]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
rs6000: Fix for AIX, for r239866
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
818ab71a 2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 4
5de601cf 5 This file is part of GCC.
f045b2c9 6
5de601cf
NC
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
5de601cf 10 option) any later version.
f045b2c9 11
5de601cf
NC
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f045b2c9 16
748086b7
JJ
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 24 <http://www.gnu.org/licenses/>. */
f045b2c9
RS
25
26/* Note that some other tm.h files include this one and then override
9ebbca7d 27 many of the definitions. */
f045b2c9 28
fd438373
MM
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
9ebbca7d
GK
33/* Definitions for the object file format. These are set at
34 compile-time. */
f045b2c9 35
9ebbca7d
GK
36#define OBJECT_XCOFF 1
37#define OBJECT_ELF 2
38#define OBJECT_PEF 3
ee890fe2 39#define OBJECT_MACHO 4
f045b2c9 40
9ebbca7d 41#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 42#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 43#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 44#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 45
2bfcf297
DB
46#ifndef TARGET_AIX
47#define TARGET_AIX 0
48#endif
49
78009d9f
MM
50#ifndef TARGET_AIX_OS
51#define TARGET_AIX_OS 0
52#endif
53
85b776df
AM
54/* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56#define DOT_SYMBOLS 1
57
8e3f41e7
MM
58/* Default string to use for cpu if not specified. */
59#ifndef TARGET_CPU_DEFAULT
60#define TARGET_CPU_DEFAULT ((char *)0)
61#endif
62
f565b0a1 63/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 64#ifdef CONFIG_PPC405CR
f565b0a1
DE
65#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66#else
67#define PPC405_ERRATUM77 0
68#endif
69
96038623
DE
70#ifndef TARGET_PAIRED_FLOAT
71#define TARGET_PAIRED_FLOAT 0
72#endif
73
cd679487
BE
74#ifdef HAVE_AS_POPCNTB
75#define ASM_CPU_POWER5_SPEC "-mpower5"
76#else
77#define ASM_CPU_POWER5_SPEC "-mpower4"
78#endif
79
80#ifdef HAVE_AS_DFP
81#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82#else
83#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84#endif
85
cacf1ca8 86#ifdef HAVE_AS_POPCNTD
d40c9e33
PB
87#define ASM_CPU_POWER7_SPEC "-mpower7"
88#else
89#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90#endif
91
428bffcb
PB
92#ifdef HAVE_AS_POWER8
93#define ASM_CPU_POWER8_SPEC "-mpower8"
94#else
f62511da 95#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
428bffcb
PB
96#endif
97
d1f0d376
MM
98#ifdef HAVE_AS_POWER9
99#define ASM_CPU_POWER9_SPEC "-mpower9"
100#else
101#define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102#endif
103
47f67e51
PB
104#ifdef HAVE_AS_DCI
105#define ASM_CPU_476_SPEC "-m476"
106#else
107#define ASM_CPU_476_SPEC "-mpower4"
108#endif
109
cacf1ca8
MM
110/* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
f984d8df
DB
114#define ASM_CPU_SPEC \
115"%{!mcpu*: \
93ae5495 116 %{mpowerpc64*: -mppc64} \
a441dedb 117 %{!mpowerpc64*: %(asm_default)}} \
cacf1ca8 118%{mcpu=native: %(asm_cpu_native)} \
d296e02e 119%{mcpu=cell: -mcell} \
93ae5495 120%{mcpu=power3: -mppc64} \
957e9e48 121%{mcpu=power4: -mpower4} \
cd679487
BE
122%{mcpu=power5: %(asm_cpu_power5)} \
123%{mcpu=power5+: %(asm_cpu_power5)} \
124%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
d40c9e33 126%{mcpu=power7: %(asm_cpu_power7)} \
428bffcb 127%{mcpu=power8: %(asm_cpu_power8)} \
d1f0d376 128%{mcpu=power9: %(asm_cpu_power9)} \
ebde32fd 129%{mcpu=a2: -ma2} \
f984d8df 130%{mcpu=powerpc: -mppc} \
fa17b3db 131%{mcpu=powerpc64le: %(asm_cpu_power8)} \
93ae5495 132%{mcpu=rs64a: -mppc64} \
f984d8df 133%{mcpu=401: -mppc} \
61a8515c
JS
134%{mcpu=403: -m403} \
135%{mcpu=405: -m405} \
2c9d95ef
DE
136%{mcpu=405fp: -m405} \
137%{mcpu=440: -m440} \
138%{mcpu=440fp: -m440} \
4adf8008
PB
139%{mcpu=464: -m440} \
140%{mcpu=464fp: -m440} \
47f67e51
PB
141%{mcpu=476: %(asm_cpu_476)} \
142%{mcpu=476fp: %(asm_cpu_476)} \
f984d8df
DB
143%{mcpu=505: -mppc} \
144%{mcpu=601: -m601} \
145%{mcpu=602: -mppc} \
146%{mcpu=603: -mppc} \
147%{mcpu=603e: -mppc} \
148%{mcpu=ec603e: -mppc} \
149%{mcpu=604: -mppc} \
150%{mcpu=604e: -mppc} \
93ae5495
AM
151%{mcpu=620: -mppc64} \
152%{mcpu=630: -mppc64} \
f984d8df
DB
153%{mcpu=740: -mppc} \
154%{mcpu=750: -mppc} \
49ffe578 155%{mcpu=G3: -mppc} \
93ae5495
AM
156%{mcpu=7400: -mppc -maltivec} \
157%{mcpu=7450: -mppc -maltivec} \
158%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
159%{mcpu=801: -mppc} \
160%{mcpu=821: -mppc} \
161%{mcpu=823: -mppc} \
775db490 162%{mcpu=860: -mppc} \
93ae5495
AM
163%{mcpu=970: -mpower4 -maltivec} \
164%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 165%{mcpu=8540: -me500} \
5ca0373f 166%{mcpu=8548: -me500} \
fa41c305
EW
167%{mcpu=e300c2: -me300} \
168%{mcpu=e300c3: -me300} \
edae5fe3 169%{mcpu=e500mc: -me500mc} \
b17f98b1 170%{mcpu=e500mc64: -me500mc64} \
683ed19e
EW
171%{mcpu=e5500: -me5500} \
172%{mcpu=e6500: -me6500} \
93ae5495 173%{maltivec: -maltivec} \
2c9ccc21 174%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
0258b6e4 175%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
93ae5495 176-many"
f984d8df
DB
177
178#define CPP_DEFAULT_SPEC ""
179
180#define ASM_DEFAULT_SPEC ""
181
841faeed
MM
182/* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
5de601cf 187 specification name, and a string constant that used by the GCC driver
841faeed
MM
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
7509c759 192#define SUBTARGET_EXTRA_SPECS
7509c759 193
c81bebd7 194#define EXTRA_SPECS \
c81bebd7 195 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7 196 { "asm_cpu", ASM_CPU_SPEC }, \
cacf1ca8 197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
c81bebd7 198 { "asm_default", ASM_DEFAULT_SPEC }, \
0eab6840 199 { "cc1_cpu", CC1_CPU_SPEC }, \
cd679487
BE
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
d40c9e33 202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
428bffcb 203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
d1f0d376 204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
47f67e51 205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
7509c759
MM
206 SUBTARGET_EXTRA_SPECS
207
0eab6840
DE
208/* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212/* In driver-rs6000.c. */
213extern const char *host_detect_local_cpu (int argc, const char **argv);
214#define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216#define HAVE_LOCAL_CPU_DETECT
cacf1ca8
MM
217#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219#else
220#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
0eab6840
DE
221#endif
222
ee7caeb3
DE
223#ifndef CC1_CPU_SPEC
224#ifdef HAVE_LOCAL_CPU_DETECT
0eab6840
DE
225#define CC1_CPU_SPEC \
226"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
ee7caeb3
DE
228#else
229#define CC1_CPU_SPEC ""
230#endif
0eab6840
DE
231#endif
232
fb623df5 233/* Architecture type. */
f045b2c9 234
bb22512c 235/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 236 optional field operand for mfcr. */
fb623df5 237
78f5898b 238#ifndef HAVE_AS_MFCRF
432218ba 239#undef TARGET_MFCRF
ffa22984
DE
240#define TARGET_MFCRF 0
241#endif
242
0fa2e4df 243/* Define TARGET_POPCNTB if the target assembler does not support the
432218ba
DE
244 popcount byte instruction. */
245
246#ifndef HAVE_AS_POPCNTB
247#undef TARGET_POPCNTB
248#define TARGET_POPCNTB 0
249#endif
250
9719f3b7
DE
251/* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254#ifndef HAVE_AS_FPRND
255#undef TARGET_FPRND
256#define TARGET_FPRND 0
257#endif
258
b639c3c2
JJ
259/* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262#ifndef HAVE_AS_CMPB
263#undef TARGET_CMPB
264#define TARGET_CMPB 0
265#endif
266
44cd321e
PS
267/* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270#ifndef HAVE_AS_MFPGPR
271#undef TARGET_MFPGPR
272#define TARGET_MFPGPR 0
273#endif
274
b639c3c2
JJ
275/* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277#ifndef HAVE_AS_DFP
278#undef TARGET_DFP
279#define TARGET_DFP 0
280#endif
281
cacf1ca8
MM
282/* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285#ifndef HAVE_AS_POPCNTD
286#undef TARGET_POPCNTD
287#define TARGET_POPCNTD 0
288#endif
289
f62511da
MM
290/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294#ifndef HAVE_AS_POWER8
295#undef TARGET_DIRECT_MOVE
296#undef TARGET_CRYPTO
0258b6e4 297#undef TARGET_HTM
f62511da
MM
298#undef TARGET_P8_VECTOR
299#define TARGET_DIRECT_MOVE 0
300#define TARGET_CRYPTO 0
0258b6e4 301#define TARGET_HTM 0
f62511da
MM
302#define TARGET_P8_VECTOR 0
303#endif
304
caea59ff
KN
305/* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
309
310#ifndef HAVE_AS_POWER9
311#undef TARGET_FLOAT128_HW
312#undef TARGET_MODULO
313#undef TARGET_P9_VECTOR
314#undef TARGET_P9_MINMAX
315#undef TARGET_P9_DFORM_SCALAR
316#undef TARGET_P9_DFORM_VECTOR
5a3a6a5e 317#undef TARGET_P9_MISC
caea59ff
KN
318#define TARGET_FLOAT128_HW 0
319#define TARGET_MODULO 0
320#define TARGET_P9_VECTOR 0
321#define TARGET_P9_MINMAX 0
322#define TARGET_P9_DFORM_SCALAR 0
323#define TARGET_P9_DFORM_VECTOR 0
5a3a6a5e 324#define TARGET_P9_MISC 0
caea59ff
KN
325#endif
326
cacf1ca8
MM
327/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
328 not, generate the lwsync code as an integer constant. */
329#ifdef HAVE_AS_LWSYNC
330#define TARGET_LWSYNC_INSTRUCTION 1
331#else
332#define TARGET_LWSYNC_INSTRUCTION 0
333#endif
334
9752c4ad
AM
335/* Define TARGET_TLS_MARKERS if the target assembler does not support
336 arg markers for __tls_get_addr calls. */
337#ifndef HAVE_AS_TLS_MARKERS
338#undef TARGET_TLS_MARKERS
339#define TARGET_TLS_MARKERS 0
340#else
341#define TARGET_TLS_MARKERS tls_markers
342#endif
343
7f970b70
AM
344#ifndef TARGET_SECURE_PLT
345#define TARGET_SECURE_PLT 0
346#endif
347
070b27da
AM
348#ifndef TARGET_CMODEL
349#define TARGET_CMODEL CMODEL_SMALL
350#endif
351
2f3e5814 352#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 353
c4501e62
JJ
354#ifndef HAVE_AS_TLS
355#define HAVE_AS_TLS 0
356#endif
357
be26142a
PB
358#ifndef TARGET_LINK_STACK
359#define TARGET_LINK_STACK 0
360#endif
361
362#ifndef SET_TARGET_LINK_STACK
363#define SET_TARGET_LINK_STACK(X) do { } while (0)
364#endif
365
48d72335
DE
366/* Return 1 for a symbol ref for a thread-local storage symbol. */
367#define RS6000_SYMBOL_REF_TLS_P(RTX) \
368 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
369
996ed075
JJ
370#ifdef IN_LIBGCC2
371/* For libgcc2 we make sure this is a compile time constant */
67796c1f 372#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
78f5898b 373#undef TARGET_POWERPC64
996ed075
JJ
374#define TARGET_POWERPC64 1
375#else
78f5898b 376#undef TARGET_POWERPC64
996ed075
JJ
377#define TARGET_POWERPC64 0
378#endif
b6c9286a 379#else
78f5898b 380 /* The option machinery will define this. */
b6c9286a
MM
381#endif
382
c28a7c24 383#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
9ebbca7d 384
696e45ba
ME
385/* FPU operations supported.
386 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
387 also test TARGET_HARD_FLOAT. */
388#define TARGET_SINGLE_FLOAT 1
389#define TARGET_DOUBLE_FLOAT 1
390#define TARGET_SINGLE_FPU 0
391#define TARGET_SIMPLE_FPU 0
0bb7b92e 392#define TARGET_XILINX_FPU 0
696e45ba 393
fb623df5
RK
394/* Recast the processor type to the cpu attribute. */
395#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
396
8482e358 397/* Define generic processor types based upon current deployment. */
3cb999d8 398#define PROCESSOR_COMMON PROCESSOR_PPC601
3cb999d8
DE
399#define PROCESSOR_POWERPC PROCESSOR_PPC604
400#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 401
fb623df5 402/* Define the default processor. This is overridden by other tm.h files. */
f3061fa4 403#define PROCESSOR_DEFAULT PROCESSOR_PPC603
3cb999d8 404#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 405
59ac9a55
JJ
406/* Specify the dialect of assembler to use. Only new mnemonics are supported
407 starting with GCC 4.8, i.e. just one dialect, but for backwards
408 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
409 defined. */
410#define ASSEMBLER_DIALECT 1
411
38c1f2d7 412/* Debug support */
fd438373
MM
413#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
414#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
415#define MASK_DEBUG_REG 0x04 /* debug register handling */
416#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
417#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
418#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
7fa14a01 419#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
fd438373
MM
420#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
421 | MASK_DEBUG_ARG \
422 | MASK_DEBUG_REG \
423 | MASK_DEBUG_ADDR \
424 | MASK_DEBUG_COST \
7fa14a01
MM
425 | MASK_DEBUG_TARGET \
426 | MASK_DEBUG_BUILTIN)
fd438373
MM
427
428#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
429#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
430#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
431#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
432#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
433#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
7fa14a01 434#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
cacf1ca8 435
2c83faf8
MM
436/* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
437 long double format that uses a pair of doubles, or IEEE 128-bit floating
438 point. KFmode was added as a way to represent IEEE 128-bit floating point,
439 even if the default for long double is the IBM long double format.
