]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
Rewrite.
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
5b6f7b96 2 Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
f045b2c9
RS
21
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27/* Names to predefine in the preprocessor for this target machine. */
28
84b49fa7
RK
29#define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
30-Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
f045b2c9
RS
31
32/* Print subsidiary information on the compiler version in use. */
33#define TARGET_VERSION ;
34
8e3f41e7
MM
35/* Default string to use for cpu if not specified. */
36#ifndef TARGET_CPU_DEFAULT
37#define TARGET_CPU_DEFAULT ((char *)0)
38#endif
39
fdaff8ba
RS
40/* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
b4d6689b
RK
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
f045b2c9 47
841faeed 48/* #define ASM_SPEC "-u %(asm_cpu)" */
f045b2c9 49
84b49fa7
RK
50/* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
841faeed
MM
53#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
55/* Common CPP definitions used by CPP_SPEC amonst the various targets
56 for handling -mcpu=xxx switches. */
57#define CPP_CPU_SPEC \
58"%{!mcpu*: \
84b49fa7
RK
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
841faeed 63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
84b49fa7
RK
64%{mcpu=common: -D_ARCH_COM} \
65%{mcpu=power: -D_ARCH_PWR} \
8e3f41e7 66%{mcpu=power2: -D_ARCH_PWR2} \
84b49fa7
RK
67%{mcpu=powerpc: -D_ARCH_PPC} \
68%{mcpu=rios: -D_ARCH_PWR} \
69%{mcpu=rios1: -D_ARCH_PWR} \
70%{mcpu=rios2: -D_ARCH_PWR2} \
71%{mcpu=rsc: -D_ARCH_PWR} \
72%{mcpu=rsc1: -D_ARCH_PWR} \
49a0b204 73%{mcpu=403: -D_ARCH_PPC} \
cf27b467 74%{mcpu=505: -D_ARCH_PPC} \
84b49fa7 75%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
841faeed 76%{mcpu=602: -D_ARCH_PPC} \
fada905b
MM
77%{mcpu=603: -D_ARCH_PPC} \
78%{mcpu=603e: -D_ARCH_PPC} \
79%{mcpu=604: -D_ARCH_PPC} \
cf27b467
MM
80%{mcpu=620: -D_ARCH_PPC} \
81%{mcpu=821: -D_ARCH_PPC} \
82%{mcpu=860: -D_ARCH_PPC}"
84b49fa7 83
841faeed
MM
84#ifndef CPP_DEFAULT_SPEC
85#define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
86#endif
87
88#ifndef CPP_SYSV_SPEC
89#define CPP_SYSV_SPEC ""
90#endif
91
92#ifndef CPP_ENDIAN_SPEC
93#define CPP_ENDIAN_SPEC ""
94#endif
95
c81bebd7
MM
96#ifndef CPP_ENDIAN_DEFAULT_SPEC
97#define CPP_ENDIAN_DEFAULT_SPEC ""
98#endif
99
841faeed
MM
100#ifndef CPP_SYSV_DEFAULT_SPEC
101#define CPP_SYSV_DEFAULT_SPEC ""
102#endif
103
104/* Common ASM definitions used by ASM_SPEC amonst the various targets
105 for handling -mcpu=xxx switches. */
106#define ASM_CPU_SPEC \
107"%{!mcpu*: \
108 %{mpower: %{!mpower2: -mpwr}} \
109 %{mpower2: -mpwrx} \
110 %{mpowerpc*: -mppc} \
111 %{mno-power: %{!mpowerpc*: -mcom}} \
112 %{!mno-power: %{!mpower2: %(asm_default)}}} \
113%{mcpu=common: -mcom} \
114%{mcpu=power: -mpwr} \
115%{mcpu=power2: -mpwrx} \
116%{mcpu=powerpc: -mppc} \
117%{mcpu=rios: -mpwr} \
118%{mcpu=rios1: -mpwr} \
119%{mcpu=rios2: -mpwrx} \
120%{mcpu=rsc: -mpwr} \
121%{mcpu=rsc1: -mpwr} \
122%{mcpu=403: -mppc} \
123%{mcpu=505: -mppc} \
124%{mcpu=601: -m601} \
125%{mcpu=602: -mppc} \
126%{mcpu=603: -mppc} \
127%{mcpu=603e: -mppc} \
128%{mcpu=604: -mppc} \
129%{mcpu=620: -mppc} \
130%{mcpu=821: -mppc} \
131%{mcpu=860: -mppc}"
132
133#ifndef ASM_DEFAULT_SPEC
fba29a8c 134#define ASM_DEFAULT_SPEC ""
841faeed
MM
135#endif
136
137/* This macro defines names of additional specifications to put in the specs
138 that can be used in various specifications like CC1_SPEC. Its definition
139 is an initializer with a subgrouping for each command option.
140
141 Each subgrouping contains a string constant, that defines the
142 specification name, and a string constant that used by the GNU CC driver
143 program.
144
145 Do not define this macro if it does not need to do anything. */
146
7509c759
MM
147#ifndef SUBTARGET_EXTRA_SPECS
148#define SUBTARGET_EXTRA_SPECS
149#endif
150
c81bebd7
MM
151#define EXTRA_SPECS \
152 { "cpp_cpu", CPP_CPU_SPEC }, \
153 { "cpp_default", CPP_DEFAULT_SPEC }, \
154 { "cpp_sysv", CPP_SYSV_SPEC }, \
155 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
156 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
157 { "cpp_endian", CPP_ENDIAN_SPEC }, \
158 { "asm_cpu", ASM_CPU_SPEC }, \
159 { "asm_default", ASM_DEFAULT_SPEC }, \
160 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
161 { "link_libg", LINK_LIBG_SPEC }, \
7509c759
MM
162 SUBTARGET_EXTRA_SPECS
163
7509c759
MM
164/* Default location of syscalls.exp under AIX */
165#ifndef CROSS_COMPILE
166#define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
167#else
168#define LINK_SYSCALLS_SPEC ""
169#endif
170
171/* Default location of libg.exp under AIX */
172#ifndef CROSS_COMPILE
173#define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
174#else
175#define LINK_LIBG_SPEC ""
176#endif
177
f045b2c9
RS
178/* Define the options for the binder: Start text at 512, align all segments
179 to 512 bytes, and warn if there is text relocation.
180
181 The -bhalt:4 option supposedly changes the level at which ld will abort,
182 but it also suppresses warnings about multiply defined symbols and is
183 used by the AIX cc command. So we use it here.
184
185 -bnodelcsect undoes a poor choice of default relating to multiply-defined
52c0eaf8
JM
186 csects. See AIX documentation for more information about this.
187
188 -bM:SRE tells the linker that the output file is Shared REusable. Note
189 that to actually build a shared library you will also need to specify an
190 export list with the -Wl,-bE option. */
f045b2c9 191
c1950f1c 192#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
7509c759
MM
193 %{static:-bnso %(link_syscalls) } \
194 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
f045b2c9 195
58a39e45
RS
196/* Profiled library versions are used by linking with special directories. */
197#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
788d9012 198 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
f045b2c9
RS
199
200/* gcc must do the search itself to find libgcc.a, not use -l. */
046b1537 201#define LIBGCC_SPEC "libgcc.a%s"
f045b2c9
RS
202
203/* Don't turn -B into -L if the argument specifies a relative file name. */
204#define RELATIVE_PREFIX_NOT_LINKDIR
205
fb623df5 206/* Architecture type. */
f045b2c9 207
fb623df5
RK
208extern int target_flags;
209
210/* Use POWER architecture instructions and MQ register. */
211#define MASK_POWER 0x01
212
6febd581
RK
213/* Use POWER2 extensions to POWER architecture. */
214#define MASK_POWER2 0x02
215
fb623df5 216/* Use PowerPC architecture instructions. */
6febd581
RK
217#define MASK_POWERPC 0x04
218
583cf4db
RK
219/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
220#define MASK_PPC_GPOPT 0x08
221
222/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
223#define MASK_PPC_GFXOPT 0x10
f045b2c9 224
fb623df5 225/* Use PowerPC-64 architecture instructions. */
583cf4db 226#define MASK_POWERPC64 0x20
f045b2c9 227
fb623df5 228/* Use revised mnemonic names defined for PowerPC architecture. */
583cf4db 229#define MASK_NEW_MNEMONICS 0x40
fb623df5
RK
230
231/* Disable placing fp constants in the TOC; can be turned on when the
232 TOC overflows. */
583cf4db 233#define MASK_NO_FP_IN_TOC 0x80
fb623df5 234
0b9ccabc
RK
235/* Disable placing symbol+offset constants in the TOC; can be turned on when
236 the TOC overflows. */
583cf4db 237#define MASK_NO_SUM_IN_TOC 0x100
0b9ccabc 238
fb623df5 239/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
240 there are more than 16K unique variables/constants in an executable. With
241 this option, linking fails only if there are more than 16K modules, or
242 if there are more than 16K unique variables/constant in a single module.
243
244 This is at the cost of having 2 extra loads and one extra store per
245 function, and one less allocatable register. */
583cf4db 246#define MASK_MINIMAL_TOC 0x200
642a35f1 247
9e654916
RK
248/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
249#define MASK_64BIT 0x400
250
f85f4585 251/* Disable use of FPRs. */
d14a6d05 252#define MASK_SOFT_FLOAT 0x800
f85f4585 253
4d30c363
MM
254/* Enable load/store multiple, even on powerpc */
255#define MASK_MULTIPLE 0x1000
8a61d227 256#define MASK_MULTIPLE_SET 0x2000
4d30c363 257
7e69e155
MM
258/* Use string instructions for block moves */
259#define MASK_STRING 0x4000
938937d8 260#define MASK_STRING_SET 0x8000
7e69e155 261
4697a36c
MM
262/* Temporary debug switches */
263#define MASK_DEBUG_STACK 0x10000
264#define MASK_DEBUG_ARG 0x20000
265
7e69e155
MM
266#define TARGET_POWER (target_flags & MASK_POWER)
267#define TARGET_POWER2 (target_flags & MASK_POWER2)
268#define TARGET_POWERPC (target_flags & MASK_POWERPC)
269#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
270#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
271#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
272#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
273#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
274#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
275#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
276#define TARGET_64BIT (target_flags & MASK_64BIT)
277#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
278#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
279#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
280#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 281#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
4697a36c
MM
282#define TARGET_DEBUG_STACK (target_flags & MASK_DEBUG_STACK)
283#define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
7e69e155 284
2f3e5814 285#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 286#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
d14a6d05 287
4697a36c
MM
288/* Pseudo target to indicate whether the object format is ELF
289 (to get around not having conditional compilation in the md file) */
290#ifndef TARGET_ELF
291#define TARGET_ELF 0
292#endif
293
294/* If this isn't V.4, don't support -mno-toc. */
295#ifndef TARGET_NO_TOC
296#define TARGET_NO_TOC 0
297#define TARGET_TOC 1
298#endif
299
b6c9286a
MM
300/* Pseudo target to say whether this is Windows NT */
301#ifndef TARGET_WINDOWS_NT
302#define TARGET_WINDOWS_NT 0
303#endif
304
305/* Pseudo target to say whether this is MAC */
306#ifndef TARGET_MACOS
307#define TARGET_MACOS 0
308#endif
309
310/* Pseudo target to say whether this is AIX */
311#ifndef TARGET_AIX
312#if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
313#define TARGET_AIX 0
314#else
315#define TARGET_AIX 1
316#endif
317#endif
318
a3950905
MM
319#ifndef TARGET_XL_CALL
320#define TARGET_XL_CALL 0
321#endif
322
fb623df5 323/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 324
fb623df5 325 Macro to define tables used to set the flags.
f045b2c9
RS
326 This is a list in braces of pairs in braces,
327 each pair being { "NAME", VALUE }
328 where VALUE is the bits to set or minus the bits to clear.
329 An empty string NAME is used to identify the default VALUE. */
330
4d30c363
MM
331/* This is meant to be redefined in the host dependent files */
332#ifndef SUBTARGET_SWITCHES
333#define SUBTARGET_SWITCHES
334#endif
335
938937d8
MM
336#define TARGET_SWITCHES \
337 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
338 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
339 | MASK_POWER2)}, \
340 {"no-power2", - MASK_POWER2}, \
341 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
342 | MASK_STRING)}, \
343 {"powerpc", MASK_POWERPC}, \
344 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
345 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
346 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
347 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
348 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
349 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
350 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
351 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
352 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
353 | MASK_MINIMAL_TOC)}, \
354 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
355 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
356 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
357 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
358 {"minimal-toc", MASK_MINIMAL_TOC}, \
359 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
360 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
361 {"hard-float", - MASK_SOFT_FLOAT}, \
362 {"soft-float", MASK_SOFT_FLOAT}, \
363 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
364 {"no-multiple", - MASK_MULTIPLE}, \
365 {"no-multiple", MASK_MULTIPLE_SET}, \
366 {"string", MASK_STRING | MASK_STRING_SET}, \
367 {"no-string", - MASK_STRING}, \
bbdd88df 368 {"no-string", MASK_STRING_SET}, \
4697a36c
MM
369 {"debug-stack", MASK_DEBUG_STACK}, \
370 {"debug-arg", MASK_DEBUG_ARG}, \
938937d8 371 SUBTARGET_SWITCHES \
fb623df5
RK
372 {"", TARGET_DEFAULT}}
373
938937d8 374#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
fb623df5
RK
375
376/* Processor type. */
377enum processor_type
f86fe1fb 378 {PROCESSOR_RIOS1,
fb623df5 379 PROCESSOR_RIOS2,
cf27b467 380 PROCESSOR_MPCCORE,
49a0b204 381 PROCESSOR_PPC403,
fb623df5
RK
382 PROCESSOR_PPC601,
383 PROCESSOR_PPC603,
384 PROCESSOR_PPC604,
385 PROCESSOR_PPC620};
386
387extern enum processor_type rs6000_cpu;
388
389/* Recast the processor type to the cpu attribute. */
390#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
391
8482e358 392/* Define generic processor types based upon current deployment. */
8e3f41e7 393#define PROCESSOR_COMMON PROCESSOR_PPC601
8482e358 394#define PROCESSOR_POWER PROCESSOR_RIOS1
8e3f41e7 395#define PROCESSOR_POWERPC PROCESSOR_PPC604
6e151478 396
fb623df5 397/* Define the default processor. This is overridden by other tm.h files. */
f86fe1fb 398#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
fb623df5 399
6febd581
RK
400/* Specify the dialect of assembler to use. New mnemonics is dialect one
401 and the old mnemonics are dialect zero. */
402#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
403
fb623df5
RK
404/* This macro is similar to `TARGET_SWITCHES' but defines names of
405 command options that have values. Its definition is an
406 initializer with a subgrouping for each command option.
