]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
ansidecl.h (ATTRIBUTE_NONSTRING): Define.
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
85ec4feb 2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 4
5de601cf 5 This file is part of GCC.
f045b2c9 6
5de601cf
NC
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
5de601cf 10 option) any later version.
f045b2c9 11
5de601cf
NC
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f045b2c9 16
748086b7
JJ
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 24 <http://www.gnu.org/licenses/>. */
f045b2c9
RS
25
26/* Note that some other tm.h files include this one and then override
9ebbca7d 27 many of the definitions. */
f045b2c9 28
fd438373
MM
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
9ebbca7d
GK
33/* Definitions for the object file format. These are set at
34 compile-time. */
f045b2c9 35
9ebbca7d
GK
36#define OBJECT_XCOFF 1
37#define OBJECT_ELF 2
38#define OBJECT_PEF 3
ee890fe2 39#define OBJECT_MACHO 4
f045b2c9 40
9ebbca7d 41#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 42#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 43#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 44#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 45
2bfcf297
DB
46#ifndef TARGET_AIX
47#define TARGET_AIX 0
48#endif
49
78009d9f
MM
50#ifndef TARGET_AIX_OS
51#define TARGET_AIX_OS 0
52#endif
53
85b776df
AM
54/* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56#define DOT_SYMBOLS 1
57
8e3f41e7
MM
58/* Default string to use for cpu if not specified. */
59#ifndef TARGET_CPU_DEFAULT
60#define TARGET_CPU_DEFAULT ((char *)0)
61#endif
62
f565b0a1 63/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 64#ifdef CONFIG_PPC405CR
f565b0a1
DE
65#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66#else
67#define PPC405_ERRATUM77 0
68#endif
69
96038623
DE
70#ifndef TARGET_PAIRED_FLOAT
71#define TARGET_PAIRED_FLOAT 0
72#endif
73
cd679487
BE
74#ifdef HAVE_AS_POPCNTB
75#define ASM_CPU_POWER5_SPEC "-mpower5"
76#else
77#define ASM_CPU_POWER5_SPEC "-mpower4"
78#endif
79
80#ifdef HAVE_AS_DFP
81#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82#else
83#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84#endif
85
cacf1ca8 86#ifdef HAVE_AS_POPCNTD
d40c9e33
PB
87#define ASM_CPU_POWER7_SPEC "-mpower7"
88#else
89#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90#endif
91
428bffcb
PB
92#ifdef HAVE_AS_POWER8
93#define ASM_CPU_POWER8_SPEC "-mpower8"
94#else
f62511da 95#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
428bffcb
PB
96#endif
97
d1f0d376
MM
98#ifdef HAVE_AS_POWER9
99#define ASM_CPU_POWER9_SPEC "-mpower9"
100#else
101#define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102#endif
103
47f67e51
PB
104#ifdef HAVE_AS_DCI
105#define ASM_CPU_476_SPEC "-m476"
106#else
107#define ASM_CPU_476_SPEC "-mpower4"
108#endif
109
cacf1ca8
MM
110/* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
f984d8df
DB
114#define ASM_CPU_SPEC \
115"%{!mcpu*: \
93ae5495 116 %{mpowerpc64*: -mppc64} \
a441dedb 117 %{!mpowerpc64*: %(asm_default)}} \
cacf1ca8 118%{mcpu=native: %(asm_cpu_native)} \
d296e02e 119%{mcpu=cell: -mcell} \
93ae5495 120%{mcpu=power3: -mppc64} \
957e9e48 121%{mcpu=power4: -mpower4} \
cd679487
BE
122%{mcpu=power5: %(asm_cpu_power5)} \
123%{mcpu=power5+: %(asm_cpu_power5)} \
124%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
d40c9e33 126%{mcpu=power7: %(asm_cpu_power7)} \
428bffcb 127%{mcpu=power8: %(asm_cpu_power8)} \
d1f0d376 128%{mcpu=power9: %(asm_cpu_power9)} \
ebde32fd 129%{mcpu=a2: -ma2} \
f984d8df 130%{mcpu=powerpc: -mppc} \
fa17b3db 131%{mcpu=powerpc64le: %(asm_cpu_power8)} \
93ae5495 132%{mcpu=rs64a: -mppc64} \
f984d8df 133%{mcpu=401: -mppc} \
61a8515c
JS
134%{mcpu=403: -m403} \
135%{mcpu=405: -m405} \
2c9d95ef
DE
136%{mcpu=405fp: -m405} \
137%{mcpu=440: -m440} \
138%{mcpu=440fp: -m440} \
4adf8008
PB
139%{mcpu=464: -m440} \
140%{mcpu=464fp: -m440} \
47f67e51
PB
141%{mcpu=476: %(asm_cpu_476)} \
142%{mcpu=476fp: %(asm_cpu_476)} \
f984d8df
DB
143%{mcpu=505: -mppc} \
144%{mcpu=601: -m601} \
145%{mcpu=602: -mppc} \
146%{mcpu=603: -mppc} \
147%{mcpu=603e: -mppc} \
148%{mcpu=ec603e: -mppc} \
149%{mcpu=604: -mppc} \
150%{mcpu=604e: -mppc} \
93ae5495
AM
151%{mcpu=620: -mppc64} \
152%{mcpu=630: -mppc64} \
f984d8df
DB
153%{mcpu=740: -mppc} \
154%{mcpu=750: -mppc} \
49ffe578 155%{mcpu=G3: -mppc} \
93ae5495
AM
156%{mcpu=7400: -mppc -maltivec} \
157%{mcpu=7450: -mppc -maltivec} \
158%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
159%{mcpu=801: -mppc} \
160%{mcpu=821: -mppc} \
161%{mcpu=823: -mppc} \
775db490 162%{mcpu=860: -mppc} \
93ae5495
AM
163%{mcpu=970: -mpower4 -maltivec} \
164%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 165%{mcpu=8540: -me500} \
5ca0373f 166%{mcpu=8548: -me500} \
fa41c305
EW
167%{mcpu=e300c2: -me300} \
168%{mcpu=e300c3: -me300} \
edae5fe3 169%{mcpu=e500mc: -me500mc} \
b17f98b1 170%{mcpu=e500mc64: -me500mc64} \
683ed19e
EW
171%{mcpu=e5500: -me5500} \
172%{mcpu=e6500: -me6500} \
93ae5495 173%{maltivec: -maltivec} \
2c9ccc21 174%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
0258b6e4 175%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
93ae5495 176-many"
f984d8df
DB
177
178#define CPP_DEFAULT_SPEC ""
179
180#define ASM_DEFAULT_SPEC ""
181
841faeed
MM
182/* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
5de601cf 187 specification name, and a string constant that used by the GCC driver
841faeed
MM
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
7509c759 192#define SUBTARGET_EXTRA_SPECS
7509c759 193
c81bebd7 194#define EXTRA_SPECS \
c81bebd7 195 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7 196 { "asm_cpu", ASM_CPU_SPEC }, \
cacf1ca8 197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
c81bebd7 198 { "asm_default", ASM_DEFAULT_SPEC }, \
0eab6840 199 { "cc1_cpu", CC1_CPU_SPEC }, \
cd679487
BE
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
d40c9e33 202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
428bffcb 203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
d1f0d376 204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
47f67e51 205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
7509c759
MM
206 SUBTARGET_EXTRA_SPECS
207
0eab6840
DE
208/* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212/* In driver-rs6000.c. */
213extern const char *host_detect_local_cpu (int argc, const char **argv);
214#define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216#define HAVE_LOCAL_CPU_DETECT
cacf1ca8
MM
217#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219#else
220#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
0eab6840
DE
221#endif
222
ee7caeb3
DE
223#ifndef CC1_CPU_SPEC
224#ifdef HAVE_LOCAL_CPU_DETECT
0eab6840
DE
225#define CC1_CPU_SPEC \
226"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
ee7caeb3
DE
228#else
229#define CC1_CPU_SPEC ""
230#endif
0eab6840
DE
231#endif
232
fb623df5 233/* Architecture type. */
f045b2c9 234
bb22512c 235/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 236 optional field operand for mfcr. */
fb623df5 237
78f5898b 238#ifndef HAVE_AS_MFCRF
432218ba 239#undef TARGET_MFCRF
ffa22984
DE
240#define TARGET_MFCRF 0
241#endif
242
0fa2e4df 243/* Define TARGET_POPCNTB if the target assembler does not support the
432218ba
DE
244 popcount byte instruction. */
245
246#ifndef HAVE_AS_POPCNTB
247#undef TARGET_POPCNTB
248#define TARGET_POPCNTB 0
249#endif
250
9719f3b7
DE
251/* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254#ifndef HAVE_AS_FPRND
255#undef TARGET_FPRND
256#define TARGET_FPRND 0
257#endif
258
b639c3c2
JJ
259/* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262#ifndef HAVE_AS_CMPB
263#undef TARGET_CMPB
264#define TARGET_CMPB 0
265#endif
266
44cd321e
PS
267/* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270#ifndef HAVE_AS_MFPGPR
271#undef TARGET_MFPGPR
272#define TARGET_MFPGPR 0
273#endif
274
b639c3c2
JJ
275/* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277#ifndef HAVE_AS_DFP
278#undef TARGET_DFP
279#define TARGET_DFP 0
280#endif
281
cacf1ca8
MM
282/* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285#ifndef HAVE_AS_POPCNTD
286#undef TARGET_POPCNTD
287#define TARGET_POPCNTD 0
288#endif
289
f62511da
MM
290/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294#ifndef HAVE_AS_POWER8
295#undef TARGET_DIRECT_MOVE
296#undef TARGET_CRYPTO
0258b6e4 297#undef TARGET_HTM
f62511da
MM
298#undef TARGET_P8_VECTOR
299#define TARGET_DIRECT_MOVE 0
300#define TARGET_CRYPTO 0
0258b6e4 301#define TARGET_HTM 0
f62511da
MM
302#define TARGET_P8_VECTOR 0
303#endif
304
caea59ff
KN
305/* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
309
310#ifndef HAVE_AS_POWER9
311#undef TARGET_FLOAT128_HW
312#undef TARGET_MODULO
313#undef TARGET_P9_VECTOR
314#undef TARGET_P9_MINMAX
5a3a6a5e 315#undef TARGET_P9_MISC
caea59ff
KN
316#define TARGET_FLOAT128_HW 0
317#define TARGET_MODULO 0
318#define TARGET_P9_VECTOR 0
319#define TARGET_P9_MINMAX 0
5a3a6a5e 320#define TARGET_P9_MISC 0
caea59ff
KN
321#endif
322
cacf1ca8
MM
323/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
324 not, generate the lwsync code as an integer constant. */
325#ifdef HAVE_AS_LWSYNC
326#define TARGET_LWSYNC_INSTRUCTION 1
327#else
328#define TARGET_LWSYNC_INSTRUCTION 0
329#endif
330
9752c4ad
AM
331/* Define TARGET_TLS_MARKERS if the target assembler does not support
332 arg markers for __tls_get_addr calls. */
333#ifndef HAVE_AS_TLS_MARKERS
334#undef TARGET_TLS_MARKERS
335#define TARGET_TLS_MARKERS 0
336#else
337#define TARGET_TLS_MARKERS tls_markers
338#endif
339
7f970b70
AM
340#ifndef TARGET_SECURE_PLT
341#define TARGET_SECURE_PLT 0
342#endif
343
070b27da
AM
344#ifndef TARGET_CMODEL
345#define TARGET_CMODEL CMODEL_SMALL
346#endif
347
2f3e5814 348#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 349
c4501e62
JJ
350#ifndef HAVE_AS_TLS
351#define HAVE_AS_TLS 0
352#endif
353
be26142a
PB
354#ifndef TARGET_LINK_STACK
355#define TARGET_LINK_STACK 0
356#endif
357
358#ifndef SET_TARGET_LINK_STACK
359#define SET_TARGET_LINK_STACK(X) do { } while (0)
360#endif
361
08213983
MM
362#ifndef TARGET_FLOAT128_ENABLE_TYPE
363#define TARGET_FLOAT128_ENABLE_TYPE 0
364#endif
365
48d72335
DE
366/* Return 1 for a symbol ref for a thread-local storage symbol. */
367#define RS6000_SYMBOL_REF_TLS_P(RTX) \
368 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
369
996ed075
JJ
370#ifdef IN_LIBGCC2
371/* For libgcc2 we make sure this is a compile time constant */
67796c1f 372#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
78f5898b 373#undef TARGET_POWERPC64
996ed075
JJ
374#define TARGET_POWERPC64 1
375#else
78f5898b 376#undef TARGET_POWERPC64
996ed075
JJ
377#define TARGET_POWERPC64 0
378#endif
b6c9286a 379#else
78f5898b 380 /* The option machinery will define this. */
b6c9286a
MM
381#endif
382
20c89ab7 383#define TARGET_DEFAULT (MASK_MULTIPLE)
9ebbca7d 384
696e45ba
ME
385/* FPU operations supported.
