1964
1965 OLDX is the address as it was before break_out_memory_refs was called.
1966 In some cases it is useful to look at this to decide what needs to be done.
1967
1968 MODE and WIN are passed so that this macro can use
1969 GO_IF_LEGITIMATE_ADDRESS.
1970
1971 It is always safe for this macro to do nothing. It exists to recognize
1972 opportunities to optimize the output.
1973
1974 On RS/6000, first check for the sum of a register with a constant
1975 integer that is out of range. If so, generate code to add the
1976 constant with the low-order 16 bits masked to the register and force
1977 this result into another register (this can be done with `cau').
c81bebd7 1978 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1979 possibility of bit 16 being a one.
1980
1981 Then check for the sum of a register and something not constant, try to
1982 load the other things into a register and return the sum. */
1983
4697a36c
MM
1984#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1985{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1986 && GET_CODE (XEXP (X, 1)) == CONST_INT \
5b6f7b96 1987 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
354b734b
MM
1988 { HOST_WIDE_INT high_int, low_int; \
1989 rtx sum; \
1990 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
4697a36c
MM
1991 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1992 if (low_int & 0x8000) \
354b734b 1993 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
39403d82 1994 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (X, 0), \
354b734b 1995 GEN_INT (high_int)), 0); \
39403d82 1996 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int)); \
4697a36c
MM
1997 goto WIN; \
1998 } \
1999 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
2000 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1427100a
DE
2001 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
2002 && (TARGET_POWERPC64 || (MODE) != DImode) \
2f3e5814 2003 && (MODE) != TImode) \
4697a36c 2004 { \
39403d82 2005 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
0a90c336 2006 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
4697a36c
MM
2007 goto WIN; \
2008 } \
2f3e5814 2009 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
461422d5 2010 && !flag_pic \
4697a36c
MM
2011 && GET_CODE (X) != CONST_INT \
2012 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
2013 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
2014 && (MODE) != DImode && (MODE) != TImode) \
2015 { \
2016 rtx reg = gen_reg_rtx (Pmode); \
2017 emit_insn (gen_elf_high (reg, (X))); \
39403d82 2018 (X) = gen_rtx_LO_SUM (Pmode, reg, (X)); \
fbd2bdda 2019 goto WIN; \
4697a36c 2020 } \
f045b2c9
RS
2021}
2022
a260abc9
DE
2023/* Try a machine-dependent way of reloading an illegitimate address
2024 operand. If we find one, push the reload and jump to WIN. This
2025 macro is used in only one place: `find_reloads_address' in reload.c.
2026
2027 For RS/6000, we wish to handle large displacements off a base
2028 register by splitting the addend across an addiu/addis and the mem insn.
2029 This cuts number of extra insns needed from 3 to 1. */
2030
2031#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2032do { \
c8ab9901
RH
2033 /* We must recognize output that we have already generated ourselves. */ \
2034 if (GET_CODE (X) == PLUS \
2035 && GET_CODE (XEXP (X, 0)) == PLUS \
2036 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
2037 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
2038 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2039 { \
2040 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2041 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2042 OPNUM, TYPE); \
2043 goto WIN; \
2044 } \
a260abc9
DE
2045 if (GET_CODE (X) == PLUS \
2046 && GET_CODE (XEXP (X, 0)) == REG \
2047 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
2048 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
2049 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2050 { \
2051 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
2052 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
2053 HOST_WIDE_INT high \
2054 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
2055 \
2056 /* Check for 32-bit overflow. */ \
2057 if (high + low != val) \
2058 break; \
2059 \
2060 /* Reload the high part into a base reg; leave the low part \
2061 in the mem directly. */ \
2062 \
2063 X = gen_rtx_PLUS (GET_MODE (X), \
2064 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
2065 GEN_INT (high)), \
2066 GEN_INT (low)); \
2067 \
2068 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2069 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2070 OPNUM, TYPE); \
2071 goto WIN; \
2072 } \
2073} while (0)
2074
f045b2c9
RS
2075/* Go to LABEL if ADDR (a legitimate address expression)
2076 has an effect that depends on the machine mode it is used for.
2077
2078 On the RS/6000 this is true if the address is valid with a zero offset
2079 but not with an offset of four (this means it cannot be used as an
2080 address for DImode or DFmode) or is a pre-increment or decrement. Since
2081 we know it is valid, we just check for an address that is not valid with
2082 an offset of four. */
2083
2084#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2085{ if (GET_CODE (ADDR) == PLUS \
2086 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2087 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2088 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2089 goto LABEL; \
38c1f2d7 2090 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2091 goto LABEL; \
38c1f2d7 2092 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2093 goto LABEL; \
4697a36c
MM
2094 if (GET_CODE (ADDR) == LO_SUM) \
2095 goto LABEL; \
f045b2c9 2096}
766a866c
MM
2097\f
2098/* The register number of the register used to address a table of
2099 static data addresses in memory. In some cases this register is
2100 defined by a processor's "application binary interface" (ABI).
2101 When this macro is defined, RTL is generated for this register
2102 once, as with the stack pointer and frame pointer registers. If
2103 this macro is not defined, it is up to the machine-dependent files
2104 to allocate such a register (if necessary). */
2105
8d30c4ee 2106#define PIC_OFFSET_TABLE_REGNUM 30
766a866c
MM
2107
2108/* Define this macro if the register defined by
2109 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2110 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
2111
2112/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2113
2114/* By generating position-independent code, when two different
2115 programs (A and B) share a common library (libC.a), the text of
2116 the library can be shared whether or not the library is linked at
2117 the same address for both programs. In some of these
2118 environments, position-independent code requires not only the use
2119 of different addressing modes, but also special code to enable the
2120 use of these addressing modes.
2121
2122 The `FINALIZE_PIC' macro serves as a hook to emit these special
2123 codes once the function is being compiled into assembly code, but
2124 not before. (It is not done before, because in the case of
2125 compiling an inline function, it would lead to multiple PIC
2126 prologues being included in functions which used inline functions
2127 and were compiled to assembly language.) */
2128
8d30c4ee 2129/* #define FINALIZE_PIC */
766a866c 2130
766a866c
MM
2131/* A C expression that is nonzero if X is a legitimate immediate
2132 operand on the target machine when generating position independent
2133 code. You can assume that X satisfies `CONSTANT_P', so you need
2134 not check this. You can also assume FLAG_PIC is true, so you need
2135 not check it either. You need not define this macro if all
2136 constants (including `SYMBOL_REF') can be immediate operands when
2137 generating position independent code. */
2138
2139/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2140
30ea98f1
MM
2141/* In rare cases, correct code generation requires extra machine
2142 dependent processing between the second jump optimization pass and
2143 delayed branch scheduling. On those machines, define this macro
2144 as a C statement to act on the code starting at INSN.
