]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
lex.c (handle_generic_pragma): Use token_buffer.
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
a260abc9 2 Copyright (C) 1992, 93-7, 1998 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
f045b2c9
RS
21
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27/* Names to predefine in the preprocessor for this target machine. */
28
a238cd8b 29#define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 -D_LONG_LONG \
84b49fa7 30-Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
f045b2c9
RS
31
32/* Print subsidiary information on the compiler version in use. */
33#define TARGET_VERSION ;
34
8e3f41e7
MM
35/* Default string to use for cpu if not specified. */
36#ifndef TARGET_CPU_DEFAULT
37#define TARGET_CPU_DEFAULT ((char *)0)
38#endif
39
fdaff8ba
RS
40/* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
b4d6689b
RK
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
f045b2c9 47
841faeed 48/* #define ASM_SPEC "-u %(asm_cpu)" */
f045b2c9 49
84b49fa7
RK
50/* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
841faeed
MM
53#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
956d6950 55/* Common CPP definitions used by CPP_SPEC among the various targets
841faeed
MM
56 for handling -mcpu=xxx switches. */
57#define CPP_CPU_SPEC \
58"%{!mcpu*: \
84b49fa7
RK
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
841faeed 63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
84b49fa7
RK
64%{mcpu=common: -D_ARCH_COM} \
65%{mcpu=power: -D_ARCH_PWR} \
8e3f41e7 66%{mcpu=power2: -D_ARCH_PWR2} \
84b49fa7
RK
67%{mcpu=powerpc: -D_ARCH_PPC} \
68%{mcpu=rios: -D_ARCH_PWR} \
69%{mcpu=rios1: -D_ARCH_PWR} \
70%{mcpu=rios2: -D_ARCH_PWR2} \
71%{mcpu=rsc: -D_ARCH_PWR} \
72%{mcpu=rsc1: -D_ARCH_PWR} \
b91d2c10 73%{mcpu=401: -D_ARCH_PPC} \
49a0b204 74%{mcpu=403: -D_ARCH_PPC} \
cf27b467 75%{mcpu=505: -D_ARCH_PPC} \
84b49fa7 76%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
841faeed 77%{mcpu=602: -D_ARCH_PPC} \
fada905b
MM
78%{mcpu=603: -D_ARCH_PPC} \
79%{mcpu=603e: -D_ARCH_PPC} \
b91d2c10 80%{mcpu=ec603e: -D_ARCH_PPC} \
fada905b 81%{mcpu=604: -D_ARCH_PPC} \
b91d2c10 82%{mcpu=604e: -D_ARCH_PPC} \
cf27b467
MM
83%{mcpu=620: -D_ARCH_PPC} \
84%{mcpu=821: -D_ARCH_PPC} \
b91d2c10 85%{mcpu=823: -D_ARCH_PPC} \
cf27b467 86%{mcpu=860: -D_ARCH_PPC}"
84b49fa7 87
841faeed
MM
88#ifndef CPP_DEFAULT_SPEC
89#define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
90#endif
91
92#ifndef CPP_SYSV_SPEC
93#define CPP_SYSV_SPEC ""
94#endif
95
96#ifndef CPP_ENDIAN_SPEC
97#define CPP_ENDIAN_SPEC ""
98#endif
99
c81bebd7
MM
100#ifndef CPP_ENDIAN_DEFAULT_SPEC
101#define CPP_ENDIAN_DEFAULT_SPEC ""
102#endif
103
841faeed
MM
104#ifndef CPP_SYSV_DEFAULT_SPEC
105#define CPP_SYSV_DEFAULT_SPEC ""
106#endif
107
956d6950 108/* Common ASM definitions used by ASM_SPEC among the various targets
841faeed
MM
109 for handling -mcpu=xxx switches. */
110#define ASM_CPU_SPEC \
111"%{!mcpu*: \
112 %{mpower: %{!mpower2: -mpwr}} \
113 %{mpower2: -mpwrx} \
114 %{mpowerpc*: -mppc} \
115 %{mno-power: %{!mpowerpc*: -mcom}} \
116 %{!mno-power: %{!mpower2: %(asm_default)}}} \
117%{mcpu=common: -mcom} \
118%{mcpu=power: -mpwr} \
119%{mcpu=power2: -mpwrx} \
120%{mcpu=powerpc: -mppc} \
121%{mcpu=rios: -mpwr} \
122%{mcpu=rios1: -mpwr} \
123%{mcpu=rios2: -mpwrx} \
124%{mcpu=rsc: -mpwr} \
125%{mcpu=rsc1: -mpwr} \
b91d2c10 126%{mcpu=401: -mppc} \
841faeed
MM
127%{mcpu=403: -mppc} \
128%{mcpu=505: -mppc} \
129%{mcpu=601: -m601} \
130%{mcpu=602: -mppc} \
131%{mcpu=603: -mppc} \
132%{mcpu=603e: -mppc} \
b91d2c10 133%{mcpu=ec603e: -mppc} \
841faeed 134%{mcpu=604: -mppc} \
b91d2c10 135%{mcpu=604e: -mppc} \
841faeed
MM
136%{mcpu=620: -mppc} \
137%{mcpu=821: -mppc} \
b91d2c10 138%{mcpu=823: -mppc} \
841faeed
MM
139%{mcpu=860: -mppc}"
140
141#ifndef ASM_DEFAULT_SPEC
fba29a8c 142#define ASM_DEFAULT_SPEC ""
841faeed
MM
143#endif
144
145/* This macro defines names of additional specifications to put in the specs
146 that can be used in various specifications like CC1_SPEC. Its definition
147 is an initializer with a subgrouping for each command option.
148
149 Each subgrouping contains a string constant, that defines the
150 specification name, and a string constant that used by the GNU CC driver
151 program.
152
153 Do not define this macro if it does not need to do anything. */
154
7509c759
MM
155#ifndef SUBTARGET_EXTRA_SPECS
156#define SUBTARGET_EXTRA_SPECS
157#endif
158
c81bebd7
MM
159#define EXTRA_SPECS \
160 { "cpp_cpu", CPP_CPU_SPEC }, \
161 { "cpp_default", CPP_DEFAULT_SPEC }, \
162 { "cpp_sysv", CPP_SYSV_SPEC }, \
163 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
164 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
165 { "cpp_endian", CPP_ENDIAN_SPEC }, \
166 { "asm_cpu", ASM_CPU_SPEC }, \
167 { "asm_default", ASM_DEFAULT_SPEC }, \
168 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
169 { "link_libg", LINK_LIBG_SPEC }, \
7509c759
MM
170 SUBTARGET_EXTRA_SPECS
171
7509c759
MM
172/* Default location of syscalls.exp under AIX */
173#ifndef CROSS_COMPILE
174#define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
175#else
176#define LINK_SYSCALLS_SPEC ""
177#endif
178
179/* Default location of libg.exp under AIX */
180#ifndef CROSS_COMPILE
181#define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
182#else
183#define LINK_LIBG_SPEC ""
184#endif
185
f045b2c9
RS
186/* Define the options for the binder: Start text at 512, align all segments
187 to 512 bytes, and warn if there is text relocation.
188
189 The -bhalt:4 option supposedly changes the level at which ld will abort,
190 but it also suppresses warnings about multiply defined symbols and is
191 used by the AIX cc command. So we use it here.
192
193 -bnodelcsect undoes a poor choice of default relating to multiply-defined
52c0eaf8
JM
194 csects. See AIX documentation for more information about this.
195
196 -bM:SRE tells the linker that the output file is Shared REusable. Note
197 that to actually build a shared library you will also need to specify an
198 export list with the -Wl,-bE option. */
f045b2c9 199
c1950f1c 200#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
7509c759
MM
201 %{static:-bnso %(link_syscalls) } \
202 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
f045b2c9 203
58a39e45
RS
204/* Profiled library versions are used by linking with special directories. */
205#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
788d9012 206 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
f045b2c9
RS
207
208/* gcc must do the search itself to find libgcc.a, not use -l. */
046b1537 209#define LIBGCC_SPEC "libgcc.a%s"
f045b2c9
RS
210
211/* Don't turn -B into -L if the argument specifies a relative file name. */
212#define RELATIVE_PREFIX_NOT_LINKDIR
213
fb623df5 214/* Architecture type. */
f045b2c9 215
fb623df5
RK
216extern int target_flags;
217
218/* Use POWER architecture instructions and MQ register. */
38c1f2d7 219#define MASK_POWER 0x00000001
fb623df5 220
6febd581 221/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 222#define MASK_POWER2 0x00000002
6febd581 223
fb623df5 224/* Use PowerPC architecture instructions. */
38c1f2d7 225#define MASK_POWERPC 0x00000004
6febd581 226
583cf4db 227/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 228#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
229
230/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 231#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 232
fb623df5 233/* Use PowerPC-64 architecture instructions. */
38c1f2d7 234#define MASK_POWERPC64 0x00000020
f045b2c9 235
fb623df5 236/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 237#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
238
239/* Disable placing fp constants in the TOC; can be turned on when the
240 TOC overflows. */
38c1f2d7 241#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 242
0b9ccabc
RK
243/* Disable placing symbol+offset constants in the TOC; can be turned on when
244 the TOC overflows. */
38c1f2d7 245#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 246
fb623df5 247/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
248 there are more than 16K unique variables/constants in an executable. With
249 this option, linking fails only if there are more than 16K modules, or
250 if there are more than 16K unique variables/constant in a single module.
251
252 This is at the cost of having 2 extra loads and one extra store per
956d6950 253 function, and one less allocable register. */
38c1f2d7 254#define MASK_MINIMAL_TOC 0x00000200
642a35f1 255
9e654916 256/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
38c1f2d7 257#define MASK_64BIT 0x00000400
9e654916 258
f85f4585 259/* Disable use of FPRs. */
38c1f2d7 260#define MASK_SOFT_FLOAT 0x00000800
f85f4585 261
4d30c363 262/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
263#define MASK_MULTIPLE 0x00001000
264#define MASK_MULTIPLE_SET 0x00002000
4d30c363 265
7e69e155 266/* Use string instructions for block moves */
38c1f2d7
MM
267#define MASK_STRING 0x00004000
268#define MASK_STRING_SET 0x00008000
7e69e155 269
38c1f2d7
MM
270/* Disable update form of load/store */
271#define MASK_NO_UPDATE 0x00010000
272
273/* Disable fused multiply/add operations */
274#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 275
7e69e155
MM
276#define TARGET_POWER (target_flags & MASK_POWER)
277#define TARGET_POWER2 (target_flags & MASK_POWER2)
278#define TARGET_POWERPC (target_flags & MASK_POWERPC)
279#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
280#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
281#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
282#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
283#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
284#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
285#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
286#define TARGET_64BIT (target_flags & MASK_64BIT)
287#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
288#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
289#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
290#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 291#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
292#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
293#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
7e69e155 294
2f3e5814 295#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 296#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
297#define TARGET_UPDATE (! TARGET_NO_UPDATE)
298#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 299
4697a36c
MM
300/* Pseudo target to indicate whether the object format is ELF
301 (to get around not having conditional compilation in the md file) */
302#ifndef TARGET_ELF
303#define TARGET_ELF 0
304#endif
305
306/* If this isn't V.4, don't support -mno-toc. */
307#ifndef TARGET_NO_TOC
308#define TARGET_NO_TOC 0
309#define TARGET_TOC 1
310#endif
311
b6c9286a
MM
312/* Pseudo target to say whether this is Windows NT */
313#ifndef TARGET_WINDOWS_NT
314#define TARGET_WINDOWS_NT 0
315#endif
316
317/* Pseudo target to say whether this is MAC */
318#ifndef TARGET_MACOS
319#define TARGET_MACOS 0
320#endif
321
322/* Pseudo target to say whether this is AIX */
323#ifndef TARGET_AIX
324#if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
325#define TARGET_AIX 0
326#else
327#define TARGET_AIX 1
328#endif
329#endif
330
a3950905
MM
331#ifndef TARGET_XL_CALL
332#define TARGET_XL_CALL 0
333#endif
334
fb623df5 335/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 336
fb623df5 337 Macro to define tables used to set the flags.
f045b2c9
RS
338 This is a list in braces of pairs in braces,
339 each pair being { "NAME", VALUE }
340 where VALUE is the bits to set or minus the bits to clear.
341 An empty string NAME is used to identify the default VALUE. */
342
4d30c363
MM
343/* This is meant to be redefined in the host dependent files */
344#ifndef SUBTARGET_SWITCHES
345#define SUBTARGET_SWITCHES
346#endif
347
938937d8
MM
348#define TARGET_SWITCHES \
349 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
350 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
351 | MASK_POWER2)}, \
352 {"no-power2", - MASK_POWER2}, \
353 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
354 | MASK_STRING)}, \
355 {"powerpc", MASK_POWERPC}, \
356 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
357 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
358 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
359 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
360 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
361 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
a260abc9
DE
362 {"powerpc64", MASK_POWERPC64}, \
363 {"no-powerpc64", - MASK_POWERPC64}, \
938937d8
MM
364 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
365 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
366 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
367 | MASK_MINIMAL_TOC)}, \
368 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
369 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
370 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
371 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
372 {"minimal-toc", MASK_MINIMAL_TOC}, \
373 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
374 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
375 {"hard-float", - MASK_SOFT_FLOAT}, \
376 {"soft-float", MASK_SOFT_FLOAT}, \
377 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
378 {"no-multiple", - MASK_MULTIPLE}, \
379 {"no-multiple", MASK_MULTIPLE_SET}, \
380 {"string", MASK_STRING | MASK_STRING_SET}, \
381 {"no-string", - MASK_STRING}, \
bbdd88df 382 {"no-string", MASK_STRING_SET}, \
38c1f2d7
MM
383 {"update", - MASK_NO_UPDATE}, \
384 {"no-update", MASK_NO_UPDATE}, \
385 {"fused-madd", - MASK_NO_FUSED_MADD}, \
386 {"no-fused-madd", MASK_NO_FUSED_MADD}, \
938937d8 387 SUBTARGET_SWITCHES \
fb623df5
RK
388 {"", TARGET_DEFAULT}}
389
938937d8 390#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
fb623df5 391
cac8ce95 392/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 393enum processor_type
f86fe1fb 394 {PROCESSOR_RIOS1,
fb623df5 395 PROCESSOR_RIOS2,
cf27b467 396 PROCESSOR_MPCCORE,
49a0b204 397 PROCESSOR_PPC403,
fb623df5
RK
398 PROCESSOR_PPC601,
399 PROCESSOR_PPC603,
400 PROCESSOR_PPC604,
cac8ce95 401 PROCESSOR_PPC604e,
fb623df5
RK
402 PROCESSOR_PPC620};
403
404extern enum processor_type rs6000_cpu;
405
406/* Recast the processor type to the cpu attribute. */
407#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
408
8482e358 409/* Define generic processor types based upon current deployment. */
8e3f41e7 410#define PROCESSOR_COMMON PROCESSOR_PPC601
8482e358 411#define PROCESSOR_POWER PROCESSOR_RIOS1
8e3f41e7 412#define PROCESSOR_POWERPC PROCESSOR_PPC604
6e151478 413
fb623df5 414/* Define the default processor. This is overridden by other tm.h files. */
f86fe1fb 415#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
fb623df5 416
6febd581
RK
417/* Specify the dialect of assembler to use. New mnemonics is dialect one
418 and the old mnemonics are dialect zero. */
419#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
420
fb623df5
RK
421/* This macro is similar to `TARGET_SWITCHES' but defines names of
422 command options that have values. Its definition is an
423 initializer with a subgrouping for each command option.
424
425 Each subgrouping contains a string constant, that defines the
426 fixed part of the option name, and the address of a variable.