440 Similarly IFmode is the IBM long double format even if the default is IEEE
441 128-bit. */
442#define FLOAT128_IEEE_P(MODE) \
4304ccfd
MM
443 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
444 || ((MODE) == KFmode) || ((MODE) == KCmode))
2c83faf8
MM
445
446#define FLOAT128_IBM_P(MODE) \
4304ccfd
MM
447 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
448 || ((MODE) == IFmode) || ((MODE) == ICmode))
2c83faf8
MM
449
450/* Helper macros to say whether a 128-bit floating point type can go in a
451 single vector register, or whether it needs paired scalar values. */
452#define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128 && FLOAT128_IEEE_P (MODE))
453
454#define FLOAT128_2REG_P(MODE) \
455 (FLOAT128_IBM_P (MODE) \
456 || ((MODE) == TDmode) \
457 || (!TARGET_FLOAT128 && FLOAT128_IEEE_P (MODE)))
458
459/* Return true for floating point that does not use a vector register. */
460#define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
461 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
462
f62511da 463/* Describe the vector unit used for arithmetic operations. */
cacf1ca8
MM
464extern enum rs6000_vector rs6000_vector_unit[];
465
466#define VECTOR_UNIT_NONE_P(MODE) \
467 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
468
469#define VECTOR_UNIT_VSX_P(MODE) \
470 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
471
f62511da
MM
472#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
473 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
474
cacf1ca8
MM
475#define VECTOR_UNIT_ALTIVEC_P(MODE) \
476 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
477
f62511da
MM
478#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
479 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
480 (int)VECTOR_VSX, \
481 (int)VECTOR_P8_VECTOR))
482
483/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
484 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
485 compatible, so allow it as well, rather than changing all of the uses of the
486 macro. */
cacf1ca8 487#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
488 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
489 (int)VECTOR_ALTIVEC, \
490 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
491
492/* Describe whether to use VSX loads or Altivec loads. For now, just use the
493 same unit as the vector unit we are using, but we may want to migrate to
494 using VSX style loads even for types handled by altivec. */
495extern enum rs6000_vector rs6000_vector_mem[];
496
497#define VECTOR_MEM_NONE_P(MODE) \
498 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
499
500#define VECTOR_MEM_VSX_P(MODE) \
501 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
502
f62511da
MM
503#define VECTOR_MEM_P8_VECTOR_P(MODE) \
504 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
505
cacf1ca8
MM
506#define VECTOR_MEM_ALTIVEC_P(MODE) \
507 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
508
f62511da
MM
509#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
510 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
511 (int)VECTOR_VSX, \
512 (int)VECTOR_P8_VECTOR))
513
cacf1ca8 514#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
515 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
516 (int)VECTOR_ALTIVEC, \
517 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
518
519/* Return the alignment of a given vector type, which is set based on the
520 vector unit use. VSX for instance can load 32 or 64 bit aligned words
521 without problems, while Altivec requires 128-bit aligned vectors. */
522extern int rs6000_vector_align[];
523
524#define VECTOR_ALIGN(MODE) \
525 ((rs6000_vector_align[(MODE)] != 0) \
526 ? rs6000_vector_align[(MODE)] \
527 : (int)GET_MODE_BITSIZE ((MODE)))
528
6edc217d
BS
529/* Determine the element order to use for vector instructions. By
530 default we use big-endian element order when targeting big-endian,
531 and little-endian element order when targeting little-endian. For
532 programs being ported from BE Power to LE Power, it can sometimes
533 be useful to use big-endian element order when targeting little-endian.
534 This is set via -maltivec=be, for example. */
535#define VECTOR_ELT_ORDER_BIG \
536 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
537
117f16fb
MM
538/* Element number of the 64-bit value in a 128-bit vector that can be accessed
539 with scalar instructions. */
540#define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
541
dd551aa1
MM
542/* Element number of the 64-bit value in a 128-bit vector that can be accessed
543 with the ISA 3.0 MFVSRLD instructions. */
544#define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
545
025d9908
KH
546/* Alignment options for fields in structures for sub-targets following
547 AIX-like ABI.
548 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
549 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
550
551 Override the macro definitions when compiling libobjc to avoid undefined
552 reference to rs6000_alignment_flags due to library's use of GCC alignment
553 macros which use the macros below. */
f676971a 554
025d9908
KH
555#ifndef IN_TARGET_LIBS
556#define MASK_ALIGN_POWER 0x00000000
557#define MASK_ALIGN_NATURAL 0x00000001
558#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
559#else
560#define TARGET_ALIGN_NATURAL 0
561#endif
6fa3f289
ZW
562
563#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
602ea4d3 564#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289 565#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
cacf1ca8 566#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
6fa3f289 567
a3170dc6
AH
568#define TARGET_SPE_ABI 0
569#define TARGET_SPE 0
cacf1ca8 570#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
a3170dc6 571#define TARGET_FPRS 1
4d4cbc0e
AH
572#define TARGET_E500_SINGLE 0
573#define TARGET_E500_DOUBLE 0
eca0d5e8 574#define CHECK_E500_OPTIONS do { } while (0)
a3170dc6 575
7042fe5e
MM
576/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
577 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
578 XILINX. */
c3f8384f
MM
579#define TARGET_FCFID (TARGET_POWERPC64 \
580 || TARGET_PPC_GPOPT /* 970/power4 */ \
581 || TARGET_POPCNTB /* ISA 2.02 */ \
582 || TARGET_CMPB /* ISA 2.05 */ \
583 || TARGET_POPCNTD /* ISA 2.06 */ \
7042fe5e
MM
584 || TARGET_XILINX_FPU)
585
586#define TARGET_FCTIDZ TARGET_FCFID
587#define TARGET_STFIWX TARGET_PPC_GFXOPT
588#define TARGET_LFIWAX TARGET_CMPB
589#define TARGET_LFIWZX TARGET_POPCNTD
590#define TARGET_FCFIDS TARGET_POPCNTD
591#define TARGET_FCFIDU TARGET_POPCNTD
592#define TARGET_FCFIDUS TARGET_POPCNTD
593#define TARGET_FCTIDUZ TARGET_POPCNTD
594#define TARGET_FCTIWUZ TARGET_POPCNTD
0299bc72
MM
595#define TARGET_CTZ TARGET_MODULO
596#define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
dd551aa1 597#define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
7042fe5e 598
f62511da
MM
599#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
600#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
a16a872d 601#define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
dd551aa1
MM
602#define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
603 && TARGET_POWERPC64)
c5e74d9d 604#define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
c5e74d9d 605 && TARGET_UPPER_REGS_DI && TARGET_POWERPC64)
f62511da
MM
606
607/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
608 in power7, so conditionalize them on p8 features. TImode syncs need quad
609 memory support. */
b846c948
MM
610#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
611 || TARGET_QUAD_MEMORY_ATOMIC \
612 || TARGET_DIRECT_MOVE)
613
614#define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
f62511da 615
c6d5ff83
MM
616/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
617 to allocate the SDmode stack slot to get the value into the proper location
618 in the register. */
619#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
620
21316320
MM
621/* ISA 3.0 has new min/max functions that don't need fast math that are being
622 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
623 answers if the arguments are not in the normal range. */
624#define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
625 && (TARGET_P9_MINMAX || !flag_trapping_math))
626
627#define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
628 && (TARGET_P9_MINMAX || !flag_trapping_math))
629
4d967549
MM
630/* In switching from using target_flags to using rs6000_isa_flags, the options
631 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
632 OPTION_MASK_<xxx> back into MASK_<xxx>. */
633#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
634#define MASK_CMPB OPTION_MASK_CMPB
f62511da 635#define MASK_CRYPTO OPTION_MASK_CRYPTO
4d967549 636#define MASK_DFP OPTION_MASK_DFP
f62511da 637#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
4d967549
MM
638#define MASK_DLMZB OPTION_MASK_DLMZB
639#define MASK_EABI OPTION_MASK_EABI
1610d410 640#define MASK_FLOAT128 OPTION_MASK_FLOAT128
4d967549 641#define MASK_FPRND OPTION_MASK_FPRND
f62511da 642#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
4d967549 643#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
0258b6e4 644#define MASK_HTM OPTION_MASK_HTM
4d967549
MM
645#define MASK_ISEL OPTION_MASK_ISEL
646#define MASK_MFCRF OPTION_MASK_MFCRF
647#define MASK_MFPGPR OPTION_MASK_MFPGPR
648#define MASK_MULHW OPTION_MASK_MULHW
649#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
650#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
f62511da 651#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
8fa97501 652#define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
5a3a6a5e 653#define MASK_P9_MISC OPTION_MASK_P9_MISC
4d967549
MM
654#define MASK_POPCNTB OPTION_MASK_POPCNTB
655#define MASK_POPCNTD OPTION_MASK_POPCNTD
656#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
657#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
658#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
659#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
660#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
661#define MASK_STRING OPTION_MASK_STRING
662#define MASK_UPDATE OPTION_MASK_UPDATE
663#define MASK_VSX OPTION_MASK_VSX
c6d5ff83 664#define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
4d967549
MM
665
666#ifndef IN_LIBGCC2
667#define MASK_POWERPC64 OPTION_MASK_POWERPC64
668#endif
669
670#ifdef TARGET_64BIT
671#define MASK_64BIT OPTION_MASK_64BIT
672#endif
673
4d967549
MM
674#ifdef TARGET_LITTLE_ENDIAN
675#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
676#endif
677
4d967549
MM
678#ifdef TARGET_REGNAMES
679#define MASK_REGNAMES OPTION_MASK_REGNAMES
680#endif
681
682#ifdef TARGET_PROTOTYPE
683#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
684#endif
685
4f45da44
KN
686#ifdef TARGET_MODULO
687#define RS6000_BTM_MODULO OPTION_MASK_MODULO
688#endif
689
690
7fa14a01
MM
691/* For power systems, we want to enable Altivec and VSX builtins even if the
692 user did not use -maltivec or -mvsx to allow the builtins to be used inside
693 of #pragma GCC target or the target attribute to change the code level for a
694 given system. The SPE and Paired builtins are only enabled if you configure
695 the compiler for those builtins, and those machines don't support altivec or
696 VSX. */
697
698#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
699 && ((TARGET_POWERPC64 \
c3f8384f 700 || TARGET_PPC_GPOPT /* 970/power4 */ \
7fa14a01
MM
701 || TARGET_POPCNTB /* ISA 2.02 */ \
702 || TARGET_CMPB /* ISA 2.05 */ \
703 || TARGET_POPCNTD /* ISA 2.06 */ \
704 || TARGET_ALTIVEC \
f93bc5b3
PB
705 || TARGET_VSX \
706 || TARGET_HARD_FLOAT)))
7fa14a01 707
a7c6c6d6
OH
708/* E500 cores only support plain "sync", not lwsync. */
709#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
710 || rs6000_cpu == PROCESSOR_PPC8548)
7fa14a01
MM
711
712
0609bdf2
MM
713/* Whether SF/DF operations are supported on the E500. */
714#define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
715 && !TARGET_FPRS)
716
717#define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
718 && !TARGET_FPRS && TARGET_E500_DOUBLE)
719
026c3cfd 720/* Whether SF/DF operations are supported by the normal floating point unit
0609bdf2
MM
721 (or the vector/scalar unit). */
722#define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
723 && TARGET_SINGLE_FLOAT)
724
725#define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
726 && TARGET_DOUBLE_FLOAT)
727
728/* Whether SF/DF operations are supported by any hardware. */
729#define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
730#define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
731
92902797
MM
732/* Which machine supports the various reciprocal estimate instructions. */
733#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
734 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
735
736#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
737 && TARGET_DOUBLE_FLOAT \
738 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
739
740#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
741 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
742
743#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
744 && TARGET_DOUBLE_FLOAT \
745 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
746
0299bc72
MM
747/* Conditions to allow TOC fusion for loading/storing integers. */
748#define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
749 && TARGET_TOC_FUSION \
750 && (TARGET_CMODEL != CMODEL_SMALL) \
751 && TARGET_POWERPC64)
752
753/* Conditions to allow TOC fusion for loading/storing floating point. */
754#define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
755 && TARGET_TOC_FUSION \
756 && (TARGET_CMODEL != CMODEL_SMALL) \
757 && TARGET_POWERPC64 \
758 && TARGET_HARD_FLOAT \
759 && TARGET_FPRS \
760 && TARGET_SINGLE_FLOAT \
761 && TARGET_DOUBLE_FLOAT)
762
6019c0fc
MM
763/* Macro to say whether we can do optimizations where we need to do parts of
764 the calculation in 64-bit GPRs and then is transfered to the vector
765 registers. Do not allow -maltivec=be for these optimizations, because it
766 adds to the complexity of the code. */
e0d32185
MM
767#define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
768 && TARGET_P8_VECTOR \
769 && TARGET_POWERPC64 \
6019c0fc
MM
770 && TARGET_UPPER_REGS_DI \
771 && (rs6000_altivec_element_order != 2))
e0d32185 772
92902797
MM
773/* Whether the various reciprocal divide/square root estimate instructions
774 exist, and whether we should automatically generate code for the instruction
775 by default. */
776#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
777#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
778#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
779#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
780
781extern unsigned char rs6000_recip_bits[];
782
783#define RS6000_RECIP_HAVE_RE_P(MODE) \
784 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
785
786#define RS6000_RECIP_AUTO_RE_P(MODE) \
787 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
788
789#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
790 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
791
792#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
793 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
794
c5387660
JM
795/* The default CPU for TARGET_OPTION_OVERRIDE. */
796#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
f045b2c9 797
a5c76ee6 798/* Target pragma. */
c58b209a
NB
799#define REGISTER_TARGET_PRAGMAS() do { \
800 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
fd438373 801 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
2fab365e 802 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
7fa14a01 803 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
a5c76ee6
ZW
804} while (0)
805
4c4eb375
GK
806/* Target #defines. */
807#define TARGET_CPU_CPP_BUILTINS() \
808 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
809
810/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
811 we're compiling for. Some configurations may need to override it. */
812#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
813 do \
814 { \
815 if (BYTES_BIG_ENDIAN) \
816 { \
817 builtin_define ("__BIG_ENDIAN__"); \
818 builtin_define ("_BIG_ENDIAN"); \
819 builtin_assert ("machine=bigendian"); \
820 } \
821 else \
822 { \
823 builtin_define ("__LITTLE_ENDIAN__"); \
824 builtin_define ("_LITTLE_ENDIAN"); \
825 builtin_assert ("machine=littleendian"); \
826 } \
827 } \
828 while (0)
f045b2c9 829\f
4c4eb375 830/* Target machine storage layout. */
f045b2c9 831
13d39dbc 832/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 833 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
834 the value is constrained to be within the bounds of the declared
835 type, but kept valid in the wider mode. The signedness of the
836 extension may differ from that of the type. */
837
39403d82
DE
838#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
839 if (GET_MODE_CLASS (MODE) == MODE_INT \
96922e4c 840 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
b78d48dd 841 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 842
f045b2c9 843/* Define this if most significant bit is lowest numbered
82e41834
KH
844 in instructions that operate on numbered bit-fields. */
845/* That is true on RS/6000. */
f045b2c9
RS
846#define BITS_BIG_ENDIAN 1
847
848/* Define this if most significant byte of a word is the lowest numbered. */
849/* That is true on RS/6000. */
850#define BYTES_BIG_ENDIAN 1
851
852/* Define this if most significant word of a multiword number is lowest
c81bebd7 853 numbered.