2145
2146 On the RS/6000, we use it to make sure the GOT_TOC register marker
2147 that FINALIZE_PIC is supposed to remove actually got removed. */
2148
2149#define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
2150
f045b2c9
RS
2151\f
2152/* Define this if some processing needs to be done immediately before
4255474b 2153 emitting code for an insn. */
f045b2c9 2154
4255474b 2155/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2156
2157/* Specify the machine mode that this machine uses
2158 for the index in the tablejump instruction. */
2f3e5814 2159#define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9 2160
18543a22
ILT
2161/* Define as C expression which evaluates to nonzero if the tablejump
2162 instruction expects the table to contain offsets from the address of the
2163 table.
2164 Do not define this if the table should contain absolute addresses. */
2165#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9
RS
2166
2167/* Specify the tree operation to be used to convert reals to integers. */
2168#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2169
2170/* This is the kind of divide that is easiest to do in the general case. */
2171#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2172
2173/* Define this as 1 if `char' should by default be signed; else as 0. */
2174#define DEFAULT_SIGNED_CHAR 0
2175
2176/* This flag, if defined, says the same insns that convert to a signed fixnum
2177 also convert validly to an unsigned one. */
2178
2179/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2180
2181/* Max number of bytes we can move from memory to memory
2182 in one reasonably fast instruction. */
2f3e5814 2183#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2184#define MAX_MOVE_MAX 8
f045b2c9
RS
2185
2186/* Nonzero if access to memory by bytes is no faster than for words.
2187 Also non-zero if doing byte operations (specifically shifts) in registers
2188 is undesirable. */
2189#define SLOW_BYTE_ACCESS 1
2190
9a63901f
RK
2191/* Define if operations between registers always perform the operation
2192 on the full register even if a narrower mode is specified. */
2193#define WORD_REGISTER_OPERATIONS
2194
2195/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2196 will either zero-extend or sign-extend. The value of this macro should
2197 be the code that says which one of the two operations is implicitly
2198 done, NIL if none. */
2199#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2200
2201/* Define if loading short immediate values into registers sign extends. */
2202#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba
RS
2203\f
2204/* The RS/6000 uses the XCOFF format. */
f045b2c9 2205
fdaff8ba 2206#define XCOFF_DEBUGGING_INFO
f045b2c9 2207
c5abcf1d
CH
2208/* Define if the object format being used is COFF or a superset. */
2209#define OBJECT_FORMAT_COFF
2210
b9af8fb0 2211/* Define the magic numbers that we recognize as COFF.
bf034054 2212
a260abc9
DE
2213 AIX 4.3 adds U803XTOCMAGIC (0757) for 64-bit objects, but collect2.c
2214 does not include files in the correct order to conditionally define
bf034054
DE
2215 the symbolic name in this macro.
2216
2217 The AIX linker accepts import/export files as object files,
2218 so accept "#!" (0x2321) magic number. */
2c440f06 2219#define MY_ISCOFF(magic) \
b9af8fb0 2220 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC \
bf034054 2221 || (magic) == U802TOCMAGIC || (magic) == 0757 || (magic) == 0x2321)
2c440f06 2222
115e69a9
RK
2223/* This is the only version of nm that collect2 can work with. */
2224#define REAL_NM_FILE_NAME "/usr/ucb/nm"
2225
f045b2c9
RS
2226/* We don't have GAS for the RS/6000 yet, so don't write out special
2227 .stabs in cc1plus. */
c81bebd7 2228
f045b2c9 2229#define FASCIST_ASSEMBLER
b6c9286a 2230
4cacd7a0
KE
2231/* AIX does not have any init/fini or ctor/dtor sections, so create
2232 static constructors and destructors as normal functions. */
2233/* #define ASM_OUTPUT_CONSTRUCTOR(file, name) */
2234/* #define ASM_OUTPUT_DESTRUCTOR(file, name) */
f045b2c9 2235
f045b2c9
RS
2236/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2237 is done just by pretending it is already truncated. */
2238#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2239
2240/* Specify the machine mode that pointers have.
2241 After generation of rtl, the compiler makes no further distinction
2242 between pointers and any other objects of this machine mode. */
2f3e5814 2243#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2244
2245/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2246 Doesn't matter on RS/6000. */
2f3e5814 2247#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2248
2249/* Define this if addresses of constant functions
2250 shouldn't be put through pseudo regs where they can be cse'd.
2251 Desirable on machines where ordinary constants are expensive
2252 but a CALL with constant address is cheap. */
2253#define NO_FUNCTION_CSE
2254
d969caf8 2255/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2256 few bits.
2257
2258 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2259 have been dropped from the PowerPC architecture. */
2260
4697a36c 2261#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9
RS
2262
2263/* Use atexit for static constructors/destructors, instead of defining
2264 our own exit function. */
2265#define HAVE_ATEXIT
2266
2267/* Compute the cost of computing a constant rtl expression RTX
2268 whose rtx-code is CODE. The body of this macro is a portion
2269 of a switch statement. If the code is computed here,
2270 return it with a return statement. Otherwise, break from the switch.
2271
01554f00 2272 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2273 always returns 0. */
2274
4697a36c 2275#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2276 case CONST_INT: \
2277 case CONST: \
2278 case LABEL_REF: \
2279 case SYMBOL_REF: \
2280 case CONST_DOUBLE: \
4697a36c 2281 case HIGH: \
f045b2c9
RS
2282 return 0;
2283
2284/* Provide the costs of a rtl expression. This is in the body of a
2285 switch on CODE. */
2286
38c1f2d7
MM
2287#define RTX_COSTS(X,CODE,OUTER_CODE) \
2288 case PLUS: \
2289 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2290 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2291 + 0x8000) >= 0x10000) \
296b8152 2292 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2293 ? COSTS_N_INSNS (2) \
2294 : COSTS_N_INSNS (1)); \
2295 case AND: \
38c1f2d7
MM
2296 case IOR: \
2297 case XOR: \
a260abc9
DE
2298 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2299 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2300 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2301 ? COSTS_N_INSNS (2) \
2302 : COSTS_N_INSNS (1)); \
2303 case MULT: \
2304 switch (rs6000_cpu) \
2305 { \
2306 case PROCESSOR_RIOS1: \
2307 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2308 ? COSTS_N_INSNS (5) \
2309 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2310 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2311 case PROCESSOR_RIOS2: \
2312 case PROCESSOR_MPCCORE: \
5a41b476 2313 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2314 return COSTS_N_INSNS (2); \
2315 case PROCESSOR_PPC601: \
2316 return COSTS_N_INSNS (5); \
2317 case PROCESSOR_PPC603: \
bef84347 2318 case PROCESSOR_PPC750: \
38c1f2d7
MM
2319 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2320 ? COSTS_N_INSNS (5) \
2321 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2322 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2323 case PROCESSOR_PPC403: \
2324 case PROCESSOR_PPC604: \
2325 case PROCESSOR_PPC620: \
2326 return COSTS_N_INSNS (4); \
2327 } \
2328 case DIV: \
2329 case MOD: \
2330 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2331 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2332 return COSTS_N_INSNS (2); \
2333 /* otherwise fall through to normal divide. */ \
2334 case UDIV: \
2335 case UMOD: \
2336 switch (rs6000_cpu) \
2337 { \
2338 case PROCESSOR_RIOS1: \
2339 return COSTS_N_INSNS (19); \
2340 case PROCESSOR_RIOS2: \
2341 return COSTS_N_INSNS (13); \
2342 case PROCESSOR_MPCCORE: \
2343 return COSTS_N_INSNS (6); \
2344 case PROCESSOR_PPC403: \
2345 return COSTS_N_INSNS (33); \
2346 case PROCESSOR_PPC601: \
2347 return COSTS_N_INSNS (36); \
2348 case PROCESSOR_PPC603: \
2349 return COSTS_N_INSNS (37); \
2350 case PROCESSOR_PPC604: \
5a41b476 2351 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2352 case PROCESSOR_PPC620: \
2353 return COSTS_N_INSNS (20); \
bef84347
VM
2354 case PROCESSOR_PPC750: \
2355 return COSTS_N_INSNS (19); \
38c1f2d7
MM
2356 } \
2357 case FFS: \
2358 return COSTS_N_INSNS (4); \
2359 case MEM: \
f045b2c9
RS
2360 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2361 return 5;
2362
2363/* Compute the cost of an address. This is meant to approximate the size
2364 and/or execution delay of an insn using that address. If the cost is
2365 approximated by the RTL complexity, including CONST_COSTS above, as
2366 is usually the case for CISC machines, this macro should not be defined.