427 The variable, type `char *', is set to the variable part of the
428 given option if the fixed part matches. The actual option name
429 is made by appending `-m' to the specified name.
430
431 Here is an example which defines `-mshort-data-NUMBER'. If the
432 given option is `-mshort-data-512', the variable `m88k_short_data'
433 will be set to the string `"512"'.
434
435 extern char *m88k_short_data;
436 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
437
956d6950 438/* This is meant to be overridden in target specific files. */
b6c9286a
MM
439#ifndef SUBTARGET_OPTIONS
440#define SUBTARGET_OPTIONS
441#endif
442
8e3f41e7
MM
443#define TARGET_OPTIONS \
444{ \
445 {"cpu=", &rs6000_select[1].string}, \
446 {"tune=", &rs6000_select[2].string}, \
38c1f2d7
MM
447 {"debug-", &rs6000_debug_name}, \
448 {"debug=", &rs6000_debug_name}, \
8e3f41e7 449 SUBTARGET_OPTIONS \
b6c9286a 450}
fb623df5 451
ff222560 452/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
453struct rs6000_cpu_select
454{
455 char *string;
456 char *name;
457 int set_tune_p;
458 int set_arch_p;
459};
460
461extern struct rs6000_cpu_select rs6000_select[];
fb623df5 462
38c1f2d7
MM
463/* Debug support */
464extern char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
465extern int rs6000_debug_stack; /* debug stack applications */
466extern int rs6000_debug_arg; /* debug argument handling */
467
468#define TARGET_DEBUG_STACK rs6000_debug_stack
469#define TARGET_DEBUG_ARG rs6000_debug_arg
470
fb623df5
RK
471/* Sometimes certain combinations of command options do not make sense
472 on a particular target machine. You can define a macro
473 `OVERRIDE_OPTIONS' to take account of this. This macro, if
474 defined, is executed once just after all the command options have
475 been parsed.
476
5accd822
DE
477 Don't use this macro to turn on various extra optimizations for
478 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
479
fb623df5
RK
480 On the RS/6000 this is used to define the target cpu type. */
481
8e3f41e7 482#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 483
5accd822
DE
484/* Define this to change the optimizations performed by default. */
485#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
486
487
4f074454
RK
488/* Show we can debug even without a frame pointer. */
489#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
490\f
491/* target machine storage layout */
492
df44fa77
RK
493/* Define to support cross compilation to an RS6000 target. */
494#define REAL_ARITHMETIC
495
13d39dbc 496/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 497 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
498 the value is constrained to be within the bounds of the declared
499 type, but kept valid in the wider mode. The signedness of the
500 extension may differ from that of the type. */
501
39403d82
DE
502#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
503 if (GET_MODE_CLASS (MODE) == MODE_INT \
504 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
505 (MODE) = (! TARGET_POWERPC64 ? SImode : DImode);
506
507/* Define this if function arguments should also be promoted using the above
508 procedure. */
509
510#define PROMOTE_FUNCTION_ARGS
511
512/* Likewise, if the function return value is promoted. */
513
514#define PROMOTE_FUNCTION_RETURN
ef457bda 515
f045b2c9
RS
516/* Define this if most significant bit is lowest numbered
517 in instructions that operate on numbered bit-fields. */
518/* That is true on RS/6000. */
519#define BITS_BIG_ENDIAN 1
520
521/* Define this if most significant byte of a word is the lowest numbered. */
522/* That is true on RS/6000. */
523#define BYTES_BIG_ENDIAN 1
524
525/* Define this if most significant word of a multiword number is lowest
c81bebd7 526 numbered.
f045b2c9
RS
527
528 For RS/6000 we can decide arbitrarily since there are no machine
529 instructions for them. Might as well be consistent with bits and bytes. */
530#define WORDS_BIG_ENDIAN 1
531
fdaff8ba 532/* number of bits in an addressable storage unit */
f045b2c9
RS
533#define BITS_PER_UNIT 8
534
535/* Width in bits of a "word", which is the contents of a machine register.
536 Note that this is not necessarily the width of data type `int';
537 if using 16-bit ints on a 68000, this would still be 32.
538 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 539#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 540#define MAX_BITS_PER_WORD 64
f045b2c9
RS
541
542/* Width of a word, in units (bytes). */
2f3e5814 543#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 544#define MIN_UNITS_PER_WORD 4
2e360ab3 545#define UNITS_PER_FP_WORD 8
f045b2c9 546
915f619f
JW
547/* Type used for ptrdiff_t, as a string used in a declaration. */
548#define PTRDIFF_TYPE "int"
549
f045b2c9
RS
550/* Type used for wchar_t, as a string used in a declaration. */
551#define WCHAR_TYPE "short unsigned int"
552
553/* Width of wchar_t in bits. */
554#define WCHAR_TYPE_SIZE 16
555
9e654916
RK
556/* A C expression for the size in bits of the type `short' on the
557 target machine. If you don't define this, the default is half a
558 word. (If this would be less than one storage unit, it is
559 rounded up to one unit.) */
560#define SHORT_TYPE_SIZE 16
561
562/* A C expression for the size in bits of the type `int' on the
563 target machine. If you don't define this, the default is one
564 word. */
19d2d16f 565#define INT_TYPE_SIZE 32
9e654916
RK
566
567/* A C expression for the size in bits of the type `long' on the
568 target machine. If you don't define this, the default is one
569 word. */
2f3e5814 570#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
571#define MAX_LONG_TYPE_SIZE 64
572
573/* A C expression for the size in bits of the type `long long' on the
574 target machine. If you don't define this, the default is two
575 words. */
576#define LONG_LONG_TYPE_SIZE 64
577
578/* A C expression for the size in bits of the type `char' on the
579 target machine. If you don't define this, the default is one
580 quarter of a word. (If this would be less than one storage unit,
581 it is rounded up to one unit.) */
582#define CHAR_TYPE_SIZE BITS_PER_UNIT
583
584/* A C expression for the size in bits of the type `float' on the
585 target machine. If you don't define this, the default is one
586 word. */
587#define FLOAT_TYPE_SIZE 32
588
589/* A C expression for the size in bits of the type `double' on the
590 target machine. If you don't define this, the default is two
591 words. */
592#define DOUBLE_TYPE_SIZE 64
593
594/* A C expression for the size in bits of the type `long double' on
595 the target machine. If you don't define this, the default is two
596 words. */
597#define LONG_DOUBLE_TYPE_SIZE 64
598
f045b2c9
RS
599/* Width in bits of a pointer.
600 See also the macro `Pmode' defined below. */
2f3e5814 601#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
602
603/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 604#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
605
606/* Boundary (in *bits*) on which stack pointer should be aligned. */
a260abc9 607#define STACK_BOUNDARY (TARGET_32BIT ? 64 : 128)
f045b2c9
RS
608
609/* Allocation boundary (in *bits*) for the code of a function. */
610#define FUNCTION_BOUNDARY 32
611
612/* No data type wants to be aligned rounder than this. */
b73fd26c
DE
613#define BIGGEST_ALIGNMENT 64
614
6bc3403c
DE
615/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
616#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
a260abc9
DE
617 (TYPE_MODE (TREE_CODE (TREE_TYPE (FIELD)) == ARRAY_TYPE \
618 ? get_inner_array_type (FIELD) \
619 : TREE_TYPE (FIELD)) == DFmode \
620 ? MIN ((COMPUTED), 32) : (COMPUTED))
f045b2c9
RS
621
622/* Alignment of field after `int : 0' in a structure. */
623#define EMPTY_FIELD_BOUNDARY 32
624
625/* Every structure's size must be a multiple of this. */
626#define STRUCTURE_SIZE_BOUNDARY 8
627
628/* A bitfield declared as `int' forces `int' alignment for the struct. */
629#define PCC_BITFIELD_TYPE_MATTERS 1
630
6bc3403c
DE
631/* AIX increases natural record alignment to doubleword if the first
632 field is an FP double while the FP fields remain word aligned. */
633#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
634 ((TREE_CODE (STRUCT) == RECORD_TYPE \
635 || TREE_CODE (STRUCT) == UNION_TYPE \
636 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
02bef6da 637 && TYPE_FIELDS (STRUCT) != 0 \
6bc3403c
DE
638 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
639 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
640 : MAX ((COMPUTED), (SPECIFIED)))
641
f045b2c9
RS
642/* Make strings word-aligned so strcpy from constants will be faster. */
643#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
644 (TREE_CODE (EXP) == STRING_CST \
645 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
646
647/* Make arrays of chars word-aligned for the same reasons. */
648#define DATA_ALIGNMENT(TYPE, ALIGN) \
649 (TREE_CODE (TYPE) == ARRAY_TYPE \
650 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
651 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
652
fdaff8ba 653/* Non-zero if move instructions will actually fail to work
f045b2c9 654 when given unaligned data. */
fdaff8ba 655#define STRICT_ALIGNMENT 0
f045b2c9
RS
656\f
657/* Standard register usage. */
658
659/* Number of actual hardware registers.
660 The hardware registers are assigned numbers for the compiler
661 from 0 to just below FIRST_PSEUDO_REGISTER.
662 All registers that the compiler knows about must be given numbers,
663 even those that are not normally considered general registers.
664
665 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
666 an MQ register, a count register, a link register, and 8 condition
667 register fields, which we view here as separate registers.
668
669 In addition, the difference between the frame and argument pointers is
670 a function of the number of registers saved, so we need to have a
671 register for AP that will later be eliminated in favor of SP or FP.
802a0058 672 This is a normal register, but it is fixed.
f045b2c9 673
802a0058
MM
674 We also create a pseudo register for float/int conversions, that will
675 really represent the memory location used. It is represented here as
676 a register, in order to work around problems in allocating stack storage
677 in inline functions. */
678
679#define FIRST_PSEUDO_REGISTER 77
f045b2c9
RS
680
681/* 1 for registers that have pervasive standard uses
682 and are not available for the register allocator.
683
c81bebd7 684 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
f045b2c9 685
a127c4e5
RK
686 cr5 is not supposed to be used.
687
688 On System V implementations, r13 is fixed and not available for use. */
689
690#ifndef FIXED_R13
691#define FIXED_R13 0
692#endif
f045b2c9
RS
693
694#define FIXED_REGISTERS \
a127c4e5 695 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
696 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
697 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
698 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 699 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
f045b2c9
RS
700
701/* 1 for registers not available across function calls.
702 These must include the FIXED_REGISTERS and also any
703 registers that can be used without being saved.
704 The latter must include the registers where values are returned
705 and the register where structure-value addresses are passed.
706 Aside from that, you can include as many other registers as you like. */
707
708#define CALL_USED_REGISTERS \
a127c4e5 709 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
710 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
711 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
712 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 713 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
f045b2c9
RS
714
715/* List the order in which to allocate registers. Each register must be
716 listed once, even those in FIXED_REGISTERS.
717
718 We allocate in the following order:
719 fp0 (not saved or used for anything)
720 fp13 - fp2 (not saved; incoming fp arg registers)
721 fp1 (not saved; return value)
722 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
723 cr7, cr6 (not saved or special)
724 cr1 (not saved, but used for FP operations)
f045b2c9 725 cr0 (not saved, but used for arithmetic operations)
5accd822 726 cr4, cr3, cr2 (saved)
f045b2c9
RS
727 r0 (not saved; cannot be base reg)
728 r9 (not saved; best for TImode)
729 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
730 r3 (not saved; return value register)
731 r31 - r13 (saved; order given to save least number)
732 r12 (not saved; if used for DImode or DFmode would use r13)
733 mq (not saved; best to use it if we can)
734 ctr (not saved; when we have the choice ctr is better)
735 lr (saved)
1427100a 736 cr5, r1, r2, ap, fpmem (fixed) */
f045b2c9
RS
737
738#define REG_ALLOC_ORDER \
739 {32, \
740 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
741 33, \
742 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
743 50, 49, 48, 47, 46, \
5accd822 744 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
745 0, \
746 9, 11, 10, 8, 7, 6, 5, 4, \
747 3, \
748 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
749 18, 17, 16, 15, 14, 13, 12, \
750 64, 66, 65, \
802a0058 751 73, 1, 2, 67, 76}
f045b2c9
RS
752
753/* True if register is floating-point. */
754#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
755
756/* True if register is a condition register. */
757#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
758
759/* True if register is an integer register. */
760#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
761
802a0058
MM
762/* True if register is the temporary memory location used for int/float
763 conversion. */
764#define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
765
f045b2c9
RS
766/* Return number of consecutive hard regs needed starting at reg REGNO
767 to hold something of mode MODE.
768 This is ordinarily the length in words of a value of mode MODE
769 but can be less for certain modes in special long registers.
770
a260abc9
DE
771 POWER and PowerPC GPRs hold 32 bits worth;
772 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 773
802a0058
MM
774#define HARD_REGNO_NREGS(REGNO, MODE) \
775 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
2e360ab3 776 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9
RS
777 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
778
779/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
780 For POWER and PowerPC, the GPRs can hold any mode, but the float
781 registers only can hold floating modes and DImode, and CR register only
782 can hold CC modes. We cannot put TImode anywhere except general
783 register and it must be able to fit within the register set. */
f045b2c9 784
802a0058
MM
785#define HARD_REGNO_MODE_OK(REGNO, MODE) \
786 (FP_REGNO_P (REGNO) ? \
787 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
788 || (GET_MODE_CLASS (MODE) == MODE_INT \
789 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
790 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
791 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
792 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 793 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
794 : 1)
795
796/* Value is 1 if it is a good idea to tie two pseudo registers
797 when one has mode MODE1 and one has mode MODE2.
798 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
799 for any hard reg, then this must be 0 for correct output. */
800#define MODES_TIEABLE_P(MODE1, MODE2) \
801 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
802 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
803 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
804 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
805 : GET_MODE_CLASS (MODE1) == MODE_CC \
806 ? GET_MODE_CLASS (MODE2) == MODE_CC \
807 : GET_MODE_CLASS (MODE2) == MODE_CC \
808 ? GET_MODE_CLASS (MODE1) == MODE_CC \
809 : 1)
810
811/* A C expression returning the cost of moving data from a register of class
812 CLASS1 to one of CLASS2.
813
814 On the RS/6000, copying between floating-point and fixed-point
815 registers is expensive. */
816
817#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
818 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
819 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
820 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
a4b970a0 821 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
822 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
823 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 824 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 825 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 826 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
827 : 2)
828
829/* A C expressions returning the cost of moving data of MODE from a register to
830 or from memory.
831
832 On the RS/6000, bump this up a bit. */
833
cbd5b9a2 834#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
ab4a5fc9
RK
835 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
836 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
837 ? 3 : 2) \
838 + 4)
f045b2c9
RS
839
840/* Specify the cost of a branch insn; roughly the number of extra insns that
841 should be added to avoid a branch.
842
ef457bda 843 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
844 unscheduled conditional branch. */
845
ef457bda 846#define BRANCH_COST 3
f045b2c9 847
5a5e4c2c
RK
848/* A C statement (sans semicolon) to update the integer variable COST
849 based on the relationship between INSN that is dependent on
850 DEP_INSN through the dependence LINK. The default is to make no
851 adjustment to COST. On the RS/6000, ignore the cost of anti- and
852 output-dependencies. In fact, output dependencies on the CR do have
853 a cost, but it is probably not worthwhile to track it. */
854
855#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
b0634e74 856 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
5a5e4c2c 857
6febd581
RK
858/* Define this macro to change register usage conditional on target flags.
