]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
Daily bump.
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
16c484c7 3 2000, 2001, 2002 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
f045b2c9
RS
22
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
8e3f41e7
MM
44/* Default string to use for cpu if not specified. */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
f984d8df
DB
49/* Common ASM definitions used by ASM_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51#define ASM_CPU_SPEC \
52"%{!mcpu*: \
53 %{mpower: %{!mpower2: -mpwr}} \
54 %{mpower2: -mpwrx} \
55 %{mpowerpc*: -mppc} \
56 %{mno-power: %{!mpowerpc*: -mcom}} \
57 %{!mno-power: %{!mpower2: %(asm_default)}}} \
58%{mcpu=common: -mcom} \
59%{mcpu=power: -mpwr} \
60%{mcpu=power2: -mpwrx} \
309323c2 61%{mcpu=power3: -m604} \
957e9e48 62%{mcpu=power4: -mpower4} \
f984d8df
DB
63%{mcpu=powerpc: -mppc} \
64%{mcpu=rios: -mpwr} \
65%{mcpu=rios1: -mpwr} \
66%{mcpu=rios2: -mpwrx} \
67%{mcpu=rsc: -mpwr} \
68%{mcpu=rsc1: -mpwr} \
69%{mcpu=401: -mppc} \
61a8515c
JS
70%{mcpu=403: -m403} \
71%{mcpu=405: -m405} \
f984d8df
DB
72%{mcpu=505: -mppc} \
73%{mcpu=601: -m601} \
74%{mcpu=602: -mppc} \
75%{mcpu=603: -mppc} \
76%{mcpu=603e: -mppc} \
77%{mcpu=ec603e: -mppc} \
78%{mcpu=604: -mppc} \
79%{mcpu=604e: -mppc} \
80%{mcpu=620: -mppc} \
309323c2 81%{mcpu=630: -m604} \
f984d8df 82%{mcpu=740: -mppc} \
fd3b43f2 83%{mcpu=7400: -mppc} \
f18c054f 84%{mcpu=7450: -mppc} \
f984d8df
DB
85%{mcpu=750: -mppc} \
86%{mcpu=801: -mppc} \
87%{mcpu=821: -mppc} \
88%{mcpu=823: -mppc} \
775db490 89%{mcpu=860: -mppc} \
a3170dc6 90%{mcpu=8540: -me500} \
775db490 91%{maltivec: -maltivec}"
f984d8df
DB
92
93#define CPP_DEFAULT_SPEC ""
94
95#define ASM_DEFAULT_SPEC ""
96
841faeed
MM
97/* This macro defines names of additional specifications to put in the specs
98 that can be used in various specifications like CC1_SPEC. Its definition
99 is an initializer with a subgrouping for each command option.
100
101 Each subgrouping contains a string constant, that defines the
102 specification name, and a string constant that used by the GNU CC driver
103 program.
104
105 Do not define this macro if it does not need to do anything. */
106
7509c759 107#define SUBTARGET_EXTRA_SPECS
7509c759 108
c81bebd7 109#define EXTRA_SPECS \
c81bebd7 110 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
111 { "asm_cpu", ASM_CPU_SPEC }, \
112 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
113 SUBTARGET_EXTRA_SPECS
114
fb623df5 115/* Architecture type. */
f045b2c9 116
fb623df5
RK
117extern int target_flags;
118
119/* Use POWER architecture instructions and MQ register. */
38c1f2d7 120#define MASK_POWER 0x00000001
fb623df5 121
6febd581 122/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 123#define MASK_POWER2 0x00000002
6febd581 124
fb623df5 125/* Use PowerPC architecture instructions. */
38c1f2d7 126#define MASK_POWERPC 0x00000004
6febd581 127
583cf4db 128/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 129#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
130
131/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 132#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 133
fb623df5 134/* Use PowerPC-64 architecture instructions. */
38c1f2d7 135#define MASK_POWERPC64 0x00000020
f045b2c9 136
fb623df5 137/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 138#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
139
140/* Disable placing fp constants in the TOC; can be turned on when the
141 TOC overflows. */
38c1f2d7 142#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 143
0b9ccabc
RK
144/* Disable placing symbol+offset constants in the TOC; can be turned on when
145 the TOC overflows. */
38c1f2d7 146#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 147
fb623df5 148/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
149 there are more than 16K unique variables/constants in an executable. With
150 this option, linking fails only if there are more than 16K modules, or
151 if there are more than 16K unique variables/constant in a single module.
152
153 This is at the cost of having 2 extra loads and one extra store per
956d6950 154 function, and one less allocable register. */
38c1f2d7 155#define MASK_MINIMAL_TOC 0x00000200
642a35f1 156
b1765bde 157/* Nonzero for the 64bit model: longs and pointers are 64 bits. */
38c1f2d7 158#define MASK_64BIT 0x00000400
9e654916 159
f85f4585 160/* Disable use of FPRs. */
38c1f2d7 161#define MASK_SOFT_FLOAT 0x00000800
f85f4585 162
88cad84b 163/* Enable load/store multiple, even on PowerPC */
38c1f2d7
MM
164#define MASK_MULTIPLE 0x00001000
165#define MASK_MULTIPLE_SET 0x00002000
4d30c363 166
7e69e155 167/* Use string instructions for block moves */
38c1f2d7
MM
168#define MASK_STRING 0x00004000
169#define MASK_STRING_SET 0x00008000
7e69e155 170
38c1f2d7
MM
171/* Disable update form of load/store */
172#define MASK_NO_UPDATE 0x00010000
173
174/* Disable fused multiply/add operations */
175#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 176
9ebbca7d
GK
177/* Nonzero if we need to schedule the prolog and epilog. */
178#define MASK_SCHED_PROLOG 0x00040000
179
0ac081f6
AH
180/* Use AltiVec instructions. */
181#define MASK_ALTIVEC 0x00080000
182
6fa3f289
ZW
183/* Return small structures in memory (as the AIX ABI requires). */
184#define MASK_AIX_STRUCT_RET 0x00100000
185#define MASK_AIX_STRUCT_RET_SET 0x00200000
0ac081f6 186
6fa3f289
ZW
187/* The only remaining free bit is 0x00400000. sysv4.h uses
188 0x00800000 -> 0x40000000, and 0x80000000 is not available
189 because target_flags is signed. */
06f4e019 190
7e69e155
MM
191#define TARGET_POWER (target_flags & MASK_POWER)
192#define TARGET_POWER2 (target_flags & MASK_POWER2)
193#define TARGET_POWERPC (target_flags & MASK_POWERPC)
194#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
195#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
196#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
197#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
198#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
199#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
200#define TARGET_64BIT (target_flags & MASK_64BIT)
201#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
202#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
203#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
204#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 205#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
206#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
207#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 208#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 209#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 210#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 211
2f3e5814 212#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 213#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
214#define TARGET_UPDATE (! TARGET_NO_UPDATE)
215#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 216
996ed075
JJ
217#ifdef IN_LIBGCC2
218/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 219#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
220#define TARGET_POWERPC64 1
221#else
222#define TARGET_POWERPC64 0
223#endif
b6c9286a 224#else
9ebbca7d 225#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
226#endif
227
a3950905 228#define TARGET_XL_CALL 0
a3950905 229
fb623df5 230/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 231
fb623df5 232 Macro to define tables used to set the flags.
f045b2c9
RS
233 This is a list in braces of pairs in braces,
234 each pair being { "NAME", VALUE }
235 where VALUE is the bits to set or minus the bits to clear.
236 An empty string NAME is used to identify the default VALUE. */
237
938937d8 238#define TARGET_SWITCHES \
9ebbca7d 239 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 240 N_("Use POWER instruction set")}, \
938937d8 241 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 242 | MASK_POWER2), \
047142d3 243 N_("Use POWER2 instruction set")}, \
9ebbca7d 244 {"no-power2", - MASK_POWER2, \
047142d3 245 N_("Do not use POWER2 instruction set")}, \
938937d8 246 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 247 | MASK_STRING), \
047142d3 248 N_("Do not use POWER instruction set")}, \
9ebbca7d 249 {"powerpc", MASK_POWERPC, \
047142d3 250 N_("Use PowerPC instruction set")}, \
938937d8 251 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 252 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 253 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 254 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 255 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 256 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 257 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 258 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 259 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 260 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 261 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 262 {"powerpc64", MASK_POWERPC64, \
047142d3 263 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 264 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 265 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 266 {"altivec", MASK_ALTIVEC , \
c725bd79 267 N_("Use AltiVec instructions")}, \
f18c054f 268 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 269 N_("Don't use AltiVec instructions")}, \
9ebbca7d 270 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 271 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 272 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 273 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 274 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 275 | MASK_MINIMAL_TOC), \
047142d3 276 N_("Put everything in the regular TOC")}, \
9ebbca7d 277 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 278 N_("Place floating point constants in TOC")}, \
9ebbca7d 279 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 280 N_("Don't place floating point constants in TOC")},\
9ebbca7d 281 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 282 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 283 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 284 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
285 {"minimal-toc", MASK_MINIMAL_TOC, \
286 "Use only one TOC entry per procedure"}, \
287 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 288 ""}, \
9ebbca7d 289 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 290 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 291 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 292 N_("Use hardware fp")}, \
9ebbca7d 293 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 294 N_("Do not use hardware fp")}, \
9ebbca7d 295 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
047142d3 296 N_("Generate load/store multiple instructions")}, \
9ebbca7d 297 {"no-multiple", - MASK_MULTIPLE, \
047142d3 298 N_("Do not generate load/store multiple instructions")},\
9ebbca7d 299 {"no-multiple", MASK_MULTIPLE_SET, \
047142d3 300 ""}, \
9ebbca7d 301 {"string", MASK_STRING | MASK_STRING_SET, \
047142d3 302 N_("Generate string instructions for block moves")},\
9ebbca7d 303 {"no-string", - MASK_STRING, \
047142d3 304 N_("Do not generate string instructions for block moves")},\
9ebbca7d 305 {"no-string", MASK_STRING_SET, \
047142d3 306 ""}, \
9ebbca7d 307 {"update", - MASK_NO_UPDATE, \
047142d3 308 N_("Generate load/store with update instructions")},\
9ebbca7d 309 {"no-update", MASK_NO_UPDATE, \
047142d3 310 N_("Do not generate load/store with update instructions")},\
9ebbca7d 311 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 312 N_("Generate fused multiply/add instructions")},\
9ebbca7d 313 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 314 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
315 {"sched-prolog", MASK_SCHED_PROLOG, \
316 ""}, \
317 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 318 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
319 {"sched-epilog", MASK_SCHED_PROLOG, \
320 ""}, \
321 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
322 ""}, \
6fa3f289
ZW
323 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
324 N_("Return all structures in memory (AIX default)")},\
325 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
326 N_("Return small structures in registers (SVR4 default)")},\
327 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
328 ""},\
329 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
330 ""},\
331 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
332 ""},\
333 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
334 ""},\
938937d8 335 SUBTARGET_SWITCHES \
9ebbca7d
GK
336 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
337 ""}}
fb623df5 338
938937d8 339#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
340
341/* This is meant to be redefined in the host dependent files */
342#define SUBTARGET_SWITCHES
fb623df5 343
cac8ce95 344/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 345enum processor_type
bef84347
VM
346 {
347 PROCESSOR_RIOS1,
348 PROCESSOR_RIOS2,
3cb999d8 349 PROCESSOR_RS64A,
bef84347
VM
350 PROCESSOR_MPCCORE,
351 PROCESSOR_PPC403,
fe7f5677 352 PROCESSOR_PPC405,
bef84347
VM
353 PROCESSOR_PPC601,
354 PROCESSOR_PPC603,
355 PROCESSOR_PPC604,
356 PROCESSOR_PPC604e,
357 PROCESSOR_PPC620,
3cb999d8 358 PROCESSOR_PPC630,
ed947a96
DJ
359 PROCESSOR_PPC750,
360 PROCESSOR_PPC7400,
309323c2 361 PROCESSOR_PPC7450,
a3170dc6 362 PROCESSOR_PPC8540,
309323c2 363 PROCESSOR_POWER4
bef84347 364};
fb623df5
RK
365
366extern enum processor_type rs6000_cpu;
367
368/* Recast the processor type to the cpu attribute. */
369#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
370
8482e358 371/* Define generic processor types based upon current deployment. */
3cb999d8
DE
372#define PROCESSOR_COMMON PROCESSOR_PPC601
373#define PROCESSOR_POWER PROCESSOR_RIOS1
374#define PROCESSOR_POWERPC PROCESSOR_PPC604
375#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 376
fb623df5 377/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
378#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
379#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 380
6febd581
RK
381/* Specify the dialect of assembler to use. New mnemonics is dialect one
382 and the old mnemonics are dialect zero. */
9ebbca7d 383#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 384
956d6950 385/* This is meant to be overridden in target specific files. */
b6c9286a 386#define SUBTARGET_OPTIONS
b6c9286a 387
9ebbca7d
GK
388#define TARGET_OPTIONS \
389{ \
047142d3
PT
390 {"cpu=", &rs6000_select[1].string, \
391 N_("Use features of and schedule code for given CPU") }, \
392 {"tune=", &rs6000_select[2].string, \
393 N_("Schedule code for given CPU") }, \
394 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
57ac7be9
AM
395 {"traceback=", &rs6000_traceback_name, \
396 N_("Select full, part, or no traceback table") }, \
0ac081f6 397 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
6fa3f289
ZW
398 {"long-double-", &rs6000_long_double_size_string, \
399 N_("Specify size of long double (64 or 128 bits)") }, \
a3170dc6
AH
400 {"isel=", &rs6000_isel_string, \
401 N_("Specify yes/no if isel instructions should be generated") }, \
08b57fb3
AH
402 {"vrsave=", &rs6000_altivec_vrsave_string, \
403 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
a5c76ee6
ZW
404 {"longcall", &rs6000_longcall_switch, \
405 N_("Avoid all range limits on call instructions") }, \
406 {"no-longcall", &rs6000_longcall_switch, "" }, \
9ebbca7d 407 SUBTARGET_OPTIONS \
b6c9286a 408}
fb623df5 409
ff222560 410/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
411struct rs6000_cpu_select
412{
815cdc52
MM
413 const char *string;
414 const char *name;
8e3f41e7
MM
415 int set_tune_p;
416 int set_arch_p;
417};
418
419extern struct rs6000_cpu_select rs6000_select[];
fb623df5 420
38c1f2d7 421/* Debug support */
0ac081f6 422extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 423extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
424extern int rs6000_debug_stack; /* debug stack applications */
425extern int rs6000_debug_arg; /* debug argument handling */
426
427#define TARGET_DEBUG_STACK rs6000_debug_stack
428#define TARGET_DEBUG_ARG rs6000_debug_arg
429
57ac7be9
AM
430extern const char *rs6000_traceback_name; /* Type of traceback table. */
431
6fa3f289
ZW
432/* These are separate from target_flags because we've run out of bits
433 there. */
434extern const char *rs6000_long_double_size_string;
435extern int rs6000_long_double_type_size;
436extern int rs6000_altivec_abi;
a3170dc6
AH
437extern int rs6000_spe_abi;
438extern int rs6000_isel;
439extern int rs6000_fprs;
440extern const char *rs6000_isel_string;
08b57fb3
AH
441extern const char *rs6000_altivec_vrsave_string;
442extern int rs6000_altivec_vrsave;
a5c76ee6
ZW
443extern const char *rs6000_longcall_switch;
444extern int rs6000_default_long_calls;
6fa3f289
ZW
445
446#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
447#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
08b57fb3 448#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
6fa3f289 449
a3170dc6
AH
450#define TARGET_SPE_ABI 0
451#define TARGET_SPE 0
452#define TARGET_ISEL 0
453#define TARGET_FPRS 1
454
fb623df5
RK
455/* Sometimes certain combinations of command options do not make sense
456 on a particular target machine. You can define a macro
457 `OVERRIDE_OPTIONS' to take account of this. This macro, if
458 defined, is executed once just after all the command options have
459 been parsed.