407
408 Each subgrouping contains a string constant, that defines the
409 fixed part of the option name, and the address of a variable.
410 The variable, type `char *', is set to the variable part of the
411 given option if the fixed part matches. The actual option name
412 is made by appending `-m' to the specified name.
413
414 Here is an example which defines `-mshort-data-NUMBER'. If the
415 given option is `-mshort-data-512', the variable `m88k_short_data'
416 will be set to the string `"512"'.
417
418 extern char *m88k_short_data;
419 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
420
b6c9286a
MM
421/* This is meant to be overriden in target specific files. */
422#ifndef SUBTARGET_OPTIONS
423#define SUBTARGET_OPTIONS
424#endif
425
8e3f41e7
MM
426#define TARGET_OPTIONS \
427{ \
428 {"cpu=", &rs6000_select[1].string}, \
429 {"tune=", &rs6000_select[2].string}, \
430 SUBTARGET_OPTIONS \
b6c9286a 431}
fb623df5 432
ff222560 433/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
434struct rs6000_cpu_select
435{
436 char *string;
437 char *name;
438 int set_tune_p;
439 int set_arch_p;
440};
441
442extern struct rs6000_cpu_select rs6000_select[];
fb623df5
RK
443
444/* Sometimes certain combinations of command options do not make sense
445 on a particular target machine. You can define a macro
446 `OVERRIDE_OPTIONS' to take account of this. This macro, if
447 defined, is executed once just after all the command options have
448 been parsed.
449
450 On the RS/6000 this is used to define the target cpu type. */
451
8e3f41e7 452#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 453
4f074454
RK
454/* Show we can debug even without a frame pointer. */
455#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
456\f
457/* target machine storage layout */
458
df44fa77
RK
459/* Define to support cross compilation to an RS6000 target. */
460#define REAL_ARITHMETIC
461
13d39dbc 462/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 463 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
464 the value is constrained to be within the bounds of the declared
465 type, but kept valid in the wider mode. The signedness of the
466 extension may differ from that of the type. */
467
468#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
469 if (GET_MODE_CLASS (MODE) == MODE_INT \
470 && GET_MODE_SIZE (MODE) < 4) \
dac29d65 471 (MODE) = SImode;
ef457bda 472
f045b2c9
RS
473/* Define this if most significant bit is lowest numbered
474 in instructions that operate on numbered bit-fields. */
475/* That is true on RS/6000. */
476#define BITS_BIG_ENDIAN 1
477
478/* Define this if most significant byte of a word is the lowest numbered. */
479/* That is true on RS/6000. */
480#define BYTES_BIG_ENDIAN 1
481
482/* Define this if most significant word of a multiword number is lowest
c81bebd7 483 numbered.
f045b2c9
RS
484
485 For RS/6000 we can decide arbitrarily since there are no machine
486 instructions for them. Might as well be consistent with bits and bytes. */
487#define WORDS_BIG_ENDIAN 1
488
fdaff8ba 489/* number of bits in an addressable storage unit */
f045b2c9
RS
490#define BITS_PER_UNIT 8
491
492/* Width in bits of a "word", which is the contents of a machine register.
493 Note that this is not necessarily the width of data type `int';
494 if using 16-bit ints on a 68000, this would still be 32.
495 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 496#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 497#define MAX_BITS_PER_WORD 64
f045b2c9
RS
498
499/* Width of a word, in units (bytes). */
2f3e5814 500#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 501#define MIN_UNITS_PER_WORD 4
2e360ab3 502#define UNITS_PER_FP_WORD 8
f045b2c9 503
915f619f
JW
504/* Type used for ptrdiff_t, as a string used in a declaration. */
505#define PTRDIFF_TYPE "int"
506
f045b2c9
RS
507/* Type used for wchar_t, as a string used in a declaration. */
508#define WCHAR_TYPE "short unsigned int"
509
510/* Width of wchar_t in bits. */
511#define WCHAR_TYPE_SIZE 16
512
9e654916
RK
513/* A C expression for the size in bits of the type `short' on the
514 target machine. If you don't define this, the default is half a
515 word. (If this would be less than one storage unit, it is
516 rounded up to one unit.) */
517#define SHORT_TYPE_SIZE 16
518
519/* A C expression for the size in bits of the type `int' on the
520 target machine. If you don't define this, the default is one
521 word. */
19d2d16f 522#define INT_TYPE_SIZE 32
9e654916
RK
523
524/* A C expression for the size in bits of the type `long' on the
525 target machine. If you don't define this, the default is one
526 word. */
2f3e5814 527#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
528#define MAX_LONG_TYPE_SIZE 64
529
530/* A C expression for the size in bits of the type `long long' on the
531 target machine. If you don't define this, the default is two
532 words. */
533#define LONG_LONG_TYPE_SIZE 64
534
535/* A C expression for the size in bits of the type `char' on the
536 target machine. If you don't define this, the default is one
537 quarter of a word. (If this would be less than one storage unit,
538 it is rounded up to one unit.) */
539#define CHAR_TYPE_SIZE BITS_PER_UNIT
540
541/* A C expression for the size in bits of the type `float' on the
542 target machine. If you don't define this, the default is one
543 word. */
544#define FLOAT_TYPE_SIZE 32
545
546/* A C expression for the size in bits of the type `double' on the
547 target machine. If you don't define this, the default is two
548 words. */
549#define DOUBLE_TYPE_SIZE 64
550
551/* A C expression for the size in bits of the type `long double' on
552 the target machine. If you don't define this, the default is two
553 words. */
554#define LONG_DOUBLE_TYPE_SIZE 64
555
f045b2c9
RS
556/* Width in bits of a pointer.
557 See also the macro `Pmode' defined below. */
2f3e5814 558#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
559
560/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 561#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
562
563/* Boundary (in *bits*) on which stack pointer should be aligned. */
564#define STACK_BOUNDARY 64
565
566/* Allocation boundary (in *bits*) for the code of a function. */
567#define FUNCTION_BOUNDARY 32
568
569/* No data type wants to be aligned rounder than this. */
b73fd26c
DE
570#define BIGGEST_ALIGNMENT 64
571
6bc3403c
DE
572/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
573#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
574 (DECL_MODE (FIELD) != DFmode ? (COMPUTED) : MIN ((COMPUTED), 32))
f045b2c9
RS
575
576/* Alignment of field after `int : 0' in a structure. */
577#define EMPTY_FIELD_BOUNDARY 32
578
579/* Every structure's size must be a multiple of this. */
580#define STRUCTURE_SIZE_BOUNDARY 8
581
582/* A bitfield declared as `int' forces `int' alignment for the struct. */
583#define PCC_BITFIELD_TYPE_MATTERS 1
584
6bc3403c
DE
585/* AIX increases natural record alignment to doubleword if the first
586 field is an FP double while the FP fields remain word aligned. */
587#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
588 ((TREE_CODE (STRUCT) == RECORD_TYPE \
589 || TREE_CODE (STRUCT) == UNION_TYPE \
590 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
591 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
592 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
593 : MAX ((COMPUTED), (SPECIFIED)))
594
f045b2c9
RS
595/* Make strings word-aligned so strcpy from constants will be faster. */
596#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
597 (TREE_CODE (EXP) == STRING_CST \
598 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
599
600/* Make arrays of chars word-aligned for the same reasons. */
601#define DATA_ALIGNMENT(TYPE, ALIGN) \
602 (TREE_CODE (TYPE) == ARRAY_TYPE \
603 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
604 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
605
fdaff8ba 606/* Non-zero if move instructions will actually fail to work
f045b2c9 607 when given unaligned data. */
fdaff8ba 608#define STRICT_ALIGNMENT 0
f045b2c9
RS
609\f
610/* Standard register usage. */
611
612/* Number of actual hardware registers.
613 The hardware registers are assigned numbers for the compiler
614 from 0 to just below FIRST_PSEUDO_REGISTER.
615 All registers that the compiler knows about must be given numbers,
616 even those that are not normally considered general registers.
617
618 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
619 an MQ register, a count register, a link register, and 8 condition
620 register fields, which we view here as separate registers.
621
622 In addition, the difference between the frame and argument pointers is
623 a function of the number of registers saved, so we need to have a
624 register for AP that will later be eliminated in favor of SP or FP.
802a0058 625 This is a normal register, but it is fixed.
f045b2c9 626
802a0058
MM
627 We also create a pseudo register for float/int conversions, that will
628 really represent the memory location used. It is represented here as
629 a register, in order to work around problems in allocating stack storage
630 in inline functions. */
631
632#define FIRST_PSEUDO_REGISTER 77
f045b2c9
RS
633
634/* 1 for registers that have pervasive standard uses
635 and are not available for the register allocator.
636
c81bebd7 637 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
f045b2c9 638
a127c4e5
RK
639 cr5 is not supposed to be used.
640
641 On System V implementations, r13 is fixed and not available for use. */
642
643#ifndef FIXED_R13
644#define FIXED_R13 0
645#endif
f045b2c9
RS
646
647#define FIXED_REGISTERS \
a127c4e5 648 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
649 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
650 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
651 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 652 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
f045b2c9
RS
653
654/* 1 for registers not available across function calls.
655 These must include the FIXED_REGISTERS and also any
656 registers that can be used without being saved.
657 The latter must include the registers where values are returned
658 and the register where structure-value addresses are passed.
659 Aside from that, you can include as many other registers as you like. */
660
661#define CALL_USED_REGISTERS \
a127c4e5 662 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
663 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
664 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
665 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 666 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
f045b2c9
RS
667
668/* List the order in which to allocate registers. Each register must be
669 listed once, even those in FIXED_REGISTERS.
670
671 We allocate in the following order:
672 fp0 (not saved or used for anything)
673 fp13 - fp2 (not saved; incoming fp arg registers)
674 fp1 (not saved; return value)
675 fp31 - fp14 (saved; order given to save least number)
676 cr1, cr6, cr7 (not saved or special)
677 cr0 (not saved, but used for arithmetic operations)
678 cr2, cr3, cr4 (saved)
679 r0 (not saved; cannot be base reg)
680 r9 (not saved; best for TImode)
681 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
682 r3 (not saved; return value register)
683 r31 - r13 (saved; order given to save least number)
684 r12 (not saved; if used for DImode or DFmode would use r13)
685 mq (not saved; best to use it if we can)
686 ctr (not saved; when we have the choice ctr is better)
687 lr (saved)
688 cr5, r1, r2, ap (fixed) */
689
690#define REG_ALLOC_ORDER \
691 {32, \
692 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
693 33, \
694 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
695 50, 49, 48, 47, 46, \
696 69, 74, 75, 68, 70, 71, 72, \
697 0, \
698 9, 11, 10, 8, 7, 6, 5, 4, \
699 3, \
700 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
701 18, 17, 16, 15, 14, 13, 12, \
702 64, 66, 65, \
802a0058 703 73, 1, 2, 67, 76}
f045b2c9
RS
704
705/* True if register is floating-point. */
706#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
707
708/* True if register is a condition register. */
709#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
710
711/* True if register is an integer register. */
712#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
713
802a0058
MM
714/* True if register is the temporary memory location used for int/float
715 conversion. */
716#define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
717
f045b2c9
RS
718/* Return number of consecutive hard regs needed starting at reg REGNO
719 to hold something of mode MODE.
720 This is ordinarily the length in words of a value of mode MODE
721 but can be less for certain modes in special long registers.
722
723 On RS/6000, ordinary registers hold 32 bits worth;
724 a single floating point register holds 64 bits worth. */
725
802a0058
MM
726#define HARD_REGNO_NREGS(REGNO, MODE) \
727 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
2e360ab3 728 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9
RS
729 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
730
731/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
732 For POWER and PowerPC, the GPRs can hold any mode, but the float
733 registers only can hold floating modes and DImode, and CR register only
734 can hold CC modes. We cannot put TImode anywhere except general
735 register and it must be able to fit within the register set. */
f045b2c9 736
802a0058
MM
737#define HARD_REGNO_MODE_OK(REGNO, MODE) \
738 (FP_REGNO_P (REGNO) ? \
739 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
740 || (GET_MODE_CLASS (MODE) == MODE_INT \
741 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
742 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
743 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
744 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 745 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
746 : 1)
747
748/* Value is 1 if it is a good idea to tie two pseudo registers
749 when one has mode MODE1 and one has mode MODE2.
750 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
751 for any hard reg, then this must be 0 for correct output. */
752#define MODES_TIEABLE_P(MODE1, MODE2) \
753 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
754 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
755 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
756 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
757 : GET_MODE_CLASS (MODE1) == MODE_CC \
758 ? GET_MODE_CLASS (MODE2) == MODE_CC \
759 : GET_MODE_CLASS (MODE2) == MODE_CC \
760 ? GET_MODE_CLASS (MODE1) == MODE_CC \
761 : 1)
762
763/* A C expression returning the cost of moving data from a register of class
764 CLASS1 to one of CLASS2.
765
766 On the RS/6000, copying between floating-point and fixed-point
767 registers is expensive. */
768
769#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
770 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
771 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
772 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
a4b970a0 773 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
774 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
775 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 776 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 777 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 778 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
779 : 2)
780
781/* A C expressions returning the cost of moving data of MODE from a register to
782 or from memory.
783
784 On the RS/6000, bump this up a bit. */
785
ab4a5fc9
RK
786#define MEMORY_MOVE_COST(MODE) \
787 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
788 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
789 ? 3 : 2) \
790 + 4)
f045b2c9
RS
791
792/* Specify the cost of a branch insn; roughly the number of extra insns that
793 should be added to avoid a branch.
794
ef457bda 795 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
796 unscheduled conditional branch. */
797
ef457bda 798#define BRANCH_COST 3
f045b2c9 799
5a5e4c2c
RK
800/* A C statement (sans semicolon) to update the integer variable COST
801 based on the relationship between INSN that is dependent on
802 DEP_INSN through the dependence LINK. The default is to make no
803 adjustment to COST. On the RS/6000, ignore the cost of anti- and
804 output-dependencies. In fact, output dependencies on the CR do have
805 a cost, but it is probably not worthwhile to track it. */
806
807#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
b0634e74 808 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
5a5e4c2c 809
6febd581
RK
810/* Define this macro to change register usage conditional on target flags.
811 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585
RK
812 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
813 Conditionally disable FPRs. */
814
815#define CONDITIONAL_REGISTER_USAGE \
816{ \
817 if (! TARGET_POWER) \
818 fixed_regs[64] = 1; \
d14a6d05
MM
819 if (TARGET_SOFT_FLOAT) \
820 for (i = 32; i < 64; i++) \
f85f4585
RK
821 fixed_regs[i] = call_used_regs[i] = 1; \
822}
6febd581 823
f045b2c9
RS
824/* Specify the registers used for certain standard purposes.
