]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
re PR rtl-optimization/12147 (Wrong code with -O2 in context of reload)
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
93c9d1ba 3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 5
5de601cf 6 This file is part of GCC.
f045b2c9 7
5de601cf
NC
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
f045b2c9 12
5de601cf
NC
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
f045b2c9 17
5de601cf
NC
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the
20 Free Software Foundation, 59 Temple Place - Suite 330, Boston,
21 MA 02111-1307, USA. */
f045b2c9
RS
22
23/* Note that some other tm.h files include this one and then override
9ebbca7d 24 many of the definitions. */
f045b2c9 25
9ebbca7d
GK
26/* Definitions for the object file format. These are set at
27 compile-time. */
f045b2c9 28
9ebbca7d
GK
29#define OBJECT_XCOFF 1
30#define OBJECT_ELF 2
31#define OBJECT_PEF 3
ee890fe2 32#define OBJECT_MACHO 4
f045b2c9 33
9ebbca7d 34#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 35#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 36#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 37#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 38
2bfcf297
DB
39#ifndef TARGET_AIX
40#define TARGET_AIX 0
41#endif
42
8e3f41e7
MM
43/* Default string to use for cpu if not specified. */
44#ifndef TARGET_CPU_DEFAULT
45#define TARGET_CPU_DEFAULT ((char *)0)
46#endif
47
f984d8df
DB
48/* Common ASM definitions used by ASM_SPEC among the various targets
49 for handling -mcpu=xxx switches. */
50#define ASM_CPU_SPEC \
51"%{!mcpu*: \
52 %{mpower: %{!mpower2: -mpwr}} \
53 %{mpower2: -mpwrx} \
54 %{mpowerpc*: -mppc} \
55 %{mno-power: %{!mpowerpc*: -mcom}} \
56 %{!mno-power: %{!mpower2: %(asm_default)}}} \
57%{mcpu=common: -mcom} \
58%{mcpu=power: -mpwr} \
59%{mcpu=power2: -mpwrx} \
309323c2 60%{mcpu=power3: -m604} \
957e9e48 61%{mcpu=power4: -mpower4} \
f984d8df
DB
62%{mcpu=powerpc: -mppc} \
63%{mcpu=rios: -mpwr} \
64%{mcpu=rios1: -mpwr} \
65%{mcpu=rios2: -mpwrx} \
66%{mcpu=rsc: -mpwr} \
67%{mcpu=rsc1: -mpwr} \
68%{mcpu=401: -mppc} \
61a8515c
JS
69%{mcpu=403: -m403} \
70%{mcpu=405: -m405} \
2c9d95ef
DE
71%{mcpu=405fp: -m405} \
72%{mcpu=440: -m440} \
73%{mcpu=440fp: -m440} \
f984d8df
DB
74%{mcpu=505: -mppc} \
75%{mcpu=601: -m601} \
76%{mcpu=602: -mppc} \
77%{mcpu=603: -mppc} \
78%{mcpu=603e: -mppc} \
79%{mcpu=ec603e: -mppc} \
80%{mcpu=604: -mppc} \
81%{mcpu=604e: -mppc} \
82%{mcpu=620: -mppc} \
309323c2 83%{mcpu=630: -m604} \
f984d8df 84%{mcpu=740: -mppc} \
fd3b43f2 85%{mcpu=7400: -mppc} \
f18c054f 86%{mcpu=7450: -mppc} \
49ffe578 87%{mcpu=G4: -mppc} \
f984d8df 88%{mcpu=750: -mppc} \
49ffe578 89%{mcpu=G3: -mppc} \
f984d8df
DB
90%{mcpu=801: -mppc} \
91%{mcpu=821: -mppc} \
92%{mcpu=823: -mppc} \
775db490 93%{mcpu=860: -mppc} \
49ffe578
SP
94%{mcpu=970: -mpower4} \
95%{mcpu=G5: -mpower4} \
a3170dc6 96%{mcpu=8540: -me500} \
775db490 97%{maltivec: -maltivec}"
f984d8df
DB
98
99#define CPP_DEFAULT_SPEC ""
100
101#define ASM_DEFAULT_SPEC ""
102
841faeed
MM
103/* This macro defines names of additional specifications to put in the specs
104 that can be used in various specifications like CC1_SPEC. Its definition
105 is an initializer with a subgrouping for each command option.
106
107 Each subgrouping contains a string constant, that defines the
5de601cf 108 specification name, and a string constant that used by the GCC driver
841faeed
MM
109 program.
110
111 Do not define this macro if it does not need to do anything. */
112
7509c759 113#define SUBTARGET_EXTRA_SPECS
7509c759 114
c81bebd7 115#define EXTRA_SPECS \
c81bebd7 116 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
117 { "asm_cpu", ASM_CPU_SPEC }, \
118 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
119 SUBTARGET_EXTRA_SPECS
120
fb623df5 121/* Architecture type. */
f045b2c9 122
fb623df5
RK
123extern int target_flags;
124
125/* Use POWER architecture instructions and MQ register. */
38c1f2d7 126#define MASK_POWER 0x00000001
fb623df5 127
6febd581 128/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 129#define MASK_POWER2 0x00000002
6febd581 130
fb623df5 131/* Use PowerPC architecture instructions. */
38c1f2d7 132#define MASK_POWERPC 0x00000004
6febd581 133
583cf4db 134/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 135#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
136
137/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 138#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 139
fb623df5 140/* Use PowerPC-64 architecture instructions. */
38c1f2d7 141#define MASK_POWERPC64 0x00000020
f045b2c9 142
fb623df5 143/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 144#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
145
146/* Disable placing fp constants in the TOC; can be turned on when the
147 TOC overflows. */
38c1f2d7 148#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 149
0b9ccabc
RK
150/* Disable placing symbol+offset constants in the TOC; can be turned on when
151 the TOC overflows. */
38c1f2d7 152#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 153
fb623df5 154/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
155 there are more than 16K unique variables/constants in an executable. With
156 this option, linking fails only if there are more than 16K modules, or
157 if there are more than 16K unique variables/constant in a single module.
158
159 This is at the cost of having 2 extra loads and one extra store per
956d6950 160 function, and one less allocable register. */
38c1f2d7 161#define MASK_MINIMAL_TOC 0x00000200
642a35f1 162
7ddb6568
AM
163/* Nonzero for the 64 bit ABIs: longs and pointers are 64 bits. The
164 chip is running in "64-bit mode", in which CR0 is set in dot
165 operations based on all 64 bits of the register, bdnz works on 64-bit
166 ctr, lr is 64 bits, and so on. Requires MASK_POWERPC64. */
38c1f2d7 167#define MASK_64BIT 0x00000400
9e654916 168
f85f4585 169/* Disable use of FPRs. */
38c1f2d7 170#define MASK_SOFT_FLOAT 0x00000800
f85f4585 171
88cad84b 172/* Enable load/store multiple, even on PowerPC */
b21fb038 173#define MASK_MULTIPLE 0x00001000
4d30c363 174
7e69e155 175/* Use string instructions for block moves */
b21fb038 176#define MASK_STRING 0x00002000
7e69e155 177
38c1f2d7 178/* Disable update form of load/store */
b21fb038 179#define MASK_NO_UPDATE 0x00004000
38c1f2d7
MM
180
181/* Disable fused multiply/add operations */
b21fb038 182#define MASK_NO_FUSED_MADD 0x00008000
4697a36c 183
9ebbca7d 184/* Nonzero if we need to schedule the prolog and epilog. */
b21fb038 185#define MASK_SCHED_PROLOG 0x00010000
9ebbca7d 186
0ac081f6 187/* Use AltiVec instructions. */
b21fb038 188#define MASK_ALTIVEC 0x00020000
0ac081f6 189
6fa3f289 190/* Return small structures in memory (as the AIX ABI requires). */
b21fb038 191#define MASK_AIX_STRUCT_RET 0x00040000
0ac081f6 192
ffa22984
DE
193/* Use single field mfcr instruction. */
194#define MASK_MFCRF 0x00080000
195
895ea8f0
AM
196/* The only remaining free bits are 0x00600000. linux64.h uses
197 0x00100000, and sysv4.h uses 0x00800000 -> 0x40000000.
198 0x80000000 is not available because target_flags is signed. */
06f4e019 199
7e69e155
MM
200#define TARGET_POWER (target_flags & MASK_POWER)
201#define TARGET_POWER2 (target_flags & MASK_POWER2)
202#define TARGET_POWERPC (target_flags & MASK_POWERPC)
203#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
204#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
205#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
206#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
207#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
208#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
209#define TARGET_64BIT (target_flags & MASK_64BIT)
210#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
b21fb038 211#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
7e69e155 212#define TARGET_STRING (target_flags & MASK_STRING)
38c1f2d7
MM
213#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
214#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 215#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 216#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 217#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 218
ffa22984
DE
219/* Define TARGET_MFCRF if the target assembler supports the optional
220 field operand for mfcr and the target processor supports the
221 instruction. */
222
223#ifdef HAVE_AS_MFCRF
224#define TARGET_MFCRF (target_flags & MASK_MFCRF)
225#else
226#define TARGET_MFCRF 0
227#endif
228
229
2f3e5814 230#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 231#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
232#define TARGET_UPDATE (! TARGET_NO_UPDATE)
233#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 234
c4501e62
JJ
235#ifndef HAVE_AS_TLS
236#define HAVE_AS_TLS 0
237#endif
238
996ed075
JJ
239#ifdef IN_LIBGCC2
240/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 241#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
242#define TARGET_POWERPC64 1
243#else
244#define TARGET_POWERPC64 0
245#endif
b6c9286a 246#else
9ebbca7d 247#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
248#endif
249
a3950905 250#define TARGET_XL_CALL 0
a3950905 251
fb623df5 252/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 253
fb623df5 254 Macro to define tables used to set the flags.
f045b2c9
RS
255 This is a list in braces of pairs in braces,
256 each pair being { "NAME", VALUE }
257 where VALUE is the bits to set or minus the bits to clear.
258 An empty string NAME is used to identify the default VALUE. */
259
938937d8 260#define TARGET_SWITCHES \
9ebbca7d 261 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 262 N_("Use POWER instruction set")}, \
938937d8 263 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 264 | MASK_POWER2), \
047142d3 265 N_("Use POWER2 instruction set")}, \
9ebbca7d 266 {"no-power2", - MASK_POWER2, \
047142d3 267 N_("Do not use POWER2 instruction set")}, \
938937d8 268 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 269 | MASK_STRING), \
047142d3 270 N_("Do not use POWER instruction set")}, \
9ebbca7d 271 {"powerpc", MASK_POWERPC, \
047142d3 272 N_("Use PowerPC instruction set")}, \
938937d8 273 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 274 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 275 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 276 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 277 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 278 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
ffa22984 279 N_("Do not use PowerPC General Purpose group optional instructions")},\
9ebbca7d 280 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 281 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 282 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
ffa22984 283 N_("Do not use PowerPC Graphics group optional instructions")},\
9ebbca7d 284 {"powerpc64", MASK_POWERPC64, \
047142d3 285 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 286 {"no-powerpc64", - MASK_POWERPC64, \
ffa22984 287 N_("Do not use PowerPC-64 instruction set")}, \
f18c054f 288 {"altivec", MASK_ALTIVEC , \
c725bd79 289 N_("Use AltiVec instructions")}, \
f18c054f 290 {"no-altivec", - MASK_ALTIVEC , \
ffa22984 291 N_("Do not use AltiVec instructions")}, \
9ebbca7d 292 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 293 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 294 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 295 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 296 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 297 | MASK_MINIMAL_TOC), \
047142d3 298 N_("Put everything in the regular TOC")}, \
9ebbca7d 299 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 300 N_("Place floating point constants in TOC")}, \
9ebbca7d 301 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
ffa22984 302 N_("Do not place floating point constants in TOC")},\
9ebbca7d 303 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 304 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 305 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
ffa22984 306 N_("Do not place symbol+offset constants in TOC")},\
9ebbca7d
GK
307 {"minimal-toc", MASK_MINIMAL_TOC, \
308 "Use only one TOC entry per procedure"}, \
309 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 310 ""}, \
9ebbca7d 311 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 312 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 313 {"hard-float", - MASK_SOFT_FLOAT, \
ffa22984 314 N_("Use hardware floating point")}, \
9ebbca7d 315 {"soft-float", MASK_SOFT_FLOAT, \
ffa22984 316 N_("Do not use hardware floating point")}, \
b21fb038 317 {"multiple", MASK_MULTIPLE, \
047142d3 318 N_("Generate load/store multiple instructions")}, \
9ebbca7d 319 {"no-multiple", - MASK_MULTIPLE, \
047142d3 320 N_("Do not generate load/store multiple instructions")},\
b21fb038 321 {"string", MASK_STRING, \
047142d3 322 N_("Generate string instructions for block moves")},\
9ebbca7d 323 {"no-string", - MASK_STRING, \
047142d3 324 N_("Do not generate string instructions for block moves")},\
9ebbca7d 325 {"update", - MASK_NO_UPDATE, \
047142d3 326 N_("Generate load/store with update instructions")},\
9ebbca7d 327 {"no-update", MASK_NO_UPDATE, \
047142d3 328 N_("Do not generate load/store with update instructions")},\
9ebbca7d 329 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 330 N_("Generate fused multiply/add instructions")},\
9ebbca7d 331 {"no-fused-madd", MASK_NO_FUSED_MADD, \
ffa22984 332 N_("Do not generate fused multiply/add instructions")},\
9ebbca7d
GK
333 {"sched-prolog", MASK_SCHED_PROLOG, \
334 ""}, \
335 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
ffa22984 336 N_("Do not schedule the start and end of the procedure")},\
9ebbca7d
GK
337 {"sched-epilog", MASK_SCHED_PROLOG, \
338 ""}, \
339 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
340 ""}, \
b21fb038 341 {"aix-struct-return", MASK_AIX_STRUCT_RET, \
6fa3f289 342 N_("Return all structures in memory (AIX default)")},\
b21fb038 343 {"svr4-struct-return", - MASK_AIX_STRUCT_RET, \
6fa3f289 344 N_("Return small structures in registers (SVR4 default)")},\
b21fb038 345 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET, \
ffa22984 346 ""}, \
b21fb038 347 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET, \
ffa22984
DE
348 ""}, \
349 {"mfcrf", MASK_MFCRF, \
350 N_("Generate single field mfcr instruction")}, \
351 {"no-mfcrf", - MASK_MFCRF, \
352 N_("Do not generate single field mfcr instruction")},\
938937d8 353 SUBTARGET_SWITCHES \
9ebbca7d
GK
354 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
355 ""}}
fb623df5 356
938937d8 357#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
358
359/* This is meant to be redefined in the host dependent files */
360#define SUBTARGET_SWITCHES
fb623df5 361
cac8ce95 362/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 363enum processor_type
bef84347
VM
364 {
365 PROCESSOR_RIOS1,
366 PROCESSOR_RIOS2,
3cb999d8 367 PROCESSOR_RS64A,
bef84347
VM
368 PROCESSOR_MPCCORE,
369 PROCESSOR_PPC403,
fe7f5677 370 PROCESSOR_PPC405,
b54cf83a 371 PROCESSOR_PPC440,
bef84347
VM
372 PROCESSOR_PPC601,
373 PROCESSOR_PPC603,
374 PROCESSOR_PPC604,
375 PROCESSOR_PPC604e,
376 PROCESSOR_PPC620,
3cb999d8 377 PROCESSOR_PPC630,
ed947a96
DJ
378 PROCESSOR_PPC750,
379 PROCESSOR_PPC7400,
309323c2 380 PROCESSOR_PPC7450,
a3170dc6 381 PROCESSOR_PPC8540,
309323c2 382 PROCESSOR_POWER4
bef84347 383};
fb623df5
RK
384
385extern enum processor_type rs6000_cpu;
386
387/* Recast the processor type to the cpu attribute. */
388#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
389
8482e358 390/* Define generic processor types based upon current deployment. */
3cb999d8
DE
391#define PROCESSOR_COMMON PROCESSOR_PPC601
392#define PROCESSOR_POWER PROCESSOR_RIOS1
393#define PROCESSOR_POWERPC PROCESSOR_PPC604
394#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 395
fb623df5 396/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
397#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
398#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 399
6febd581
RK
400/* Specify the dialect of assembler to use. New mnemonics is dialect one
401 and the old mnemonics are dialect zero. */
9ebbca7d 402#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 403
569fa502
DN
404/* Types of costly dependences. */
405enum rs6000_dependence_cost
406 {
407 max_dep_latency = 1000,
408 no_dep_costly,
409 all_deps_costly,
410 true_store_to_load_dep_costly,
411 store_to_load_dep_costly
412 };
413
cbe26ab8
DN
414/* Types of nop insertion schemes in sched target hook sched_finish. */
415enum rs6000_nop_insertion
416 {
417 sched_finish_regroup_exact = 1000,
418 sched_finish_pad_groups,
419 sched_finish_none
420 };
421
422/* Dispatch group termination caused by an insn. */
423enum group_termination
424 {
425 current_group,
426 previous_group
427 };
428
956d6950 429/* This is meant to be overridden in target specific files. */
b6c9286a 430#define SUBTARGET_OPTIONS
b6c9286a 431
9ebbca7d
GK
432#define TARGET_OPTIONS \
433{ \
047142d3 434 {"cpu=", &rs6000_select[1].string, \
c409ea0d 435 N_("Use features of and schedule code for given CPU"), 0}, \
047142d3 436 {"tune=", &rs6000_select[2].string, \
c409ea0d
DD
437 N_("Schedule code for given CPU"), 0}, \
438 {"debug=", &rs6000_debug_name, N_("Enable debug output"), 0}, \
57ac7be9 439 {"traceback=", &rs6000_traceback_name, \
c409ea0d
DD
440 N_("Select full, part, or no traceback table"), 0}, \
441 {"abi=", &rs6000_abi_string, N_("Specify ABI to use"), 0}, \
6fa3f289 442 {"long-double-", &rs6000_long_double_size_string, \
c409ea0d 443 N_("Specify size of long double (64 or 128 bits)"), 0}, \
a3170dc6 444 {"isel=", &rs6000_isel_string, \
c409ea0d 445 N_("Specify yes/no if isel instructions should be generated"), 0}, \
993f19a8 446 {"spe=", &rs6000_spe_string, \
c409ea0d 447 N_("Specify yes/no if SPE SIMD instructions should be generated"), 0},\
5da702b1 448 {"float-gprs=", &rs6000_float_gprs_string, \
c409ea0d
DD
449 N_("Specify yes/no if using floating point in the GPRs"), 0}, \
450 {"vrsave=", &rs6000_altivec_vrsave_string, \
451 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec"), 0}, \
a5c76ee6 452 {"longcall", &rs6000_longcall_switch, \
c409ea0d
DD
453 N_("Avoid all range limits on call instructions"), 0}, \
454 {"no-longcall", &rs6000_longcall_switch, "", 0}, \
569fa502 455 {"sched-costly-dep=", &rs6000_sched_costly_dep_str, \
cbe26ab8
DN
456 N_("Determine which dependences between insns are considered costly"), 0}, \
457 {"insert-sched-nops=", &rs6000_sched_insert_nops_str, \
458 N_("Specify which post scheduling nop insertion scheme to apply"), 0}, \
025d9908
KH
459 {"align-", &rs6000_alignment_string, \
460 N_("Specify alignment of structure fields default/natural"), 0}, \
79ae11c4
DN
461 {"prioritize-restricted-insns=", &rs6000_sched_restricted_insns_priority_str, \
462 N_("Specify scheduling priority for dispatch slot restricted insns"), 0}, \
9ebbca7d 463 SUBTARGET_OPTIONS \
b6c9286a 464}
fb623df5 465
7816bea0
DJ
466/* Support for a compile-time default CPU, et cetera. The rules are:
467 --with-cpu is ignored if -mcpu is specified.