859 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 860 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 861 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
862 Conditionally disable FPRs. */
863
864#define CONDITIONAL_REGISTER_USAGE \
865{ \
866 if (! TARGET_POWER) \
867 fixed_regs[64] = 1; \
a238cd8b
DE
868 if (TARGET_64BIT) \
869 fixed_regs[13] = call_used_regs[13] = 1; \
d14a6d05
MM
870 if (TARGET_SOFT_FLOAT) \
871 for (i = 32; i < 64; i++) \
f85f4585
RK
872 fixed_regs[i] = call_used_regs[i] = 1; \
873}
6febd581 874
f045b2c9
RS
875/* Specify the registers used for certain standard purposes.
876 The values of these macros are register numbers. */
877
878/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
879/* #define PC_REGNUM */
880
881/* Register to use for pushing function arguments. */
882#define STACK_POINTER_REGNUM 1
883
884/* Base register for access to local variables of the function. */
885#define FRAME_POINTER_REGNUM 31
886
887/* Value should be nonzero if functions must have frame pointers.
888 Zero means the frame pointer need not be set up (and parms
889 may be accessed via the stack pointer) in functions that seem suitable.
890 This is computed in `reload', in reload1.c. */
891#define FRAME_POINTER_REQUIRED 0
892
893/* Base register for access to arguments of the function. */
894#define ARG_POINTER_REGNUM 67
895
896/* Place to put static chain when calling a function that requires it. */
897#define STATIC_CHAIN_REGNUM 11
898
b6c9286a
MM
899/* count register number for special purposes */
900#define COUNT_REGISTER_REGNUM 66
901
802a0058
MM
902/* Special register that represents memory, used for float/int conversions. */
903#define FPMEM_REGNUM 76
904
1ff7789b
MM
905/* Register to use as a placeholder for the GOT/allocated TOC register.
906 FINALIZE_PIC will change all uses of this register to a an appropriate
907 pseudo register when it adds the code to setup the GOT. We use r2
908 because it is a reserved register in all of the ABI's. */
909#define GOT_TOC_REGNUM 2
910
f045b2c9
RS
911/* Place that structure value return address is placed.
912
913 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 914#define STRUCT_VALUE 0
f045b2c9
RS
915\f
916/* Define the classes of registers for register constraints in the
917 machine description. Also define ranges of constants.
918
919 One of the classes must always be named ALL_REGS and include all hard regs.
920 If there is more than one class, another class must be named NO_REGS
921 and contain no registers.
922
923 The name GENERAL_REGS must be the name of a class (or an alias for
924 another name such as ALL_REGS). This is the class of registers
925 that is allowed by "g" or "r" in a register constraint.
926 Also, registers outside this class are allocated only when
927 instructions express preferences for them.
928
929 The classes must be numbered in nondecreasing order; that is,
930 a larger-numbered class must never be contained completely
931 in a smaller-numbered class.
932
933 For any two classes, it is very desirable that there be another
934 class that represents their union. */
c81bebd7 935
f045b2c9
RS
936/* The RS/6000 has three types of registers, fixed-point, floating-point,
937 and condition registers, plus three special registers, MQ, CTR, and the
938 link register.
939
940 However, r0 is special in that it cannot be used as a base register.
941 So make a class for registers valid as base registers.
942
943 Also, cr0 is the only condition code register that can be used in
802a0058
MM
944 arithmetic insns, so make a separate class for it.
945
956d6950 946 There is a special 'register' (76), which is not a register, but a
802a0058
MM
947 placeholder for memory allocated to convert between floating point and
948 integral types. This works around a problem where if we allocate memory
949 with allocate_stack_{local,temp} and the function is an inline function, the
950 memory allocated will clobber memory in the caller. So we use a special
951 register, and if that is used, we allocate stack space for it. */
f045b2c9 952
ebedb4dd
MM
953enum reg_class
954{
955 NO_REGS,
ebedb4dd
MM
956 BASE_REGS,
957 GENERAL_REGS,
958 FLOAT_REGS,
959 NON_SPECIAL_REGS,
960 MQ_REGS,
961 LINK_REGS,
962 CTR_REGS,
963 LINK_OR_CTR_REGS,
964 SPECIAL_REGS,
965 SPEC_OR_GEN_REGS,
966 CR0_REGS,
ebedb4dd
MM
967 CR_REGS,
968 NON_FLOAT_REGS,
802a0058
MM
969 FPMEM_REGS,
970 FLOAT_OR_FPMEM_REGS,
ebedb4dd
MM
971 ALL_REGS,
972 LIM_REG_CLASSES
973};
f045b2c9
RS
974
975#define N_REG_CLASSES (int) LIM_REG_CLASSES
976
977/* Give names of register classes as strings for dump file. */
978
ebedb4dd
MM
979#define REG_CLASS_NAMES \
980{ \
981 "NO_REGS", \
ebedb4dd
MM
982 "BASE_REGS", \
983 "GENERAL_REGS", \
984 "FLOAT_REGS", \
985 "NON_SPECIAL_REGS", \
986 "MQ_REGS", \
987 "LINK_REGS", \
988 "CTR_REGS", \
989 "LINK_OR_CTR_REGS", \
990 "SPECIAL_REGS", \
991 "SPEC_OR_GEN_REGS", \
992 "CR0_REGS", \
ebedb4dd
MM
993 "CR_REGS", \
994 "NON_FLOAT_REGS", \
802a0058
MM
995 "FPMEM_REGS", \
996 "FLOAT_OR_FPMEM_REGS", \
ebedb4dd
MM
997 "ALL_REGS" \
998}
f045b2c9
RS
999
1000/* Define which registers fit in which classes.
1001 This is an initializer for a vector of HARD_REG_SET
1002 of length N_REG_CLASSES. */
1003
ebedb4dd
MM
1004#define REG_CLASS_CONTENTS \
1005{ \
1006 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
ebedb4dd
MM
1007 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
1008 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
1009 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
1010 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
1011 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
1012 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
1013 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
1014 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
1015 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
1016 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
1017 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
ebedb4dd
MM
1018 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
1019 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
802a0058
MM
1020 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
1021 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
1022 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
ebedb4dd 1023}
f045b2c9
RS
1024
1025/* The same information, inverted:
1026 Return the class number of the smallest class containing
1027 reg number REGNO. This could be a conditional expression
1028 or could index an array. */
1029
802a0058
MM
1030#define REGNO_REG_CLASS(REGNO) \
1031 ((REGNO) == 0 ? GENERAL_REGS \
1032 : (REGNO) < 32 ? BASE_REGS \
1033 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1034 : (REGNO) == 68 ? CR0_REGS \
1035 : CR_REGNO_P (REGNO) ? CR_REGS \
1036 : (REGNO) == 64 ? MQ_REGS \
1037 : (REGNO) == 65 ? LINK_REGS \
1038 : (REGNO) == 66 ? CTR_REGS \
1039 : (REGNO) == 67 ? BASE_REGS \
1040 : (REGNO) == 76 ? FPMEM_REGS \
f045b2c9
RS
1041 : NO_REGS)
1042
1043/* The class value for index registers, and the one for base regs. */
1044#define INDEX_REG_CLASS GENERAL_REGS
1045#define BASE_REG_CLASS BASE_REGS
1046
1047/* Get reg_class from a letter such as appears in the machine description. */
1048
1049#define REG_CLASS_FROM_LETTER(C) \
1050 ((C) == 'f' ? FLOAT_REGS \
1051 : (C) == 'b' ? BASE_REGS \
1052 : (C) == 'h' ? SPECIAL_REGS \
1053 : (C) == 'q' ? MQ_REGS \
1054 : (C) == 'c' ? CTR_REGS \
1055 : (C) == 'l' ? LINK_REGS \
1056 : (C) == 'x' ? CR0_REGS \
1057 : (C) == 'y' ? CR_REGS \
802a0058 1058 : (C) == 'z' ? FPMEM_REGS \
f045b2c9
RS
1059 : NO_REGS)
1060
1061/* The letters I, J, K, L, M, N, and P in a register constraint string
1062 can be used to stand for particular ranges of immediate operands.
1063 This macro defines what the ranges are.
1064 C is the letter, and VALUE is a constant value.
1065 Return 1 if VALUE is in the range specified by C.
1066
c81bebd7 1067 `I' is signed 16-bit constants
f045b2c9
RS
1068 `J' is a constant with only the high-order 16 bits non-zero
1069 `K' is a constant with only the low-order 16 bits non-zero
1070 `L' is a constant that can be placed into a mask operand
1071 `M' is a constant that is greater than 31
1072 `N' is a constant that is an exact power of two
1073 `O' is the constant zero
1074 `P' is a constant whose negation is a signed 16-bit constant */
1075
5b6f7b96
RK
1076#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1077 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1078 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
a260abc9 1079 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
5b6f7b96
RK
1080 : (C) == 'L' ? mask_constant (VALUE) \
1081 : (C) == 'M' ? (VALUE) > 31 \
1082 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1083 : (C) == 'O' ? (VALUE) == 0 \
1084 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x1000 \
f045b2c9
RS
1085 : 0)
1086
1087/* Similar, but for floating constants, and defining letters G and H.
1088 Here VALUE is the CONST_DOUBLE rtx itself.
1089
1090 We flag for special constants when we can copy the constant into
4e74d8ec 1091 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1092
c4c40373 1093 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1094
1095#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1096 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1097 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1098 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1099 : 0)
f045b2c9
RS
1100
1101/* Optional extra constraints for this machine.
1102
b6c9286a
MM
1103 'Q' means that is a memory operand that is just an offset from a reg.
1104 'R' is for AIX TOC entries.
a260abc9 1105 'S' is a constant that can be placed into a 64-bit mask operand
88228c4b 1106 'U' is for V.4 small data references. */
f045b2c9 1107
e8a8bc24
RK
1108#define EXTRA_CONSTRAINT(OP, C) \
1109 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1110 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
a260abc9 1111 : (C) == 'S' ? mask64_operand (OP, VOIDmode) \
c81bebd7
MM
1112 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1113 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1114 : 0)
f045b2c9
RS
1115
1116/* Given an rtx X being reloaded into a reg required to be
1117 in class CLASS, return the class of reg to actually use.
1118 In general this is just CLASS; but on some machines
c81bebd7 1119 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1120
1121 On the RS/6000, we have to return NO_REGS when we want to reload a
1122 floating-point CONST_DOUBLE to force it to be copied to memory. */
1123
802a0058 1124#define PREFERRED_RELOAD_CLASS(X,CLASS) \
f045b2c9
RS
1125 ((GET_CODE (X) == CONST_DOUBLE \
1126 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1127 ? NO_REGS : (CLASS))
c81bebd7 1128
f045b2c9
RS
1129/* Return the register class of a scratch register needed to copy IN into
1130 or out of a register in CLASS in MODE. If it can be done directly,
1131 NO_REGS is returned. */
1132
1133#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1134 secondary_reload_class (CLASS, MODE, IN)
1135
7ea555a4
RK
1136/* If we are copying between FP registers and anything else, we need a memory
1137 location. */
1138
1139#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1140 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1141
f045b2c9
RS
1142/* Return the maximum number of consecutive registers
1143 needed to represent mode MODE in a register of class CLASS.
1144
1145 On RS/6000, this is the size of MODE in words,
1146 except in the FP regs, where a single reg is enough for two words. */
802a0058
MM
1147#define CLASS_MAX_NREGS(CLASS, MODE) \
1148 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1149 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
2e360ab3 1150 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1151 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1152
1153/* If defined, gives a class of registers that cannot be used as the
1154 operand of a SUBREG that changes the size of the object. */
1155
802a0058 1156#define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
f045b2c9
RS
1157\f
1158/* Stack layout; function entry, exit and calling. */
1159
6b67933e
RK
1160/* Enumeration to give which calling sequence to use. */
1161enum rs6000_abi {
1162 ABI_NONE,
1163 ABI_AIX, /* IBM's AIX */
b6c9286a
MM
1164 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1165 ABI_V4, /* System V.4/eabi */
c81bebd7
MM
1166 ABI_NT, /* Windows/NT */
1167 ABI_SOLARIS /* Solaris */
6b67933e
RK
1168};
1169
b6c9286a
MM
1170extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1171
1172/* Default ABI to compile code for */
1173#ifndef DEFAULT_ABI
1174#define DEFAULT_ABI ABI_AIX
fb19c17f
RK
1175/* The prefix to add to user-visible assembler symbols. */
1176#define USER_LABEL_PREFIX "."
b6c9286a
MM
1177#endif
1178
4697a36c
MM
1179/* Structure used to define the rs6000 stack */
1180typedef struct rs6000_stack {
1181 int first_gp_reg_save; /* first callee saved GP register used */
1182 int first_fp_reg_save; /* first callee saved FP register used */
1183 int lr_save_p; /* true if the link reg needs to be saved */
1184 int cr_save_p; /* true if the CR reg needs to be saved */
b6c9286a 1185 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1186 int push_p; /* true if we need to allocate stack space */
1187 int calls_p; /* true if the function makes any calls */
b6c9286a
MM
1188 int main_p; /* true if this is main */
1189 int main_save_p; /* true if this is main and we need to save args */
802a0058 1190 int fpmem_p; /* true if float/int conversion temp needed */
6b67933e 1191 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1192 int gp_save_offset; /* offset to save GP regs from initial SP */
1193 int fp_save_offset; /* offset to save FP regs from initial SP */
4697a36c
MM
1194 int lr_save_offset; /* offset to save LR from initial SP */
1195 int cr_save_offset; /* offset to save CR from initial SP */
b6c9286a 1196 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1197 int varargs_save_offset; /* offset to save the varargs registers */
b6c9286a 1198 int main_save_offset; /* offset to save main's args */
802a0058 1199 int fpmem_offset; /* offset for float/int conversion temp */
4697a36c
MM
1200 int reg_size; /* register size (4 or 8) */
1201 int varargs_size; /* size to hold V.4 args passed in regs */
1202 int vars_size; /* variable save area size */
1203 int parm_size; /* outgoing parameter size */
b6c9286a 1204 int main_size; /* size to hold saving main's args */
4697a36c
MM
1205 int save_size; /* save area size */
1206 int fixed_size; /* fixed size of stack frame */
1207 int gp_size; /* size of saved GP registers */
1208 int fp_size; /* size of saved FP registers */
1209 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1210 int lr_size; /* size to hold LR if not in save_size */
802a0058 1211 int fpmem_size; /* size to hold float/int conversion */
b6c9286a 1212 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1213 int total_size; /* total bytes allocated for stack */
1214} rs6000_stack_t;
1215
f045b2c9
RS
1216/* Define this if pushing a word on the stack
1217 makes the stack pointer a smaller address. */
1218#define STACK_GROWS_DOWNWARD
1219
1220/* Define this if the nominal address of the stack frame
1221 is at the high-address end of the local variables;
1222 that is, each additional local variable allocated
1223 goes at a more negative offset in the frame.
1224
1225 On the RS/6000, we grow upwards, from the area after the outgoing
1226 arguments. */
1227/* #define FRAME_GROWS_DOWNWARD */
1228
4697a36c 1229/* Size of the outgoing register save area */
2f3e5814 1230#define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
4697a36c
MM
1231
1232/* Size of the fixed area on the stack */
2f3e5814 1233#define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
4697a36c 1234
b6c9286a 1235/* Address to save the TOC register */
a260abc9 1236#define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, (TARGET_32BIT ? 20 : 40))
b6c9286a 1237
802a0058
MM
1238/* Offset & size for fpmem stack locations used for converting between
1239 float and integral types. */
1240extern int rs6000_fpmem_offset;
1241extern int rs6000_fpmem_size;
1242
4697a36c
MM
1243/* Size of the V.4 varargs area if needed */
1244#define RS6000_VARARGS_AREA 0
1245
1246/* Whether a V.4 varargs area is needed */
1247extern int rs6000_sysv_varargs_p;
1248
1249/* Align an address */
ed33106f 1250#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c 1251
a7df97e6
MM
1252/* Initialize data used by insn expanders. This is called from
1253 init_emit, once for each function, before code is generated. */
1254#define INIT_EXPANDERS rs6000_init_expanders ()
1255
4697a36c
MM
1256/* Size of V.4 varargs area in bytes */
1257#define RS6000_VARARGS_SIZE \
2f3e5814 1258 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c
MM
1259
1260/* Offset of V.4 varargs area */
802a0058 1261#define RS6000_VARARGS_OFFSET \
ed33106f 1262 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1263 + RS6000_SAVE_AREA)
4697a36c 1264
f045b2c9
RS
1265/* Offset within stack frame to start allocating local variables at.