825 The values of these macros are register numbers. */
826
827/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
828/* #define PC_REGNUM */
829
830/* Register to use for pushing function arguments. */
831#define STACK_POINTER_REGNUM 1
832
833/* Base register for access to local variables of the function. */
834#define FRAME_POINTER_REGNUM 31
835
836/* Value should be nonzero if functions must have frame pointers.
837 Zero means the frame pointer need not be set up (and parms
838 may be accessed via the stack pointer) in functions that seem suitable.
839 This is computed in `reload', in reload1.c. */
840#define FRAME_POINTER_REQUIRED 0
841
842/* Base register for access to arguments of the function. */
843#define ARG_POINTER_REGNUM 67
844
845/* Place to put static chain when calling a function that requires it. */
846#define STATIC_CHAIN_REGNUM 11
847
b6c9286a
MM
848/* count register number for special purposes */
849#define COUNT_REGISTER_REGNUM 66
850
802a0058
MM
851/* Special register that represents memory, used for float/int conversions. */
852#define FPMEM_REGNUM 76
853
1ff7789b
MM
854/* Register to use as a placeholder for the GOT/allocated TOC register.
855 FINALIZE_PIC will change all uses of this register to a an appropriate
856 pseudo register when it adds the code to setup the GOT. We use r2
857 because it is a reserved register in all of the ABI's. */
858#define GOT_TOC_REGNUM 2
859
f045b2c9
RS
860/* Place that structure value return address is placed.
861
862 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 863#define STRUCT_VALUE 0
f045b2c9
RS
864\f
865/* Define the classes of registers for register constraints in the
866 machine description. Also define ranges of constants.
867
868 One of the classes must always be named ALL_REGS and include all hard regs.
869 If there is more than one class, another class must be named NO_REGS
870 and contain no registers.
871
872 The name GENERAL_REGS must be the name of a class (or an alias for
873 another name such as ALL_REGS). This is the class of registers
874 that is allowed by "g" or "r" in a register constraint.
875 Also, registers outside this class are allocated only when
876 instructions express preferences for them.
877
878 The classes must be numbered in nondecreasing order; that is,
879 a larger-numbered class must never be contained completely
880 in a smaller-numbered class.
881
882 For any two classes, it is very desirable that there be another
883 class that represents their union. */
c81bebd7 884
f045b2c9
RS
885/* The RS/6000 has three types of registers, fixed-point, floating-point,
886 and condition registers, plus three special registers, MQ, CTR, and the
887 link register.
888
889 However, r0 is special in that it cannot be used as a base register.
890 So make a class for registers valid as base registers.
891
892 Also, cr0 is the only condition code register that can be used in
802a0058
MM
893 arithmetic insns, so make a separate class for it.
894
895 There is a special 'registrer' (76), which is not a register, but a
896 placeholder for memory allocated to convert between floating point and
897 integral types. This works around a problem where if we allocate memory
898 with allocate_stack_{local,temp} and the function is an inline function, the
899 memory allocated will clobber memory in the caller. So we use a special
900 register, and if that is used, we allocate stack space for it. */
f045b2c9 901
ebedb4dd
MM
902enum reg_class
903{
904 NO_REGS,
ebedb4dd
MM
905 BASE_REGS,
906 GENERAL_REGS,
907 FLOAT_REGS,
908 NON_SPECIAL_REGS,
909 MQ_REGS,
910 LINK_REGS,
911 CTR_REGS,
912 LINK_OR_CTR_REGS,
913 SPECIAL_REGS,
914 SPEC_OR_GEN_REGS,
915 CR0_REGS,
ebedb4dd
MM
916 CR_REGS,
917 NON_FLOAT_REGS,
802a0058
MM
918 FPMEM_REGS,
919 FLOAT_OR_FPMEM_REGS,
ebedb4dd
MM
920 ALL_REGS,
921 LIM_REG_CLASSES
922};
f045b2c9
RS
923
924#define N_REG_CLASSES (int) LIM_REG_CLASSES
925
926/* Give names of register classes as strings for dump file. */
927
ebedb4dd
MM
928#define REG_CLASS_NAMES \
929{ \
930 "NO_REGS", \
ebedb4dd
MM
931 "BASE_REGS", \
932 "GENERAL_REGS", \
933 "FLOAT_REGS", \
934 "NON_SPECIAL_REGS", \
935 "MQ_REGS", \
936 "LINK_REGS", \
937 "CTR_REGS", \
938 "LINK_OR_CTR_REGS", \
939 "SPECIAL_REGS", \
940 "SPEC_OR_GEN_REGS", \
941 "CR0_REGS", \
ebedb4dd
MM
942 "CR_REGS", \
943 "NON_FLOAT_REGS", \
802a0058
MM
944 "FPMEM_REGS", \
945 "FLOAT_OR_FPMEM_REGS", \
ebedb4dd
MM
946 "ALL_REGS" \
947}
f045b2c9
RS
948
949/* Define which registers fit in which classes.
950 This is an initializer for a vector of HARD_REG_SET
951 of length N_REG_CLASSES. */
952
ebedb4dd
MM
953#define REG_CLASS_CONTENTS \
954{ \
955 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
ebedb4dd
MM
956 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
957 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
958 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
959 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
960 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
961 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
962 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
963 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
964 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
965 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
966 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
ebedb4dd
MM
967 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
968 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
802a0058
MM
969 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
970 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
971 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
ebedb4dd 972}
f045b2c9
RS
973
974/* The same information, inverted:
975 Return the class number of the smallest class containing
976 reg number REGNO. This could be a conditional expression
977 or could index an array. */
978
802a0058
MM
979#define REGNO_REG_CLASS(REGNO) \
980 ((REGNO) == 0 ? GENERAL_REGS \
981 : (REGNO) < 32 ? BASE_REGS \
982 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
983 : (REGNO) == 68 ? CR0_REGS \
984 : CR_REGNO_P (REGNO) ? CR_REGS \
985 : (REGNO) == 64 ? MQ_REGS \
986 : (REGNO) == 65 ? LINK_REGS \
987 : (REGNO) == 66 ? CTR_REGS \
988 : (REGNO) == 67 ? BASE_REGS \
989 : (REGNO) == 76 ? FPMEM_REGS \
f045b2c9
RS
990 : NO_REGS)
991
992/* The class value for index registers, and the one for base regs. */
993#define INDEX_REG_CLASS GENERAL_REGS
994#define BASE_REG_CLASS BASE_REGS
995
996/* Get reg_class from a letter such as appears in the machine description. */
997
998#define REG_CLASS_FROM_LETTER(C) \
999 ((C) == 'f' ? FLOAT_REGS \
1000 : (C) == 'b' ? BASE_REGS \
1001 : (C) == 'h' ? SPECIAL_REGS \
1002 : (C) == 'q' ? MQ_REGS \
1003 : (C) == 'c' ? CTR_REGS \
1004 : (C) == 'l' ? LINK_REGS \
1005 : (C) == 'x' ? CR0_REGS \
1006 : (C) == 'y' ? CR_REGS \
802a0058 1007 : (C) == 'z' ? FPMEM_REGS \
f045b2c9
RS
1008 : NO_REGS)
1009
1010/* The letters I, J, K, L, M, N, and P in a register constraint string
1011 can be used to stand for particular ranges of immediate operands.
1012 This macro defines what the ranges are.
1013 C is the letter, and VALUE is a constant value.
1014 Return 1 if VALUE is in the range specified by C.
1015
c81bebd7 1016 `I' is signed 16-bit constants
f045b2c9
RS
1017 `J' is a constant with only the high-order 16 bits non-zero
1018 `K' is a constant with only the low-order 16 bits non-zero
1019 `L' is a constant that can be placed into a mask operand
1020 `M' is a constant that is greater than 31
1021 `N' is a constant that is an exact power of two
1022 `O' is the constant zero
1023 `P' is a constant whose negation is a signed 16-bit constant */
1024
5b6f7b96
RK
1025#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1026 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1027 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
1028 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
1029 : (C) == 'L' ? mask_constant (VALUE) \
1030 : (C) == 'M' ? (VALUE) > 31 \
1031 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1032 : (C) == 'O' ? (VALUE) == 0 \
1033 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x1000 \
f045b2c9
RS
1034 : 0)
1035
1036/* Similar, but for floating constants, and defining letters G and H.
1037 Here VALUE is the CONST_DOUBLE rtx itself.
1038
1039 We flag for special constants when we can copy the constant into
4e74d8ec 1040 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1041
c4c40373 1042 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1043
1044#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1045 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1046 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1047 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1048 : 0)
f045b2c9
RS
1049
1050/* Optional extra constraints for this machine.
1051
b6c9286a
MM
1052 'Q' means that is a memory operand that is just an offset from a reg.
1053 'R' is for AIX TOC entries.
1054 'S' is for Windows NT SYMBOL_REFs
88228c4b
MM
1055 'T' is for Windows NT LABEL_REFs.
1056 'U' is for V.4 small data references. */
f045b2c9 1057
e8a8bc24
RK
1058#define EXTRA_CONSTRAINT(OP, C) \
1059 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1060 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b6c9286a
MM
1061 : (C) == 'S' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == SYMBOL_REF)\
1062 : (C) == 'T' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == LABEL_REF) \
c81bebd7
MM
1063 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1064 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1065 : 0)
f045b2c9
RS
1066
1067/* Given an rtx X being reloaded into a reg required to be
1068 in class CLASS, return the class of reg to actually use.
1069 In general this is just CLASS; but on some machines
c81bebd7 1070 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1071
1072 On the RS/6000, we have to return NO_REGS when we want to reload a
1073 floating-point CONST_DOUBLE to force it to be copied to memory. */
1074
802a0058 1075#define PREFERRED_RELOAD_CLASS(X,CLASS) \
f045b2c9
RS
1076 ((GET_CODE (X) == CONST_DOUBLE \
1077 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1078 ? NO_REGS : (CLASS))
c81bebd7 1079
f045b2c9
RS
1080/* Return the register class of a scratch register needed to copy IN into
1081 or out of a register in CLASS in MODE. If it can be done directly,
1082 NO_REGS is returned. */
1083
1084#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1085 secondary_reload_class (CLASS, MODE, IN)
1086
7ea555a4
RK
1087/* If we are copying between FP registers and anything else, we need a memory
1088 location. */
1089
1090#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1091 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1092
f045b2c9
RS
1093/* Return the maximum number of consecutive registers
1094 needed to represent mode MODE in a register of class CLASS.
1095
1096 On RS/6000, this is the size of MODE in words,
1097 except in the FP regs, where a single reg is enough for two words. */
802a0058
MM
1098#define CLASS_MAX_NREGS(CLASS, MODE) \
1099 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1100 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
2e360ab3 1101 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1102 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1103
1104/* If defined, gives a class of registers that cannot be used as the
1105 operand of a SUBREG that changes the size of the object. */
1106
802a0058 1107#define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
f045b2c9
RS
1108\f
1109/* Stack layout; function entry, exit and calling. */
1110
6b67933e
RK
1111/* Enumeration to give which calling sequence to use. */
1112enum rs6000_abi {
1113 ABI_NONE,
1114 ABI_AIX, /* IBM's AIX */
b6c9286a
MM
1115 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1116 ABI_V4, /* System V.4/eabi */
c81bebd7
MM
1117 ABI_NT, /* Windows/NT */
1118 ABI_SOLARIS /* Solaris */
6b67933e
RK
1119};
1120
b6c9286a
MM
1121extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1122
1123/* Default ABI to compile code for */
1124#ifndef DEFAULT_ABI
1125#define DEFAULT_ABI ABI_AIX
fb19c17f
RK
1126/* The prefix to add to user-visible assembler symbols. */
1127#define USER_LABEL_PREFIX "."
b6c9286a
MM
1128#endif
1129
4697a36c
MM
1130/* Structure used to define the rs6000 stack */
1131typedef struct rs6000_stack {
1132 int first_gp_reg_save; /* first callee saved GP register used */
1133 int first_fp_reg_save; /* first callee saved FP register used */
1134 int lr_save_p; /* true if the link reg needs to be saved */
1135 int cr_save_p; /* true if the CR reg needs to be saved */
b6c9286a 1136 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1137 int push_p; /* true if we need to allocate stack space */
1138 int calls_p; /* true if the function makes any calls */
b6c9286a
MM
1139 int main_p; /* true if this is main */
1140 int main_save_p; /* true if this is main and we need to save args */
802a0058 1141 int fpmem_p; /* true if float/int conversion temp needed */
6b67933e 1142 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1143 int gp_save_offset; /* offset to save GP regs from initial SP */
1144 int fp_save_offset; /* offset to save FP regs from initial SP */
4697a36c
MM
1145 int lr_save_offset; /* offset to save LR from initial SP */
1146 int cr_save_offset; /* offset to save CR from initial SP */
b6c9286a 1147 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1148 int varargs_save_offset; /* offset to save the varargs registers */
b6c9286a 1149 int main_save_offset; /* offset to save main's args */
802a0058 1150 int fpmem_offset; /* offset for float/int conversion temp */
4697a36c
MM
1151 int reg_size; /* register size (4 or 8) */
1152 int varargs_size; /* size to hold V.4 args passed in regs */
1153 int vars_size; /* variable save area size */
1154 int parm_size; /* outgoing parameter size */
b6c9286a 1155 int main_size; /* size to hold saving main's args */
4697a36c
MM
1156 int save_size; /* save area size */
1157 int fixed_size; /* fixed size of stack frame */
1158 int gp_size; /* size of saved GP registers */
1159 int fp_size; /* size of saved FP registers */
1160 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1161 int lr_size; /* size to hold LR if not in save_size */
802a0058 1162 int fpmem_size; /* size to hold float/int conversion */
b6c9286a 1163 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1164 int total_size; /* total bytes allocated for stack */
1165} rs6000_stack_t;
1166
f045b2c9
RS
1167/* Define this if pushing a word on the stack
1168 makes the stack pointer a smaller address. */
1169#define STACK_GROWS_DOWNWARD
1170
1171/* Define this if the nominal address of the stack frame
1172 is at the high-address end of the local variables;
1173 that is, each additional local variable allocated
1174 goes at a more negative offset in the frame.