468 --with-tune is ignored if -mtune is specified.
469 --with-float is ignored if -mhard-float or -msoft-float are
470 specified. */
471#define OPTION_DEFAULT_SPECS \
472 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
473 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
474 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
475
ff222560 476/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
477struct rs6000_cpu_select
478{
815cdc52
MM
479 const char *string;
480 const char *name;
8e3f41e7
MM
481 int set_tune_p;
482 int set_arch_p;
483};
484
485extern struct rs6000_cpu_select rs6000_select[];
fb623df5 486
38c1f2d7 487/* Debug support */
0ac081f6 488extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 489extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
490extern int rs6000_debug_stack; /* debug stack applications */
491extern int rs6000_debug_arg; /* debug argument handling */
492
493#define TARGET_DEBUG_STACK rs6000_debug_stack
494#define TARGET_DEBUG_ARG rs6000_debug_arg
495
57ac7be9
AM
496extern const char *rs6000_traceback_name; /* Type of traceback table. */
497
6fa3f289
ZW
498/* These are separate from target_flags because we've run out of bits
499 there. */
500extern const char *rs6000_long_double_size_string;
501extern int rs6000_long_double_type_size;
502extern int rs6000_altivec_abi;
a3170dc6
AH
503extern int rs6000_spe_abi;
504extern int rs6000_isel;
993f19a8 505extern int rs6000_spe;
5da702b1
AH
506extern int rs6000_float_gprs;
507extern const char *rs6000_float_gprs_string;
a3170dc6 508extern const char *rs6000_isel_string;
993f19a8 509extern const char *rs6000_spe_string;
08b57fb3
AH
510extern const char *rs6000_altivec_vrsave_string;
511extern int rs6000_altivec_vrsave;
a5c76ee6
ZW
512extern const char *rs6000_longcall_switch;
513extern int rs6000_default_long_calls;
025d9908
KH
514extern const char* rs6000_alignment_string;
515extern int rs6000_alignment_flags;
79ae11c4
DN
516extern const char *rs6000_sched_restricted_insns_priority_str;
517extern int rs6000_sched_restricted_insns_priority;
569fa502
DN
518extern const char *rs6000_sched_costly_dep_str;
519extern enum rs6000_dependence_cost rs6000_sched_costly_dep;
cbe26ab8
DN
520extern const char *rs6000_sched_insert_nops_str;
521extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
025d9908
KH
522
523/* Alignment options for fields in structures for sub-targets following
524 AIX-like ABI.
525 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
526 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
527
528 Override the macro definitions when compiling libobjc to avoid undefined
529 reference to rs6000_alignment_flags due to library's use of GCC alignment
530 macros which use the macros below. */
531
532#ifndef IN_TARGET_LIBS
533#define MASK_ALIGN_POWER 0x00000000
534#define MASK_ALIGN_NATURAL 0x00000001
535#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
536#else
537#define TARGET_ALIGN_NATURAL 0
538#endif
6fa3f289 539
569fa502
DN
540/* Set a default value for DEFAULT_SCHED_COSTLY_DEP used by target hook
541 is_costly_dependence. */
542#define DEFAULT_SCHED_COSTLY_DEP \
543 (rs6000_cpu == PROCESSOR_POWER4 ? store_to_load_dep_costly : no_dep_costly)
544
79ae11c4
DN
545/* Define if the target has restricted dispatch slot instructions. */
546#define DEFAULT_RESTRICTED_INSNS_PRIORITY (rs6000_cpu == PROCESSOR_POWER4 ? 1 : 0)
547
cbe26ab8
DN
548/* Set a default value for post scheduling nop insertion scheme
549 (used by taget hook sched_finish). */
550#define DEFAULT_SCHED_FINISH_NOP_INSERTION_SCHEME \
551 (rs6000_cpu == PROCESSOR_POWER4 ? sched_finish_regroup_exact : sched_finish_none)
552
6fa3f289
ZW
553#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
554#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
08b57fb3 555#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
6fa3f289 556
a3170dc6
AH
557#define TARGET_SPE_ABI 0
558#define TARGET_SPE 0
993f19a8 559#define TARGET_E500 0
a3170dc6
AH
560#define TARGET_ISEL 0
561#define TARGET_FPRS 1
562
fb623df5
RK
563/* Sometimes certain combinations of command options do not make sense
564 on a particular target machine. You can define a macro
565 `OVERRIDE_OPTIONS' to take account of this. This macro, if
566 defined, is executed once just after all the command options have
567 been parsed.
568
ffa22984 569 Do not use this macro to turn on various extra optimizations for
5accd822
DE
570 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
571
fb623df5
RK
572 On the RS/6000 this is used to define the target cpu type. */
573
8e3f41e7 574#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 575
5accd822
DE
576/* Define this to change the optimizations performed by default. */
577#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
578
4c4eb375
GK
579/* Show we can debug even without a frame pointer. */
580#define CAN_DEBUG_WITHOUT_FP
581
a5c76ee6 582/* Target pragma. */
c58b209a
NB
583#define REGISTER_TARGET_PRAGMAS() do { \
584 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
a5c76ee6
ZW
585} while (0)
586
4c4eb375
GK
587/* Target #defines. */
588#define TARGET_CPU_CPP_BUILTINS() \
589 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
590
591/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
592 we're compiling for. Some configurations may need to override it. */
593#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
594 do \
595 { \
596 if (BYTES_BIG_ENDIAN) \
597 { \
598 builtin_define ("__BIG_ENDIAN__"); \
599 builtin_define ("_BIG_ENDIAN"); \
600 builtin_assert ("machine=bigendian"); \
601 } \
602 else \
603 { \
604 builtin_define ("__LITTLE_ENDIAN__"); \
605 builtin_define ("_LITTLE_ENDIAN"); \
606 builtin_assert ("machine=littleendian"); \
607 } \
608 } \
609 while (0)
f045b2c9 610\f
4c4eb375 611/* Target machine storage layout. */
f045b2c9 612
13d39dbc 613/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 614 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
615 the value is constrained to be within the bounds of the declared
616 type, but kept valid in the wider mode. The signedness of the
617 extension may differ from that of the type. */
618
39403d82
DE
619#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
620 if (GET_MODE_CLASS (MODE) == MODE_INT \
621 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
b78d48dd 622 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 623
f045b2c9 624/* Define this if most significant bit is lowest numbered
82e41834
KH
625 in instructions that operate on numbered bit-fields. */
626/* That is true on RS/6000. */
f045b2c9
RS
627#define BITS_BIG_ENDIAN 1
628
629/* Define this if most significant byte of a word is the lowest numbered. */
630/* That is true on RS/6000. */
631#define BYTES_BIG_ENDIAN 1
632
633/* Define this if most significant word of a multiword number is lowest
c81bebd7 634 numbered.
f045b2c9
RS
635
636 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 637 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
638#define WORDS_BIG_ENDIAN 1
639
2e360ab3 640#define MAX_BITS_PER_WORD 64
f045b2c9
RS
641
642/* Width of a word, in units (bytes). */
c1aa3958 643#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
644#ifdef IN_LIBGCC2
645#define MIN_UNITS_PER_WORD UNITS_PER_WORD
646#else
ef0e53ce 647#define MIN_UNITS_PER_WORD 4
f34fc46e 648#endif
2e360ab3 649#define UNITS_PER_FP_WORD 8
0ac081f6 650#define UNITS_PER_ALTIVEC_WORD 16
a3170dc6 651#define UNITS_PER_SPE_WORD 8
f045b2c9 652
915f619f
JW
653/* Type used for ptrdiff_t, as a string used in a declaration. */
654#define PTRDIFF_TYPE "int"
655
058ef853
DE
656/* Type used for size_t, as a string used in a declaration. */
657#define SIZE_TYPE "long unsigned int"
658
f045b2c9
RS
659/* Type used for wchar_t, as a string used in a declaration. */
660#define WCHAR_TYPE "short unsigned int"
661
662/* Width of wchar_t in bits. */
663#define WCHAR_TYPE_SIZE 16
664
9e654916
RK
665/* A C expression for the size in bits of the type `short' on the
666 target machine. If you don't define this, the default is half a
667 word. (If this would be less than one storage unit, it is
668 rounded up to one unit.) */
669#define SHORT_TYPE_SIZE 16
670
671/* A C expression for the size in bits of the type `int' on the
672 target machine. If you don't define this, the default is one
673 word. */
19d2d16f 674#define INT_TYPE_SIZE 32
9e654916
RK
675
676/* A C expression for the size in bits of the type `long' on the
677 target machine. If you don't define this, the default is one
678 word. */
2f3e5814 679#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
680#define MAX_LONG_TYPE_SIZE 64
681
682/* A C expression for the size in bits of the type `long long' on the
683 target machine. If you don't define this, the default is two
684 words. */
685#define LONG_LONG_TYPE_SIZE 64
686
9e654916
RK
687/* A C expression for the size in bits of the type `float' on the
688 target machine. If you don't define this, the default is one
689 word. */
690#define FLOAT_TYPE_SIZE 32
691
692/* A C expression for the size in bits of the type `double' on the
693 target machine. If you don't define this, the default is two
694 words. */
695#define DOUBLE_TYPE_SIZE 64
696
697/* A C expression for the size in bits of the type `long double' on
698 the target machine. If you don't define this, the default is two
699 words. */
6fa3f289 700#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
701
702/* Constant which presents upper bound of the above value. */
703#define MAX_LONG_DOUBLE_TYPE_SIZE 128
704
705/* Define this to set long double type size to use in libgcc2.c, which can
706 not depend on target_flags. */
707#ifdef __LONG_DOUBLE_128__
708#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
709#else
710#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
711#endif
9e654916 712
5b8f5865
DE
713/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
714#define WIDEST_HARDWARE_FP_SIZE 64
715
f045b2c9
RS
716/* Width in bits of a pointer.
717 See also the macro `Pmode' defined below. */
2f3e5814 718#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
719
720/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 721#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
722
723/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 724#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
725
726/* Allocation boundary (in *bits*) for the code of a function. */
727#define FUNCTION_BOUNDARY 32
728
729/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
730#define BIGGEST_ALIGNMENT 128
731
732/* A C expression to compute the alignment for a variables in the
733 local store. TYPE is the data type, and ALIGN is the alignment
734 that the object would ordinarily have. */
735#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a3170dc6
AH
736 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
737 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
b73fd26c 738
f045b2c9
RS
739/* Alignment of field after `int : 0' in a structure. */
740#define EMPTY_FIELD_BOUNDARY 32
741
742/* Every structure's size must be a multiple of this. */
743#define STRUCTURE_SIZE_BOUNDARY 8
744
a3170dc6
AH
745/* Return 1 if a structure or array containing FIELD should be
746 accessed using `BLKMODE'.
747
748 For the SPE, simd types are V2SI, and gcc can be tempted to put the
749 entire thing in a DI and use subregs to access the internals.
750 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
751 back-end. Because a single GPR can hold a V2SI, but not a DI, the
752 best thing to do is set structs to BLKmode and avoid Severe Tire
753 Damage. */
754#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
755 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
756
43a88a8c 757/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
758#define PCC_BITFIELD_TYPE_MATTERS 1
759
69ef87e2
AH
760/* Make strings word-aligned so strcpy from constants will be faster.
761 Make vector constants quadword aligned. */
762#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
763 (TREE_CODE (EXP) == STRING_CST \
764 && (ALIGN) < BITS_PER_WORD \
765 ? BITS_PER_WORD \
766 : (ALIGN))
f045b2c9 767
0ac081f6
AH
768/* Make arrays of chars word-aligned for the same reasons.
769 Align vectors to 128 bits. */
f045b2c9 770#define DATA_ALIGNMENT(TYPE, ALIGN) \
a3170dc6 771 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
0ac081f6 772 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
773 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
774 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
775
a0ab749a 776/* Nonzero if move instructions will actually fail to work
f045b2c9 777 when given unaligned data. */
fdaff8ba 778#define STRICT_ALIGNMENT 0
e1565e65
DE
779
780/* Define this macro to be the value 1 if unaligned accesses have a cost
781 many times greater than aligned accesses, for example if they are
782 emulated in a trap handler. */
41543739
GK
783#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
784 (STRICT_ALIGNMENT \
fcce224d
DE
785 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
786 || (MODE) == DImode) \
41543739 787 && (ALIGN) < 32))
f045b2c9
RS
788\f
789/* Standard register usage. */
790
791/* Number of actual hardware registers.
792 The hardware registers are assigned numbers for the compiler
793 from 0 to just below FIRST_PSEUDO_REGISTER.
794 All registers that the compiler knows about must be given numbers,
795 even those that are not normally considered general registers.