f045b2c9
RS
854
855 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 856 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
857#define WORDS_BIG_ENDIAN 1
858
50751417
AM
859/* This says that for the IBM long double the larger magnitude double
860 comes first. It's really a two element double array, and arrays
861 don't index differently between little- and big-endian. */
862#define LONG_DOUBLE_LARGE_FIRST 1
863
2e360ab3 864#define MAX_BITS_PER_WORD 64
f045b2c9
RS
865
866/* Width of a word, in units (bytes). */
c1aa3958 867#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
868#ifdef IN_LIBGCC2
869#define MIN_UNITS_PER_WORD UNITS_PER_WORD
870#else
ef0e53ce 871#define MIN_UNITS_PER_WORD 4
f34fc46e 872#endif
2e360ab3 873#define UNITS_PER_FP_WORD 8
0ac081f6 874#define UNITS_PER_ALTIVEC_WORD 16
cacf1ca8 875#define UNITS_PER_VSX_WORD 16
a3170dc6 876#define UNITS_PER_SPE_WORD 8
96038623 877#define UNITS_PER_PAIRED_WORD 8
f045b2c9 878
915f619f
JW
879/* Type used for ptrdiff_t, as a string used in a declaration. */
880#define PTRDIFF_TYPE "int"
881
058ef853
DE
882/* Type used for size_t, as a string used in a declaration. */
883#define SIZE_TYPE "long unsigned int"
884
f045b2c9
RS
885/* Type used for wchar_t, as a string used in a declaration. */
886#define WCHAR_TYPE "short unsigned int"
887
888/* Width of wchar_t in bits. */
889#define WCHAR_TYPE_SIZE 16
890
9e654916
RK
891/* A C expression for the size in bits of the type `short' on the
892 target machine. If you don't define this, the default is half a
893 word. (If this would be less than one storage unit, it is
894 rounded up to one unit.) */
895#define SHORT_TYPE_SIZE 16
896
897/* A C expression for the size in bits of the type `int' on the
898 target machine. If you don't define this, the default is one
899 word. */
19d2d16f 900#define INT_TYPE_SIZE 32
9e654916
RK
901
902/* A C expression for the size in bits of the type `long' on the
903 target machine. If you don't define this, the default is one
904 word. */
2f3e5814 905#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
906
907/* A C expression for the size in bits of the type `long long' on the
908 target machine. If you don't define this, the default is two
909 words. */
910#define LONG_LONG_TYPE_SIZE 64
911
9e654916
RK
912/* A C expression for the size in bits of the type `float' on the
913 target machine. If you don't define this, the default is one
914 word. */
915#define FLOAT_TYPE_SIZE 32
916
917/* A C expression for the size in bits of the type `double' on the
918 target machine. If you don't define this, the default is two
919 words. */
920#define DOUBLE_TYPE_SIZE 64
921
922/* A C expression for the size in bits of the type `long double' on
923 the target machine. If you don't define this, the default is two
924 words. */
6fa3f289 925#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 926
5b8f5865
DE
927/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
928#define WIDEST_HARDWARE_FP_SIZE 64
929
f045b2c9
RS
930/* Width in bits of a pointer.
931 See also the macro `Pmode' defined below. */
cacf1ca8
MM
932extern unsigned rs6000_pointer_size;
933#define POINTER_SIZE rs6000_pointer_size
f045b2c9
RS
934
935/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 936#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
937
938/* Boundary (in *bits*) on which stack pointer should be aligned. */
cacf1ca8
MM
939#define STACK_BOUNDARY \
940 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
941 ? 64 : 128)
f045b2c9
RS
942
943/* Allocation boundary (in *bits*) for the code of a function. */
944#define FUNCTION_BOUNDARY 32
945
946/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
947#define BIGGEST_ALIGNMENT 128
948
f045b2c9
RS
949/* Alignment of field after `int : 0' in a structure. */
950#define EMPTY_FIELD_BOUNDARY 32
951
952/* Every structure's size must be a multiple of this. */
953#define STRUCTURE_SIZE_BOUNDARY 8
954
43a88a8c 955/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
956#define PCC_BITFIELD_TYPE_MATTERS 1
957
69eff9da
AM
958enum data_align { align_abi, align_opt, align_both };
959
960/* A C expression to compute the alignment for a variables in the
961 local store. TYPE is the data type, and ALIGN is the alignment
962 that the object would ordinarily have. */
963#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
964 rs6000_data_alignment (TYPE, ALIGN, align_both)
965
966/* Make strings word-aligned so strcpy from constants will be faster. */
69ef87e2
AH
967#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
968 (TREE_CODE (EXP) == STRING_CST \
153fbec8 969 && (STRICT_ALIGNMENT || !optimize_size) \
69ef87e2
AH
970 && (ALIGN) < BITS_PER_WORD \
971 ? BITS_PER_WORD \
972 : (ALIGN))
f045b2c9 973
69eff9da
AM
974/* Make arrays of chars word-aligned for the same reasons. */
975#define DATA_ALIGNMENT(TYPE, ALIGN) \
976 rs6000_data_alignment (TYPE, ALIGN, align_opt)
977
978/* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
f82f556d 979 64 bits. */
69eff9da
AM
980#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
981 rs6000_data_alignment (TYPE, ALIGN, align_abi)
f045b2c9 982
a0ab749a 983/* Nonzero if move instructions will actually fail to work
f045b2c9 984 when given unaligned data. */
fdaff8ba 985#define STRICT_ALIGNMENT 0
e1565e65
DE
986
987/* Define this macro to be the value 1 if unaligned accesses have a cost
988 many times greater than aligned accesses, for example if they are
989 emulated in a trap handler. */
cacf1ca8
MM
990/* Altivec vector memory instructions simply ignore the low bits; SPE vector
991 memory instructions trap on unaligned accesses; VSX memory instructions are
992 aligned to 4 or 8 bytes. */
41543739
GK
993#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
994 (STRICT_ALIGNMENT \
860271ec
AM
995 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
996 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
997 || ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
998 && (int) (ALIGN) < VECTOR_ALIGN (MODE)))))
cacf1ca8 999
f045b2c9
RS
1000\f
1001/* Standard register usage. */
1002
1003/* Number of actual hardware registers.
1004 The hardware registers are assigned numbers for the compiler
1005 from 0 to just below FIRST_PSEUDO_REGISTER.
1006 All registers that the compiler knows about must be given numbers,
1007 even those that are not normally considered general registers.
1008
1009 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
462f7901
SB
1010 a count register, a link register, and 8 condition register fields,
1011 which we view here as separate registers. AltiVec adds 32 vector
1012 registers and a VRsave register.
f045b2c9
RS
1013
1014 In addition, the difference between the frame and argument pointers is
1015 a function of the number of registers saved, so we need to have a
1016 register for AP that will later be eliminated in favor of SP or FP.
802a0058 1017 This is a normal register, but it is fixed.
f045b2c9 1018
802a0058
MM
1019 We also create a pseudo register for float/int conversions, that will
1020 really represent the memory location used. It is represented here as
1021 a register, in order to work around problems in allocating stack storage
7d5175e1 1022 in inline functions.
802a0058 1023
7d5175e1 1024 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
7a5add18
PB
1025 pointer, which is eventually eliminated in favor of SP or FP.
1026
1027 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
7d5175e1 1028
23742a9e 1029#define FIRST_PSEUDO_REGISTER 149
f045b2c9 1030
d6a7951f 1031/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 1032#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 1033
23742a9e
RAR
1034/* True if register is an SPE High register. */
1035#define SPE_HIGH_REGNO_P(N) \
1036 ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
1037
1038/* SPE high registers added as hard regs.
1039 The sfp register and 3 HTM registers
1040 aren't included in DWARF_FRAME_REGISTERS. */
1041#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
c19de7aa 1042
93c9d1ba
AM
1043/* The SPE has an additional 32 synthetic registers, with DWARF debug
1044 info numbering for these registers starting at 1200. While eh_frame
1045 register numbering need not be the same as the debug info numbering,
23742a9e 1046 we choose to number these regs for eh_frame at 1200 too.
93c9d1ba
AM
1047
1048 We must map them here to avoid huge unwinder tables mostly consisting
f676971a 1049 of unused space. */
93c9d1ba 1050#define DWARF_REG_TO_UNWIND_COLUMN(r) \
23742a9e 1051 ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
93c9d1ba 1052
ed1cf8ff 1053/* Use standard DWARF numbering for DWARF debugging information. */
3d36d470 1054#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
ed1cf8ff 1055
93c9d1ba 1056/* Use gcc hard register numbering for eh_frame. */
3d36d470 1057#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 1058
ed1cf8ff
GK
1059/* Map register numbers held in the call frame info that gcc has
1060 collected using DWARF_FRAME_REGNUM to those that should be output in
3d36d470
UW
1061 .debug_frame and .eh_frame. */
1062#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1063 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
ed1cf8ff 1064
f045b2c9
RS
1065/* 1 for registers that have pervasive standard uses
1066 and are not available for the register allocator.
1067
5dead3e5
DJ
1068 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1069 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 1070
a127c4e5
RK
1071 On System V implementations, r13 is fixed and not available for use. */
1072
f045b2c9 1073#define FIXED_REGISTERS \
5dead3e5 1074 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
1075 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1076 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1077 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
36bd0c3e 1078 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
0ac081f6
AH
1079 /* AltiVec registers. */ \
1080 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1081 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1082 1, 1 \
23742a9e
RAR
1083 , 1, 1, 1, 1, 1, 1, \
1084 /* SPE High registers. */ \
1085 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1086 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6 1087}
f045b2c9
RS
1088
1089/* 1 for registers not available across function calls.
1090 These must include the FIXED_REGISTERS and also any
1091 registers that can be used without being saved.
1092 The latter must include the registers where values are returned
1093 and the register where structure-value addresses are passed.
1094 Aside from that, you can include as many other registers as you like. */
1095
1096#define CALL_USED_REGISTERS \
a127c4e5 1097 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
1098 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1099 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1100 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
1101 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1102 /* AltiVec registers. */ \
1103 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1104 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1105 1, 1 \
23742a9e
RAR
1106 , 1, 1, 1, 1, 1, 1, \
1107 /* SPE High registers. */ \
1108 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1109 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6
AH
1110}
1111
289e96b2
AH
1112/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1113 the entire set of `FIXED_REGISTERS' be included.
1114 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1115 This macro is optional. If not specified, it defaults to the value
1116 of `CALL_USED_REGISTERS'. */
f676971a 1117
289e96b2
AH
1118#define CALL_REALLY_USED_REGISTERS \
1119 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1120 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1121 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1122 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0b390d60 1123 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
289e96b2
AH
1124 /* AltiVec registers. */ \
1125 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1126 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1127 0, 0 \
23742a9e
RAR
1128 , 0, 0, 0, 0, 0, 0, \
1129 /* SPE High registers. */ \
1130 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1131 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
289e96b2 1132}
f045b2c9 1133
28bcfd4d 1134#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
9ebbca7d 1135
d62294f5 1136#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
b427dd7a
AM
1137#define FIRST_SAVED_FP_REGNO (14+32)
1138#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
d62294f5 1139
f045b2c9
RS
1140/* List the order in which to allocate registers. Each register must be
1141 listed once, even those in FIXED_REGISTERS.