460
5accd822
DE
461 Don't use this macro to turn on various extra optimizations for
462 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
463
fb623df5
RK
464 On the RS/6000 this is used to define the target cpu type. */
465
8e3f41e7 466#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 467
5accd822
DE
468/* Define this to change the optimizations performed by default. */
469#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
470
4c4eb375
GK
471/* Show we can debug even without a frame pointer. */
472#define CAN_DEBUG_WITHOUT_FP
473
a5c76ee6
ZW
474/* Target pragma. */
475#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
476 cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
477} while (0)
478
4c4eb375
GK
479/* Target #defines. */
480#define TARGET_CPU_CPP_BUILTINS() \
481 rs6000_cpu_cpp_builtins (pfile)
f045b2c9 482\f
4c4eb375 483/* Target machine storage layout. */
f045b2c9 484
13d39dbc 485/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 486 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
487 the value is constrained to be within the bounds of the declared
488 type, but kept valid in the wider mode. The signedness of the
489 extension may differ from that of the type. */
490
39403d82
DE
491#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
492 if (GET_MODE_CLASS (MODE) == MODE_INT \
493 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 494 (MODE) = word_mode;
39403d82
DE
495
496/* Define this if function arguments should also be promoted using the above
497 procedure. */
498
499#define PROMOTE_FUNCTION_ARGS
500
501/* Likewise, if the function return value is promoted. */
502
503#define PROMOTE_FUNCTION_RETURN
ef457bda 504
f045b2c9 505/* Define this if most significant bit is lowest numbered
82e41834
KH
506 in instructions that operate on numbered bit-fields. */
507/* That is true on RS/6000. */
f045b2c9
RS
508#define BITS_BIG_ENDIAN 1
509
510/* Define this if most significant byte of a word is the lowest numbered. */
511/* That is true on RS/6000. */
512#define BYTES_BIG_ENDIAN 1
513
514/* Define this if most significant word of a multiword number is lowest
c81bebd7 515 numbered.
f045b2c9
RS
516
517 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 518 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
519#define WORDS_BIG_ENDIAN 1
520
2e360ab3 521#define MAX_BITS_PER_WORD 64
f045b2c9
RS
522
523/* Width of a word, in units (bytes). */
2f3e5814 524#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
525#ifdef IN_LIBGCC2
526#define MIN_UNITS_PER_WORD UNITS_PER_WORD
527#else
ef0e53ce 528#define MIN_UNITS_PER_WORD 4
f34fc46e 529#endif
2e360ab3 530#define UNITS_PER_FP_WORD 8
0ac081f6 531#define UNITS_PER_ALTIVEC_WORD 16
a3170dc6 532#define UNITS_PER_SPE_WORD 8
f045b2c9 533
915f619f
JW
534/* Type used for ptrdiff_t, as a string used in a declaration. */
535#define PTRDIFF_TYPE "int"
536
058ef853
DE
537/* Type used for size_t, as a string used in a declaration. */
538#define SIZE_TYPE "long unsigned int"
539
f045b2c9
RS
540/* Type used for wchar_t, as a string used in a declaration. */
541#define WCHAR_TYPE "short unsigned int"
542
543/* Width of wchar_t in bits. */
544#define WCHAR_TYPE_SIZE 16
545
9e654916
RK
546/* A C expression for the size in bits of the type `short' on the
547 target machine. If you don't define this, the default is half a
548 word. (If this would be less than one storage unit, it is
549 rounded up to one unit.) */
550#define SHORT_TYPE_SIZE 16
551
552/* A C expression for the size in bits of the type `int' on the
553 target machine. If you don't define this, the default is one
554 word. */
19d2d16f 555#define INT_TYPE_SIZE 32
9e654916
RK
556
557/* A C expression for the size in bits of the type `long' on the
558 target machine. If you don't define this, the default is one
559 word. */
2f3e5814 560#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
561#define MAX_LONG_TYPE_SIZE 64
562
563/* A C expression for the size in bits of the type `long long' on the
564 target machine. If you don't define this, the default is two
565 words. */
566#define LONG_LONG_TYPE_SIZE 64
567
9e654916
RK
568/* A C expression for the size in bits of the type `float' on the
569 target machine. If you don't define this, the default is one
570 word. */
571#define FLOAT_TYPE_SIZE 32
572
573/* A C expression for the size in bits of the type `double' on the
574 target machine. If you don't define this, the default is two
575 words. */
576#define DOUBLE_TYPE_SIZE 64
577
578/* A C expression for the size in bits of the type `long double' on
579 the target machine. If you don't define this, the default is two
580 words. */
6fa3f289 581#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
582
583/* Constant which presents upper bound of the above value. */
584#define MAX_LONG_DOUBLE_TYPE_SIZE 128
585
586/* Define this to set long double type size to use in libgcc2.c, which can
587 not depend on target_flags. */
588#ifdef __LONG_DOUBLE_128__
589#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
590#else
591#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
592#endif
9e654916 593
f045b2c9
RS
594/* Width in bits of a pointer.
595 See also the macro `Pmode' defined below. */
2f3e5814 596#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
597
598/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 599#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
600
601/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 602#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
603
604/* Allocation boundary (in *bits*) for the code of a function. */
605#define FUNCTION_BOUNDARY 32
606
607/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
608#define BIGGEST_ALIGNMENT 128
609
610/* A C expression to compute the alignment for a variables in the
611 local store. TYPE is the data type, and ALIGN is the alignment
612 that the object would ordinarily have. */
613#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a3170dc6
AH
614 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
615 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
b73fd26c 616
f045b2c9
RS
617/* Alignment of field after `int : 0' in a structure. */
618#define EMPTY_FIELD_BOUNDARY 32
619
620/* Every structure's size must be a multiple of this. */
621#define STRUCTURE_SIZE_BOUNDARY 8
622
a3170dc6
AH
623/* Return 1 if a structure or array containing FIELD should be
624 accessed using `BLKMODE'.
625
626 For the SPE, simd types are V2SI, and gcc can be tempted to put the
627 entire thing in a DI and use subregs to access the internals.
628 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
629 back-end. Because a single GPR can hold a V2SI, but not a DI, the
630 best thing to do is set structs to BLKmode and avoid Severe Tire
631 Damage. */
632#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
633 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
634
f045b2c9
RS
635/* A bitfield declared as `int' forces `int' alignment for the struct. */
636#define PCC_BITFIELD_TYPE_MATTERS 1
637
69ef87e2
AH
638/* Make strings word-aligned so strcpy from constants will be faster.
639 Make vector constants quadword aligned. */
640#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
641 (TREE_CODE (EXP) == STRING_CST \
642 && (ALIGN) < BITS_PER_WORD \
643 ? BITS_PER_WORD \
644 : (ALIGN))
f045b2c9 645
0ac081f6
AH
646/* Make arrays of chars word-aligned for the same reasons.
647 Align vectors to 128 bits. */
f045b2c9 648#define DATA_ALIGNMENT(TYPE, ALIGN) \
a3170dc6 649 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
0ac081f6 650 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
651 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
652 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
653
a0ab749a 654/* Nonzero if move instructions will actually fail to work
f045b2c9 655 when given unaligned data. */
fdaff8ba 656#define STRICT_ALIGNMENT 0
e1565e65
DE
657
658/* Define this macro to be the value 1 if unaligned accesses have a cost
659 many times greater than aligned accesses, for example if they are
660 emulated in a trap handler. */
41543739
GK
661#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
662 (STRICT_ALIGNMENT \
663 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
664 && (ALIGN) < 32))
f045b2c9
RS
665\f
666/* Standard register usage. */
667
668/* Number of actual hardware registers.
669 The hardware registers are assigned numbers for the compiler
670 from 0 to just below FIRST_PSEUDO_REGISTER.
671 All registers that the compiler knows about must be given numbers,
672 even those that are not normally considered general registers.
673
674 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
675 an MQ register, a count register, a link register, and 8 condition
676 register fields, which we view here as separate registers.
677
678 In addition, the difference between the frame and argument pointers is
679 a function of the number of registers saved, so we need to have a
680 register for AP that will later be eliminated in favor of SP or FP.
802a0058 681 This is a normal register, but it is fixed.
f045b2c9 682
802a0058
MM
683 We also create a pseudo register for float/int conversions, that will
684 really represent the memory location used. It is represented here as
685 a register, in order to work around problems in allocating stack storage
686 in inline functions. */
687
a3170dc6 688#define FIRST_PSEUDO_REGISTER 113
f045b2c9 689
d6a7951f 690/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 691#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 692
f045b2c9
RS
693/* 1 for registers that have pervasive standard uses
694 and are not available for the register allocator.
695
5dead3e5
DJ
696 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
697 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 698
a127c4e5
RK
699 cr5 is not supposed to be used.
700
701 On System V implementations, r13 is fixed and not available for use. */
702
f045b2c9 703#define FIXED_REGISTERS \
5dead3e5 704 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
705 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
707 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
708 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
709 /* AltiVec registers. */ \
710 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
711 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 712 1, 1 \
a3170dc6 713 , 1, 1 \
0ac081f6 714}
f045b2c9
RS
715
716/* 1 for registers not available across function calls.
717 These must include the FIXED_REGISTERS and also any
718 registers that can be used without being saved.
719 The latter must include the registers where values are returned
720 and the register where structure-value addresses are passed.
721 Aside from that, you can include as many other registers as you like. */
722
723#define CALL_USED_REGISTERS \
a127c4e5 724 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
725 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
726 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
727 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
728 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
729 /* AltiVec registers. */ \
730 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
731 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 732 1, 1 \
a3170dc6 733 , 1, 1 \
0ac081f6
AH
734}
735
289e96b2
AH
736/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
737 the entire set of `FIXED_REGISTERS' be included.
738 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
739 This macro is optional. If not specified, it defaults to the value
740 of `CALL_USED_REGISTERS'. */
741
742#define CALL_REALLY_USED_REGISTERS \
743 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
744 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
745 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
747 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
748 /* AltiVec registers. */ \
749 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 751 0, 0 \
a3170dc6 752 , 0, 0 \
289e96b2 753}
f045b2c9 754
9ebbca7d
GK
755#define MQ_REGNO 64
756#define CR0_REGNO 68
757#define CR1_REGNO 69
758#define CR2_REGNO 70
759#define CR3_REGNO 71
760#define CR4_REGNO 72
761#define MAX_CR_REGNO 75
762#define XER_REGNO 76
0ac081f6
AH
763#define FIRST_ALTIVEC_REGNO 77
764#define LAST_ALTIVEC_REGNO 108
28bcfd4d 765#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 766#define VRSAVE_REGNO 109
5f004351 767#define VSCR_REGNO 110
a3170dc6
AH
768#define SPE_ACC_REGNO 111
769#define SPEFSCR_REGNO 112
9ebbca7d 770
f045b2c9
RS
771/* List the order in which to allocate registers. Each register must be
772 listed once, even those in FIXED_REGISTERS.