796
797 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
798 an MQ register, a count register, a link register, and 8 condition
07488f32
ZW
799 register fields, which we view here as separate registers. AltiVec
800 adds 32 vector registers and a VRsave register.
f045b2c9
RS
801
802 In addition, the difference between the frame and argument pointers is
803 a function of the number of registers saved, so we need to have a
804 register for AP that will later be eliminated in favor of SP or FP.
802a0058 805 This is a normal register, but it is fixed.
f045b2c9 806
802a0058
MM
807 We also create a pseudo register for float/int conversions, that will
808 really represent the memory location used. It is represented here as
809 a register, in order to work around problems in allocating stack storage
810 in inline functions. */
811
a3170dc6 812#define FIRST_PSEUDO_REGISTER 113
f045b2c9 813
d6a7951f 814/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 815#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 816
93c9d1ba 817/* Add 32 dwarf columns for synthetic SPE registers. */
c19de7aa
AH
818#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
819
93c9d1ba
AM
820/* The SPE has an additional 32 synthetic registers, with DWARF debug
821 info numbering for these registers starting at 1200. While eh_frame
822 register numbering need not be the same as the debug info numbering,
823 we choose to number these regs for eh_frame at 1200 too. This allows
824 future versions of the rs6000 backend to add hard registers and
825 continue to use the gcc hard register numbering for eh_frame. If the
826 extra SPE registers in eh_frame were numbered starting from the
827 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
828 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
829 avoid invalidating older SPE eh_frame info.
830
831 We must map them here to avoid huge unwinder tables mostly consisting
832 of unused space. */
833#define DWARF_REG_TO_UNWIND_COLUMN(r) \
834 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER) : (r))
835
836/* Use gcc hard register numbering for eh_frame. */
837#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 838
f045b2c9
RS
839/* 1 for registers that have pervasive standard uses
840 and are not available for the register allocator.
841
5dead3e5
DJ
842 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
843 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 844
a127c4e5
RK
845 cr5 is not supposed to be used.
846
847 On System V implementations, r13 is fixed and not available for use. */
848
f045b2c9 849#define FIXED_REGISTERS \
5dead3e5 850 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
851 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
852 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
853 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
854 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
855 /* AltiVec registers. */ \
856 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
857 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 858 1, 1 \
a3170dc6 859 , 1, 1 \
0ac081f6 860}
f045b2c9
RS
861
862/* 1 for registers not available across function calls.
863 These must include the FIXED_REGISTERS and also any
864 registers that can be used without being saved.
865 The latter must include the registers where values are returned
866 and the register where structure-value addresses are passed.
867 Aside from that, you can include as many other registers as you like. */
868
869#define CALL_USED_REGISTERS \
a127c4e5 870 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
871 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
872 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
873 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
874 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
875 /* AltiVec registers. */ \
876 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
877 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 878 1, 1 \
a3170dc6 879 , 1, 1 \
0ac081f6
AH
880}
881
289e96b2
AH
882/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
883 the entire set of `FIXED_REGISTERS' be included.
884 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
885 This macro is optional. If not specified, it defaults to the value
886 of `CALL_USED_REGISTERS'. */
887
888#define CALL_REALLY_USED_REGISTERS \
889 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
890 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
891 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
892 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
893 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
894 /* AltiVec registers. */ \
895 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
896 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 897 0, 0 \
a3170dc6 898 , 0, 0 \
289e96b2 899}
f045b2c9 900
9ebbca7d
GK
901#define MQ_REGNO 64
902#define CR0_REGNO 68
903#define CR1_REGNO 69
904#define CR2_REGNO 70
905#define CR3_REGNO 71
906#define CR4_REGNO 72
907#define MAX_CR_REGNO 75
908#define XER_REGNO 76
0ac081f6
AH
909#define FIRST_ALTIVEC_REGNO 77
910#define LAST_ALTIVEC_REGNO 108
28bcfd4d 911#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 912#define VRSAVE_REGNO 109
5f004351 913#define VSCR_REGNO 110
a3170dc6
AH
914#define SPE_ACC_REGNO 111
915#define SPEFSCR_REGNO 112
9ebbca7d 916
f045b2c9
RS
917/* List the order in which to allocate registers. Each register must be
918 listed once, even those in FIXED_REGISTERS.
919
920 We allocate in the following order:
921 fp0 (not saved or used for anything)
922 fp13 - fp2 (not saved; incoming fp arg registers)
923 fp1 (not saved; return value)
924 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
925 cr7, cr6 (not saved or special)
926 cr1 (not saved, but used for FP operations)
f045b2c9 927 cr0 (not saved, but used for arithmetic operations)
5accd822 928 cr4, cr3, cr2 (saved)
f045b2c9
RS
929 r0 (not saved; cannot be base reg)
930 r9 (not saved; best for TImode)
931 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
932 r3 (not saved; return value register)
933 r31 - r13 (saved; order given to save least number)
934 r12 (not saved; if used for DImode or DFmode would use r13)
935 mq (not saved; best to use it if we can)
936 ctr (not saved; when we have the choice ctr is better)
937 lr (saved)
5f004351 938 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
a3170dc6 939 spe_acc, spefscr (fixed)
0ac081f6
AH
940
941 AltiVec registers:
942 v0 - v1 (not saved or used for anything)
943 v13 - v3 (not saved; incoming vector arg registers)
944 v2 (not saved; incoming vector arg reg; return value)
945 v19 - v14 (not saved or used for anything)
946 v31 - v20 (saved; order given to save least number)
947*/
948
6b13641d
DJ
949#if FIXED_R2 == 1
950#define MAYBE_R2_AVAILABLE
951#define MAYBE_R2_FIXED 2,
952#else
953#define MAYBE_R2_AVAILABLE 2,
954#define MAYBE_R2_FIXED
955#endif
f045b2c9
RS
956
957#define REG_ALLOC_ORDER \
958 {32, \
959 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
960 33, \
961 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
962 50, 49, 48, 47, 46, \
5accd822 963 75, 74, 69, 68, 72, 71, 70, \
6b13641d 964 0, MAYBE_R2_AVAILABLE \
f045b2c9
RS
965 9, 11, 10, 8, 7, 6, 5, 4, \
966 3, \
967 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
968 18, 17, 16, 15, 14, 13, 12, \
969 64, 66, 65, \
6b13641d 970 73, 1, MAYBE_R2_FIXED 67, 76, \
0ac081f6
AH
971 /* AltiVec registers. */ \
972 77, 78, \
973 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
974 79, \
975 96, 95, 94, 93, 92, 91, \
58568475 976 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
5f004351 977 97, 109, 110 \
a3170dc6 978 , 111, 112 \
0ac081f6 979}
f045b2c9
RS
980
981/* True if register is floating-point. */
982#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
983
984/* True if register is a condition register. */
985#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
986
815cdc52
MM
987/* True if register is a condition register, but not cr0. */
988#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
989
f045b2c9 990/* True if register is an integer register. */
9ebbca7d 991#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 992
a3170dc6
AH
993/* SPE SIMD registers are just the GPRs. */
994#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
995
0d86f538 996/* True if register is the XER register. */
9ebbca7d 997#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 998
0ac081f6
AH
999/* True if register is an AltiVec register. */
1000#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1001
f045b2c9
RS
1002/* Return number of consecutive hard regs needed starting at reg REGNO
1003 to hold something of mode MODE.
1004 This is ordinarily the length in words of a value of mode MODE
1005 but can be less for certain modes in special long registers.
1006
a3170dc6
AH
1007 For the SPE, GPRs are 64 bits but only 32 bits are visible in
1008 scalar instructions. The upper 32 bits are only available to the
1009 SIMD instructions.
1010
a260abc9
DE
1011 POWER and PowerPC GPRs hold 32 bits worth;
1012 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 1013
802a0058 1014#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 1015 (FP_REGNO_P (REGNO) \
2e360ab3 1016 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
a3170dc6
AH
1017 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
1018 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
0ac081f6
AH
1019 : ALTIVEC_REGNO_P (REGNO) \
1020 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
c1aa3958 1021 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0e67400a
FJ
1022
1023#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1024 ((TARGET_32BIT && TARGET_POWERPC64 \
1025 && (MODE == DImode || MODE == DFmode) \
1026 && INT_REGNO_P (REGNO)) ? 1 : 0)
f045b2c9 1027
0ac081f6 1028#define ALTIVEC_VECTOR_MODE(MODE) \
cb2a532e
AH
1029 ((MODE) == V16QImode \
1030 || (MODE) == V8HImode \
1031 || (MODE) == V4SFmode \
6e1f54e2 1032 || (MODE) == V4SImode)
0ac081f6 1033
a3170dc6
AH
1034#define SPE_VECTOR_MODE(MODE) \
1035 ((MODE) == V4HImode \
1036 || (MODE) == V2SFmode \
00a892b8 1037 || (MODE) == V1DImode \
a3170dc6
AH
1038 || (MODE) == V2SImode)
1039
0ac081f6
AH
1040/* Define this macro to be nonzero if the port is prepared to handle
1041 insns involving vector mode MODE. At the very least, it must have
1042 move patterns for this mode. */
1043
a3170dc6
AH
1044#define VECTOR_MODE_SUPPORTED_P(MODE) \
1045 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
1046 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
0ac081f6 1047
f045b2c9 1048/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
6b13641d
DJ
1049 For POWER and PowerPC, the GPRs can hold any mode, but values bigger
1050 than one register cannot go past R31. The float
bdfd4e31
RK
1051 registers only can hold floating modes and DImode, and CR register only
1052 can hold CC modes. We cannot put TImode anywhere except general
82e41834 1053 register and it must be able to fit within the register set. */
f045b2c9 1054
802a0058 1055#define HARD_REGNO_MODE_OK(REGNO, MODE) \
6b13641d
DJ
1056 (INT_REGNO_P (REGNO) ? \
1057 INT_REGNO_P (REGNO + HARD_REGNO_NREGS (REGNO, MODE) - 1) \
1058 : FP_REGNO_P (REGNO) ? \
1059 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1060 || (GET_MODE_CLASS (MODE) == MODE_INT \
1061 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 1062 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
a3170dc6 1063 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
802a0058 1064 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 1065 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
c1aa3958 1066 : GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
f045b2c9
RS
1067
1068/* Value is 1 if it is a good idea to tie two pseudo registers
1069 when one has mode MODE1 and one has mode MODE2.
1070 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1071 for any hard reg, then this must be 0 for correct output. */
1072#define MODES_TIEABLE_P(MODE1, MODE2) \
1073 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1074 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1075 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1076 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1077 : GET_MODE_CLASS (MODE1) == MODE_CC \
1078 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1079 : GET_MODE_CLASS (MODE2) == MODE_CC \
1080 ? GET_MODE_CLASS (MODE1) == MODE_CC \
4dcc01f3
AH
1081 : SPE_VECTOR_MODE (MODE1) \
1082 ? SPE_VECTOR_MODE (MODE2) \
1083 : SPE_VECTOR_MODE (MODE2) \
1084 ? SPE_VECTOR_MODE (MODE1) \
0ac081f6
AH
1085 : ALTIVEC_VECTOR_MODE (MODE1) \
1086 ? ALTIVEC_VECTOR_MODE (MODE2) \
1087 : ALTIVEC_VECTOR_MODE (MODE2) \
1088 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
1089 : 1)
1090
c8ae788f
SB
1091/* Post-reload, we can't use any new AltiVec registers, as we already
1092 emitted the vrsave mask. */
1093
1094#define HARD_REGNO_RENAME_OK(SRC, DST) \
1095 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
1096
f045b2c9 1097/* A C expression returning the cost of moving data from a register of class
34bb030a 1098 CLASS1 to one of CLASS2. */
f045b2c9 1099
34bb030a 1100#define REGISTER_MOVE_COST rs6000_register_move_cost
f045b2c9 1101
34bb030a
DE
1102/* A C expressions returning the cost of moving data of MODE from a register to
1103 or from memory. */
f045b2c9 1104
34bb030a 1105#define MEMORY_MOVE_COST rs6000_memory_move_cost
f045b2c9
RS
1106
1107/* Specify the cost of a branch insn; roughly the number of extra insns that
1108 should be added to avoid a branch.
1109
ef457bda 1110 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1111 unscheduled conditional branch. */
1112
ef457bda 1113#define BRANCH_COST 3
f045b2c9 1114
85e50b6b
DE
1115/* Override BRANCH_COST heuristic which empirically produces worse
1116 performance for fold_range_test(). */
1117
1118#define RANGE_TEST_NON_SHORT_CIRCUIT 0
a3170dc6
AH
1119
1120/* A fixed register used at prologue and epilogue generation to fix
1121 addressing modes. The SPE needs heavy addressing fixes at the last
1122 minute, and it's best to save a register for it.
1123
1124 AltiVec also needs fixes, but we've gotten around using r11, which
1125 is actually wrong because when use_backchain_to_restore_sp is true,
1126 we end up clobbering r11.
1127
1128 The AltiVec case needs to be fixed. Dunno if we should break ABI
b6d08ca1 1129 compatibility and reserve a register for it as well.. */
a3170dc6
AH
1130
1131#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
1132
6febd581
RK
1133/* Define this macro to change register usage conditional on target flags.
1134 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 1135 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 1136 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
1137 Conditionally disable FPRs. */
1138
8d30c4ee
FS
1139#define CONDITIONAL_REGISTER_USAGE \
1140{ \
e9e4208a 1141 int i; \
8d30c4ee
FS
1142 if (! TARGET_POWER) \
1143 fixed_regs[64] = 1; \
1144 if (TARGET_64BIT) \
289e96b2
AH
1145 fixed_regs[13] = call_used_regs[13] \
1146 = call_really_used_regs[13] = 1; \
a3170dc6 1147 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
8d30c4ee 1148 for (i = 32; i < 64; i++) \
289e96b2
AH
1149 fixed_regs[i] = call_used_regs[i] \
1150 = call_really_used_regs[i] = 1; \
14f00213
FS
1151 if (DEFAULT_ABI == ABI_V4 \
1152 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1153 && flag_pic == 2) \
1154 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1db02437
FS
1155 if (DEFAULT_ABI == ABI_V4 \
1156 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1157 && flag_pic == 1) \
1158 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1159 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1160 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1161 if (DEFAULT_ABI == ABI_DARWIN \
1162 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1163 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1164 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1165 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1166 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
5f004351
AH
1167 if (TARGET_ALTIVEC) \
1168 global_regs[VSCR_REGNO] = 1; \
a3170dc6
AH
1169 if (TARGET_SPE) \
1170 { \
1171 global_regs[SPEFSCR_REGNO] = 1; \
1172 fixed_regs[FIXED_SCRATCH] \
1173 = call_used_regs[FIXED_SCRATCH] \
1174 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1175 } \
2473ee11 1176 if (! TARGET_ALTIVEC) \
c1f11548
DE
1177 { \
1178 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1179 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1180 call_really_used_regs[VRSAVE_REGNO] = 1; \
1181 } \
0ac081f6 1182 if (TARGET_ALTIVEC_ABI) \
2473ee11 1183 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 1184 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 1185}
6febd581 1186
f045b2c9
RS
1187/* Specify the registers used for certain standard purposes.
1188 The values of these macros are register numbers. */
1189
1190/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1191/* #define PC_REGNUM */
1192
1193/* Register to use for pushing function arguments. */
1194#define STACK_POINTER_REGNUM 1
1195
1196/* Base register for access to local variables of the function. */
1197#define FRAME_POINTER_REGNUM 31
1198
1199/* Value should be nonzero if functions must have frame pointers.
1200 Zero means the frame pointer need not be set up (and parms
1201 may be accessed via the stack pointer) in functions that seem suitable.
1202 This is computed in `reload', in reload1.c. */
1203#define FRAME_POINTER_REQUIRED 0
1204
1205/* Base register for access to arguments of the function. */
1206#define ARG_POINTER_REGNUM 67
1207
1208/* Place to put static chain when calling a function that requires it. */
1209#define STATIC_CHAIN_REGNUM 11
1210
82e41834 1211/* Link register number. */
9ebbca7d 1212#define LINK_REGISTER_REGNUM 65
b6c9286a 1213
82e41834 1214/* Count register number. */
9ebbca7d 1215#define COUNT_REGISTER_REGNUM 66
f045b2c9
RS
1216\f
1217/* Define the classes of registers for register constraints in the
1218 machine description. Also define ranges of constants.
1219
1220 One of the classes must always be named ALL_REGS and include all hard regs.
1221 If there is more than one class, another class must be named NO_REGS
1222 and contain no registers.