1175
1176 On the RS/6000, we grow upwards, from the area after the outgoing
1177 arguments. */
1178/* #define FRAME_GROWS_DOWNWARD */
1179
4697a36c 1180/* Size of the outgoing register save area */
2f3e5814 1181#define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
4697a36c
MM
1182
1183/* Size of the fixed area on the stack */
2f3e5814 1184#define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
4697a36c 1185
b6c9286a
MM
1186/* Address to save the TOC register */
1187#define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, 20)
1188
802a0058
MM
1189/* Offset & size for fpmem stack locations used for converting between
1190 float and integral types. */
1191extern int rs6000_fpmem_offset;
1192extern int rs6000_fpmem_size;
1193
4697a36c
MM
1194/* Size of the V.4 varargs area if needed */
1195#define RS6000_VARARGS_AREA 0
1196
1197/* Whether a V.4 varargs area is needed */
1198extern int rs6000_sysv_varargs_p;
1199
1200/* Align an address */
ed33106f 1201#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c 1202
a7df97e6
MM
1203/* Initialize data used by insn expanders. This is called from
1204 init_emit, once for each function, before code is generated. */
1205#define INIT_EXPANDERS rs6000_init_expanders ()
1206
4697a36c
MM
1207/* Size of V.4 varargs area in bytes */
1208#define RS6000_VARARGS_SIZE \
2f3e5814 1209 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c
MM
1210
1211/* Offset of V.4 varargs area */
802a0058 1212#define RS6000_VARARGS_OFFSET \
ed33106f 1213 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1214 + RS6000_SAVE_AREA)
4697a36c 1215
f045b2c9
RS
1216/* Offset within stack frame to start allocating local variables at.
1217 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1218 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1219 of the first local allocated.
f045b2c9
RS
1220
1221 On the RS/6000, the frame pointer is the same as the stack pointer,
1222 except for dynamic allocations. So we start after the fixed area and
1223 outgoing parameter area. */
1224
802a0058 1225#define STARTING_FRAME_OFFSET \
ed33106f 1226 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058
MM
1227 + RS6000_VARARGS_AREA \
1228 + RS6000_SAVE_AREA)
1229
1230/* Offset from the stack pointer register to an item dynamically
1231 allocated on the stack, e.g., by `alloca'.
1232
1233 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1234 length of the outgoing arguments. The default is correct for most
1235 machines. See `function.c' for details. */
1236#define STACK_DYNAMIC_OFFSET(FUNDECL) \
ed33106f 1237 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1238 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1239
1240/* If we generate an insn to push BYTES bytes,
1241 this says how many the stack pointer really advances by.
1242 On RS/6000, don't define this because there are no push insns. */
1243/* #define PUSH_ROUNDING(BYTES) */
1244
1245/* Offset of first parameter from the argument pointer register value.
1246 On the RS/6000, we define the argument pointer to the start of the fixed
1247 area. */
4697a36c 1248#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9
RS
1249
1250/* Define this if stack space is still allocated for a parameter passed
1251 in a register. The value is the number of bytes allocated to this
1252 area. */
4697a36c 1253#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1254
1255/* Define this if the above stack space is to be considered part of the
1256 space allocated by the caller. */
1257#define OUTGOING_REG_PARM_STACK_SPACE
1258
1259/* This is the difference between the logical top of stack and the actual sp.
1260
1261 For the RS/6000, sp points past the fixed area. */
4697a36c 1262#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1263
1264/* Define this if the maximum size of all the outgoing args is to be
1265 accumulated and pushed during the prologue. The amount can be
1266 found in the variable current_function_outgoing_args_size. */
1267#define ACCUMULATE_OUTGOING_ARGS
1268
1269/* Value is the number of bytes of arguments automatically
1270 popped when returning from a subroutine call.
8b109b37 1271 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1272 FUNTYPE is the data type of the function (as a tree),
1273 or for a library call it is an identifier node for the subroutine name.
1274 SIZE is the number of bytes of arguments passed on the stack. */
1275
8b109b37 1276#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1277
1278/* Define how to find the value returned by a function.
1279 VALTYPE is the data type of the value (as a tree).
1280 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1281 otherwise, FUNC is 0.
1282
c81bebd7 1283 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1284 fp1, unless -msoft-float. */
f045b2c9
RS
1285
1286#define FUNCTION_VALUE(VALTYPE, FUNC) \
1287 gen_rtx (REG, TYPE_MODE (VALTYPE), \
d14a6d05 1288 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1289
1290/* Define how to find the value returned by a library function
1291 assuming the value has mode MODE. */
1292
1293#define LIBCALL_VALUE(MODE) \
d14a6d05 1294 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1295
1296/* The definition of this macro implies that there are cases where
1297 a scalar value cannot be returned in registers.
1298
c81bebd7
MM
1299 For the RS/6000, any structure or union type is returned in memory, except for
1300 Solaris, which returns structures <= 8 bytes in registers. */
f045b2c9 1301
c81bebd7
MM
1302#define RETURN_IN_MEMORY(TYPE) \
1303 (TYPE_MODE (TYPE) == BLKmode \
1304 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
f045b2c9 1305
4697a36c
MM
1306/* Minimum and maximum general purpose registers used to hold arguments. */
1307#define GP_ARG_MIN_REG 3
1308#define GP_ARG_MAX_REG 10
1309#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1310
1311/* Minimum and maximum floating point registers used to hold arguments. */
1312#define FP_ARG_MIN_REG 33
7509c759
MM
1313#define FP_ARG_AIX_MAX_REG 45
1314#define FP_ARG_V4_MAX_REG 40
1315#define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
4697a36c
MM
1316#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1317
1318/* Return registers */
1319#define GP_ARG_RETURN GP_ARG_MIN_REG
1320#define FP_ARG_RETURN FP_ARG_MIN_REG
1321
7509c759 1322/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f
MM
1323#define CALL_NORMAL 0x00000000 /* no special processing */
1324#define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1325#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1326#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1327#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1328
4697a36c
MM
1329/* Define cutoff for using external functions to save floating point */
1330#define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1331
f045b2c9
RS
1332/* 1 if N is a possible register number for a function value
1333 as seen by the caller.
1334
1335 On RS/6000, this is r3 and fp1. */
4697a36c 1336#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
f045b2c9
RS
1337
1338/* 1 if N is a possible register number for function argument passing.
1339 On RS/6000, these are r3-r10 and fp1-fp13. */
4697a36c
MM
1340#define FUNCTION_ARG_REGNO_P(N) \
1341 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1342 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1343
f045b2c9
RS
1344\f
1345/* Define a data type for recording info about an argument list
1346 during the scan of that argument list. This data type should
1347 hold all necessary information about the function itself
1348 and about the args processed so far, enough to enable macros
1349 such as FUNCTION_ARG to determine where the next arg should go.
1350
1351 On the RS/6000, this is a structure. The first element is the number of
1352 total argument words, the second is used to store the next
1353 floating-point register number, and the third says how many more args we
4697a36c
MM
1354 have prototype types for.
1355
1356 The System V.4 varargs/stdarg support requires that this structure's size
1357 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1358 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1359
1360typedef struct rs6000_args
1361{
6a4cee5f
MM
1362 int words; /* # words uses for passing GP registers */
1363 int fregno; /* next available FP register */
1364 int nargs_prototype; /* # args left in the current prototype */
1365 int orig_nargs; /* Original value of nargs_prototype */
1366 int varargs_offset; /* offset of the varargs save area */
1367 int prototype; /* Whether a prototype was defined */
1368 int call_cookie; /* Do special things for this call */
4697a36c 1369} CUMULATIVE_ARGS;
f045b2c9
RS
1370
1371/* Define intermediate macro to compute the size (in registers) of an argument
1372 for the RS/6000. */
1373
1374#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1375(! (NAMED) ? 0 \
1376 : (MODE) != BLKmode \
1377 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1378 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1379
1380/* Initialize a variable CUM of type CUMULATIVE_ARGS
1381 for a call to a function whose data type is FNTYPE.
1382 For a library call, FNTYPE is 0. */
1383
2c7ee1a6 1384#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1385 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1386
1387/* Similar, but when scanning the definition of a procedure. We always
1388 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1389
4697a36c
MM
1390#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1391 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1392
1393/* Update the data in CUM to advance over an argument
1394 of mode MODE and data type TYPE.
1395 (TYPE is null for libcalls where that information may not be available.) */
1396
1397#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1398 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1399
1400/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1401#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1402 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1403 && (CUM).fregno <= FP_ARG_MAX_REG \
1404 && TARGET_HARD_FLOAT)
f045b2c9
RS
1405
1406/* Determine where to put an argument to a function.
1407 Value is zero to push the argument on the stack,
1408 or a hard register in which to store the argument.
1409
1410 MODE is the argument's machine mode.
1411 TYPE is the data type of the argument (as a tree).
1412 This is null for libcalls where that information may
1413 not be available.
1414 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1415 the preceding args and about the function being called.
1416 NAMED is nonzero if this argument is a named parameter
1417 (otherwise it is an extra parameter matching an ellipsis).
1418
1419 On RS/6000 the first eight words of non-FP are normally in registers
1420 and the rest are pushed. The first 13 FP args are in registers.
1421
1422 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1423 both an FP and integer register (or possibly FP reg and stack). Library
1424 functions (when TYPE is zero) always have the proper types for args,
1425 so we can pass the FP value just in one register. emit_library_function
1426 doesn't support EXPR_LIST anyway. */
f045b2c9 1427
4697a36c
MM
1428#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1429 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1430
1431/* For an arg passed partly in registers and partly in memory,
1432 this is the number of registers used.
1433 For args passed entirely in registers or entirely in memory, zero. */
1434
4697a36c
MM
1435#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1436 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1437
1438/* A C expression that indicates when an argument must be passed by
1439 reference. If nonzero for an argument, a copy of that argument is
1440 made in memory and a pointer to the argument is passed instead of
1441 the argument itself. The pointer is passed in whatever way is
1442 appropriate for passing a pointer to that type. */
1443
1444#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1445 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1446
b6c9286a 1447/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1448 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1449 PARM_BOUNDARY is used for all arguments. */
1450
1451#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1452 function_arg_boundary (MODE, TYPE)
1453
f045b2c9 1454/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1455 variable number of arguments.
f045b2c9
RS
1456
1457 CUM is as above.
1458
1459 MODE and TYPE are the mode and type of the current parameter.
1460
1461 PRETEND_SIZE is a variable that should be set to the amount of stack
1462 that must be pushed by the prolog to pretend that our caller pushed
1463 it.
1464
1465 Normally, this macro will push all remaining incoming registers on the
1466 stack and set PRETEND_SIZE to the length of the registers pushed. */
1467
4697a36c
MM
1468#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1469 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1470
1471/* If defined, is a C expression that produces the machine-specific
1472 code for a call to `__builtin_saveregs'. This code will be moved
1473 to the very beginning of the function, before any parameter access
1474 are made. The return value of this function should be an RTX that
1475 contains the value to use as the return of `__builtin_saveregs'.
1476
1477 The argument ARGS is a `tree_list' containing the arguments that
1478 were passed to `__builtin_saveregs'.
1479
1480 If this macro is not defined, the compiler will output an ordinary
1481 call to the library function `__builtin_saveregs'. */
1482
1483#define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1484 expand_builtin_saveregs (ARGS)
f045b2c9
RS
1485
1486/* This macro generates the assembly code for function entry.
1487 FILE is a stdio stream to output the code to.
1488 SIZE is an int: how many units of temporary storage to allocate.
1489 Refer to the array `regs_ever_live' to determine which registers
1490 to save; `regs_ever_live[I]' is nonzero if register number I
1491 is ever used in the function. This macro is responsible for
1492 knowing which registers should not be saved even if used. */
1493
1494#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1495
1496/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1497 for profiling a function entry. */
f045b2c9
RS
1498
1499#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1500 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1501
1502/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1503 the stack pointer does not matter. No definition is equivalent to
1504 always zero.
1505
1506 On the RS/6000, this is non-zero because we can restore the stack from
1507 its backpointer, which we maintain. */
1508#define EXIT_IGNORE_STACK 1
1509
1510/* This macro generates the assembly code for function exit,
1511 on machines that need it. If FUNCTION_EPILOGUE is not defined
1512 then individual return instructions are generated for each
1513 return statement. Args are same as for FUNCTION_PROLOGUE.
1514
1515 The function epilogue should not depend on the current stack pointer!
1516 It should use the frame pointer only. This is mandatory because
1517 of alloca; we also take advantage of it to omit stack adjustments
1518 before returning. */
1519
1520#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1521\f
eaf1bcf1 1522/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1523
1524/* Length in units of the trampoline for entering a nested function. */
1525
b6c9286a 1526#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1527
1528/* Emit RTL insns to initialize the variable parts of a trampoline.
1529 FNADDR is an RTX for the address of the function's pure code.
1530 CXT is an RTX for the static chain value for the function. */
1531
1532#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1533 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1534\f
7509c759
MM
1535/* If defined, a C expression whose value is nonzero if IDENTIFIER
1536 with arguments ARGS is a valid machine specific attribute for DECL.
1537 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1538
1539#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1540 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1541
1542/* If defined, a C expression whose value is nonzero if IDENTIFIER
1543 with arguments ARGS is a valid machine specific attribute for TYPE.
1544 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1545
1546#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1547 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1548
1549/* If defined, a C expression whose value is zero if the attributes on
1550 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1551 two if they are nearly compatible (which causes a warning to be
1552 generated). */
1553
1554#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1555 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1556
1557/* If defined, a C statement that assigns default attributes to newly
1558 defined TYPE. */
1559
1560#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1561 (rs6000_set_default_type_attributes (TYPE))
1562
1563\f
f33985c6
MS
1564/* Definitions for __builtin_return_address and __builtin_frame_address.
1565 __builtin_return_address (0) should give link register (65), enable
1566 this. */
1567/* This should be uncommented, so that the link register is used, but
1568 currently this would result in unmatched insns and spilling fixed
1569 registers so we'll leave it for another day. When these problems are
1570 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1571 (mrs) */
1572/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1573
b6c9286a
MM
1574/* Number of bytes into the frame return addresses can be found. See
1575 rs6000_stack_info in rs6000.c for more information on how the different
1576 abi's store the return address. */
1577#define RETURN_ADDRESS_OFFSET \
1578 ((DEFAULT_ABI == ABI_AIX \
1579 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
c81bebd7
MM
1580 (DEFAULT_ABI == ABI_V4 \
1581 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
b6c9286a
MM
1582 (DEFAULT_ABI == ABI_NT) ? -4 : \
1583 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1584
f33985c6
MS
1585/* The current return address is in link register (65). The return address
1586 of anything farther back is accessed normally at an offset of 8 from the
1587 frame pointer. */
1588#define RETURN_ADDR_RTX(count, frame) \
1589 ((count == -1) \
1590 ? gen_rtx (REG, Pmode, 65) \
f09d4c33
RK
1591 : gen_rtx (MEM, Pmode, \
1592 memory_address (Pmode, \
1593 plus_constant (copy_to_reg (gen_rtx (MEM, Pmode, \
1594 memory_address (Pmode, frame))), \
1595 RETURN_ADDRESS_OFFSET))))
f33985c6 1596\f
f045b2c9
RS
1597/* Definitions for register eliminations.