2367 For aggressively RISCy machines, only one insn format is allowed, so
2368 this macro should be a constant. The value of this macro only matters
2369 for valid addresses.
2370
2371 For the RS/6000, everything is cost 0. */
2372
2373#define ADDRESS_COST(RTX) 0
2374
2375/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2376 should be adjusted to reflect any required changes. This macro is used when
2377 there is some systematic length adjustment required that would be difficult
2378 to express in the length attribute. */
2379
2380/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2381
2382/* Add any extra modes needed to represent the condition code.
2383
2384 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2385 are being done and we need a separate mode for floating-point. We also
2386 use a mode for the case when we are comparing the results of two
2387 comparisons. */
f045b2c9 2388
c5defebb 2389#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
2390
2391/* Define the names for the modes specified above. */
c5defebb 2392#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
2393
2394/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2395 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
2396 should be used. CCUNSmode should be used for unsigned comparisons.
2397 CCEQmode should be used when we are doing an inequality comparison on
2398 the result of a comparison. CCmode should be used in all other cases. */
2399
b565a316 2400#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2401 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2402 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2403 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2404 ? CCEQmode : CCmode))
f045b2c9
RS
2405
2406/* Define the information needed to generate branch and scc insns. This is
2407 stored from the compare operation. Note that we can't use "rtx" here
2408 since it hasn't been defined! */
2409
2410extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2411extern int rs6000_compare_fp_p;
2412
2413/* Set to non-zero by "fix" operation to indicate that itrunc and
2414 uitrunc must be defined. */
2415
2416extern int rs6000_trunc_used;
9929b575
ILT
2417
2418/* Function names to call to do floating point truncation. */
2419
5bf6466a
DE
2420#define RS6000_ITRUNC "__itrunc"
2421#define RS6000_UITRUNC "__uitrunc"
4d30c363
MM
2422
2423/* Prefix and suffix to use to saving floating point */
2424#ifndef SAVE_FP_PREFIX
2425#define SAVE_FP_PREFIX "._savef"
2426#define SAVE_FP_SUFFIX ""
2427#endif
2428
2429/* Prefix and suffix to use to restoring floating point */
2430#ifndef RESTORE_FP_PREFIX
2431#define RESTORE_FP_PREFIX "._restf"
2432#define RESTORE_FP_SUFFIX ""
2433#endif
2434
5bf6466a
DE
2435/* Function name to call to do profiling. */
2436#define RS6000_MCOUNT ".__mcount"
2437
f045b2c9
RS
2438\f
2439/* Control the assembler format that we output. */
2440
1b279f39
DE
2441/* A C string constant describing how to begin a comment in the target
2442 assembler language. The compiler assumes that the comment will end at
2443 the end of the line. */
2444#define ASM_COMMENT_START " #"
6b67933e 2445
f045b2c9
RS
2446/* Output at beginning of assembler file.
2447
b4d6689b 2448 Initialize the section names for the RS/6000 at this point.
fdaff8ba 2449
6355b140 2450 Specify filename to assembler.
3fc2151d 2451
b4d6689b 2452 We want to go into the TOC section so at least one .toc will be emitted.
fdaff8ba 2453 Also, in order to output proper .bs/.es pairs, we need at least one static
b4d6689b
RK
2454 [RW] section emitted.
2455
2456 We then switch back to text to force the gcc2_compiled. label and the space
c81bebd7 2457 allocated after it (when profiling) into the text section.
b4d6689b
RK
2458
2459 Finally, declare mcount when profiling to make the assembler happy. */
f045b2c9
RS
2460
2461#define ASM_FILE_START(FILE) \
2462{ \
fdaff8ba 2463 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 2464 main_input_filename, ".bss_"); \
fdaff8ba 2465 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 2466 main_input_filename, ".rw_"); \
fdaff8ba 2467 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
2468 main_input_filename, ".ro_"); \
2469 \
6355b140 2470 output_file_directive (FILE, main_input_filename); \
a260abc9
DE
2471 if (TARGET_64BIT) \
2472 fputs ("\t.machine\t\"ppc64\"\n", FILE); \
f045b2c9 2473 toc_section (); \
fdaff8ba
RS
2474 if (write_symbols != NO_DEBUG) \
2475 private_data_section (); \
b4d6689b
RK
2476 text_section (); \
2477 if (profile_flag) \
5bf6466a 2478 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
3cfa4909 2479 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
f045b2c9
RS
2480}
2481
2482/* Output at end of assembler file.
2483
2484 On the RS/6000, referencing data should automatically pull in text. */
2485
2486#define ASM_FILE_END(FILE) \
2487{ \
2488 text_section (); \
19d2d16f 2489 fputs ("_section_.text:\n", FILE); \
f045b2c9 2490 data_section (); \
19d2d16f 2491 fputs ("\t.long _section_.text\n", FILE); \
f045b2c9
RS
2492}
2493
f045b2c9
RS
2494/* We define this to prevent the name mangler from putting dollar signs into
2495 function names. */
2496
2497#define NO_DOLLAR_IN_LABEL
2498
2499/* We define this to 0 so that gcc will never accept a dollar sign in a
2500 variable name. This is needed because the AIX assembler will not accept
2501 dollar signs. */
2502
2503#define DOLLARS_IN_IDENTIFIERS 0
2504
fdaff8ba
RS
2505/* Implicit library calls should use memcpy, not bcopy, etc. */
2506
2507#define TARGET_MEM_FUNCTIONS
2508
f045b2c9
RS
2509/* Define the extra sections we need. We define three: one is the read-only
2510 data section which is used for constants. This is a csect whose name is
2511 derived from the name of the input file. The second is for initialized
2512 global variables. This is a csect whose name is that of the variable.