1142
1143 We allocate in the following order:
1144 fp0 (not saved or used for anything)
1145 fp13 - fp2 (not saved; incoming fp arg registers)
1146 fp1 (not saved; return value)
9390387d 1147 fp31 - fp14 (saved; order given to save least number)
36bd0c3e
SB
1148 cr7, cr5 (not saved or special)
1149 cr6 (not saved, but used for vector operations)
5accd822 1150 cr1 (not saved, but used for FP operations)
f045b2c9 1151 cr0 (not saved, but used for arithmetic operations)
5accd822 1152 cr4, cr3, cr2 (saved)
f045b2c9 1153 r9 (not saved; best for TImode)
d44b26bd 1154 r10, r8-r4 (not saved; highest first for less conflict with params)
9390387d 1155 r3 (not saved; return value register)
d44b26bd
AM
1156 r11 (not saved; later alloc to help shrink-wrap)
1157 r0 (not saved; cannot be base reg)
f045b2c9
RS
1158 r31 - r13 (saved; order given to save least number)
1159 r12 (not saved; if used for DImode or DFmode would use r13)
f045b2c9
RS
1160 ctr (not saved; when we have the choice ctr is better)
1161 lr (saved)
36bd0c3e 1162 r1, r2, ap, ca (fixed)
9390387d
AM
1163 v0 - v1 (not saved or used for anything)
1164 v13 - v3 (not saved; incoming vector arg registers)
1165 v2 (not saved; incoming vector arg reg; return value)
1166 v19 - v14 (not saved or used for anything)
1167 v31 - v20 (saved; order given to save least number)
1168 vrsave, vscr (fixed)
a3170dc6 1169 spe_acc, spefscr (fixed)
7d5175e1 1170 sfp (fixed)
0258b6e4
PB
1171 tfhar (fixed)
1172 tfiar (fixed)
1173 texasr (fixed)
0ac081f6 1174*/
f676971a 1175
6b13641d
DJ
1176#if FIXED_R2 == 1
1177#define MAYBE_R2_AVAILABLE
1178#define MAYBE_R2_FIXED 2,
1179#else
1180#define MAYBE_R2_AVAILABLE 2,
1181#define MAYBE_R2_FIXED
1182#endif
f045b2c9 1183
d44b26bd
AM
1184#if FIXED_R13 == 1
1185#define EARLY_R12 12,
1186#define LATE_R12
1187#else
1188#define EARLY_R12
1189#define LATE_R12 12,
1190#endif
1191
9390387d
AM
1192#define REG_ALLOC_ORDER \
1193 {32, \
f62511da
MM
1194 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1195 /* not use fr14 which is a saved register. */ \
1196 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
9390387d
AM
1197 33, \
1198 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1199 50, 49, 48, 47, 46, \
36bd0c3e 1200 75, 73, 74, 69, 68, 72, 71, 70, \
d44b26bd
AM
1201 MAYBE_R2_AVAILABLE \
1202 9, 10, 8, 7, 6, 5, 4, \
1203 3, EARLY_R12 11, 0, \
9390387d 1204 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
d44b26bd 1205 18, 17, 16, 15, 14, 13, LATE_R12 \
462f7901 1206 66, 65, \
36bd0c3e 1207 1, MAYBE_R2_FIXED 67, 76, \
9390387d
AM
1208 /* AltiVec registers. */ \
1209 77, 78, \
1210 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1211 79, \
1212 96, 95, 94, 93, 92, 91, \
1213 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1214 109, 110, \
23742a9e
RAR
1215 111, 112, 113, 114, 115, 116, \
1216 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, \
1217 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, \
1218 141, 142, 143, 144, 145, 146, 147, 148 \
0ac081f6 1219}
f045b2c9
RS
1220
1221/* True if register is floating-point. */
1222#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1223
1224/* True if register is a condition register. */
1de43f85 1225#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
f045b2c9 1226
815cdc52 1227/* True if register is a condition register, but not cr0. */
1de43f85 1228#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
815cdc52 1229
f045b2c9 1230/* True if register is an integer register. */
7d5175e1
JJ
1231#define INT_REGNO_P(N) \
1232 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 1233
a3170dc6
AH
1234/* SPE SIMD registers are just the GPRs. */
1235#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1236
96038623
DE
1237/* PAIRED SIMD registers are just the FPRs. */
1238#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1239
f6b5d695
SB
1240/* True if register is the CA register. */
1241#define CA_REGNO_P(N) ((N) == CA_REGNO)
802a0058 1242
0ac081f6
AH
1243/* True if register is an AltiVec register. */
1244#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1245
cacf1ca8
MM
1246/* True if register is a VSX register. */
1247#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1248
1249/* Alternate name for any vector register supporting floating point, no matter
1250 which instruction set(s) are available. */
1251#define VFLOAT_REGNO_P(N) \
1252 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1253
1254/* Alternate name for any vector register supporting integer, no matter which
1255 instruction set(s) are available. */
1256#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1257
1258/* Alternate name for any vector register supporting logical operations, no
dd7a40e1
MM
1259 matter which instruction set(s) are available. Allow GPRs as well as the
1260 vector registers. */
f62511da 1261#define VLOGICAL_REGNO_P(N) \
dd7a40e1
MM
1262 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1263 || (TARGET_VSX && FP_REGNO_P (N))) \
cacf1ca8 1264
f045b2c9 1265/* Return number of consecutive hard regs needed starting at reg REGNO
d8ecbcdb
AH
1266 to hold something of mode MODE. */
1267
cacf1ca8 1268#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
0e67400a 1269
79eefb0d 1270/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
5ec6aff2
MM
1271 enough space to account for vectors in FP regs. However, TFmode/TDmode
1272 should not use VSX instructions to do a caller save. */
dbcc9f08
MM
1273#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1274 (TARGET_VSX \
1275 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
5ec6aff2
MM
1276 && FP_REGNO_P (REGNO) \
1277 ? V2DFmode \
c4e9cff6
AM
1278 : TARGET_E500_DOUBLE && (MODE) == SImode \
1279 ? SImode \
bbdb5098 1280 : TARGET_E500_DOUBLE && ((MODE) == VOIDmode || (MODE) == DFmode) \
5ec6aff2 1281 ? DFmode \
2c83faf8 1282 : !TARGET_E500_DOUBLE && FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
bbdb5098
MR
1283 ? DFmode \
1284 : !TARGET_E500_DOUBLE && (MODE) == TDmode && FP_REGNO_P (REGNO) \
5ec6aff2 1285 ? DImode \
79eefb0d
PH
1286 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1287
3fc841c8
MM
1288#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1289 (((TARGET_32BIT && TARGET_POWERPC64 \
1290 && (GET_MODE_SIZE (MODE) > 4) \
1291 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1292 || (TARGET_VSX && FP_REGNO_P (REGNO) \
2c83faf8 1293 && GET_MODE_SIZE (MODE) > 8 && !FLOAT128_2REG_P (MODE)))
f045b2c9 1294
cacf1ca8
MM
1295#define VSX_VECTOR_MODE(MODE) \
1296 ((MODE) == V4SFmode \
1297 || (MODE) == V2DFmode) \
1298
bdb60a10
MM
1299/* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1300 really a vector, but we want to treat it as a vector for moves, and
1301 such. */
1302
1303#define ALTIVEC_VECTOR_MODE(MODE) \
1304 ((MODE) == V16QImode \
1305 || (MODE) == V8HImode \
1306 || (MODE) == V4SFmode \
1307 || (MODE) == V4SImode \
1308 || FLOAT128_VECTOR_P (MODE))
0ac081f6 1309
dbcc9f08
MM
1310#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1311 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
a16a872d 1312 || (MODE) == V2DImode || (MODE) == V1TImode)
dbcc9f08 1313
a3170dc6
AH
1314#define SPE_VECTOR_MODE(MODE) \
1315 ((MODE) == V4HImode \
1316 || (MODE) == V2SFmode \
00a892b8 1317 || (MODE) == V1DImode \
a3170dc6
AH
1318 || (MODE) == V2SImode)
1319
96038623
DE
1320#define PAIRED_VECTOR_MODE(MODE) \
1321 ((MODE) == V2SFmode)
1322
0d1fbc8c
AH
1323/* Value is TRUE if hard register REGNO can hold a value of
1324 machine-mode MODE. */
1325#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1326 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
f045b2c9
RS
1327
1328/* Value is 1 if it is a good idea to tie two pseudo registers
1329 when one has mode MODE1 and one has mode MODE2.
1330 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
f161bfd3
MM
1331 for any hard reg, then this must be 0 for correct output.
1332
1333 PTImode cannot tie with other modes because PTImode is restricted to even
1334 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
bdb60a10
MM
1335 57744).
1336
1337 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
1338 128-bit floating point on VSX systems ties with other vectors. */
f62511da 1339#define MODES_TIEABLE_P(MODE1, MODE2) \
f161bfd3
MM
1340 ((MODE1) == PTImode \
1341 ? (MODE2) == PTImode \
1342 : (MODE2) == PTImode \
1343 ? 0 \
bdb60a10
MM
1344 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1345 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1346 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1347 ? 0 \
f161bfd3 1348 : SCALAR_FLOAT_MODE_P (MODE1) \
ebb109ad
BE
1349 ? SCALAR_FLOAT_MODE_P (MODE2) \
1350 : SCALAR_FLOAT_MODE_P (MODE2) \
f161bfd3 1351 ? 0 \
f045b2c9
RS
1352 : GET_MODE_CLASS (MODE1) == MODE_CC \
1353 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1354 : GET_MODE_CLASS (MODE2) == MODE_CC \
f161bfd3 1355 ? 0 \
4dcc01f3
AH
1356 : SPE_VECTOR_MODE (MODE1) \
1357 ? SPE_VECTOR_MODE (MODE2) \
1358 : SPE_VECTOR_MODE (MODE2) \
f161bfd3 1359 ? 0 \
f045b2c9
RS
1360 : 1)
1361
c8ae788f
SB
1362/* Post-reload, we can't use any new AltiVec registers, as we already
1363 emitted the vrsave mask. */
1364
1365#define HARD_REGNO_RENAME_OK(SRC, DST) \
6fb5fa3c 1366 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
c8ae788f 1367
f045b2c9
RS
1368/* Specify the cost of a branch insn; roughly the number of extra insns that
1369 should be added to avoid a branch.
1370
ef457bda 1371 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1372 unscheduled conditional branch. */
1373
3a4fd356 1374#define BRANCH_COST(speed_p, predictable_p) 3
f045b2c9 1375
85e50b6b 1376/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 1377 performance for removing short circuiting from the logical ops. */
85e50b6b 1378
b8610a53 1379#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6 1380
52ff33d0
NF
1381/* A fixed register used at epilogue generation to address SPE registers
1382 with negative offsets. The 64-bit load/store instructions on the SPE
1383 only take positive offsets (and small ones at that), so we need to
1384 reserve a register for consing up negative offsets. */
a3170dc6 1385
52ff33d0 1386#define FIXED_SCRATCH 0
a3170dc6 1387
f045b2c9
RS
1388/* Specify the registers used for certain standard purposes.
1389 The values of these macros are register numbers. */
1390
1391/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1392/* #define PC_REGNUM */
1393
1394/* Register to use for pushing function arguments. */
1395#define STACK_POINTER_REGNUM 1
1396
1397/* Base register for access to local variables of the function. */
7d5175e1
JJ
1398#define HARD_FRAME_POINTER_REGNUM 31
1399
1400/* Base register for access to local variables of the function. */
1401#define FRAME_POINTER_REGNUM 113
f045b2c9 1402
f045b2c9
RS
1403/* Base register for access to arguments of the function. */
1404#define ARG_POINTER_REGNUM 67
1405
1406/* Place to put static chain when calling a function that requires it. */
1407#define STATIC_CHAIN_REGNUM 11
1408
26a2e6ae
PB
1409/* Base register for access to thread local storage variables. */
1410#define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1411
f045b2c9
RS
1412\f
1413/* Define the classes of registers for register constraints in the
1414 machine description. Also define ranges of constants.
1415
1416 One of the classes must always be named ALL_REGS and include all hard regs.
1417 If there is more than one class, another class must be named NO_REGS
1418 and contain no registers.
1419
1420 The name GENERAL_REGS must be the name of a class (or an alias for
1421 another name such as ALL_REGS). This is the class of registers
1422 that is allowed by "g" or "r" in a register constraint.
1423 Also, registers outside this class are allocated only when
1424 instructions express preferences for them.
1425
1426 The classes must be numbered in nondecreasing order; that is,
1427 a larger-numbered class must never be contained completely
1428 in a smaller-numbered class.
1429
1430 For any two classes, it is very desirable that there be another
1431 class that represents their union. */
c81bebd7 1432
cacf1ca8 1433/* The RS/6000 has three types of registers, fixed-point, floating-point, and
462f7901 1434 condition registers, plus three special registers, CTR, and the link
cacf1ca8
MM
1435 register. AltiVec adds a vector register class. VSX registers overlap the
1436 FPR registers and the Altivec registers.
f045b2c9
RS
1437
1438 However, r0 is special in that it cannot be used as a base register.
1439 So make a class for registers valid as base registers.
1440
1441 Also, cr0 is the only condition code register that can be used in
0d86f538 1442 arithmetic insns, so make a separate class for it. */
f045b2c9 1443
ebedb4dd
MM
1444enum reg_class
1445{
1446 NO_REGS,
ebedb4dd
MM
1447 BASE_REGS,
1448 GENERAL_REGS,
1449 FLOAT_REGS,
0ac081f6 1450 ALTIVEC_REGS,
8beb65e3 1451 VSX_REGS,
0ac081f6 1452 VRSAVE_REGS,
5f004351 1453 VSCR_REGS,
a3170dc6
AH
1454 SPE_ACC_REGS,
1455 SPEFSCR_REGS,
0258b6e4 1456 SPR_REGS,
ebedb4dd 1457 NON_SPECIAL_REGS,
ebedb4dd
MM
1458 LINK_REGS,
1459 CTR_REGS,
1460 LINK_OR_CTR_REGS,
1461 SPECIAL_REGS,
1462 SPEC_OR_GEN_REGS,
1463 CR0_REGS,
ebedb4dd
MM
1464 CR_REGS,
1465 NON_FLOAT_REGS,
f6b5d695 1466 CA_REGS,
23742a9e 1467 SPE_HIGH_REGS,
ebedb4dd
MM
1468 ALL_REGS,
1469 LIM_REG_CLASSES
1470};
f045b2c9
RS
1471
1472#define N_REG_CLASSES (int) LIM_REG_CLASSES
1473
82e41834 1474/* Give names of register classes as strings for dump file. */
f045b2c9 1475
ebedb4dd
MM
1476#define REG_CLASS_NAMES \
1477{ \
1478 "NO_REGS", \
ebedb4dd
MM
1479 "BASE_REGS", \
1480 "GENERAL_REGS", \
1481 "FLOAT_REGS", \
0ac081f6 1482 "ALTIVEC_REGS", \
8beb65e3 1483 "VSX_REGS", \
0ac081f6 1484 "VRSAVE_REGS", \
5f004351 1485 "VSCR_REGS", \
a3170dc6
AH
1486 "SPE_ACC_REGS", \
1487 "SPEFSCR_REGS", \
0258b6e4 1488 "SPR_REGS", \
ebedb4dd 1489 "NON_SPECIAL_REGS", \
ebedb4dd
MM
1490 "LINK_REGS", \
1491 "CTR_REGS", \
1492 "LINK_OR_CTR_REGS", \
1493 "SPECIAL_REGS", \
1494 "SPEC_OR_GEN_REGS", \
1495 "CR0_REGS", \
ebedb4dd
MM
1496 "CR_REGS", \
1497 "NON_FLOAT_REGS", \
f6b5d695 1498 "CA_REGS", \
23742a9e 1499 "SPE_HIGH_REGS", \
ebedb4dd
MM
1500 "ALL_REGS" \
1501}
f045b2c9
RS
1502
1503/* Define which registers fit in which classes.