386 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
387 also test TARGET_HARD_FLOAT. */
388#define TARGET_SINGLE_FLOAT 1
389#define TARGET_DOUBLE_FLOAT 1
390#define TARGET_SINGLE_FPU 0
391#define TARGET_SIMPLE_FPU 0
0bb7b92e 392#define TARGET_XILINX_FPU 0
696e45ba 393
8482e358 394/* Define generic processor types based upon current deployment. */
3cb999d8 395#define PROCESSOR_COMMON PROCESSOR_PPC601
3cb999d8
DE
396#define PROCESSOR_POWERPC PROCESSOR_PPC604
397#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 398
fb623df5 399/* Define the default processor. This is overridden by other tm.h files. */
f3061fa4 400#define PROCESSOR_DEFAULT PROCESSOR_PPC603
3cb999d8 401#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 402
59ac9a55
JJ
403/* Specify the dialect of assembler to use. Only new mnemonics are supported
404 starting with GCC 4.8, i.e. just one dialect, but for backwards
405 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
406 defined. */
407#define ASSEMBLER_DIALECT 1
408
38c1f2d7 409/* Debug support */
fd438373
MM
410#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
411#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
412#define MASK_DEBUG_REG 0x04 /* debug register handling */
413#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
414#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
415#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
7fa14a01 416#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
fd438373
MM
417#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
418 | MASK_DEBUG_ARG \
419 | MASK_DEBUG_REG \
420 | MASK_DEBUG_ADDR \
421 | MASK_DEBUG_COST \
7fa14a01
MM
422 | MASK_DEBUG_TARGET \
423 | MASK_DEBUG_BUILTIN)
fd438373
MM
424
425#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
426#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
427#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
428#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
429#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
430#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
7fa14a01 431#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
cacf1ca8 432
2c83faf8
MM
433/* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
434 long double format that uses a pair of doubles, or IEEE 128-bit floating
435 point. KFmode was added as a way to represent IEEE 128-bit floating point,
436 even if the default for long double is the IBM long double format.
437 Similarly IFmode is the IBM long double format even if the default is IEEE
0bc36dec 438 128-bit. Don't allow IFmode if -msoft-float. */
2c83faf8 439#define FLOAT128_IEEE_P(MODE) \
83cbbe3a
MM
440 ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
441 && ((MODE) == TFmode || (MODE) == TCmode)) \
4304ccfd 442 || ((MODE) == KFmode) || ((MODE) == KCmode))
2c83faf8
MM
443
444#define FLOAT128_IBM_P(MODE) \
83cbbe3a
MM
445 ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
446 && ((MODE) == TFmode || (MODE) == TCmode)) \
11d8d07e 447 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
2c83faf8
MM
448
449/* Helper macros to say whether a 128-bit floating point type can go in a
450 single vector register, or whether it needs paired scalar values. */
08213983 451#define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
2c83faf8
MM
452
453#define FLOAT128_2REG_P(MODE) \
454 (FLOAT128_IBM_P (MODE) \
455 || ((MODE) == TDmode) \
08213983 456 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
2c83faf8
MM
457
458/* Return true for floating point that does not use a vector register. */
459#define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
460 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
461
f62511da 462/* Describe the vector unit used for arithmetic operations. */
cacf1ca8
MM
463extern enum rs6000_vector rs6000_vector_unit[];
464
465#define VECTOR_UNIT_NONE_P(MODE) \
466 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
467
468#define VECTOR_UNIT_VSX_P(MODE) \
469 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
470
f62511da
MM
471#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
472 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
473
cacf1ca8
MM
474#define VECTOR_UNIT_ALTIVEC_P(MODE) \
475 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
476
f62511da
MM
477#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
478 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
479 (int)VECTOR_VSX, \
480 (int)VECTOR_P8_VECTOR))
481
482/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
483 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
484 compatible, so allow it as well, rather than changing all of the uses of the
485 macro. */
cacf1ca8 486#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
487 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
488 (int)VECTOR_ALTIVEC, \
489 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
490
491/* Describe whether to use VSX loads or Altivec loads. For now, just use the
492 same unit as the vector unit we are using, but we may want to migrate to
493 using VSX style loads even for types handled by altivec. */
494extern enum rs6000_vector rs6000_vector_mem[];
495
496#define VECTOR_MEM_NONE_P(MODE) \
497 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
498
499#define VECTOR_MEM_VSX_P(MODE) \
500 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
501
f62511da
MM
502#define VECTOR_MEM_P8_VECTOR_P(MODE) \
503 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
504
cacf1ca8
MM
505#define VECTOR_MEM_ALTIVEC_P(MODE) \
506 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
507
f62511da
MM
508#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
509 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
510 (int)VECTOR_VSX, \
511 (int)VECTOR_P8_VECTOR))
512
cacf1ca8 513#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
514 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
515 (int)VECTOR_ALTIVEC, \
516 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
517
518/* Return the alignment of a given vector type, which is set based on the
519 vector unit use. VSX for instance can load 32 or 64 bit aligned words
520 without problems, while Altivec requires 128-bit aligned vectors. */
521extern int rs6000_vector_align[];
522
523#define VECTOR_ALIGN(MODE) \
524 ((rs6000_vector_align[(MODE)] != 0) \
525 ? rs6000_vector_align[(MODE)] \
526 : (int)GET_MODE_BITSIZE ((MODE)))
527
6edc217d
BS
528/* Determine the element order to use for vector instructions. By
529 default we use big-endian element order when targeting big-endian,
530 and little-endian element order when targeting little-endian. For
531 programs being ported from BE Power to LE Power, it can sometimes
532 be useful to use big-endian element order when targeting little-endian.
533 This is set via -maltivec=be, for example. */
534#define VECTOR_ELT_ORDER_BIG \
535 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
536
117f16fb
MM
537/* Element number of the 64-bit value in a 128-bit vector that can be accessed
538 with scalar instructions. */
539#define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
540
dd551aa1
MM
541/* Element number of the 64-bit value in a 128-bit vector that can be accessed
542 with the ISA 3.0 MFVSRLD instructions. */
543#define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
544
025d9908
KH
545/* Alignment options for fields in structures for sub-targets following
546 AIX-like ABI.
547 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
548 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
549
550 Override the macro definitions when compiling libobjc to avoid undefined
551 reference to rs6000_alignment_flags due to library's use of GCC alignment
552 macros which use the macros below. */
f676971a 553
025d9908
KH
554#ifndef IN_TARGET_LIBS
555#define MASK_ALIGN_POWER 0x00000000
556#define MASK_ALIGN_NATURAL 0x00000001
557#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
558#else
559#define TARGET_ALIGN_NATURAL 0
560#endif
6fa3f289
ZW
561
562#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
602ea4d3 563#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289 564#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
cacf1ca8 565#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
6fa3f289 566
06061925
MM
567/* Define as 1 if we support multilibs for switching long double between IEEE
568 128-bit floating point and IBM extended double. */
569#ifndef TARGET_IEEEQUAD_MULTILIB
570#define TARGET_IEEEQUAD_MULTILIB 0
571#endif
572
7042fe5e
MM
573/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
574 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
575 XILINX. */
c3f8384f
MM
576#define TARGET_FCFID (TARGET_POWERPC64 \
577 || TARGET_PPC_GPOPT /* 970/power4 */ \
578 || TARGET_POPCNTB /* ISA 2.02 */ \
579 || TARGET_CMPB /* ISA 2.05 */ \
580 || TARGET_POPCNTD /* ISA 2.06 */ \
7042fe5e
MM
581 || TARGET_XILINX_FPU)
582
583#define TARGET_FCTIDZ TARGET_FCFID
584#define TARGET_STFIWX TARGET_PPC_GFXOPT
585#define TARGET_LFIWAX TARGET_CMPB
586#define TARGET_LFIWZX TARGET_POPCNTD
587#define TARGET_FCFIDS TARGET_POPCNTD
588#define TARGET_FCFIDU TARGET_POPCNTD
589#define TARGET_FCFIDUS TARGET_POPCNTD
590#define TARGET_FCTIDUZ TARGET_POPCNTD
591#define TARGET_FCTIWUZ TARGET_POPCNTD
0299bc72
MM
592#define TARGET_CTZ TARGET_MODULO
593#define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
dd551aa1 594#define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
7042fe5e 595
f62511da
MM
596#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
597#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
a16a872d 598#define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
dd551aa1
MM
599#define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
600 && TARGET_POWERPC64)
c5e74d9d 601#define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
6bd6f4f4 602 && TARGET_POWERPC64)
fba4b861 603
fba4b861
MM
604/* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
605#define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
606#define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
607
87b44b83
AS
608/* This wants to be set for p8 and newer. On p7, overlapping unaligned
609 loads are slow. */
610#define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
f62511da
MM
611
612/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
613 in power7, so conditionalize them on p8 features. TImode syncs need quad
614 memory support. */
b846c948
MM
615#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
616 || TARGET_QUAD_MEMORY_ATOMIC \
617 || TARGET_DIRECT_MOVE)
618
619#define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
f62511da 620
c6d5ff83
MM
621/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
622 to allocate the SDmode stack slot to get the value into the proper location
623 in the register. */
624#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
625
21316320
MM
626/* ISA 3.0 has new min/max functions that don't need fast math that are being
627 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
628 answers if the arguments are not in the normal range. */
629#define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
630 && (TARGET_P9_MINMAX || !flag_trapping_math))
631
632#define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
633 && (TARGET_P9_MINMAX || !flag_trapping_math))
634
4d967549
MM
635/* In switching from using target_flags to using rs6000_isa_flags, the options
636 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
637 OPTION_MASK_<xxx> back into MASK_<xxx>. */
638#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
639#define MASK_CMPB OPTION_MASK_CMPB
f62511da 640#define MASK_CRYPTO OPTION_MASK_CRYPTO
4d967549 641#define MASK_DFP OPTION_MASK_DFP
f62511da 642#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
4d967549
MM
643#define MASK_DLMZB OPTION_MASK_DLMZB
644#define MASK_EABI OPTION_MASK_EABI
bbd35101 645#define MASK_FLOAT128_KEYWORD OPTION_MASK_FLOAT128_KEYWORD
12fca96e 646#define MASK_FLOAT128_HW OPTION_MASK_FLOAT128_HW
4d967549 647#define MASK_FPRND OPTION_MASK_FPRND
f62511da 648#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
4d967549 649#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
0258b6e4 650#define MASK_HTM OPTION_MASK_HTM
4d967549
MM
651#define MASK_ISEL OPTION_MASK_ISEL
652#define MASK_MFCRF OPTION_MASK_MFCRF
653#define MASK_MFPGPR OPTION_MASK_MFPGPR
654#define MASK_MULHW OPTION_MASK_MULHW
655#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
656#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
f62511da 657#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
8fa97501 658#define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
5a3a6a5e 659#define MASK_P9_MISC OPTION_MASK_P9_MISC
4d967549
MM
660#define MASK_POPCNTB OPTION_MASK_POPCNTB
661#define MASK_POPCNTD OPTION_MASK_POPCNTD
662#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
663#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
664#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
665#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
666#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
4d967549
MM
667#define MASK_UPDATE OPTION_MASK_UPDATE
668#define MASK_VSX OPTION_MASK_VSX
669
670#ifndef IN_LIBGCC2
671#define MASK_POWERPC64 OPTION_MASK_POWERPC64
672#endif
673
674#ifdef TARGET_64BIT
675#define MASK_64BIT OPTION_MASK_64BIT
676#endif
677
4d967549
MM
678#ifdef TARGET_LITTLE_ENDIAN
679#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
680#endif
681
4d967549
MM
682#ifdef TARGET_REGNAMES
683#define MASK_REGNAMES OPTION_MASK_REGNAMES
684#endif
685
686#ifdef TARGET_PROTOTYPE
687#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
688#endif
689
4f45da44
KN
690#ifdef TARGET_MODULO
691#define RS6000_BTM_MODULO OPTION_MASK_MODULO
692#endif
693
694
7fa14a01
MM
695/* For power systems, we want to enable Altivec and VSX builtins even if the
696 user did not use -maltivec or -mvsx to allow the builtins to be used inside
697 of #pragma GCC target or the target attribute to change the code level for a
6ae036b3
SB
698 given system. The Paired builtins are only enabled if you configure the
699 compiler for those builtins, and those machines don't support altivec or
7fa14a01
MM
700 VSX. */
701
e075a6cc 702#define TARGET_EXTRA_BUILTINS (!TARGET_PAIRED_FLOAT \
7fa14a01 703 && ((TARGET_POWERPC64 \
c3f8384f 704 || TARGET_PPC_GPOPT /* 970/power4 */ \
7fa14a01
MM
705 || TARGET_POPCNTB /* ISA 2.02 */ \
706 || TARGET_CMPB /* ISA 2.05 */ \
707 || TARGET_POPCNTD /* ISA 2.06 */ \
708 || TARGET_ALTIVEC \
f93bc5b3
PB
709 || TARGET_VSX \
710 || TARGET_HARD_FLOAT)))
7fa14a01 711
a7c6c6d6
OH
712/* E500 cores only support plain "sync", not lwsync. */
713#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