1223
1224 The name GENERAL_REGS must be the name of a class (or an alias for
1225 another name such as ALL_REGS). This is the class of registers
1226 that is allowed by "g" or "r" in a register constraint.
1227 Also, registers outside this class are allocated only when
1228 instructions express preferences for them.
1229
1230 The classes must be numbered in nondecreasing order; that is,
1231 a larger-numbered class must never be contained completely
1232 in a smaller-numbered class.
1233
1234 For any two classes, it is very desirable that there be another
1235 class that represents their union. */
c81bebd7 1236
f045b2c9
RS
1237/* The RS/6000 has three types of registers, fixed-point, floating-point,
1238 and condition registers, plus three special registers, MQ, CTR, and the
07488f32 1239 link register. AltiVec adds a vector register class.
f045b2c9
RS
1240
1241 However, r0 is special in that it cannot be used as a base register.
1242 So make a class for registers valid as base registers.
1243
1244 Also, cr0 is the only condition code register that can be used in
0d86f538 1245 arithmetic insns, so make a separate class for it. */
f045b2c9 1246
ebedb4dd
MM
1247enum reg_class
1248{
1249 NO_REGS,
ebedb4dd
MM
1250 BASE_REGS,
1251 GENERAL_REGS,
1252 FLOAT_REGS,
0ac081f6
AH
1253 ALTIVEC_REGS,
1254 VRSAVE_REGS,
5f004351 1255 VSCR_REGS,
a3170dc6
AH
1256 SPE_ACC_REGS,
1257 SPEFSCR_REGS,
ebedb4dd
MM
1258 NON_SPECIAL_REGS,
1259 MQ_REGS,
1260 LINK_REGS,
1261 CTR_REGS,
1262 LINK_OR_CTR_REGS,
1263 SPECIAL_REGS,
1264 SPEC_OR_GEN_REGS,
1265 CR0_REGS,
ebedb4dd
MM
1266 CR_REGS,
1267 NON_FLOAT_REGS,
9ebbca7d 1268 XER_REGS,
ebedb4dd
MM
1269 ALL_REGS,
1270 LIM_REG_CLASSES
1271};
f045b2c9
RS
1272
1273#define N_REG_CLASSES (int) LIM_REG_CLASSES
1274
82e41834 1275/* Give names of register classes as strings for dump file. */
f045b2c9 1276
ebedb4dd
MM
1277#define REG_CLASS_NAMES \
1278{ \
1279 "NO_REGS", \
ebedb4dd
MM
1280 "BASE_REGS", \
1281 "GENERAL_REGS", \
1282 "FLOAT_REGS", \
0ac081f6
AH
1283 "ALTIVEC_REGS", \
1284 "VRSAVE_REGS", \
5f004351 1285 "VSCR_REGS", \
a3170dc6
AH
1286 "SPE_ACC_REGS", \
1287 "SPEFSCR_REGS", \
ebedb4dd
MM
1288 "NON_SPECIAL_REGS", \
1289 "MQ_REGS", \
1290 "LINK_REGS", \
1291 "CTR_REGS", \
1292 "LINK_OR_CTR_REGS", \
1293 "SPECIAL_REGS", \
1294 "SPEC_OR_GEN_REGS", \
1295 "CR0_REGS", \
ebedb4dd
MM
1296 "CR_REGS", \
1297 "NON_FLOAT_REGS", \
9ebbca7d 1298 "XER_REGS", \
ebedb4dd
MM
1299 "ALL_REGS" \
1300}
f045b2c9
RS
1301
1302/* Define which registers fit in which classes.
1303 This is an initializer for a vector of HARD_REG_SET
1304 of length N_REG_CLASSES. */
1305
0ac081f6
AH
1306#define REG_CLASS_CONTENTS \
1307{ \
1308 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1309 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1310 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1311 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1312 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1313 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1314 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
a3170dc6
AH
1315 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1316 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
0ac081f6
AH
1317 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1318 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1319 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1320 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1321 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1322 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1323 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1324 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1325 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1326 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1327 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1328 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1329}
f045b2c9
RS
1330
1331/* The same information, inverted:
1332 Return the class number of the smallest class containing
1333 reg number REGNO. This could be a conditional expression
1334 or could index an array. */
1335
0d86f538
GK
1336#define REGNO_REG_CLASS(REGNO) \
1337 ((REGNO) == 0 ? GENERAL_REGS \
1338 : (REGNO) < 32 ? BASE_REGS \
1339 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1340 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1341 : (REGNO) == CR0_REGNO ? CR0_REGS \
1342 : CR_REGNO_P (REGNO) ? CR_REGS \
1343 : (REGNO) == MQ_REGNO ? MQ_REGS \
1344 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1345 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1346 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1347 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1348 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
5f004351 1349 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
a3170dc6
AH
1350 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1351 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
f045b2c9
RS
1352 : NO_REGS)
1353
1354/* The class value for index registers, and the one for base regs. */
1355#define INDEX_REG_CLASS GENERAL_REGS
1356#define BASE_REG_CLASS BASE_REGS
1357
1358/* Get reg_class from a letter such as appears in the machine description. */
1359
1360#define REG_CLASS_FROM_LETTER(C) \
1361 ((C) == 'f' ? FLOAT_REGS \
1362 : (C) == 'b' ? BASE_REGS \
1363 : (C) == 'h' ? SPECIAL_REGS \
1364 : (C) == 'q' ? MQ_REGS \
1365 : (C) == 'c' ? CTR_REGS \
1366 : (C) == 'l' ? LINK_REGS \
0ac081f6 1367 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1368 : (C) == 'x' ? CR0_REGS \
1369 : (C) == 'y' ? CR_REGS \
9ebbca7d 1370 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1371 : NO_REGS)
1372
1373/* The letters I, J, K, L, M, N, and P in a register constraint string
1374 can be used to stand for particular ranges of immediate operands.
1375 This macro defines what the ranges are.
1376 C is the letter, and VALUE is a constant value.
1377 Return 1 if VALUE is in the range specified by C.
1378
9615f239 1379 `I' is a signed 16-bit constant
a0ab749a
KH
1380 `J' is a constant with only the high-order 16 bits nonzero
1381 `K' is a constant with only the low-order 16 bits nonzero
9615f239 1382 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1383 `M' is a constant that is greater than 31
2bfcf297 1384 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1385 `O' is the constant zero
1386 `P' is a constant whose negation is a signed 16-bit constant */
1387
5b6f7b96
RK
1388#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1389 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1390 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1391 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1392 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1393 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1394 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1395 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1396 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1397 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1398 : 0)
1399
1400/* Similar, but for floating constants, and defining letters G and H.
1401 Here VALUE is the CONST_DOUBLE rtx itself.
1402
1403 We flag for special constants when we can copy the constant into
4e74d8ec 1404 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1405
c4c40373 1406 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1407
1408#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1409 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1410 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1411 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1412 : 0)
f045b2c9
RS
1413
1414/* Optional extra constraints for this machine.
1415
b6c9286a
MM
1416 'Q' means that is a memory operand that is just an offset from a reg.
1417 'R' is for AIX TOC entries.
a260abc9 1418 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1419 'T' is a constant that can be placed into a 32-bit mask operand
0ba1b2ff 1420 'U' is for V.4 small data references.
d744e06e 1421 'W' is a vector constant that can be easily generated (no mem refs).
d2288d5d 1422 'Y' is a indexed or word-aligned displacement memory operand.
0ba1b2ff 1423 't' is for AND masks that can be performed by two rldic{l,r} insns. */
f045b2c9 1424
e8a8bc24
RK
1425#define EXTRA_CONSTRAINT(OP, C) \
1426 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
4d588c14 1427 : (C) == 'R' ? legitimate_constant_pool_address_p (OP) \
b1765bde
DE
1428 : (C) == 'S' ? mask64_operand (OP, DImode) \
1429 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1430 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1431 && small_data_operand (OP, GET_MODE (OP))) \
0ba1b2ff
AM
1432 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1433 && (fixed_regs[CR0_REGNO] \
1434 || !logical_operand (OP, DImode)) \
1435 && !mask64_operand (OP, DImode)) \
d744e06e 1436 : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP))) \
d2288d5d 1437 : (C) == 'Y' ? (word_offset_memref_operand (OP, GET_MODE (OP))) \
e8a8bc24 1438 : 0)
f045b2c9 1439
d2288d5d
HP
1440/* Defining, which contraints are memory contraints. Tells reload,
1441 that any memory address can be reloaded by copying the
1442 memory address into a base register if required. */
1443
1444#define EXTRA_MEMORY_CONSTRAINT(C, STR) \
1445 ((C) == 'Q' || (C) == 'Y')
1446
f045b2c9
RS
1447/* Given an rtx X being reloaded into a reg required to be
1448 in class CLASS, return the class of reg to actually use.
1449 In general this is just CLASS; but on some machines
c81bebd7 1450 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1451
1452 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1453 floating-point CONST_DOUBLE to force it to be copied to memory.
1454
1455 We also don't want to reload integer values into floating-point
1456 registers if we can at all help it. In fact, this can
1457 cause reload to abort, if it tries to generate a reload of CTR
1458 into a FP register and discovers it doesn't have the memory location
1459 required.
1460
1461 ??? Would it be a good idea to have reload do the converse, that is
1462 try to reload floating modes into FP registers if possible?
1463 */
f045b2c9 1464
802a0058 1465#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1466 (((GET_CODE (X) == CONST_DOUBLE \
1467 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1468 ? NO_REGS \
1469 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1470 && (CLASS) == NON_SPECIAL_REGS) \
1471 ? GENERAL_REGS \
1472 : (CLASS)))
c81bebd7 1473
f045b2c9
RS
1474/* Return the register class of a scratch register needed to copy IN into
1475 or out of a register in CLASS in MODE. If it can be done directly,
1476 NO_REGS is returned. */
1477
1478#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1479 secondary_reload_class (CLASS, MODE, IN)
1480
0ac081f6
AH
1481/* If we are copying between FP or AltiVec registers and anything
1482 else, we need a memory location. */
7ea555a4 1483
0ac081f6
AH
1484#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1485 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1486 || (CLASS2) == FLOAT_REGS \
1487 || (CLASS1) == ALTIVEC_REGS \
1488 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1489
f045b2c9
RS
1490/* Return the maximum number of consecutive registers
1491 needed to represent mode MODE in a register of class CLASS.
1492
1493 On RS/6000, this is the size of MODE in words,
1494 except in the FP regs, where a single reg is enough for two words. */
802a0058 1495#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1496 (((CLASS) == FLOAT_REGS) \
2e360ab3 1497 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
c1aa3958 1498 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230 1499
580d3230 1500
cff9f8d5 1501/* Return a class of registers that cannot change FROM mode to TO mode. */
02188693 1502
a9baceb1
GK
1503#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1504 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) \
1505 && GET_MODE_SIZE (FROM) >= 8 && GET_MODE_SIZE (TO) >= 8) \
1506 ? 0 \
1507 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1508 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
28636c6e 1509 : (TARGET_SPE && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1) \
a9baceb1 1510 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
b0c42aed 1511 : 0)
02188693 1512
f045b2c9
RS
1513/* Stack layout; function entry, exit and calling. */
1514
6b67933e
RK
1515/* Enumeration to give which calling sequence to use. */
1516enum rs6000_abi {
1517 ABI_NONE,
1518 ABI_AIX, /* IBM's AIX */
b6c9286a 1519 ABI_V4, /* System V.4/eabi */
ee890fe2 1520 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1521};
1522
b6c9286a
MM
1523extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1524
f045b2c9
RS
1525/* Define this if pushing a word on the stack
1526 makes the stack pointer a smaller address. */
1527#define STACK_GROWS_DOWNWARD
1528
1529/* Define this if the nominal address of the stack frame
1530 is at the high-address end of the local variables;
1531 that is, each additional local variable allocated
1532 goes at a more negative offset in the frame.
1533
1534 On the RS/6000, we grow upwards, from the area after the outgoing
1535 arguments. */
1536/* #define FRAME_GROWS_DOWNWARD */
1537
4697a36c 1538/* Size of the outgoing register save area */
9ebbca7d 1539#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1540 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1541 ? (TARGET_64BIT ? 64 : 32) \
1542 : 0)
4697a36c
MM
1543
1544/* Size of the fixed area on the stack */
9ebbca7d 1545#define RS6000_SAVE_AREA \
50d440bc 1546 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1547 << (TARGET_64BIT ? 1 : 0))
4697a36c 1548
97f6e72f
DE
1549/* MEM representing address to save the TOC register */
1550#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1551 plus_constant (stack_pointer_rtx, \
1552 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1553
4697a36c
MM
1554/* Size of the V.4 varargs area if needed */
1555#define RS6000_VARARGS_AREA 0
1556
4697a36c 1557/* Align an address */
ed33106f 1558#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1559
1560/* Size of V.4 varargs area in bytes */
1561#define RS6000_VARARGS_SIZE \
2f3e5814 1562 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1563
f045b2c9
RS
1564/* Offset within stack frame to start allocating local variables at.
1565 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1566 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1567 of the first local allocated.
f045b2c9
RS
1568
1569 On the RS/6000, the frame pointer is the same as the stack pointer,
1570 except for dynamic allocations. So we start after the fixed area and
1571 outgoing parameter area. */
1572
802a0058 1573#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1574 (RS6000_ALIGN (current_function_outgoing_args_size, \
1575 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1576 + RS6000_VARARGS_AREA \
1577 + RS6000_SAVE_AREA)
1578
1579/* Offset from the stack pointer register to an item dynamically
1580 allocated on the stack, e.g., by `alloca'.
1581
1582 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1583 length of the outgoing arguments. The default is correct for most
1584 machines. See `function.c' for details. */
1585#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1586 (RS6000_ALIGN (current_function_outgoing_args_size, \
1587 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1588 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1589
1590/* If we generate an insn to push BYTES bytes,
1591 this says how many the stack pointer really advances by.
1592 On RS/6000, don't define this because there are no push insns. */
1593/* #define PUSH_ROUNDING(BYTES) */
1594
1595/* Offset of first parameter from the argument pointer register value.
1596 On the RS/6000, we define the argument pointer to the start of the fixed
1597 area. */
4697a36c 1598#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1599
62153b61
JM
1600/* Offset from the argument pointer register value to the top of
1601 stack. This is different from FIRST_PARM_OFFSET because of the
1602 register save area. */
1603#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1604
f045b2c9
RS
1605/* Define this if stack space is still allocated for a parameter passed
1606 in a register. The value is the number of bytes allocated to this
1607 area. */
4697a36c 1608#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1609
1610/* Define this if the above stack space is to be considered part of the
1611 space allocated by the caller. */
1612#define OUTGOING_REG_PARM_STACK_SPACE
1613
1614/* This is the difference between the logical top of stack and the actual sp.
1615
82e41834 1616 For the RS/6000, sp points past the fixed area. */
4697a36c 1617#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1618
1619/* Define this if the maximum size of all the outgoing args is to be
1620 accumulated and pushed during the prologue. The amount can be
1621 found in the variable current_function_outgoing_args_size. */
f73ad30e 1622#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1623
1624/* Value is the number of bytes of arguments automatically
1625 popped when returning from a subroutine call.
8b109b37 1626 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1627 FUNTYPE is the data type of the function (as a tree),
1628 or for a library call it is an identifier node for the subroutine name.
1629 SIZE is the number of bytes of arguments passed on the stack. */
1630
8b109b37 1631#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1632
1633/* Define how to find the value returned by a function.