773
774 We allocate in the following order:
775 fp0 (not saved or used for anything)
776 fp13 - fp2 (not saved; incoming fp arg registers)
777 fp1 (not saved; return value)
778 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
779 cr7, cr6 (not saved or special)
780 cr1 (not saved, but used for FP operations)
f045b2c9 781 cr0 (not saved, but used for arithmetic operations)
5accd822 782 cr4, cr3, cr2 (saved)
f045b2c9
RS
783 r0 (not saved; cannot be base reg)
784 r9 (not saved; best for TImode)
785 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
786 r3 (not saved; return value register)
787 r31 - r13 (saved; order given to save least number)
788 r12 (not saved; if used for DImode or DFmode would use r13)
789 mq (not saved; best to use it if we can)
790 ctr (not saved; when we have the choice ctr is better)
791 lr (saved)
5f004351 792 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
a3170dc6 793 spe_acc, spefscr (fixed)
0ac081f6
AH
794
795 AltiVec registers:
796 v0 - v1 (not saved or used for anything)
797 v13 - v3 (not saved; incoming vector arg registers)
798 v2 (not saved; incoming vector arg reg; return value)
799 v19 - v14 (not saved or used for anything)
800 v31 - v20 (saved; order given to save least number)
801*/
802
f045b2c9
RS
803
804#define REG_ALLOC_ORDER \
805 {32, \
806 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
807 33, \
808 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
809 50, 49, 48, 47, 46, \
5accd822 810 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
811 0, \
812 9, 11, 10, 8, 7, 6, 5, 4, \
813 3, \
814 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
815 18, 17, 16, 15, 14, 13, 12, \
816 64, 66, 65, \
0ac081f6
AH
817 73, 1, 2, 67, 76, \
818 /* AltiVec registers. */ \
819 77, 78, \
820 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
821 79, \
822 96, 95, 94, 93, 92, 91, \
58568475 823 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
5f004351 824 97, 109, 110 \
a3170dc6 825 , 111, 112 \
0ac081f6 826}
f045b2c9
RS
827
828/* True if register is floating-point. */
829#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
830
831/* True if register is a condition register. */
832#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
833
815cdc52
MM
834/* True if register is a condition register, but not cr0. */
835#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
836
f045b2c9 837/* True if register is an integer register. */
9ebbca7d 838#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 839
a3170dc6
AH
840/* SPE SIMD registers are just the GPRs. */
841#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
842
0d86f538 843/* True if register is the XER register. */
9ebbca7d 844#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 845
0ac081f6
AH
846/* True if register is an AltiVec register. */
847#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
848
f045b2c9
RS
849/* Return number of consecutive hard regs needed starting at reg REGNO
850 to hold something of mode MODE.
851 This is ordinarily the length in words of a value of mode MODE
852 but can be less for certain modes in special long registers.
853
a3170dc6
AH
854 For the SPE, GPRs are 64 bits but only 32 bits are visible in
855 scalar instructions. The upper 32 bits are only available to the
856 SIMD instructions.
857
a260abc9
DE
858 POWER and PowerPC GPRs hold 32 bits worth;
859 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 860
802a0058 861#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 862 (FP_REGNO_P (REGNO) \
2e360ab3 863 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
a3170dc6
AH
864 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
865 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
0ac081f6
AH
866 : ALTIVEC_REGNO_P (REGNO) \
867 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
868 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
869
0ac081f6 870#define ALTIVEC_VECTOR_MODE(MODE) \
cb2a532e
AH
871 ((MODE) == V16QImode \
872 || (MODE) == V8HImode \
873 || (MODE) == V4SFmode \
6e1f54e2 874 || (MODE) == V4SImode)
0ac081f6 875
a3170dc6
AH
876#define SPE_VECTOR_MODE(MODE) \
877 ((MODE) == V4HImode \
878 || (MODE) == V2SFmode \
00a892b8 879 || (MODE) == V1DImode \
a3170dc6
AH
880 || (MODE) == V2SImode)
881
0ac081f6
AH
882/* Define this macro to be nonzero if the port is prepared to handle
883 insns involving vector mode MODE. At the very least, it must have
884 move patterns for this mode. */
885
a3170dc6
AH
886#define VECTOR_MODE_SUPPORTED_P(MODE) \
887 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
888 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
0ac081f6 889
f045b2c9 890/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
891 For POWER and PowerPC, the GPRs can hold any mode, but the float
892 registers only can hold floating modes and DImode, and CR register only
893 can hold CC modes. We cannot put TImode anywhere except general
82e41834 894 register and it must be able to fit within the register set. */
f045b2c9 895
802a0058
MM
896#define HARD_REGNO_MODE_OK(REGNO, MODE) \
897 (FP_REGNO_P (REGNO) ? \
898 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
899 || (GET_MODE_CLASS (MODE) == MODE_INT \
900 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 901 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
a3170dc6 902 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
802a0058 903 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 904 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
802a0058 905 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 906 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
907 : 1)
908
909/* Value is 1 if it is a good idea to tie two pseudo registers
910 when one has mode MODE1 and one has mode MODE2.
911 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
912 for any hard reg, then this must be 0 for correct output. */
913#define MODES_TIEABLE_P(MODE1, MODE2) \
914 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
915 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
916 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
917 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
918 : GET_MODE_CLASS (MODE1) == MODE_CC \
919 ? GET_MODE_CLASS (MODE2) == MODE_CC \
920 : GET_MODE_CLASS (MODE2) == MODE_CC \
921 ? GET_MODE_CLASS (MODE1) == MODE_CC \
0ac081f6
AH
922 : ALTIVEC_VECTOR_MODE (MODE1) \
923 ? ALTIVEC_VECTOR_MODE (MODE2) \
924 : ALTIVEC_VECTOR_MODE (MODE2) \
925 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
926 : 1)
927
928/* A C expression returning the cost of moving data from a register of class
929 CLASS1 to one of CLASS2.
930
931 On the RS/6000, copying between floating-point and fixed-point
932 registers is expensive. */
933
cf011243 934#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
0ac081f6 935 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
f045b2c9
RS
936 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
937 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
0ac081f6
AH
938 : (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
939 : (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
a4b970a0 940 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
941 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
942 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 943 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 944 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 945 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
946 : 2)
947
948/* A C expressions returning the cost of moving data of MODE from a register to
949 or from memory.
950
951 On the RS/6000, bump this up a bit. */
952
e1565e65
DE
953#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
954 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
ab4a5fc9
RK
955 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
956 ? 3 : 2) \
957 + 4)
f045b2c9
RS
958
959/* Specify the cost of a branch insn; roughly the number of extra insns that
960 should be added to avoid a branch.
961
ef457bda 962 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
963 unscheduled conditional branch. */
964
ef457bda 965#define BRANCH_COST 3
f045b2c9 966
a3170dc6
AH
967
968/* A fixed register used at prologue and epilogue generation to fix
969 addressing modes. The SPE needs heavy addressing fixes at the last
970 minute, and it's best to save a register for it.
971
972 AltiVec also needs fixes, but we've gotten around using r11, which
973 is actually wrong because when use_backchain_to_restore_sp is true,
974 we end up clobbering r11.
975
976 The AltiVec case needs to be fixed. Dunno if we should break ABI
977 compatability and reserve a register for it as well.. */
978
979#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
980
6febd581
RK
981/* Define this macro to change register usage conditional on target flags.
982 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 983 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 984 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
985 Conditionally disable FPRs. */
986
8d30c4ee
FS
987#define CONDITIONAL_REGISTER_USAGE \
988{ \
e9e4208a 989 int i; \
8d30c4ee
FS
990 if (! TARGET_POWER) \
991 fixed_regs[64] = 1; \
992 if (TARGET_64BIT) \
289e96b2
AH
993 fixed_regs[13] = call_used_regs[13] \
994 = call_really_used_regs[13] = 1; \
a3170dc6 995 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
8d30c4ee 996 for (i = 32; i < 64; i++) \
289e96b2
AH
997 fixed_regs[i] = call_used_regs[i] \
998 = call_really_used_regs[i] = 1; \
1db02437
FS
999 if (DEFAULT_ABI == ABI_V4 \
1000 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1001 && flag_pic == 1) \
1002 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1003 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1004 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1005 if (DEFAULT_ABI == ABI_DARWIN \
1006 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1007 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1008 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1009 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1010 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
5f004351
AH
1011 if (TARGET_ALTIVEC) \
1012 global_regs[VSCR_REGNO] = 1; \
a3170dc6
AH
1013 if (TARGET_SPE) \
1014 { \
1015 global_regs[SPEFSCR_REGNO] = 1; \
1016 fixed_regs[FIXED_SCRATCH] \
1017 = call_used_regs[FIXED_SCRATCH] \
1018 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1019 } \
2473ee11 1020 if (! TARGET_ALTIVEC) \
c1f11548
DE
1021 { \
1022 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1023 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1024 call_really_used_regs[VRSAVE_REGNO] = 1; \
1025 } \
0ac081f6 1026 if (TARGET_ALTIVEC_ABI) \
2473ee11 1027 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 1028 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 1029}
6febd581 1030
f045b2c9
RS
1031/* Specify the registers used for certain standard purposes.
1032 The values of these macros are register numbers. */
1033
1034/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1035/* #define PC_REGNUM */
1036
1037/* Register to use for pushing function arguments. */
1038#define STACK_POINTER_REGNUM 1
1039
1040/* Base register for access to local variables of the function. */
1041#define FRAME_POINTER_REGNUM 31
1042
1043/* Value should be nonzero if functions must have frame pointers.
1044 Zero means the frame pointer need not be set up (and parms
1045 may be accessed via the stack pointer) in functions that seem suitable.
1046 This is computed in `reload', in reload1.c. */
1047#define FRAME_POINTER_REQUIRED 0
1048
1049/* Base register for access to arguments of the function. */
1050#define ARG_POINTER_REGNUM 67
1051
1052/* Place to put static chain when calling a function that requires it. */
1053#define STATIC_CHAIN_REGNUM 11
1054
82e41834 1055/* Link register number. */
9ebbca7d 1056#define LINK_REGISTER_REGNUM 65
b6c9286a 1057
82e41834 1058/* Count register number. */
9ebbca7d 1059#define COUNT_REGISTER_REGNUM 66
802a0058 1060
f045b2c9
RS
1061/* Place that structure value return address is placed.
1062
1063 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1064#define STRUCT_VALUE 0
f045b2c9
RS
1065\f
1066/* Define the classes of registers for register constraints in the
1067 machine description. Also define ranges of constants.
1068
1069 One of the classes must always be named ALL_REGS and include all hard regs.
1070 If there is more than one class, another class must be named NO_REGS
1071 and contain no registers.
1072
1073 The name GENERAL_REGS must be the name of a class (or an alias for
1074 another name such as ALL_REGS). This is the class of registers
1075 that is allowed by "g" or "r" in a register constraint.
1076 Also, registers outside this class are allocated only when
1077 instructions express preferences for them.
1078
1079 The classes must be numbered in nondecreasing order; that is,
1080 a larger-numbered class must never be contained completely
1081 in a smaller-numbered class.
1082
1083 For any two classes, it is very desirable that there be another
1084 class that represents their union. */
c81bebd7 1085
f045b2c9
RS
1086/* The RS/6000 has three types of registers, fixed-point, floating-point,
1087 and condition registers, plus three special registers, MQ, CTR, and the
1088 link register.
1089
1090 However, r0 is special in that it cannot be used as a base register.
1091 So make a class for registers valid as base registers.
1092
1093 Also, cr0 is the only condition code register that can be used in
0d86f538 1094 arithmetic insns, so make a separate class for it. */
f045b2c9 1095
ebedb4dd
MM
1096enum reg_class
1097{
1098 NO_REGS,
ebedb4dd
MM
1099 BASE_REGS,
1100 GENERAL_REGS,
1101 FLOAT_REGS,
0ac081f6
AH
1102 ALTIVEC_REGS,
1103 VRSAVE_REGS,
5f004351 1104 VSCR_REGS,
a3170dc6
AH
1105 SPE_ACC_REGS,
1106 SPEFSCR_REGS,
ebedb4dd
MM
1107 NON_SPECIAL_REGS,
1108 MQ_REGS,
1109 LINK_REGS,
1110 CTR_REGS,
1111 LINK_OR_CTR_REGS,
1112 SPECIAL_REGS,
1113 SPEC_OR_GEN_REGS,
1114 CR0_REGS,
ebedb4dd
MM
1115 CR_REGS,
1116 NON_FLOAT_REGS,
9ebbca7d 1117 XER_REGS,
ebedb4dd
MM
1118 ALL_REGS,
1119 LIM_REG_CLASSES
1120};
f045b2c9
RS
1121
1122#define N_REG_CLASSES (int) LIM_REG_CLASSES
1123
82e41834 1124/* Give names of register classes as strings for dump file. */
f045b2c9 1125
ebedb4dd
MM
1126#define REG_CLASS_NAMES \
1127{ \
1128 "NO_REGS", \
ebedb4dd
MM
1129 "BASE_REGS", \
1130 "GENERAL_REGS", \
1131 "FLOAT_REGS", \
0ac081f6
AH
1132 "ALTIVEC_REGS", \
1133 "VRSAVE_REGS", \
5f004351 1134 "VSCR_REGS", \
a3170dc6
AH
1135 "SPE_ACC_REGS", \
1136 "SPEFSCR_REGS", \
ebedb4dd
MM
1137 "NON_SPECIAL_REGS", \
1138 "MQ_REGS", \
1139 "LINK_REGS", \
1140 "CTR_REGS", \
1141 "LINK_OR_CTR_REGS", \
1142 "SPECIAL_REGS", \
1143 "SPEC_OR_GEN_REGS", \
1144 "CR0_REGS", \
ebedb4dd
MM
1145 "CR_REGS", \
1146 "NON_FLOAT_REGS", \
9ebbca7d 1147 "XER_REGS", \
ebedb4dd
MM
1148 "ALL_REGS" \
1149}
f045b2c9
RS
1150
1151/* Define which registers fit in which classes.