2513 The third is the TOC. */
2514
2515#define EXTRA_SECTIONS \
2516 read_only_data, private_data, read_only_private_data, toc, bss
2517
2518/* Define the name of our readonly data section. */
2519
2520#define READONLY_DATA_SECTION read_only_data_section
2521
9704efe6
MS
2522
2523/* Define the name of the section to use for the exception tables.
2524 TODO: test and see if we can use read_only_data_section, if so,
2525 remove this. */
2526
2527#define EXCEPTION_SECTION data_section
2528
b4f892eb
RK
2529/* If we are referencing a function that is static or is known to be
2530 in this file, make the SYMBOL_REF special. We can use this to indicate
2531 that we can branch to this function without emitting a no-op after the
2532 call. */
2533
2534#define ENCODE_SECTION_INFO(DECL) \
2535 if (TREE_CODE (DECL) == FUNCTION_DECL \
2536 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2537 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2538
f045b2c9
RS
2539/* Indicate that jump tables go in the text section. */
2540
75197b37 2541#define JUMP_TABLES_IN_TEXT_SECTION 1
f045b2c9 2542
bf034054
DE
2543/* Define the routines to implement these extra sections.
2544 BIGGEST_ALIGNMENT is 64, so align the sections that much. */
f045b2c9
RS
2545
2546#define EXTRA_SECTION_FUNCTIONS \
2547 \
2548void \
2549read_only_data_section () \
2550{ \
2551 if (in_section != read_only_data) \
2552 { \
bf034054
DE
2553 fprintf (asm_out_file, ".csect %s[RO],3\n", \
2554 xcoff_read_only_section_name); \
f045b2c9
RS
2555 in_section = read_only_data; \
2556 } \
2557} \
2558 \
2559void \
2560private_data_section () \
2561{ \
2562 if (in_section != private_data) \
2563 { \
bf034054
DE
2564 fprintf (asm_out_file, ".csect %s[RW],3\n", \
2565 xcoff_private_data_section_name); \
f045b2c9
RS
2566 in_section = private_data; \
2567 } \
2568} \
2569 \
2570void \
2571read_only_private_data_section () \
2572{ \
2573 if (in_section != read_only_private_data) \
2574 { \
bf034054
DE
2575 fprintf (asm_out_file, ".csect %s[RO],3\n", \
2576 xcoff_private_data_section_name); \
f045b2c9
RS
2577 in_section = read_only_private_data; \
2578 } \
2579} \
2580 \
2581void \
2582toc_section () \
2583{ \
642a35f1
JW
2584 if (TARGET_MINIMAL_TOC) \
2585 { \
642a35f1
JW
2586 /* toc_section is always called at least once from ASM_FILE_START, \
2587 so this is guaranteed to always be defined once and only once \
2588 in each file. */ \
2589 if (! toc_initialized) \
2590 { \
19d2d16f
MM
2591 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2592 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2593 toc_initialized = 1; \
2594 } \
f045b2c9 2595 \
642a35f1 2596 if (in_section != toc) \
bfc79d3b
DE
2597 fprintf (asm_out_file, ".csect toc_table[RW]%s\n", \
2598 (TARGET_32BIT ? "" : ",3")); \
642a35f1
JW
2599 } \
2600 else \
2601 { \
2602 if (in_section != toc) \
19d2d16f 2603 fputs (".toc\n", asm_out_file); \
642a35f1 2604 } \
f045b2c9 2605 in_section = toc; \
fc3ffe83 2606}
f045b2c9 2607
38c1f2d7
MM
2608/* Flag to say the TOC is initialized */
2609extern int toc_initialized;
2610
f045b2c9
RS
2611/* This macro produces the initial definition of a function name.
2612 On the RS/6000, we need to place an extra '.' in the function name and
c81bebd7 2613 output the function descriptor.
f045b2c9
RS
2614
2615 The csect for the function will have already been created by the
2616 `text_section' call previously done. We do have to go back to that
2617 csect, however. */
2618
fdaff8ba
RS
2619/* ??? What do the 16 and 044 in the .function line really mean? */
2620
f045b2c9
RS
2621#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2622{ if (TREE_PUBLIC (DECL)) \
2623 { \
19d2d16f 2624 fputs ("\t.globl .", FILE); \
f045b2c9 2625 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2626 putc ('\n', FILE); \
fdaff8ba 2627 } \
3ce428da 2628 else \
fdaff8ba 2629 { \
19d2d16f 2630 fputs ("\t.lglobl .", FILE); \
fdaff8ba 2631 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2632 putc ('\n', FILE); \
f045b2c9 2633 } \
19d2d16f 2634 fputs (".csect ", FILE); \
f045b2c9 2635 RS6000_OUTPUT_BASENAME (FILE, NAME); \
a260abc9 2636 fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", FILE); \
f045b2c9 2637 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2638 fputs (":\n", FILE); \
a260abc9 2639 fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", FILE); \
f045b2c9 2640 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f
MM
2641 fputs (", TOC[tc0], 0\n", FILE); \
2642 fputs (".csect .text[PR]\n.", FILE); \
f045b2c9 2643 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2644 fputs (":\n", FILE); \
fdaff8ba 2645 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 2646 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
2647}
2648
2649/* Return non-zero if this entry is to be written into the constant pool
2650 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2651 containing one of them. If -mfp-in-toc (the default), we also do
2652 this for floating-point constants. We actually can only do this
2653 if the FP formats of the target and host machines are the same, but
2654 we can't check that since not every file that uses
2655 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2656
4697a36c
MM
2657#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2658 (TARGET_TOC \
2659 && (GET_CODE (X) == SYMBOL_REF \
2660 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2661 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2662 || GET_CODE (X) == LABEL_REF \
2663 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2664 && GET_CODE (X) == CONST_DOUBLE \
a260abc9
DE
2665 && (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2666 || (TARGET_POWERPC64 && GET_MODE (X) == DImode)))))
2667#if 0
4697a36c 2668 && BITS_PER_WORD == HOST_BITS_PER_INT)))
a260abc9 2669#endif
f045b2c9
RS
2670
2671/* Select section for constant in constant pool.