714 || rs6000_cpu == PROCESSOR_PPC8548)
7fa14a01
MM
715
716
026c3cfd 717/* Whether SF/DF operations are supported by the normal floating point unit
0609bdf2 718 (or the vector/scalar unit). */
11d8d07e
SB
719#define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT)
720#define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
0609bdf2
MM
721
722/* Whether SF/DF operations are supported by any hardware. */
11d8d07e
SB
723#define TARGET_SF_INSN TARGET_SF_FPR
724#define TARGET_DF_INSN TARGET_DF_FPR
0609bdf2 725
92902797
MM
726/* Which machine supports the various reciprocal estimate instructions. */
727#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
11d8d07e 728 && TARGET_SINGLE_FLOAT)
92902797 729
11d8d07e 730#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
92902797
MM
731 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
732
733#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
11d8d07e 734 && TARGET_PPC_GFXOPT && TARGET_SINGLE_FLOAT)
92902797 735
11d8d07e 736#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
92902797
MM
737 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
738
0299bc72
MM
739/* Conditions to allow TOC fusion for loading/storing integers. */
740#define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
741 && TARGET_TOC_FUSION \
742 && (TARGET_CMODEL != CMODEL_SMALL) \
743 && TARGET_POWERPC64)
744
745/* Conditions to allow TOC fusion for loading/storing floating point. */
746#define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
747 && TARGET_TOC_FUSION \
748 && (TARGET_CMODEL != CMODEL_SMALL) \
749 && TARGET_POWERPC64 \
750 && TARGET_HARD_FLOAT \
0299bc72
MM
751 && TARGET_SINGLE_FLOAT \
752 && TARGET_DOUBLE_FLOAT)
753
6019c0fc
MM
754/* Macro to say whether we can do optimizations where we need to do parts of
755 the calculation in 64-bit GPRs and then is transfered to the vector
756 registers. Do not allow -maltivec=be for these optimizations, because it
757 adds to the complexity of the code. */
e0d32185
MM
758#define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
759 && TARGET_P8_VECTOR \
760 && TARGET_POWERPC64 \
6019c0fc 761 && (rs6000_altivec_element_order != 2))
e0d32185 762
92902797
MM
763/* Whether the various reciprocal divide/square root estimate instructions
764 exist, and whether we should automatically generate code for the instruction
765 by default. */
766#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
767#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
768#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
769#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
770
771extern unsigned char rs6000_recip_bits[];
772
773#define RS6000_RECIP_HAVE_RE_P(MODE) \
774 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
775
776#define RS6000_RECIP_AUTO_RE_P(MODE) \
777 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
778
779#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
780 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
781
782#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
783 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
784
c5387660
JM
785/* The default CPU for TARGET_OPTION_OVERRIDE. */
786#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
f045b2c9 787
a5c76ee6 788/* Target pragma. */
c58b209a
NB
789#define REGISTER_TARGET_PRAGMAS() do { \
790 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
fd438373 791 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
2fab365e 792 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
7fa14a01 793 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
a5c76ee6
ZW
794} while (0)
795
4c4eb375
GK
796/* Target #defines. */
797#define TARGET_CPU_CPP_BUILTINS() \
798 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
799
800/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
801 we're compiling for. Some configurations may need to override it. */
802#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
803 do \
804 { \
805 if (BYTES_BIG_ENDIAN) \
806 { \
807 builtin_define ("__BIG_ENDIAN__"); \
808 builtin_define ("_BIG_ENDIAN"); \
809 builtin_assert ("machine=bigendian"); \
810 } \
811 else \
812 { \
813 builtin_define ("__LITTLE_ENDIAN__"); \
814 builtin_define ("_LITTLE_ENDIAN"); \
815 builtin_assert ("machine=littleendian"); \
816 } \
817 } \
818 while (0)
f045b2c9 819\f
4c4eb375 820/* Target machine storage layout. */
f045b2c9 821
13d39dbc 822/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 823 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
824 the value is constrained to be within the bounds of the declared
825 type, but kept valid in the wider mode. The signedness of the
826 extension may differ from that of the type. */
827
39403d82
DE
828#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
829 if (GET_MODE_CLASS (MODE) == MODE_INT \
96922e4c 830 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
b78d48dd 831 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 832
f045b2c9 833/* Define this if most significant bit is lowest numbered
82e41834
KH
834 in instructions that operate on numbered bit-fields. */
835/* That is true on RS/6000. */
f045b2c9
RS
836#define BITS_BIG_ENDIAN 1
837
838/* Define this if most significant byte of a word is the lowest numbered. */
839/* That is true on RS/6000. */
840#define BYTES_BIG_ENDIAN 1
841
842/* Define this if most significant word of a multiword number is lowest
c81bebd7 843 numbered.
f045b2c9
RS
844
845 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 846 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
847#define WORDS_BIG_ENDIAN 1
848
50751417
AM
849/* This says that for the IBM long double the larger magnitude double
850 comes first. It's really a two element double array, and arrays
851 don't index differently between little- and big-endian. */
852#define LONG_DOUBLE_LARGE_FIRST 1
853
2e360ab3 854#define MAX_BITS_PER_WORD 64
f045b2c9
RS
855
856/* Width of a word, in units (bytes). */
c1aa3958 857#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
858#ifdef IN_LIBGCC2
859#define MIN_UNITS_PER_WORD UNITS_PER_WORD
860#else
ef0e53ce 861#define MIN_UNITS_PER_WORD 4
f34fc46e 862#endif
2e360ab3 863#define UNITS_PER_FP_WORD 8
0ac081f6 864#define UNITS_PER_ALTIVEC_WORD 16
cacf1ca8 865#define UNITS_PER_VSX_WORD 16
96038623 866#define UNITS_PER_PAIRED_WORD 8
f045b2c9 867
915f619f
JW
868/* Type used for ptrdiff_t, as a string used in a declaration. */
869#define PTRDIFF_TYPE "int"
870
058ef853
DE
871/* Type used for size_t, as a string used in a declaration. */
872#define SIZE_TYPE "long unsigned int"
873
f045b2c9
RS
874/* Type used for wchar_t, as a string used in a declaration. */
875#define WCHAR_TYPE "short unsigned int"
876
877/* Width of wchar_t in bits. */
878#define WCHAR_TYPE_SIZE 16
879
9e654916
RK
880/* A C expression for the size in bits of the type `short' on the
881 target machine. If you don't define this, the default is half a
882 word. (If this would be less than one storage unit, it is
883 rounded up to one unit.) */
884#define SHORT_TYPE_SIZE 16
885
886/* A C expression for the size in bits of the type `int' on the
887 target machine. If you don't define this, the default is one
888 word. */
19d2d16f 889#define INT_TYPE_SIZE 32
9e654916
RK
890
891/* A C expression for the size in bits of the type `long' on the
892 target machine. If you don't define this, the default is one
893 word. */
2f3e5814 894#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
895
896/* A C expression for the size in bits of the type `long long' on the
897 target machine. If you don't define this, the default is two
898 words. */
899#define LONG_LONG_TYPE_SIZE 64
900
9e654916
RK
901/* A C expression for the size in bits of the type `float' on the
902 target machine. If you don't define this, the default is one
903 word. */
904#define FLOAT_TYPE_SIZE 32
905
906/* A C expression for the size in bits of the type `double' on the
907 target machine. If you don't define this, the default is two
908 words. */
909#define DOUBLE_TYPE_SIZE 64
910
911/* A C expression for the size in bits of the type `long double' on
912 the target machine. If you don't define this, the default is two
913 words. */
6fa3f289 914#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 915
5b8f5865
DE
916/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
917#define WIDEST_HARDWARE_FP_SIZE 64
918
f045b2c9
RS
919/* Width in bits of a pointer.
920 See also the macro `Pmode' defined below. */
cacf1ca8
MM
921extern unsigned rs6000_pointer_size;
922#define POINTER_SIZE rs6000_pointer_size
f045b2c9
RS
923
924/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 925#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
926
927/* Boundary (in *bits*) on which stack pointer should be aligned. */
cacf1ca8
MM
928#define STACK_BOUNDARY \
929 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
930 ? 64 : 128)
f045b2c9
RS
931
932/* Allocation boundary (in *bits*) for the code of a function. */
933#define FUNCTION_BOUNDARY 32
934
935/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
936#define BIGGEST_ALIGNMENT 128
937
f045b2c9
RS
938/* Alignment of field after `int : 0' in a structure. */
939#define EMPTY_FIELD_BOUNDARY 32
940
941/* Every structure's size must be a multiple of this. */
942#define STRUCTURE_SIZE_BOUNDARY 8
943
43a88a8c 944/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
945#define PCC_BITFIELD_TYPE_MATTERS 1
946
69eff9da
AM
947enum data_align { align_abi, align_opt, align_both };
948
949/* A C expression to compute the alignment for a variables in the
950 local store. TYPE is the data type, and ALIGN is the alignment
951 that the object would ordinarily have. */
952#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
953 rs6000_data_alignment (TYPE, ALIGN, align_both)
954
69eff9da
AM
955/* Make arrays of chars word-aligned for the same reasons. */
956#define DATA_ALIGNMENT(TYPE, ALIGN) \
957 rs6000_data_alignment (TYPE, ALIGN, align_opt)
958
e075a6cc 959/* Align vectors to 128 bits. */
69eff9da
AM
960#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
961 rs6000_data_alignment (TYPE, ALIGN, align_abi)
f045b2c9 962
a0ab749a 963/* Nonzero if move instructions will actually fail to work
f045b2c9 964 when given unaligned data. */
fdaff8ba 965#define STRICT_ALIGNMENT 0
f045b2c9
RS
966\f
967/* Standard register usage. */
968
969/* Number of actual hardware registers.
970 The hardware registers are assigned numbers for the compiler
971 from 0 to just below FIRST_PSEUDO_REGISTER.
972 All registers that the compiler knows about must be given numbers,
973 even those that are not normally considered general registers.
974
975 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
462f7901
SB
976 a count register, a link register, and 8 condition register fields,
977 which we view here as separate registers. AltiVec adds 32 vector
978 registers and a VRsave register.
f045b2c9
RS
979
980 In addition, the difference between the frame and argument pointers is
981 a function of the number of registers saved, so we need to have a
982 register for AP that will later be eliminated in favor of SP or FP.
802a0058 983 This is a normal register, but it is fixed.
f045b2c9 984
802a0058
MM
985 We also create a pseudo register for float/int conversions, that will
986 really represent the memory location used. It is represented here as
987 a register, in order to work around problems in allocating stack storage
7d5175e1 988 in inline functions.
802a0058 989
7d5175e1 990 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
7a5add18
PB
991 pointer, which is eventually eliminated in favor of SP or FP.
992
993 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
7d5175e1 994
346081bd 995#define FIRST_PSEUDO_REGISTER 115
f045b2c9 996
d6a7951f 997/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 998#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 999
e075a6cc 1000/* The sfp register and 3 HTM registers
23742a9e
RAR
1001 aren't included in DWARF_FRAME_REGISTERS. */
1002#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
c19de7aa 1003
ed1cf8ff 1004/* Use standard DWARF numbering for DWARF debugging information. */
3d36d470 1005#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
ed1cf8ff 1006
93c9d1ba 1007/* Use gcc hard register numbering for eh_frame. */
3d36d470 1008#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 1009
ed1cf8ff
GK
1010/* Map register numbers held in the call frame info that gcc has
1011 collected using DWARF_FRAME_REGNUM to those that should be output in
3d36d470
UW
1012 .debug_frame and .eh_frame. */
1013#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1014 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
ed1cf8ff 1015
f045b2c9
RS
1016/* 1 for registers that have pervasive standard uses
1017 and are not available for the register allocator.
1018
5dead3e5
DJ
1019 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1020 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 1021
a127c4e5
RK
1022 On System V implementations, r13 is fixed and not available for use. */
1023
f045b2c9 1024#define FIXED_REGISTERS \
5dead3e5 1025 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
1026 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1027 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1028 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
36bd0c3e 1029 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
0ac081f6
AH
1030 /* AltiVec registers. */ \
1031 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1032 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1033 1, 1 \
346081bd 1034 , 1, 1, 1, 1 \
0ac081f6 1035}
f045b2c9
RS
1036
1037/* 1 for registers not available across function calls.
1038 These must include the FIXED_REGISTERS and also any
1039 registers that can be used without being saved.
1040 The latter must include the registers where values are returned
1041 and the register where structure-value addresses are passed.
1042 Aside from that, you can include as many other registers as you like. */
1043
1044#define CALL_USED_REGISTERS \
a127c4e5 1045 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
1046 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1047 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1048 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
1049 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1050 /* AltiVec registers. */ \
1051 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1052 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1053 1, 1 \
346081bd 1054 , 1, 1, 1, 1 \
0ac081f6
AH
1055}
1056
289e96b2
AH
1057/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1058 the entire set of `FIXED_REGISTERS' be included.