1152 This is an initializer for a vector of HARD_REG_SET
1153 of length N_REG_CLASSES. */
1154
0ac081f6
AH
1155#define REG_CLASS_CONTENTS \
1156{ \
1157 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1158 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1159 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1160 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1161 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1162 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1163 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
a3170dc6
AH
1164 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1165 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
0ac081f6
AH
1166 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1167 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1168 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1169 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1170 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1171 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1172 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1173 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1174 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1175 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1176 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1177 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1178}
f045b2c9
RS
1179
1180/* The same information, inverted:
1181 Return the class number of the smallest class containing
1182 reg number REGNO. This could be a conditional expression
1183 or could index an array. */
1184
0d86f538
GK
1185#define REGNO_REG_CLASS(REGNO) \
1186 ((REGNO) == 0 ? GENERAL_REGS \
1187 : (REGNO) < 32 ? BASE_REGS \
1188 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1189 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1190 : (REGNO) == CR0_REGNO ? CR0_REGS \
1191 : CR_REGNO_P (REGNO) ? CR_REGS \
1192 : (REGNO) == MQ_REGNO ? MQ_REGS \
1193 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1194 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1195 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1196 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1197 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
5f004351 1198 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
a3170dc6
AH
1199 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1200 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
f045b2c9
RS
1201 : NO_REGS)
1202
1203/* The class value for index registers, and the one for base regs. */
1204#define INDEX_REG_CLASS GENERAL_REGS
1205#define BASE_REG_CLASS BASE_REGS
1206
1207/* Get reg_class from a letter such as appears in the machine description. */
1208
1209#define REG_CLASS_FROM_LETTER(C) \
1210 ((C) == 'f' ? FLOAT_REGS \
1211 : (C) == 'b' ? BASE_REGS \
1212 : (C) == 'h' ? SPECIAL_REGS \
1213 : (C) == 'q' ? MQ_REGS \
1214 : (C) == 'c' ? CTR_REGS \
1215 : (C) == 'l' ? LINK_REGS \
0ac081f6 1216 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1217 : (C) == 'x' ? CR0_REGS \
1218 : (C) == 'y' ? CR_REGS \
9ebbca7d 1219 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1220 : NO_REGS)
1221
1222/* The letters I, J, K, L, M, N, and P in a register constraint string
1223 can be used to stand for particular ranges of immediate operands.
1224 This macro defines what the ranges are.
1225 C is the letter, and VALUE is a constant value.
1226 Return 1 if VALUE is in the range specified by C.
1227
9615f239 1228 `I' is a signed 16-bit constant
a0ab749a
KH
1229 `J' is a constant with only the high-order 16 bits nonzero
1230 `K' is a constant with only the low-order 16 bits nonzero
9615f239 1231 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1232 `M' is a constant that is greater than 31
2bfcf297 1233 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1234 `O' is the constant zero
1235 `P' is a constant whose negation is a signed 16-bit constant */
1236
5b6f7b96
RK
1237#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1238 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1239 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1240 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1241 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1242 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1243 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1244 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1245 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1246 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1247 : 0)
1248
1249/* Similar, but for floating constants, and defining letters G and H.
1250 Here VALUE is the CONST_DOUBLE rtx itself.
1251
1252 We flag for special constants when we can copy the constant into
4e74d8ec 1253 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1254
c4c40373 1255 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1256
1257#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1258 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1259 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1260 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1261 : 0)
f045b2c9
RS
1262
1263/* Optional extra constraints for this machine.
1264
b6c9286a
MM
1265 'Q' means that is a memory operand that is just an offset from a reg.
1266 'R' is for AIX TOC entries.
a260abc9 1267 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1268 'T' is a constant that can be placed into a 32-bit mask operand
0ba1b2ff
AM
1269 'U' is for V.4 small data references.
1270 't' is for AND masks that can be performed by two rldic{l,r} insns. */
f045b2c9 1271
e8a8bc24
RK
1272#define EXTRA_CONSTRAINT(OP, C) \
1273 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1274 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b1765bde
DE
1275 : (C) == 'S' ? mask64_operand (OP, DImode) \
1276 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1277 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1278 && small_data_operand (OP, GET_MODE (OP))) \
0ba1b2ff
AM
1279 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1280 && (fixed_regs[CR0_REGNO] \
1281 || !logical_operand (OP, DImode)) \
1282 && !mask64_operand (OP, DImode)) \
e8a8bc24 1283 : 0)
f045b2c9
RS
1284
1285/* Given an rtx X being reloaded into a reg required to be
1286 in class CLASS, return the class of reg to actually use.
1287 In general this is just CLASS; but on some machines
c81bebd7 1288 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1289
1290 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1291 floating-point CONST_DOUBLE to force it to be copied to memory.
1292
1293 We also don't want to reload integer values into floating-point
1294 registers if we can at all help it. In fact, this can
1295 cause reload to abort, if it tries to generate a reload of CTR
1296 into a FP register and discovers it doesn't have the memory location
1297 required.
1298
1299 ??? Would it be a good idea to have reload do the converse, that is
1300 try to reload floating modes into FP registers if possible?
1301 */
f045b2c9 1302
802a0058 1303#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1304 (((GET_CODE (X) == CONST_DOUBLE \
1305 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1306 ? NO_REGS \
1307 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1308 && (CLASS) == NON_SPECIAL_REGS) \
1309 ? GENERAL_REGS \
1310 : (CLASS)))
c81bebd7 1311
f045b2c9
RS
1312/* Return the register class of a scratch register needed to copy IN into
1313 or out of a register in CLASS in MODE. If it can be done directly,
1314 NO_REGS is returned. */
1315
1316#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1317 secondary_reload_class (CLASS, MODE, IN)
1318
0ac081f6
AH
1319/* If we are copying between FP or AltiVec registers and anything
1320 else, we need a memory location. */
7ea555a4 1321
0ac081f6
AH
1322#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1323 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1324 || (CLASS2) == FLOAT_REGS \
1325 || (CLASS1) == ALTIVEC_REGS \
1326 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1327
f045b2c9
RS
1328/* Return the maximum number of consecutive registers
1329 needed to represent mode MODE in a register of class CLASS.
1330
1331 On RS/6000, this is the size of MODE in words,
1332 except in the FP regs, where a single reg is enough for two words. */
802a0058 1333#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1334 (((CLASS) == FLOAT_REGS) \
2e360ab3 1335 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1336 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1337
1338/* If defined, gives a class of registers that cannot be used as the
02188693 1339 operand of a SUBREG that changes the mode of the object illegally. */
580d3230 1340
02188693
RH
1341#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
1342
1343/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1344
1345#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1346 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
f045b2c9
RS
1347\f
1348/* Stack layout; function entry, exit and calling. */
1349
6b67933e
RK
1350/* Enumeration to give which calling sequence to use. */
1351enum rs6000_abi {
1352 ABI_NONE,
1353 ABI_AIX, /* IBM's AIX */
f607bc57
ZW
1354 ABI_AIX_NODESC, /* AIX calling sequence minus
1355 function descriptors */
b6c9286a 1356 ABI_V4, /* System V.4/eabi */
ee890fe2 1357 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1358};
1359
b6c9286a
MM
1360extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1361
4697a36c
MM
1362/* Structure used to define the rs6000 stack */
1363typedef struct rs6000_stack {
1364 int first_gp_reg_save; /* first callee saved GP register used */
1365 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1366 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1367 int lr_save_p; /* true if the link reg needs to be saved */
1368 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1369 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1370 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1371 int push_p; /* true if we need to allocate stack space */
1372 int calls_p; /* true if the function makes any calls */
6b67933e 1373 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1374 int gp_save_offset; /* offset to save GP regs from initial SP */
1375 int fp_save_offset; /* offset to save FP regs from initial SP */
00b960c7 1376 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
4697a36c
MM
1377 int lr_save_offset; /* offset to save LR from initial SP */
1378 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1379 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
a3170dc6 1380 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
b6c9286a 1381 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1382 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1383 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1384 int reg_size; /* register size (4 or 8) */
1385 int varargs_size; /* size to hold V.4 args passed in regs */
1386 int vars_size; /* variable save area size */
1387 int parm_size; /* outgoing parameter size */
1388 int save_size; /* save area size */
1389 int fixed_size; /* fixed size of stack frame */
1390 int gp_size; /* size of saved GP registers */
1391 int fp_size; /* size of saved FP registers */
00b960c7 1392 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1393 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1394 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1395 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1396 int altivec_padding_size; /* size of altivec alignment padding if
1397 not in save_size */
a3170dc6
AH
1398 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1399 int spe_padding_size;
b6c9286a 1400 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1401 int total_size; /* total bytes allocated for stack */
1402} rs6000_stack_t;
1403
f045b2c9
RS
1404/* Define this if pushing a word on the stack
1405 makes the stack pointer a smaller address. */
1406#define STACK_GROWS_DOWNWARD
1407
1408/* Define this if the nominal address of the stack frame
1409 is at the high-address end of the local variables;
1410 that is, each additional local variable allocated
1411 goes at a more negative offset in the frame.
1412
1413 On the RS/6000, we grow upwards, from the area after the outgoing
1414 arguments. */
1415/* #define FRAME_GROWS_DOWNWARD */
1416
4697a36c 1417/* Size of the outgoing register save area */
9ebbca7d 1418#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1419 || DEFAULT_ABI == ABI_AIX_NODESC \
1420 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1421 ? (TARGET_64BIT ? 64 : 32) \
1422 : 0)
4697a36c
MM
1423
1424/* Size of the fixed area on the stack */
9ebbca7d 1425#define RS6000_SAVE_AREA \
ee890fe2 1426 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1427 << (TARGET_64BIT ? 1 : 0))
4697a36c 1428
97f6e72f
DE
1429/* MEM representing address to save the TOC register */
1430#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1431 plus_constant (stack_pointer_rtx, \
1432 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1433
4697a36c
MM
1434/* Size of the V.4 varargs area if needed */
1435#define RS6000_VARARGS_AREA 0
1436
4697a36c 1437/* Align an address */
ed33106f 1438#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1439
1440/* Size of V.4 varargs area in bytes */
1441#define RS6000_VARARGS_SIZE \
2f3e5814 1442 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1443
f045b2c9
RS
1444/* Offset within stack frame to start allocating local variables at.
1445 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1446 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1447 of the first local allocated.
f045b2c9
RS
1448
1449 On the RS/6000, the frame pointer is the same as the stack pointer,
1450 except for dynamic allocations. So we start after the fixed area and
1451 outgoing parameter area. */
1452
802a0058 1453#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1454 (RS6000_ALIGN (current_function_outgoing_args_size, \
1455 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1456 + RS6000_VARARGS_AREA \
1457 + RS6000_SAVE_AREA)
1458
1459/* Offset from the stack pointer register to an item dynamically
1460 allocated on the stack, e.g., by `alloca'.
1461
1462 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1463 length of the outgoing arguments. The default is correct for most
1464 machines. See `function.c' for details. */
1465#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1466 (RS6000_ALIGN (current_function_outgoing_args_size, \
1467 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1468 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1469
1470/* If we generate an insn to push BYTES bytes,
1471 this says how many the stack pointer really advances by.
1472 On RS/6000, don't define this because there are no push insns. */
1473/* #define PUSH_ROUNDING(BYTES) */
1474
1475/* Offset of first parameter from the argument pointer register value.
1476 On the RS/6000, we define the argument pointer to the start of the fixed
1477 area. */
4697a36c 1478#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1479
62153b61
JM
1480/* Offset from the argument pointer register value to the top of
1481 stack. This is different from FIRST_PARM_OFFSET because of the
1482 register save area. */
1483#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1484
f045b2c9
RS
1485/* Define this if stack space is still allocated for a parameter passed
1486 in a register. The value is the number of bytes allocated to this
1487 area. */
4697a36c 1488#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1489
1490/* Define this if the above stack space is to be considered part of the
1491 space allocated by the caller. */
1492#define OUTGOING_REG_PARM_STACK_SPACE
1493
1494/* This is the difference between the logical top of stack and the actual sp.
1495
82e41834 1496 For the RS/6000, sp points past the fixed area. */
4697a36c 1497#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1498
1499/* Define this if the maximum size of all the outgoing args is to be
1500 accumulated and pushed during the prologue. The amount can be
1501 found in the variable current_function_outgoing_args_size. */
f73ad30e 1502#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1503
1504/* Value is the number of bytes of arguments automatically
1505 popped when returning from a subroutine call.
8b109b37 1506 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1507 FUNTYPE is the data type of the function (as a tree),
1508 or for a library call it is an identifier node for the subroutine name.
1509 SIZE is the number of bytes of arguments passed on the stack. */
1510
8b109b37 1511#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1512
1513/* Define how to find the value returned by a function.
1514 VALTYPE is the data type of the value (as a tree).
1515 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1516 otherwise, FUNC is 0.
1517
a3170dc6
AH
1518 On the SPE, both FPs and vectors are returned in r3.
1519
c81bebd7 1520 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1521 fp1, unless -msoft-float. */
f045b2c9 1522
39403d82
DE
1523#define FUNCTION_VALUE(VALTYPE, FUNC) \
1524 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1525 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1526 || POINTER_TYPE_P (VALTYPE) \
1527 ? word_mode : TYPE_MODE (VALTYPE), \
16861f33
AH
1528 TREE_CODE (VALTYPE) == VECTOR_TYPE \
1529 && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN \
a3170dc6
AH
1530 : TREE_CODE (VALTYPE) == REAL_TYPE \
1531 && TARGET_SPE_ABI && !TARGET_FPRS \
1532 ? GP_ARG_RETURN \
1533 : TREE_CODE (VALTYPE) == REAL_TYPE \
1534 && TARGET_HARD_FLOAT && TARGET_FPRS \
e9cf9523 1535 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9
RS
1536
1537/* Define how to find the value returned by a library function
1538 assuming the value has mode MODE. */
1539
0ac081f6
AH
1540#define LIBCALL_VALUE(MODE) \
1541 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1542 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
a3170dc6 1543 && TARGET_HARD_FLOAT && TARGET_FPRS \
0ac081f6 1544 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9 1545
6fa3f289
ZW
1546/* The AIX ABI for the RS/6000 specifies that all structures are
1547 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1548 specifies that structures <= 8 bytes are returned in r3/r4, but a
1549 draft put them in memory, and GCC used to implement the draft
1550 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1551 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1552 compatibility can change DRAFT_V4_STRUCT_RET to override the
1553 default, and -m switches get the final word. See
52acbdcb
ZW
1554 rs6000_override_options for more details.