1504 This is an initializer for a vector of HARD_REG_SET
1505 of length N_REG_CLASSES. */
1506
23742a9e
RAR
1507#define REG_CLASS_CONTENTS \
1508{ \
1509 /* NO_REGS. */ \
1510 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1511 /* BASE_REGS. */ \
1512 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1513 /* GENERAL_REGS. */ \
1514 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1515 /* FLOAT_REGS. */ \
1516 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, \
1517 /* ALTIVEC_REGS. */ \
1518 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 }, \
1519 /* VSX_REGS. */ \
1520 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 }, \
1521 /* VRSAVE_REGS. */ \
1522 { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 }, \
1523 /* VSCR_REGS. */ \
1524 { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 }, \
1525 /* SPE_ACC_REGS. */ \
1526 { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 }, \
1527 /* SPEFSCR_REGS. */ \
1528 { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 }, \
1529 /* SPR_REGS. */ \
1530 { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 }, \
1531 /* NON_SPECIAL_REGS. */ \
1532 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 }, \
1533 /* LINK_REGS. */ \
1534 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 }, \
1535 /* CTR_REGS. */ \
1536 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 }, \
1537 /* LINK_OR_CTR_REGS. */ \
1538 { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 }, \
1539 /* SPECIAL_REGS. */ \
1540 { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 }, \
1541 /* SPEC_OR_GEN_REGS. */ \
1542 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 }, \
1543 /* CR0_REGS. */ \
1544 { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 }, \
1545 /* CR_REGS. */ \
1546 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 }, \
1547 /* NON_FLOAT_REGS. */ \
1548 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 }, \
1549 /* CA_REGS. */ \
1550 { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 }, \
1551 /* SPE_HIGH_REGS. */ \
1552 { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff }, \
1553 /* ALL_REGS. */ \
1554 { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff } \
ebedb4dd 1555}
f045b2c9
RS
1556
1557/* The same information, inverted:
1558 Return the class number of the smallest class containing
1559 reg number REGNO. This could be a conditional expression
1560 or could index an array. */
1561
cacf1ca8
MM
1562extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1563
cacf1ca8 1564#define REGNO_REG_CLASS(REGNO) \
e28c2052 1565 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
cacf1ca8
MM
1566 rs6000_regno_regclass[(REGNO)])
1567
a72c65c7
MM
1568/* Register classes for various constraints that are based on the target
1569 switches. */
1570enum r6000_reg_class_enum {
1571 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1572 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1573 RS6000_CONSTRAINT_v, /* Altivec registers */
1574 RS6000_CONSTRAINT_wa, /* Any VSX register */
d5906efc 1575 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
a72c65c7 1576 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
dd551aa1 1577 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
a72c65c7 1578 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
5e8586d7 1579 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
59f5868d
MM
1580 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1581 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1582 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1583 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
c6d5ff83 1584 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
f62511da 1585 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
4e8a3a35 1586 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
c477a667
MM
1587 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1588 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
f62511da 1589 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
a72c65c7 1590 RS6000_CONSTRAINT_ws, /* VSX register for DF */
c6d5ff83 1591 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
5e8586d7
MM
1592 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1593 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1594 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
c6d5ff83 1595 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
5e8586d7 1596 RS6000_CONSTRAINT_wy, /* VSX register for SF */
c6d5ff83 1597 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
a72c65c7
MM
1598 RS6000_CONSTRAINT_MAX
1599};
1600
1601extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
f045b2c9
RS
1602
1603/* The class value for index registers, and the one for base regs. */
1604#define INDEX_REG_CLASS GENERAL_REGS
1605#define BASE_REG_CLASS BASE_REGS
1606
cacf1ca8
MM
1607/* Return whether a given register class can hold VSX objects. */
1608#define VSX_REG_CLASS_P(CLASS) \
1609 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1610
59f5868d
MM
1611/* Return whether a given register class targets general purpose registers. */
1612#define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1613
f045b2c9
RS
1614/* Given an rtx X being reloaded into a reg required to be
1615 in class CLASS, return the class of reg to actually use.
1616 In general this is just CLASS; but on some machines
c81bebd7 1617 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1618
1619 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1620 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1621
1622 We also don't want to reload integer values into floating-point
1623 registers if we can at all help it. In fact, this can
37409796 1624 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1625 into a FP register and discovers it doesn't have the memory location
1626 required.
1627
1628 ??? Would it be a good idea to have reload do the converse, that is
1629 try to reload floating modes into FP registers if possible?
1630 */
f045b2c9 1631
802a0058 1632#define PREFERRED_RELOAD_CLASS(X,CLASS) \
8beb65e3 1633 rs6000_preferred_reload_class_ptr (X, CLASS)
c81bebd7 1634
f045b2c9
RS
1635/* Return the register class of a scratch register needed to copy IN into
1636 or out of a register in CLASS in MODE. If it can be done directly,
1637 NO_REGS is returned. */
1638
1639#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
8beb65e3 1640 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
f045b2c9 1641
0ac081f6 1642/* If we are copying between FP or AltiVec registers and anything
44cd321e
PS
1643 else, we need a memory location. The exception is when we are
1644 targeting ppc64 and the move to/from fpr to gpr instructions
1645 are available.*/
1646
1647#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
8beb65e3 1648 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
7ea555a4 1649
e41b2a33
PB
1650/* For cpus that cannot load/store SDmode values from the 64-bit
1651 FP registers without using a full 64-bit load/store, we need
1652 to allocate a full 64-bit stack slot for them. */
1653
1654#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1655 rs6000_secondary_memory_needed_rtx (MODE)
1656
01b1efaa
VM
1657/* Specify the mode to be used for memory when a secondary memory
1658 location is needed. For cpus that cannot load/store SDmode values
1659 from the 64-bit FP registers without using a full 64-bit
1660 load/store, we need a wider mode. */
1661#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1662 rs6000_secondary_memory_needed_mode (MODE)
1663
f045b2c9
RS
1664/* Return the maximum number of consecutive registers
1665 needed to represent mode MODE in a register of class CLASS.
1666
cacf1ca8
MM
1667 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1668 a single reg is enough for two words, unless we have VSX, where the FP
1669 registers can hold 128 bits. */
1670#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
580d3230 1671
ca0e79d9
AM
1672/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1673
1674#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
8beb65e3 1675 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
02188693 1676
f045b2c9
RS
1677/* Stack layout; function entry, exit and calling. */
1678
1679/* Define this if pushing a word on the stack
1680 makes the stack pointer a smaller address. */
62f9f30b 1681#define STACK_GROWS_DOWNWARD 1
f045b2c9 1682
327e5343
FJ
1683/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1684#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1685
a4d05547 1686/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1687 is at the high-address end of the local variables;
1688 that is, each additional local variable allocated
1689 goes at a more negative offset in the frame.
1690
1691 On the RS/6000, we grow upwards, from the area after the outgoing
1692 arguments. */
de5a5fa1
MP
1693#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1694 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
f045b2c9 1695
4697a36c 1696/* Size of the fixed area on the stack */
9ebbca7d 1697#define RS6000_SAVE_AREA \
b54214fe
UW
1698 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1699 << (TARGET_64BIT ? 1 : 0))
4697a36c 1700
b54214fe
UW
1701/* Stack offset for toc save slot. */
1702#define RS6000_TOC_SAVE_SLOT \
1703 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
b6c9286a 1704
4697a36c 1705/* Align an address */
4f59f9f2 1706#define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
4697a36c 1707
f045b2c9
RS
1708/* Offset within stack frame to start allocating local variables at.
1709 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1710 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1711 of the first local allocated.
f045b2c9
RS
1712
1713 On the RS/6000, the frame pointer is the same as the stack pointer,
1714 except for dynamic allocations. So we start after the fixed area and
1715 outgoing parameter area. */
1716
802a0058 1717#define STARTING_FRAME_OFFSET \
7d5175e1
JJ
1718 (FRAME_GROWS_DOWNWARD \
1719 ? 0 \
cacf1ca8
MM
1720 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1721 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
7d5175e1 1722 + RS6000_SAVE_AREA))
802a0058
MM
1723
1724/* Offset from the stack pointer register to an item dynamically
1725 allocated on the stack, e.g., by `alloca'.
1726
1727 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1728 length of the outgoing arguments. The default is correct for most
1729 machines. See `function.c' for details. */
1730#define STACK_DYNAMIC_OFFSET(FUNDECL) \
cacf1ca8
MM
1731 (RS6000_ALIGN (crtl->outgoing_args_size, \
1732 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
802a0058 1733 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1734
1735/* If we generate an insn to push BYTES bytes,
1736 this says how many the stack pointer really advances by.
1737 On RS/6000, don't define this because there are no push insns. */
1738/* #define PUSH_ROUNDING(BYTES) */
1739
1740/* Offset of first parameter from the argument pointer register value.
1741 On the RS/6000, we define the argument pointer to the start of the fixed
1742 area. */
4697a36c 1743#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1744
62153b61
JM
1745/* Offset from the argument pointer register value to the top of
1746 stack. This is different from FIRST_PARM_OFFSET because of the
1747 register save area. */
1748#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1749
f045b2c9
RS
1750/* Define this if stack space is still allocated for a parameter passed
1751 in a register. The value is the number of bytes allocated to this
1752 area. */
ddbb449f
AM
1753#define REG_PARM_STACK_SPACE(FNDECL) \
1754 rs6000_reg_parm_stack_space ((FNDECL), false)
1755
1756/* Define this macro if space guaranteed when compiling a function body
1757 is different to space required when making a call, a situation that
1758 can arise with K&R style function definitions. */
1759#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1760 rs6000_reg_parm_stack_space ((FNDECL), true)
f045b2c9
RS
1761
1762/* Define this if the above stack space is to be considered part of the
1763 space allocated by the caller. */
81464b2c 1764#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
f045b2c9
RS
1765
1766/* This is the difference between the logical top of stack and the actual sp.
1767
82e41834 1768 For the RS/6000, sp points past the fixed area. */
4697a36c 1769#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1770
1771/* Define this if the maximum size of all the outgoing args is to be
1772 accumulated and pushed during the prologue. The amount can be
38173d38 1773 found in the variable crtl->outgoing_args_size. */
f73ad30e 1774#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9 1775
f045b2c9
RS
1776/* Define how to find the value returned by a library function
1777 assuming the value has mode MODE. */
1778
ded9bf77 1779#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1780
6fa3f289
ZW
1781/* DRAFT_V4_STRUCT_RET defaults off. */
1782#define DRAFT_V4_STRUCT_RET 0
f607bc57 1783
bd5bd7ac 1784/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1785#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1786
a260abc9 1787/* Mode of stack savearea.
dfdfa60f
DE
1788 FUNCTION is VOIDmode because calling convention maintains SP.
1789 BLOCK needs Pmode for SP.
a260abc9
DE
1790 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1791#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f 1792 (LEVEL == SAVE_FUNCTION ? VOIDmode \
c6d5ff83 1793 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
a260abc9 1794
4697a36c
MM
1795/* Minimum and maximum general purpose registers used to hold arguments. */
1796#define GP_ARG_MIN_REG 3
1797#define GP_ARG_MAX_REG 10
1798#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1799
1800/* Minimum and maximum floating point registers used to hold arguments. */
1801#define FP_ARG_MIN_REG 33
7509c759
MM
1802#define FP_ARG_AIX_MAX_REG 45
1803#define FP_ARG_V4_MAX_REG 40
008e32c0
UW
1804#define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1805 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
4697a36c
MM
1806#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1807
0ac081f6
AH
1808/* Minimum and maximum AltiVec registers used to hold arguments. */
1809#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1810#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1811#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1812
b54214fe
UW
1813/* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1814#define AGGR_ARG_NUM_REG 8
1815
4697a36c
MM
1816/* Return registers */
1817#define GP_ARG_RETURN GP_ARG_MIN_REG
1818#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1819#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
b54214fe
UW
1820#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1821 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4304ccfd
MM
1822#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1823 ? (ALTIVEC_ARG_RETURN \
1824 + (TARGET_FLOAT128 ? 1 : 0)) \
b54214fe 1825 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4697a36c 1826
7509c759 1827/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1828#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1829/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1830#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1831#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1832#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1833#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1834
f57fe068
AM
1835/* We don't have prologue and epilogue functions to save/restore
1836 everything for most ABIs. */
1837#define WORLD_SAVE_P(INFO) 0
1838
f045b2c9
RS
1839/* 1 if N is a possible register number for a function value
1840 as seen by the caller.
1841
0ac081f6 1842 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1843#define FUNCTION_VALUE_REGNO_P(N) \
1844 ((N) == GP_ARG_RETURN \
b54214fe
UW
1845 || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
1846 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1847 || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
1848 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1849
1850/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1851 On RS/6000, these are r3-r10 and fp1-fp13.