1059 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1060 This macro is optional. If not specified, it defaults to the value
1061 of `CALL_USED_REGISTERS'. */
f676971a 1062
289e96b2
AH
1063#define CALL_REALLY_USED_REGISTERS \
1064 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1065 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1066 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1067 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0b390d60 1068 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
289e96b2
AH
1069 /* AltiVec registers. */ \
1070 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1071 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1072 0, 0 \
346081bd 1073 , 0, 0, 0, 0 \
289e96b2 1074}
f045b2c9 1075
28bcfd4d 1076#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
9ebbca7d 1077
d62294f5 1078#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
b427dd7a
AM
1079#define FIRST_SAVED_FP_REGNO (14+32)
1080#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
d62294f5 1081
f045b2c9
RS
1082/* List the order in which to allocate registers. Each register must be
1083 listed once, even those in FIXED_REGISTERS.
1084
1085 We allocate in the following order:
1086 fp0 (not saved or used for anything)
1087 fp13 - fp2 (not saved; incoming fp arg registers)
1088 fp1 (not saved; return value)
9390387d 1089 fp31 - fp14 (saved; order given to save least number)
36bd0c3e
SB
1090 cr7, cr5 (not saved or special)
1091 cr6 (not saved, but used for vector operations)
5accd822 1092 cr1 (not saved, but used for FP operations)
f045b2c9 1093 cr0 (not saved, but used for arithmetic operations)
5accd822 1094 cr4, cr3, cr2 (saved)
f045b2c9 1095 r9 (not saved; best for TImode)
d44b26bd 1096 r10, r8-r4 (not saved; highest first for less conflict with params)
9390387d 1097 r3 (not saved; return value register)
d44b26bd
AM
1098 r11 (not saved; later alloc to help shrink-wrap)
1099 r0 (not saved; cannot be base reg)
f045b2c9
RS
1100 r31 - r13 (saved; order given to save least number)
1101 r12 (not saved; if used for DImode or DFmode would use r13)
f045b2c9
RS
1102 ctr (not saved; when we have the choice ctr is better)
1103 lr (saved)
36bd0c3e 1104 r1, r2, ap, ca (fixed)
9390387d
AM
1105 v0 - v1 (not saved or used for anything)
1106 v13 - v3 (not saved; incoming vector arg registers)
1107 v2 (not saved; incoming vector arg reg; return value)
1108 v19 - v14 (not saved or used for anything)
1109 v31 - v20 (saved; order given to save least number)
1110 vrsave, vscr (fixed)
7d5175e1 1111 sfp (fixed)
0258b6e4
PB
1112 tfhar (fixed)
1113 tfiar (fixed)
1114 texasr (fixed)
0ac081f6 1115*/
f676971a 1116
6b13641d
DJ
1117#if FIXED_R2 == 1
1118#define MAYBE_R2_AVAILABLE
1119#define MAYBE_R2_FIXED 2,
1120#else
1121#define MAYBE_R2_AVAILABLE 2,
1122#define MAYBE_R2_FIXED
1123#endif
f045b2c9 1124
d44b26bd
AM
1125#if FIXED_R13 == 1
1126#define EARLY_R12 12,
1127#define LATE_R12
1128#else
1129#define EARLY_R12
1130#define LATE_R12 12,
1131#endif
1132
9390387d
AM
1133#define REG_ALLOC_ORDER \
1134 {32, \
f62511da
MM
1135 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1136 /* not use fr14 which is a saved register. */ \
1137 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
9390387d
AM
1138 33, \
1139 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1140 50, 49, 48, 47, 46, \
36bd0c3e 1141 75, 73, 74, 69, 68, 72, 71, 70, \
d44b26bd
AM
1142 MAYBE_R2_AVAILABLE \
1143 9, 10, 8, 7, 6, 5, 4, \
1144 3, EARLY_R12 11, 0, \
9390387d 1145 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
d44b26bd 1146 18, 17, 16, 15, 14, 13, LATE_R12 \
462f7901 1147 66, 65, \
36bd0c3e 1148 1, MAYBE_R2_FIXED 67, 76, \
9390387d
AM
1149 /* AltiVec registers. */ \
1150 77, 78, \
1151 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1152 79, \
1153 96, 95, 94, 93, 92, 91, \
1154 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1155 109, 110, \
346081bd 1156 111, 112, 113, 114 \
0ac081f6 1157}
f045b2c9
RS
1158
1159/* True if register is floating-point. */
1160#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1161
1162/* True if register is a condition register. */
1de43f85 1163#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
f045b2c9 1164
815cdc52 1165/* True if register is a condition register, but not cr0. */
1de43f85 1166#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
815cdc52 1167
f045b2c9 1168/* True if register is an integer register. */
7d5175e1
JJ
1169#define INT_REGNO_P(N) \
1170 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 1171
96038623
DE
1172/* PAIRED SIMD registers are just the FPRs. */
1173#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1174
f6b5d695
SB
1175/* True if register is the CA register. */
1176#define CA_REGNO_P(N) ((N) == CA_REGNO)
802a0058 1177
0ac081f6
AH
1178/* True if register is an AltiVec register. */
1179#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1180
cacf1ca8
MM
1181/* True if register is a VSX register. */
1182#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1183
1184/* Alternate name for any vector register supporting floating point, no matter
1185 which instruction set(s) are available. */
1186#define VFLOAT_REGNO_P(N) \
1187 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1188
1189/* Alternate name for any vector register supporting integer, no matter which
1190 instruction set(s) are available. */
1191#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1192
1193/* Alternate name for any vector register supporting logical operations, no
dd7a40e1
MM
1194 matter which instruction set(s) are available. Allow GPRs as well as the
1195 vector registers. */
f62511da 1196#define VLOGICAL_REGNO_P(N) \
dd7a40e1
MM
1197 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1198 || (TARGET_VSX && FP_REGNO_P (N))) \
cacf1ca8 1199
79eefb0d 1200/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
5ec6aff2
MM
1201 enough space to account for vectors in FP regs. However, TFmode/TDmode
1202 should not use VSX instructions to do a caller save. */
dbcc9f08 1203#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
90b725f0
PB
1204 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1205 ? (MODE) \
1206 : TARGET_VSX \
1207 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1208 && FP_REGNO_P (REGNO) \
5ec6aff2 1209 ? V2DFmode \
f7c12ec4 1210 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
5ec6aff2 1211 ? DFmode \
f7c12ec4 1212 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
5ec6aff2 1213 ? DImode \
79eefb0d
PH
1214 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1215
cacf1ca8
MM
1216#define VSX_VECTOR_MODE(MODE) \
1217 ((MODE) == V4SFmode \
1218 || (MODE) == V2DFmode) \
1219
bdb60a10
MM
1220/* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1221 really a vector, but we want to treat it as a vector for moves, and
1222 such. */
1223
1224#define ALTIVEC_VECTOR_MODE(MODE) \
1225 ((MODE) == V16QImode \
1226 || (MODE) == V8HImode \
1227 || (MODE) == V4SFmode \
1228 || (MODE) == V4SImode \
1229 || FLOAT128_VECTOR_P (MODE))
0ac081f6 1230
dbcc9f08
MM
1231#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1232 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
a16a872d 1233 || (MODE) == V2DImode || (MODE) == V1TImode)
dbcc9f08 1234
96038623
DE
1235#define PAIRED_VECTOR_MODE(MODE) \
1236 ((MODE) == V2SFmode)
1237
c8ae788f
SB
1238/* Post-reload, we can't use any new AltiVec registers, as we already
1239 emitted the vrsave mask. */
1240
1241#define HARD_REGNO_RENAME_OK(SRC, DST) \
6fb5fa3c 1242 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
c8ae788f 1243
f045b2c9
RS
1244/* Specify the cost of a branch insn; roughly the number of extra insns that
1245 should be added to avoid a branch.
1246
ef457bda 1247 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1248 unscheduled conditional branch. */
1249
3a4fd356 1250#define BRANCH_COST(speed_p, predictable_p) 3
f045b2c9 1251
85e50b6b 1252/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 1253 performance for removing short circuiting from the logical ops. */
85e50b6b 1254
b8610a53 1255#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6 1256
f045b2c9
RS
1257/* Specify the registers used for certain standard purposes.
1258 The values of these macros are register numbers. */
1259
1260/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1261/* #define PC_REGNUM */
1262
1263/* Register to use for pushing function arguments. */
1264#define STACK_POINTER_REGNUM 1
1265
1266/* Base register for access to local variables of the function. */
7d5175e1
JJ
1267#define HARD_FRAME_POINTER_REGNUM 31
1268
1269/* Base register for access to local variables of the function. */
346081bd 1270#define FRAME_POINTER_REGNUM 111
f045b2c9 1271
f045b2c9
RS
1272/* Base register for access to arguments of the function. */
1273#define ARG_POINTER_REGNUM 67
1274
1275/* Place to put static chain when calling a function that requires it. */
1276#define STATIC_CHAIN_REGNUM 11
1277
26a2e6ae
PB
1278/* Base register for access to thread local storage variables. */
1279#define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1280
f045b2c9
RS
1281\f
1282/* Define the classes of registers for register constraints in the
1283 machine description. Also define ranges of constants.
1284
1285 One of the classes must always be named ALL_REGS and include all hard regs.
1286 If there is more than one class, another class must be named NO_REGS
1287 and contain no registers.
1288
1289 The name GENERAL_REGS must be the name of a class (or an alias for
1290 another name such as ALL_REGS). This is the class of registers
1291 that is allowed by "g" or "r" in a register constraint.
1292 Also, registers outside this class are allocated only when
1293 instructions express preferences for them.
1294
1295 The classes must be numbered in nondecreasing order; that is,
1296 a larger-numbered class must never be contained completely
1297 in a smaller-numbered class.
1298
1299 For any two classes, it is very desirable that there be another
1300 class that represents their union. */
c81bebd7 1301
cacf1ca8 1302/* The RS/6000 has three types of registers, fixed-point, floating-point, and
462f7901 1303 condition registers, plus three special registers, CTR, and the link
cacf1ca8
MM
1304 register. AltiVec adds a vector register class. VSX registers overlap the
1305 FPR registers and the Altivec registers.
f045b2c9
RS
1306
1307 However, r0 is special in that it cannot be used as a base register.
1308 So make a class for registers valid as base registers.
1309
1310 Also, cr0 is the only condition code register that can be used in
0d86f538 1311 arithmetic insns, so make a separate class for it. */
f045b2c9 1312
ebedb4dd
MM
1313enum reg_class
1314{
1315 NO_REGS,
ebedb4dd
MM
1316 BASE_REGS,
1317 GENERAL_REGS,
1318 FLOAT_REGS,
0ac081f6 1319 ALTIVEC_REGS,
8beb65e3 1320 VSX_REGS,
0ac081f6 1321 VRSAVE_REGS,
5f004351 1322 VSCR_REGS,
0258b6e4 1323 SPR_REGS,
ebedb4dd 1324 NON_SPECIAL_REGS,
ebedb4dd
MM
1325 LINK_REGS,
1326 CTR_REGS,
1327 LINK_OR_CTR_REGS,
1328 SPECIAL_REGS,
1329 SPEC_OR_GEN_REGS,
1330 CR0_REGS,
ebedb4dd
MM
1331 CR_REGS,
1332 NON_FLOAT_REGS,
f6b5d695 1333 CA_REGS,
ebedb4dd
MM
1334 ALL_REGS,
1335 LIM_REG_CLASSES
1336};
f045b2c9
RS
1337
1338#define N_REG_CLASSES (int) LIM_REG_CLASSES
1339
82e41834 1340/* Give names of register classes as strings for dump file. */
f045b2c9 1341
ebedb4dd
MM
1342#define REG_CLASS_NAMES \
1343{ \
1344 "NO_REGS", \
ebedb4dd
MM
1345 "BASE_REGS", \
1346 "GENERAL_REGS", \
1347 "FLOAT_REGS", \
0ac081f6 1348 "ALTIVEC_REGS", \
8beb65e3 1349 "VSX_REGS", \
0ac081f6 1350 "VRSAVE_REGS", \
5f004351 1351 "VSCR_REGS", \
0258b6e4 1352 "SPR_REGS", \
ebedb4dd 1353 "NON_SPECIAL_REGS", \
ebedb4dd
MM
1354 "LINK_REGS", \
1355 "CTR_REGS", \
1356 "LINK_OR_CTR_REGS", \
1357 "SPECIAL_REGS", \
1358 "SPEC_OR_GEN_REGS", \
1359 "CR0_REGS", \
ebedb4dd
MM
1360 "CR_REGS", \
1361 "NON_FLOAT_REGS", \
f6b5d695 1362 "CA_REGS", \
ebedb4dd
MM
1363 "ALL_REGS" \
1364}
f045b2c9
RS
1365
1366/* Define which registers fit in which classes.