1555
1556 int_size_in_bytes returns -1 for variable size objects, which go in
1557 memory always. The cast to unsigned makes -1 > 8. */
1558
6fa3f289
ZW
1559#define RETURN_IN_MEMORY(TYPE) \
1560 (AGGREGATE_TYPE_P (TYPE) && \
52acbdcb 1561 (TARGET_AIX_STRUCT_RET || \
0c769cf8 1562 (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8))
f045b2c9 1563
6fa3f289
ZW
1564/* DRAFT_V4_STRUCT_RET defaults off. */
1565#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1566
1567/* Let RETURN_IN_MEMORY control what happens. */
1568#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1569
a260abc9 1570/* Mode of stack savearea.
dfdfa60f
DE
1571 FUNCTION is VOIDmode because calling convention maintains SP.
1572 BLOCK needs Pmode for SP.
a260abc9
DE
1573 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1574#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1575 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1576 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1577
4697a36c
MM
1578/* Minimum and maximum general purpose registers used to hold arguments. */
1579#define GP_ARG_MIN_REG 3
1580#define GP_ARG_MAX_REG 10
1581#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1582
1583/* Minimum and maximum floating point registers used to hold arguments. */
1584#define FP_ARG_MIN_REG 33
7509c759
MM
1585#define FP_ARG_AIX_MAX_REG 45
1586#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1587#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1588 || DEFAULT_ABI == ABI_AIX_NODESC \
1589 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1590 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1591#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1592
0ac081f6
AH
1593/* Minimum and maximum AltiVec registers used to hold arguments. */
1594#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1595#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1596#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1597
4697a36c
MM
1598/* Return registers */
1599#define GP_ARG_RETURN GP_ARG_MIN_REG
1600#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1601#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1602
7509c759 1603/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1604#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1605/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1606#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1607#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1608#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1609
f045b2c9
RS
1610/* 1 if N is a possible register number for a function value
1611 as seen by the caller.
1612
0ac081f6
AH
1613 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1614#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1615 || ((N) == FP_ARG_RETURN) \
1616 || (TARGET_ALTIVEC && \
1617 (N) == ALTIVEC_ARG_RETURN))
f045b2c9
RS
1618
1619/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1620 On RS/6000, these are r3-r10 and fp1-fp13.
1621 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1622#define FUNCTION_ARG_REGNO_P(N) \
b1765bde 1623 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
0ac081f6 1624 || (TARGET_ALTIVEC && \
1a3ab9e1 1625 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
6d0f55e6 1626 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1627
f045b2c9 1628\f
00dba523
NC
1629/* A C structure for machine-specific, per-function data.
1630 This is added to the cfun structure. */
e2500fed 1631typedef struct machine_function GTY(())
00dba523
NC
1632{
1633 /* Whether a System V.4 varargs area was created. */
1634 int sysv_varargs_p;
71f123ca
FS
1635 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1636 int ra_needs_full_frame;
00dba523
NC
1637} machine_function;
1638
f045b2c9
RS
1639/* Define a data type for recording info about an argument list
1640 during the scan of that argument list. This data type should
1641 hold all necessary information about the function itself
1642 and about the args processed so far, enough to enable macros
1643 such as FUNCTION_ARG to determine where the next arg should go.
1644
1645 On the RS/6000, this is a structure. The first element is the number of
1646 total argument words, the second is used to store the next
1647 floating-point register number, and the third says how many more args we
4697a36c
MM
1648 have prototype types for.
1649
4cc833b7
RH
1650 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1651 the next availible GP register, `fregno' is the next available FP
1652 register, and `words' is the number of words used on the stack.
1653
bd227acc 1654 The varargs/stdarg support requires that this structure's size
4cc833b7 1655 be a multiple of sizeof(int). */
4697a36c
MM
1656
1657typedef struct rs6000_args
1658{
4cc833b7 1659 int words; /* # words used for passing GP registers */
6a4cee5f 1660 int fregno; /* next available FP register */
0ac081f6 1661 int vregno; /* next available AltiVec register */
6a4cee5f
MM
1662 int nargs_prototype; /* # args left in the current prototype */
1663 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1664 int prototype; /* Whether a prototype was defined */
1665 int call_cookie; /* Do special things for this call */
4cc833b7 1666 int sysv_gregno; /* next available GP register */
4697a36c 1667} CUMULATIVE_ARGS;
f045b2c9
RS
1668
1669/* Define intermediate macro to compute the size (in registers) of an argument
1670 for the RS/6000. */
1671
d34c5b80
DE
1672#define RS6000_ARG_SIZE(MODE, TYPE) \
1673((MODE) != BLKmode \
c5d71f39 1674 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
0c769cf8 1675 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1676
1677/* Initialize a variable CUM of type CUMULATIVE_ARGS
1678 for a call to a function whose data type is FNTYPE.
1679 For a library call, FNTYPE is 0. */
1680
2c7ee1a6 1681#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1682 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1683
1684/* Similar, but when scanning the definition of a procedure. We always
1685 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1686
4697a36c
MM
1687#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1688 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1689
1690/* Update the data in CUM to advance over an argument
1691 of mode MODE and data type TYPE.
1692 (TYPE is null for libcalls where that information may not be available.) */
1693
1694#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1695 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9 1696
a0ab749a 1697/* Nonzero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1698#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1699 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1700 && (CUM).fregno <= FP_ARG_MAX_REG \
a3170dc6 1701 && TARGET_HARD_FLOAT && TARGET_FPRS)
f045b2c9 1702
a0ab749a 1703/* Nonzero if we can use an AltiVec register to pass this arg. */
0ac081f6
AH
1704#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1705 (ALTIVEC_VECTOR_MODE (MODE) \
1706 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1707 && TARGET_ALTIVEC_ABI)
1708
f045b2c9
RS
1709/* Determine where to put an argument to a function.
1710 Value is zero to push the argument on the stack,
1711 or a hard register in which to store the argument.
1712
1713 MODE is the argument's machine mode.
1714 TYPE is the data type of the argument (as a tree).
1715 This is null for libcalls where that information may
1716 not be available.
1717 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1718 the preceding args and about the function being called.
1719 NAMED is nonzero if this argument is a named parameter
1720 (otherwise it is an extra parameter matching an ellipsis).
1721
1722 On RS/6000 the first eight words of non-FP are normally in registers
1723 and the rest are pushed. The first 13 FP args are in registers.
1724
1725 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1726 both an FP and integer register (or possibly FP reg and stack). Library
1727 functions (when TYPE is zero) always have the proper types for args,
1728 so we can pass the FP value just in one register. emit_library_function
1729 doesn't support EXPR_LIST anyway. */
f045b2c9 1730
4697a36c
MM
1731#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1732 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1733
1734/* For an arg passed partly in registers and partly in memory,
1735 this is the number of registers used.
1736 For args passed entirely in registers or entirely in memory, zero. */
1737
4697a36c
MM
1738#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1739 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1740
1741/* A C expression that indicates when an argument must be passed by
1742 reference. If nonzero for an argument, a copy of that argument is
1743 made in memory and a pointer to the argument is passed instead of
1744 the argument itself. The pointer is passed in whatever way is
82e41834 1745 appropriate for passing a pointer to that type. */
4697a36c
MM
1746
1747#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1748 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1749
c229cba9
DE
1750/* If defined, a C expression which determines whether, and in which
1751 direction, to pad out an argument with extra space. The value
1752 should be of type `enum direction': either `upward' to pad above
1753 the argument, `downward' to pad below, or `none' to inhibit
1754 padding. */
1755
9ebbca7d 1756#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1757
b6c9286a 1758/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1759 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1760 PARM_BOUNDARY is used for all arguments. */
1761
1762#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1763 function_arg_boundary (MODE, TYPE)
1764
f045b2c9 1765/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1766 variable number of arguments.
f045b2c9
RS
1767
1768 CUM is as above.
1769
1770 MODE and TYPE are the mode and type of the current parameter.
1771
1772 PRETEND_SIZE is a variable that should be set to the amount of stack
1773 that must be pushed by the prolog to pretend that our caller pushed
1774 it.
1775
1776 Normally, this macro will push all remaining incoming registers on the
1777 stack and set PRETEND_SIZE to the length of the registers pushed. */
1778
4697a36c
MM
1779#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1780 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1781
dfafc897
FS
1782/* Define the `__builtin_va_list' type for the ABI. */
1783#define BUILD_VA_LIST_TYPE(VALIST) \
1784 (VALIST) = rs6000_build_va_list ()
4697a36c 1785
dfafc897 1786/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1787#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1788 rs6000_va_start (valist, nextarg)
dfafc897
FS
1789
1790/* Implement `va_arg'. */
1791#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1792 rs6000_va_arg (valist, type)
f045b2c9 1793
2a55fd42
DE
1794/* For AIX, the rule is that structures are passed left-aligned in
1795 their stack slot. However, GCC does not presently do this:
1796 structures which are the same size as integer types are passed
1797 right-aligned, as if they were in fact integers. This only
1798 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1799 ABI_V4 does not use std_expand_builtin_va_arg. */
1800#define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1801
d34c5b80
DE
1802/* Define this macro to be a nonzero value if the location where a function
1803 argument is passed depends on whether or not it is a named argument. */
1804#define STRICT_ARGUMENT_NAMING 1
1805
5e1bf043
DJ
1806/* We do not allow indirect calls to be optimized into sibling calls, nor
1807 do we allow calls with vector parameters. */
1808#define FUNCTION_OK_FOR_SIBCALL(DECL) function_ok_for_sibcall ((DECL))
1809
f045b2c9 1810/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1811 for profiling a function entry. */
f045b2c9
RS
1812
1813#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1814 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1815
1816/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1817 the stack pointer does not matter. No definition is equivalent to
1818 always zero.
1819
a0ab749a 1820 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1821 its backpointer, which we maintain. */
1822#define EXIT_IGNORE_STACK 1
1823
a701949a
FS
1824/* Define this macro as a C expression that is nonzero for registers
1825 that are used by the epilogue or the return' pattern. The stack
1826 and frame pointer registers are already be assumed to be used as
1827 needed. */
1828
83720594
RH
1829#define EPILOGUE_USES(REGNO) \
1830 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1831 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1832 || (current_function_calls_eh_return \
3553b09d 1833 && TARGET_AIX \
83720594 1834 && (REGNO) == TOC_REGISTER))
2bfcf297 1835
f045b2c9 1836\f
eaf1bcf1 1837/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1838
1839/* Length in units of the trampoline for entering a nested function. */
1840
b6c9286a 1841#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1842
1843/* Emit RTL insns to initialize the variable parts of a trampoline.
1844 FNADDR is an RTX for the address of the function's pure code.
1845 CXT is an RTX for the static chain value for the function. */
1846
1847#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1848 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1849\f
f33985c6
MS
1850/* Definitions for __builtin_return_address and __builtin_frame_address.
1851 __builtin_return_address (0) should give link register (65), enable
82e41834 1852 this. */
f33985c6
MS
1853/* This should be uncommented, so that the link register is used, but
1854 currently this would result in unmatched insns and spilling fixed
1855 registers so we'll leave it for another day. When these problems are
1856 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1857 (mrs) */
1858/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1859
b6c9286a
MM
1860/* Number of bytes into the frame return addresses can be found. See
1861 rs6000_stack_info in rs6000.c for more information on how the different
1862 abi's store the return address. */
1863#define RETURN_ADDRESS_OFFSET \
1864 ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1865 || DEFAULT_ABI == ABI_DARWIN \
05ef2698 1866 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1867 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1868 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1869
f33985c6
MS
1870/* The current return address is in link register (65). The return address
1871 of anything farther back is accessed normally at an offset of 8 from the
1872 frame pointer. */
71f123ca
FS
1873#define RETURN_ADDR_RTX(COUNT, FRAME) \
1874 (rs6000_return_addr (COUNT, FRAME))
1875
f33985c6 1876\f
f045b2c9
RS
1877/* Definitions for register eliminations.
1878
1879 We have two registers that can be eliminated on the RS/6000. First, the
1880 frame pointer register can often be eliminated in favor of the stack
1881 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1882 eliminated; it is replaced with either the stack or frame pointer.
1883
1884 In addition, we use the elimination mechanism to see if r30 is needed
1885 Initially we assume that it isn't. If it is, we spill it. This is done
1886 by making it an eliminable register. We replace it with itself so that
1887 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1888
1889/* This is an array of structures. Each structure initializes one pair
1890 of eliminable registers. The "from" register number is given first,
1891 followed by "to". Eliminations of the same "from" register are listed
1892 in order of preference. */
1893#define ELIMINABLE_REGS \
1894{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1895 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1 1896 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
97b23853 1897 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9
RS
1898
1899/* Given FROM and TO register numbers, say whether this elimination is allowed.
1900 Frame pointer elimination is automatically handled.
1901
1902 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1903 to convert ap into fp, not sp.
1904
abc95ed3 1905 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1906 references. */
f045b2c9 1907
97b23853
GK
1908#define CAN_ELIMINATE(FROM, TO) \
1909 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1910 ? ! frame_pointer_needed \
1911 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1912 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1913 : 1)
1914
1915/* Define the offset between two registers, one to be eliminated, and the other
1916 its replacement, at the start of a routine. */
1917#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1918{ \
4697a36c 1919 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1920 \
1921 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1922 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1923 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1924 (OFFSET) = info->total_size; \
1925 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1926 (OFFSET) = (info->push_p) ? info->total_size : 0; \
97b23853 1927 else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM) \
642a35f1 1928 (OFFSET) = 0; \
f045b2c9
RS
1929 else \
1930 abort (); \
1931}
1932\f
1933/* Addressing modes, and classification of registers for them. */
1934
940da324
JL
1935/* #define HAVE_POST_INCREMENT 0 */
1936/* #define HAVE_POST_DECREMENT 0 */
f045b2c9 1937
940da324
JL
1938#define HAVE_PRE_DECREMENT 1
1939#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1940
1941/* Macros to check register numbers against specific register classes. */
1942
1943/* These assume that REGNO is a hard or pseudo reg number.
1944 They give nonzero only if REGNO is a hard reg of the suitable class
1945 or a pseudo reg currently allocated to a suitable hard reg.