1598
1599 We have two registers that can be eliminated on the RS/6000. First, the
1600 frame pointer register can often be eliminated in favor of the stack
1601 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1602 eliminated; it is replaced with either the stack or frame pointer.
1603
1604 In addition, we use the elimination mechanism to see if r30 is needed
1605 Initially we assume that it isn't. If it is, we spill it. This is done
1606 by making it an eliminable register. We replace it with itself so that
1607 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1608
1609/* This is an array of structures. Each structure initializes one pair
1610 of eliminable registers. The "from" register number is given first,
1611 followed by "to". Eliminations of the same "from" register are listed
1612 in order of preference. */
1613#define ELIMINABLE_REGS \
1614{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1615 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1616 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1617 { 30, 30} }
f045b2c9
RS
1618
1619/* Given FROM and TO register numbers, say whether this elimination is allowed.
1620 Frame pointer elimination is automatically handled.
1621
1622 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1623 to convert ap into fp, not sp.
1624
abc95ed3 1625 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1626 references. */
f045b2c9
RS
1627
1628#define CAN_ELIMINATE(FROM, TO) \
1629 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1630 ? ! frame_pointer_needed \
4697a36c 1631 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1632 : 1)
1633
1634/* Define the offset between two registers, one to be eliminated, and the other
1635 its replacement, at the start of a routine. */
1636#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1637{ \
4697a36c 1638 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1639 \
1640 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1641 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1642 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1643 (OFFSET) = info->total_size; \
1644 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1645 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1646 else if ((FROM) == 30) \
1647 (OFFSET) = 0; \
f045b2c9
RS
1648 else \
1649 abort (); \
1650}
1651\f
1652/* Addressing modes, and classification of registers for them. */
1653
1654/* #define HAVE_POST_INCREMENT */
1655/* #define HAVE_POST_DECREMENT */
1656
1657#define HAVE_PRE_DECREMENT
1658#define HAVE_PRE_INCREMENT
1659
1660/* Macros to check register numbers against specific register classes. */
1661
1662/* These assume that REGNO is a hard or pseudo reg number.
1663 They give nonzero only if REGNO is a hard reg of the suitable class
1664 or a pseudo reg currently allocated to a suitable hard reg.
1665 Since they use reg_renumber, they are safe only once reg_renumber
1666 has been allocated, which happens in local-alloc.c. */
1667
1668#define REGNO_OK_FOR_INDEX_P(REGNO) \
1669((REGNO) < FIRST_PSEUDO_REGISTER \
1670 ? (REGNO) <= 31 || (REGNO) == 67 \
1671 : (reg_renumber[REGNO] >= 0 \
1672 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1673
1674#define REGNO_OK_FOR_BASE_P(REGNO) \
1675((REGNO) < FIRST_PSEUDO_REGISTER \
1676 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1677 : (reg_renumber[REGNO] > 0 \
1678 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1679\f
1680/* Maximum number of registers that can appear in a valid memory address. */
1681
1682#define MAX_REGS_PER_ADDRESS 2
1683
1684/* Recognize any constant value that is a valid address. */
1685
6eff269e
BK
1686#define CONSTANT_ADDRESS_P(X) \
1687 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1688 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1689 || GET_CODE (X) == HIGH)
f045b2c9
RS
1690
1691/* Nonzero if the constant value X is a legitimate general operand.
1692 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1693
1694 On the RS/6000, all integer constants are acceptable, most won't be valid
1695 for particular insns, though. Only easy FP constants are
1696 acceptable. */
1697
1698#define LEGITIMATE_CONSTANT_P(X) \
1699 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1700 || easy_fp_constant (X, GET_MODE (X)))
1701
1702/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1703 and check its validity for a certain class.
1704 We have two alternate definitions for each of them.
1705 The usual definition accepts all pseudo regs; the other rejects
1706 them unless they have been allocated suitable hard regs.
1707 The symbol REG_OK_STRICT causes the latter definition to be used.
1708
1709 Most source files want to accept pseudo regs in the hope that
1710 they will get allocated to the class that the insn wants them to be in.
1711 Source files for reload pass need to be strict.
1712 After reload, it makes no difference, since pseudo regs have
1713 been eliminated by then. */
1714
1715#ifndef REG_OK_STRICT
1716
1717/* Nonzero if X is a hard reg that can be used as an index
1718 or if it is a pseudo reg. */
1719#define REG_OK_FOR_INDEX_P(X) \
1720 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1721
1722/* Nonzero if X is a hard reg that can be used as a base reg
1723 or if it is a pseudo reg. */
1724#define REG_OK_FOR_BASE_P(X) \
1725 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1726
1727#else
1728
1729/* Nonzero if X is a hard reg that can be used as an index. */
1730#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1731/* Nonzero if X is a hard reg that can be used as a base reg. */
1732#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1733
1734#endif
1735\f
1736/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1737 that is a valid memory address for an instruction.
1738 The MODE argument is the machine mode for the MEM expression
1739 that wants to use this address.
1740
1741 On the RS/6000, there are four valid address: a SYMBOL_REF that
1742 refers to a constant pool entry of an address (or the sum of it
1743 plus a constant), a short (16-bit signed) constant plus a register,
1744 the sum of two registers, or a register indirect, possibly with an
1745 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814
DE
1746 we must ensure that both words are addressable or PowerPC64 with offset
1747 word aligned. */
f045b2c9
RS
1748
1749#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
4697a36c
MM
1750 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1751 && CONSTANT_POOL_ADDRESS_P (X) \
f045b2c9
RS
1752 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1753
2f3e5814 1754/* TARGET_64BIT TOC64 guaranteed to have 64 bit alignment. */
f045b2c9
RS
1755#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1756 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
4697a36c
MM
1757 || (TARGET_TOC \
1758 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
f045b2c9
RS
1759 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1760 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1761
7509c759 1762#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
c81bebd7 1763 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
81795281 1764 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1765 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1766 && small_data_operand (X, MODE))
7509c759 1767
f045b2c9
RS
1768#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1769 (GET_CODE (X) == CONST_INT \
5b6f7b96 1770 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9
RS
1771
1772#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1773 (GET_CODE (X) == PLUS \
1774 && GET_CODE (XEXP (X, 0)) == REG \
1775 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1776 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1777 && (((MODE) != DFmode && (MODE) != DImode) \
2f3e5814 1778 || (TARGET_32BIT \
1465faec
DE
1779 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1780 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2f3e5814 1781 && ((MODE) != TImode \
644d82dd 1782 || (TARGET_32BIT \
1465faec
DE
1783 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1784 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1785 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9
RS
1786
1787#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1788 (GET_CODE (X) == PLUS \
1789 && GET_CODE (XEXP (X, 0)) == REG \
1790 && GET_CODE (XEXP (X, 1)) == REG \
1791 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1792 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1793 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1794 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1795
1796#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1797 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1798
4697a36c
MM
1799#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1800 (TARGET_ELF \
81795281 1801 && !flag_pic && !TARGET_TOC \
4697a36c
MM
1802 && (MODE) != DImode \
1803 && (MODE) != TImode \
1804 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1805 && GET_CODE (X) == LO_SUM \
1806 && GET_CODE (XEXP (X, 0)) == REG \
1807 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1808 && CONSTANT_P (XEXP (X, 1)))
1809
f045b2c9
RS
1810#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1811{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1812 goto ADDR; \
0a90c336 1813 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
f045b2c9
RS
1814 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1815 goto ADDR; \
7509c759
MM
1816 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1817 goto ADDR; \
f045b2c9
RS
1818 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1819 goto ADDR; \
1820 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1821 goto ADDR; \
2f3e5814
DE
1822 if ((MODE) != TImode \
1823 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1824 && (TARGET_64BIT || (MODE) != DImode) \
f045b2c9
RS
1825 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1826 goto ADDR; \
4697a36c
MM
1827 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1828 goto ADDR; \
f045b2c9
RS
1829}
1830\f
1831/* Try machine-dependent ways of modifying an illegitimate address
1832 to be legitimate. If we find one, return the new, valid address.
1833 This macro is used in only one place: `memory_address' in explow.c.
1834
1835 OLDX is the address as it was before break_out_memory_refs was called.
1836 In some cases it is useful to look at this to decide what needs to be done.
1837
1838 MODE and WIN are passed so that this macro can use
1839 GO_IF_LEGITIMATE_ADDRESS.
1840
1841 It is always safe for this macro to do nothing. It exists to recognize
1842 opportunities to optimize the output.
1843
1844 On RS/6000, first check for the sum of a register with a constant
1845 integer that is out of range. If so, generate code to add the
1846 constant with the low-order 16 bits masked to the register and force
1847 this result into another register (this can be done with `cau').
c81bebd7 1848 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1849 possibility of bit 16 being a one.
1850
1851 Then check for the sum of a register and something not constant, try to
1852 load the other things into a register and return the sum. */
1853
4697a36c
MM
1854#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1855{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1856 && GET_CODE (XEXP (X, 1)) == CONST_INT \
5b6f7b96 1857 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
354b734b
MM
1858 { HOST_WIDE_INT high_int, low_int; \
1859 rtx sum; \
1860 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
4697a36c
MM
1861 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1862 if (low_int & 0x8000) \
354b734b
MM
1863 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
1864 sum = force_operand (gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1865 GEN_INT (high_int)), 0); \
1866 (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (low_int)); \
4697a36c
MM
1867 goto WIN; \
1868 } \
1869 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1870 && GET_CODE (XEXP (X, 1)) != CONST_INT \
2f3e5814
DE
1871 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1872 && (TARGET_64BIT || (MODE) != DImode) \
1873 && (MODE) != TImode) \
4697a36c 1874 { \
0a90c336
DE
1875 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1876 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
4697a36c
MM
1877 goto WIN; \
1878 } \
2f3e5814 1879 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
461422d5 1880 && !flag_pic \
4697a36c
MM
1881 && GET_CODE (X) != CONST_INT \
1882 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1883 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1884 && (MODE) != DImode && (MODE) != TImode) \
1885 { \
1886 rtx reg = gen_reg_rtx (Pmode); \
1887 emit_insn (gen_elf_high (reg, (X))); \
1888 (X) = gen_rtx (LO_SUM, Pmode, reg, (X)); \
1889 } \
f045b2c9
RS
1890}
1891
1892/* Go to LABEL if ADDR (a legitimate address expression)
1893 has an effect that depends on the machine mode it is used for.
1894
1895 On the RS/6000 this is true if the address is valid with a zero offset
1896 but not with an offset of four (this means it cannot be used as an
1897 address for DImode or DFmode) or is a pre-increment or decrement. Since
1898 we know it is valid, we just check for an address that is not valid with
1899 an offset of four. */
1900
1901#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1902{ if (GET_CODE (ADDR) == PLUS \
1903 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
1904 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
1905 (TARGET_32BIT ? 4 : 8))) \
f045b2c9
RS
1906 goto LABEL; \
1907 if (GET_CODE (ADDR) == PRE_INC) \
1908 goto LABEL; \
1909 if (GET_CODE (ADDR) == PRE_DEC) \
1910 goto LABEL; \
4697a36c
MM
1911 if (GET_CODE (ADDR) == LO_SUM) \
1912 goto LABEL; \
f045b2c9 1913}
766a866c
MM
1914\f
1915/* The register number of the register used to address a table of
1916 static data addresses in memory. In some cases this register is
1917 defined by a processor's "application binary interface" (ABI).
1918 When this macro is defined, RTL is generated for this register
1919 once, as with the stack pointer and frame pointer registers. If
1920 this macro is not defined, it is up to the machine-dependent files
1921 to allocate such a register (if necessary). */
1922
1923/* #define PIC_OFFSET_TABLE_REGNUM */
1924
1925/* Define this macro if the register defined by
1926 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1927 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
1928
1929/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1930
1931/* By generating position-independent code, when two different
1932 programs (A and B) share a common library (libC.a), the text of
1933 the library can be shared whether or not the library is linked at
1934 the same address for both programs. In some of these
1935 environments, position-independent code requires not only the use
1936 of different addressing modes, but also special code to enable the
1937 use of these addressing modes.
1938
1939 The `FINALIZE_PIC' macro serves as a hook to emit these special
1940 codes once the function is being compiled into assembly code, but
1941 not before. (It is not done before, because in the case of
1942 compiling an inline function, it would lead to multiple PIC
1943 prologues being included in functions which used inline functions
1944 and were compiled to assembly language.) */
1945
d266da75 1946#define FINALIZE_PIC rs6000_finalize_pic ()
766a866c 1947
766a866c
MM
1948/* A C expression that is nonzero if X is a legitimate immediate
1949 operand on the target machine when generating position independent
1950 code. You can assume that X satisfies `CONSTANT_P', so you need
1951 not check this. You can also assume FLAG_PIC is true, so you need
1952 not check it either. You need not define this macro if all
1953 constants (including `SYMBOL_REF') can be immediate operands when
1954 generating position independent code. */
1955
1956/* #define LEGITIMATE_PIC_OPERAND_P (X) */
1957
30ea98f1
MM
1958/* In rare cases, correct code generation requires extra machine
1959 dependent processing between the second jump optimization pass and
1960 delayed branch scheduling. On those machines, define this macro
1961 as a C statement to act on the code starting at INSN.
1962
1963 On the RS/6000, we use it to make sure the GOT_TOC register marker
1964 that FINALIZE_PIC is supposed to remove actually got removed. */
1965
1966#define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
1967
f045b2c9
RS
1968\f
1969/* Define this if some processing needs to be done immediately before
4255474b 1970 emitting code for an insn. */
f045b2c9 1971
4255474b 1972/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
1973
1974/* Specify the machine mode that this machine uses
1975 for the index in the tablejump instruction. */
2f3e5814 1976#define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
1977
1978/* Define this if the tablejump instruction expects the table
1979 to contain offsets from the address of the table.
1980 Do not define this if the table should contain absolute addresses. */
1981#define CASE_VECTOR_PC_RELATIVE
1982
1983/* Specify the tree operation to be used to convert reals to integers. */
1984#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1985
1986/* This is the kind of divide that is easiest to do in the general case. */
1987#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1988
1989/* Define this as 1 if `char' should by default be signed; else as 0. */
1990#define DEFAULT_SIGNED_CHAR 0
1991
1992/* This flag, if defined, says the same insns that convert to a signed fixnum
1993 also convert validly to an unsigned one. */
1994
1995/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1996
1997/* Max number of bytes we can move from memory to memory
1998 in one reasonably fast instruction. */
2f3e5814 1999#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2000#define MAX_MOVE_MAX 8
f045b2c9
RS
2001
2002/* Nonzero if access to memory by bytes is no faster than for words.