1367 This is an initializer for a vector of HARD_REG_SET
1368 of length N_REG_CLASSES. */
1369
23742a9e
RAR
1370#define REG_CLASS_CONTENTS \
1371{ \
1372 /* NO_REGS. */ \
3e2bca2e 1373 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
23742a9e 1374 /* BASE_REGS. */ \
346081bd 1375 { 0xfffffffe, 0x00000000, 0x00000008, 0x00008000 }, \
23742a9e 1376 /* GENERAL_REGS. */ \
346081bd 1377 { 0xffffffff, 0x00000000, 0x00000008, 0x00008000 }, \
23742a9e 1378 /* FLOAT_REGS. */ \
3e2bca2e 1379 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
23742a9e 1380 /* ALTIVEC_REGS. */ \
3e2bca2e 1381 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, \
23742a9e 1382 /* VSX_REGS. */ \
3e2bca2e 1383 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, \
23742a9e 1384 /* VRSAVE_REGS. */ \
3e2bca2e 1385 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
23742a9e 1386 /* VSCR_REGS. */ \
3e2bca2e 1387 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, \
23742a9e 1388 /* SPR_REGS. */ \
346081bd 1389 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, \
23742a9e 1390 /* NON_SPECIAL_REGS. */ \
346081bd 1391 { 0xffffffff, 0xffffffff, 0x00000008, 0x00008000 }, \
23742a9e 1392 /* LINK_REGS. */ \
3e2bca2e 1393 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, \
23742a9e 1394 /* CTR_REGS. */ \
3e2bca2e 1395 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, \
23742a9e 1396 /* LINK_OR_CTR_REGS. */ \
3e2bca2e 1397 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, \
23742a9e 1398 /* SPECIAL_REGS. */ \
3e2bca2e 1399 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, \
23742a9e 1400 /* SPEC_OR_GEN_REGS. */ \
346081bd 1401 { 0xffffffff, 0x00000000, 0x0000000e, 0x0000a000 }, \
23742a9e 1402 /* CR0_REGS. */ \
3e2bca2e 1403 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, \
23742a9e 1404 /* CR_REGS. */ \
3e2bca2e 1405 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, \
23742a9e 1406 /* NON_FLOAT_REGS. */ \
346081bd 1407 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00008000 }, \
23742a9e 1408 /* CA_REGS. */ \
3e2bca2e 1409 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, \
23742a9e 1410 /* ALL_REGS. */ \
346081bd 1411 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0001ffff } \
ebedb4dd 1412}
f045b2c9
RS
1413
1414/* The same information, inverted:
1415 Return the class number of the smallest class containing
1416 reg number REGNO. This could be a conditional expression
1417 or could index an array. */
1418
cacf1ca8
MM
1419extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1420
cacf1ca8 1421#define REGNO_REG_CLASS(REGNO) \
e28c2052 1422 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
cacf1ca8
MM
1423 rs6000_regno_regclass[(REGNO)])
1424
a72c65c7
MM
1425/* Register classes for various constraints that are based on the target
1426 switches. */
1427enum r6000_reg_class_enum {
1428 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1429 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1430 RS6000_CONSTRAINT_v, /* Altivec registers */
1431 RS6000_CONSTRAINT_wa, /* Any VSX register */
d5906efc 1432 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
a72c65c7 1433 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
dd551aa1 1434 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
a72c65c7 1435 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
5e8586d7 1436 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
59f5868d
MM
1437 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1438 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1439 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1440 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
c6d5ff83 1441 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
f62511da 1442 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
4e8a3a35 1443 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
c477a667
MM
1444 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1445 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
f62511da 1446 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
a72c65c7 1447 RS6000_CONSTRAINT_ws, /* VSX register for DF */
c6d5ff83 1448 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
5e8586d7
MM
1449 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1450 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1451 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
c6d5ff83 1452 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
5e8586d7 1453 RS6000_CONSTRAINT_wy, /* VSX register for SF */
c6d5ff83 1454 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
99211352 1455 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
787c7a65
MM
1456 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1457 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1458 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1459 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
a72c65c7
MM
1460 RS6000_CONSTRAINT_MAX
1461};
1462
1463extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
f045b2c9
RS
1464
1465/* The class value for index registers, and the one for base regs. */
1466#define INDEX_REG_CLASS GENERAL_REGS
1467#define BASE_REG_CLASS BASE_REGS
1468
cacf1ca8
MM
1469/* Return whether a given register class can hold VSX objects. */
1470#define VSX_REG_CLASS_P(CLASS) \
1471 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1472
59f5868d
MM
1473/* Return whether a given register class targets general purpose registers. */
1474#define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1475
f045b2c9
RS
1476/* Given an rtx X being reloaded into a reg required to be
1477 in class CLASS, return the class of reg to actually use.
1478 In general this is just CLASS; but on some machines
c81bebd7 1479 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1480
1481 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1482 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1483
1484 We also don't want to reload integer values into floating-point
1485 registers if we can at all help it. In fact, this can
37409796 1486 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1487 into a FP register and discovers it doesn't have the memory location
1488 required.
1489
1490 ??? Would it be a good idea to have reload do the converse, that is
1491 try to reload floating modes into FP registers if possible?
1492 */
f045b2c9 1493
802a0058 1494#define PREFERRED_RELOAD_CLASS(X,CLASS) \
8beb65e3 1495 rs6000_preferred_reload_class_ptr (X, CLASS)
c81bebd7 1496
f045b2c9
RS
1497/* Return the register class of a scratch register needed to copy IN into
1498 or out of a register in CLASS in MODE. If it can be done directly,
1499 NO_REGS is returned. */
1500
1501#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
8beb65e3 1502 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
f045b2c9
RS
1503
1504/* Return the maximum number of consecutive registers
1505 needed to represent mode MODE in a register of class CLASS.
1506
cacf1ca8
MM
1507 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1508 a single reg is enough for two words, unless we have VSX, where the FP
1509 registers can hold 128 bits. */
1510#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
580d3230 1511
f045b2c9
RS
1512/* Stack layout; function entry, exit and calling. */
1513
1514/* Define this if pushing a word on the stack
1515 makes the stack pointer a smaller address. */
62f9f30b 1516#define STACK_GROWS_DOWNWARD 1
f045b2c9 1517
327e5343
FJ
1518/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1519#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1520
a4d05547 1521/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1522 is at the high-address end of the local variables;
1523 that is, each additional local variable allocated
1524 goes at a more negative offset in the frame.
1525
1526 On the RS/6000, we grow upwards, from the area after the outgoing
1527 arguments. */
de5a5fa1
MP
1528#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1529 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
f045b2c9 1530
4697a36c 1531/* Size of the fixed area on the stack */
9ebbca7d 1532#define RS6000_SAVE_AREA \
b54214fe
UW
1533 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1534 << (TARGET_64BIT ? 1 : 0))
4697a36c 1535
b54214fe
UW
1536/* Stack offset for toc save slot. */
1537#define RS6000_TOC_SAVE_SLOT \
1538 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
b6c9286a 1539
4697a36c 1540/* Align an address */
4f59f9f2 1541#define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
4697a36c 1542
f045b2c9
RS
1543/* Offset within stack frame to start allocating local variables at.
1544 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1545 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1546 of the first local allocated.
f045b2c9
RS
1547
1548 On the RS/6000, the frame pointer is the same as the stack pointer,
1549 except for dynamic allocations. So we start after the fixed area and
a7790c71
DV
1550 outgoing parameter area.
1551
1552 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1553 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1554 sizes of the fixed area and the parameter area must be a multiple of
1555 STACK_BOUNDARY. */
f045b2c9 1556
2a31c321
RS
1557#define RS6000_STARTING_FRAME_OFFSET \
1558 (cfun->calls_alloca \
1559 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1560 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1561 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1562 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1563 + RS6000_SAVE_AREA))
802a0058
MM
1564
1565/* Offset from the stack pointer register to an item dynamically
1566 allocated on the stack, e.g., by `alloca'.
1567
1568 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1569 length of the outgoing arguments. The default is correct for most
a7790c71
DV
1570 machines. See `function.c' for details.
1571
1572 This value must be a multiple of STACK_BOUNDARY (hard coded in
1573 `emit-rtl.c'). */
802a0058 1574#define STACK_DYNAMIC_OFFSET(FUNDECL) \
a20c5714
RS
1575 RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \
1576 + STACK_POINTER_OFFSET, \
a7790c71 1577 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
f045b2c9
RS
1578
1579/* If we generate an insn to push BYTES bytes,
1580 this says how many the stack pointer really advances by.
1581 On RS/6000, don't define this because there are no push insns. */
1582/* #define PUSH_ROUNDING(BYTES) */
1583
1584/* Offset of first parameter from the argument pointer register value.
1585 On the RS/6000, we define the argument pointer to the start of the fixed
1586 area. */
4697a36c 1587#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1588
62153b61
JM
1589/* Offset from the argument pointer register value to the top of
1590 stack. This is different from FIRST_PARM_OFFSET because of the
1591 register save area. */
1592#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1593
f045b2c9
RS
1594/* Define this if stack space is still allocated for a parameter passed
1595 in a register. The value is the number of bytes allocated to this
1596 area. */
ddbb449f
AM
1597#define REG_PARM_STACK_SPACE(FNDECL) \
1598 rs6000_reg_parm_stack_space ((FNDECL), false)
1599
1600/* Define this macro if space guaranteed when compiling a function body
1601 is different to space required when making a call, a situation that
1602 can arise with K&R style function definitions. */
1603#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1604 rs6000_reg_parm_stack_space ((FNDECL), true)
f045b2c9
RS
1605
1606/* Define this if the above stack space is to be considered part of the
1607 space allocated by the caller. */
81464b2c 1608#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
f045b2c9
RS
1609
1610/* This is the difference between the logical top of stack and the actual sp.
1611
82e41834 1612 For the RS/6000, sp points past the fixed area. */
4697a36c 1613#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1614
1615/* Define this if the maximum size of all the outgoing args is to be
1616 accumulated and pushed during the prologue. The amount can be
38173d38 1617 found in the variable crtl->outgoing_args_size. */
f73ad30e 1618#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9 1619
f045b2c9
RS
1620/* Define how to find the value returned by a library function
1621 assuming the value has mode MODE. */
1622
ded9bf77 1623#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1624
6fa3f289
ZW
1625/* DRAFT_V4_STRUCT_RET defaults off. */
1626#define DRAFT_V4_STRUCT_RET 0
f607bc57 1627
bd5bd7ac 1628/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1629#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1630
a260abc9 1631/* Mode of stack savearea.
dfdfa60f
DE
1632 FUNCTION is VOIDmode because calling convention maintains SP.
1633 BLOCK needs Pmode for SP.
a260abc9
DE
1634 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1635#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f 1636 (LEVEL == SAVE_FUNCTION ? VOIDmode \
c6d5ff83 1637 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
a260abc9 1638
4697a36c
MM
1639/* Minimum and maximum general purpose registers used to hold arguments. */
1640#define GP_ARG_MIN_REG 3
1641#define GP_ARG_MAX_REG 10
1642#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1643
1644/* Minimum and maximum floating point registers used to hold arguments. */
1645#define FP_ARG_MIN_REG 33
7509c759
MM
1646#define FP_ARG_AIX_MAX_REG 45
1647#define FP_ARG_V4_MAX_REG 40
008e32c0
UW
1648#define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1649 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
4697a36c
MM
1650#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1651
0ac081f6
AH
1652/* Minimum and maximum AltiVec registers used to hold arguments. */
1653#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1654#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1655#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1656
b54214fe
UW
1657/* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1658#define AGGR_ARG_NUM_REG 8
1659
4697a36c
MM
1660/* Return registers */
1661#define GP_ARG_RETURN GP_ARG_MIN_REG
1662#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1663#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
b54214fe
UW
1664#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1665 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4304ccfd
MM
1666#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1667 ? (ALTIVEC_ARG_RETURN \
08213983 1668 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
b54214fe 1669 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4697a36c 1670
7509c759 1671/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1672#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1673/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1674#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1675#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1676#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1677#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1678
f57fe068
AM
1679/* We don't have prologue and epilogue functions to save/restore
1680 everything for most ABIs. */
1681#define WORLD_SAVE_P(INFO) 0
1682
f045b2c9
RS
1683/* 1 if N is a possible register number for a function value
1684 as seen by the caller.
1685
0ac081f6 1686 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1687#define FUNCTION_VALUE_REGNO_P(N) \
1688 ((N) == GP_ARG_RETURN \
202687fb 1689 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
11d8d07e 1690 && TARGET_HARD_FLOAT) \
202687fb 1691 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
b54214fe 1692 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1693
1694/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1695 On RS/6000, these are r3-r10 and fp1-fp13.
1696 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1697#define FUNCTION_ARG_REGNO_P(N) \
202687fb
MM
1698 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1699 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
44688022 1700 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
202687fb 1701 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
11d8d07e 1702 && TARGET_HARD_FLOAT))
f045b2c9
RS
1703\f
1704/* Define a data type for recording info about an argument list
1705 during the scan of that argument list. This data type should
1706 hold all necessary information about the function itself
1707 and about the args processed so far, enough to enable macros
1708 such as FUNCTION_ARG to determine where the next arg should go.
1709
1710 On the RS/6000, this is a structure. The first element is the number of
1711 total argument words, the second is used to store the next
1712 floating-point register number, and the third says how many more args we
4697a36c
MM
1713 have prototype types for.
1714
4cc833b7 1715 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1716 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1717 register, and `words' is the number of words used on the stack.