1946 Since they use reg_renumber, they are safe only once reg_renumber
1947 has been allocated, which happens in local-alloc.c. */
1948
1949#define REGNO_OK_FOR_INDEX_P(REGNO) \
1950((REGNO) < FIRST_PSEUDO_REGISTER \
1951 ? (REGNO) <= 31 || (REGNO) == 67 \
1952 : (reg_renumber[REGNO] >= 0 \
1953 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1954
1955#define REGNO_OK_FOR_BASE_P(REGNO) \
1956((REGNO) < FIRST_PSEUDO_REGISTER \
1957 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1958 : (reg_renumber[REGNO] > 0 \
1959 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1960\f
1961/* Maximum number of registers that can appear in a valid memory address. */
1962
1963#define MAX_REGS_PER_ADDRESS 2
1964
1965/* Recognize any constant value that is a valid address. */
1966
6eff269e
BK
1967#define CONSTANT_ADDRESS_P(X) \
1968 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1969 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1970 || GET_CODE (X) == HIGH)
f045b2c9
RS
1971
1972/* Nonzero if the constant value X is a legitimate general operand.
1973 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1974
1975 On the RS/6000, all integer constants are acceptable, most won't be valid
1976 for particular insns, though. Only easy FP constants are
1977 acceptable. */
1978
1979#define LEGITIMATE_CONSTANT_P(X) \
1980 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1981 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1982 || easy_fp_constant (X, GET_MODE (X)))
1983
1984/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1985 and check its validity for a certain class.
1986 We have two alternate definitions for each of them.
1987 The usual definition accepts all pseudo regs; the other rejects
1988 them unless they have been allocated suitable hard regs.
1989 The symbol REG_OK_STRICT causes the latter definition to be used.
1990
1991 Most source files want to accept pseudo regs in the hope that
1992 they will get allocated to the class that the insn wants them to be in.
1993 Source files for reload pass need to be strict.
1994 After reload, it makes no difference, since pseudo regs have
1995 been eliminated by then. */
1996
258bfae2
FS
1997#ifdef REG_OK_STRICT
1998# define REG_OK_STRICT_FLAG 1
1999#else
2000# define REG_OK_STRICT_FLAG 0
2001#endif
f045b2c9
RS
2002
2003/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
2004 or if it is a pseudo reg in the non-strict case. */
2005#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2006 ((! (STRICT) \
2007 && (REGNO (X) <= 31 \
2008 || REGNO (X) == ARG_POINTER_REGNUM \
2009 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2010 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
2011
2012/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
2013 or if it is a pseudo reg in the non-strict case. */
2014#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2015 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 2016
258bfae2
FS
2017#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2018#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
2019\f
2020/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2021 that is a valid memory address for an instruction.
2022 The MODE argument is the machine mode for the MEM expression
2023 that wants to use this address.
2024
2025 On the RS/6000, there are four valid address: a SYMBOL_REF that
2026 refers to a constant pool entry of an address (or the sum of it
2027 plus a constant), a short (16-bit signed) constant plus a register,
2028 the sum of two registers, or a register indirect, possibly with an
2029 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 2030 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
2031 word aligned.
2032
2033 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2034 32-bit DImode, TImode), indexed addressing cannot be used because
2035 adjacent memory cells are accessed by adding word-sized offsets
2036 during assembly output. */
f045b2c9 2037
9ebbca7d
GK
2038#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2039
2040#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
f045b2c9 2041
17072732 2042/* SPE offset addressing is limited to 5-bits worth of double words. */
88c38659 2043#define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
a3170dc6 2044
f045b2c9 2045#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
9ebbca7d
GK
2046 (TARGET_TOC \
2047 && GET_CODE (X) == PLUS \
2048 && GET_CODE (XEXP (X, 0)) == REG \
2049 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
2050 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
f045b2c9 2051
7509c759 2052#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
f607bc57 2053 (DEFAULT_ABI == ABI_V4 \
81795281 2054 && !flag_pic && !TARGET_TOC \
88228c4b
MM
2055 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
2056 && small_data_operand (X, MODE))
7509c759 2057
258bfae2 2058#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
f045b2c9 2059 (GET_CODE (X) == CONST_INT \
5b6f7b96 2060 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9 2061
258bfae2
FS
2062#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
2063 (GET_CODE (X) == PLUS \
2064 && GET_CODE (XEXP (X, 0)) == REG \
2065 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2066 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
37fa124a
AM
2067 && (! ALTIVEC_VECTOR_MODE (MODE) \
2068 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
a3170dc6
AH
2069 && (! SPE_VECTOR_MODE (MODE) \
2070 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
2071 && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1))))) \
258bfae2
FS
2072 && (((MODE) != DFmode && (MODE) != DImode) \
2073 || (TARGET_32BIT \
2074 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
2075 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2076 && ((MODE) != TImode \
2077 || (TARGET_32BIT \
2078 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
2079 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1465faec 2080 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9 2081
258bfae2
FS
2082#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2083 (GET_CODE (X) == PLUS \
2084 && GET_CODE (XEXP (X, 0)) == REG \
2085 && GET_CODE (XEXP (X, 1)) == REG \
2086 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2087 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2088 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2089 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2090
2091#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2092 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2093
6ac7bf2c
GK
2094#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2095 (TARGET_ELF \
2096 && ! flag_pic && ! TARGET_TOC \
2097 && GET_MODE_NUNITS (MODE) == 1 \
2098 && (GET_MODE_BITSIZE (MODE) <= 32 \
a3170dc6 2099 || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode)) \
6ac7bf2c
GK
2100 && GET_CODE (X) == LO_SUM \
2101 && GET_CODE (XEXP (X, 0)) == REG \
2102 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
4697a36c
MM
2103 && CONSTANT_P (XEXP (X, 1)))
2104
258bfae2
FS
2105#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2106{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2107 goto ADDR; \
f045b2c9
RS
2108}
2109\f
2110/* Try machine-dependent ways of modifying an illegitimate address
2111 to be legitimate. If we find one, return the new, valid address.
2112 This macro is used in only one place: `memory_address' in explow.c.
2113
2114 OLDX is the address as it was before break_out_memory_refs was called.
2115 In some cases it is useful to look at this to decide what needs to be done.
2116
2117 MODE and WIN are passed so that this macro can use
2118 GO_IF_LEGITIMATE_ADDRESS.
2119
2120 It is always safe for this macro to do nothing. It exists to recognize
2121 opportunities to optimize the output.
2122
2123 On RS/6000, first check for the sum of a register with a constant
2124 integer that is out of range. If so, generate code to add the
2125 constant with the low-order 16 bits masked to the register and force
2126 this result into another register (this can be done with `cau').
c81bebd7 2127 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2128 possibility of bit 16 being a one.
2129
2130 Then check for the sum of a register and something not constant, try to
2131 load the other things into a register and return the sum. */
2132
9ebbca7d
GK
2133#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2134{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2135 if (result != NULL_RTX) \
2136 { \
2137 (X) = result; \
2138 goto WIN; \
2139 } \
f045b2c9
RS
2140}
2141
a260abc9
DE
2142/* Try a machine-dependent way of reloading an illegitimate address
2143 operand. If we find one, push the reload and jump to WIN. This
2144 macro is used in only one place: `find_reloads_address' in reload.c.
2145
24ea750e
DJ
2146 Implemented on rs6000 by rs6000_legitimize_reload_address.
2147 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2148
a9098fd0
GK
2149#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2150do { \
24ea750e
DJ
2151 int win; \
2152 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2153 (int)(TYPE), (IND_LEVELS), &win); \
2154 if ( win ) \
2155 goto WIN; \
a260abc9
DE
2156} while (0)
2157
f045b2c9
RS
2158/* Go to LABEL if ADDR (a legitimate address expression)
2159 has an effect that depends on the machine mode it is used for.
2160
2161 On the RS/6000 this is true if the address is valid with a zero offset
2162 but not with an offset of four (this means it cannot be used as an
2163 address for DImode or DFmode) or is a pre-increment or decrement. Since
2164 we know it is valid, we just check for an address that is not valid with
2165 an offset of four. */
2166
2167#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2168{ if (GET_CODE (ADDR) == PLUS \
2169 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2170 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2171 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2172 goto LABEL; \
38c1f2d7 2173 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2174 goto LABEL; \
38c1f2d7 2175 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2176 goto LABEL; \
4697a36c
MM
2177 if (GET_CODE (ADDR) == LO_SUM) \
2178 goto LABEL; \
f045b2c9 2179}
766a866c
MM
2180\f
2181/* The register number of the register used to address a table of
2182 static data addresses in memory. In some cases this register is
2183 defined by a processor's "application binary interface" (ABI).
2184 When this macro is defined, RTL is generated for this register
2185 once, as with the stack pointer and frame pointer registers. If
2186 this macro is not defined, it is up to the machine-dependent files
2187 to allocate such a register (if necessary). */
2188
1db02437
FS
2189#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2190#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2191
97b23853 2192#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2193
766a866c
MM
2194/* Define this macro if the register defined by
2195 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2196 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2197
2198/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2199
2200/* By generating position-independent code, when two different
2201 programs (A and B) share a common library (libC.a), the text of
2202 the library can be shared whether or not the library is linked at
2203 the same address for both programs. In some of these
2204 environments, position-independent code requires not only the use
2205 of different addressing modes, but also special code to enable the
2206 use of these addressing modes.
2207
2208 The `FINALIZE_PIC' macro serves as a hook to emit these special
2209 codes once the function is being compiled into assembly code, but
2210 not before. (It is not done before, because in the case of
2211 compiling an inline function, it would lead to multiple PIC
2212 prologues being included in functions which used inline functions
2213 and were compiled to assembly language.) */
2214
8d30c4ee 2215/* #define FINALIZE_PIC */
766a866c 2216
766a866c
MM
2217/* A C expression that is nonzero if X is a legitimate immediate
2218 operand on the target machine when generating position independent
2219 code. You can assume that X satisfies `CONSTANT_P', so you need
2220 not check this. You can also assume FLAG_PIC is true, so you need
2221 not check it either. You need not define this macro if all
2222 constants (including `SYMBOL_REF') can be immediate operands when
2223 generating position independent code. */
2224
2225/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2226
30ea98f1
MM
2227/* In rare cases, correct code generation requires extra machine
2228 dependent processing between the second jump optimization pass and
2229 delayed branch scheduling. On those machines, define this macro
9ebbca7d 2230 as a C statement to act on the code starting at INSN. */
30ea98f1 2231
9ebbca7d 2232/* #define MACHINE_DEPENDENT_REORG(INSN) */
30ea98f1 2233
f045b2c9
RS
2234\f
2235/* Define this if some processing needs to be done immediately before
4255474b 2236 emitting code for an insn. */
f045b2c9 2237
4255474b 2238/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2239
2240/* Specify the machine mode that this machine uses
2241 for the index in the tablejump instruction. */
e1565e65 2242#define CASE_VECTOR_MODE SImode
f045b2c9 2243
18543a22
ILT
2244/* Define as C expression which evaluates to nonzero if the tablejump
2245 instruction expects the table to contain offsets from the address of the
2246 table.
82e41834 2247 Do not define this if the table should contain absolute addresses. */
18543a22 2248#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2249
f045b2c9
RS
2250/* Define this as 1 if `char' should by default be signed; else as 0. */
2251#define DEFAULT_SIGNED_CHAR 0
2252
2253/* This flag, if defined, says the same insns that convert to a signed fixnum
2254 also convert validly to an unsigned one. */
2255
2256/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2257
2258/* Max number of bytes we can move from memory to memory
2259 in one reasonably fast instruction. */
2f3e5814 2260#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2261#define MAX_MOVE_MAX 8
f045b2c9
RS
2262
2263/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2264 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2265 is undesirable. */
2266#define SLOW_BYTE_ACCESS 1
2267
9a63901f
RK
2268/* Define if operations between registers always perform the operation
2269 on the full register even if a narrower mode is specified. */
2270#define WORD_REGISTER_OPERATIONS
2271
2272/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2273 will either zero-extend or sign-extend. The value of this macro should
2274 be the code that says which one of the two operations is implicitly
2275 done, NIL if none. */
2276#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2277
2278/* Define if loading short immediate values into registers sign extends. */
2279#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2280\f
f045b2c9
RS
2281/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2282 is done just by pretending it is already truncated. */
2283#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2284
2285/* Specify the machine mode that pointers have.
2286 After generation of rtl, the compiler makes no further distinction
2287 between pointers and any other objects of this machine mode. */
2f3e5814 2288#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2289
2290/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2291 Doesn't matter on RS/6000. */
2f3e5814 2292#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2293
2294/* Define this if addresses of constant functions
2295 shouldn't be put through pseudo regs where they can be cse'd.
2296 Desirable on machines where ordinary constants are expensive
2297 but a CALL with constant address is cheap. */
2298#define NO_FUNCTION_CSE
2299
d969caf8 2300/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2301 few bits.
2302
2303 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2304 have been dropped from the PowerPC architecture. */
2305
4697a36c 2306#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2307
f045b2c9
RS
2308/* Compute the cost of computing a constant rtl expression RTX
2309 whose rtx-code is CODE. The body of this macro is a portion
2310 of a switch statement. If the code is computed here,
2311 return it with a return statement. Otherwise, break from the switch.