1852 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1853#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1854 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1855 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
44688022 1856 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
e87a88d3 1857 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
b2df7d08 1858 && TARGET_HARD_FLOAT && TARGET_FPRS))
f045b2c9
RS
1859\f
1860/* Define a data type for recording info about an argument list
1861 during the scan of that argument list. This data type should
1862 hold all necessary information about the function itself
1863 and about the args processed so far, enough to enable macros
1864 such as FUNCTION_ARG to determine where the next arg should go.
1865
1866 On the RS/6000, this is a structure. The first element is the number of
1867 total argument words, the second is used to store the next
1868 floating-point register number, and the third says how many more args we
4697a36c
MM
1869 have prototype types for.
1870
4cc833b7 1871 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1872 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1873 register, and `words' is the number of words used on the stack.
1874
bd227acc 1875 The varargs/stdarg support requires that this structure's size
4cc833b7 1876 be a multiple of sizeof(int). */
4697a36c
MM
1877
1878typedef struct rs6000_args
1879{
4cc833b7 1880 int words; /* # words used for passing GP registers */
6a4cee5f 1881 int fregno; /* next available FP register */
0ac081f6 1882 int vregno; /* next available AltiVec register */
6a4cee5f 1883 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1884 int prototype; /* Whether a prototype was defined */
a6c9bed4 1885 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1886 int call_cookie; /* Do special things for this call */
4cc833b7 1887 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1888 int intoffset; /* running offset in struct (darwin64) */
1889 int use_stack; /* any part of struct on stack (darwin64) */
a9ab25e2
IS
1890 int floats_in_gpr; /* count of SFmode floats taking up
1891 GPR space (darwin64) */
0b5383eb 1892 int named; /* false for varargs params */
617718f7 1893 int escapes; /* if function visible outside tu */
bdb60a10 1894 int libcall; /* If this is a compiler generated call. */
4697a36c 1895} CUMULATIVE_ARGS;
f045b2c9 1896
f045b2c9
RS
1897/* Initialize a variable CUM of type CUMULATIVE_ARGS
1898 for a call to a function whose data type is FNTYPE.
1899 For a library call, FNTYPE is 0. */
1900
617718f7
AM
1901#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1902 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1903 N_NAMED_ARGS, FNDECL, VOIDmode)
f045b2c9
RS
1904
1905/* Similar, but when scanning the definition of a procedure. We always
1906 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1907
0f6937fe 1908#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617718f7
AM
1909 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1910 1000, current_function_decl, VOIDmode)
b9599e46
FS
1911
1912/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1913
1914#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
617718f7
AM
1915 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1916 0, NULL_TREE, MODE)
f045b2c9 1917
c229cba9
DE
1918/* If defined, a C expression which determines whether, and in which
1919 direction, to pad out an argument with extra space. The value
1920 should be of type `enum direction': either `upward' to pad above
1921 the argument, `downward' to pad below, or `none' to inhibit
1922 padding. */
1923
9ebbca7d 1924#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1925
6e985040
AM
1926#define PAD_VARARGS_DOWN \
1927 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1928
f045b2c9 1929/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1930 for profiling a function entry. */
f045b2c9
RS
1931
1932#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1933 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1934
1935/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1936 the stack pointer does not matter. No definition is equivalent to
1937 always zero.
1938
a0ab749a 1939 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1940 its backpointer, which we maintain. */
1941#define EXIT_IGNORE_STACK 1
1942
a701949a
FS
1943/* Define this macro as a C expression that is nonzero for registers
1944 that are used by the epilogue or the return' pattern. The stack
1945 and frame pointer registers are already be assumed to be used as
1946 needed. */
1947
83720594 1948#define EPILOGUE_USES(REGNO) \
1de43f85 1949 ((reload_completed && (REGNO) == LR_REGNO) \
b1765bde 1950 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
cacf1ca8 1951 || (crtl->calls_eh_return \
3553b09d 1952 && TARGET_AIX \
ff3867ae 1953 && (REGNO) == 2))
2bfcf297 1954
f045b2c9 1955\f
f045b2c9
RS
1956/* Length in units of the trampoline for entering a nested function. */
1957
b6c9286a 1958#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9 1959\f
f33985c6
MS
1960/* Definitions for __builtin_return_address and __builtin_frame_address.
1961 __builtin_return_address (0) should give link register (65), enable
82e41834 1962 this. */
f33985c6
MS
1963/* This should be uncommented, so that the link register is used, but
1964 currently this would result in unmatched insns and spilling fixed
1965 registers so we'll leave it for another day. When these problems are
1966 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1967 (mrs) */
1968/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1969
b6c9286a
MM
1970/* Number of bytes into the frame return addresses can be found. See
1971 rs6000_stack_info in rs6000.c for more information on how the different
1972 abi's store the return address. */
008e32c0
UW
1973#define RETURN_ADDRESS_OFFSET \
1974 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
f09d4c33 1975
f33985c6
MS
1976/* The current return address is in link register (65). The return address
1977 of anything farther back is accessed normally at an offset of 8 from the
1978 frame pointer. */
71f123ca
FS
1979#define RETURN_ADDR_RTX(COUNT, FRAME) \
1980 (rs6000_return_addr (COUNT, FRAME))
1981
f33985c6 1982\f
f045b2c9
RS
1983/* Definitions for register eliminations.
1984
1985 We have two registers that can be eliminated on the RS/6000. First, the
1986 frame pointer register can often be eliminated in favor of the stack
1987 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1988 eliminated; it is replaced with either the stack or frame pointer.
1989
1990 In addition, we use the elimination mechanism to see if r30 is needed
1991 Initially we assume that it isn't. If it is, we spill it. This is done
1992 by making it an eliminable register. We replace it with itself so that
1993 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1994
1995/* This is an array of structures. Each structure initializes one pair
1996 of eliminable registers. The "from" register number is given first,
1997 followed by "to". Eliminations of the same "from" register are listed
1998 in order of preference. */
7d5175e1
JJ
1999#define ELIMINABLE_REGS \
2000{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2001 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2002 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
2003 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2004 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 2005 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9 2006
f045b2c9
RS
2007/* Define the offset between two registers, one to be eliminated, and the other
2008 its replacement, at the start of a routine. */
d1d0c603
JJ
2009#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2010 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
2011\f
2012/* Addressing modes, and classification of registers for them. */
2013
940da324
JL
2014#define HAVE_PRE_DECREMENT 1
2015#define HAVE_PRE_INCREMENT 1
6fb5fa3c
DB
2016#define HAVE_PRE_MODIFY_DISP 1
2017#define HAVE_PRE_MODIFY_REG 1
f045b2c9
RS
2018
2019/* Macros to check register numbers against specific register classes. */
2020
2021/* These assume that REGNO is a hard or pseudo reg number.
2022 They give nonzero only if REGNO is a hard reg of the suitable class
2023 or a pseudo reg currently allocated to a suitable hard reg.
2024 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
2025 has been allocated, which happens in reginfo.c during register
2026 allocation. */
f045b2c9
RS
2027
2028#define REGNO_OK_FOR_INDEX_P(REGNO) \
2029((REGNO) < FIRST_PSEUDO_REGISTER \
2030 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 2031 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 2032 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
2033 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2034 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
2035
2036#define REGNO_OK_FOR_BASE_P(REGNO) \
2037((REGNO) < FIRST_PSEUDO_REGISTER \
2038 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 2039 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 2040 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
2041 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2042 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
c6c3dba9
PB
2043
2044/* Nonzero if X is a hard reg that can be used as an index
2045 or if it is a pseudo reg in the non-strict case. */
2046#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2047 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2048 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
2049
2050/* Nonzero if X is a hard reg that can be used as a base reg
2051 or if it is a pseudo reg in the non-strict case. */
2052#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2053 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2054 || REGNO_OK_FOR_BASE_P (REGNO (X)))
2055
f045b2c9
RS
2056\f
2057/* Maximum number of registers that can appear in a valid memory address. */
2058
2059#define MAX_REGS_PER_ADDRESS 2
2060
2061/* Recognize any constant value that is a valid address. */
2062
6eff269e
BK
2063#define CONSTANT_ADDRESS_P(X) \
2064 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2065 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2066 || GET_CODE (X) == HIGH)
f045b2c9 2067
48d72335 2068#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3 2069#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
76492753
PB
2070 && EASY_VECTOR_15((n) >> 1) \
2071 && ((n) & 1) == 0)
48d72335 2072
29e6733c 2073#define EASY_VECTOR_MSB(n,mode) \
683be46f 2074 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
29e6733c
MM
2075 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
2076
f045b2c9 2077\f
a260abc9
DE
2078/* Try a machine-dependent way of reloading an illegitimate address
2079 operand. If we find one, push the reload and jump to WIN. This
2080 macro is used in only one place: `find_reloads_address' in reload.c.
2081
f676971a 2082 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 2083 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 2084
a9098fd0
GK
2085#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2086do { \
24ea750e 2087 int win; \
8beb65e3 2088 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
24ea750e
DJ
2089 (int)(TYPE), (IND_LEVELS), &win); \
2090 if ( win ) \
2091 goto WIN; \
a260abc9
DE
2092} while (0)
2093
944258eb 2094#define FIND_BASE_TERM rs6000_find_base_term
766a866c
MM
2095\f
2096/* The register number of the register used to address a table of
2097 static data addresses in memory. In some cases this register is
2098 defined by a processor's "application binary interface" (ABI).
2099 When this macro is defined, RTL is generated for this register
2100 once, as with the stack pointer and frame pointer registers. If
2101 this macro is not defined, it is up to the machine-dependent files
2102 to allocate such a register (if necessary). */
2103
1db02437 2104#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
24f77f59
AM
2105#define PIC_OFFSET_TABLE_REGNUM \
2106 (TARGET_TOC ? TOC_REGISTER \
2107 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
2108 : INVALID_REGNUM)
766a866c 2109
97b23853 2110#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2111
766a866c
MM
2112/* Define this macro if the register defined by
2113 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2114 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2115
2116/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2117
766a866c
MM
2118/* A C expression that is nonzero if X is a legitimate immediate
2119 operand on the target machine when generating position independent
2120 code. You can assume that X satisfies `CONSTANT_P', so you need
2121 not check this. You can also assume FLAG_PIC is true, so you need
2122 not check it either. You need not define this macro if all
2123 constants (including `SYMBOL_REF') can be immediate operands when
2124 generating position independent code. */
2125
2126/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
2127\f
2128/* Define this if some processing needs to be done immediately before
4255474b 2129 emitting code for an insn. */
f045b2c9 2130
c921bad8
AP
2131#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
2132 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
f045b2c9
RS
2133
2134/* Specify the machine mode that this machine uses
2135 for the index in the tablejump instruction. */
e1565e65 2136#define CASE_VECTOR_MODE SImode
f045b2c9 2137
18543a22
ILT
2138/* Define as C expression which evaluates to nonzero if the tablejump
2139 instruction expects the table to contain offsets from the address of the
2140 table.
82e41834 2141 Do not define this if the table should contain absolute addresses. */
18543a22 2142#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2143
f045b2c9
RS
2144/* Define this as 1 if `char' should by default be signed; else as 0. */
2145#define DEFAULT_SIGNED_CHAR 0
2146
c1618c0c
DE
2147/* An integer expression for the size in bits of the largest integer machine
2148 mode that should actually be used. */
2149
2150/* Allow pairs of registers to be used, which is the intent of the default. */
2151#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2152
f045b2c9
RS
2153/* Max number of bytes we can move from memory to memory
2154 in one reasonably fast instruction. */
2f3e5814 2155#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2156#define MAX_MOVE_MAX 8
f045b2c9
RS
2157
2158/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2159 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2160 is undesirable. */
2161#define SLOW_BYTE_ACCESS 1
2162
9a63901f
RK
2163/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2164 will either zero-extend or sign-extend. The value of this macro should
2165 be the code that says which one of the two operations is implicitly
f822d252 2166 done, UNKNOWN if none. */
9a63901f 2167#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2168
2169/* Define if loading short immediate values into registers sign extends. */
58f2ae18 2170#define SHORT_IMMEDIATES_SIGN_EXTEND 1
fdaff8ba 2171\f
f045b2c9
RS
2172/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2173 is done just by pretending it is already truncated. */
2174#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2175
94993909 2176/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122 2177#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
14670a74 2178 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
d865b122 2179
0299bc72
MM
2180/* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2181 zero. The hardware instructions added in Power9 return 32 or 64. */
2182#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2183 ((!TARGET_CTZ) \
2184 ? ((VALUE) = -1, 1) \
2185 : ((VALUE) = ((MODE) == SImode ? 32 : 64), 1))
94993909 2186
f045b2c9
RS
2187/* Specify the machine mode that pointers have.
2188 After generation of rtl, the compiler makes no further distinction
2189 between pointers and any other objects of this machine mode. */
cacf1ca8 2190extern unsigned rs6000_pmode;
ef4bddc2 2191#define Pmode ((machine_mode)rs6000_pmode)
f045b2c9 2192
a3c9585f 2193/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
2194#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2195
f045b2c9 2196/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2197 Doesn't matter on RS/6000. */
5b71a4e7 2198#define FUNCTION_MODE SImode
f045b2c9
RS
2199
2200/* Define this if addresses of constant functions
2201 shouldn't be put through pseudo regs where they can be cse'd.
2202 Desirable on machines where ordinary constants are expensive
2203 but a CALL with constant address is cheap. */
1e8552c2 2204#define NO_FUNCTION_CSE 1
f045b2c9 2205
d969caf8 2206/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2207 few bits.