1718
bd227acc 1719 The varargs/stdarg support requires that this structure's size
4cc833b7 1720 be a multiple of sizeof(int). */
4697a36c
MM
1721
1722typedef struct rs6000_args
1723{
4cc833b7 1724 int words; /* # words used for passing GP registers */
6a4cee5f 1725 int fregno; /* next available FP register */
0ac081f6 1726 int vregno; /* next available AltiVec register */
6a4cee5f 1727 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1728 int prototype; /* Whether a prototype was defined */
a6c9bed4 1729 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1730 int call_cookie; /* Do special things for this call */
4cc833b7 1731 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1732 int intoffset; /* running offset in struct (darwin64) */
1733 int use_stack; /* any part of struct on stack (darwin64) */
a9ab25e2
IS
1734 int floats_in_gpr; /* count of SFmode floats taking up
1735 GPR space (darwin64) */
0b5383eb 1736 int named; /* false for varargs params */
617718f7 1737 int escapes; /* if function visible outside tu */
bdb60a10 1738 int libcall; /* If this is a compiler generated call. */
4697a36c 1739} CUMULATIVE_ARGS;
f045b2c9 1740
f045b2c9
RS
1741/* Initialize a variable CUM of type CUMULATIVE_ARGS
1742 for a call to a function whose data type is FNTYPE.
1743 For a library call, FNTYPE is 0. */
1744
617718f7
AM
1745#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1746 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1747 N_NAMED_ARGS, FNDECL, VOIDmode)
f045b2c9
RS
1748
1749/* Similar, but when scanning the definition of a procedure. We always
1750 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1751
0f6937fe 1752#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617718f7
AM
1753 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1754 1000, current_function_decl, VOIDmode)
b9599e46
FS
1755
1756/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1757
1758#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
617718f7
AM
1759 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1760 0, NULL_TREE, MODE)
f045b2c9 1761
6e985040 1762#define PAD_VARARGS_DOWN \
76b0cbf8 1763 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
2a55fd42 1764
f045b2c9 1765/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1766 for profiling a function entry. */
f045b2c9
RS
1767
1768#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1769 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1770
1771/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1772 the stack pointer does not matter. No definition is equivalent to
1773 always zero.
1774
a0ab749a 1775 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1776 its backpointer, which we maintain. */
1777#define EXIT_IGNORE_STACK 1
1778
a701949a
FS
1779/* Define this macro as a C expression that is nonzero for registers
1780 that are used by the epilogue or the return' pattern. The stack
1781 and frame pointer registers are already be assumed to be used as
1782 needed. */
1783
83720594 1784#define EPILOGUE_USES(REGNO) \
1de43f85 1785 ((reload_completed && (REGNO) == LR_REGNO) \
b1765bde 1786 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
cacf1ca8 1787 || (crtl->calls_eh_return \
3553b09d 1788 && TARGET_AIX \
ff3867ae 1789 && (REGNO) == 2))
2bfcf297 1790
f045b2c9 1791\f
f045b2c9
RS
1792/* Length in units of the trampoline for entering a nested function. */
1793
b6c9286a 1794#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9 1795\f
f33985c6 1796/* Definitions for __builtin_return_address and __builtin_frame_address.
893fc0a0 1797 __builtin_return_address (0) should give link register (LR_REGNO), enable
82e41834 1798 this. */
f33985c6
MS
1799/* This should be uncommented, so that the link register is used, but
1800 currently this would result in unmatched insns and spilling fixed
1801 registers so we'll leave it for another day. When these problems are
1802 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1803 (mrs) */
1804/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1805
b6c9286a
MM
1806/* Number of bytes into the frame return addresses can be found. See
1807 rs6000_stack_info in rs6000.c for more information on how the different
1808 abi's store the return address. */
008e32c0
UW
1809#define RETURN_ADDRESS_OFFSET \
1810 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
f09d4c33 1811
f33985c6
MS
1812/* The current return address is in link register (65). The return address
1813 of anything farther back is accessed normally at an offset of 8 from the
1814 frame pointer. */
71f123ca
FS
1815#define RETURN_ADDR_RTX(COUNT, FRAME) \
1816 (rs6000_return_addr (COUNT, FRAME))
1817
f33985c6 1818\f
f045b2c9
RS
1819/* Definitions for register eliminations.
1820
1821 We have two registers that can be eliminated on the RS/6000. First, the
1822 frame pointer register can often be eliminated in favor of the stack
1823 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1824 eliminated; it is replaced with either the stack or frame pointer.
1825
1826 In addition, we use the elimination mechanism to see if r30 is needed
1827 Initially we assume that it isn't. If it is, we spill it. This is done
1828 by making it an eliminable register. We replace it with itself so that
1829 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1830
1831/* This is an array of structures. Each structure initializes one pair
1832 of eliminable registers. The "from" register number is given first,
1833 followed by "to". Eliminations of the same "from" register are listed
1834 in order of preference. */
7d5175e1
JJ
1835#define ELIMINABLE_REGS \
1836{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1837 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1838 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1839 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1840 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 1841 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9 1842
f045b2c9
RS
1843/* Define the offset between two registers, one to be eliminated, and the other
1844 its replacement, at the start of a routine. */
d1d0c603
JJ
1845#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1846 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1847\f
1848/* Addressing modes, and classification of registers for them. */
1849
940da324
JL
1850#define HAVE_PRE_DECREMENT 1
1851#define HAVE_PRE_INCREMENT 1
6fb5fa3c
DB
1852#define HAVE_PRE_MODIFY_DISP 1
1853#define HAVE_PRE_MODIFY_REG 1
f045b2c9
RS
1854
1855/* Macros to check register numbers against specific register classes. */
1856
1857/* These assume that REGNO is a hard or pseudo reg number.
1858 They give nonzero only if REGNO is a hard reg of the suitable class
1859 or a pseudo reg currently allocated to a suitable hard reg.
1860 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1861 has been allocated, which happens in reginfo.c during register
1862 allocation. */
f045b2c9
RS
1863
1864#define REGNO_OK_FOR_INDEX_P(REGNO) \
1865((REGNO) < FIRST_PSEUDO_REGISTER \
1866 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 1867 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1868 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
1869 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1870 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
1871
1872#define REGNO_OK_FOR_BASE_P(REGNO) \
1873((REGNO) < FIRST_PSEUDO_REGISTER \
1874 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 1875 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1876 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
1877 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1878 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
c6c3dba9
PB
1879
1880/* Nonzero if X is a hard reg that can be used as an index
1881 or if it is a pseudo reg in the non-strict case. */
1882#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1883 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1884 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1885
1886/* Nonzero if X is a hard reg that can be used as a base reg
1887 or if it is a pseudo reg in the non-strict case. */
1888#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1889 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1890 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1891
f045b2c9
RS
1892\f
1893/* Maximum number of registers that can appear in a valid memory address. */
1894
1895#define MAX_REGS_PER_ADDRESS 2
1896
1897/* Recognize any constant value that is a valid address. */
1898
6eff269e
BK
1899#define CONSTANT_ADDRESS_P(X) \
1900 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1901 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1902 || GET_CODE (X) == HIGH)
f045b2c9 1903
48d72335 1904#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3 1905#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
76492753
PB
1906 && EASY_VECTOR_15((n) >> 1) \
1907 && ((n) & 1) == 0)
48d72335 1908
29e6733c 1909#define EASY_VECTOR_MSB(n,mode) \
683be46f 1910 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
29e6733c
MM
1911 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1912
f045b2c9 1913\f
a260abc9
DE
1914/* Try a machine-dependent way of reloading an illegitimate address
1915 operand. If we find one, push the reload and jump to WIN. This
1916 macro is used in only one place: `find_reloads_address' in reload.c.
1917
f676971a 1918 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 1919 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 1920
a9098fd0
GK
1921#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1922do { \
24ea750e 1923 int win; \
8beb65e3 1924 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
24ea750e
DJ
1925 (int)(TYPE), (IND_LEVELS), &win); \
1926 if ( win ) \
1927 goto WIN; \
a260abc9
DE
1928} while (0)
1929
944258eb 1930#define FIND_BASE_TERM rs6000_find_base_term
766a866c
MM
1931\f
1932/* The register number of the register used to address a table of
1933 static data addresses in memory. In some cases this register is
1934 defined by a processor's "application binary interface" (ABI).
1935 When this macro is defined, RTL is generated for this register
1936 once, as with the stack pointer and frame pointer registers. If
1937 this macro is not defined, it is up to the machine-dependent files
1938 to allocate such a register (if necessary). */
1939
1db02437 1940#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
24f77f59
AM
1941#define PIC_OFFSET_TABLE_REGNUM \
1942 (TARGET_TOC ? TOC_REGISTER \
1943 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1944 : INVALID_REGNUM)
766a866c 1945
97b23853 1946#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 1947
766a866c
MM
1948/* Define this macro if the register defined by
1949 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 1950 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
1951
1952/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1953
766a866c
MM
1954/* A C expression that is nonzero if X is a legitimate immediate
1955 operand on the target machine when generating position independent
1956 code. You can assume that X satisfies `CONSTANT_P', so you need
1957 not check this. You can also assume FLAG_PIC is true, so you need
1958 not check it either. You need not define this macro if all
1959 constants (including `SYMBOL_REF') can be immediate operands when
1960 generating position independent code. */
1961
1962/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9 1963\f
f045b2c9
RS
1964/* Specify the machine mode that this machine uses
1965 for the index in the tablejump instruction. */
e1565e65 1966#define CASE_VECTOR_MODE SImode
f045b2c9 1967
18543a22
ILT
1968/* Define as C expression which evaluates to nonzero if the tablejump
1969 instruction expects the table to contain offsets from the address of the
1970 table.
82e41834 1971 Do not define this if the table should contain absolute addresses. */
18543a22 1972#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 1973
f045b2c9
RS
1974/* Define this as 1 if `char' should by default be signed; else as 0. */
1975#define DEFAULT_SIGNED_CHAR 0
1976
c1618c0c
DE
1977/* An integer expression for the size in bits of the largest integer machine
1978 mode that should actually be used. */
1979
1980/* Allow pairs of registers to be used, which is the intent of the default. */
1981#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1982
f045b2c9
RS
1983/* Max number of bytes we can move from memory to memory
1984 in one reasonably fast instruction. */
2f3e5814 1985#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 1986#define MAX_MOVE_MAX 8
f045b2c9
RS
1987
1988/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 1989 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
1990 is undesirable. */
1991#define SLOW_BYTE_ACCESS 1
1992
9a63901f
RK
1993/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1994 will either zero-extend or sign-extend. The value of this macro should
1995 be the code that says which one of the two operations is implicitly
f822d252 1996 done, UNKNOWN if none. */
9a63901f 1997#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
1998
1999/* Define if loading short immediate values into registers sign extends. */
58f2ae18 2000#define SHORT_IMMEDIATES_SIGN_EXTEND 1
fdaff8ba 2001\f
94993909 2002/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122 2003#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
bb0f9c02 2004 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
d865b122 2005
0299bc72 2006/* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
bb0f9c02
SB
2007 zero. The hardware instructions added in Power9 and the sequences using
2008 popcount return 32 or 64. */
0299bc72 2009#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
bb0f9c02
SB
2010 (TARGET_CTZ || TARGET_POPCNTD \
2011 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
2012 : ((VALUE) = -1, 2))
94993909 2013
f045b2c9
RS
2014/* Specify the machine mode that pointers have.
2015 After generation of rtl, the compiler makes no further distinction
2016 between pointers and any other objects of this machine mode. */
501623d4
RS
2017extern scalar_int_mode rs6000_pmode;
2018#define Pmode rs6000_pmode
f045b2c9 2019
a3c9585f 2020/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
2021#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2022
f045b2c9 2023/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2024 Doesn't matter on RS/6000. */
5b71a4e7 2025#define FUNCTION_MODE SImode
f045b2c9
RS
2026
2027/* Define this if addresses of constant functions
2028 shouldn't be put through pseudo regs where they can be cse'd.
2029 Desirable on machines where ordinary constants are expensive
2030 but a CALL with constant address is cheap. */
1e8552c2 2031#define NO_FUNCTION_CSE 1
f045b2c9 2032
d969caf8 2033/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2034 few bits.