2312
01554f00 2313 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2314 always returns 0. */
2315
4697a36c 2316#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2317 case CONST_INT: \
2318 case CONST: \
2319 case LABEL_REF: \
2320 case SYMBOL_REF: \
2321 case CONST_DOUBLE: \
4697a36c 2322 case HIGH: \
f045b2c9
RS
2323 return 0;
2324
2325/* Provide the costs of a rtl expression. This is in the body of a
2326 switch on CODE. */
2327
38c1f2d7
MM
2328#define RTX_COSTS(X,CODE,OUTER_CODE) \
2329 case PLUS: \
2330 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2331 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2332 + 0x8000) >= 0x10000) \
296b8152 2333 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2334 ? COSTS_N_INSNS (2) \
2335 : COSTS_N_INSNS (1)); \
2336 case AND: \
38c1f2d7
MM
2337 case IOR: \
2338 case XOR: \
a260abc9
DE
2339 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2340 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2341 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2342 ? COSTS_N_INSNS (2) \
2343 : COSTS_N_INSNS (1)); \
2344 case MULT: \
055dd007
DE
2345 if (optimize_size) \
2346 return COSTS_N_INSNS (2); \
38c1f2d7
MM
2347 switch (rs6000_cpu) \
2348 { \
2349 case PROCESSOR_RIOS1: \
fe7f5677 2350 case PROCESSOR_PPC405: \
38c1f2d7
MM
2351 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2352 ? COSTS_N_INSNS (5) \
2353 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2354 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
3cb999d8
DE
2355 case PROCESSOR_RS64A: \
2356 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2357 ? GET_MODE (XEXP (X, 1)) != DImode \
2358 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2359 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
fe7f5677 2360 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
38c1f2d7
MM
2361 case PROCESSOR_RIOS2: \
2362 case PROCESSOR_MPCCORE: \
5a41b476 2363 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2364 return COSTS_N_INSNS (2); \
2365 case PROCESSOR_PPC601: \
2366 return COSTS_N_INSNS (5); \
2367 case PROCESSOR_PPC603: \
7960cfbb 2368 case PROCESSOR_PPC7400: \
bef84347 2369 case PROCESSOR_PPC750: \
38c1f2d7
MM
2370 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2371 ? COSTS_N_INSNS (5) \
2372 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2373 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
fd3b43f2
DJ
2374 case PROCESSOR_PPC7450: \
2375 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2376 ? COSTS_N_INSNS (4) \
2377 : COSTS_N_INSNS (3)); \
38c1f2d7
MM
2378 case PROCESSOR_PPC403: \
2379 case PROCESSOR_PPC604: \
a23acaa6 2380 case PROCESSOR_PPC8540: \
38c1f2d7 2381 return COSTS_N_INSNS (4); \
3cb999d8
DE
2382 case PROCESSOR_PPC620: \
2383 case PROCESSOR_PPC630: \
309323c2 2384 case PROCESSOR_POWER4: \
3cb999d8
DE
2385 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2386 ? GET_MODE (XEXP (X, 1)) != DImode \
fe7f5677 2387 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
3cb999d8
DE
2388 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2389 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
38c1f2d7
MM
2390 } \
2391 case DIV: \
2392 case MOD: \
2393 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2394 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2395 return COSTS_N_INSNS (2); \
2396 /* otherwise fall through to normal divide. */ \
2397 case UDIV: \
2398 case UMOD: \
2399 switch (rs6000_cpu) \
2400 { \
2401 case PROCESSOR_RIOS1: \
2402 return COSTS_N_INSNS (19); \
2403 case PROCESSOR_RIOS2: \
2404 return COSTS_N_INSNS (13); \
3cb999d8
DE
2405 case PROCESSOR_RS64A: \
2406 return (GET_MODE (XEXP (X, 1)) != DImode \
2407 ? COSTS_N_INSNS (65) \
2408 : COSTS_N_INSNS (67)); \
38c1f2d7
MM
2409 case PROCESSOR_MPCCORE: \
2410 return COSTS_N_INSNS (6); \
2411 case PROCESSOR_PPC403: \
2412 return COSTS_N_INSNS (33); \
fe7f5677
DE
2413 case PROCESSOR_PPC405: \
2414 return COSTS_N_INSNS (35); \
38c1f2d7
MM
2415 case PROCESSOR_PPC601: \
2416 return COSTS_N_INSNS (36); \
2417 case PROCESSOR_PPC603: \
2418 return COSTS_N_INSNS (37); \
2419 case PROCESSOR_PPC604: \
5a41b476 2420 case PROCESSOR_PPC604e: \
38c1f2d7 2421 return COSTS_N_INSNS (20); \
3cb999d8
DE
2422 case PROCESSOR_PPC620: \
2423 case PROCESSOR_PPC630: \
309323c2 2424 case PROCESSOR_POWER4: \
3cb999d8
DE
2425 return (GET_MODE (XEXP (X, 1)) != DImode \
2426 ? COSTS_N_INSNS (21) \
2427 : COSTS_N_INSNS (37)); \
bef84347 2428 case PROCESSOR_PPC750: \
a3170dc6 2429 case PROCESSOR_PPC8540: \
ed947a96 2430 case PROCESSOR_PPC7400: \
bef84347 2431 return COSTS_N_INSNS (19); \
ed947a96
DJ
2432 case PROCESSOR_PPC7450: \
2433 return COSTS_N_INSNS (23); \
38c1f2d7
MM
2434 } \
2435 case FFS: \
2436 return COSTS_N_INSNS (4); \
2437 case MEM: \
f045b2c9
RS
2438 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2439 return 5;
2440
2441/* Compute the cost of an address. This is meant to approximate the size
2442 and/or execution delay of an insn using that address. If the cost is
2443 approximated by the RTL complexity, including CONST_COSTS above, as
2444 is usually the case for CISC machines, this macro should not be defined.
2445 For aggressively RISCy machines, only one insn format is allowed, so
2446 this macro should be a constant. The value of this macro only matters
2447 for valid addresses.
2448
2449 For the RS/6000, everything is cost 0. */
2450
2451#define ADDRESS_COST(RTX) 0
2452
2453/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2454 should be adjusted to reflect any required changes. This macro is used when
2455 there is some systematic length adjustment required that would be difficult
2456 to express in the length attribute. */
2457
2458/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2459
39a10a29
GK
2460/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2461 COMPARE, return the mode to be used for the comparison. For
2462 floating-point, CCFPmode should be used. CCUNSmode should be used
2463 for unsigned comparisons. CCEQmode should be used when we are
2464 doing an inequality comparison on the result of a
2465 comparison. CCmode should be used in all other cases. */
c5defebb 2466
b565a316 2467#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2468 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2469 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2470 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2471 ? CCEQmode : CCmode))
f045b2c9
RS
2472
2473/* Define the information needed to generate branch and scc insns. This is
2474 stored from the compare operation. Note that we can't use "rtx" here
2475 since it hasn't been defined! */
2476
e2500fed
GK
2477extern GTY(()) rtx rs6000_compare_op0;
2478extern GTY(()) rtx rs6000_compare_op1;
f045b2c9 2479extern int rs6000_compare_fp_p;
f045b2c9
RS
2480\f
2481/* Control the assembler format that we output. */
2482
1b279f39
DE
2483/* A C string constant describing how to begin a comment in the target
2484 assembler language. The compiler assumes that the comment will end at
2485 the end of the line. */
2486#define ASM_COMMENT_START " #"
6b67933e 2487
fdaff8ba
RS
2488/* Implicit library calls should use memcpy, not bcopy, etc. */
2489
2490#define TARGET_MEM_FUNCTIONS
2491
38c1f2d7
MM
2492/* Flag to say the TOC is initialized */
2493extern int toc_initialized;
2494
f045b2c9
RS
2495/* Macro to output a special constant pool entry. Go to WIN if we output
2496 it. Otherwise, it is written the usual way.
2497
2498 On the RS/6000, toc entries are handled this way. */
2499
a9098fd0
GK
2500#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2501{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2502 { \
2503 output_toc (FILE, X, LABELNO, MODE); \
2504 goto WIN; \
2505 } \
f045b2c9
RS
2506}
2507
ebd97b96
DE
2508#ifdef HAVE_GAS_WEAK
2509#define RS6000_WEAK 1
2510#else
2511#define RS6000_WEAK 0
2512#endif
290ad355 2513
79c4e63f
AM
2514#if RS6000_WEAK
2515/* Used in lieu of ASM_WEAKEN_LABEL. */
2516#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2517 do \
2518 { \
2519 fputs ("\t.weak\t", (FILE)); \
cbaaba19 2520 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2521 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2522 && DEFAULT_ABI == ABI_AIX) \
2523 { \
cbaaba19
DE
2524 if (TARGET_XCOFF) \
2525 fputs ("[DS]", (FILE)); \
ca734b39 2526 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2527 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2528 } \
2529 fputc ('\n', (FILE)); \
2530 if (VAL) \
2531 { \
2532 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2533 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2534 && DEFAULT_ABI == ABI_AIX) \
2535 { \
2536 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2537 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2538 fputs (",.", (FILE)); \
cbaaba19 2539 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2540 fputc ('\n', (FILE)); \
2541 } \
2542 } \
2543 } \
2544 while (0)
2545#endif
2546
2547/* This implements the `alias' attribute. */
2548#undef ASM_OUTPUT_DEF_FROM_DECLS
2549#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2550 do \
2551 { \
2552 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2553 const char *name = IDENTIFIER_POINTER (TARGET); \
2554 if (TREE_CODE (DECL) == FUNCTION_DECL \
2555 && DEFAULT_ABI == ABI_AIX) \
2556 { \
2557 if (TREE_PUBLIC (DECL)) \
2558 { \
2559 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2560 { \
2561 fputs ("\t.globl\t.", FILE); \
cbaaba19 2562 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2563 putc ('\n', FILE); \
2564 } \
2565 } \
2566 else if (TARGET_XCOFF) \
2567 { \
2568 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2569 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2570 putc ('\n', FILE); \
2571 } \
2572 fputs ("\t.set\t.", FILE); \
cbaaba19 2573 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2574 fputs (",.", FILE); \
cbaaba19 2575 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2576 fputc ('\n', FILE); \
2577 } \
2578 ASM_OUTPUT_DEF (FILE, alias, name); \
2579 } \
2580 while (0)
290ad355 2581
f045b2c9
RS
2582/* Output to assembler file text saying following lines
2583 may contain character constants, extra white space, comments, etc. */
2584
2585#define ASM_APP_ON ""
2586
2587/* Output to assembler file text saying following lines
2588 no longer contain unusual constructs. */
2589
2590#define ASM_APP_OFF ""
2591
f045b2c9
RS
2592/* How to refer to registers in assembler output.
2593 This sequence is indexed by compiler's hard-register-number (see above). */
2594
82e41834 2595extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2596
2597#define REGISTER_NAMES \
2598{ \
2599 &rs6000_reg_names[ 0][0], /* r0 */ \
2600 &rs6000_reg_names[ 1][0], /* r1 */ \
2601 &rs6000_reg_names[ 2][0], /* r2 */ \
2602 &rs6000_reg_names[ 3][0], /* r3 */ \
2603 &rs6000_reg_names[ 4][0], /* r4 */ \
2604 &rs6000_reg_names[ 5][0], /* r5 */ \
2605 &rs6000_reg_names[ 6][0], /* r6 */ \
2606 &rs6000_reg_names[ 7][0], /* r7 */ \
2607 &rs6000_reg_names[ 8][0], /* r8 */ \
2608 &rs6000_reg_names[ 9][0], /* r9 */ \
2609 &rs6000_reg_names[10][0], /* r10 */ \
2610 &rs6000_reg_names[11][0], /* r11 */ \
2611 &rs6000_reg_names[12][0], /* r12 */ \
2612 &rs6000_reg_names[13][0], /* r13 */ \
2613 &rs6000_reg_names[14][0], /* r14 */ \
2614 &rs6000_reg_names[15][0], /* r15 */ \
2615 &rs6000_reg_names[16][0], /* r16 */ \
2616 &rs6000_reg_names[17][0], /* r17 */ \
2617 &rs6000_reg_names[18][0], /* r18 */ \
2618 &rs6000_reg_names[19][0], /* r19 */ \
2619 &rs6000_reg_names[20][0], /* r20 */ \
2620 &rs6000_reg_names[21][0], /* r21 */ \
2621 &rs6000_reg_names[22][0], /* r22 */ \
2622 &rs6000_reg_names[23][0], /* r23 */ \
2623 &rs6000_reg_names[24][0], /* r24 */ \
2624 &rs6000_reg_names[25][0], /* r25 */ \
2625 &rs6000_reg_names[26][0], /* r26 */ \
2626 &rs6000_reg_names[27][0], /* r27 */ \
2627 &rs6000_reg_names[28][0], /* r28 */ \
2628 &rs6000_reg_names[29][0], /* r29 */ \
2629 &rs6000_reg_names[30][0], /* r30 */ \
2630 &rs6000_reg_names[31][0], /* r31 */ \
2631 \
2632 &rs6000_reg_names[32][0], /* fr0 */ \
2633 &rs6000_reg_names[33][0], /* fr1 */ \
2634 &rs6000_reg_names[34][0], /* fr2 */ \
2635 &rs6000_reg_names[35][0], /* fr3 */ \
2636 &rs6000_reg_names[36][0], /* fr4 */ \
2637 &rs6000_reg_names[37][0], /* fr5 */ \
2638 &rs6000_reg_names[38][0], /* fr6 */ \
2639 &rs6000_reg_names[39][0], /* fr7 */ \
2640 &rs6000_reg_names[40][0], /* fr8 */ \
2641 &rs6000_reg_names[41][0], /* fr9 */ \
2642 &rs6000_reg_names[42][0], /* fr10 */ \
2643 &rs6000_reg_names[43][0], /* fr11 */ \
2644 &rs6000_reg_names[44][0], /* fr12 */ \
2645 &rs6000_reg_names[45][0], /* fr13 */ \
2646 &rs6000_reg_names[46][0], /* fr14 */ \
2647 &rs6000_reg_names[47][0], /* fr15 */ \
2648 &rs6000_reg_names[48][0], /* fr16 */ \
2649 &rs6000_reg_names[49][0], /* fr17 */ \
2650 &rs6000_reg_names[50][0], /* fr18 */ \
2651 &rs6000_reg_names[51][0], /* fr19 */ \
2652 &rs6000_reg_names[52][0], /* fr20 */ \
2653 &rs6000_reg_names[53][0], /* fr21 */ \
2654 &rs6000_reg_names[54][0], /* fr22 */ \
2655 &rs6000_reg_names[55][0], /* fr23 */ \
2656 &rs6000_reg_names[56][0], /* fr24 */ \
2657 &rs6000_reg_names[57][0], /* fr25 */ \
2658 &rs6000_reg_names[58][0], /* fr26 */ \
2659 &rs6000_reg_names[59][0], /* fr27 */ \
2660 &rs6000_reg_names[60][0], /* fr28 */ \
2661 &rs6000_reg_names[61][0], /* fr29 */ \
2662 &rs6000_reg_names[62][0], /* fr30 */ \
2663 &rs6000_reg_names[63][0], /* fr31 */ \
2664 \
2665 &rs6000_reg_names[64][0], /* mq */ \
2666 &rs6000_reg_names[65][0], /* lr */ \
2667 &rs6000_reg_names[66][0], /* ctr */ \
2668 &rs6000_reg_names[67][0], /* ap */ \
2669 \
2670 &rs6000_reg_names[68][0], /* cr0 */ \
2671 &rs6000_reg_names[69][0], /* cr1 */ \
2672 &rs6000_reg_names[70][0], /* cr2 */ \
2673 &rs6000_reg_names[71][0], /* cr3 */ \
2674 &rs6000_reg_names[72][0], /* cr4 */ \
2675 &rs6000_reg_names[73][0], /* cr5 */ \
2676 &rs6000_reg_names[74][0], /* cr6 */ \
2677 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2678 \
9ebbca7d 2679 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2680 \
2681 &rs6000_reg_names[77][0], /* v0 */ \
2682 &rs6000_reg_names[78][0], /* v1 */ \
2683 &rs6000_reg_names[79][0], /* v2 */ \