2672
2673 On RS/6000, all constants are in the private read-only data area.
2674 However, if this is being placed in the TOC it must be output as a
2675 toc entry. */
2676
2677#define SELECT_RTX_SECTION(MODE, X) \
2678{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2679 toc_section (); \
2680 else \
2681 read_only_private_data_section (); \
2682}
2683
2684/* Macro to output a special constant pool entry. Go to WIN if we output
2685 it. Otherwise, it is written the usual way.
2686
2687 On the RS/6000, toc entries are handled this way. */
2688
2689#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2690{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2691 { \
2692 output_toc (FILE, X, LABELNO); \
2693 goto WIN; \
2694 } \
2695}
2696
2697/* Select the section for an initialized data object.
2698
2699 On the RS/6000, we have a special section for all variables except those
2700 that are static. */
2701
2702#define SELECT_SECTION(EXP,RELOC) \
2703{ \
ed8969fa 2704 if ((TREE_CODE (EXP) == STRING_CST \
949ea356 2705 && ! flag_writable_strings) \
128e5769 2706 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
1ff5cbcd 2707 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
ed8969fa
JW
2708 && DECL_INITIAL (EXP) \
2709 && (DECL_INITIAL (EXP) == error_mark_node \
2710 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2711 && ! (RELOC))) \
f045b2c9
RS
2712 { \
2713 if (TREE_PUBLIC (EXP)) \
2714 read_only_data_section (); \
2715 else \
2716 read_only_private_data_section (); \
2717 } \
2718 else \
2719 { \
2720 if (TREE_PUBLIC (EXP)) \
2721 data_section (); \
2722 else \
2723 private_data_section (); \
2724 } \
2725}
2726
2727/* This outputs NAME to FILE up to the first null or '['. */
2728
2729#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
c23a9d0e
JM
2730 { \
2731 char *_p; \
99d3d26e 2732 \
c23a9d0e
JM
2733 STRIP_NAME_ENCODING (_p, (NAME)); \
2734 assemble_name ((FILE), _p); \
2735 }
2736
2737/* Remove any trailing [DS] or the like from the symbol name. */
2738
28c57785
MM
2739#define STRIP_NAME_ENCODING(VAR,NAME) \
2740 do \
2741 { \
2742 char *_name = (NAME); \
b6c9286a 2743 int _len; \
28c57785 2744 if (_name[0] == '*') \
b6c9286a
MM
2745 _name++; \
2746 _len = strlen (_name); \
2747 if (_name[_len - 1] != ']') \
2748 (VAR) = _name; \
28c57785
MM
2749 else \
2750 { \
b6c9286a
MM
2751 (VAR) = (char *) alloca (_len + 1); \
2752 strcpy ((VAR), _name); \
2753 (VAR)[_len - 4] = '\0'; \
28c57785
MM
2754 } \
2755 } \
c23a9d0e 2756 while (0)
f045b2c9
RS
2757
2758/* Output something to declare an external symbol to the assembler. Most
c81bebd7 2759 assemblers don't need this.
f045b2c9
RS
2760
2761 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2762 name. Normally we write this out along with the name. In the few cases
2763 where we can't, it gets stripped off. */
2764
2765#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2766{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2767 if ((TREE_CODE (DECL) == VAR_DECL \
2768 || TREE_CODE (DECL) == FUNCTION_DECL) \
f045b2c9
RS
2769 && (NAME)[strlen (NAME) - 1] != ']') \
2770 { \
2771 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2772 strcpy (_name, XSTR (_symref, 0)); \
2773 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2774 XSTR (_symref, 0) = _name; \
2775 } \
19d2d16f 2776 fputs ("\t.extern ", FILE); \
f045b2c9
RS
2777 assemble_name (FILE, XSTR (_symref, 0)); \
2778 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2779 { \
19d2d16f 2780 fputs ("\n\t.extern .", FILE); \
f045b2c9
RS
2781 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2782 } \
19d2d16f 2783 putc ('\n', FILE); \
f045b2c9
RS
2784}
2785
2786/* Similar, but for libcall. We only have to worry about the function name,
2787 not that of the descriptor. */
2788
2789#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
19d2d16f 2790{ fputs ("\t.extern .", FILE); \
f045b2c9 2791 assemble_name (FILE, XSTR (FUN, 0)); \
19d2d16f 2792 putc ('\n', FILE); \
f045b2c9
RS
2793}
2794
2795/* Output to assembler file text saying following lines
2796 may contain character constants, extra white space, comments, etc. */
2797
2798#define ASM_APP_ON ""
2799
2800/* Output to assembler file text saying following lines
2801 no longer contain unusual constructs. */
2802
2803#define ASM_APP_OFF ""
2804
bf034054
DE
2805/* Output before instructions.
2806 Text section for 64-bit target may contain 64-bit address jump table. */
f045b2c9 2807
bf034054
DE
2808#define TEXT_SECTION_ASM_OP (TARGET_32BIT \
2809 ? ".csect .text[PR]" : ".csect .text[PR],3")
f045b2c9 2810
bf034054
DE
2811/* Output before writable data.
2812 Align entire section to BIGGEST_ALIGNMENT. */
f045b2c9 2813
bf034054 2814#define DATA_SECTION_ASM_OP ".csect .data[RW],3"
f045b2c9
RS
2815
2816/* How to refer to registers in assembler output.