1634 VALTYPE is the data type of the value (as a tree).
1635 If the precise function being called is known, FUNC is its FUNCTION_DECL;
a6ebc39a
AH
1636 otherwise, FUNC is 0. */
1637
1638#define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
f045b2c9
RS
1639
1640/* Define how to find the value returned by a library function
1641 assuming the value has mode MODE. */
1642
ded9bf77 1643#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1644
6fa3f289
ZW
1645/* DRAFT_V4_STRUCT_RET defaults off. */
1646#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1647
1648/* Let RETURN_IN_MEMORY control what happens. */
1649#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1650
a260abc9 1651/* Mode of stack savearea.
dfdfa60f
DE
1652 FUNCTION is VOIDmode because calling convention maintains SP.
1653 BLOCK needs Pmode for SP.
a260abc9
DE
1654 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1655#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1656 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1657 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1658
4697a36c
MM
1659/* Minimum and maximum general purpose registers used to hold arguments. */
1660#define GP_ARG_MIN_REG 3
1661#define GP_ARG_MAX_REG 10
1662#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1663
1664/* Minimum and maximum floating point registers used to hold arguments. */
1665#define FP_ARG_MIN_REG 33
7509c759
MM
1666#define FP_ARG_AIX_MAX_REG 45
1667#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1668#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1669 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1670 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1671#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1672
0ac081f6
AH
1673/* Minimum and maximum AltiVec registers used to hold arguments. */
1674#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1675#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1676#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1677
4697a36c
MM
1678/* Return registers */
1679#define GP_ARG_RETURN GP_ARG_MIN_REG
1680#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1681#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1682
7509c759 1683/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1684#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1685/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1686#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1687#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1688#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1689#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1690
f045b2c9
RS
1691/* 1 if N is a possible register number for a function value
1692 as seen by the caller.
1693
0ac081f6 1694 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1695#define FUNCTION_VALUE_REGNO_P(N) \
1696 ((N) == GP_ARG_RETURN \
1697 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT) \
1698 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC))
f045b2c9
RS
1699
1700/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1701 On RS/6000, these are r3-r10 and fp1-fp13.
1702 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1703#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1704 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1705 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1706 && TARGET_ALTIVEC) \
1707 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1708 && TARGET_HARD_FLOAT))
f045b2c9 1709\f
00dba523
NC
1710/* A C structure for machine-specific, per-function data.
1711 This is added to the cfun structure. */
e2500fed 1712typedef struct machine_function GTY(())
00dba523
NC
1713{
1714 /* Whether a System V.4 varargs area was created. */
1715 int sysv_varargs_p;
71f123ca
FS
1716 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1717 int ra_needs_full_frame;
c4501e62
JJ
1718 /* Some local-dynamic symbol. */
1719 const char *some_ld_name;
9b7b447f
AH
1720 /* Whether the instruction chain has been scanned already. */
1721 int insn_chain_scanned_p;
8c29550d
JJ
1722 /* Flags if __builtin_return_address (0) was used. */
1723 int ra_need_lr;
00dba523
NC
1724} machine_function;
1725
f045b2c9
RS
1726/* Define a data type for recording info about an argument list
1727 during the scan of that argument list. This data type should
1728 hold all necessary information about the function itself
1729 and about the args processed so far, enough to enable macros
1730 such as FUNCTION_ARG to determine where the next arg should go.
1731
1732 On the RS/6000, this is a structure. The first element is the number of
1733 total argument words, the second is used to store the next
1734 floating-point register number, and the third says how many more args we
4697a36c
MM
1735 have prototype types for.
1736
4cc833b7 1737 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1738 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1739 register, and `words' is the number of words used on the stack.
1740
bd227acc 1741 The varargs/stdarg support requires that this structure's size
4cc833b7 1742 be a multiple of sizeof(int). */
4697a36c
MM
1743
1744typedef struct rs6000_args
1745{
4cc833b7 1746 int words; /* # words used for passing GP registers */
6a4cee5f 1747 int fregno; /* next available FP register */
0ac081f6 1748 int vregno; /* next available AltiVec register */
6a4cee5f 1749 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1750 int prototype; /* Whether a prototype was defined */
a6c9bed4 1751 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1752 int call_cookie; /* Do special things for this call */
4cc833b7 1753 int sysv_gregno; /* next available GP register */
4697a36c 1754} CUMULATIVE_ARGS;
f045b2c9
RS
1755
1756/* Define intermediate macro to compute the size (in registers) of an argument
1757 for the RS/6000. */
1758
8159dc20
FJ
1759#define UNITS_PER_ARG (TARGET_32BIT ? 4 : 8)
1760
d34c5b80
DE
1761#define RS6000_ARG_SIZE(MODE, TYPE) \
1762((MODE) != BLKmode \
8159dc20
FJ
1763 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_ARG - 1)) / UNITS_PER_ARG \
1764 : (int_size_in_bytes (TYPE) + (UNITS_PER_ARG - 1)) / UNITS_PER_ARG)
f045b2c9
RS
1765
1766/* Initialize a variable CUM of type CUMULATIVE_ARGS
1767 for a call to a function whose data type is FNTYPE.
1768 For a library call, FNTYPE is 0. */
1769
2c7ee1a6 1770#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
b9599e46 1771 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE)
f045b2c9
RS
1772
1773/* Similar, but when scanning the definition of a procedure. We always
1774 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1775
4697a36c 1776#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
b9599e46
FS
1777 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE)
1778
1779/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1780
1781#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1782 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE)
f045b2c9
RS
1783
1784/* Update the data in CUM to advance over an argument
1785 of mode MODE and data type TYPE.
1786 (TYPE is null for libcalls where that information may not be available.) */
1787
1788#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1789 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9 1790
f045b2c9
RS
1791/* Determine where to put an argument to a function.
1792 Value is zero to push the argument on the stack,
1793 or a hard register in which to store the argument.
1794
1795 MODE is the argument's machine mode.
1796 TYPE is the data type of the argument (as a tree).
1797 This is null for libcalls where that information may
1798 not be available.
1799 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1800 the preceding args and about the function being called.
1801 NAMED is nonzero if this argument is a named parameter
1802 (otherwise it is an extra parameter matching an ellipsis).
1803
1804 On RS/6000 the first eight words of non-FP are normally in registers
1805 and the rest are pushed. The first 13 FP args are in registers.
1806
1807 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1808 both an FP and integer register (or possibly FP reg and stack). Library
1809 functions (when TYPE is zero) always have the proper types for args,
1810 so we can pass the FP value just in one register. emit_library_function
1811 doesn't support EXPR_LIST anyway. */
f045b2c9 1812
4697a36c
MM
1813#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1814 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1815
1816/* For an arg passed partly in registers and partly in memory,
1817 this is the number of registers used.
1818 For args passed entirely in registers or entirely in memory, zero. */
1819
4697a36c
MM
1820#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1821 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1822
1823/* A C expression that indicates when an argument must be passed by
1824 reference. If nonzero for an argument, a copy of that argument is
1825 made in memory and a pointer to the argument is passed instead of
1826 the argument itself. The pointer is passed in whatever way is
82e41834 1827 appropriate for passing a pointer to that type. */
4697a36c
MM
1828
1829#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1830 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1831
c229cba9
DE
1832/* If defined, a C expression which determines whether, and in which
1833 direction, to pad out an argument with extra space. The value
1834 should be of type `enum direction': either `upward' to pad above
1835 the argument, `downward' to pad below, or `none' to inhibit
1836 padding. */
1837
9ebbca7d 1838#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1839
b6c9286a 1840/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1841 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1842 PARM_BOUNDARY is used for all arguments. */
1843
1844#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1845 function_arg_boundary (MODE, TYPE)
1846
ded9bf77
AH
1847/* Define to nonzero if complex arguments should be split into their
1848 corresponding components.
1849
1850 This should be set for Linux and Darwin as well, but we can't break
1851 the ABIs at the moment. For now, only AIX gets fixed. */
1852#define SPLIT_COMPLEX_ARGS (DEFAULT_ABI == ABI_AIX)
1853
dfafc897 1854/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1855#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1856 rs6000_va_start (valist, nextarg)
dfafc897
FS
1857
1858/* Implement `va_arg'. */
1859#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1860 rs6000_va_arg (valist, type)
f045b2c9 1861
6e985040
AM
1862#define PAD_VARARGS_DOWN \
1863 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1864
f045b2c9 1865/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1866 for profiling a function entry. */
f045b2c9
RS
1867
1868#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1869 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1870
1871/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1872 the stack pointer does not matter. No definition is equivalent to
1873 always zero.
1874
a0ab749a 1875 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1876 its backpointer, which we maintain. */
1877#define EXIT_IGNORE_STACK 1
1878
a701949a
FS
1879/* Define this macro as a C expression that is nonzero for registers
1880 that are used by the epilogue or the return' pattern. The stack
1881 and frame pointer registers are already be assumed to be used as
1882 needed. */
1883
83720594
RH
1884#define EPILOGUE_USES(REGNO) \
1885 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1886 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1887 || (current_function_calls_eh_return \
3553b09d 1888 && TARGET_AIX \
ff3867ae 1889 && (REGNO) == 2))
2bfcf297 1890
f045b2c9 1891\f
eaf1bcf1 1892/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1893
1894/* Length in units of the trampoline for entering a nested function. */
1895
b6c9286a 1896#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1897
1898/* Emit RTL insns to initialize the variable parts of a trampoline.
1899 FNADDR is an RTX for the address of the function's pure code.
1900 CXT is an RTX for the static chain value for the function. */
1901
1902#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1903 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1904\f
f33985c6
MS
1905/* Definitions for __builtin_return_address and __builtin_frame_address.
1906 __builtin_return_address (0) should give link register (65), enable
82e41834 1907 this. */
f33985c6
MS
1908/* This should be uncommented, so that the link register is used, but
1909 currently this would result in unmatched insns and spilling fixed
1910 registers so we'll leave it for another day. When these problems are
1911 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1912 (mrs) */
1913/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1914
b6c9286a
MM
1915/* Number of bytes into the frame return addresses can be found. See
1916 rs6000_stack_info in rs6000.c for more information on how the different
1917 abi's store the return address. */
1918#define RETURN_ADDRESS_OFFSET \
1919 ((DEFAULT_ABI == ABI_AIX \
50d440bc 1920 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1921 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1922 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1923
f33985c6
MS
1924/* The current return address is in link register (65). The return address
1925 of anything farther back is accessed normally at an offset of 8 from the
1926 frame pointer. */
71f123ca
FS
1927#define RETURN_ADDR_RTX(COUNT, FRAME) \
1928 (rs6000_return_addr (COUNT, FRAME))
1929
f33985c6 1930\f
f045b2c9
RS
1931/* Definitions for register eliminations.
1932
1933 We have two registers that can be eliminated on the RS/6000. First, the
1934 frame pointer register can often be eliminated in favor of the stack
1935 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1936 eliminated; it is replaced with either the stack or frame pointer.
1937
1938 In addition, we use the elimination mechanism to see if r30 is needed
1939 Initially we assume that it isn't. If it is, we spill it. This is done
1940 by making it an eliminable register. We replace it with itself so that
1941 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1942
1943/* This is an array of structures. Each structure initializes one pair
1944 of eliminable registers. The "from" register number is given first,
1945 followed by "to". Eliminations of the same "from" register are listed
1946 in order of preference. */
1947#define ELIMINABLE_REGS \
1948{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1949 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1 1950 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
97b23853 1951 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9
RS
1952
1953/* Given FROM and TO register numbers, say whether this elimination is allowed.
1954 Frame pointer elimination is automatically handled.
1955
1956 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1957 to convert ap into fp, not sp.
1958
abc95ed3 1959 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1960 references. */
f045b2c9 1961
97b23853
GK
1962#define CAN_ELIMINATE(FROM, TO) \
1963 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1964 ? ! frame_pointer_needed \
1965 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1966 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1967 : 1)
1968
1969/* Define the offset between two registers, one to be eliminated, and the other
1970 its replacement, at the start of a routine. */
d1d0c603
JJ
1971#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1972 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1973\f
1974/* Addressing modes, and classification of registers for them. */
1975
940da324
JL
1976#define HAVE_PRE_DECREMENT 1
1977#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1978
1979/* Macros to check register numbers against specific register classes. */
1980
1981/* These assume that REGNO is a hard or pseudo reg number.
1982 They give nonzero only if REGNO is a hard reg of the suitable class
1983 or a pseudo reg currently allocated to a suitable hard reg.
1984 Since they use reg_renumber, they are safe only once reg_renumber
1985 has been allocated, which happens in local-alloc.c. */
1986
1987#define REGNO_OK_FOR_INDEX_P(REGNO) \
1988((REGNO) < FIRST_PSEUDO_REGISTER \
1989 ? (REGNO) <= 31 || (REGNO) == 67 \
1990 : (reg_renumber[REGNO] >= 0 \
1991 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1992
1993#define REGNO_OK_FOR_BASE_P(REGNO) \
1994((REGNO) < FIRST_PSEUDO_REGISTER \
1995 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1996 : (reg_renumber[REGNO] > 0 \
1997 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1998\f
1999/* Maximum number of registers that can appear in a valid memory address. */
2000
2001#define MAX_REGS_PER_ADDRESS 2
2002
2003/* Recognize any constant value that is a valid address. */
2004
6eff269e
BK
2005#define CONSTANT_ADDRESS_P(X) \
2006 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2007 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2008 || GET_CODE (X) == HIGH)
f045b2c9
RS
2009
2010/* Nonzero if the constant value X is a legitimate general operand.
2011 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2012
2013 On the RS/6000, all integer constants are acceptable, most won't be valid
2014 for particular insns, though. Only easy FP constants are
2015 acceptable. */
2016
2017#define LEGITIMATE_CONSTANT_P(X) \
49a2166f
AH
2018 (((GET_CODE (X) != CONST_DOUBLE \
2019 && GET_CODE (X) != CONST_VECTOR) \
2020 || GET_MODE (X) == VOIDmode \
c4501e62 2021 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
49a2166f
AH
2022 || easy_fp_constant (X, GET_MODE (X)) \
2023 || easy_vector_constant (X, GET_MODE (X))) \
c4501e62 2024 && !rs6000_tls_referenced_p (X))
f045b2c9
RS
2025
2026/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2027 and check its validity for a certain class.
2028 We have two alternate definitions for each of them.
2029 The usual definition accepts all pseudo regs; the other rejects
2030 them unless they have been allocated suitable hard regs.
2031 The symbol REG_OK_STRICT causes the latter definition to be used.
2032
2033 Most source files want to accept pseudo regs in the hope that
2034 they will get allocated to the class that the insn wants them to be in.
2035 Source files for reload pass need to be strict.
2036 After reload, it makes no difference, since pseudo regs have
2037 been eliminated by then. */
2038
258bfae2
FS
2039#ifdef REG_OK_STRICT
2040# define REG_OK_STRICT_FLAG 1
2041#else
2042# define REG_OK_STRICT_FLAG 0
2043#endif
f045b2c9
RS
2044
2045/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
2046 or if it is a pseudo reg in the non-strict case. */
2047#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2048 ((! (STRICT) \
2049 && (REGNO (X) <= 31 \
2050 || REGNO (X) == ARG_POINTER_REGNUM \
2051 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2052 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
2053
2054/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
2055 or if it is a pseudo reg in the non-strict case. */
2056#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2057 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 2058
258bfae2
FS
2059#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2060#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
2061\f
2062/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2063 that is a valid memory address for an instruction.
2064 The MODE argument is the machine mode for the MEM expression
2065 that wants to use this address.
2066
2067 On the RS/6000, there are four valid address: a SYMBOL_REF that
2068 refers to a constant pool entry of an address (or the sum of it
2069 plus a constant), a short (16-bit signed) constant plus a register,
2070 the sum of two registers, or a register indirect, possibly with an
5bdc5878 2071 auto-increment. For DFmode and DImode with a constant plus register,
2f3e5814 2072 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
2073 word aligned.
2074
2075 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2076 32-bit DImode, TImode), indexed addressing cannot be used because
2077 adjacent memory cells are accessed by adding word-sized offsets
2078 during assembly output. */
f045b2c9 2079
258bfae2
FS
2080#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2081{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2082 goto ADDR; \
f045b2c9
RS
2083}
2084\f
2085/* Try machine-dependent ways of modifying an illegitimate address
2086 to be legitimate. If we find one, return the new, valid address.
2087 This macro is used in only one place: `memory_address' in explow.c.
2088
2089 OLDX is the address as it was before break_out_memory_refs was called.
2090 In some cases it is useful to look at this to decide what needs to be done.
2091
2092 MODE and WIN are passed so that this macro can use
2093 GO_IF_LEGITIMATE_ADDRESS.
2094
2095 It is always safe for this macro to do nothing. It exists to recognize
2096 opportunities to optimize the output.
2097
2098 On RS/6000, first check for the sum of a register with a constant
2099 integer that is out of range. If so, generate code to add the
2100 constant with the low-order 16 bits masked to the register and force
2101 this result into another register (this can be done with `cau').
c81bebd7 2102 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2103 possibility of bit 16 being a one.