1266 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1267 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1268 of the first local allocated.
f045b2c9
RS
1269
1270 On the RS/6000, the frame pointer is the same as the stack pointer,
1271 except for dynamic allocations. So we start after the fixed area and
1272 outgoing parameter area. */
1273
802a0058 1274#define STARTING_FRAME_OFFSET \
ed33106f 1275 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058
MM
1276 + RS6000_VARARGS_AREA \
1277 + RS6000_SAVE_AREA)
1278
1279/* Offset from the stack pointer register to an item dynamically
1280 allocated on the stack, e.g., by `alloca'.
1281
1282 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1283 length of the outgoing arguments. The default is correct for most
1284 machines. See `function.c' for details. */
1285#define STACK_DYNAMIC_OFFSET(FUNDECL) \
ed33106f 1286 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1287 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1288
1289/* If we generate an insn to push BYTES bytes,
1290 this says how many the stack pointer really advances by.
1291 On RS/6000, don't define this because there are no push insns. */
1292/* #define PUSH_ROUNDING(BYTES) */
1293
1294/* Offset of first parameter from the argument pointer register value.
1295 On the RS/6000, we define the argument pointer to the start of the fixed
1296 area. */
4697a36c 1297#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9
RS
1298
1299/* Define this if stack space is still allocated for a parameter passed
1300 in a register. The value is the number of bytes allocated to this
1301 area. */
4697a36c 1302#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1303
1304/* Define this if the above stack space is to be considered part of the
1305 space allocated by the caller. */
1306#define OUTGOING_REG_PARM_STACK_SPACE
1307
1308/* This is the difference between the logical top of stack and the actual sp.
1309
1310 For the RS/6000, sp points past the fixed area. */
4697a36c 1311#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1312
1313/* Define this if the maximum size of all the outgoing args is to be
1314 accumulated and pushed during the prologue. The amount can be
1315 found in the variable current_function_outgoing_args_size. */
1316#define ACCUMULATE_OUTGOING_ARGS
1317
1318/* Value is the number of bytes of arguments automatically
1319 popped when returning from a subroutine call.
8b109b37 1320 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1321 FUNTYPE is the data type of the function (as a tree),
1322 or for a library call it is an identifier node for the subroutine name.
1323 SIZE is the number of bytes of arguments passed on the stack. */
1324
8b109b37 1325#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1326
1327/* Define how to find the value returned by a function.
1328 VALTYPE is the data type of the value (as a tree).
1329 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1330 otherwise, FUNC is 0.
1331
c81bebd7 1332 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1333 fp1, unless -msoft-float. */
f045b2c9 1334
39403d82
DE
1335#define FUNCTION_VALUE(VALTYPE, FUNC) \
1336 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1337 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1338 || POINTER_TYPE_P (VALTYPE) \
1339 ? word_mode : TYPE_MODE (VALTYPE), \
1340 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1341
1342/* Define how to find the value returned by a library function
1343 assuming the value has mode MODE. */
1344
1345#define LIBCALL_VALUE(MODE) \
39403d82
DE
1346 gen_rtx_REG (MODE, \
1347 GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1348
1349/* The definition of this macro implies that there are cases where
1350 a scalar value cannot be returned in registers.
1351
c81bebd7
MM
1352 For the RS/6000, any structure or union type is returned in memory, except for
1353 Solaris, which returns structures <= 8 bytes in registers. */
f045b2c9 1354
c81bebd7
MM
1355#define RETURN_IN_MEMORY(TYPE) \
1356 (TYPE_MODE (TYPE) == BLKmode \
1357 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
f045b2c9 1358
a260abc9 1359/* Mode of stack savearea.
dfdfa60f
DE
1360 FUNCTION is VOIDmode because calling convention maintains SP.
1361 BLOCK needs Pmode for SP.
a260abc9
DE
1362 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1363#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1364 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1365 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1366
4697a36c
MM
1367/* Minimum and maximum general purpose registers used to hold arguments. */
1368#define GP_ARG_MIN_REG 3
1369#define GP_ARG_MAX_REG 10
1370#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1371
1372/* Minimum and maximum floating point registers used to hold arguments. */
1373#define FP_ARG_MIN_REG 33
7509c759
MM
1374#define FP_ARG_AIX_MAX_REG 45
1375#define FP_ARG_V4_MAX_REG 40
1376#define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
4697a36c
MM
1377#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1378
1379/* Return registers */
1380#define GP_ARG_RETURN GP_ARG_MIN_REG
1381#define FP_ARG_RETURN FP_ARG_MIN_REG
1382
7509c759 1383/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f
MM
1384#define CALL_NORMAL 0x00000000 /* no special processing */
1385#define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1386#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1387#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1388#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1389
4697a36c
MM
1390/* Define cutoff for using external functions to save floating point */
1391#define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1392
f045b2c9
RS
1393/* 1 if N is a possible register number for a function value
1394 as seen by the caller.
1395
1396 On RS/6000, this is r3 and fp1. */
4697a36c 1397#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
f045b2c9
RS
1398
1399/* 1 if N is a possible register number for function argument passing.
1400 On RS/6000, these are r3-r10 and fp1-fp13. */
4697a36c
MM
1401#define FUNCTION_ARG_REGNO_P(N) \
1402 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1403 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1404
f045b2c9
RS
1405\f
1406/* Define a data type for recording info about an argument list
1407 during the scan of that argument list. This data type should
1408 hold all necessary information about the function itself
1409 and about the args processed so far, enough to enable macros
1410 such as FUNCTION_ARG to determine where the next arg should go.
1411
1412 On the RS/6000, this is a structure. The first element is the number of
1413 total argument words, the second is used to store the next
1414 floating-point register number, and the third says how many more args we
4697a36c
MM
1415 have prototype types for.
1416
1417 The System V.4 varargs/stdarg support requires that this structure's size
1418 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1419 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1420
1421typedef struct rs6000_args
1422{
6a4cee5f
MM
1423 int words; /* # words uses for passing GP registers */
1424 int fregno; /* next available FP register */
1425 int nargs_prototype; /* # args left in the current prototype */
1426 int orig_nargs; /* Original value of nargs_prototype */
1427 int varargs_offset; /* offset of the varargs save area */
1428 int prototype; /* Whether a prototype was defined */
1429 int call_cookie; /* Do special things for this call */
4697a36c 1430} CUMULATIVE_ARGS;
f045b2c9
RS
1431
1432/* Define intermediate macro to compute the size (in registers) of an argument
1433 for the RS/6000. */
1434
1435#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1436(! (NAMED) ? 0 \
1437 : (MODE) != BLKmode \
1438 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1439 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1440
1441/* Initialize a variable CUM of type CUMULATIVE_ARGS
1442 for a call to a function whose data type is FNTYPE.
1443 For a library call, FNTYPE is 0. */
1444
2c7ee1a6 1445#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1446 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1447
1448/* Similar, but when scanning the definition of a procedure. We always
1449 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1450
4697a36c
MM
1451#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1452 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1453
1454/* Update the data in CUM to advance over an argument
1455 of mode MODE and data type TYPE.
1456 (TYPE is null for libcalls where that information may not be available.) */
1457
1458#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1459 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1460
1461/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1462#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1463 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1464 && (CUM).fregno <= FP_ARG_MAX_REG \
1465 && TARGET_HARD_FLOAT)
f045b2c9
RS
1466
1467/* Determine where to put an argument to a function.
1468 Value is zero to push the argument on the stack,
1469 or a hard register in which to store the argument.
1470
1471 MODE is the argument's machine mode.
1472 TYPE is the data type of the argument (as a tree).
1473 This is null for libcalls where that information may
1474 not be available.
1475 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1476 the preceding args and about the function being called.
1477 NAMED is nonzero if this argument is a named parameter
1478 (otherwise it is an extra parameter matching an ellipsis).
1479
1480 On RS/6000 the first eight words of non-FP are normally in registers
1481 and the rest are pushed. The first 13 FP args are in registers.
1482
1483 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1484 both an FP and integer register (or possibly FP reg and stack). Library
1485 functions (when TYPE is zero) always have the proper types for args,
1486 so we can pass the FP value just in one register. emit_library_function
1487 doesn't support EXPR_LIST anyway. */
f045b2c9 1488
4697a36c
MM
1489#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1490 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1491
1492/* For an arg passed partly in registers and partly in memory,
1493 this is the number of registers used.
1494 For args passed entirely in registers or entirely in memory, zero. */
1495
4697a36c
MM
1496#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1497 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1498
1499/* A C expression that indicates when an argument must be passed by
1500 reference. If nonzero for an argument, a copy of that argument is
1501 made in memory and a pointer to the argument is passed instead of
1502 the argument itself. The pointer is passed in whatever way is
1503 appropriate for passing a pointer to that type. */
1504
1505#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1506 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1507
c229cba9
DE
1508/* If defined, a C expression which determines whether, and in which
1509 direction, to pad out an argument with extra space. The value
1510 should be of type `enum direction': either `upward' to pad above
1511 the argument, `downward' to pad below, or `none' to inhibit
1512 padding. */
1513
1514#define FUNCTION_ARG_PADDING(MODE, TYPE) \
c4d38ccb 1515 (enum direction) function_arg_padding (MODE, TYPE)
c229cba9 1516
b6c9286a 1517/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1518 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1519 PARM_BOUNDARY is used for all arguments. */
1520
1521#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1522 function_arg_boundary (MODE, TYPE)
1523
f045b2c9 1524/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1525 variable number of arguments.
f045b2c9
RS
1526
1527 CUM is as above.
1528
1529 MODE and TYPE are the mode and type of the current parameter.
1530
1531 PRETEND_SIZE is a variable that should be set to the amount of stack
1532 that must be pushed by the prolog to pretend that our caller pushed
1533 it.
1534
1535 Normally, this macro will push all remaining incoming registers on the
1536 stack and set PRETEND_SIZE to the length of the registers pushed. */
1537
4697a36c
MM
1538#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1539 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1540
1541/* If defined, is a C expression that produces the machine-specific
1542 code for a call to `__builtin_saveregs'. This code will be moved
1543 to the very beginning of the function, before any parameter access
1544 are made. The return value of this function should be an RTX that
1545 contains the value to use as the return of `__builtin_saveregs'.
1546
1547 The argument ARGS is a `tree_list' containing the arguments that
1548 were passed to `__builtin_saveregs'.
1549
1550 If this macro is not defined, the compiler will output an ordinary
1551 call to the library function `__builtin_saveregs'. */
1552
1553#define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1554 expand_builtin_saveregs (ARGS)
f045b2c9
RS
1555
1556/* This macro generates the assembly code for function entry.
1557 FILE is a stdio stream to output the code to.
1558 SIZE is an int: how many units of temporary storage to allocate.
1559 Refer to the array `regs_ever_live' to determine which registers
1560 to save; `regs_ever_live[I]' is nonzero if register number I
1561 is ever used in the function. This macro is responsible for
1562 knowing which registers should not be saved even if used. */
1563
1564#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1565
1566/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1567 for profiling a function entry. */
f045b2c9
RS
1568
1569#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1570 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1571
1572/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1573 the stack pointer does not matter. No definition is equivalent to
1574 always zero.
1575
1576 On the RS/6000, this is non-zero because we can restore the stack from
1577 its backpointer, which we maintain. */
1578#define EXIT_IGNORE_STACK 1
1579
1580/* This macro generates the assembly code for function exit,
1581 on machines that need it. If FUNCTION_EPILOGUE is not defined
1582 then individual return instructions are generated for each
1583 return statement. Args are same as for FUNCTION_PROLOGUE.
1584
1585 The function epilogue should not depend on the current stack pointer!
1586 It should use the frame pointer only. This is mandatory because
1587 of alloca; we also take advantage of it to omit stack adjustments
1588 before returning. */
1589
1590#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
17167fd8
MM
1591
1592/* A C compound statement that outputs the assembler code for a thunk function,
1593 used to implement C++ virtual function calls with multiple inheritance. The
1594 thunk acts as a wrapper around a virtual function, adjusting the implicit
1595 object parameter before handing control off to the real function.
1596
1597 First, emit code to add the integer DELTA to the location that contains the
1598 incoming first argument. Assume that this argument contains a pointer, and
1599 is the one used to pass the `this' pointer in C++. This is the incoming
1600 argument *before* the function prologue, e.g. `%o0' on a sparc. The
1601 addition must preserve the values of all other incoming arguments.
1602
1603 After the addition, emit code to jump to FUNCTION, which is a
1604 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
1605 the return address. Hence returning from FUNCTION will return to whoever
1606 called the current `thunk'.
1607
1608 The effect must be as if FUNCTION had been called directly with the adjusted
1609 first argument. This macro is responsible for emitting all of the code for
1610 a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
1611 invoked.
1612
1613 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
1614 extracted from it.) It might possibly be useful on some targets, but
1615 probably not.
1616
1617 If you do not define this macro, the target-independent code in the C++
1618 frontend will generate a less efficient heavyweight thunk that calls
1619 FUNCTION instead of jumping to it. The generic approach does not support
1620 varargs. */
42820a49 1621#if TARGET_ELF
17167fd8
MM
1622#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1623 output_mi_thunk (FILE, THUNK_FNDECL, DELTA, FUNCTION)
42820a49 1624#endif
f045b2c9 1625\f
eaf1bcf1 1626/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1627
1628/* Length in units of the trampoline for entering a nested function. */
1629
b6c9286a 1630#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1631
1632/* Emit RTL insns to initialize the variable parts of a trampoline.
1633 FNADDR is an RTX for the address of the function's pure code.
1634 CXT is an RTX for the static chain value for the function. */
1635
1636#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1637 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1638\f
7509c759
MM
1639/* If defined, a C expression whose value is nonzero if IDENTIFIER
1640 with arguments ARGS is a valid machine specific attribute for DECL.
1641 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1642
1643#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1644 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1645
1646/* If defined, a C expression whose value is nonzero if IDENTIFIER
1647 with arguments ARGS is a valid machine specific attribute for TYPE.
1648 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1649
1650#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1651 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1652
1653/* If defined, a C expression whose value is zero if the attributes on
1654 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1655 two if they are nearly compatible (which causes a warning to be
1656 generated). */
1657
1658#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1659 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1660
1661/* If defined, a C statement that assigns default attributes to newly
1662 defined TYPE. */
1663
1664#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1665 (rs6000_set_default_type_attributes (TYPE))
1666
1667\f
f33985c6
MS
1668/* Definitions for __builtin_return_address and __builtin_frame_address.