2003 Also non-zero if doing byte operations (specifically shifts) in registers
2004 is undesirable. */
2005#define SLOW_BYTE_ACCESS 1
2006
9a63901f
RK
2007/* Define if operations between registers always perform the operation
2008 on the full register even if a narrower mode is specified. */
2009#define WORD_REGISTER_OPERATIONS
2010
2011/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2012 will either zero-extend or sign-extend. The value of this macro should
2013 be the code that says which one of the two operations is implicitly
2014 done, NIL if none. */
2015#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2016
2017/* Define if loading short immediate values into registers sign extends. */
2018#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba
RS
2019\f
2020/* The RS/6000 uses the XCOFF format. */
f045b2c9 2021
fdaff8ba 2022#define XCOFF_DEBUGGING_INFO
f045b2c9 2023
c5abcf1d
CH
2024/* Define if the object format being used is COFF or a superset. */
2025#define OBJECT_FORMAT_COFF
2026
2c440f06
RK
2027/* Define the magic numbers that we recognize as COFF. */
2028
2029#define MY_ISCOFF(magic) \
2030 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
2031
115e69a9
RK
2032/* This is the only version of nm that collect2 can work with. */
2033#define REAL_NM_FILE_NAME "/usr/ucb/nm"
2034
f045b2c9
RS
2035/* We don't have GAS for the RS/6000 yet, so don't write out special
2036 .stabs in cc1plus. */
c81bebd7 2037
f045b2c9 2038#define FASCIST_ASSEMBLER
b6c9286a
MM
2039
2040#ifndef ASM_OUTPUT_CONSTRUCTOR
a6cf191b 2041#define ASM_OUTPUT_CONSTRUCTOR(file, name)
b6c9286a
MM
2042#endif
2043#ifndef ASM_OUTPUT_DESTRUCTOR
a6cf191b 2044#define ASM_OUTPUT_DESTRUCTOR(file, name)
b6c9286a 2045#endif
f045b2c9 2046
f045b2c9
RS
2047/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2048 is done just by pretending it is already truncated. */
2049#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2050
2051/* Specify the machine mode that pointers have.
2052 After generation of rtl, the compiler makes no further distinction
2053 between pointers and any other objects of this machine mode. */
2f3e5814 2054#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2055
2056/* Mode of a function address in a call instruction (for indexing purposes).
2057
2058 Doesn't matter on RS/6000. */
2f3e5814 2059#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2060
2061/* Define this if addresses of constant functions
2062 shouldn't be put through pseudo regs where they can be cse'd.
2063 Desirable on machines where ordinary constants are expensive
2064 but a CALL with constant address is cheap. */
2065#define NO_FUNCTION_CSE
2066
d969caf8 2067/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2068 few bits.
2069
2070 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2071 have been dropped from the PowerPC architecture. */
2072
4697a36c 2073#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9
RS
2074
2075/* Use atexit for static constructors/destructors, instead of defining
2076 our own exit function. */
2077#define HAVE_ATEXIT
2078
2079/* Compute the cost of computing a constant rtl expression RTX
2080 whose rtx-code is CODE. The body of this macro is a portion
2081 of a switch statement. If the code is computed here,
2082 return it with a return statement. Otherwise, break from the switch.
2083
01554f00 2084 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2085 always returns 0. */
2086
4697a36c 2087#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2088 case CONST_INT: \
2089 case CONST: \
2090 case LABEL_REF: \
2091 case SYMBOL_REF: \
2092 case CONST_DOUBLE: \
4697a36c 2093 case HIGH: \
f045b2c9
RS
2094 return 0;
2095
2096/* Provide the costs of a rtl expression. This is in the body of a
2097 switch on CODE. */
2098
3bb22aee 2099#define RTX_COSTS(X,CODE,OUTER_CODE) \
f045b2c9 2100 case MULT: \
bdfd4e31
RK
2101 switch (rs6000_cpu) \
2102 { \
2103 case PROCESSOR_RIOS1: \
2104 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2105 ? COSTS_N_INSNS (5) \
2106 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2107 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2108 case PROCESSOR_RIOS2: \
cf27b467 2109 case PROCESSOR_MPCCORE: \
bdfd4e31
RK
2110 return COSTS_N_INSNS (2); \
2111 case PROCESSOR_PPC601: \
869c489d 2112 return COSTS_N_INSNS (5); \
1ec26da6
DE
2113 case PROCESSOR_PPC603: \
2114 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2115 ? COSTS_N_INSNS (5) \
2116 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2117 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
49a0b204 2118 case PROCESSOR_PPC403: \
bdfd4e31
RK
2119 case PROCESSOR_PPC604: \
2120 case PROCESSOR_PPC620: \
869c489d 2121 return COSTS_N_INSNS (4); \
bdfd4e31 2122 } \
f045b2c9
RS
2123 case DIV: \
2124 case MOD: \
2125 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2126 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2127 return COSTS_N_INSNS (2); \
2128 /* otherwise fall through to normal divide. */ \
2129 case UDIV: \
2130 case UMOD: \
bdfd4e31
RK
2131 switch (rs6000_cpu) \
2132 { \
2133 case PROCESSOR_RIOS1: \
2134 return COSTS_N_INSNS (19); \
2135 case PROCESSOR_RIOS2: \
2136 return COSTS_N_INSNS (13); \
cf27b467
MM
2137 case PROCESSOR_MPCCORE: \
2138 return COSTS_N_INSNS (6); \
49a0b204
MM
2139 case PROCESSOR_PPC403: \
2140 return COSTS_N_INSNS (33); \
bdfd4e31 2141 case PROCESSOR_PPC601: \
869c489d 2142 return COSTS_N_INSNS (36); \
bdfd4e31 2143 case PROCESSOR_PPC603: \
869c489d 2144 return COSTS_N_INSNS (37); \
bdfd4e31
RK
2145 case PROCESSOR_PPC604: \
2146 case PROCESSOR_PPC620: \
869c489d 2147 return COSTS_N_INSNS (20); \
bdfd4e31 2148 } \
3a942930
RK
2149 case FFS: \
2150 return COSTS_N_INSNS (4); \
f045b2c9
RS
2151 case MEM: \
2152 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2153 return 5;
2154
2155/* Compute the cost of an address. This is meant to approximate the size
2156 and/or execution delay of an insn using that address. If the cost is
2157 approximated by the RTL complexity, including CONST_COSTS above, as
2158 is usually the case for CISC machines, this macro should not be defined.
2159 For aggressively RISCy machines, only one insn format is allowed, so
2160 this macro should be a constant. The value of this macro only matters
2161 for valid addresses.
2162
2163 For the RS/6000, everything is cost 0. */
2164
2165#define ADDRESS_COST(RTX) 0
2166
2167/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2168 should be adjusted to reflect any required changes. This macro is used when
2169 there is some systematic length adjustment required that would be difficult
2170 to express in the length attribute. */
2171
2172/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2173
2174/* Add any extra modes needed to represent the condition code.
2175
2176 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2177 are being done and we need a separate mode for floating-point. We also
2178 use a mode for the case when we are comparing the results of two
2179 comparisons. */
f045b2c9 2180
c5defebb 2181#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
2182
2183/* Define the names for the modes specified above. */
c5defebb 2184#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
2185
2186/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2187 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
2188 should be used. CCUNSmode should be used for unsigned comparisons.
2189 CCEQmode should be used when we are doing an inequality comparison on
2190 the result of a comparison. CCmode should be used in all other cases. */
2191
b565a316 2192#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2193 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2194 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2195 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2196 ? CCEQmode : CCmode))
f045b2c9
RS
2197
2198/* Define the information needed to generate branch and scc insns. This is
2199 stored from the compare operation. Note that we can't use "rtx" here
2200 since it hasn't been defined! */
2201
2202extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2203extern int rs6000_compare_fp_p;
2204
2205/* Set to non-zero by "fix" operation to indicate that itrunc and
2206 uitrunc must be defined. */
2207
2208extern int rs6000_trunc_used;
9929b575
ILT
2209
2210/* Function names to call to do floating point truncation. */
2211
5bf6466a
DE
2212#define RS6000_ITRUNC "__itrunc"
2213#define RS6000_UITRUNC "__uitrunc"
4d30c363
MM
2214
2215/* Prefix and suffix to use to saving floating point */
2216#ifndef SAVE_FP_PREFIX
2217#define SAVE_FP_PREFIX "._savef"
2218#define SAVE_FP_SUFFIX ""
2219#endif
2220
2221/* Prefix and suffix to use to restoring floating point */
2222#ifndef RESTORE_FP_PREFIX
2223#define RESTORE_FP_PREFIX "._restf"
2224#define RESTORE_FP_SUFFIX ""
2225#endif
2226
5bf6466a
DE
2227/* Function name to call to do profiling. */
2228#define RS6000_MCOUNT ".__mcount"
2229
f045b2c9
RS
2230\f
2231/* Control the assembler format that we output. */
2232
1b279f39
DE
2233/* A C string constant describing how to begin a comment in the target
2234 assembler language. The compiler assumes that the comment will end at
2235 the end of the line. */
2236#define ASM_COMMENT_START " #"
6b67933e 2237
f045b2c9
RS
2238/* Output at beginning of assembler file.
2239
b4d6689b 2240 Initialize the section names for the RS/6000 at this point.
fdaff8ba 2241
6355b140 2242 Specify filename to assembler.
3fc2151d 2243
b4d6689b 2244 We want to go into the TOC section so at least one .toc will be emitted.
fdaff8ba 2245 Also, in order to output proper .bs/.es pairs, we need at least one static
b4d6689b
RK
2246 [RW] section emitted.
2247
2248 We then switch back to text to force the gcc2_compiled. label and the space
c81bebd7 2249 allocated after it (when profiling) into the text section.
b4d6689b
RK
2250
2251 Finally, declare mcount when profiling to make the assembler happy. */
f045b2c9
RS
2252
2253#define ASM_FILE_START(FILE) \
2254{ \
fdaff8ba 2255 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 2256 main_input_filename, ".bss_"); \
fdaff8ba 2257 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 2258 main_input_filename, ".rw_"); \
fdaff8ba 2259 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
2260 main_input_filename, ".ro_"); \
2261 \
6355b140 2262 output_file_directive (FILE, main_input_filename); \
f045b2c9 2263 toc_section (); \
fdaff8ba
RS
2264 if (write_symbols != NO_DEBUG) \
2265 private_data_section (); \
b4d6689b
RK
2266 text_section (); \
2267 if (profile_flag) \
5bf6466a 2268 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
3cfa4909 2269 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
f045b2c9
RS
2270}
2271
2272/* Output at end of assembler file.
2273
2274 On the RS/6000, referencing data should automatically pull in text. */
2275
2276#define ASM_FILE_END(FILE) \
2277{ \
2278 text_section (); \
19d2d16f 2279 fputs ("_section_.text:\n", FILE); \
f045b2c9 2280 data_section (); \
19d2d16f 2281 fputs ("\t.long _section_.text\n", FILE); \
f045b2c9
RS
2282}
2283
f045b2c9
RS
2284/* We define this to prevent the name mangler from putting dollar signs into
2285 function names. */
2286
2287#define NO_DOLLAR_IN_LABEL
2288
2289/* We define this to 0 so that gcc will never accept a dollar sign in a
2290 variable name. This is needed because the AIX assembler will not accept
2291 dollar signs. */
2292
2293#define DOLLARS_IN_IDENTIFIERS 0
2294
fdaff8ba
RS
2295/* Implicit library calls should use memcpy, not bcopy, etc. */
2296
2297#define TARGET_MEM_FUNCTIONS
2298
f045b2c9
RS
2299/* Define the extra sections we need. We define three: one is the read-only
2300 data section which is used for constants. This is a csect whose name is
2301 derived from the name of the input file. The second is for initialized
2302 global variables. This is a csect whose name is that of the variable.
2303 The third is the TOC. */
2304
2305#define EXTRA_SECTIONS \
2306 read_only_data, private_data, read_only_private_data, toc, bss
2307
2308/* Define the name of our readonly data section. */
2309
2310#define READONLY_DATA_SECTION read_only_data_section
2311
9704efe6
MS
2312
2313/* Define the name of the section to use for the exception tables.
2314 TODO: test and see if we can use read_only_data_section, if so,
2315 remove this. */
2316
2317#define EXCEPTION_SECTION data_section
2318
b4f892eb
RK
2319/* If we are referencing a function that is static or is known to be
2320 in this file, make the SYMBOL_REF special. We can use this to indicate
2321 that we can branch to this function without emitting a no-op after the
2322 call. */
2323
2324#define ENCODE_SECTION_INFO(DECL) \
2325 if (TREE_CODE (DECL) == FUNCTION_DECL \
2326 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2327 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2328
f045b2c9
RS
2329/* Indicate that jump tables go in the text section. */
2330
2331#define JUMP_TABLES_IN_TEXT_SECTION
2332
2333/* Define the routines to implement these extra sections. */
2334
2335#define EXTRA_SECTION_FUNCTIONS \
2336 \
2337void \
2338read_only_data_section () \
2339{ \
2340 if (in_section != read_only_data) \
2341 { \
469adec3 2342 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2343 xcoff_read_only_section_name); \
f045b2c9
RS
2344 in_section = read_only_data; \
2345 } \
2346} \
2347 \
2348void \
2349private_data_section () \
2350{ \
2351 if (in_section != private_data) \
2352 { \
469adec3 2353 fprintf (asm_out_file, ".csect %s[RW]\n", \
fdaff8ba 2354 xcoff_private_data_section_name); \
f045b2c9
RS
2355 \
2356 in_section = private_data; \
2357 } \
2358} \
2359 \
2360void \
2361read_only_private_data_section () \
2362{ \
2363 if (in_section != read_only_private_data) \
2364 { \
f25359b5 2365 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2366 xcoff_private_data_section_name); \
f045b2c9
RS
2367 in_section = read_only_private_data; \
2368 } \
2369} \
2370 \
2371void \
2372toc_section () \
2373{ \
642a35f1
JW
2374 if (TARGET_MINIMAL_TOC) \
2375 { \
2376 static int toc_initialized = 0; \
2377 \
2378 /* toc_section is always called at least once from ASM_FILE_START, \
2379 so this is guaranteed to always be defined once and only once \
2380 in each file. */ \
2381 if (! toc_initialized) \
2382 { \
19d2d16f
MM
2383 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2384 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2385 toc_initialized = 1; \
2386 } \
f045b2c9 2387 \
642a35f1 2388 if (in_section != toc) \
19d2d16f 2389 fputs (".csect toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2390 } \
2391 else \
2392 { \
2393 if (in_section != toc) \
19d2d16f 2394 fputs (".toc\n", asm_out_file); \
642a35f1 2395 } \
f045b2c9 2396 in_section = toc; \
fc3ffe83 2397}
f045b2c9
RS
2398
2399/* This macro produces the initial definition of a function name.