2104
2105 Then check for the sum of a register and something not constant, try to
2106 load the other things into a register and return the sum. */
2107
9ebbca7d
GK
2108#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2109{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2110 if (result != NULL_RTX) \
2111 { \
2112 (X) = result; \
2113 goto WIN; \
2114 } \
f045b2c9
RS
2115}
2116
a260abc9
DE
2117/* Try a machine-dependent way of reloading an illegitimate address
2118 operand. If we find one, push the reload and jump to WIN. This
2119 macro is used in only one place: `find_reloads_address' in reload.c.
2120
24ea750e
DJ
2121 Implemented on rs6000 by rs6000_legitimize_reload_address.
2122 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2123
a9098fd0
GK
2124#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2125do { \
24ea750e
DJ
2126 int win; \
2127 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2128 (int)(TYPE), (IND_LEVELS), &win); \
2129 if ( win ) \
2130 goto WIN; \
a260abc9
DE
2131} while (0)
2132
f045b2c9 2133/* Go to LABEL if ADDR (a legitimate address expression)
4d588c14 2134 has an effect that depends on the machine mode it is used for. */
f045b2c9
RS
2135
2136#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
4d588c14
RH
2137do { \
2138 if (rs6000_mode_dependent_address (ADDR)) \
f045b2c9 2139 goto LABEL; \
4d588c14 2140} while (0)
766a866c
MM
2141\f
2142/* The register number of the register used to address a table of
2143 static data addresses in memory. In some cases this register is
2144 defined by a processor's "application binary interface" (ABI).
2145 When this macro is defined, RTL is generated for this register
2146 once, as with the stack pointer and frame pointer registers. If
2147 this macro is not defined, it is up to the machine-dependent files
2148 to allocate such a register (if necessary). */
2149
1db02437
FS
2150#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2151#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2152
97b23853 2153#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2154
766a866c
MM
2155/* Define this macro if the register defined by
2156 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2157 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2158
2159/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2160
2161/* By generating position-independent code, when two different
2162 programs (A and B) share a common library (libC.a), the text of
2163 the library can be shared whether or not the library is linked at
2164 the same address for both programs. In some of these
2165 environments, position-independent code requires not only the use
2166 of different addressing modes, but also special code to enable the
2167 use of these addressing modes.
2168
2169 The `FINALIZE_PIC' macro serves as a hook to emit these special
2170 codes once the function is being compiled into assembly code, but
2171 not before. (It is not done before, because in the case of
2172 compiling an inline function, it would lead to multiple PIC
2173 prologues being included in functions which used inline functions
2174 and were compiled to assembly language.) */
2175
8d30c4ee 2176/* #define FINALIZE_PIC */
766a866c 2177
766a866c
MM
2178/* A C expression that is nonzero if X is a legitimate immediate
2179 operand on the target machine when generating position independent
2180 code. You can assume that X satisfies `CONSTANT_P', so you need
2181 not check this. You can also assume FLAG_PIC is true, so you need
2182 not check it either. You need not define this macro if all
2183 constants (including `SYMBOL_REF') can be immediate operands when
2184 generating position independent code. */
2185
2186/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
2187\f
2188/* Define this if some processing needs to be done immediately before
4255474b 2189 emitting code for an insn. */
f045b2c9 2190
4255474b 2191/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2192
2193/* Specify the machine mode that this machine uses
2194 for the index in the tablejump instruction. */
e1565e65 2195#define CASE_VECTOR_MODE SImode
f045b2c9 2196
18543a22
ILT
2197/* Define as C expression which evaluates to nonzero if the tablejump
2198 instruction expects the table to contain offsets from the address of the
2199 table.
82e41834 2200 Do not define this if the table should contain absolute addresses. */
18543a22 2201#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2202
f045b2c9
RS
2203/* Define this as 1 if `char' should by default be signed; else as 0. */
2204#define DEFAULT_SIGNED_CHAR 0
2205
2206/* This flag, if defined, says the same insns that convert to a signed fixnum
2207 also convert validly to an unsigned one. */
2208
2209/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2210
2211/* Max number of bytes we can move from memory to memory
2212 in one reasonably fast instruction. */
2f3e5814 2213#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2214#define MAX_MOVE_MAX 8
f045b2c9
RS
2215
2216/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2217 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2218 is undesirable. */
2219#define SLOW_BYTE_ACCESS 1
2220
9a63901f
RK
2221/* Define if operations between registers always perform the operation
2222 on the full register even if a narrower mode is specified. */
2223#define WORD_REGISTER_OPERATIONS
2224
2225/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2226 will either zero-extend or sign-extend. The value of this macro should
2227 be the code that says which one of the two operations is implicitly
2228 done, NIL if none. */
2229#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2230
2231/* Define if loading short immediate values into registers sign extends. */
2232#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2233\f
f045b2c9
RS
2234/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2235 is done just by pretending it is already truncated. */
2236#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2237
94993909 2238/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122
DE
2239#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2240 ((VALUE) = ((MODE) == SImode ? 32 : 64))
2241
94993909
DE
2242/* The CTZ patterns return -1 for input of zero. */
2243#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2244
f045b2c9
RS
2245/* Specify the machine mode that pointers have.
2246 After generation of rtl, the compiler makes no further distinction
2247 between pointers and any other objects of this machine mode. */
2f3e5814 2248#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9 2249
a3c9585f 2250/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
2251#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2252
f045b2c9 2253/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2254 Doesn't matter on RS/6000. */
5b71a4e7 2255#define FUNCTION_MODE SImode
f045b2c9
RS
2256
2257/* Define this if addresses of constant functions
2258 shouldn't be put through pseudo regs where they can be cse'd.
2259 Desirable on machines where ordinary constants are expensive
2260 but a CALL with constant address is cheap. */
2261#define NO_FUNCTION_CSE
2262
d969caf8 2263/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2264 few bits.
2265
2266 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2267 have been dropped from the PowerPC architecture. */
2268
4697a36c 2269#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2270
f045b2c9
RS
2271/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2272 should be adjusted to reflect any required changes. This macro is used when
2273 there is some systematic length adjustment required that would be difficult
2274 to express in the length attribute. */
2275
2276/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2277
39a10a29
GK
2278/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2279 COMPARE, return the mode to be used for the comparison. For
2280 floating-point, CCFPmode should be used. CCUNSmode should be used
2281 for unsigned comparisons. CCEQmode should be used when we are
2282 doing an inequality comparison on the result of a
2283 comparison. CCmode should be used in all other cases. */
c5defebb 2284
b565a316 2285#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2286 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2287 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2288 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2289 ? CCEQmode : CCmode))
f045b2c9 2290
b39358e1
GK
2291/* Can the condition code MODE be safely reversed? This is safe in
2292 all cases on this port, because at present it doesn't use the
2293 trapping FP comparisons (fcmpo). */
2294#define REVERSIBLE_CC_MODE(MODE) 1
2295
2296/* Given a condition code and a mode, return the inverse condition. */
2297#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2298
f045b2c9 2299/* Define the information needed to generate branch and scc insns. This is
b39358e1 2300 stored from the compare operation. */
f045b2c9 2301
e2500fed
GK
2302extern GTY(()) rtx rs6000_compare_op0;
2303extern GTY(()) rtx rs6000_compare_op1;
f045b2c9 2304extern int rs6000_compare_fp_p;
f045b2c9
RS
2305\f
2306/* Control the assembler format that we output. */
2307
1b279f39
DE
2308/* A C string constant describing how to begin a comment in the target
2309 assembler language. The compiler assumes that the comment will end at
2310 the end of the line. */
2311#define ASM_COMMENT_START " #"
6b67933e 2312
fdaff8ba
RS
2313/* Implicit library calls should use memcpy, not bcopy, etc. */
2314
2315#define TARGET_MEM_FUNCTIONS
2316
38c1f2d7
MM
2317/* Flag to say the TOC is initialized */
2318extern int toc_initialized;
2319
f045b2c9
RS
2320/* Macro to output a special constant pool entry. Go to WIN if we output
2321 it. Otherwise, it is written the usual way.
2322
2323 On the RS/6000, toc entries are handled this way. */
2324
a9098fd0
GK
2325#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2326{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2327 { \
2328 output_toc (FILE, X, LABELNO, MODE); \
2329 goto WIN; \
2330 } \
f045b2c9
RS
2331}
2332
ebd97b96
DE
2333#ifdef HAVE_GAS_WEAK
2334#define RS6000_WEAK 1
2335#else
2336#define RS6000_WEAK 0
2337#endif
290ad355 2338
79c4e63f
AM
2339#if RS6000_WEAK
2340/* Used in lieu of ASM_WEAKEN_LABEL. */
2341#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2342 do \
2343 { \
2344 fputs ("\t.weak\t", (FILE)); \
cbaaba19 2345 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2346 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2347 && DEFAULT_ABI == ABI_AIX) \
2348 { \
cbaaba19
DE
2349 if (TARGET_XCOFF) \
2350 fputs ("[DS]", (FILE)); \
ca734b39 2351 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2352 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2353 } \
2354 fputc ('\n', (FILE)); \
2355 if (VAL) \
2356 { \
2357 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2358 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2359 && DEFAULT_ABI == ABI_AIX) \
2360 { \
2361 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2362 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2363 fputs (",.", (FILE)); \
cbaaba19 2364 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2365 fputc ('\n', (FILE)); \
2366 } \
2367 } \
2368 } \
2369 while (0)
2370#endif
2371
2372/* This implements the `alias' attribute. */
2373#undef ASM_OUTPUT_DEF_FROM_DECLS
2374#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2375 do \
2376 { \
2377 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2378 const char *name = IDENTIFIER_POINTER (TARGET); \
2379 if (TREE_CODE (DECL) == FUNCTION_DECL \
2380 && DEFAULT_ABI == ABI_AIX) \
2381 { \
2382 if (TREE_PUBLIC (DECL)) \
2383 { \
2384 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2385 { \
2386 fputs ("\t.globl\t.", FILE); \
cbaaba19 2387 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2388 putc ('\n', FILE); \
2389 } \
2390 } \
2391 else if (TARGET_XCOFF) \
2392 { \
2393 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2394 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2395 putc ('\n', FILE); \
2396 } \
2397 fputs ("\t.set\t.", FILE); \
cbaaba19 2398 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2399 fputs (",.", FILE); \
cbaaba19 2400 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2401 fputc ('\n', FILE); \
2402 } \
2403 ASM_OUTPUT_DEF (FILE, alias, name); \
2404 } \
2405 while (0)
290ad355 2406
1bc7c5b6
ZW
2407#define TARGET_ASM_FILE_START rs6000_file_start
2408
f045b2c9
RS
2409/* Output to assembler file text saying following lines
2410 may contain character constants, extra white space, comments, etc. */
2411
2412#define ASM_APP_ON ""
2413
2414/* Output to assembler file text saying following lines
2415 no longer contain unusual constructs. */
2416
2417#define ASM_APP_OFF ""
2418
f045b2c9
RS
2419/* How to refer to registers in assembler output.
2420 This sequence is indexed by compiler's hard-register-number (see above). */
2421
82e41834 2422extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2423
2424#define REGISTER_NAMES \
2425{ \
2426 &rs6000_reg_names[ 0][0], /* r0 */ \
2427 &rs6000_reg_names[ 1][0], /* r1 */ \
2428 &rs6000_reg_names[ 2][0], /* r2 */ \
2429 &rs6000_reg_names[ 3][0], /* r3 */ \
2430 &rs6000_reg_names[ 4][0], /* r4 */ \
2431 &rs6000_reg_names[ 5][0], /* r5 */ \
2432 &rs6000_reg_names[ 6][0], /* r6 */ \
2433 &rs6000_reg_names[ 7][0], /* r7 */ \
2434 &rs6000_reg_names[ 8][0], /* r8 */ \
2435 &rs6000_reg_names[ 9][0], /* r9 */ \
2436 &rs6000_reg_names[10][0], /* r10 */ \
2437 &rs6000_reg_names[11][0], /* r11 */ \
2438 &rs6000_reg_names[12][0], /* r12 */ \
2439 &rs6000_reg_names[13][0], /* r13 */ \
2440 &rs6000_reg_names[14][0], /* r14 */ \
2441 &rs6000_reg_names[15][0], /* r15 */ \
2442 &rs6000_reg_names[16][0], /* r16 */ \
2443 &rs6000_reg_names[17][0], /* r17 */ \
2444 &rs6000_reg_names[18][0], /* r18 */ \
2445 &rs6000_reg_names[19][0], /* r19 */ \
2446 &rs6000_reg_names[20][0], /* r20 */ \
2447 &rs6000_reg_names[21][0], /* r21 */ \
2448 &rs6000_reg_names[22][0], /* r22 */ \
2449 &rs6000_reg_names[23][0], /* r23 */ \
2450 &rs6000_reg_names[24][0], /* r24 */ \
2451 &rs6000_reg_names[25][0], /* r25 */ \
2452 &rs6000_reg_names[26][0], /* r26 */ \
2453 &rs6000_reg_names[27][0], /* r27 */ \
2454 &rs6000_reg_names[28][0], /* r28 */ \
2455 &rs6000_reg_names[29][0], /* r29 */ \
2456 &rs6000_reg_names[30][0], /* r30 */ \
2457 &rs6000_reg_names[31][0], /* r31 */ \
2458 \
2459 &rs6000_reg_names[32][0], /* fr0 */ \
2460 &rs6000_reg_names[33][0], /* fr1 */ \
2461 &rs6000_reg_names[34][0], /* fr2 */ \
2462 &rs6000_reg_names[35][0], /* fr3 */ \
2463 &rs6000_reg_names[36][0], /* fr4 */ \
2464 &rs6000_reg_names[37][0], /* fr5 */ \
2465 &rs6000_reg_names[38][0], /* fr6 */ \
2466 &rs6000_reg_names[39][0], /* fr7 */ \
2467 &rs6000_reg_names[40][0], /* fr8 */ \
2468 &rs6000_reg_names[41][0], /* fr9 */ \
2469 &rs6000_reg_names[42][0], /* fr10 */ \
2470 &rs6000_reg_names[43][0], /* fr11 */ \
2471 &rs6000_reg_names[44][0], /* fr12 */ \
2472 &rs6000_reg_names[45][0], /* fr13 */ \
2473 &rs6000_reg_names[46][0], /* fr14 */ \
2474 &rs6000_reg_names[47][0], /* fr15 */ \
2475 &rs6000_reg_names[48][0], /* fr16 */ \
2476 &rs6000_reg_names[49][0], /* fr17 */ \
2477 &rs6000_reg_names[50][0], /* fr18 */ \
2478 &rs6000_reg_names[51][0], /* fr19 */ \
2479 &rs6000_reg_names[52][0], /* fr20 */ \
2480 &rs6000_reg_names[53][0], /* fr21 */ \
2481 &rs6000_reg_names[54][0], /* fr22 */ \
2482 &rs6000_reg_names[55][0], /* fr23 */ \
2483 &rs6000_reg_names[56][0], /* fr24 */ \
2484 &rs6000_reg_names[57][0], /* fr25 */ \
2485 &rs6000_reg_names[58][0], /* fr26 */ \
2486 &rs6000_reg_names[59][0], /* fr27 */ \
2487 &rs6000_reg_names[60][0], /* fr28 */ \
2488 &rs6000_reg_names[61][0], /* fr29 */ \
2489 &rs6000_reg_names[62][0], /* fr30 */ \
2490 &rs6000_reg_names[63][0], /* fr31 */ \
2491 \
2492 &rs6000_reg_names[64][0], /* mq */ \
2493 &rs6000_reg_names[65][0], /* lr */ \
2494 &rs6000_reg_names[66][0], /* ctr */ \
2495 &rs6000_reg_names[67][0], /* ap */ \
2496 \
2497 &rs6000_reg_names[68][0], /* cr0 */ \
2498 &rs6000_reg_names[69][0], /* cr1 */ \
2499 &rs6000_reg_names[70][0], /* cr2 */ \
2500 &rs6000_reg_names[71][0], /* cr3 */ \
2501 &rs6000_reg_names[72][0], /* cr4 */ \
2502 &rs6000_reg_names[73][0], /* cr5 */ \
2503 &rs6000_reg_names[74][0], /* cr6 */ \
2504 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2505 \
9ebbca7d 2506 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2507 \
2508 &rs6000_reg_names[77][0], /* v0 */ \
2509 &rs6000_reg_names[78][0], /* v1 */ \
2510 &rs6000_reg_names[79][0], /* v2 */ \
2511 &rs6000_reg_names[80][0], /* v3 */ \
2512 &rs6000_reg_names[81][0], /* v4 */ \
2513 &rs6000_reg_names[82][0], /* v5 */ \
2514 &rs6000_reg_names[83][0], /* v6 */ \
2515 &rs6000_reg_names[84][0], /* v7 */ \
2516 &rs6000_reg_names[85][0], /* v8 */ \
2517 &rs6000_reg_names[86][0], /* v9 */ \
2518 &rs6000_reg_names[87][0], /* v10 */ \
2519 &rs6000_reg_names[88][0], /* v11 */ \
2520 &rs6000_reg_names[89][0], /* v12 */ \
2521 &rs6000_reg_names[90][0], /* v13 */ \
2522 &rs6000_reg_names[91][0], /* v14 */ \
2523 &rs6000_reg_names[92][0], /* v15 */ \
2524 &rs6000_reg_names[93][0], /* v16 */ \
2525 &rs6000_reg_names[94][0], /* v17 */ \
2526 &rs6000_reg_names[95][0], /* v18 */ \
2527 &rs6000_reg_names[96][0], /* v19 */ \
2528 &rs6000_reg_names[97][0], /* v20 */ \
2529 &rs6000_reg_names[98][0], /* v21 */ \
2530 &rs6000_reg_names[99][0], /* v22 */ \
2531 &rs6000_reg_names[100][0], /* v23 */ \
2532 &rs6000_reg_names[101][0], /* v24 */ \
2533 &rs6000_reg_names[102][0], /* v25 */ \
2534 &rs6000_reg_names[103][0], /* v26 */ \
2535 &rs6000_reg_names[104][0], /* v27 */ \
2536 &rs6000_reg_names[105][0], /* v28 */ \
2537 &rs6000_reg_names[106][0], /* v29 */ \
2538 &rs6000_reg_names[107][0], /* v30 */ \
2539 &rs6000_reg_names[108][0], /* v31 */ \
2540 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2541 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2542 &rs6000_reg_names[111][0], /* spe_acc */ \
2543 &rs6000_reg_names[112][0], /* spefscr */ \
c81bebd7
MM
2544}
2545
f045b2c9
RS
2546/* Table of additional register names to use in user input. */
2547
2548#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2549 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2550 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2551 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2552 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2553 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2554 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2555 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2556 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2557 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2558 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2559 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2560 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2561 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2562 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2563 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2564 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2565 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2566 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2567 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2568 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2569 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2570 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2571 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2572 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2573 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2574 {"spe_acc", 111}, {"spefscr", 112}, \
c4d38ccb
MM
2575 /* no additional names for: mq, lr, ctr, ap */ \
2576 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2577 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2578 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2579
0da40b09
RK
2580/* Text to write out after a CALL that may be replaced by glue code by
2581 the loader. This depends on the AIX version. */
2582#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2583
f045b2c9
RS
2584/* This is how to output an element of a case-vector that is relative. */
2585
e1565e65 2586#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2587 do { char buf[100]; \
e1565e65 2588 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2589 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2590 assemble_name (FILE, buf); \
19d2d16f 2591 putc ('-', FILE); \
3daf36a4
ILT
2592 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2593 assemble_name (FILE, buf); \
19d2d16f 2594 putc ('\n', FILE); \
3daf36a4 2595 } while (0)
f045b2c9
RS
2596
2597/* This is how to output an assembler line
2598 that says to advance the location counter
2599 to a multiple of 2**LOG bytes. */
2600
2601#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2602 if ((LOG) != 0) \
2603 fprintf (FILE, "\t.align %d\n", (LOG))
2604
9ebbca7d
GK
2605/* Pick up the return address upon entry to a procedure. Used for
2606 dwarf2 unwind information. This also enables the table driven
2607 mechanism. */
2608
2609#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2610#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2611
83720594
RH
2612/* Describe how we implement __builtin_eh_return. */
2613#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2614#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2615
f045b2c9
RS
2616/* Print operand X (an rtx) in assembler syntax to file FILE.