1669 __builtin_return_address (0) should give link register (65), enable
1670 this. */
1671/* This should be uncommented, so that the link register is used, but
1672 currently this would result in unmatched insns and spilling fixed
1673 registers so we'll leave it for another day. When these problems are
1674 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1675 (mrs) */
1676/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1677
b6c9286a
MM
1678/* Number of bytes into the frame return addresses can be found. See
1679 rs6000_stack_info in rs6000.c for more information on how the different
1680 abi's store the return address. */
1681#define RETURN_ADDRESS_OFFSET \
1682 ((DEFAULT_ABI == ABI_AIX \
1683 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
c81bebd7
MM
1684 (DEFAULT_ABI == ABI_V4 \
1685 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
b6c9286a
MM
1686 (DEFAULT_ABI == ABI_NT) ? -4 : \
1687 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1688
f33985c6
MS
1689/* The current return address is in link register (65). The return address
1690 of anything farther back is accessed normally at an offset of 8 from the
1691 frame pointer. */
1692#define RETURN_ADDR_RTX(count, frame) \
1693 ((count == -1) \
39403d82
DE
1694 ? gen_rtx_REG (Pmode, 65) \
1695 : gen_rtx_MEM (Pmode, \
f09d4c33 1696 memory_address (Pmode, \
39403d82 1697 plus_constant (copy_to_reg (gen_rtx_MEM (Pmode, \
f09d4c33
RK
1698 memory_address (Pmode, frame))), \
1699 RETURN_ADDRESS_OFFSET))))
f33985c6 1700\f
f045b2c9
RS
1701/* Definitions for register eliminations.
1702
1703 We have two registers that can be eliminated on the RS/6000. First, the
1704 frame pointer register can often be eliminated in favor of the stack
1705 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1706 eliminated; it is replaced with either the stack or frame pointer.
1707
1708 In addition, we use the elimination mechanism to see if r30 is needed
1709 Initially we assume that it isn't. If it is, we spill it. This is done
1710 by making it an eliminable register. We replace it with itself so that
1711 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1712
1713/* This is an array of structures. Each structure initializes one pair
1714 of eliminable registers. The "from" register number is given first,
1715 followed by "to". Eliminations of the same "from" register are listed
1716 in order of preference. */
1717#define ELIMINABLE_REGS \
1718{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1719 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1720 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1721 { 30, 30} }
f045b2c9
RS
1722
1723/* Given FROM and TO register numbers, say whether this elimination is allowed.
1724 Frame pointer elimination is automatically handled.
1725
1726 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1727 to convert ap into fp, not sp.
1728
abc95ed3 1729 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1730 references. */
f045b2c9
RS
1731
1732#define CAN_ELIMINATE(FROM, TO) \
1733 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1734 ? ! frame_pointer_needed \
4697a36c 1735 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1736 : 1)
1737
1738/* Define the offset between two registers, one to be eliminated, and the other
1739 its replacement, at the start of a routine. */
1740#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1741{ \
4697a36c 1742 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1743 \
1744 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1745 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1746 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1747 (OFFSET) = info->total_size; \
1748 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1749 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1750 else if ((FROM) == 30) \
1751 (OFFSET) = 0; \
f045b2c9
RS
1752 else \
1753 abort (); \
1754}
1755\f
1756/* Addressing modes, and classification of registers for them. */
1757
1758/* #define HAVE_POST_INCREMENT */
1759/* #define HAVE_POST_DECREMENT */
1760
1761#define HAVE_PRE_DECREMENT
1762#define HAVE_PRE_INCREMENT
1763
1764/* Macros to check register numbers against specific register classes. */
1765
1766/* These assume that REGNO is a hard or pseudo reg number.
1767 They give nonzero only if REGNO is a hard reg of the suitable class
1768 or a pseudo reg currently allocated to a suitable hard reg.
1769 Since they use reg_renumber, they are safe only once reg_renumber
1770 has been allocated, which happens in local-alloc.c. */
1771
1772#define REGNO_OK_FOR_INDEX_P(REGNO) \
1773((REGNO) < FIRST_PSEUDO_REGISTER \
1774 ? (REGNO) <= 31 || (REGNO) == 67 \
1775 : (reg_renumber[REGNO] >= 0 \
1776 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1777
1778#define REGNO_OK_FOR_BASE_P(REGNO) \
1779((REGNO) < FIRST_PSEUDO_REGISTER \
1780 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1781 : (reg_renumber[REGNO] > 0 \
1782 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1783\f
1784/* Maximum number of registers that can appear in a valid memory address. */
1785
1786#define MAX_REGS_PER_ADDRESS 2
1787
1788/* Recognize any constant value that is a valid address. */
1789
6eff269e
BK
1790#define CONSTANT_ADDRESS_P(X) \
1791 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1792 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1793 || GET_CODE (X) == HIGH)
f045b2c9
RS
1794
1795/* Nonzero if the constant value X is a legitimate general operand.
1796 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1797
1798 On the RS/6000, all integer constants are acceptable, most won't be valid
1799 for particular insns, though. Only easy FP constants are
1800 acceptable. */
1801
1802#define LEGITIMATE_CONSTANT_P(X) \
1803 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1804 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1805 || easy_fp_constant (X, GET_MODE (X)))
1806
1807/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1808 and check its validity for a certain class.
1809 We have two alternate definitions for each of them.
1810 The usual definition accepts all pseudo regs; the other rejects
1811 them unless they have been allocated suitable hard regs.
1812 The symbol REG_OK_STRICT causes the latter definition to be used.
1813
1814 Most source files want to accept pseudo regs in the hope that
1815 they will get allocated to the class that the insn wants them to be in.
1816 Source files for reload pass need to be strict.
1817 After reload, it makes no difference, since pseudo regs have
1818 been eliminated by then. */
1819
1820#ifndef REG_OK_STRICT
1821
1822/* Nonzero if X is a hard reg that can be used as an index
1823 or if it is a pseudo reg. */
1824#define REG_OK_FOR_INDEX_P(X) \
1825 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1826
1827/* Nonzero if X is a hard reg that can be used as a base reg
1828 or if it is a pseudo reg. */
1829#define REG_OK_FOR_BASE_P(X) \
1830 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1831
1832#else
1833
1834/* Nonzero if X is a hard reg that can be used as an index. */
1835#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1836/* Nonzero if X is a hard reg that can be used as a base reg. */
1837#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1838
1839#endif
1840\f
1841/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1842 that is a valid memory address for an instruction.
1843 The MODE argument is the machine mode for the MEM expression
1844 that wants to use this address.
1845
1846 On the RS/6000, there are four valid address: a SYMBOL_REF that
1847 refers to a constant pool entry of an address (or the sum of it
1848 plus a constant), a short (16-bit signed) constant plus a register,
1849 the sum of two registers, or a register indirect, possibly with an
1850 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 1851 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1852 word aligned.
1853
1854 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1855 32-bit DImode, TImode), indexed addressing cannot be used because
1856 adjacent memory cells are accessed by adding word-sized offsets
1857 during assembly output. */
f045b2c9
RS
1858
1859#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
4697a36c
MM
1860 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1861 && CONSTANT_POOL_ADDRESS_P (X) \
f045b2c9
RS
1862 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1863
a260abc9 1864/* AIX64 guaranteed to have 64 bit TOC alignment. */
f045b2c9
RS
1865#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1866 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
4697a36c
MM
1867 || (TARGET_TOC \
1868 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
f045b2c9
RS
1869 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1870 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1871
7509c759 1872#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
c81bebd7 1873 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
81795281 1874 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1875 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1876 && small_data_operand (X, MODE))
7509c759 1877
f045b2c9
RS
1878#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1879 (GET_CODE (X) == CONST_INT \
5b6f7b96 1880 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9
RS
1881
1882#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1883 (GET_CODE (X) == PLUS \
1884 && GET_CODE (XEXP (X, 0)) == REG \
1885 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1886 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1887 && (((MODE) != DFmode && (MODE) != DImode) \
2f3e5814 1888 || (TARGET_32BIT \
1465faec
DE
1889 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1890 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2f3e5814 1891 && ((MODE) != TImode \
644d82dd 1892 || (TARGET_32BIT \
1465faec
DE
1893 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1894 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1895 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9
RS
1896
1897#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1898 (GET_CODE (X) == PLUS \
1899 && GET_CODE (XEXP (X, 0)) == REG \
1900 && GET_CODE (XEXP (X, 1)) == REG \
1901 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1902 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1903 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1904 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1905
1906#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1907 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1908
4697a36c
MM
1909#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1910 (TARGET_ELF \
81795281 1911 && !flag_pic && !TARGET_TOC \
4697a36c
MM
1912 && (MODE) != DImode \
1913 && (MODE) != TImode \
1914 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1915 && GET_CODE (X) == LO_SUM \
1916 && GET_CODE (XEXP (X, 0)) == REG \
1917 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1918 && CONSTANT_P (XEXP (X, 1)))
1919
f045b2c9
RS
1920#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1921{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1922 goto ADDR; \
0a90c336 1923 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
38c1f2d7 1924 && TARGET_UPDATE \
f045b2c9
RS
1925 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1926 goto ADDR; \
7509c759
MM
1927 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1928 goto ADDR; \
f045b2c9
RS
1929 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1930 goto ADDR; \
1931 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1932 goto ADDR; \
2f3e5814 1933 if ((MODE) != TImode \
1427100a
DE
1934 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
1935 && (TARGET_POWERPC64 || (MODE) != DImode) \
f045b2c9
RS
1936 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1937 goto ADDR; \
4697a36c
MM
1938 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1939 goto ADDR; \
f045b2c9
RS
1940}
1941\f
1942/* Try machine-dependent ways of modifying an illegitimate address
1943 to be legitimate. If we find one, return the new, valid address.
1944 This macro is used in only one place: `memory_address' in explow.c.
1945
1946 OLDX is the address as it was before break_out_memory_refs was called.
1947 In some cases it is useful to look at this to decide what needs to be done.
1948
1949 MODE and WIN are passed so that this macro can use
1950 GO_IF_LEGITIMATE_ADDRESS.
1951
1952 It is always safe for this macro to do nothing. It exists to recognize
1953 opportunities to optimize the output.
1954
1955 On RS/6000, first check for the sum of a register with a constant
1956 integer that is out of range. If so, generate code to add the
1957 constant with the low-order 16 bits masked to the register and force
1958 this result into another register (this can be done with `cau').
c81bebd7 1959 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1960 possibility of bit 16 being a one.
1961
1962 Then check for the sum of a register and something not constant, try to
1963 load the other things into a register and return the sum. */
1964
4697a36c
MM
1965#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1966{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1967 && GET_CODE (XEXP (X, 1)) == CONST_INT \
5b6f7b96 1968 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
354b734b
MM
1969 { HOST_WIDE_INT high_int, low_int; \
1970 rtx sum; \
1971 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
4697a36c
MM
1972 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1973 if (low_int & 0x8000) \
354b734b 1974 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
39403d82 1975 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (X, 0), \
354b734b 1976 GEN_INT (high_int)), 0); \
39403d82 1977 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int)); \
4697a36c
MM
1978 goto WIN; \
1979 } \
1980 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1981 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1427100a
DE
1982 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
1983 && (TARGET_POWERPC64 || (MODE) != DImode) \
2f3e5814 1984 && (MODE) != TImode) \
4697a36c 1985 { \
39403d82 1986 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
0a90c336 1987 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
4697a36c
MM
1988 goto WIN; \
1989 } \
2f3e5814 1990 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
461422d5 1991 && !flag_pic \
4697a36c
MM
1992 && GET_CODE (X) != CONST_INT \
1993 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1994 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1995 && (MODE) != DImode && (MODE) != TImode) \
1996 { \
1997 rtx reg = gen_reg_rtx (Pmode); \
1998 emit_insn (gen_elf_high (reg, (X))); \
39403d82 1999 (X) = gen_rtx_LO_SUM (Pmode, reg, (X)); \
fbd2bdda 2000 goto WIN; \
4697a36c 2001 } \
f045b2c9
RS
2002}
2003
a260abc9
DE
2004/* Try a machine-dependent way of reloading an illegitimate address
2005 operand. If we find one, push the reload and jump to WIN. This
2006 macro is used in only one place: `find_reloads_address' in reload.c.
2007
2008 For RS/6000, we wish to handle large displacements off a base
2009 register by splitting the addend across an addiu/addis and the mem insn.
2010 This cuts number of extra insns needed from 3 to 1. */
2011
2012#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2013do { \
2014 if (GET_CODE (X) == PLUS \
2015 && GET_CODE (XEXP (X, 0)) == REG \
2016 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
2017 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
2018 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2019 { \
2020 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
2021 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
2022 HOST_WIDE_INT high \
2023 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
2024 \
2025 /* Check for 32-bit overflow. */ \
2026 if (high + low != val) \
2027 break; \
2028 \
2029 /* Reload the high part into a base reg; leave the low part \
2030 in the mem directly. */ \
2031 \
2032 X = gen_rtx_PLUS (GET_MODE (X), \
2033 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
2034 GEN_INT (high)), \
2035 GEN_INT (low)); \
2036 \
2037 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2038 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2039 OPNUM, TYPE); \
2040 goto WIN; \
2041 } \
2042} while (0)
2043
f045b2c9
RS
2044/* Go to LABEL if ADDR (a legitimate address expression)
2045 has an effect that depends on the machine mode it is used for.
2046
2047 On the RS/6000 this is true if the address is valid with a zero offset
2048 but not with an offset of four (this means it cannot be used as an
2049 address for DImode or DFmode) or is a pre-increment or decrement. Since
2050 we know it is valid, we just check for an address that is not valid with
2051 an offset of four. */
2052
2053#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2054{ if (GET_CODE (ADDR) == PLUS \
2055 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2056 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2057 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2058 goto LABEL; \
38c1f2d7 2059 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2060 goto LABEL; \
38c1f2d7 2061 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2062 goto LABEL; \
4697a36c
MM
2063 if (GET_CODE (ADDR) == LO_SUM) \
2064 goto LABEL; \
f045b2c9 2065}
766a866c
MM
2066\f
2067/* The register number of the register used to address a table of
2068 static data addresses in memory. In some cases this register is
2069 defined by a processor's "application binary interface" (ABI).
2070 When this macro is defined, RTL is generated for this register
2071 once, as with the stack pointer and frame pointer registers. If
2072 this macro is not defined, it is up to the machine-dependent files
2073 to allocate such a register (if necessary). */
2074
2075/* #define PIC_OFFSET_TABLE_REGNUM */
2076
2077/* Define this macro if the register defined by
2078 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2079 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
2080
2081/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2082
2083/* By generating position-independent code, when two different
2084 programs (A and B) share a common library (libC.a), the text of
2085 the library can be shared whether or not the library is linked at
2086 the same address for both programs. In some of these
2087 environments, position-independent code requires not only the use
2088 of different addressing modes, but also special code to enable the
2089 use of these addressing modes.
2090
2091 The `FINALIZE_PIC' macro serves as a hook to emit these special
2092 codes once the function is being compiled into assembly code, but
2093 not before. (It is not done before, because in the case of
2094 compiling an inline function, it would lead to multiple PIC
2095 prologues being included in functions which used inline functions
2096 and were compiled to assembly language.) */
2097
d266da75 2098#define FINALIZE_PIC rs6000_finalize_pic ()
766a866c 2099
766a866c
MM
2100/* A C expression that is nonzero if X is a legitimate immediate
2101 operand on the target machine when generating position independent
2102 code. You can assume that X satisfies `CONSTANT_P', so you need
2103 not check this. You can also assume FLAG_PIC is true, so you need
2104 not check it either. You need not define this macro if all
2105 constants (including `SYMBOL_REF') can be immediate operands when
2106 generating position independent code. */
2107
2108/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2109
30ea98f1
MM
2110/* In rare cases, correct code generation requires extra machine
2111 dependent processing between the second jump optimization pass and
2112 delayed branch scheduling. On those machines, define this macro
2113 as a C statement to act on the code starting at INSN.