2817 This sequence is indexed by compiler's hard-register-number (see above). */
2818
802a0058 2819extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2820
2821#define REGISTER_NAMES \
2822{ \
2823 &rs6000_reg_names[ 0][0], /* r0 */ \
2824 &rs6000_reg_names[ 1][0], /* r1 */ \
2825 &rs6000_reg_names[ 2][0], /* r2 */ \
2826 &rs6000_reg_names[ 3][0], /* r3 */ \
2827 &rs6000_reg_names[ 4][0], /* r4 */ \
2828 &rs6000_reg_names[ 5][0], /* r5 */ \
2829 &rs6000_reg_names[ 6][0], /* r6 */ \
2830 &rs6000_reg_names[ 7][0], /* r7 */ \
2831 &rs6000_reg_names[ 8][0], /* r8 */ \
2832 &rs6000_reg_names[ 9][0], /* r9 */ \
2833 &rs6000_reg_names[10][0], /* r10 */ \
2834 &rs6000_reg_names[11][0], /* r11 */ \
2835 &rs6000_reg_names[12][0], /* r12 */ \
2836 &rs6000_reg_names[13][0], /* r13 */ \
2837 &rs6000_reg_names[14][0], /* r14 */ \
2838 &rs6000_reg_names[15][0], /* r15 */ \
2839 &rs6000_reg_names[16][0], /* r16 */ \
2840 &rs6000_reg_names[17][0], /* r17 */ \
2841 &rs6000_reg_names[18][0], /* r18 */ \
2842 &rs6000_reg_names[19][0], /* r19 */ \
2843 &rs6000_reg_names[20][0], /* r20 */ \
2844 &rs6000_reg_names[21][0], /* r21 */ \
2845 &rs6000_reg_names[22][0], /* r22 */ \
2846 &rs6000_reg_names[23][0], /* r23 */ \
2847 &rs6000_reg_names[24][0], /* r24 */ \
2848 &rs6000_reg_names[25][0], /* r25 */ \
2849 &rs6000_reg_names[26][0], /* r26 */ \
2850 &rs6000_reg_names[27][0], /* r27 */ \
2851 &rs6000_reg_names[28][0], /* r28 */ \
2852 &rs6000_reg_names[29][0], /* r29 */ \
2853 &rs6000_reg_names[30][0], /* r30 */ \
2854 &rs6000_reg_names[31][0], /* r31 */ \
2855 \
2856 &rs6000_reg_names[32][0], /* fr0 */ \
2857 &rs6000_reg_names[33][0], /* fr1 */ \
2858 &rs6000_reg_names[34][0], /* fr2 */ \
2859 &rs6000_reg_names[35][0], /* fr3 */ \
2860 &rs6000_reg_names[36][0], /* fr4 */ \
2861 &rs6000_reg_names[37][0], /* fr5 */ \
2862 &rs6000_reg_names[38][0], /* fr6 */ \
2863 &rs6000_reg_names[39][0], /* fr7 */ \
2864 &rs6000_reg_names[40][0], /* fr8 */ \
2865 &rs6000_reg_names[41][0], /* fr9 */ \
2866 &rs6000_reg_names[42][0], /* fr10 */ \
2867 &rs6000_reg_names[43][0], /* fr11 */ \
2868 &rs6000_reg_names[44][0], /* fr12 */ \
2869 &rs6000_reg_names[45][0], /* fr13 */ \
2870 &rs6000_reg_names[46][0], /* fr14 */ \
2871 &rs6000_reg_names[47][0], /* fr15 */ \
2872 &rs6000_reg_names[48][0], /* fr16 */ \
2873 &rs6000_reg_names[49][0], /* fr17 */ \
2874 &rs6000_reg_names[50][0], /* fr18 */ \
2875 &rs6000_reg_names[51][0], /* fr19 */ \
2876 &rs6000_reg_names[52][0], /* fr20 */ \
2877 &rs6000_reg_names[53][0], /* fr21 */ \
2878 &rs6000_reg_names[54][0], /* fr22 */ \
2879 &rs6000_reg_names[55][0], /* fr23 */ \
2880 &rs6000_reg_names[56][0], /* fr24 */ \
2881 &rs6000_reg_names[57][0], /* fr25 */ \
2882 &rs6000_reg_names[58][0], /* fr26 */ \
2883 &rs6000_reg_names[59][0], /* fr27 */ \
2884 &rs6000_reg_names[60][0], /* fr28 */ \
2885 &rs6000_reg_names[61][0], /* fr29 */ \
2886 &rs6000_reg_names[62][0], /* fr30 */ \
2887 &rs6000_reg_names[63][0], /* fr31 */ \
2888 \
2889 &rs6000_reg_names[64][0], /* mq */ \
2890 &rs6000_reg_names[65][0], /* lr */ \
2891 &rs6000_reg_names[66][0], /* ctr */ \
2892 &rs6000_reg_names[67][0], /* ap */ \
2893 \
2894 &rs6000_reg_names[68][0], /* cr0 */ \
2895 &rs6000_reg_names[69][0], /* cr1 */ \
2896 &rs6000_reg_names[70][0], /* cr2 */ \
2897 &rs6000_reg_names[71][0], /* cr3 */ \
2898 &rs6000_reg_names[72][0], /* cr4 */ \
2899 &rs6000_reg_names[73][0], /* cr5 */ \
2900 &rs6000_reg_names[74][0], /* cr6 */ \
2901 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058
MM
2902 \
2903 &rs6000_reg_names[76][0], /* fpmem */ \
c81bebd7
MM
2904}
2905
2906/* print-rtl can't handle the above REGISTER_NAMES, so define the
2907 following for it. Switch to use the alternate names since
2908 they are more mnemonic. */
2909
2910#define DEBUG_REGISTER_NAMES \
2911{ \
802a0058
MM
2912 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2913 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2914 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2915 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2916 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2917 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2918 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2919 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2920 "mq", "lr", "ctr", "ap", \
2921 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2922 "fpmem" \
c81bebd7 2923}
f045b2c9
RS
2924
2925/* Table of additional register names to use in user input. */
2926
2927#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2928 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2929 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2930 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2931 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2932 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2933 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2934 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2935 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2936 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2937 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2938 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2939 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2940 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2941 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2942 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2943 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2944 /* no additional names for: mq, lr, ctr, ap */ \
2945 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2946 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2947 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9
RS
2948
2949/* How to renumber registers for dbx and gdb. */
2950
2951#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2952
0da40b09
RK
2953/* Text to write out after a CALL that may be replaced by glue code by
2954 the loader. This depends on the AIX version. */
2955#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2956
f045b2c9
RS
2957/* This is how to output the definition of a user-level label named NAME,
2958 such as the label on a static function or variable NAME. */
2959
2960#define ASM_OUTPUT_LABEL(FILE,NAME) \
2961 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2962
2963/* This is how to output a command to make the user-level label named NAME
2964 defined for reference from other files. */
2965
2966#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2967 do { fputs ("\t.globl ", FILE); \
949ea356 2968 RS6000_OUTPUT_BASENAME (FILE, NAME); putc ('\n', FILE);} while (0)
f045b2c9
RS
2969
2970/* This is how to output a reference to a user-level label named NAME.
2971 `assemble_name' uses this. */
2972
2973#define ASM_OUTPUT_LABELREF(FILE,NAME) \
7509c759 2974 fputs (NAME, FILE)
f045b2c9
RS
2975
2976/* This is how to output an internal numbered label where
2977 PREFIX is the class of label and NUM is the number within the class. */
2978
2979#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2980 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2981
3daf36a4
ILT
2982/* This is how to output an internal label prefix. rs6000.c uses this
2983 when generating traceback tables. */
2984
2985#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2986 fprintf (FILE, "%s..", PREFIX)
2987
f045b2c9
RS
2988/* This is how to output a label for a jump table. Arguments are the same as
2989 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2990 passed. */
2991
2992#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2993{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2994