2208
2209 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2210 have been dropped from the PowerPC architecture. */
c28a7c24 2211#define SHIFT_COUNT_TRUNCATED 0
f045b2c9 2212
f045b2c9
RS
2213/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2214 should be adjusted to reflect any required changes. This macro is used when
2215 there is some systematic length adjustment required that would be difficult
2216 to express in the length attribute. */
2217
2218/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2219
39a10a29
GK
2220/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2221 COMPARE, return the mode to be used for the comparison. For
2222 floating-point, CCFPmode should be used. CCUNSmode should be used
2223 for unsigned comparisons. CCEQmode should be used when we are
2224 doing an inequality comparison on the result of a
2225 comparison. CCmode should be used in all other cases. */
c5defebb 2226
b565a316 2227#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 2228 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 2229 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 2230 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 2231 ? CCEQmode : CCmode))
f045b2c9 2232
b39358e1
GK
2233/* Can the condition code MODE be safely reversed? This is safe in
2234 all cases on this port, because at present it doesn't use the
2235 trapping FP comparisons (fcmpo). */
2236#define REVERSIBLE_CC_MODE(MODE) 1
2237
2238/* Given a condition code and a mode, return the inverse condition. */
2239#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2240
f045b2c9
RS
2241\f
2242/* Control the assembler format that we output. */
2243
1b279f39
DE
2244/* A C string constant describing how to begin a comment in the target
2245 assembler language. The compiler assumes that the comment will end at
2246 the end of the line. */
2247#define ASM_COMMENT_START " #"
6b67933e 2248
38c1f2d7
MM
2249/* Flag to say the TOC is initialized */
2250extern int toc_initialized;
2251
f045b2c9
RS
2252/* Macro to output a special constant pool entry. Go to WIN if we output
2253 it. Otherwise, it is written the usual way.
2254
2255 On the RS/6000, toc entries are handled this way. */
2256
a9098fd0
GK
2257#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2258{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2259 { \
2260 output_toc (FILE, X, LABELNO, MODE); \
2261 goto WIN; \
2262 } \
f045b2c9
RS
2263}
2264
ebd97b96
DE
2265#ifdef HAVE_GAS_WEAK
2266#define RS6000_WEAK 1
2267#else
2268#define RS6000_WEAK 0
2269#endif
290ad355 2270
79c4e63f
AM
2271#if RS6000_WEAK
2272/* Used in lieu of ASM_WEAKEN_LABEL. */
2273#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2274 do \
2275 { \
2276 fputs ("\t.weak\t", (FILE)); \
85b776df 2277 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2278 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2279 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f 2280 { \
cbaaba19
DE
2281 if (TARGET_XCOFF) \
2282 fputs ("[DS]", (FILE)); \
ca734b39 2283 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2284 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2285 } \
2286 fputc ('\n', (FILE)); \
2287 if (VAL) \
2288 { \
2289 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2290 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2291 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2292 { \
2293 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2294 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2295 fputs (",.", (FILE)); \
cbaaba19 2296 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2297 fputc ('\n', (FILE)); \
2298 } \
2299 } \
2300 } \
2301 while (0)
2302#endif
2303
ff2d10c1
AO
2304#if HAVE_GAS_WEAKREF
2305#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2306 do \
2307 { \
2308 fputs ("\t.weakref\t", (FILE)); \
2309 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2310 fputs (", ", (FILE)); \
2311 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2312 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2313 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2314 { \
2315 fputs ("\n\t.weakref\t.", (FILE)); \
2316 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2317 fputs (", .", (FILE)); \
2318 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2319 } \
2320 fputc ('\n', (FILE)); \
2321 } while (0)
2322#endif
2323
79c4e63f
AM
2324/* This implements the `alias' attribute. */
2325#undef ASM_OUTPUT_DEF_FROM_DECLS
2326#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2327 do \
2328 { \
2329 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2330 const char *name = IDENTIFIER_POINTER (TARGET); \
2331 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2332 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2333 { \
2334 if (TREE_PUBLIC (DECL)) \
2335 { \
2336 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2337 { \
2338 fputs ("\t.globl\t.", FILE); \
cbaaba19 2339 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2340 putc ('\n', FILE); \
2341 } \
2342 } \
2343 else if (TARGET_XCOFF) \
2344 { \
c167bc5b
DE
2345 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2346 { \
2347 fputs ("\t.lglobl\t.", FILE); \
2348 RS6000_OUTPUT_BASENAME (FILE, alias); \
2349 putc ('\n', FILE); \
2350 fputs ("\t.lglobl\t", FILE); \
2351 RS6000_OUTPUT_BASENAME (FILE, alias); \
2352 putc ('\n', FILE); \
2353 } \
79c4e63f
AM
2354 } \
2355 fputs ("\t.set\t.", FILE); \
cbaaba19 2356 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2357 fputs (",.", FILE); \
cbaaba19 2358 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2359 fputc ('\n', FILE); \
2360 } \
2361 ASM_OUTPUT_DEF (FILE, alias, name); \
2362 } \
2363 while (0)
290ad355 2364
1bc7c5b6
ZW
2365#define TARGET_ASM_FILE_START rs6000_file_start
2366
f045b2c9
RS
2367/* Output to assembler file text saying following lines
2368 may contain character constants, extra white space, comments, etc. */
2369
2370#define ASM_APP_ON ""
2371
2372/* Output to assembler file text saying following lines
2373 no longer contain unusual constructs. */
2374
2375#define ASM_APP_OFF ""
2376
f045b2c9
RS
2377/* How to refer to registers in assembler output.
2378 This sequence is indexed by compiler's hard-register-number (see above). */
2379
82e41834 2380extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2381
2382#define REGISTER_NAMES \
2383{ \
2384 &rs6000_reg_names[ 0][0], /* r0 */ \
2385 &rs6000_reg_names[ 1][0], /* r1 */ \
2386 &rs6000_reg_names[ 2][0], /* r2 */ \
2387 &rs6000_reg_names[ 3][0], /* r3 */ \
2388 &rs6000_reg_names[ 4][0], /* r4 */ \
2389 &rs6000_reg_names[ 5][0], /* r5 */ \
2390 &rs6000_reg_names[ 6][0], /* r6 */ \
2391 &rs6000_reg_names[ 7][0], /* r7 */ \
2392 &rs6000_reg_names[ 8][0], /* r8 */ \
2393 &rs6000_reg_names[ 9][0], /* r9 */ \
2394 &rs6000_reg_names[10][0], /* r10 */ \
2395 &rs6000_reg_names[11][0], /* r11 */ \
2396 &rs6000_reg_names[12][0], /* r12 */ \
2397 &rs6000_reg_names[13][0], /* r13 */ \
2398 &rs6000_reg_names[14][0], /* r14 */ \
2399 &rs6000_reg_names[15][0], /* r15 */ \
2400 &rs6000_reg_names[16][0], /* r16 */ \
2401 &rs6000_reg_names[17][0], /* r17 */ \
2402 &rs6000_reg_names[18][0], /* r18 */ \
2403 &rs6000_reg_names[19][0], /* r19 */ \
2404 &rs6000_reg_names[20][0], /* r20 */ \
2405 &rs6000_reg_names[21][0], /* r21 */ \
2406 &rs6000_reg_names[22][0], /* r22 */ \
2407 &rs6000_reg_names[23][0], /* r23 */ \
2408 &rs6000_reg_names[24][0], /* r24 */ \
2409 &rs6000_reg_names[25][0], /* r25 */ \
2410 &rs6000_reg_names[26][0], /* r26 */ \
2411 &rs6000_reg_names[27][0], /* r27 */ \
2412 &rs6000_reg_names[28][0], /* r28 */ \
2413 &rs6000_reg_names[29][0], /* r29 */ \
2414 &rs6000_reg_names[30][0], /* r30 */ \
2415 &rs6000_reg_names[31][0], /* r31 */ \
2416 \
2417 &rs6000_reg_names[32][0], /* fr0 */ \
2418 &rs6000_reg_names[33][0], /* fr1 */ \
2419 &rs6000_reg_names[34][0], /* fr2 */ \
2420 &rs6000_reg_names[35][0], /* fr3 */ \
2421 &rs6000_reg_names[36][0], /* fr4 */ \
2422 &rs6000_reg_names[37][0], /* fr5 */ \
2423 &rs6000_reg_names[38][0], /* fr6 */ \
2424 &rs6000_reg_names[39][0], /* fr7 */ \
2425 &rs6000_reg_names[40][0], /* fr8 */ \
2426 &rs6000_reg_names[41][0], /* fr9 */ \
2427 &rs6000_reg_names[42][0], /* fr10 */ \
2428 &rs6000_reg_names[43][0], /* fr11 */ \
2429 &rs6000_reg_names[44][0], /* fr12 */ \
2430 &rs6000_reg_names[45][0], /* fr13 */ \
2431 &rs6000_reg_names[46][0], /* fr14 */ \
2432 &rs6000_reg_names[47][0], /* fr15 */ \
2433 &rs6000_reg_names[48][0], /* fr16 */ \
2434 &rs6000_reg_names[49][0], /* fr17 */ \
2435 &rs6000_reg_names[50][0], /* fr18 */ \
2436 &rs6000_reg_names[51][0], /* fr19 */ \
2437 &rs6000_reg_names[52][0], /* fr20 */ \
2438 &rs6000_reg_names[53][0], /* fr21 */ \
2439 &rs6000_reg_names[54][0], /* fr22 */ \
2440 &rs6000_reg_names[55][0], /* fr23 */ \
2441 &rs6000_reg_names[56][0], /* fr24 */ \
2442 &rs6000_reg_names[57][0], /* fr25 */ \
2443 &rs6000_reg_names[58][0], /* fr26 */ \
2444 &rs6000_reg_names[59][0], /* fr27 */ \
2445 &rs6000_reg_names[60][0], /* fr28 */ \
2446 &rs6000_reg_names[61][0], /* fr29 */ \
2447 &rs6000_reg_names[62][0], /* fr30 */ \
2448 &rs6000_reg_names[63][0], /* fr31 */ \
2449 \
462f7901 2450 &rs6000_reg_names[64][0], /* was mq */ \
c81bebd7
MM
2451 &rs6000_reg_names[65][0], /* lr */ \
2452 &rs6000_reg_names[66][0], /* ctr */ \
2453 &rs6000_reg_names[67][0], /* ap */ \
2454 \
2455 &rs6000_reg_names[68][0], /* cr0 */ \
2456 &rs6000_reg_names[69][0], /* cr1 */ \
2457 &rs6000_reg_names[70][0], /* cr2 */ \
2458 &rs6000_reg_names[71][0], /* cr3 */ \
2459 &rs6000_reg_names[72][0], /* cr4 */ \
2460 &rs6000_reg_names[73][0], /* cr5 */ \
2461 &rs6000_reg_names[74][0], /* cr6 */ \
2462 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2463 \
f6b5d695 2464 &rs6000_reg_names[76][0], /* ca */ \
0ac081f6
AH
2465 \
2466 &rs6000_reg_names[77][0], /* v0 */ \
2467 &rs6000_reg_names[78][0], /* v1 */ \
2468 &rs6000_reg_names[79][0], /* v2 */ \
2469 &rs6000_reg_names[80][0], /* v3 */ \
2470 &rs6000_reg_names[81][0], /* v4 */ \
2471 &rs6000_reg_names[82][0], /* v5 */ \
2472 &rs6000_reg_names[83][0], /* v6 */ \
2473 &rs6000_reg_names[84][0], /* v7 */ \
2474 &rs6000_reg_names[85][0], /* v8 */ \
2475 &rs6000_reg_names[86][0], /* v9 */ \
2476 &rs6000_reg_names[87][0], /* v10 */ \
2477 &rs6000_reg_names[88][0], /* v11 */ \
2478 &rs6000_reg_names[89][0], /* v12 */ \
2479 &rs6000_reg_names[90][0], /* v13 */ \
2480 &rs6000_reg_names[91][0], /* v14 */ \
2481 &rs6000_reg_names[92][0], /* v15 */ \
2482 &rs6000_reg_names[93][0], /* v16 */ \
2483 &rs6000_reg_names[94][0], /* v17 */ \
2484 &rs6000_reg_names[95][0], /* v18 */ \
2485 &rs6000_reg_names[96][0], /* v19 */ \
2486 &rs6000_reg_names[97][0], /* v20 */ \
2487 &rs6000_reg_names[98][0], /* v21 */ \
2488 &rs6000_reg_names[99][0], /* v22 */ \
2489 &rs6000_reg_names[100][0], /* v23 */ \
2490 &rs6000_reg_names[101][0], /* v24 */ \
2491 &rs6000_reg_names[102][0], /* v25 */ \
2492 &rs6000_reg_names[103][0], /* v26 */ \
2493 &rs6000_reg_names[104][0], /* v27 */ \
2494 &rs6000_reg_names[105][0], /* v28 */ \
2495 &rs6000_reg_names[106][0], /* v29 */ \
2496 &rs6000_reg_names[107][0], /* v30 */ \
2497 &rs6000_reg_names[108][0], /* v31 */ \
2498 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2499 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2500 &rs6000_reg_names[111][0], /* spe_acc */ \
2501 &rs6000_reg_names[112][0], /* spefscr */ \
7d5175e1 2502 &rs6000_reg_names[113][0], /* sfp */ \
0258b6e4
PB
2503 &rs6000_reg_names[114][0], /* tfhar */ \
2504 &rs6000_reg_names[115][0], /* tfiar */ \
2505 &rs6000_reg_names[116][0], /* texasr */ \
23742a9e
RAR
2506 \
2507 &rs6000_reg_names[117][0], /* SPE rh0. */ \
2508 &rs6000_reg_names[118][0], /* SPE rh1. */ \
2509 &rs6000_reg_names[119][0], /* SPE rh2. */ \
2510 &rs6000_reg_names[120][0], /* SPE rh3. */ \
2511 &rs6000_reg_names[121][0], /* SPE rh4. */ \
2512 &rs6000_reg_names[122][0], /* SPE rh5. */ \
2513 &rs6000_reg_names[123][0], /* SPE rh6. */ \
2514 &rs6000_reg_names[124][0], /* SPE rh7. */ \
2515 &rs6000_reg_names[125][0], /* SPE rh8. */ \
2516 &rs6000_reg_names[126][0], /* SPE rh9. */ \
2517 &rs6000_reg_names[127][0], /* SPE rh10. */ \
2518 &rs6000_reg_names[128][0], /* SPE rh11. */ \
2519 &rs6000_reg_names[129][0], /* SPE rh12. */ \
2520 &rs6000_reg_names[130][0], /* SPE rh13. */ \
2521 &rs6000_reg_names[131][0], /* SPE rh14. */ \
2522 &rs6000_reg_names[132][0], /* SPE rh15. */ \
2523 &rs6000_reg_names[133][0], /* SPE rh16. */ \
2524 &rs6000_reg_names[134][0], /* SPE rh17. */ \
2525 &rs6000_reg_names[135][0], /* SPE rh18. */ \
2526 &rs6000_reg_names[136][0], /* SPE rh19. */ \
2527 &rs6000_reg_names[137][0], /* SPE rh20. */ \
2528 &rs6000_reg_names[138][0], /* SPE rh21. */ \
2529 &rs6000_reg_names[139][0], /* SPE rh22. */ \
2530 &rs6000_reg_names[140][0], /* SPE rh22. */ \
2531 &rs6000_reg_names[141][0], /* SPE rh24. */ \
2532 &rs6000_reg_names[142][0], /* SPE rh25. */ \
2533 &rs6000_reg_names[143][0], /* SPE rh26. */ \
2534 &rs6000_reg_names[144][0], /* SPE rh27. */ \
2535 &rs6000_reg_names[145][0], /* SPE rh28. */ \
2536 &rs6000_reg_names[146][0], /* SPE rh29. */ \
2537 &rs6000_reg_names[147][0], /* SPE rh30. */ \
2538 &rs6000_reg_names[148][0], /* SPE rh31. */ \
c81bebd7
MM
2539}
2540
f045b2c9
RS
2541/* Table of additional register names to use in user input. */
2542
2543#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2544 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2545 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2546 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2547 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2548 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2549 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2550 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2551 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2552 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2553 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2554 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2555 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2556 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2557 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2558 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2559 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2560 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2561 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2562 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2563 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2564 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2565 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2566 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2567 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2568 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2569 {"spe_acc", 111}, {"spefscr", 112}, \
462f7901 2570 /* no additional names for: lr, ctr, ap */ \
c4d38ccb
MM
2571 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2572 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
cacf1ca8 2573 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
f6b5d695
SB
2574 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2575 {"xer", 76}, \
cacf1ca8
MM
2576 /* VSX registers overlaid on top of FR, Altivec registers */ \
2577 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2578 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2579 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2580 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2581 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2582 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2583 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2584 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2585 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2586 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2587 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2588 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2589 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2590 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2591 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