2114
2115 On the RS/6000, we use it to make sure the GOT_TOC register marker
2116 that FINALIZE_PIC is supposed to remove actually got removed. */
2117
2118#define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
2119
f045b2c9
RS
2120\f
2121/* Define this if some processing needs to be done immediately before
4255474b 2122 emitting code for an insn. */
f045b2c9 2123
4255474b 2124/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2125
2126/* Specify the machine mode that this machine uses
2127 for the index in the tablejump instruction. */
2f3e5814 2128#define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9 2129
18543a22
ILT
2130/* Define as C expression which evaluates to nonzero if the tablejump
2131 instruction expects the table to contain offsets from the address of the
2132 table.
2133 Do not define this if the table should contain absolute addresses. */
2134#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9
RS
2135
2136/* Specify the tree operation to be used to convert reals to integers. */
2137#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2138
2139/* This is the kind of divide that is easiest to do in the general case. */
2140#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2141
2142/* Define this as 1 if `char' should by default be signed; else as 0. */
2143#define DEFAULT_SIGNED_CHAR 0
2144
2145/* This flag, if defined, says the same insns that convert to a signed fixnum
2146 also convert validly to an unsigned one. */
2147
2148/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2149
2150/* Max number of bytes we can move from memory to memory
2151 in one reasonably fast instruction. */
2f3e5814 2152#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2153#define MAX_MOVE_MAX 8
f045b2c9
RS
2154
2155/* Nonzero if access to memory by bytes is no faster than for words.
2156 Also non-zero if doing byte operations (specifically shifts) in registers
2157 is undesirable. */
2158#define SLOW_BYTE_ACCESS 1
2159
9a63901f
RK
2160/* Define if operations between registers always perform the operation
2161 on the full register even if a narrower mode is specified. */
2162#define WORD_REGISTER_OPERATIONS
2163
2164/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2165 will either zero-extend or sign-extend. The value of this macro should
2166 be the code that says which one of the two operations is implicitly
2167 done, NIL if none. */
2168#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2169
2170/* Define if loading short immediate values into registers sign extends. */
2171#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba
RS
2172\f
2173/* The RS/6000 uses the XCOFF format. */
f045b2c9 2174
fdaff8ba 2175#define XCOFF_DEBUGGING_INFO
f045b2c9 2176
c5abcf1d
CH
2177/* Define if the object format being used is COFF or a superset. */
2178#define OBJECT_FORMAT_COFF
2179
b9af8fb0 2180/* Define the magic numbers that we recognize as COFF.
a260abc9
DE
2181 AIX 4.3 adds U803XTOCMAGIC (0757) for 64-bit objects, but collect2.c
2182 does not include files in the correct order to conditionally define
2183 the symbolic name in this macro. */
2c440f06 2184#define MY_ISCOFF(magic) \
b9af8fb0
DE
2185 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC \
2186 || (magic) == U802TOCMAGIC || (magic) == 0757)
2c440f06 2187
115e69a9
RK
2188/* This is the only version of nm that collect2 can work with. */
2189#define REAL_NM_FILE_NAME "/usr/ucb/nm"
2190
f045b2c9
RS
2191/* We don't have GAS for the RS/6000 yet, so don't write out special
2192 .stabs in cc1plus. */
c81bebd7 2193
f045b2c9 2194#define FASCIST_ASSEMBLER
b6c9286a 2195
4cacd7a0
KE
2196/* AIX does not have any init/fini or ctor/dtor sections, so create
2197 static constructors and destructors as normal functions. */
2198/* #define ASM_OUTPUT_CONSTRUCTOR(file, name) */
2199/* #define ASM_OUTPUT_DESTRUCTOR(file, name) */
f045b2c9 2200
f045b2c9
RS
2201/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2202 is done just by pretending it is already truncated. */
2203#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2204
2205/* Specify the machine mode that pointers have.
2206 After generation of rtl, the compiler makes no further distinction
2207 between pointers and any other objects of this machine mode. */
2f3e5814 2208#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2209
2210/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2211 Doesn't matter on RS/6000. */
2f3e5814 2212#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2213
2214/* Define this if addresses of constant functions
2215 shouldn't be put through pseudo regs where they can be cse'd.
2216 Desirable on machines where ordinary constants are expensive
2217 but a CALL with constant address is cheap. */
2218#define NO_FUNCTION_CSE
2219
d969caf8 2220/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2221 few bits.
2222
2223 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2224 have been dropped from the PowerPC architecture. */
2225
4697a36c 2226#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9
RS
2227
2228/* Use atexit for static constructors/destructors, instead of defining
2229 our own exit function. */
2230#define HAVE_ATEXIT
2231
2232/* Compute the cost of computing a constant rtl expression RTX
2233 whose rtx-code is CODE. The body of this macro is a portion
2234 of a switch statement. If the code is computed here,
2235 return it with a return statement. Otherwise, break from the switch.
2236
01554f00 2237 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2238 always returns 0. */
2239
4697a36c 2240#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2241 case CONST_INT: \
2242 case CONST: \
2243 case LABEL_REF: \
2244 case SYMBOL_REF: \
2245 case CONST_DOUBLE: \
4697a36c 2246 case HIGH: \
f045b2c9
RS
2247 return 0;
2248
2249/* Provide the costs of a rtl expression. This is in the body of a
2250 switch on CODE. */
2251
38c1f2d7
MM
2252#define RTX_COSTS(X,CODE,OUTER_CODE) \
2253 case PLUS: \
2254 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2255 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2256 + 0x8000) >= 0x10000) \
296b8152 2257 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2258 ? COSTS_N_INSNS (2) \
2259 : COSTS_N_INSNS (1)); \
2260 case AND: \
38c1f2d7
MM
2261 case IOR: \
2262 case XOR: \
a260abc9
DE
2263 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2264 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2265 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2266 ? COSTS_N_INSNS (2) \
2267 : COSTS_N_INSNS (1)); \
2268 case MULT: \
2269 switch (rs6000_cpu) \
2270 { \
2271 case PROCESSOR_RIOS1: \
2272 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2273 ? COSTS_N_INSNS (5) \
2274 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2275 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2276 case PROCESSOR_RIOS2: \
2277 case PROCESSOR_MPCCORE: \
5a41b476 2278 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2279 return COSTS_N_INSNS (2); \
2280 case PROCESSOR_PPC601: \
2281 return COSTS_N_INSNS (5); \
2282 case PROCESSOR_PPC603: \
2283 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2284 ? COSTS_N_INSNS (5) \
2285 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2286 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2287 case PROCESSOR_PPC403: \
2288 case PROCESSOR_PPC604: \
2289 case PROCESSOR_PPC620: \
2290 return COSTS_N_INSNS (4); \
2291 } \
2292 case DIV: \
2293 case MOD: \
2294 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2295 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2296 return COSTS_N_INSNS (2); \
2297 /* otherwise fall through to normal divide. */ \
2298 case UDIV: \
2299 case UMOD: \
2300 switch (rs6000_cpu) \
2301 { \
2302 case PROCESSOR_RIOS1: \
2303 return COSTS_N_INSNS (19); \
2304 case PROCESSOR_RIOS2: \
2305 return COSTS_N_INSNS (13); \
2306 case PROCESSOR_MPCCORE: \
2307 return COSTS_N_INSNS (6); \
2308 case PROCESSOR_PPC403: \
2309 return COSTS_N_INSNS (33); \
2310 case PROCESSOR_PPC601: \
2311 return COSTS_N_INSNS (36); \
2312 case PROCESSOR_PPC603: \
2313 return COSTS_N_INSNS (37); \
2314 case PROCESSOR_PPC604: \
5a41b476 2315 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2316 case PROCESSOR_PPC620: \
2317 return COSTS_N_INSNS (20); \
2318 } \
2319 case FFS: \
2320 return COSTS_N_INSNS (4); \
2321 case MEM: \
f045b2c9
RS
2322 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2323 return 5;
2324
2325/* Compute the cost of an address. This is meant to approximate the size
2326 and/or execution delay of an insn using that address. If the cost is
2327 approximated by the RTL complexity, including CONST_COSTS above, as
2328 is usually the case for CISC machines, this macro should not be defined.
2329 For aggressively RISCy machines, only one insn format is allowed, so
2330 this macro should be a constant. The value of this macro only matters
2331 for valid addresses.
2332
2333 For the RS/6000, everything is cost 0. */
2334
2335#define ADDRESS_COST(RTX) 0
2336
2337/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2338 should be adjusted to reflect any required changes. This macro is used when
2339 there is some systematic length adjustment required that would be difficult
2340 to express in the length attribute. */
2341
2342/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2343
2344/* Add any extra modes needed to represent the condition code.
2345
2346 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2347 are being done and we need a separate mode for floating-point. We also
2348 use a mode for the case when we are comparing the results of two
2349 comparisons. */
f045b2c9 2350
c5defebb 2351#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
2352
2353/* Define the names for the modes specified above. */
c5defebb 2354#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
2355
2356/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2357 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
2358 should be used. CCUNSmode should be used for unsigned comparisons.
2359 CCEQmode should be used when we are doing an inequality comparison on
2360 the result of a comparison. CCmode should be used in all other cases. */
2361
b565a316 2362#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2363 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2364 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2365 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2366 ? CCEQmode : CCmode))
f045b2c9
RS
2367
2368/* Define the information needed to generate branch and scc insns. This is
2369 stored from the compare operation. Note that we can't use "rtx" here
2370 since it hasn't been defined! */
2371
2372extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2373extern int rs6000_compare_fp_p;
2374
2375/* Set to non-zero by "fix" operation to indicate that itrunc and
2376 uitrunc must be defined. */
2377
2378extern int rs6000_trunc_used;
9929b575
ILT
2379
2380/* Function names to call to do floating point truncation. */
2381
5bf6466a
DE
2382#define RS6000_ITRUNC "__itrunc"
2383#define RS6000_UITRUNC "__uitrunc"
4d30c363
MM
2384
2385/* Prefix and suffix to use to saving floating point */
2386#ifndef SAVE_FP_PREFIX
2387#define SAVE_FP_PREFIX "._savef"
2388#define SAVE_FP_SUFFIX ""
2389#endif
2390
2391/* Prefix and suffix to use to restoring floating point */
2392#ifndef RESTORE_FP_PREFIX
2393#define RESTORE_FP_PREFIX "._restf"
2394#define RESTORE_FP_SUFFIX ""
2395#endif
2396
5bf6466a
DE
2397/* Function name to call to do profiling. */
2398#define RS6000_MCOUNT ".__mcount"
2399
f045b2c9
RS
2400\f
2401/* Control the assembler format that we output. */
2402
1b279f39
DE
2403/* A C string constant describing how to begin a comment in the target
2404 assembler language. The compiler assumes that the comment will end at
2405 the end of the line. */
2406#define ASM_COMMENT_START " #"
6b67933e 2407
f045b2c9
RS
2408/* Output at beginning of assembler file.
2409
b4d6689b 2410 Initialize the section names for the RS/6000 at this point.
fdaff8ba 2411
6355b140 2412 Specify filename to assembler.
3fc2151d 2413
b4d6689b 2414 We want to go into the TOC section so at least one .toc will be emitted.
fdaff8ba 2415 Also, in order to output proper .bs/.es pairs, we need at least one static
b4d6689b
RK
2416 [RW] section emitted.
2417
2418 We then switch back to text to force the gcc2_compiled. label and the space
c81bebd7 2419 allocated after it (when profiling) into the text section.
b4d6689b
RK
2420
2421 Finally, declare mcount when profiling to make the assembler happy. */
f045b2c9
RS
2422
2423#define ASM_FILE_START(FILE) \
2424{ \
fdaff8ba 2425 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 2426 main_input_filename, ".bss_"); \
fdaff8ba 2427 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 2428 main_input_filename, ".rw_"); \
fdaff8ba 2429 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
2430 main_input_filename, ".ro_"); \
2431 \
6355b140 2432 output_file_directive (FILE, main_input_filename); \
a260abc9
DE
2433 if (TARGET_64BIT) \
2434 fputs ("\t.machine\t\"ppc64\"\n", FILE); \
f045b2c9 2435 toc_section (); \
fdaff8ba
RS
2436 if (write_symbols != NO_DEBUG) \
2437 private_data_section (); \
b4d6689b
RK
2438 text_section (); \
2439 if (profile_flag) \
5bf6466a 2440 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
3cfa4909 2441 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
f045b2c9
RS
2442}
2443
2444/* Output at end of assembler file.
2445
2446 On the RS/6000, referencing data should automatically pull in text. */
2447
2448#define ASM_FILE_END(FILE) \
2449{ \
2450 text_section (); \
19d2d16f 2451 fputs ("_section_.text:\n", FILE); \
f045b2c9 2452 data_section (); \
19d2d16f 2453 fputs ("\t.long _section_.text\n", FILE); \
f045b2c9
RS
2454}
2455
f045b2c9
RS
2456/* We define this to prevent the name mangler from putting dollar signs into
2457 function names. */
2458
2459#define NO_DOLLAR_IN_LABEL
2460
2461/* We define this to 0 so that gcc will never accept a dollar sign in a
2462 variable name. This is needed because the AIX assembler will not accept
2463 dollar signs. */
2464
2465#define DOLLARS_IN_IDENTIFIERS 0
2466
fdaff8ba
RS
2467/* Implicit library calls should use memcpy, not bcopy, etc. */
2468
2469#define TARGET_MEM_FUNCTIONS
2470
f045b2c9
RS
2471/* Define the extra sections we need. We define three: one is the read-only
2472 data section which is used for constants. This is a csect whose name is
2473 derived from the name of the input file. The second is for initialized
2474 global variables. This is a csect whose name is that of the variable.
2475 The third is the TOC. */
2476
2477#define EXTRA_SECTIONS \
2478 read_only_data, private_data, read_only_private_data, toc, bss
2479
2480/* Define the name of our readonly data section. */
2481
2482#define READONLY_DATA_SECTION read_only_data_section
2483
9704efe6
MS
2484
2485/* Define the name of the section to use for the exception tables.
2486 TODO: test and see if we can use read_only_data_section, if so,
2487 remove this. */
2488
2489#define EXCEPTION_SECTION data_section
2490
b4f892eb
RK
2491/* If we are referencing a function that is static or is known to be
2492 in this file, make the SYMBOL_REF special. We can use this to indicate
2493 that we can branch to this function without emitting a no-op after the
2494 call. */
2495
2496#define ENCODE_SECTION_INFO(DECL) \
2497 if (TREE_CODE (DECL) == FUNCTION_DECL \
2498 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2499 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2500
f045b2c9
RS
2501/* Indicate that jump tables go in the text section. */
2502
75197b37 2503#define JUMP_TABLES_IN_TEXT_SECTION 1
f045b2c9
RS
2504
2505/* Define the routines to implement these extra sections. */
2506
2507#define EXTRA_SECTION_FUNCTIONS \
2508 \
2509void \
2510read_only_data_section () \
2511{ \
2512 if (in_section != read_only_data) \
2513 { \
469adec3 2514 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2515 xcoff_read_only_section_name); \
f045b2c9
RS
2516 in_section = read_only_data; \
2517 } \
2518} \
2519 \
2520void \
2521private_data_section () \
2522{ \
2523 if (in_section != private_data) \
2524 { \
469adec3 2525 fprintf (asm_out_file, ".csect %s[RW]\n", \
fdaff8ba 2526 xcoff_private_data_section_name); \
f045b2c9
RS
2527 \
2528 in_section = private_data; \
2529 } \
2530} \
2531 \
2532void \
2533read_only_private_data_section () \
2534{ \
2535 if (in_section != read_only_private_data) \
2536 { \
f25359b5 2537 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2538 xcoff_private_data_section_name); \
f045b2c9
RS
2539 in_section = read_only_private_data; \
2540 } \
2541} \
2542 \
2543void \
2544toc_section () \
2545{ \
642a35f1
JW
2546 if (TARGET_MINIMAL_TOC) \
2547 { \
642a35f1
JW
2548 /* toc_section is always called at least once from ASM_FILE_START, \
2549 so this is guaranteed to always be defined once and only once \
2550 in each file. */ \
2551 if (! toc_initialized) \
2552 { \
19d2d16f
MM
2553 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2554 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2555 toc_initialized = 1; \
2556 } \
f045b2c9 2557 \
642a35f1 2558 if (in_section != toc) \
19d2d16f 2559 fputs (".csect toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2560 } \
2561 else \
2562 { \
2563 if (in_section != toc) \
19d2d16f 2564 fputs (".toc\n", asm_out_file); \
642a35f1 2565 } \
f045b2c9 2566 in_section = toc; \
fc3ffe83 2567}
f045b2c9 2568
38c1f2d7
MM
2569/* Flag to say the TOC is initialized */
2570extern int toc_initialized;
2571
f045b2c9
RS
2572/* This macro produces the initial definition of a function name.