2035
2036 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2037 have been dropped from the PowerPC architecture. */
c28a7c24 2038#define SHIFT_COUNT_TRUNCATED 0
f045b2c9 2039
f045b2c9
RS
2040/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2041 should be adjusted to reflect any required changes. This macro is used when
2042 there is some systematic length adjustment required that would be difficult
2043 to express in the length attribute. */
2044
2045/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2046
39a10a29
GK
2047/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2048 COMPARE, return the mode to be used for the comparison. For
2049 floating-point, CCFPmode should be used. CCUNSmode should be used
2050 for unsigned comparisons. CCEQmode should be used when we are
2051 doing an inequality comparison on the result of a
2052 comparison. CCmode should be used in all other cases. */
c5defebb 2053
b565a316 2054#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 2055 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 2056 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 2057 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 2058 ? CCEQmode : CCmode))
f045b2c9 2059
b39358e1
GK
2060/* Can the condition code MODE be safely reversed? This is safe in
2061 all cases on this port, because at present it doesn't use the
2062 trapping FP comparisons (fcmpo). */
2063#define REVERSIBLE_CC_MODE(MODE) 1
2064
2065/* Given a condition code and a mode, return the inverse condition. */
2066#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2067
d9664254
SB
2068\f
2069/* Target cpu costs. */
2070
2071struct processor_costs {
2072 const int mulsi; /* cost of SImode multiplication. */
2073 const int mulsi_const; /* cost of SImode multiplication by constant. */
2074 const int mulsi_const9; /* cost of SImode mult by short constant. */
2075 const int muldi; /* cost of DImode multiplication. */
2076 const int divsi; /* cost of SImode division. */
2077 const int divdi; /* cost of DImode division. */
2078 const int fp; /* cost of simple SFmode and DFmode insns. */
2079 const int dmul; /* cost of DFmode multiplication (and fmadd). */
2080 const int sdiv; /* cost of SFmode division (fdivs). */
2081 const int ddiv; /* cost of DFmode division (fdiv). */
2082 const int cache_line_size; /* cache line size in bytes. */
2083 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
2084 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
2085 const int simultaneous_prefetches; /* number of parallel prefetch
2086 operations. */
2087 const int sfdf_convert; /* cost of SF->DF conversion. */
2088};
2089
2090extern const struct processor_costs *rs6000_cost;
f045b2c9
RS
2091\f
2092/* Control the assembler format that we output. */
2093
1b279f39
DE
2094/* A C string constant describing how to begin a comment in the target
2095 assembler language. The compiler assumes that the comment will end at
2096 the end of the line. */
2097#define ASM_COMMENT_START " #"
6b67933e 2098
38c1f2d7
MM
2099/* Flag to say the TOC is initialized */
2100extern int toc_initialized;
2101
f045b2c9
RS
2102/* Macro to output a special constant pool entry. Go to WIN if we output
2103 it. Otherwise, it is written the usual way.
2104
2105 On the RS/6000, toc entries are handled this way. */
2106
a9098fd0
GK
2107#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2108{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2109 { \
2110 output_toc (FILE, X, LABELNO, MODE); \
2111 goto WIN; \
2112 } \
f045b2c9
RS
2113}
2114
ebd97b96
DE
2115#ifdef HAVE_GAS_WEAK
2116#define RS6000_WEAK 1
2117#else
2118#define RS6000_WEAK 0
2119#endif
290ad355 2120
79c4e63f
AM
2121#if RS6000_WEAK
2122/* Used in lieu of ASM_WEAKEN_LABEL. */
8d91472f
DE
2123#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2124 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
79c4e63f
AM
2125#endif
2126
ff2d10c1
AO
2127#if HAVE_GAS_WEAKREF
2128#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2129 do \
2130 { \
2131 fputs ("\t.weakref\t", (FILE)); \
2132 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2133 fputs (", ", (FILE)); \
2134 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2135 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2136 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2137 { \
2138 fputs ("\n\t.weakref\t.", (FILE)); \
2139 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2140 fputs (", .", (FILE)); \
2141 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2142 } \
2143 fputc ('\n', (FILE)); \
2144 } while (0)
2145#endif
2146
79c4e63f
AM
2147/* This implements the `alias' attribute. */
2148#undef ASM_OUTPUT_DEF_FROM_DECLS
2149#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2150 do \
2151 { \
2152 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2153 const char *name = IDENTIFIER_POINTER (TARGET); \
2154 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2155 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2156 { \
2157 if (TREE_PUBLIC (DECL)) \
2158 { \
2159 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2160 { \
2161 fputs ("\t.globl\t.", FILE); \
cbaaba19 2162 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2163 putc ('\n', FILE); \
2164 } \
2165 } \
2166 else if (TARGET_XCOFF) \
2167 { \
c167bc5b
DE
2168 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2169 { \
2170 fputs ("\t.lglobl\t.", FILE); \
2171 RS6000_OUTPUT_BASENAME (FILE, alias); \
2172 putc ('\n', FILE); \
2173 fputs ("\t.lglobl\t", FILE); \
2174 RS6000_OUTPUT_BASENAME (FILE, alias); \
2175 putc ('\n', FILE); \
2176 } \
79c4e63f
AM
2177 } \
2178 fputs ("\t.set\t.", FILE); \
cbaaba19 2179 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2180 fputs (",.", FILE); \
cbaaba19 2181 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2182 fputc ('\n', FILE); \
2183 } \
2184 ASM_OUTPUT_DEF (FILE, alias, name); \
2185 } \
2186 while (0)
290ad355 2187
1bc7c5b6
ZW
2188#define TARGET_ASM_FILE_START rs6000_file_start
2189
f045b2c9
RS
2190/* Output to assembler file text saying following lines
2191 may contain character constants, extra white space, comments, etc. */
2192
2193#define ASM_APP_ON ""
2194
2195/* Output to assembler file text saying following lines
2196 no longer contain unusual constructs. */
2197
2198#define ASM_APP_OFF ""
2199
f045b2c9
RS
2200/* How to refer to registers in assembler output.
2201 This sequence is indexed by compiler's hard-register-number (see above). */
2202
82e41834 2203extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2204
2205#define REGISTER_NAMES \
2206{ \
2207 &rs6000_reg_names[ 0][0], /* r0 */ \
2208 &rs6000_reg_names[ 1][0], /* r1 */ \
2209 &rs6000_reg_names[ 2][0], /* r2 */ \
2210 &rs6000_reg_names[ 3][0], /* r3 */ \
2211 &rs6000_reg_names[ 4][0], /* r4 */ \
2212 &rs6000_reg_names[ 5][0], /* r5 */ \
2213 &rs6000_reg_names[ 6][0], /* r6 */ \
2214 &rs6000_reg_names[ 7][0], /* r7 */ \
2215 &rs6000_reg_names[ 8][0], /* r8 */ \
2216 &rs6000_reg_names[ 9][0], /* r9 */ \
2217 &rs6000_reg_names[10][0], /* r10 */ \
2218 &rs6000_reg_names[11][0], /* r11 */ \
2219 &rs6000_reg_names[12][0], /* r12 */ \
2220 &rs6000_reg_names[13][0], /* r13 */ \
2221 &rs6000_reg_names[14][0], /* r14 */ \
2222 &rs6000_reg_names[15][0], /* r15 */ \
2223 &rs6000_reg_names[16][0], /* r16 */ \
2224 &rs6000_reg_names[17][0], /* r17 */ \
2225 &rs6000_reg_names[18][0], /* r18 */ \
2226 &rs6000_reg_names[19][0], /* r19 */ \
2227 &rs6000_reg_names[20][0], /* r20 */ \
2228 &rs6000_reg_names[21][0], /* r21 */ \
2229 &rs6000_reg_names[22][0], /* r22 */ \
2230 &rs6000_reg_names[23][0], /* r23 */ \
2231 &rs6000_reg_names[24][0], /* r24 */ \
2232 &rs6000_reg_names[25][0], /* r25 */ \
2233 &rs6000_reg_names[26][0], /* r26 */ \
2234 &rs6000_reg_names[27][0], /* r27 */ \
2235 &rs6000_reg_names[28][0], /* r28 */ \
2236 &rs6000_reg_names[29][0], /* r29 */ \
2237 &rs6000_reg_names[30][0], /* r30 */ \
2238 &rs6000_reg_names[31][0], /* r31 */ \
2239 \
2240 &rs6000_reg_names[32][0], /* fr0 */ \
2241 &rs6000_reg_names[33][0], /* fr1 */ \
2242 &rs6000_reg_names[34][0], /* fr2 */ \
2243 &rs6000_reg_names[35][0], /* fr3 */ \
2244 &rs6000_reg_names[36][0], /* fr4 */ \
2245 &rs6000_reg_names[37][0], /* fr5 */ \
2246 &rs6000_reg_names[38][0], /* fr6 */ \
2247 &rs6000_reg_names[39][0], /* fr7 */ \
2248 &rs6000_reg_names[40][0], /* fr8 */ \
2249 &rs6000_reg_names[41][0], /* fr9 */ \
2250 &rs6000_reg_names[42][0], /* fr10 */ \
2251 &rs6000_reg_names[43][0], /* fr11 */ \
2252 &rs6000_reg_names[44][0], /* fr12 */ \
2253 &rs6000_reg_names[45][0], /* fr13 */ \
2254 &rs6000_reg_names[46][0], /* fr14 */ \
2255 &rs6000_reg_names[47][0], /* fr15 */ \
2256 &rs6000_reg_names[48][0], /* fr16 */ \
2257 &rs6000_reg_names[49][0], /* fr17 */ \
2258 &rs6000_reg_names[50][0], /* fr18 */ \
2259 &rs6000_reg_names[51][0], /* fr19 */ \
2260 &rs6000_reg_names[52][0], /* fr20 */ \
2261 &rs6000_reg_names[53][0], /* fr21 */ \
2262 &rs6000_reg_names[54][0], /* fr22 */ \
2263 &rs6000_reg_names[55][0], /* fr23 */ \
2264 &rs6000_reg_names[56][0], /* fr24 */ \
2265 &rs6000_reg_names[57][0], /* fr25 */ \
2266 &rs6000_reg_names[58][0], /* fr26 */ \
2267 &rs6000_reg_names[59][0], /* fr27 */ \
2268 &rs6000_reg_names[60][0], /* fr28 */ \
2269 &rs6000_reg_names[61][0], /* fr29 */ \
2270 &rs6000_reg_names[62][0], /* fr30 */ \
2271 &rs6000_reg_names[63][0], /* fr31 */ \
2272 \
462f7901 2273 &rs6000_reg_names[64][0], /* was mq */ \
c81bebd7
MM
2274 &rs6000_reg_names[65][0], /* lr */ \
2275 &rs6000_reg_names[66][0], /* ctr */ \
2276 &rs6000_reg_names[67][0], /* ap */ \
2277 \
2278 &rs6000_reg_names[68][0], /* cr0 */ \
2279 &rs6000_reg_names[69][0], /* cr1 */ \
2280 &rs6000_reg_names[70][0], /* cr2 */ \
2281 &rs6000_reg_names[71][0], /* cr3 */ \
2282 &rs6000_reg_names[72][0], /* cr4 */ \
2283 &rs6000_reg_names[73][0], /* cr5 */ \
2284 &rs6000_reg_names[74][0], /* cr6 */ \
2285 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2286 \
f6b5d695 2287 &rs6000_reg_names[76][0], /* ca */ \
0ac081f6
AH
2288 \
2289 &rs6000_reg_names[77][0], /* v0 */ \
2290 &rs6000_reg_names[78][0], /* v1 */ \
2291 &rs6000_reg_names[79][0], /* v2 */ \
2292 &rs6000_reg_names[80][0], /* v3 */ \
2293 &rs6000_reg_names[81][0], /* v4 */ \
2294 &rs6000_reg_names[82][0], /* v5 */ \
2295 &rs6000_reg_names[83][0], /* v6 */ \
2296 &rs6000_reg_names[84][0], /* v7 */ \
2297 &rs6000_reg_names[85][0], /* v8 */ \
2298 &rs6000_reg_names[86][0], /* v9 */ \
2299 &rs6000_reg_names[87][0], /* v10 */ \
2300 &rs6000_reg_names[88][0], /* v11 */ \
2301 &rs6000_reg_names[89][0], /* v12 */ \
2302 &rs6000_reg_names[90][0], /* v13 */ \
2303 &rs6000_reg_names[91][0], /* v14 */ \
2304 &rs6000_reg_names[92][0], /* v15 */ \
2305 &rs6000_reg_names[93][0], /* v16 */ \
2306 &rs6000_reg_names[94][0], /* v17 */ \
2307 &rs6000_reg_names[95][0], /* v18 */ \
2308 &rs6000_reg_names[96][0], /* v19 */ \
2309 &rs6000_reg_names[97][0], /* v20 */ \
2310 &rs6000_reg_names[98][0], /* v21 */ \
2311 &rs6000_reg_names[99][0], /* v22 */ \
2312 &rs6000_reg_names[100][0], /* v23 */ \
2313 &rs6000_reg_names[101][0], /* v24 */ \
2314 &rs6000_reg_names[102][0], /* v25 */ \
2315 &rs6000_reg_names[103][0], /* v26 */ \
2316 &rs6000_reg_names[104][0], /* v27 */ \
2317 &rs6000_reg_names[105][0], /* v28 */ \
2318 &rs6000_reg_names[106][0], /* v29 */ \
2319 &rs6000_reg_names[107][0], /* v30 */ \
2320 &rs6000_reg_names[108][0], /* v31 */ \
2321 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2322 &rs6000_reg_names[110][0], /* vscr */ \
346081bd
SB
2323 &rs6000_reg_names[111][0], /* sfp */ \
2324 &rs6000_reg_names[112][0], /* tfhar */ \
2325 &rs6000_reg_names[113][0], /* tfiar */ \
2326 &rs6000_reg_names[114][0], /* texasr */ \
c81bebd7
MM
2327}
2328
f045b2c9
RS
2329/* Table of additional register names to use in user input. */
2330
2331#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2332 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2333 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2334 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2335 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2336 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2337 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2338 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2339 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2340 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2341 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2342 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2343 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2344 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2345 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2346 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2347 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2348 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2349 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2350 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2351 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2352 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2353 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2354 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2355 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2356 {"vrsave", 109}, {"vscr", 110}, \
462f7901 2357 /* no additional names for: lr, ctr, ap */ \
c4d38ccb
MM
2358 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2359 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
cacf1ca8 2360 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
f6b5d695
SB
2361 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2362 {"xer", 76}, \
cacf1ca8
MM
2363 /* VSX registers overlaid on top of FR, Altivec registers */ \
2364 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2365 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2366 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2367 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2368 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2369 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2370 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2371 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2372 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2373 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2374 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2375 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2376 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2377 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2378 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
0258b6e4
PB
2379 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2380 /* Transactional Memory Facility (HTM) Registers. */ \
346081bd 2381 {"tfhar", 112}, {"tfiar", 113}, {"texasr", 114}, \
23742a9e 2382}
f045b2c9 2383
f045b2c9
RS
2384/* This is how to output an element of a case-vector that is relative. */
2385
e1565e65 2386#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2387 do { char buf[100]; \
e1565e65 2388 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2389 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2390 assemble_name (FILE, buf); \
19d2d16f 2391 putc ('-', FILE); \
3daf36a4
ILT
2392 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2393 assemble_name (FILE, buf); \
19d2d16f 2394 putc ('\n', FILE); \
3daf36a4 2395 } while (0)
f045b2c9
RS
2396
2397/* This is how to output an assembler line
2398 that says to advance the location counter
2399 to a multiple of 2**LOG bytes. */
2400
2401#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2402 if ((LOG) != 0) \
2403 fprintf (FILE, "\t.align %d\n", (LOG))
2404
58082ff6
PH
2405/* How to align the given loop. */
2406#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2407
d28073d4
BS
2408/* Alignment guaranteed by __builtin_malloc. */
2409/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2410 However, specifying the stronger guarantee currently leads to
2411 a regression in SPEC CPU2006 437.leslie3d. The stronger
2412 guarantee should be implemented here once that's fixed. */
2413#define MALLOC_ABI_ALIGNMENT (64)
2414
9ebbca7d
GK
2415/* Pick up the return address upon entry to a procedure. Used for
2416 dwarf2 unwind information. This also enables the table driven
2417 mechanism. */
2418
1de43f85
DE
2419#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2420#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
9ebbca7d 2421
83720594
RH
2422/* Describe how we implement __builtin_eh_return. */
2423#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2424#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2425
f045b2c9
RS
2426/* Print operand X (an rtx) in assembler syntax to file FILE.