2617 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2618 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2619
2620#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2621
2622/* Define which CODE values are valid. */
2623
c81bebd7 2624#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c4501e62 2625 ((CODE) == '.' || (CODE) == '&')
f045b2c9
RS
2626
2627/* Print a memory address as an operand to reference that memory location. */
2628
2629#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2630
2631/* Define the codes that are matched by predicates in rs6000.c. */
2632
39a10a29 2633#define PREDICATE_CODES \
a65c591c 2634 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
df15fbc7 2635 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
a65c591c
DE
2636 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2637 LABEL_REF, SUBREG, REG, MEM}}, \
39a10a29
GK
2638 {"short_cint_operand", {CONST_INT}}, \
2639 {"u_short_cint_operand", {CONST_INT}}, \
2640 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2641 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2642 {"gpc_reg_operand", {SUBREG, REG}}, \
2643 {"cc_reg_operand", {SUBREG, REG}}, \
2644 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2645 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2646 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2647 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2648 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2649 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2650 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2651 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2652 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2653 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2654 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2655 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2656 {"easy_fp_constant", {CONST_DOUBLE}}, \
d744e06e
AH
2657 {"easy_vector_constant", {CONST_VECTOR}}, \
2658 {"easy_vector_constant_add_self", {CONST_VECTOR}}, \
50a0b056 2659 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2660 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2661 {"lwa_operand", {SUBREG, MEM, REG}}, \
2662 {"volatile_mem_operand", {MEM}}, \
2663 {"offsettable_mem_operand", {MEM}}, \
2664 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2665 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2666 {"non_add_cint_operand", {CONST_INT}}, \
2667 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2668 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
0ba1b2ff 2669 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2670 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2671 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2672 {"mask_operand", {CONST_INT}}, \
0ba1b2ff
AM
2673 {"mask_operand_wrap", {CONST_INT}}, \
2674 {"mask64_operand", {CONST_INT}}, \
2675 {"mask64_2_operand", {CONST_INT}}, \
39a10a29
GK
2676 {"count_register_operand", {REG}}, \
2677 {"xer_operand", {REG}}, \
cc4d5fec 2678 {"symbol_ref_operand", {SYMBOL_REF}}, \
c4501e62 2679 {"rs6000_tls_symbol_ref", {SYMBOL_REF}}, \
39a10a29
GK
2680 {"call_operand", {SYMBOL_REF, REG}}, \
2681 {"current_file_function_operand", {SYMBOL_REF}}, \
2682 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2683 CONST_DOUBLE, SYMBOL_REF}}, \
2684 {"load_multiple_operation", {PARALLEL}}, \
2685 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2686 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2687 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2688 GT, LEU, LTU, GEU, GTU, \
2689 UNORDERED, ORDERED, \
2690 UNGE, UNLE }}, \
2691 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2692 UNORDERED }}, \
2693 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2694 GT, LEU, LTU, GEU, GTU, \
2695 UNORDERED, ORDERED, \
2696 UNGE, UNLE }}, \
2697 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2698 GT, LEU, LTU, GEU, GTU}}, \
2699 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2700 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2701 {"altivec_register_operand", {REG}}, \
50a0b056 2702 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2703
b6c9286a
MM
2704/* uncomment for disabling the corresponding default options */
2705/* #define MACHINE_no_sched_interblock */
2706/* #define MACHINE_no_sched_speculative */
2707/* #define MACHINE_no_sched_speculative_load */
2708
766a866c
MM
2709/* General flags. */
2710extern int flag_pic;
354b734b
MM
2711extern int optimize;
2712extern int flag_expensive_optimizations;
a7df97e6 2713extern int frame_pointer_needed;
0ac081f6
AH
2714
2715enum rs6000_builtins
2716{
2717 /* AltiVec builtins. */
f18c054f
DB
2718 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2719 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2720 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2721 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2722 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2723 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2724 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2725 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2726 ALTIVEC_BUILTIN_VADDUBM,
2727 ALTIVEC_BUILTIN_VADDUHM,
2728 ALTIVEC_BUILTIN_VADDUWM,
2729 ALTIVEC_BUILTIN_VADDFP,
2730 ALTIVEC_BUILTIN_VADDCUW,
2731 ALTIVEC_BUILTIN_VADDUBS,
2732 ALTIVEC_BUILTIN_VADDSBS,
2733 ALTIVEC_BUILTIN_VADDUHS,
2734 ALTIVEC_BUILTIN_VADDSHS,
2735 ALTIVEC_BUILTIN_VADDUWS,
2736 ALTIVEC_BUILTIN_VADDSWS,
2737 ALTIVEC_BUILTIN_VAND,
2738 ALTIVEC_BUILTIN_VANDC,
2739 ALTIVEC_BUILTIN_VAVGUB,
2740 ALTIVEC_BUILTIN_VAVGSB,
2741 ALTIVEC_BUILTIN_VAVGUH,
2742 ALTIVEC_BUILTIN_VAVGSH,
2743 ALTIVEC_BUILTIN_VAVGUW,
2744 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2745 ALTIVEC_BUILTIN_VCFUX,
2746 ALTIVEC_BUILTIN_VCFSX,
2747 ALTIVEC_BUILTIN_VCTSXS,
2748 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2749 ALTIVEC_BUILTIN_VCMPBFP,
2750 ALTIVEC_BUILTIN_VCMPEQUB,
2751 ALTIVEC_BUILTIN_VCMPEQUH,
2752 ALTIVEC_BUILTIN_VCMPEQUW,
2753 ALTIVEC_BUILTIN_VCMPEQFP,
2754 ALTIVEC_BUILTIN_VCMPGEFP,
2755 ALTIVEC_BUILTIN_VCMPGTUB,
2756 ALTIVEC_BUILTIN_VCMPGTSB,
2757 ALTIVEC_BUILTIN_VCMPGTUH,
2758 ALTIVEC_BUILTIN_VCMPGTSH,
2759 ALTIVEC_BUILTIN_VCMPGTUW,
2760 ALTIVEC_BUILTIN_VCMPGTSW,
2761 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2762 ALTIVEC_BUILTIN_VEXPTEFP,
2763 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2764 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2765 ALTIVEC_BUILTIN_VMAXUB,
2766 ALTIVEC_BUILTIN_VMAXSB,
2767 ALTIVEC_BUILTIN_VMAXUH,
2768 ALTIVEC_BUILTIN_VMAXSH,
2769 ALTIVEC_BUILTIN_VMAXUW,
2770 ALTIVEC_BUILTIN_VMAXSW,
2771 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2772 ALTIVEC_BUILTIN_VMHADDSHS,
2773 ALTIVEC_BUILTIN_VMHRADDSHS,
2774 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2775 ALTIVEC_BUILTIN_VMRGHB,
2776 ALTIVEC_BUILTIN_VMRGHH,
2777 ALTIVEC_BUILTIN_VMRGHW,
2778 ALTIVEC_BUILTIN_VMRGLB,
2779 ALTIVEC_BUILTIN_VMRGLH,
2780 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2781 ALTIVEC_BUILTIN_VMSUMUBM,
2782 ALTIVEC_BUILTIN_VMSUMMBM,
2783 ALTIVEC_BUILTIN_VMSUMUHM,
2784 ALTIVEC_BUILTIN_VMSUMSHM,
2785 ALTIVEC_BUILTIN_VMSUMUHS,
2786 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2787 ALTIVEC_BUILTIN_VMINUB,
2788 ALTIVEC_BUILTIN_VMINSB,
2789 ALTIVEC_BUILTIN_VMINUH,
2790 ALTIVEC_BUILTIN_VMINSH,
2791 ALTIVEC_BUILTIN_VMINUW,
2792 ALTIVEC_BUILTIN_VMINSW,
2793 ALTIVEC_BUILTIN_VMINFP,
2794 ALTIVEC_BUILTIN_VMULEUB,
2795 ALTIVEC_BUILTIN_VMULESB,
2796 ALTIVEC_BUILTIN_VMULEUH,
2797 ALTIVEC_BUILTIN_VMULESH,
2798 ALTIVEC_BUILTIN_VMULOUB,
2799 ALTIVEC_BUILTIN_VMULOSB,
2800 ALTIVEC_BUILTIN_VMULOUH,
2801 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2802 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2803 ALTIVEC_BUILTIN_VNOR,
2804 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2805 ALTIVEC_BUILTIN_VSEL_4SI,
2806 ALTIVEC_BUILTIN_VSEL_4SF,
2807 ALTIVEC_BUILTIN_VSEL_8HI,
2808 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2809 ALTIVEC_BUILTIN_VPERM_4SI,
2810 ALTIVEC_BUILTIN_VPERM_4SF,
2811 ALTIVEC_BUILTIN_VPERM_8HI,
2812 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2813 ALTIVEC_BUILTIN_VPKUHUM,
2814 ALTIVEC_BUILTIN_VPKUWUM,
2815 ALTIVEC_BUILTIN_VPKPX,
2816 ALTIVEC_BUILTIN_VPKUHSS,
2817 ALTIVEC_BUILTIN_VPKSHSS,
2818 ALTIVEC_BUILTIN_VPKUWSS,
2819 ALTIVEC_BUILTIN_VPKSWSS,
2820 ALTIVEC_BUILTIN_VPKUHUS,
2821 ALTIVEC_BUILTIN_VPKSHUS,
2822 ALTIVEC_BUILTIN_VPKUWUS,
2823 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2824 ALTIVEC_BUILTIN_VREFP,
2825 ALTIVEC_BUILTIN_VRFIM,
2826 ALTIVEC_BUILTIN_VRFIN,
2827 ALTIVEC_BUILTIN_VRFIP,
2828 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2829 ALTIVEC_BUILTIN_VRLB,
2830 ALTIVEC_BUILTIN_VRLH,
2831 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2832 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2833 ALTIVEC_BUILTIN_VSLB,
2834 ALTIVEC_BUILTIN_VSLH,
2835 ALTIVEC_BUILTIN_VSLW,
2836 ALTIVEC_BUILTIN_VSL,
2837 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2838 ALTIVEC_BUILTIN_VSPLTB,
2839 ALTIVEC_BUILTIN_VSPLTH,
2840 ALTIVEC_BUILTIN_VSPLTW,
2841 ALTIVEC_BUILTIN_VSPLTISB,