2573 On the RS/6000, we need to place an extra '.' in the function name and
c81bebd7 2574 output the function descriptor.
f045b2c9
RS
2575
2576 The csect for the function will have already been created by the
2577 `text_section' call previously done. We do have to go back to that
2578 csect, however. */
2579
fdaff8ba
RS
2580/* ??? What do the 16 and 044 in the .function line really mean? */
2581
f045b2c9
RS
2582#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2583{ if (TREE_PUBLIC (DECL)) \
2584 { \
19d2d16f 2585 fputs ("\t.globl .", FILE); \
f045b2c9 2586 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2587 putc ('\n', FILE); \
fdaff8ba 2588 } \
3ce428da 2589 else \
fdaff8ba 2590 { \
19d2d16f 2591 fputs ("\t.lglobl .", FILE); \
fdaff8ba 2592 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2593 putc ('\n', FILE); \
f045b2c9 2594 } \
19d2d16f 2595 fputs (".csect ", FILE); \
f045b2c9 2596 RS6000_OUTPUT_BASENAME (FILE, NAME); \
a260abc9 2597 fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", FILE); \
f045b2c9 2598 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2599 fputs (":\n", FILE); \
a260abc9 2600 fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", FILE); \
f045b2c9 2601 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f
MM
2602 fputs (", TOC[tc0], 0\n", FILE); \
2603 fputs (".csect .text[PR]\n.", FILE); \
f045b2c9 2604 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2605 fputs (":\n", FILE); \
fdaff8ba 2606 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 2607 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
2608}
2609
2610/* Return non-zero if this entry is to be written into the constant pool
2611 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2612 containing one of them. If -mfp-in-toc (the default), we also do
2613 this for floating-point constants. We actually can only do this
2614 if the FP formats of the target and host machines are the same, but
2615 we can't check that since not every file that uses
2616 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2617
4697a36c
MM
2618#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2619 (TARGET_TOC \
2620 && (GET_CODE (X) == SYMBOL_REF \
2621 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2622 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2623 || GET_CODE (X) == LABEL_REF \
2624 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2625 && GET_CODE (X) == CONST_DOUBLE \
a260abc9
DE
2626 && (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2627 || (TARGET_POWERPC64 && GET_MODE (X) == DImode)))))
2628#if 0
4697a36c 2629 && BITS_PER_WORD == HOST_BITS_PER_INT)))
a260abc9 2630#endif
f045b2c9
RS
2631
2632/* Select section for constant in constant pool.
2633
2634 On RS/6000, all constants are in the private read-only data area.
2635 However, if this is being placed in the TOC it must be output as a
2636 toc entry. */
2637
2638#define SELECT_RTX_SECTION(MODE, X) \
2639{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2640 toc_section (); \
2641 else \
2642 read_only_private_data_section (); \
2643}
2644
2645/* Macro to output a special constant pool entry. Go to WIN if we output
2646 it. Otherwise, it is written the usual way.
2647
2648 On the RS/6000, toc entries are handled this way. */
2649
2650#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2651{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2652 { \
2653 output_toc (FILE, X, LABELNO); \
2654 goto WIN; \
2655 } \
2656}
2657
2658/* Select the section for an initialized data object.
2659
2660 On the RS/6000, we have a special section for all variables except those
2661 that are static. */
2662
2663#define SELECT_SECTION(EXP,RELOC) \
2664{ \
ed8969fa
JW
2665 if ((TREE_CODE (EXP) == STRING_CST \
2666 && !flag_writable_strings) \
128e5769 2667 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
1ff5cbcd 2668 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
ed8969fa
JW
2669 && DECL_INITIAL (EXP) \
2670 && (DECL_INITIAL (EXP) == error_mark_node \
2671 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2672 && ! (RELOC))) \
f045b2c9
RS
2673 { \
2674 if (TREE_PUBLIC (EXP)) \
2675 read_only_data_section (); \
2676 else \
2677 read_only_private_data_section (); \
2678 } \
2679 else \
2680 { \
2681 if (TREE_PUBLIC (EXP)) \
2682 data_section (); \
2683 else \
2684 private_data_section (); \
2685 } \
2686}
2687
2688/* This outputs NAME to FILE up to the first null or '['. */
2689
2690#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
c23a9d0e
JM
2691 { \
2692 char *_p; \
99d3d26e 2693 \
c23a9d0e
JM
2694 STRIP_NAME_ENCODING (_p, (NAME)); \
2695 assemble_name ((FILE), _p); \
2696 }
2697
2698/* Remove any trailing [DS] or the like from the symbol name. */
2699
28c57785
MM
2700#define STRIP_NAME_ENCODING(VAR,NAME) \
2701 do \
2702 { \
2703 char *_name = (NAME); \
b6c9286a 2704 int _len; \
28c57785 2705 if (_name[0] == '*') \
b6c9286a
MM
2706 _name++; \
2707 _len = strlen (_name); \
2708 if (_name[_len - 1] != ']') \
2709 (VAR) = _name; \
28c57785
MM
2710 else \
2711 { \
b6c9286a
MM
2712 (VAR) = (char *) alloca (_len + 1); \
2713 strcpy ((VAR), _name); \
2714 (VAR)[_len - 4] = '\0'; \
28c57785
MM
2715 } \
2716 } \
c23a9d0e 2717 while (0)
f045b2c9
RS
2718
2719/* Output something to declare an external symbol to the assembler. Most
c81bebd7 2720 assemblers don't need this.
f045b2c9
RS
2721
2722 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2723 name. Normally we write this out along with the name. In the few cases
2724 where we can't, it gets stripped off. */
2725
2726#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2727{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2728 if ((TREE_CODE (DECL) == VAR_DECL \
2729 || TREE_CODE (DECL) == FUNCTION_DECL) \
f045b2c9
RS
2730 && (NAME)[strlen (NAME) - 1] != ']') \
2731 { \
2732 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2733 strcpy (_name, XSTR (_symref, 0)); \
2734 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2735 XSTR (_symref, 0) = _name; \
2736 } \
19d2d16f 2737 fputs ("\t.extern ", FILE); \
f045b2c9
RS
2738 assemble_name (FILE, XSTR (_symref, 0)); \
2739 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2740 { \
19d2d16f 2741 fputs ("\n\t.extern .", FILE); \
f045b2c9
RS
2742 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2743 } \
19d2d16f 2744 putc ('\n', FILE); \
f045b2c9
RS
2745}
2746
2747/* Similar, but for libcall. We only have to worry about the function name,
2748 not that of the descriptor. */
2749
2750#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
19d2d16f 2751{ fputs ("\t.extern .", FILE); \
f045b2c9 2752 assemble_name (FILE, XSTR (FUN, 0)); \
19d2d16f 2753 putc ('\n', FILE); \
f045b2c9
RS
2754}
2755
2756/* Output to assembler file text saying following lines
2757 may contain character constants, extra white space, comments, etc. */
2758
2759#define ASM_APP_ON ""
2760
2761/* Output to assembler file text saying following lines
2762 no longer contain unusual constructs. */
2763
2764#define ASM_APP_OFF ""
2765
2766/* Output before instructions. */
2767
11117bb9 2768#define TEXT_SECTION_ASM_OP ".csect .text[PR]"
f045b2c9
RS
2769
2770/* Output before writable data. */
2771
fdaff8ba 2772#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
2773
2774/* How to refer to registers in assembler output.
2775 This sequence is indexed by compiler's hard-register-number (see above). */
2776
802a0058 2777extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2778
2779#define REGISTER_NAMES \
2780{ \
2781 &rs6000_reg_names[ 0][0], /* r0 */ \
2782 &rs6000_reg_names[ 1][0], /* r1 */ \
2783 &rs6000_reg_names[ 2][0], /* r2 */ \
2784 &rs6000_reg_names[ 3][0], /* r3 */ \
2785 &rs6000_reg_names[ 4][0], /* r4 */ \
2786 &rs6000_reg_names[ 5][0], /* r5 */ \
2787 &rs6000_reg_names[ 6][0], /* r6 */ \
2788 &rs6000_reg_names[ 7][0], /* r7 */ \
2789 &rs6000_reg_names[ 8][0], /* r8 */ \
2790 &rs6000_reg_names[ 9][0], /* r9 */ \
2791 &rs6000_reg_names[10][0], /* r10 */ \
2792 &rs6000_reg_names[11][0], /* r11 */ \
2793 &rs6000_reg_names[12][0], /* r12 */ \
2794 &rs6000_reg_names[13][0], /* r13 */ \
2795 &rs6000_reg_names[14][0], /* r14 */ \
2796 &rs6000_reg_names[15][0], /* r15 */ \
2797 &rs6000_reg_names[16][0], /* r16 */ \
2798 &rs6000_reg_names[17][0], /* r17 */ \
2799 &rs6000_reg_names[18][0], /* r18 */ \
2800 &rs6000_reg_names[19][0], /* r19 */ \
2801 &rs6000_reg_names[20][0], /* r20 */ \
2802 &rs6000_reg_names[21][0], /* r21 */ \
2803 &rs6000_reg_names[22][0], /* r22 */ \
2804 &rs6000_reg_names[23][0], /* r23 */ \
2805 &rs6000_reg_names[24][0], /* r24 */ \
2806 &rs6000_reg_names[25][0], /* r25 */ \
2807 &rs6000_reg_names[26][0], /* r26 */ \
2808 &rs6000_reg_names[27][0], /* r27 */ \
2809 &rs6000_reg_names[28][0], /* r28 */ \
2810 &rs6000_reg_names[29][0], /* r29 */ \
2811 &rs6000_reg_names[30][0], /* r30 */ \
2812 &rs6000_reg_names[31][0], /* r31 */ \
2813 \
2814 &rs6000_reg_names[32][0], /* fr0 */ \
2815 &rs6000_reg_names[33][0], /* fr1 */ \
2816 &rs6000_reg_names[34][0], /* fr2 */ \
2817 &rs6000_reg_names[35][0], /* fr3 */ \
2818 &rs6000_reg_names[36][0], /* fr4 */ \
2819 &rs6000_reg_names[37][0], /* fr5 */ \
2820 &rs6000_reg_names[38][0], /* fr6 */ \
2821 &rs6000_reg_names[39][0], /* fr7 */ \
2822 &rs6000_reg_names[40][0], /* fr8 */ \
2823 &rs6000_reg_names[41][0], /* fr9 */ \
2824 &rs6000_reg_names[42][0], /* fr10 */ \
2825 &rs6000_reg_names[43][0], /* fr11 */ \
2826 &rs6000_reg_names[44][0], /* fr12 */ \
2827 &rs6000_reg_names[45][0], /* fr13 */ \
2828 &rs6000_reg_names[46][0], /* fr14 */ \
2829 &rs6000_reg_names[47][0], /* fr15 */ \
2830 &rs6000_reg_names[48][0], /* fr16 */ \
2831 &rs6000_reg_names[49][0], /* fr17 */ \
2832 &rs6000_reg_names[50][0], /* fr18 */ \
2833 &rs6000_reg_names[51][0], /* fr19 */ \
2834 &rs6000_reg_names[52][0], /* fr20 */ \
2835 &rs6000_reg_names[53][0], /* fr21 */ \
2836 &rs6000_reg_names[54][0], /* fr22 */ \
2837 &rs6000_reg_names[55][0], /* fr23 */ \
2838 &rs6000_reg_names[56][0], /* fr24 */ \
2839 &rs6000_reg_names[57][0], /* fr25 */ \
2840 &rs6000_reg_names[58][0], /* fr26 */ \
2841 &rs6000_reg_names[59][0], /* fr27 */ \
2842 &rs6000_reg_names[60][0], /* fr28 */ \
2843 &rs6000_reg_names[61][0], /* fr29 */ \
2844 &rs6000_reg_names[62][0], /* fr30 */ \
2845 &rs6000_reg_names[63][0], /* fr31 */ \
2846 \
2847 &rs6000_reg_names[64][0], /* mq */ \
2848 &rs6000_reg_names[65][0], /* lr */ \
2849 &rs6000_reg_names[66][0], /* ctr */ \
2850 &rs6000_reg_names[67][0], /* ap */ \
2851 \
2852 &rs6000_reg_names[68][0], /* cr0 */ \
2853 &rs6000_reg_names[69][0], /* cr1 */ \
2854 &rs6000_reg_names[70][0], /* cr2 */ \
2855 &rs6000_reg_names[71][0], /* cr3 */ \
2856 &rs6000_reg_names[72][0], /* cr4 */ \
2857 &rs6000_reg_names[73][0], /* cr5 */ \
2858 &rs6000_reg_names[74][0], /* cr6 */ \
2859 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058
MM
2860 \
2861 &rs6000_reg_names[76][0], /* fpmem */ \
c81bebd7
MM
2862}
2863
2864/* print-rtl can't handle the above REGISTER_NAMES, so define the
2865 following for it. Switch to use the alternate names since
2866 they are more mnemonic. */
2867
2868#define DEBUG_REGISTER_NAMES \
2869{ \
802a0058
MM
2870 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2871 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2872 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2873 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2874 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2875 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2876 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2877 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2878 "mq", "lr", "ctr", "ap", \
2879 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2880 "fpmem" \
c81bebd7 2881}
f045b2c9
RS
2882
2883/* Table of additional register names to use in user input. */
2884
2885#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2886 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2887 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2888 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2889 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2890 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2891 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2892 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2893 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2894 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2895 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2896 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2897 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2898 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2899 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2900 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2901 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2902 /* no additional names for: mq, lr, ctr, ap */ \
2903 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2904 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2905 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9
RS
2906
2907/* How to renumber registers for dbx and gdb. */
2908
2909#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2910
0da40b09
RK
2911/* Text to write out after a CALL that may be replaced by glue code by
2912 the loader. This depends on the AIX version. */
2913#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2914
f045b2c9
RS
2915/* This is how to output the definition of a user-level label named NAME,
2916 such as the label on a static function or variable NAME. */
2917
2918#define ASM_OUTPUT_LABEL(FILE,NAME) \
2919 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2920
2921/* This is how to output a command to make the user-level label named NAME
2922 defined for reference from other files. */
2923
2924#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2925 do { fputs ("\t.globl ", FILE); \
2926 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2927
2928/* This is how to output a reference to a user-level label named NAME.