2995/* This is how to store into the string LABEL
2996 the symbol_ref name of an internal numbered label where
2997 PREFIX is the class of label and NUM is the number within the class.
2998 This is suitable for output with `assemble_name'. */
2999
3000#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3d199f7a 3001 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
f045b2c9
RS
3002
3003/* This is how to output an assembler line defining a `double' constant. */
3004
b5253831
DE
3005#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
3006 { \
3007 long t[2]; \
3008 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
3009 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
3010 t[0] & 0xffffffff, t[1] & 0xffffffff); \
a5b1eb34 3011 }
f045b2c9
RS
3012
3013/* This is how to output an assembler line defining a `float' constant. */
3014
b5253831
DE
3015#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
3016 { \
3017 long t; \
3018 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
3019 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
a5b1eb34 3020 }
f045b2c9
RS
3021
3022/* This is how to output an assembler line defining an `int' constant. */
3023
5854b0d0
DE
3024#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
3025do { \
3026 if (TARGET_32BIT) \
3027 { \
3028 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3029 UNITS_PER_WORD, 1); \
3030 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3031 UNITS_PER_WORD, 1); \
3032 } \
3033 else \
3034 { \
3035 fputs ("\t.llong ", FILE); \
3036 output_addr_const (FILE, (VALUE)); \
3037 putc ('\n', FILE); \
3038 } \
3039} while (0)
3040
f045b2c9 3041#define ASM_OUTPUT_INT(FILE,VALUE) \
19d2d16f 3042( fputs ("\t.long ", FILE), \
f045b2c9 3043 output_addr_const (FILE, (VALUE)), \
19d2d16f 3044 putc ('\n', FILE))
f045b2c9
RS
3045
3046/* Likewise for `char' and `short' constants. */
3047
3048#define ASM_OUTPUT_SHORT(FILE,VALUE) \
19d2d16f 3049( fputs ("\t.short ", FILE), \
f045b2c9 3050 output_addr_const (FILE, (VALUE)), \
19d2d16f 3051 putc ('\n', FILE))
f045b2c9
RS
3052
3053#define ASM_OUTPUT_CHAR(FILE,VALUE) \
19d2d16f 3054( fputs ("\t.byte ", FILE), \
f045b2c9 3055 output_addr_const (FILE, (VALUE)), \
19d2d16f 3056 putc ('\n', FILE))
f045b2c9
RS
3057
3058/* This is how to output an assembler line for a numeric constant byte. */
3059
3060#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3061 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
3062
3063/* This is how to output an assembler line to define N characters starting
3064 at P to FILE. */
3065
3066#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
3067
c81bebd7 3068/* This is how to output an element of a case-vector that is absolute.
f045b2c9
RS
3069 (RS/6000 does not use such vectors, but we must define this macro
3070 anyway.) */
3071
3daf36a4
ILT
3072#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3073 do { char buf[100]; \
a260abc9 3074 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
3075 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3076 assemble_name (FILE, buf); \
19d2d16f 3077 putc ('\n', FILE); \
3daf36a4 3078 } while (0)
f045b2c9
RS
3079
3080/* This is how to output an element of a case-vector that is relative. */
3081
33f7f353 3082#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)\
3daf36a4 3083 do { char buf[100]; \
a260abc9 3084 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
3085 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3086 assemble_name (FILE, buf); \
19d2d16f 3087 putc ('-', FILE); \
3daf36a4
ILT
3088 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
3089 assemble_name (FILE, buf); \
19d2d16f 3090 putc ('\n', FILE); \
3daf36a4 3091 } while (0)
f045b2c9
RS
3092
3093/* This is how to output an assembler line
3094 that says to advance the location counter
3095 to a multiple of 2**LOG bytes. */
3096
3097#define ASM_OUTPUT_ALIGN(FILE,LOG) \
3098 if ((LOG) != 0) \
3099 fprintf (FILE, "\t.align %d\n", (LOG))
3100
3101#define ASM_OUTPUT_SKIP(FILE,SIZE) \
3102 fprintf (FILE, "\t.space %d\n", (SIZE))
3103
3104/* This says how to output an assembler line
3105 to define a global common symbol. */
3106
b73fd26c 3107#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
fc3ffe83 3108 do { fputs (".comm ", (FILE)); \
f045b2c9 3109 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
b73fd26c
DE
3110 if ( (SIZE) > 4) \
3111 fprintf ((FILE), ",%d,3\n", (SIZE)); \
3112 else \
3113 fprintf( (FILE), ",%d\n", (SIZE)); \
3114 } while (0)
f045b2c9
RS
3115
3116/* This says how to output an assembler line
bf034054
DE
3117 to define a local common symbol.
3118 Alignment cannot be specified, but we can try to maintain
3119 alignment after preceding TOC section if it was aligned
3120 for 64-bit mode. */
f045b2c9 3121
bf034054 3122#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
fc3ffe83 3123 do { fputs (".lcomm ", (FILE)); \
f045b2c9 3124 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
bf034054
DE
3125 fprintf ((FILE), ",%d,%s\n", (TARGET_32BIT ? (SIZE) : (ROUNDED)), \
3126 xcoff_bss_section_name); \
f045b2c9
RS
3127 } while (0)
3128
3129/* Store in OUTPUT a string (made with alloca) containing
3130 an assembler-name for a local static variable named NAME.
3131 LABELNO is an integer which is different for each call. */
3132
3133#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3134( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3135 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3136
3137/* Define the parentheses used to group arithmetic operations
3138 in assembler code. */
3139
3140#define ASM_OPEN_PAREN "("
3141#define ASM_CLOSE_PAREN ")"
3142
3143/* Define results of standard character escape sequences. */
3144#define TARGET_BELL 007
3145#define TARGET_BS 010
3146#define TARGET_TAB 011
3147#define TARGET_NEWLINE 012
3148#define TARGET_VT 013
3149#define TARGET_FF 014
3150#define TARGET_CR 015
3151
3152/* Print operand X (an rtx) in assembler syntax to file FILE.