2427 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2428 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2429
2430#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2431
2432/* Define which CODE values are valid. */
2433
3cf437d4 2434#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
f045b2c9
RS
2435
2436/* Print a memory address as an operand to reference that memory location. */
2437
2438#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2439
c82846bc
DE
2440/* For switching between functions with different target attributes. */
2441#define SWITCHABLE_TARGET 1
2442
b6c9286a
MM
2443/* uncomment for disabling the corresponding default options */
2444/* #define MACHINE_no_sched_interblock */
2445/* #define MACHINE_no_sched_speculative */
2446/* #define MACHINE_no_sched_speculative_load */
2447
766a866c 2448/* General flags. */
a7df97e6 2449extern int frame_pointer_needed;
0ac081f6 2450
7fa14a01
MM
2451/* Classification of the builtin functions as to which switches enable the
2452 builtin, and what attributes it should have. We used to use the target
2453 flags macros, but we've run out of bits, so we now map the options into new
2454 settings used here. */
2455
2456/* Builtin attributes. */
2457#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2458#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2459#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2460#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2461#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2462#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
7fa14a01
MM
2463#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2464#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2465
2466#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
902cb7b1
KN
2467#define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2468 modifies global state. */
4f45da44
KN
2469#define RS6000_BTC_PURE 0x00000200 /* reads global
2470 state/mem and does
2471 not modify global state. */
7fa14a01
MM
2472#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2473#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2474
2475/* Miscellaneous information. */
0258b6e4
PB
2476#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2477#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
01f61a78
PB
2478#define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2479#define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
0258b6e4 2480#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
1c9df37c
MM
2481
2482/* Convenience macros to document the instruction type. */
7fa14a01
MM
2483#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2484#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2485
2486/* Builtin targets. For now, we reuse the masks for those options that are in
e075a6cc 2487 target flags, and pick two random bits for paired and ldbl128, which
8241efd1 2488 aren't in target_flags. */
4b705221 2489#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
7fa14a01 2490#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
4fd18c78 2491#define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
7fa14a01 2492#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
f62511da 2493#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
8fa97501 2494#define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
5a3a6a5e 2495#define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
f62511da 2496#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
0258b6e4 2497#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
7fa14a01
MM
2498#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2499#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2500#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2501#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2502#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2503#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
7fa14a01 2504#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
06b39289 2505#define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
f93bc5b3 2506#define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
8241efd1 2507#define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
4f45da44 2508#define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
eb581af4 2509#define RS6000_BTM_POWERPC64 MASK_POWERPC64 /* 64-bit registers. */
bbd35101 2510#define RS6000_BTM_FLOAT128 MASK_FLOAT128_KEYWORD /* IEEE 128-bit float. */
12fca96e 2511#define RS6000_BTM_FLOAT128_HW MASK_FLOAT128_HW /* IEEE 128-bit float h/w. */
7fa14a01
MM
2512
2513#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2514 | RS6000_BTM_VSX \
f62511da 2515 | RS6000_BTM_P8_VECTOR \
8fa97501 2516 | RS6000_BTM_P9_VECTOR \
5a3a6a5e 2517 | RS6000_BTM_P9_MISC \
402e60c5 2518 | RS6000_BTM_MODULO \
f62511da 2519 | RS6000_BTM_CRYPTO \
7fa14a01
MM
2520 | RS6000_BTM_FRE \
2521 | RS6000_BTM_FRES \
2522 | RS6000_BTM_FRSQRTE \
2523 | RS6000_BTM_FRSQRTES \
0258b6e4 2524 | RS6000_BTM_HTM \
7fa14a01 2525 | RS6000_BTM_POPCNTD \
06b39289 2526 | RS6000_BTM_CELL \
f93bc5b3 2527 | RS6000_BTM_DFP \
8241efd1 2528 | RS6000_BTM_HARD_FLOAT \
53605f35 2529 | RS6000_BTM_LDBL128 \
eb581af4 2530 | RS6000_BTM_POWERPC64 \
12fca96e
MM
2531 | RS6000_BTM_FLOAT128 \
2532 | RS6000_BTM_FLOAT128_HW)
7fa14a01
MM
2533
2534/* Define builtin enum index. */
2535
4f45da44 2536#undef RS6000_BUILTIN_0
7fa14a01
MM
2537#undef RS6000_BUILTIN_1
2538#undef RS6000_BUILTIN_2
2539#undef RS6000_BUILTIN_3
2540#undef RS6000_BUILTIN_A
2541#undef RS6000_BUILTIN_D
0258b6e4 2542#undef RS6000_BUILTIN_H
7fa14a01
MM
2543#undef RS6000_BUILTIN_P
2544#undef RS6000_BUILTIN_Q
7fa14a01
MM
2545#undef RS6000_BUILTIN_X
2546
4f45da44 2547#define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2548#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2549#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2550#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2551#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2552#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
0258b6e4 2553#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2554#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2555#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01 2556#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
1c9df37c 2557
0ac081f6
AH
2558enum rs6000_builtins
2559{
1c9df37c 2560#include "rs6000-builtin.def"
a72c65c7 2561
58646b77
PB
2562 RS6000_BUILTIN_COUNT
2563};
2564
4f45da44 2565#undef RS6000_BUILTIN_0
7fa14a01
MM
2566#undef RS6000_BUILTIN_1
2567#undef RS6000_BUILTIN_2
2568#undef RS6000_BUILTIN_3
2569#undef RS6000_BUILTIN_A
2570#undef RS6000_BUILTIN_D
0258b6e4 2571#undef RS6000_BUILTIN_H
7fa14a01
MM
2572#undef RS6000_BUILTIN_P
2573#undef RS6000_BUILTIN_Q
7fa14a01 2574#undef RS6000_BUILTIN_X
1c9df37c 2575
58646b77
PB
2576enum rs6000_builtin_type_index
2577{
2578 RS6000_BTI_NOT_OPAQUE,
2579 RS6000_BTI_opaque_V2SI,
2580 RS6000_BTI_opaque_V2SF,
2581 RS6000_BTI_opaque_p_V2SI,
2582 RS6000_BTI_opaque_V4SI,
d4f18ec6 2583 RS6000_BTI_V16QI, /* __vector signed char */
a16a872d 2584 RS6000_BTI_V1TI,
58646b77
PB
2585 RS6000_BTI_V2SI,
2586 RS6000_BTI_V2SF,
a72c65c7
MM
2587 RS6000_BTI_V2DI,
2588 RS6000_BTI_V2DF,
58646b77
PB
2589 RS6000_BTI_V4HI,
2590 RS6000_BTI_V4SI,
2591 RS6000_BTI_V4SF,
2592 RS6000_BTI_V8HI,
d4f18ec6 2593 RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */
a16a872d 2594 RS6000_BTI_unsigned_V1TI,
58646b77
PB
2595 RS6000_BTI_unsigned_V8HI,
2596 RS6000_BTI_unsigned_V4SI,
a72c65c7 2597 RS6000_BTI_unsigned_V2DI,
58646b77
PB
2598 RS6000_BTI_bool_char, /* __bool char */
2599 RS6000_BTI_bool_short, /* __bool short */
2600 RS6000_BTI_bool_int, /* __bool int */
d4f18ec6
KN
2601 RS6000_BTI_bool_long_long, /* __bool long long */
2602 RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4
2603 channels of 1, 5, 5, and 5 bits
2604 respectively as packed with the
2605 vpkpx insn. __pixel is only
2606 meaningful as a vector type.
2607 There is no corresponding scalar
2608 __pixel data type.) */
58646b77
PB
2609 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2610 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2611 RS6000_BTI_bool_V4SI, /* __vector __bool int */
a72c65c7 2612 RS6000_BTI_bool_V2DI, /* __vector __bool long */
58646b77
PB
2613 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2614 RS6000_BTI_long, /* long_integer_type_node */
2615 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
c9485473
MM
2616 RS6000_BTI_long_long, /* long_long_integer_type_node */
2617 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
d4f18ec6 2618 RS6000_BTI_INTQI, /* (signed) intQI_type_node */
58646b77
PB
2619 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2620 RS6000_BTI_INTHI, /* intHI_type_node */
2621 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
d4f18ec6 2622 RS6000_BTI_INTSI, /* intSI_type_node (signed) */
58646b77 2623 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
a72c65c7
MM
2624 RS6000_BTI_INTDI, /* intDI_type_node */
2625 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
a16a872d
MM
2626 RS6000_BTI_INTTI, /* intTI_type_node */
2627 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
58646b77 2628 RS6000_BTI_float, /* float_type_node */
a72c65c7 2629 RS6000_BTI_double, /* double_type_node */
06b39289
MM
2630 RS6000_BTI_long_double, /* long_double_type_node */
2631 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2632 RS6000_BTI_dfloat128, /* dfloat128_type_node */
58646b77 2633 RS6000_BTI_void, /* void_type_node */
6712d6fd
MM
2634 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2635 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
53605f35 2636 RS6000_BTI_const_str, /* pointer to const char * */
58646b77 2637 RS6000_BTI_MAX
0ac081f6 2638};
58646b77
PB
2639
2640
2641#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2642#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2643#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2644#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2645#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
a16a872d 2646#define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
a72c65c7
MM
2647#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2648#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
58646b77
PB
2649#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2650#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2651#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2652#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2653#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2654#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2655#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
a16a872d 2656#define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
58646b77
PB
2657#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2658#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
a72c65c7 2659#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
58646b77
PB
2660#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2661#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2662#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
d4f18ec6 2663#define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long])
58646b77
PB
2664#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2665#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2666#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2667#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
a72c65c7 2668#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
58646b77
PB
2669#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2670
c9485473
MM
2671#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2672#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
58646b77
PB
2673#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2674#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2675#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2676#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2677#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2678#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2679#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2680#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
a72c65c7
MM
2681#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2682#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
a16a872d
MM
2683#define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2684#define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
58646b77 2685#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
a72c65c7 2686#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
06b39289
MM
2687#define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2688#define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2689#define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
58646b77 2690#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
6712d6fd
MM
2691#define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2692#define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
53605f35 2693#define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
58646b77
PB
2694
2695extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2696extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2697
807e902e 2698#define TARGET_SUPPORTS_WIDE_INT 1
08213983
MM
2699
2700#if (GCC_VERSION >= 3000)
2701#pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2702#endif