2400 On the RS/6000, we need to place an extra '.' in the function name and
c81bebd7 2401 output the function descriptor.
f045b2c9
RS
2402
2403 The csect for the function will have already been created by the
2404 `text_section' call previously done. We do have to go back to that
2405 csect, however. */
2406
fdaff8ba
RS
2407/* ??? What do the 16 and 044 in the .function line really mean? */
2408
f045b2c9
RS
2409#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2410{ if (TREE_PUBLIC (DECL)) \
2411 { \
19d2d16f 2412 fputs ("\t.globl .", FILE); \
f045b2c9 2413 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2414 putc ('\n', FILE); \
fdaff8ba 2415 } \
3ce428da 2416 else \
fdaff8ba 2417 { \
19d2d16f 2418 fputs ("\t.lglobl .", FILE); \
fdaff8ba 2419 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2420 putc ('\n', FILE); \
f045b2c9 2421 } \
19d2d16f 2422 fputs (".csect ", FILE); \
f045b2c9 2423 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2424 fputs ("[DS]\n", FILE); \
f045b2c9 2425 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2426 fputs (":\n", FILE); \
5854b0d0 2427 fputs ((TARGET_32BIT) ? "\t.long ." : "\t.llong .", FILE); \
f045b2c9 2428 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f
MM
2429 fputs (", TOC[tc0], 0\n", FILE); \
2430 fputs (".csect .text[PR]\n.", FILE); \
f045b2c9 2431 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2432 fputs (":\n", FILE); \
fdaff8ba 2433 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 2434 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
2435}
2436
2437/* Return non-zero if this entry is to be written into the constant pool
2438 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2439 containing one of them. If -mfp-in-toc (the default), we also do
2440 this for floating-point constants. We actually can only do this
2441 if the FP formats of the target and host machines are the same, but
2442 we can't check that since not every file that uses
2443 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2444
4697a36c
MM
2445#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2446 (TARGET_TOC \
2447 && (GET_CODE (X) == SYMBOL_REF \
2448 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2449 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2450 || GET_CODE (X) == LABEL_REF \
2451 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2452 && GET_CODE (X) == CONST_DOUBLE \
2453 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2454 && BITS_PER_WORD == HOST_BITS_PER_INT)))
f045b2c9
RS
2455
2456/* Select section for constant in constant pool.
2457
2458 On RS/6000, all constants are in the private read-only data area.
2459 However, if this is being placed in the TOC it must be output as a
2460 toc entry. */
2461
2462#define SELECT_RTX_SECTION(MODE, X) \
2463{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2464 toc_section (); \
2465 else \
2466 read_only_private_data_section (); \
2467}
2468
2469/* Macro to output a special constant pool entry. Go to WIN if we output
2470 it. Otherwise, it is written the usual way.
2471
2472 On the RS/6000, toc entries are handled this way. */
2473
2474#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2475{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2476 { \
2477 output_toc (FILE, X, LABELNO); \
2478 goto WIN; \
2479 } \
2480}
2481
2482/* Select the section for an initialized data object.
2483
2484 On the RS/6000, we have a special section for all variables except those
2485 that are static. */
2486
2487#define SELECT_SECTION(EXP,RELOC) \
2488{ \
ed8969fa
JW
2489 if ((TREE_CODE (EXP) == STRING_CST \
2490 && !flag_writable_strings) \
128e5769 2491 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
1ff5cbcd 2492 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
ed8969fa
JW
2493 && DECL_INITIAL (EXP) \
2494 && (DECL_INITIAL (EXP) == error_mark_node \
2495 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2496 && ! (RELOC))) \
f045b2c9
RS
2497 { \
2498 if (TREE_PUBLIC (EXP)) \
2499 read_only_data_section (); \
2500 else \
2501 read_only_private_data_section (); \
2502 } \
2503 else \
2504 { \
2505 if (TREE_PUBLIC (EXP)) \
2506 data_section (); \
2507 else \
2508 private_data_section (); \
2509 } \
2510}
2511
2512/* This outputs NAME to FILE up to the first null or '['. */
2513
2514#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
c23a9d0e
JM
2515 { \
2516 char *_p; \
99d3d26e 2517 \
c23a9d0e
JM
2518 STRIP_NAME_ENCODING (_p, (NAME)); \
2519 assemble_name ((FILE), _p); \
2520 }
2521
2522/* Remove any trailing [DS] or the like from the symbol name. */
2523
28c57785
MM
2524#define STRIP_NAME_ENCODING(VAR,NAME) \
2525 do \
2526 { \
2527 char *_name = (NAME); \
b6c9286a 2528 int _len; \
28c57785 2529 if (_name[0] == '*') \
b6c9286a
MM
2530 _name++; \
2531 _len = strlen (_name); \
2532 if (_name[_len - 1] != ']') \
2533 (VAR) = _name; \
28c57785
MM
2534 else \
2535 { \
b6c9286a
MM
2536 (VAR) = (char *) alloca (_len + 1); \
2537 strcpy ((VAR), _name); \
2538 (VAR)[_len - 4] = '\0'; \
28c57785
MM
2539 } \
2540 } \
c23a9d0e 2541 while (0)
f045b2c9
RS
2542
2543/* Output something to declare an external symbol to the assembler. Most
c81bebd7 2544 assemblers don't need this.
f045b2c9
RS
2545
2546 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2547 name. Normally we write this out along with the name. In the few cases
2548 where we can't, it gets stripped off. */
2549
2550#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2551{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2552 if ((TREE_CODE (DECL) == VAR_DECL \
2553 || TREE_CODE (DECL) == FUNCTION_DECL) \
f045b2c9
RS
2554 && (NAME)[strlen (NAME) - 1] != ']') \
2555 { \
2556 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2557 strcpy (_name, XSTR (_symref, 0)); \
2558 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2559 XSTR (_symref, 0) = _name; \
2560 } \
19d2d16f 2561 fputs ("\t.extern ", FILE); \
f045b2c9
RS
2562 assemble_name (FILE, XSTR (_symref, 0)); \
2563 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2564 { \
19d2d16f 2565 fputs ("\n\t.extern .", FILE); \
f045b2c9
RS
2566 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2567 } \
19d2d16f 2568 putc ('\n', FILE); \
f045b2c9
RS
2569}
2570
2571/* Similar, but for libcall. We only have to worry about the function name,
2572 not that of the descriptor. */
2573
2574#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
19d2d16f 2575{ fputs ("\t.extern .", FILE); \
f045b2c9 2576 assemble_name (FILE, XSTR (FUN, 0)); \
19d2d16f 2577 putc ('\n', FILE); \
f045b2c9
RS
2578}
2579
2580/* Output to assembler file text saying following lines
2581 may contain character constants, extra white space, comments, etc. */
2582
2583#define ASM_APP_ON ""
2584
2585/* Output to assembler file text saying following lines
2586 no longer contain unusual constructs. */
2587
2588#define ASM_APP_OFF ""
2589
2590/* Output before instructions. */
2591
11117bb9 2592#define TEXT_SECTION_ASM_OP ".csect .text[PR]"
f045b2c9
RS
2593
2594/* Output before writable data. */
2595
fdaff8ba 2596#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
2597
2598/* How to refer to registers in assembler output.
2599 This sequence is indexed by compiler's hard-register-number (see above). */
2600
802a0058 2601extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2602
2603#define REGISTER_NAMES \
2604{ \
2605 &rs6000_reg_names[ 0][0], /* r0 */ \
2606 &rs6000_reg_names[ 1][0], /* r1 */ \
2607 &rs6000_reg_names[ 2][0], /* r2 */ \
2608 &rs6000_reg_names[ 3][0], /* r3 */ \
2609 &rs6000_reg_names[ 4][0], /* r4 */ \
2610 &rs6000_reg_names[ 5][0], /* r5 */ \
2611 &rs6000_reg_names[ 6][0], /* r6 */ \
2612 &rs6000_reg_names[ 7][0], /* r7 */ \
2613 &rs6000_reg_names[ 8][0], /* r8 */ \
2614 &rs6000_reg_names[ 9][0], /* r9 */ \
2615 &rs6000_reg_names[10][0], /* r10 */ \
2616 &rs6000_reg_names[11][0], /* r11 */ \
2617 &rs6000_reg_names[12][0], /* r12 */ \
2618 &rs6000_reg_names[13][0], /* r13 */ \
2619 &rs6000_reg_names[14][0], /* r14 */ \
2620 &rs6000_reg_names[15][0], /* r15 */ \
2621 &rs6000_reg_names[16][0], /* r16 */ \
2622 &rs6000_reg_names[17][0], /* r17 */ \
2623 &rs6000_reg_names[18][0], /* r18 */ \
2624 &rs6000_reg_names[19][0], /* r19 */ \
2625 &rs6000_reg_names[20][0], /* r20 */ \
2626 &rs6000_reg_names[21][0], /* r21 */ \
2627 &rs6000_reg_names[22][0], /* r22 */ \
2628 &rs6000_reg_names[23][0], /* r23 */ \
2629 &rs6000_reg_names[24][0], /* r24 */ \
2630 &rs6000_reg_names[25][0], /* r25 */ \
2631 &rs6000_reg_names[26][0], /* r26 */ \
2632 &rs6000_reg_names[27][0], /* r27 */ \
2633 &rs6000_reg_names[28][0], /* r28 */ \
2634 &rs6000_reg_names[29][0], /* r29 */ \
2635 &rs6000_reg_names[30][0], /* r30 */ \
2636 &rs6000_reg_names[31][0], /* r31 */ \
2637 \
2638 &rs6000_reg_names[32][0], /* fr0 */ \
2639 &rs6000_reg_names[33][0], /* fr1 */ \
2640 &rs6000_reg_names[34][0], /* fr2 */ \
2641 &rs6000_reg_names[35][0], /* fr3 */ \
2642 &rs6000_reg_names[36][0], /* fr4 */ \
2643 &rs6000_reg_names[37][0], /* fr5 */ \
2644 &rs6000_reg_names[38][0], /* fr6 */ \
2645 &rs6000_reg_names[39][0], /* fr7 */ \
2646 &rs6000_reg_names[40][0], /* fr8 */ \
2647 &rs6000_reg_names[41][0], /* fr9 */ \
2648 &rs6000_reg_names[42][0], /* fr10 */ \
2649 &rs6000_reg_names[43][0], /* fr11 */ \
2650 &rs6000_reg_names[44][0], /* fr12 */ \
2651 &rs6000_reg_names[45][0], /* fr13 */ \
2652 &rs6000_reg_names[46][0], /* fr14 */ \
2653 &rs6000_reg_names[47][0], /* fr15 */ \
2654 &rs6000_reg_names[48][0], /* fr16 */ \
2655 &rs6000_reg_names[49][0], /* fr17 */ \
2656 &rs6000_reg_names[50][0], /* fr18 */ \
2657 &rs6000_reg_names[51][0], /* fr19 */ \
2658 &rs6000_reg_names[52][0], /* fr20 */ \
2659 &rs6000_reg_names[53][0], /* fr21 */ \
2660 &rs6000_reg_names[54][0], /* fr22 */ \
2661 &rs6000_reg_names[55][0], /* fr23 */ \
2662 &rs6000_reg_names[56][0], /* fr24 */ \
2663 &rs6000_reg_names[57][0], /* fr25 */ \
2664 &rs6000_reg_names[58][0], /* fr26 */ \
2665 &rs6000_reg_names[59][0], /* fr27 */ \
2666 &rs6000_reg_names[60][0], /* fr28 */ \
2667 &rs6000_reg_names[61][0], /* fr29 */ \
2668 &rs6000_reg_names[62][0], /* fr30 */ \
2669 &rs6000_reg_names[63][0], /* fr31 */ \
2670 \
2671 &rs6000_reg_names[64][0], /* mq */ \
2672 &rs6000_reg_names[65][0], /* lr */ \
2673 &rs6000_reg_names[66][0], /* ctr */ \
2674 &rs6000_reg_names[67][0], /* ap */ \
2675 \
2676 &rs6000_reg_names[68][0], /* cr0 */ \
2677 &rs6000_reg_names[69][0], /* cr1 */ \
2678 &rs6000_reg_names[70][0], /* cr2 */ \
2679 &rs6000_reg_names[71][0], /* cr3 */ \
2680 &rs6000_reg_names[72][0], /* cr4 */ \
2681 &rs6000_reg_names[73][0], /* cr5 */ \
2682 &rs6000_reg_names[74][0], /* cr6 */ \
2683 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058
MM
2684 \
2685 &rs6000_reg_names[76][0], /* fpmem */ \
c81bebd7
MM
2686}
2687
2688/* print-rtl can't handle the above REGISTER_NAMES, so define the
2689 following for it. Switch to use the alternate names since
2690 they are more mnemonic. */
2691
2692#define DEBUG_REGISTER_NAMES \
2693{ \
802a0058
MM
2694 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2695 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2696 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2697 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2698 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2699 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2700 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2701 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2702 "mq", "lr", "ctr", "ap", \
2703 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2704 "fpmem" \
c81bebd7 2705}
f045b2c9
RS
2706
2707/* Table of additional register names to use in user input. */
2708
2709#define ADDITIONAL_REGISTER_NAMES \
2710 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
2711 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
2712 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
2713 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
2714 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
2715 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
2716 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
2717 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
2718 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
2719 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
2720 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
2721 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
2722 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
2723 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
2724 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
2725 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
2726 /* no additional names for: mq, lr, ctr, ap */ \
2727 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
fc3ffe83 2728 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
c81bebd7 2729 "cc", 68, "sp", 1, "toc", 2 }
f045b2c9
RS
2730
2731/* How to renumber registers for dbx and gdb. */
2732
2733#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2734
0da40b09
RK
2735/* Text to write out after a CALL that may be replaced by glue code by
2736 the loader. This depends on the AIX version. */
2737#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2738
f045b2c9
RS
2739/* This is how to output the definition of a user-level label named NAME,
2740 such as the label on a static function or variable NAME. */
2741
2742#define ASM_OUTPUT_LABEL(FILE,NAME) \
2743 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2744
2745/* This is how to output a command to make the user-level label named NAME
2746 defined for reference from other files. */
2747
2748#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2749 do { fputs ("\t.globl ", FILE); \
2750 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2751
2752/* This is how to output a reference to a user-level label named NAME.