0258b6e4
PB
2592 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2593 /* Transactional Memory Facility (HTM) Registers. */ \
23742a9e
RAR
2594 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116}, \
2595 /* SPE high registers. */ \
2596 {"rh0", 117}, {"rh1", 118}, {"rh2", 119}, {"rh3", 120}, \
2597 {"rh4", 121}, {"rh5", 122}, {"rh6", 123}, {"rh7", 124}, \
2598 {"rh8", 125}, {"rh9", 126}, {"rh10", 127}, {"rh11", 128}, \
2599 {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132}, \
2600 {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136}, \
2601 {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140}, \
2602 {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144}, \
2603 {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148}, \
2604}
f045b2c9 2605
f045b2c9
RS
2606/* This is how to output an element of a case-vector that is relative. */
2607
e1565e65 2608#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2609 do { char buf[100]; \
e1565e65 2610 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2611 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2612 assemble_name (FILE, buf); \
19d2d16f 2613 putc ('-', FILE); \
3daf36a4
ILT
2614 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2615 assemble_name (FILE, buf); \
19d2d16f 2616 putc ('\n', FILE); \
3daf36a4 2617 } while (0)
f045b2c9
RS
2618
2619/* This is how to output an assembler line
2620 that says to advance the location counter
2621 to a multiple of 2**LOG bytes. */
2622
2623#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2624 if ((LOG) != 0) \
2625 fprintf (FILE, "\t.align %d\n", (LOG))
2626
58082ff6
PH
2627/* How to align the given loop. */
2628#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2629
d28073d4
BS
2630/* Alignment guaranteed by __builtin_malloc. */
2631/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2632 However, specifying the stronger guarantee currently leads to
2633 a regression in SPEC CPU2006 437.leslie3d. The stronger
2634 guarantee should be implemented here once that's fixed. */
2635#define MALLOC_ABI_ALIGNMENT (64)
2636
9ebbca7d
GK
2637/* Pick up the return address upon entry to a procedure. Used for
2638 dwarf2 unwind information. This also enables the table driven
2639 mechanism. */
2640
1de43f85
DE
2641#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2642#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
9ebbca7d 2643
83720594
RH
2644/* Describe how we implement __builtin_eh_return. */
2645#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2646#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2647
f045b2c9
RS
2648/* Print operand X (an rtx) in assembler syntax to file FILE.
2649 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2650 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2651
2652#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2653
2654/* Define which CODE values are valid. */
2655
3cf437d4 2656#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
f045b2c9
RS
2657
2658/* Print a memory address as an operand to reference that memory location. */
2659
2660#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2661
c82846bc
DE
2662/* For switching between functions with different target attributes. */
2663#define SWITCHABLE_TARGET 1
2664
b6c9286a
MM
2665/* uncomment for disabling the corresponding default options */
2666/* #define MACHINE_no_sched_interblock */
2667/* #define MACHINE_no_sched_speculative */
2668/* #define MACHINE_no_sched_speculative_load */
2669
766a866c 2670/* General flags. */
a7df97e6 2671extern int frame_pointer_needed;
0ac081f6 2672
7fa14a01
MM
2673/* Classification of the builtin functions as to which switches enable the
2674 builtin, and what attributes it should have. We used to use the target
2675 flags macros, but we've run out of bits, so we now map the options into new
2676 settings used here. */
2677
2678/* Builtin attributes. */
2679#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2680#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2681#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2682#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2683#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2684#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2685#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2686#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2687#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2688
2689#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2690#define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
4f45da44
KN
2691#define RS6000_BTC_PURE 0x00000200 /* reads global
2692 state/mem and does
2693 not modify global state. */
7fa14a01
MM
2694#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2695#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2696
2697/* Miscellaneous information. */
0258b6e4
PB
2698#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2699#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
01f61a78
PB
2700#define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2701#define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
0258b6e4 2702#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
1c9df37c
MM
2703
2704/* Convenience macros to document the instruction type. */
7fa14a01
MM
2705#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2706#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2707
2708/* Builtin targets. For now, we reuse the masks for those options that are in
8241efd1
PB
2709 target flags, and pick three random bits for SPE, paired and ldbl128 which
2710 aren't in target_flags. */
4b705221 2711#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
7fa14a01
MM
2712#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2713#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
f62511da 2714#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
8fa97501 2715#define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
5a3a6a5e 2716#define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
f62511da 2717#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
0258b6e4 2718#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
7fa14a01
MM
2719#define RS6000_BTM_SPE MASK_STRING /* E500 */
2720#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2721#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2722#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2723#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2724#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2725#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
7fa14a01 2726#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
06b39289 2727#define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
f93bc5b3 2728#define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
8241efd1 2729#define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
4f45da44 2730#define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
1610d410 2731#define RS6000_BTM_FLOAT128 MASK_FLOAT128 /* IEEE 128-bit float. */
7fa14a01
MM
2732
2733#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2734 | RS6000_BTM_VSX \
f62511da 2735 | RS6000_BTM_P8_VECTOR \
8fa97501 2736 | RS6000_BTM_P9_VECTOR \
5a3a6a5e 2737 | RS6000_BTM_P9_MISC \
402e60c5 2738 | RS6000_BTM_MODULO \
f62511da 2739 | RS6000_BTM_CRYPTO \
7fa14a01
MM
2740 | RS6000_BTM_FRE \
2741 | RS6000_BTM_FRES \
2742 | RS6000_BTM_FRSQRTE \
2743 | RS6000_BTM_FRSQRTES \
0258b6e4 2744 | RS6000_BTM_HTM \
7fa14a01 2745 | RS6000_BTM_POPCNTD \
06b39289 2746 | RS6000_BTM_CELL \
f93bc5b3 2747 | RS6000_BTM_DFP \
8241efd1 2748 | RS6000_BTM_HARD_FLOAT \
53605f35
BS
2749 | RS6000_BTM_LDBL128 \
2750 | RS6000_BTM_FLOAT128)
7fa14a01
MM
2751
2752/* Define builtin enum index. */
2753
4f45da44 2754#undef RS6000_BUILTIN_0
7fa14a01
MM
2755#undef RS6000_BUILTIN_1
2756#undef RS6000_BUILTIN_2
2757#undef RS6000_BUILTIN_3
2758#undef RS6000_BUILTIN_A
2759#undef RS6000_BUILTIN_D
2760#undef RS6000_BUILTIN_E
0258b6e4 2761#undef RS6000_BUILTIN_H
7fa14a01
MM
2762#undef RS6000_BUILTIN_P
2763#undef RS6000_BUILTIN_Q
2764#undef RS6000_BUILTIN_S
2765#undef RS6000_BUILTIN_X
2766
4f45da44 2767#define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2768#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2769#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2770#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2771#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2772#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2773#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
0258b6e4 2774#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2775#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2776#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2777#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2778#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
1c9df37c 2779
0ac081f6
AH
2780enum rs6000_builtins
2781{
1c9df37c 2782#include "rs6000-builtin.def"
a72c65c7 2783
58646b77
PB
2784 RS6000_BUILTIN_COUNT
2785};
2786
4f45da44 2787#undef RS6000_BUILTIN_0
7fa14a01
MM
2788#undef RS6000_BUILTIN_1
2789#undef RS6000_BUILTIN_2
2790#undef RS6000_BUILTIN_3
2791#undef RS6000_BUILTIN_A
2792#undef RS6000_BUILTIN_D
2793#undef RS6000_BUILTIN_E
0258b6e4 2794#undef RS6000_BUILTIN_H
7fa14a01
MM
2795#undef RS6000_BUILTIN_P
2796#undef RS6000_BUILTIN_Q
2797#undef RS6000_BUILTIN_S
2798#undef RS6000_BUILTIN_X
1c9df37c 2799
58646b77
PB
2800enum rs6000_builtin_type_index
2801{
2802 RS6000_BTI_NOT_OPAQUE,
2803 RS6000_BTI_opaque_V2SI,
2804 RS6000_BTI_opaque_V2SF,
2805 RS6000_BTI_opaque_p_V2SI,
2806 RS6000_BTI_opaque_V4SI,
2807 RS6000_BTI_V16QI,
a16a872d 2808 RS6000_BTI_V1TI,
58646b77
PB
2809 RS6000_BTI_V2SI,
2810 RS6000_BTI_V2SF,
a72c65c7
MM
2811 RS6000_BTI_V2DI,
2812 RS6000_BTI_V2DF,
58646b77
PB
2813 RS6000_BTI_V4HI,
2814 RS6000_BTI_V4SI,
2815 RS6000_BTI_V4SF,
2816 RS6000_BTI_V8HI,
2817 RS6000_BTI_unsigned_V16QI,
a16a872d 2818 RS6000_BTI_unsigned_V1TI,
58646b77
PB
2819 RS6000_BTI_unsigned_V8HI,
2820 RS6000_BTI_unsigned_V4SI,
a72c65c7 2821 RS6000_BTI_unsigned_V2DI,
58646b77
PB
2822 RS6000_BTI_bool_char, /* __bool char */
2823 RS6000_BTI_bool_short, /* __bool short */
2824 RS6000_BTI_bool_int, /* __bool int */
a72c65c7 2825 RS6000_BTI_bool_long, /* __bool long */
58646b77
PB
2826 RS6000_BTI_pixel, /* __pixel */
2827 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2828 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2829 RS6000_BTI_bool_V4SI, /* __vector __bool int */
a72c65c7 2830 RS6000_BTI_bool_V2DI, /* __vector __bool long */
58646b77
PB
2831 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2832 RS6000_BTI_long, /* long_integer_type_node */
2833 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
c9485473
MM
2834 RS6000_BTI_long_long, /* long_long_integer_type_node */
2835 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
58646b77
PB
2836 RS6000_BTI_INTQI, /* intQI_type_node */
2837 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2838 RS6000_BTI_INTHI, /* intHI_type_node */
2839 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2840 RS6000_BTI_INTSI, /* intSI_type_node */
2841 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
a72c65c7
MM
2842 RS6000_BTI_INTDI, /* intDI_type_node */
2843 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
a16a872d
MM
2844 RS6000_BTI_INTTI, /* intTI_type_node */
2845 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
58646b77 2846 RS6000_BTI_float, /* float_type_node */
a72c65c7 2847 RS6000_BTI_double, /* double_type_node */
06b39289
MM
2848 RS6000_BTI_long_double, /* long_double_type_node */
2849 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2850 RS6000_BTI_dfloat128, /* dfloat128_type_node */
58646b77 2851 RS6000_BTI_void, /* void_type_node */
6712d6fd
MM
2852 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2853 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
53605f35 2854 RS6000_BTI_const_str, /* pointer to const char * */
58646b77 2855 RS6000_BTI_MAX
0ac081f6 2856};
58646b77
PB
2857
2858
2859#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2860#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2861#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2862#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2863#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
a16a872d 2864#define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
a72c65c7
MM
2865#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2866#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
58646b77
PB
2867#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2868#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2869#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2870#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2871#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2872#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2873#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
a16a872d 2874#define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
58646b77
PB
2875#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2876#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
a72c65c7 2877#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
58646b77
PB
2878#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2879#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2880#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
a72c65c7 2881#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
58646b77
PB
2882#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2883#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2884#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2885#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
a72c65c7 2886#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
58646b77
PB
2887#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2888
c9485473
MM
2889#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2890#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
58646b77
PB
2891#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2892#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2893#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2894#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2895#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2896#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2897#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2898#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
a72c65c7
MM
2899#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2900#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
a16a872d
MM
2901#define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2902#define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
58646b77 2903#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
a72c65c7 2904#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
06b39289
MM
2905#define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2906#define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2907#define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
58646b77 2908#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
6712d6fd
MM
2909#define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2910#define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
53605f35 2911#define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
58646b77
PB
2912
2913extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2914extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2915
807e902e 2916#define TARGET_SUPPORTS_WIDE_INT 1