3153 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3154 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3155
3156#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3157
3158/* Define which CODE values are valid. */
3159
c81bebd7
MM
3160#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3161 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
f045b2c9
RS
3162
3163/* Print a memory address as an operand to reference that memory location. */
3164
3165#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3166
3167/* Define the codes that are matched by predicates in rs6000.c. */
3168
802a0058 3169#define PREDICATE_CODES \
34792e82
JL
3170 {"short_cint_operand", {CONST_INT}}, \
3171 {"u_short_cint_operand", {CONST_INT}}, \
f357808b 3172 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 3173 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9 3174 {"cc_reg_operand", {SUBREG, REG}}, \
815cdc52 3175 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
34792e82 3176 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
f045b2c9 3177 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
34792e82
JL
3178 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
3179 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
766a866c 3180 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
38c1f2d7 3181 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
f045b2c9
RS
3182 {"easy_fp_constant", {CONST_DOUBLE}}, \
3183 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
414d3ee4 3184 {"lwa_operand", {SUBREG, MEM, REG}}, \
b6c9286a 3185 {"volatile_mem_operand", {MEM}}, \
97f6e72f 3186 {"offsettable_mem_operand", {MEM}}, \
f045b2c9 3187 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
34792e82 3188 {"add_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3189 {"non_add_cint_operand", {CONST_INT}}, \
34792e82
JL
3190 {"and_operand", {SUBREG, REG, CONST_INT}}, \
3191 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3192 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3193 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9 3194 {"mask_operand", {CONST_INT}}, \
a260abc9 3195 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
b6c9286a 3196 {"count_register_operand", {REG}}, \
802a0058 3197 {"fpmem_operand", {REG}}, \
f045b2c9 3198 {"call_operand", {SYMBOL_REF, REG}}, \
f8634644 3199 {"current_file_function_operand", {SYMBOL_REF}}, \
34792e82 3200 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
e675f625 3201 CONST_DOUBLE, SYMBOL_REF}}, \
f8634644
RK
3202 {"load_multiple_operation", {PARALLEL}}, \
3203 {"store_multiple_operation", {PARALLEL}}, \
3204 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3205 GT, LEU, LTU, GEU, GTU}}, \
f8634644 3206 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
d2a0c2ee
JC
3207 GT, LEU, LTU, GEU, GTU}}, \
3208 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
3209 GT, LEU, LTU, GEU, GTU}},
75814ad4 3210
b6c9286a
MM
3211/* uncomment for disabling the corresponding default options */
3212/* #define MACHINE_no_sched_interblock */
3213/* #define MACHINE_no_sched_speculative */
3214/* #define MACHINE_no_sched_speculative_load */
3215
3216/* indicate that issue rate is defined for this machine
3217 (no need to use the default) */
246853b9 3218#define ISSUE_RATE get_issue_rate ()
b6c9286a 3219
766a866c
MM
3220/* General flags. */
3221extern int flag_pic;
354b734b
MM
3222extern int optimize;
3223extern int flag_expensive_optimizations;
a7df97e6 3224extern int frame_pointer_needed;
354b734b 3225
75814ad4 3226/* Declare functions in rs6000.c */
d330fd93 3227extern void optimization_options ();
6b67933e 3228extern void output_options ();
75814ad4 3229extern void rs6000_override_options ();
3cfa4909 3230extern void rs6000_file_start ();
6b67933e 3231extern struct rtx_def *rs6000_float_const ();
c4c40373 3232extern struct rtx_def *rs6000_got_register ();
000034eb 3233extern struct rtx_def *find_addr_reg();
75814ad4 3234extern int direct_return ();
c4d38ccb 3235extern int get_issue_rate ();
75814ad4
MM
3236extern int any_operand ();
3237extern int short_cint_operand ();
3238extern int u_short_cint_operand ();
3239extern int non_short_cint_operand ();
3240extern int gpc_reg_operand ();
3241extern int cc_reg_operand ();
815cdc52 3242extern int cc_reg_not_cr0_operand ();
75814ad4
MM
3243extern int reg_or_short_operand ();
3244extern int reg_or_neg_short_operand ();
3245extern int reg_or_u_short_operand ();
3246extern int reg_or_cint_operand ();
766a866c 3247extern int got_operand ();
38c1f2d7 3248extern int got_no_const_operand ();
4e74d8ec 3249extern int num_insns_constant ();
75814ad4 3250extern int easy_fp_constant ();
b7676b46 3251extern int volatile_mem_operand ();
000034eb 3252extern int offsettable_mem_operand ();
75814ad4
MM
3253extern int mem_or_easy_const_operand ();
3254extern int add_operand ();
3255extern int non_add_cint_operand ();
c4d38ccb 3256extern int non_logical_cint_operand ();
75814ad4 3257extern int logical_operand ();
75814ad4 3258extern int mask_operand ();
a260abc9
DE
3259extern int mask64_operand ();
3260extern int and64_operand ();
75814ad4 3261extern int and_operand ();
802a0058
MM
3262extern int count_register_operand ();
3263extern int fpmem_operand ();
75814ad4
MM
3264extern int reg_or_mem_operand ();
3265extern int lwa_operand ();
3266extern int call_operand ();
3267extern int current_file_function_operand ();
3268extern int input_operand ();
7509c759 3269extern int small_data_operand ();
4697a36c
MM
3270extern void init_cumulative_args ();
3271extern void function_arg_advance ();
b6c9286a 3272extern int function_arg_boundary ();
4697a36c
MM
3273extern struct rtx_def *function_arg ();
3274extern int function_arg_partial_nregs ();
3275extern int function_arg_pass_by_reference ();
3276extern void setup_incoming_varargs ();
3277extern struct rtx_def *expand_builtin_saveregs ();
b7676b46 3278extern struct rtx_def *rs6000_stack_temp ();
7e69e155 3279extern int expand_block_move ();
75814ad4
MM
3280extern int load_multiple_operation ();
3281extern int store_multiple_operation ();
3282extern int branch_comparison_operator ();
3283extern int scc_comparison_operator ();
d2a0c2ee 3284extern int trap_comparison_operator ();
75814ad4
MM
3285extern int includes_lshift_p ();
3286extern int includes_rshift_p ();
3287extern int registers_ok_for_quad_peep ();
3288extern int addrs_ok_for_quad_peep ();
3289extern enum reg_class secondary_reload_class ();
3290extern int ccr_bit ();
d266da75 3291extern void rs6000_finalize_pic ();
30ea98f1 3292extern void rs6000_reorg ();
a7df97e6
MM
3293extern void rs6000_save_machine_status ();
3294extern void rs6000_restore_machine_status ();
3295extern void rs6000_init_expanders ();
75814ad4
MM
3296extern void print_operand ();
3297extern void print_operand_address ();
3298extern int first_reg_to_save ();
3299extern int first_fp_reg_to_save ();
75814ad4 3300extern int rs6000_makes_calls ();
4697a36c 3301extern rs6000_stack_t *rs6000_stack_info ();
75814ad4
MM
3302extern void output_prolog ();
3303extern void output_epilog ();
17167fd8 3304extern void output_mi_thunk ();
75814ad4
MM
3305extern void output_toc ();
3306extern void output_ascii ();
3307extern void rs6000_gen_section_name ();
3308extern void output_function_profiler ();
3309extern int rs6000_adjust_cost ();
bef84347 3310extern int rs6000_adjust_priority ();
b6c9286a
MM
3311extern void rs6000_trampoline_template ();
3312extern int rs6000_trampoline_size ();
3313extern void rs6000_initialize_trampoline ();
c4d38ccb 3314extern void rs6000_output_load_toc_table ();
7509c759
MM
3315extern int rs6000_comp_type_attributes ();
3316extern int rs6000_valid_decl_attribute_p ();
3317extern int rs6000_valid_type_attribute_p ();
3318extern void rs6000_set_default_type_attributes ();
3319extern struct rtx_def *rs6000_dll_import_ref ();
6a4cee5f 3320extern struct rtx_def *rs6000_longcall_ref ();
c4d38ccb 3321extern int function_arg_padding ();
296b8152
KG
3322extern void toc_section ();
3323extern void private_data_section ();
a6c2a102 3324extern void rs6000_fatal_bad_address ();
28174a14
MS
3325
3326/* See nonlocal_goto_receiver for when this must be set. */
3327
3328#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)