2753 `assemble_name' uses this. */
2754
2755#define ASM_OUTPUT_LABELREF(FILE,NAME) \
7509c759 2756 fputs (NAME, FILE)
f045b2c9
RS
2757
2758/* This is how to output an internal numbered label where
2759 PREFIX is the class of label and NUM is the number within the class. */
2760
2761#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2762 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2763
3daf36a4
ILT
2764/* This is how to output an internal label prefix. rs6000.c uses this
2765 when generating traceback tables. */
2766
2767#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2768 fprintf (FILE, "%s..", PREFIX)
2769
f045b2c9
RS
2770/* This is how to output a label for a jump table. Arguments are the same as
2771 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2772 passed. */
2773
2774#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2775{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2776
2777/* This is how to store into the string LABEL
2778 the symbol_ref name of an internal numbered label where
2779 PREFIX is the class of label and NUM is the number within the class.
2780 This is suitable for output with `assemble_name'. */
2781
2782#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3d199f7a 2783 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
f045b2c9
RS
2784
2785/* This is how to output an assembler line defining a `double' constant. */
2786
a5b1eb34
RS
2787#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2788 { \
2789 if (REAL_VALUE_ISINF (VALUE) \
2790 || REAL_VALUE_ISNAN (VALUE) \
2791 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2792 { \
2793 long t[2]; \
2794 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2795 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2796 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2797 } \
2798 else \
2799 { \
2800 char str[30]; \
2801 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2802 fprintf (FILE, "\t.double 0d%s\n", str); \
2803 } \
2804 }
f045b2c9
RS
2805
2806/* This is how to output an assembler line defining a `float' constant. */
2807
a5b1eb34
RS
2808#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2809 { \
2810 if (REAL_VALUE_ISINF (VALUE) \
2811 || REAL_VALUE_ISNAN (VALUE) \
2812 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2813 { \
2814 long t; \
2815 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2816 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2817 } \
2818 else \
2819 { \
2820 char str[30]; \
2821 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2822 fprintf (FILE, "\t.float 0d%s\n", str); \
2823 } \
2824 }
f045b2c9
RS
2825
2826/* This is how to output an assembler line defining an `int' constant. */
2827
5854b0d0
DE
2828#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2829do { \
2830 if (TARGET_32BIT) \
2831 { \
2832 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
2833 UNITS_PER_WORD, 1); \
2834 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
2835 UNITS_PER_WORD, 1); \
2836 } \
2837 else \
2838 { \
2839 fputs ("\t.llong ", FILE); \
2840 output_addr_const (FILE, (VALUE)); \
2841 putc ('\n', FILE); \
2842 } \
2843} while (0)
2844
f045b2c9 2845#define ASM_OUTPUT_INT(FILE,VALUE) \
19d2d16f 2846( fputs ("\t.long ", FILE), \
f045b2c9 2847 output_addr_const (FILE, (VALUE)), \
19d2d16f 2848 putc ('\n', FILE))
f045b2c9
RS
2849
2850/* Likewise for `char' and `short' constants. */
2851
2852#define ASM_OUTPUT_SHORT(FILE,VALUE) \
19d2d16f 2853( fputs ("\t.short ", FILE), \
f045b2c9 2854 output_addr_const (FILE, (VALUE)), \
19d2d16f 2855 putc ('\n', FILE))
f045b2c9
RS
2856
2857#define ASM_OUTPUT_CHAR(FILE,VALUE) \
19d2d16f 2858( fputs ("\t.byte ", FILE), \
f045b2c9 2859 output_addr_const (FILE, (VALUE)), \
19d2d16f 2860 putc ('\n', FILE))
f045b2c9
RS
2861
2862/* This is how to output an assembler line for a numeric constant byte. */
2863
2864#define ASM_OUTPUT_BYTE(FILE,VALUE) \
2865 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2866
2867/* This is how to output an assembler line to define N characters starting
2868 at P to FILE. */
2869
2870#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2871
2872/* This is how to output code to push a register on the stack.
2873 It need not be very fast code. */
2874
4697a36c
MM
2875#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2876do { \
2877 extern char *reg_names[]; \
2878 asm_fprintf (FILE, "\{tstu|stwu} %s,-4(%s)\n", reg_names[REGNO], \
2879 reg_names[1]); \
2880} while (0)
f045b2c9
RS
2881
2882/* This is how to output an insn to pop a register from the stack.
2883 It need not be very fast code. */
2884
4697a36c
MM
2885#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2886do { \
2887 extern char *reg_names[]; \
2888 asm_fprintf (FILE, "\t{l|lwz} %s,0(%s)\n\t{ai|addic} %s,%s,4\n", \
2889 reg_names[REGNO], reg_names[1], reg_names[1], \
2890 reg_names[1]); \
2891} while (0)
f045b2c9 2892
c81bebd7 2893/* This is how to output an element of a case-vector that is absolute.
f045b2c9
RS
2894 (RS/6000 does not use such vectors, but we must define this macro
2895 anyway.) */
2896
3daf36a4
ILT
2897#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2898 do { char buf[100]; \
5854b0d0 2899 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
2900 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2901 assemble_name (FILE, buf); \
19d2d16f 2902 putc ('\n', FILE); \
3daf36a4 2903 } while (0)
f045b2c9
RS
2904
2905/* This is how to output an element of a case-vector that is relative. */
2906
2907#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
3daf36a4 2908 do { char buf[100]; \
5854b0d0 2909 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
2910 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2911 assemble_name (FILE, buf); \
19d2d16f 2912 putc ('-', FILE); \
3daf36a4
ILT
2913 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2914 assemble_name (FILE, buf); \
19d2d16f 2915 putc ('\n', FILE); \
3daf36a4 2916 } while (0)
f045b2c9
RS
2917
2918/* This is how to output an assembler line
2919 that says to advance the location counter
2920 to a multiple of 2**LOG bytes. */
2921
2922#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2923 if ((LOG) != 0) \
2924 fprintf (FILE, "\t.align %d\n", (LOG))
2925
2926#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2927 fprintf (FILE, "\t.space %d\n", (SIZE))
2928
2929/* This says how to output an assembler line
2930 to define a global common symbol. */
2931
b73fd26c 2932#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
fc3ffe83 2933 do { fputs (".comm ", (FILE)); \
f045b2c9 2934 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
b73fd26c
DE
2935 if ( (SIZE) > 4) \
2936 fprintf ((FILE), ",%d,3\n", (SIZE)); \
2937 else \
2938 fprintf( (FILE), ",%d\n", (SIZE)); \
2939 } while (0)
f045b2c9
RS
2940
2941/* This says how to output an assembler line
2942 to define a local common symbol. */
2943
2944#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 2945 do { fputs (".lcomm ", (FILE)); \
f045b2c9 2946 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 2947 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
2948 } while (0)
2949
2950/* Store in OUTPUT a string (made with alloca) containing
2951 an assembler-name for a local static variable named NAME.
2952 LABELNO is an integer which is different for each call. */
2953
2954#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2955( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2956 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2957
2958/* Define the parentheses used to group arithmetic operations
2959 in assembler code. */
2960
2961#define ASM_OPEN_PAREN "("
2962#define ASM_CLOSE_PAREN ")"
2963
2964/* Define results of standard character escape sequences. */
2965#define TARGET_BELL 007
2966#define TARGET_BS 010
2967#define TARGET_TAB 011
2968#define TARGET_NEWLINE 012
2969#define TARGET_VT 013
2970#define TARGET_FF 014
2971#define TARGET_CR 015
2972
2973/* Print operand X (an rtx) in assembler syntax to file FILE.
2974 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2975 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2976
2977#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2978
2979/* Define which CODE values are valid. */
2980
c81bebd7
MM
2981#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2982 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
f045b2c9
RS
2983
2984/* Print a memory address as an operand to reference that memory location. */
2985
2986#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2987
2988/* Define the codes that are matched by predicates in rs6000.c. */
2989
802a0058 2990#define PREDICATE_CODES \
f045b2c9
RS
2991 {"short_cint_operand", {CONST_INT}}, \
2992 {"u_short_cint_operand", {CONST_INT}}, \
f357808b 2993 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 2994 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9
RS
2995 {"cc_reg_operand", {SUBREG, REG}}, \
2996 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2997 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2998 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2999 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
766a866c 3000 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
f045b2c9
RS
3001 {"easy_fp_constant", {CONST_DOUBLE}}, \
3002 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
414d3ee4 3003 {"lwa_operand", {SUBREG, MEM, REG}}, \
b6c9286a 3004 {"volatile_mem_operand", {MEM}}, \
b7676b46 3005 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
f045b2c9
RS
3006 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
3007 {"add_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3008 {"non_add_cint_operand", {CONST_INT}}, \
f045b2c9 3009 {"and_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3010 {"non_and_cint_operand", {CONST_INT}}, \
f045b2c9 3011 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3012 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9 3013 {"mask_operand", {CONST_INT}}, \
b6c9286a 3014 {"count_register_operand", {REG}}, \
802a0058 3015 {"fpmem_operand", {REG}}, \
f045b2c9 3016 {"call_operand", {SYMBOL_REF, REG}}, \
f8634644 3017 {"current_file_function_operand", {SYMBOL_REF}}, \
38250554 3018 {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \
f8634644
RK
3019 {"load_multiple_operation", {PARALLEL}}, \
3020 {"store_multiple_operation", {PARALLEL}}, \
3021 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3022 GT, LEU, LTU, GEU, GTU}}, \
f8634644 3023 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3024 GT, LEU, LTU, GEU, GTU}},
75814ad4 3025
b6c9286a
MM
3026
3027/* uncomment for disabling the corresponding default options */
3028/* #define MACHINE_no_sched_interblock */
3029/* #define MACHINE_no_sched_speculative */
3030/* #define MACHINE_no_sched_speculative_load */
3031
3032/* indicate that issue rate is defined for this machine
3033 (no need to use the default) */
3034#define MACHINE_issue_rate
3035
766a866c
MM
3036/* General flags. */
3037extern int flag_pic;
354b734b
MM
3038extern int optimize;
3039extern int flag_expensive_optimizations;
a7df97e6 3040extern int frame_pointer_needed;
354b734b 3041
75814ad4 3042/* Declare functions in rs6000.c */
6b67933e 3043extern void output_options ();
75814ad4 3044extern void rs6000_override_options ();
3cfa4909 3045extern void rs6000_file_start ();
6b67933e 3046extern struct rtx_def *rs6000_float_const ();
75814ad4 3047extern struct rtx_def *rs6000_immed_double_const ();
c4c40373 3048extern struct rtx_def *rs6000_got_register ();
75814ad4
MM
3049extern int direct_return ();
3050extern int any_operand ();
3051extern int short_cint_operand ();
3052extern int u_short_cint_operand ();
3053extern int non_short_cint_operand ();
3054extern int gpc_reg_operand ();
3055extern int cc_reg_operand ();
3056extern int reg_or_short_operand ();
3057extern int reg_or_neg_short_operand ();
3058extern int reg_or_u_short_operand ();
3059extern int reg_or_cint_operand ();
766a866c 3060extern int got_operand ();
4e74d8ec 3061extern int num_insns_constant ();
75814ad4 3062extern int easy_fp_constant ();
b7676b46
RK
3063extern int volatile_mem_operand ();
3064extern int offsettable_addr_operand ();
75814ad4
MM
3065extern int mem_or_easy_const_operand ();
3066extern int add_operand ();
3067extern int non_add_cint_operand ();
3068extern int logical_operand ();
3069extern int non_logical_operand ();
3070extern int mask_constant ();
3071extern int mask_operand ();
3072extern int and_operand ();
802a0058
MM
3073extern int count_register_operand ();
3074extern int fpmem_operand ();
75814ad4
MM
3075extern int non_and_cint_operand ();
3076extern int reg_or_mem_operand ();
3077extern int lwa_operand ();
3078extern int call_operand ();
3079extern int current_file_function_operand ();
3080extern int input_operand ();
7509c759 3081extern int small_data_operand ();
4697a36c
MM
3082extern void init_cumulative_args ();
3083extern void function_arg_advance ();
b6c9286a 3084extern int function_arg_boundary ();
4697a36c
MM
3085extern struct rtx_def *function_arg ();
3086extern int function_arg_partial_nregs ();
3087extern int function_arg_pass_by_reference ();
3088extern void setup_incoming_varargs ();
3089extern struct rtx_def *expand_builtin_saveregs ();
b7676b46 3090extern struct rtx_def *rs6000_stack_temp ();
7e69e155 3091extern int expand_block_move ();
75814ad4
MM
3092extern int load_multiple_operation ();
3093extern int store_multiple_operation ();
3094extern int branch_comparison_operator ();
3095extern int scc_comparison_operator ();
3096extern int includes_lshift_p ();
3097extern int includes_rshift_p ();
3098extern int registers_ok_for_quad_peep ();
3099extern int addrs_ok_for_quad_peep ();
3100extern enum reg_class secondary_reload_class ();
3101extern int ccr_bit ();
d266da75 3102extern void rs6000_finalize_pic ();
30ea98f1 3103extern void rs6000_reorg ();
a7df97e6
MM
3104extern void rs6000_save_machine_status ();
3105extern void rs6000_restore_machine_status ();
3106extern void rs6000_init_expanders ();
75814ad4
MM
3107extern void print_operand ();
3108extern void print_operand_address ();
3109extern int first_reg_to_save ();
3110extern int first_fp_reg_to_save ();
75814ad4 3111extern int rs6000_makes_calls ();
4697a36c 3112extern rs6000_stack_t *rs6000_stack_info ();
75814ad4
MM
3113extern void output_prolog ();
3114extern void output_epilog ();
3115extern void output_toc ();
3116extern void output_ascii ();
3117extern void rs6000_gen_section_name ();
3118extern void output_function_profiler ();
3119extern int rs6000_adjust_cost ();
b6c9286a
MM
3120extern void rs6000_trampoline_template ();
3121extern int rs6000_trampoline_size ();
3122extern void rs6000_initialize_trampoline ();
7509c759
MM
3123extern int rs6000_comp_type_attributes ();
3124extern int rs6000_valid_decl_attribute_p ();
3125extern int rs6000_valid_type_attribute_p ();
3126extern void rs6000_set_default_type_attributes ();
3127extern struct rtx_def *rs6000_dll_import_ref ();
6a4cee5f 3128extern struct rtx_def *rs6000_longcall_ref ();
28174a14
MS
3129
3130/* See nonlocal_goto_receiver for when this must be set. */
3131
3132#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)