2929 `assemble_name' uses this. */
2930
2931#define ASM_OUTPUT_LABELREF(FILE,NAME) \
7509c759 2932 fputs (NAME, FILE)
f045b2c9
RS
2933
2934/* This is how to output an internal numbered label where
2935 PREFIX is the class of label and NUM is the number within the class. */
2936
2937#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2938 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2939
3daf36a4
ILT
2940/* This is how to output an internal label prefix. rs6000.c uses this
2941 when generating traceback tables. */
2942
2943#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2944 fprintf (FILE, "%s..", PREFIX)
2945
f045b2c9
RS
2946/* This is how to output a label for a jump table. Arguments are the same as
2947 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2948 passed. */
2949
2950#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2951{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2952
2953/* This is how to store into the string LABEL
2954 the symbol_ref name of an internal numbered label where
2955 PREFIX is the class of label and NUM is the number within the class.
2956 This is suitable for output with `assemble_name'. */
2957
2958#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3d199f7a 2959 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
f045b2c9
RS
2960
2961/* This is how to output an assembler line defining a `double' constant. */
2962
a5b1eb34
RS
2963#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2964 { \
2965 if (REAL_VALUE_ISINF (VALUE) \
2966 || REAL_VALUE_ISNAN (VALUE) \
2967 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2968 { \
2969 long t[2]; \
2970 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2971 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2972 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2973 } \
2974 else \
2975 { \
2976 char str[30]; \
2977 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2978 fprintf (FILE, "\t.double 0d%s\n", str); \
2979 } \
2980 }
f045b2c9
RS
2981
2982/* This is how to output an assembler line defining a `float' constant. */
2983
a5b1eb34
RS
2984#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2985 { \
2986 if (REAL_VALUE_ISINF (VALUE) \
2987 || REAL_VALUE_ISNAN (VALUE) \
2988 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2989 { \
2990 long t; \
2991 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2992 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2993 } \
2994 else \
2995 { \
2996 char str[30]; \
2997 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2998 fprintf (FILE, "\t.float 0d%s\n", str); \
2999 } \
3000 }
f045b2c9
RS
3001
3002/* This is how to output an assembler line defining an `int' constant. */
3003
5854b0d0
DE
3004#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
3005do { \
3006 if (TARGET_32BIT) \
3007 { \
3008 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3009 UNITS_PER_WORD, 1); \
3010 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3011 UNITS_PER_WORD, 1); \
3012 } \
3013 else \
3014 { \
3015 fputs ("\t.llong ", FILE); \
3016 output_addr_const (FILE, (VALUE)); \
3017 putc ('\n', FILE); \
3018 } \
3019} while (0)
3020
f045b2c9 3021#define ASM_OUTPUT_INT(FILE,VALUE) \
19d2d16f 3022( fputs ("\t.long ", FILE), \
f045b2c9 3023 output_addr_const (FILE, (VALUE)), \
19d2d16f 3024 putc ('\n', FILE))
f045b2c9
RS
3025
3026/* Likewise for `char' and `short' constants. */
3027
3028#define ASM_OUTPUT_SHORT(FILE,VALUE) \
19d2d16f 3029( fputs ("\t.short ", FILE), \
f045b2c9 3030 output_addr_const (FILE, (VALUE)), \
19d2d16f 3031 putc ('\n', FILE))
f045b2c9
RS
3032
3033#define ASM_OUTPUT_CHAR(FILE,VALUE) \
19d2d16f 3034( fputs ("\t.byte ", FILE), \
f045b2c9 3035 output_addr_const (FILE, (VALUE)), \
19d2d16f 3036 putc ('\n', FILE))
f045b2c9
RS
3037
3038/* This is how to output an assembler line for a numeric constant byte. */
3039
3040#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3041 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
3042
3043/* This is how to output an assembler line to define N characters starting
3044 at P to FILE. */
3045
3046#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
3047
3048/* This is how to output code to push a register on the stack.
034e84c4
MM
3049 It need not be very fast code.
3050
3051 On the rs6000, we must keep the backchain up to date. In order
3052 to simplify things, always allocate 16 bytes for a push (System V
3053 wants to keep stack aligned to a 16 byte boundary). */
f045b2c9 3054
4697a36c
MM
3055#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
3056do { \
3057 extern char *reg_names[]; \
034e84c4
MM
3058 asm_fprintf (FILE, "\t{stu|stwu} %s,-16(%s)\n\t{st|stw} %s,8(%s)\n", \
3059 reg_names[1], reg_names[1], reg_names[REGNO], \
4697a36c
MM
3060 reg_names[1]); \
3061} while (0)
f045b2c9
RS
3062
3063/* This is how to output an insn to pop a register from the stack.
3064 It need not be very fast code. */
3065
4697a36c
MM
3066#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
3067do { \
3068 extern char *reg_names[]; \
034e84c4 3069 asm_fprintf (FILE, "\t{l|lwz} %s,8(%s)\n\t{ai|addic} %s,%s,16\n", \
4697a36c
MM
3070 reg_names[REGNO], reg_names[1], reg_names[1], \
3071 reg_names[1]); \
3072} while (0)
f045b2c9 3073
c81bebd7 3074/* This is how to output an element of a case-vector that is absolute.
f045b2c9
RS
3075 (RS/6000 does not use such vectors, but we must define this macro
3076 anyway.) */
3077
3daf36a4
ILT
3078#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3079 do { char buf[100]; \
a260abc9 3080 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
3081 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3082 assemble_name (FILE, buf); \
19d2d16f 3083 putc ('\n', FILE); \
3daf36a4 3084 } while (0)
f045b2c9
RS
3085
3086/* This is how to output an element of a case-vector that is relative. */
3087
33f7f353 3088#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)\
3daf36a4 3089 do { char buf[100]; \
a260abc9 3090 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
3091 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3092 assemble_name (FILE, buf); \
19d2d16f 3093 putc ('-', FILE); \
3daf36a4
ILT
3094 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
3095 assemble_name (FILE, buf); \
19d2d16f 3096 putc ('\n', FILE); \
3daf36a4 3097 } while (0)
f045b2c9
RS
3098
3099/* This is how to output an assembler line
3100 that says to advance the location counter
3101 to a multiple of 2**LOG bytes. */
3102
3103#define ASM_OUTPUT_ALIGN(FILE,LOG) \
3104 if ((LOG) != 0) \
3105 fprintf (FILE, "\t.align %d\n", (LOG))
3106
3107#define ASM_OUTPUT_SKIP(FILE,SIZE) \
3108 fprintf (FILE, "\t.space %d\n", (SIZE))
3109
3110/* This says how to output an assembler line
3111 to define a global common symbol. */
3112
b73fd26c 3113#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
fc3ffe83 3114 do { fputs (".comm ", (FILE)); \
f045b2c9 3115 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
b73fd26c
DE
3116 if ( (SIZE) > 4) \
3117 fprintf ((FILE), ",%d,3\n", (SIZE)); \
3118 else \
3119 fprintf( (FILE), ",%d\n", (SIZE)); \
3120 } while (0)
f045b2c9
RS
3121
3122/* This says how to output an assembler line
3123 to define a local common symbol. */
3124
3125#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 3126 do { fputs (".lcomm ", (FILE)); \
f045b2c9 3127 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 3128 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
3129 } while (0)
3130
3131/* Store in OUTPUT a string (made with alloca) containing
3132 an assembler-name for a local static variable named NAME.
3133 LABELNO is an integer which is different for each call. */
3134
3135#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3136( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3137 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3138
3139/* Define the parentheses used to group arithmetic operations
3140 in assembler code. */
3141
3142#define ASM_OPEN_PAREN "("
3143#define ASM_CLOSE_PAREN ")"
3144
3145/* Define results of standard character escape sequences. */
3146#define TARGET_BELL 007
3147#define TARGET_BS 010
3148#define TARGET_TAB 011
3149#define TARGET_NEWLINE 012
3150#define TARGET_VT 013
3151#define TARGET_FF 014
3152#define TARGET_CR 015
3153
3154/* Print operand X (an rtx) in assembler syntax to file FILE.
3155 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3156 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3157
3158#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3159
3160/* Define which CODE values are valid. */
3161
c81bebd7
MM
3162#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3163 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
f045b2c9
RS
3164
3165/* Print a memory address as an operand to reference that memory location. */
3166
3167#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3168
3169/* Define the codes that are matched by predicates in rs6000.c. */
3170
802a0058 3171#define PREDICATE_CODES \
e675f625
DE
3172 {"short_cint_operand", {CONST_INT, CONSTANT_P_RTX}}, \
3173 {"u_short_cint_operand", {CONST_INT, CONSTANT_P_RTX}}, \
f357808b 3174 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 3175 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9 3176 {"cc_reg_operand", {SUBREG, REG}}, \
e675f625 3177 {"reg_or_short_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
f045b2c9 3178 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
e675f625
DE
3179 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
3180 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
766a866c 3181 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
38c1f2d7 3182 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
f045b2c9
RS
3183 {"easy_fp_constant", {CONST_DOUBLE}}, \
3184 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
414d3ee4 3185 {"lwa_operand", {SUBREG, MEM, REG}}, \
b6c9286a 3186 {"volatile_mem_operand", {MEM}}, \
b7676b46 3187 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
f045b2c9 3188 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
e675f625 3189 {"add_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
f357808b 3190 {"non_add_cint_operand", {CONST_INT}}, \
e675f625
DE
3191 {"and_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
3192 {"and64_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX, \
3193 CONST_DOUBLE}}, \
3194 {"logical_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
f357808b 3195 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9 3196 {"mask_operand", {CONST_INT}}, \
a260abc9 3197 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
b6c9286a 3198 {"count_register_operand", {REG}}, \
802a0058 3199 {"fpmem_operand", {REG}}, \
f045b2c9 3200 {"call_operand", {SYMBOL_REF, REG}}, \
f8634644 3201 {"current_file_function_operand", {SYMBOL_REF}}, \
e675f625
DE
3202 {"input_operand", {SUBREG, MEM, REG, CONST_INT, CONSTANT_P_RTX, \
3203 CONST_DOUBLE, SYMBOL_REF}}, \
f8634644
RK
3204 {"load_multiple_operation", {PARALLEL}}, \
3205 {"store_multiple_operation", {PARALLEL}}, \
3206 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3207 GT, LEU, LTU, GEU, GTU}}, \
f8634644 3208 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
d2a0c2ee
JC
3209 GT, LEU, LTU, GEU, GTU}}, \
3210 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
3211 GT, LEU, LTU, GEU, GTU}},
75814ad4 3212
b6c9286a
MM
3213/* uncomment for disabling the corresponding default options */
3214/* #define MACHINE_no_sched_interblock */
3215/* #define MACHINE_no_sched_speculative */
3216/* #define MACHINE_no_sched_speculative_load */
3217
3218/* indicate that issue rate is defined for this machine
3219 (no need to use the default) */
246853b9 3220#define ISSUE_RATE get_issue_rate ()
b6c9286a 3221
766a866c
MM
3222/* General flags. */
3223extern int flag_pic;
354b734b
MM
3224extern int optimize;
3225extern int flag_expensive_optimizations;
a7df97e6 3226extern int frame_pointer_needed;
354b734b 3227
75814ad4 3228/* Declare functions in rs6000.c */
6b67933e 3229extern void output_options ();
75814ad4 3230extern void rs6000_override_options ();
3cfa4909 3231extern void rs6000_file_start ();
6b67933e 3232extern struct rtx_def *rs6000_float_const ();
c4c40373 3233extern struct rtx_def *rs6000_got_register ();
75814ad4 3234extern int direct_return ();
c4d38ccb 3235extern int get_issue_rate ();
75814ad4
MM
3236extern int any_operand ();
3237extern int short_cint_operand ();
3238extern int u_short_cint_operand ();
3239extern int non_short_cint_operand ();
3240extern int gpc_reg_operand ();
3241extern int cc_reg_operand ();
3242extern int reg_or_short_operand ();
3243extern int reg_or_neg_short_operand ();
3244extern int reg_or_u_short_operand ();
3245extern int reg_or_cint_operand ();
766a866c 3246extern int got_operand ();
38c1f2d7 3247extern int got_no_const_operand ();
4e74d8ec 3248extern int num_insns_constant ();
75814ad4 3249extern int easy_fp_constant ();
b7676b46
RK
3250extern int volatile_mem_operand ();
3251extern int offsettable_addr_operand ();
75814ad4
MM
3252extern int mem_or_easy_const_operand ();
3253extern int add_operand ();
3254extern int non_add_cint_operand ();
c4d38ccb 3255extern int non_logical_cint_operand ();
75814ad4 3256extern int logical_operand ();
75814ad4
MM
3257extern int mask_constant ();
3258extern int mask_operand ();
a260abc9
DE
3259extern int mask64_operand ();
3260extern int and64_operand ();
75814ad4 3261extern int and_operand ();
802a0058
MM
3262extern int count_register_operand ();
3263extern int fpmem_operand ();
75814ad4
MM
3264extern int reg_or_mem_operand ();
3265extern int lwa_operand ();
3266extern int call_operand ();
3267extern int current_file_function_operand ();
3268extern int input_operand ();
7509c759 3269extern int small_data_operand ();
4697a36c
MM
3270extern void init_cumulative_args ();
3271extern void function_arg_advance ();
b6c9286a 3272extern int function_arg_boundary ();
4697a36c
MM
3273extern struct rtx_def *function_arg ();
3274extern int function_arg_partial_nregs ();
3275extern int function_arg_pass_by_reference ();
3276extern void setup_incoming_varargs ();
3277extern struct rtx_def *expand_builtin_saveregs ();
b7676b46 3278extern struct rtx_def *rs6000_stack_temp ();
7e69e155 3279extern int expand_block_move ();
75814ad4
MM
3280extern int load_multiple_operation ();
3281extern int store_multiple_operation ();
3282extern int branch_comparison_operator ();
3283extern int scc_comparison_operator ();
d2a0c2ee 3284extern int trap_comparison_operator ();
75814ad4
MM
3285extern int includes_lshift_p ();
3286extern int includes_rshift_p ();
3287extern int registers_ok_for_quad_peep ();
3288extern int addrs_ok_for_quad_peep ();
3289extern enum reg_class secondary_reload_class ();
3290extern int ccr_bit ();
d266da75 3291extern void rs6000_finalize_pic ();
30ea98f1 3292extern void rs6000_reorg ();
a7df97e6
MM
3293extern void rs6000_save_machine_status ();
3294extern void rs6000_restore_machine_status ();
3295extern void rs6000_init_expanders ();
75814ad4
MM
3296extern void print_operand ();
3297extern void print_operand_address ();
3298extern int first_reg_to_save ();
3299extern int first_fp_reg_to_save ();
75814ad4 3300extern int rs6000_makes_calls ();
4697a36c 3301extern rs6000_stack_t *rs6000_stack_info ();
75814ad4
MM
3302extern void output_prolog ();
3303extern void output_epilog ();
17167fd8 3304extern void output_mi_thunk ();
75814ad4
MM
3305extern void output_toc ();
3306extern void output_ascii ();
3307extern void rs6000_gen_section_name ();
3308extern void output_function_profiler ();
3309extern int rs6000_adjust_cost ();
b6c9286a
MM
3310extern void rs6000_trampoline_template ();
3311extern int rs6000_trampoline_size ();
3312extern void rs6000_initialize_trampoline ();
c4d38ccb 3313extern void rs6000_output_load_toc_table ();
7509c759
MM
3314extern int rs6000_comp_type_attributes ();
3315extern int rs6000_valid_decl_attribute_p ();
3316extern int rs6000_valid_type_attribute_p ();
3317extern void rs6000_set_default_type_attributes ();
3318extern struct rtx_def *rs6000_dll_import_ref ();
6a4cee5f 3319extern struct rtx_def *rs6000_longcall_ref ();
c4d38ccb 3320extern int function_arg_padding ();
296b8152
KG
3321extern void toc_section ();
3322extern void private_data_section ();
a6c2a102 3323extern void rs6000_fatal_bad_address ();
28174a14
MS
3324
3325/* See nonlocal_goto_receiver for when this must be set. */
3326
3327#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)