2842 ALTIVEC_BUILTIN_VSPLTISH,
2843 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2844 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2845 ALTIVEC_BUILTIN_VSRH,
2846 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2847 ALTIVEC_BUILTIN_VSRAB,
2848 ALTIVEC_BUILTIN_VSRAH,
2849 ALTIVEC_BUILTIN_VSRAW,
2850 ALTIVEC_BUILTIN_VSR,
2851 ALTIVEC_BUILTIN_VSRO,
2852 ALTIVEC_BUILTIN_VSUBUBM,
2853 ALTIVEC_BUILTIN_VSUBUHM,
2854 ALTIVEC_BUILTIN_VSUBUWM,
2855 ALTIVEC_BUILTIN_VSUBFP,
2856 ALTIVEC_BUILTIN_VSUBCUW,
2857 ALTIVEC_BUILTIN_VSUBUBS,
2858 ALTIVEC_BUILTIN_VSUBSBS,
2859 ALTIVEC_BUILTIN_VSUBUHS,
2860 ALTIVEC_BUILTIN_VSUBSHS,
2861 ALTIVEC_BUILTIN_VSUBUWS,
2862 ALTIVEC_BUILTIN_VSUBSWS,
2863 ALTIVEC_BUILTIN_VSUM4UBS,
2864 ALTIVEC_BUILTIN_VSUM4SBS,
2865 ALTIVEC_BUILTIN_VSUM4SHS,
2866 ALTIVEC_BUILTIN_VSUM2SWS,
2867 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2868 ALTIVEC_BUILTIN_VXOR,
2869 ALTIVEC_BUILTIN_VSLDOI_16QI,
2870 ALTIVEC_BUILTIN_VSLDOI_8HI,
2871 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2872 ALTIVEC_BUILTIN_VSLDOI_4SF,
2873 ALTIVEC_BUILTIN_VUPKHSB,
2874 ALTIVEC_BUILTIN_VUPKHPX,
2875 ALTIVEC_BUILTIN_VUPKHSH,
2876 ALTIVEC_BUILTIN_VUPKLSB,
2877 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 2878 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
2879 ALTIVEC_BUILTIN_MTVSCR,
2880 ALTIVEC_BUILTIN_MFVSCR,
2881 ALTIVEC_BUILTIN_DSSALL,
2882 ALTIVEC_BUILTIN_DSS,
2883 ALTIVEC_BUILTIN_LVSL,
2884 ALTIVEC_BUILTIN_LVSR,
2885 ALTIVEC_BUILTIN_DSTT,
2886 ALTIVEC_BUILTIN_DSTST,
2887 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
2888 ALTIVEC_BUILTIN_DST,
2889 ALTIVEC_BUILTIN_LVEBX,
2890 ALTIVEC_BUILTIN_LVEHX,
2891 ALTIVEC_BUILTIN_LVEWX,
2892 ALTIVEC_BUILTIN_LVXL,
2893 ALTIVEC_BUILTIN_LVX,
2894 ALTIVEC_BUILTIN_STVX,
2895 ALTIVEC_BUILTIN_STVEBX,
2896 ALTIVEC_BUILTIN_STVEHX,
2897 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
2898 ALTIVEC_BUILTIN_STVXL,
2899 ALTIVEC_BUILTIN_VCMPBFP_P,
2900 ALTIVEC_BUILTIN_VCMPEQFP_P,
2901 ALTIVEC_BUILTIN_VCMPEQUB_P,
2902 ALTIVEC_BUILTIN_VCMPEQUH_P,
2903 ALTIVEC_BUILTIN_VCMPEQUW_P,
2904 ALTIVEC_BUILTIN_VCMPGEFP_P,
2905 ALTIVEC_BUILTIN_VCMPGTFP_P,
2906 ALTIVEC_BUILTIN_VCMPGTSB_P,
2907 ALTIVEC_BUILTIN_VCMPGTSH_P,
2908 ALTIVEC_BUILTIN_VCMPGTSW_P,
2909 ALTIVEC_BUILTIN_VCMPGTUB_P,
2910 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
2911 ALTIVEC_BUILTIN_VCMPGTUW_P,
2912 ALTIVEC_BUILTIN_ABSS_V4SI,
2913 ALTIVEC_BUILTIN_ABSS_V8HI,
2914 ALTIVEC_BUILTIN_ABSS_V16QI,
2915 ALTIVEC_BUILTIN_ABS_V4SI,
2916 ALTIVEC_BUILTIN_ABS_V4SF,
2917 ALTIVEC_BUILTIN_ABS_V8HI,
2918 ALTIVEC_BUILTIN_ABS_V16QI
a3170dc6
AH
2919 /* SPE builtins. */
2920 , SPE_BUILTIN_EVADDW,
2921 SPE_BUILTIN_EVAND,
2922 SPE_BUILTIN_EVANDC,
2923 SPE_BUILTIN_EVDIVWS,
2924 SPE_BUILTIN_EVDIVWU,
2925 SPE_BUILTIN_EVEQV,
2926 SPE_BUILTIN_EVFSADD,
2927 SPE_BUILTIN_EVFSDIV,
2928 SPE_BUILTIN_EVFSMUL,
2929 SPE_BUILTIN_EVFSSUB,
2930 SPE_BUILTIN_EVLDDX,
2931 SPE_BUILTIN_EVLDHX,
2932 SPE_BUILTIN_EVLDWX,
2933 SPE_BUILTIN_EVLHHESPLATX,
2934 SPE_BUILTIN_EVLHHOSSPLATX,
2935 SPE_BUILTIN_EVLHHOUSPLATX,
2936 SPE_BUILTIN_EVLWHEX,
2937 SPE_BUILTIN_EVLWHOSX,
2938 SPE_BUILTIN_EVLWHOUX,
2939 SPE_BUILTIN_EVLWHSPLATX,
2940 SPE_BUILTIN_EVLWWSPLATX,
2941 SPE_BUILTIN_EVMERGEHI,
2942 SPE_BUILTIN_EVMERGEHILO,
2943 SPE_BUILTIN_EVMERGELO,
2944 SPE_BUILTIN_EVMERGELOHI,
2945 SPE_BUILTIN_EVMHEGSMFAA,
2946 SPE_BUILTIN_EVMHEGSMFAN,
2947 SPE_BUILTIN_EVMHEGSMIAA,
2948 SPE_BUILTIN_EVMHEGSMIAN,
2949 SPE_BUILTIN_EVMHEGUMIAA,
2950 SPE_BUILTIN_EVMHEGUMIAN,
2951 SPE_BUILTIN_EVMHESMF,
2952 SPE_BUILTIN_EVMHESMFA,
2953 SPE_BUILTIN_EVMHESMFAAW,
2954 SPE_BUILTIN_EVMHESMFANW,
2955 SPE_BUILTIN_EVMHESMI,
2956 SPE_BUILTIN_EVMHESMIA,
2957 SPE_BUILTIN_EVMHESMIAAW,
2958 SPE_BUILTIN_EVMHESMIANW,
2959 SPE_BUILTIN_EVMHESSF,
2960 SPE_BUILTIN_EVMHESSFA,
2961 SPE_BUILTIN_EVMHESSFAAW,
2962 SPE_BUILTIN_EVMHESSFANW,
2963 SPE_BUILTIN_EVMHESSIAAW,
2964 SPE_BUILTIN_EVMHESSIANW,
2965 SPE_BUILTIN_EVMHEUMI,
2966 SPE_BUILTIN_EVMHEUMIA,
2967 SPE_BUILTIN_EVMHEUMIAAW,
2968 SPE_BUILTIN_EVMHEUMIANW,
2969 SPE_BUILTIN_EVMHEUSIAAW,
2970 SPE_BUILTIN_EVMHEUSIANW,
2971 SPE_BUILTIN_EVMHOGSMFAA,
2972 SPE_BUILTIN_EVMHOGSMFAN,
2973 SPE_BUILTIN_EVMHOGSMIAA,
2974 SPE_BUILTIN_EVMHOGSMIAN,
2975 SPE_BUILTIN_EVMHOGUMIAA,
2976 SPE_BUILTIN_EVMHOGUMIAN,
2977 SPE_BUILTIN_EVMHOSMF,
2978 SPE_BUILTIN_EVMHOSMFA,
2979 SPE_BUILTIN_EVMHOSMFAAW,
2980 SPE_BUILTIN_EVMHOSMFANW,
2981 SPE_BUILTIN_EVMHOSMI,
2982 SPE_BUILTIN_EVMHOSMIA,
2983 SPE_BUILTIN_EVMHOSMIAAW,
2984 SPE_BUILTIN_EVMHOSMIANW,
2985 SPE_BUILTIN_EVMHOSSF,
2986 SPE_BUILTIN_EVMHOSSFA,
2987 SPE_BUILTIN_EVMHOSSFAAW,
2988 SPE_BUILTIN_EVMHOSSFANW,
2989 SPE_BUILTIN_EVMHOSSIAAW,
2990 SPE_BUILTIN_EVMHOSSIANW,
2991 SPE_BUILTIN_EVMHOUMI,
2992 SPE_BUILTIN_EVMHOUMIA,
2993 SPE_BUILTIN_EVMHOUMIAAW,
2994 SPE_BUILTIN_EVMHOUMIANW,
2995 SPE_BUILTIN_EVMHOUSIAAW,
2996 SPE_BUILTIN_EVMHOUSIANW,
2997 SPE_BUILTIN_EVMWHSMF,
2998 SPE_BUILTIN_EVMWHSMFA,
2999 SPE_BUILTIN_EVMWHSMI,
3000 SPE_BUILTIN_EVMWHSMIA,
3001 SPE_BUILTIN_EVMWHSSF,
3002 SPE_BUILTIN_EVMWHSSFA,
3003 SPE_BUILTIN_EVMWHUMI,
3004 SPE_BUILTIN_EVMWHUMIA,
a3170dc6
AH
3005 SPE_BUILTIN_EVMWLSMIAAW,
3006 SPE_BUILTIN_EVMWLSMIANW,
a3170dc6
AH
3007 SPE_BUILTIN_EVMWLSSIAAW,
3008 SPE_BUILTIN_EVMWLSSIANW,
3009 SPE_BUILTIN_EVMWLUMI,
3010 SPE_BUILTIN_EVMWLUMIA,
3011 SPE_BUILTIN_EVMWLUMIAAW,
3012 SPE_BUILTIN_EVMWLUMIANW,
3013 SPE_BUILTIN_EVMWLUSIAAW,
3014 SPE_BUILTIN_EVMWLUSIANW,
3015 SPE_BUILTIN_EVMWSMF,
3016 SPE_BUILTIN_EVMWSMFA,
3017 SPE_BUILTIN_EVMWSMFAA,
3018 SPE_BUILTIN_EVMWSMFAN,
3019 SPE_BUILTIN_EVMWSMI,
3020 SPE_BUILTIN_EVMWSMIA,
3021 SPE_BUILTIN_EVMWSMIAA,
3022 SPE_BUILTIN_EVMWSMIAN,
3023 SPE_BUILTIN_EVMWHSSFAA,
3024 SPE_BUILTIN_EVMWSSF,
3025 SPE_BUILTIN_EVMWSSFA,
3026 SPE_BUILTIN_EVMWSSFAA,
3027 SPE_BUILTIN_EVMWSSFAN,
3028 SPE_BUILTIN_EVMWUMI,
3029 SPE_BUILTIN_EVMWUMIA,
3030 SPE_BUILTIN_EVMWUMIAA,
3031 SPE_BUILTIN_EVMWUMIAN,
3032 SPE_BUILTIN_EVNAND,
3033 SPE_BUILTIN_EVNOR,
3034 SPE_BUILTIN_EVOR,
3035 SPE_BUILTIN_EVORC,
3036 SPE_BUILTIN_EVRLW,
3037 SPE_BUILTIN_EVSLW,
3038 SPE_BUILTIN_EVSRWS,
3039 SPE_BUILTIN_EVSRWU,
3040 SPE_BUILTIN_EVSTDDX,
3041 SPE_BUILTIN_EVSTDHX,
3042 SPE_BUILTIN_EVSTDWX,
3043 SPE_BUILTIN_EVSTWHEX,
3044 SPE_BUILTIN_EVSTWHOX,
3045 SPE_BUILTIN_EVSTWWEX,
3046 SPE_BUILTIN_EVSTWWOX,
3047 SPE_BUILTIN_EVSUBFW,
3048 SPE_BUILTIN_EVXOR,
3049 SPE_BUILTIN_EVABS,
3050 SPE_BUILTIN_EVADDSMIAAW,
3051 SPE_BUILTIN_EVADDSSIAAW,
3052 SPE_BUILTIN_EVADDUMIAAW,
3053 SPE_BUILTIN_EVADDUSIAAW,
3054 SPE_BUILTIN_EVCNTLSW,
3055 SPE_BUILTIN_EVCNTLZW,
3056 SPE_BUILTIN_EVEXTSB,
3057 SPE_BUILTIN_EVEXTSH,
3058 SPE_BUILTIN_EVFSABS,
3059 SPE_BUILTIN_EVFSCFSF,
3060 SPE_BUILTIN_EVFSCFSI,
3061 SPE_BUILTIN_EVFSCFUF,
3062 SPE_BUILTIN_EVFSCFUI,
3063 SPE_BUILTIN_EVFSCTSF,
3064 SPE_BUILTIN_EVFSCTSI,
3065 SPE_BUILTIN_EVFSCTSIZ,
3066 SPE_BUILTIN_EVFSCTUF,
3067 SPE_BUILTIN_EVFSCTUI,
3068 SPE_BUILTIN_EVFSCTUIZ,
3069 SPE_BUILTIN_EVFSNABS,
3070 SPE_BUILTIN_EVFSNEG,
3071 SPE_BUILTIN_EVMRA,
3072 SPE_BUILTIN_EVNEG,
3073 SPE_BUILTIN_EVRNDW,
3074 SPE_BUILTIN_EVSUBFSMIAAW,
3075 SPE_BUILTIN_EVSUBFSSIAAW,
3076 SPE_BUILTIN_EVSUBFUMIAAW,
3077 SPE_BUILTIN_EVSUBFUSIAAW,
3078 SPE_BUILTIN_EVADDIW,
3079 SPE_BUILTIN_EVLDD,
3080 SPE_BUILTIN_EVLDH,
3081 SPE_BUILTIN_EVLDW,
3082 SPE_BUILTIN_EVLHHESPLAT,
3083 SPE_BUILTIN_EVLHHOSSPLAT,
3084 SPE_BUILTIN_EVLHHOUSPLAT,
3085 SPE_BUILTIN_EVLWHE,
3086 SPE_BUILTIN_EVLWHOS,
3087 SPE_BUILTIN_EVLWHOU,
3088 SPE_BUILTIN_EVLWHSPLAT,
3089 SPE_BUILTIN_EVLWWSPLAT,
3090 SPE_BUILTIN_EVRLWI,
3091 SPE_BUILTIN_EVSLWI,
3092 SPE_BUILTIN_EVSRWIS,
3093 SPE_BUILTIN_EVSRWIU,
3094 SPE_BUILTIN_EVSTDD,
3095 SPE_BUILTIN_EVSTDH,
3096 SPE_BUILTIN_EVSTDW,
3097 SPE_BUILTIN_EVSTWHE,
3098 SPE_BUILTIN_EVSTWHO,
3099 SPE_BUILTIN_EVSTWWE,
3100 SPE_BUILTIN_EVSTWWO,
3101 SPE_BUILTIN_EVSUBIFW,
3102
3103 /* Compares. */
3104 SPE_BUILTIN_EVCMPEQ,
3105 SPE_BUILTIN_EVCMPGTS,
3106 SPE_BUILTIN_EVCMPGTU,
3107 SPE_BUILTIN_EVCMPLTS,
3108 SPE_BUILTIN_EVCMPLTU,
3109 SPE_BUILTIN_EVFSCMPEQ,
3110 SPE_BUILTIN_EVFSCMPGT,
3111 SPE_BUILTIN_EVFSCMPLT,
3112 SPE_BUILTIN_EVFSTSTEQ,
3113 SPE_BUILTIN_EVFSTSTGT,
3114 SPE_BUILTIN_EVFSTSTLT,
3115
3116 /* EVSEL compares. */
3117 SPE_BUILTIN_EVSEL_CMPEQ,
3118 SPE_BUILTIN_EVSEL_CMPGTS,
3119 SPE_BUILTIN_EVSEL_CMPGTU,
3120 SPE_BUILTIN_EVSEL_CMPLTS,
3121 SPE_BUILTIN_EVSEL_CMPLTU,
3122 SPE_BUILTIN_EVSEL_FSCMPEQ,
3123 SPE_BUILTIN_EVSEL_FSCMPGT,
3124 SPE_BUILTIN_EVSEL_FSCMPLT,
3125 SPE_BUILTIN_EVSEL_FSTSTEQ,
3126 SPE_BUILTIN_EVSEL_FSTSTGT,
3127 SPE_BUILTIN_EVSEL_FSTSTLT,
3128
3129 SPE_BUILTIN_EVSPLATFI,
3130 SPE_BUILTIN_EVSPLATI,
3131 SPE_BUILTIN_EVMWHSSMAA,
3132 SPE_BUILTIN_EVMWHSMFAA,
3133 SPE_BUILTIN_EVMWHSMIAA,
3134 SPE_BUILTIN_EVMWHUSIAA,
3135 SPE_BUILTIN_EVMWHUMIAA,
3136 SPE_BUILTIN_EVMWHSSFAN,
3137 SPE_BUILTIN_EVMWHSSIAN,
3138 SPE_BUILTIN_EVMWHSMFAN,
3139 SPE_BUILTIN_EVMWHSMIAN,
3140 SPE_BUILTIN_EVMWHUSIAN,
3141 SPE_BUILTIN_EVMWHUMIAN,
3142 SPE_BUILTIN_EVMWHGSSFAA,
3143 SPE_BUILTIN_EVMWHGSMFAA,
3144 SPE_BUILTIN_EVMWHGSMIAA,
3145 SPE_BUILTIN_EVMWHGUMIAA,
3146 SPE_BUILTIN_EVMWHGSSFAN,
3147 SPE_BUILTIN_EVMWHGSMFAN,
3148 SPE_BUILTIN_EVMWHGSMIAN,
3149 SPE_BUILTIN_EVMWHGUMIAN,
3150 SPE_BUILTIN_MTSPEFSCR,
3151 SPE_BUILTIN_MFSPEFSCR,
3152 SPE_BUILTIN_BRINC
0ac081f6 3153};