2684 &rs6000_reg_names[80][0], /* v3 */ \
2685 &rs6000_reg_names[81][0], /* v4 */ \
2686 &rs6000_reg_names[82][0], /* v5 */ \
2687 &rs6000_reg_names[83][0], /* v6 */ \
2688 &rs6000_reg_names[84][0], /* v7 */ \
2689 &rs6000_reg_names[85][0], /* v8 */ \
2690 &rs6000_reg_names[86][0], /* v9 */ \
2691 &rs6000_reg_names[87][0], /* v10 */ \
2692 &rs6000_reg_names[88][0], /* v11 */ \
2693 &rs6000_reg_names[89][0], /* v12 */ \
2694 &rs6000_reg_names[90][0], /* v13 */ \
2695 &rs6000_reg_names[91][0], /* v14 */ \
2696 &rs6000_reg_names[92][0], /* v15 */ \
2697 &rs6000_reg_names[93][0], /* v16 */ \
2698 &rs6000_reg_names[94][0], /* v17 */ \
2699 &rs6000_reg_names[95][0], /* v18 */ \
2700 &rs6000_reg_names[96][0], /* v19 */ \
2701 &rs6000_reg_names[97][0], /* v20 */ \
2702 &rs6000_reg_names[98][0], /* v21 */ \
2703 &rs6000_reg_names[99][0], /* v22 */ \
2704 &rs6000_reg_names[100][0], /* v23 */ \
2705 &rs6000_reg_names[101][0], /* v24 */ \
2706 &rs6000_reg_names[102][0], /* v25 */ \
2707 &rs6000_reg_names[103][0], /* v26 */ \
2708 &rs6000_reg_names[104][0], /* v27 */ \
2709 &rs6000_reg_names[105][0], /* v28 */ \
2710 &rs6000_reg_names[106][0], /* v29 */ \
2711 &rs6000_reg_names[107][0], /* v30 */ \
2712 &rs6000_reg_names[108][0], /* v31 */ \
2713 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2714 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2715 &rs6000_reg_names[111][0], /* spe_acc */ \
2716 &rs6000_reg_names[112][0], /* spefscr */ \
c81bebd7
MM
2717}
2718
2719/* print-rtl can't handle the above REGISTER_NAMES, so define the
2720 following for it. Switch to use the alternate names since
2721 they are more mnemonic. */
2722
2723#define DEBUG_REGISTER_NAMES \
2724{ \
802a0058
MM
2725 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2726 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2727 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2728 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2729 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2730 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2731 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2732 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2733 "mq", "lr", "ctr", "ap", \
2734 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
0ac081f6
AH
2735 "xer", \
2736 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2737 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2738 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2739 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
5f004351 2740 "vrsave", "vscr" \
a3170dc6 2741 , "spe_acc", "spefscr" \
c81bebd7 2742}
f045b2c9
RS
2743
2744/* Table of additional register names to use in user input. */
2745
2746#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2747 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2748 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2749 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2750 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2751 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2752 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2753 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2754 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2755 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2756 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2757 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2758 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2759 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2760 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2761 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2762 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2763 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2764 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2765 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2766 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2767 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2768 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2769 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2770 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2771 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2772 {"spe_acc", 111}, {"spefscr", 112}, \
c4d38ccb
MM
2773 /* no additional names for: mq, lr, ctr, ap */ \
2774 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2775 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2776 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2777
0da40b09
RK
2778/* Text to write out after a CALL that may be replaced by glue code by
2779 the loader. This depends on the AIX version. */
2780#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2781
f045b2c9
RS
2782/* This is how to output an element of a case-vector that is relative. */
2783
e1565e65 2784#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2785 do { char buf[100]; \
e1565e65 2786 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2787 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2788 assemble_name (FILE, buf); \
19d2d16f 2789 putc ('-', FILE); \
3daf36a4
ILT
2790 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2791 assemble_name (FILE, buf); \
19d2d16f 2792 putc ('\n', FILE); \
3daf36a4 2793 } while (0)
f045b2c9
RS
2794
2795/* This is how to output an assembler line
2796 that says to advance the location counter
2797 to a multiple of 2**LOG bytes. */
2798
2799#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2800 if ((LOG) != 0) \
2801 fprintf (FILE, "\t.align %d\n", (LOG))
2802
f045b2c9
RS
2803/* Store in OUTPUT a string (made with alloca) containing
2804 an assembler-name for a local static variable named NAME.
2805 LABELNO is an integer which is different for each call. */
2806
2807#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2808( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2809 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2810
9ebbca7d
GK
2811/* Pick up the return address upon entry to a procedure. Used for
2812 dwarf2 unwind information. This also enables the table driven
2813 mechanism. */
2814
2815#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2816#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2817
83720594
RH
2818/* Describe how we implement __builtin_eh_return. */
2819#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2820#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2821
f045b2c9
RS
2822/* Print operand X (an rtx) in assembler syntax to file FILE.
2823 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2824 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2825
2826#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2827
2828/* Define which CODE values are valid. */
2829
c81bebd7 2830#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
6fa3f289 2831 ((CODE) == '.')
f045b2c9
RS
2832
2833/* Print a memory address as an operand to reference that memory location. */
2834
2835#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2836
2837/* Define the codes that are matched by predicates in rs6000.c. */
2838
39a10a29 2839#define PREDICATE_CODES \
a65c591c 2840 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
df15fbc7 2841 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
a65c591c
DE
2842 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2843 LABEL_REF, SUBREG, REG, MEM}}, \
39a10a29
GK
2844 {"short_cint_operand", {CONST_INT}}, \
2845 {"u_short_cint_operand", {CONST_INT}}, \
2846 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2847 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2848 {"gpc_reg_operand", {SUBREG, REG}}, \
2849 {"cc_reg_operand", {SUBREG, REG}}, \
2850 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2851 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2852 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2853 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2854 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2855 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2856 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2857 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2858 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2859 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2860 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2861 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2862 {"easy_fp_constant", {CONST_DOUBLE}}, \
50a0b056 2863 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2864 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2865 {"lwa_operand", {SUBREG, MEM, REG}}, \
2866 {"volatile_mem_operand", {MEM}}, \
2867 {"offsettable_mem_operand", {MEM}}, \
2868 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2869 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2870 {"non_add_cint_operand", {CONST_INT}}, \
2871 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2872 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
0ba1b2ff 2873 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2874 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2875 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2876 {"mask_operand", {CONST_INT}}, \
0ba1b2ff
AM
2877 {"mask_operand_wrap", {CONST_INT}}, \
2878 {"mask64_operand", {CONST_INT}}, \
2879 {"mask64_2_operand", {CONST_INT}}, \
39a10a29
GK
2880 {"count_register_operand", {REG}}, \
2881 {"xer_operand", {REG}}, \
cc4d5fec 2882 {"symbol_ref_operand", {SYMBOL_REF}}, \
39a10a29
GK
2883 {"call_operand", {SYMBOL_REF, REG}}, \
2884 {"current_file_function_operand", {SYMBOL_REF}}, \
2885 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2886 CONST_DOUBLE, SYMBOL_REF}}, \
2887 {"load_multiple_operation", {PARALLEL}}, \
2888 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2889 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2890 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2891 GT, LEU, LTU, GEU, GTU, \
2892 UNORDERED, ORDERED, \
2893 UNGE, UNLE }}, \
2894 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2895 UNORDERED }}, \
2896 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2897 GT, LEU, LTU, GEU, GTU, \
2898 UNORDERED, ORDERED, \
2899 UNGE, UNLE }}, \
2900 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2901 GT, LEU, LTU, GEU, GTU}}, \
2902 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2903 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2904 {"altivec_register_operand", {REG}}, \
50a0b056 2905 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2906
b6c9286a
MM
2907/* uncomment for disabling the corresponding default options */
2908/* #define MACHINE_no_sched_interblock */
2909/* #define MACHINE_no_sched_speculative */
2910/* #define MACHINE_no_sched_speculative_load */
2911
766a866c
MM
2912/* General flags. */
2913extern int flag_pic;
354b734b
MM
2914extern int optimize;
2915extern int flag_expensive_optimizations;
a7df97e6 2916extern int frame_pointer_needed;
0ac081f6
AH
2917
2918enum rs6000_builtins
2919{
2920 /* AltiVec builtins. */
f18c054f
DB
2921 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2922 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2923 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2924 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2925 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2926 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2927 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2928 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2929 ALTIVEC_BUILTIN_VADDUBM,
2930 ALTIVEC_BUILTIN_VADDUHM,
2931 ALTIVEC_BUILTIN_VADDUWM,
2932 ALTIVEC_BUILTIN_VADDFP,
2933 ALTIVEC_BUILTIN_VADDCUW,
2934 ALTIVEC_BUILTIN_VADDUBS,
2935 ALTIVEC_BUILTIN_VADDSBS,
2936 ALTIVEC_BUILTIN_VADDUHS,
2937 ALTIVEC_BUILTIN_VADDSHS,
2938 ALTIVEC_BUILTIN_VADDUWS,
2939 ALTIVEC_BUILTIN_VADDSWS,
2940 ALTIVEC_BUILTIN_VAND,
2941 ALTIVEC_BUILTIN_VANDC,
2942 ALTIVEC_BUILTIN_VAVGUB,
2943 ALTIVEC_BUILTIN_VAVGSB,
2944 ALTIVEC_BUILTIN_VAVGUH,
2945 ALTIVEC_BUILTIN_VAVGSH,
2946 ALTIVEC_BUILTIN_VAVGUW,
2947 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2948 ALTIVEC_BUILTIN_VCFUX,
2949 ALTIVEC_BUILTIN_VCFSX,
2950 ALTIVEC_BUILTIN_VCTSXS,
2951 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2952 ALTIVEC_BUILTIN_VCMPBFP,
2953 ALTIVEC_BUILTIN_VCMPEQUB,
2954 ALTIVEC_BUILTIN_VCMPEQUH,
2955 ALTIVEC_BUILTIN_VCMPEQUW,
2956 ALTIVEC_BUILTIN_VCMPEQFP,
2957 ALTIVEC_BUILTIN_VCMPGEFP,
2958 ALTIVEC_BUILTIN_VCMPGTUB,
2959 ALTIVEC_BUILTIN_VCMPGTSB,
2960 ALTIVEC_BUILTIN_VCMPGTUH,
2961 ALTIVEC_BUILTIN_VCMPGTSH,
2962 ALTIVEC_BUILTIN_VCMPGTUW,
2963 ALTIVEC_BUILTIN_VCMPGTSW,
2964 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2965 ALTIVEC_BUILTIN_VEXPTEFP,
2966 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2967 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2968 ALTIVEC_BUILTIN_VMAXUB,
2969 ALTIVEC_BUILTIN_VMAXSB,
2970 ALTIVEC_BUILTIN_VMAXUH,
2971 ALTIVEC_BUILTIN_VMAXSH,
2972 ALTIVEC_BUILTIN_VMAXUW,
2973 ALTIVEC_BUILTIN_VMAXSW,
2974 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2975 ALTIVEC_BUILTIN_VMHADDSHS,
2976 ALTIVEC_BUILTIN_VMHRADDSHS,
2977 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2978 ALTIVEC_BUILTIN_VMRGHB,
2979 ALTIVEC_BUILTIN_VMRGHH,
2980 ALTIVEC_BUILTIN_VMRGHW,
2981 ALTIVEC_BUILTIN_VMRGLB,
2982 ALTIVEC_BUILTIN_VMRGLH,
2983 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2984 ALTIVEC_BUILTIN_VMSUMUBM,
2985 ALTIVEC_BUILTIN_VMSUMMBM,
2986 ALTIVEC_BUILTIN_VMSUMUHM,
2987 ALTIVEC_BUILTIN_VMSUMSHM,
2988 ALTIVEC_BUILTIN_VMSUMUHS,
2989 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2990 ALTIVEC_BUILTIN_VMINUB,
2991 ALTIVEC_BUILTIN_VMINSB,
2992 ALTIVEC_BUILTIN_VMINUH,
2993 ALTIVEC_BUILTIN_VMINSH,
2994 ALTIVEC_BUILTIN_VMINUW,
2995 ALTIVEC_BUILTIN_VMINSW,
2996 ALTIVEC_BUILTIN_VMINFP,
2997 ALTIVEC_BUILTIN_VMULEUB,
2998 ALTIVEC_BUILTIN_VMULESB,
2999 ALTIVEC_BUILTIN_VMULEUH,
3000 ALTIVEC_BUILTIN_VMULESH,
3001 ALTIVEC_BUILTIN_VMULOUB,
3002 ALTIVEC_BUILTIN_VMULOSB,
3003 ALTIVEC_BUILTIN_VMULOUH,
3004 ALTIVEC_BUILTIN_VMULOSH,
2212663f 3005 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
3006 ALTIVEC_BUILTIN_VNOR,
3007 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
3008 ALTIVEC_BUILTIN_VSEL_4SI,
3009 ALTIVEC_BUILTIN_VSEL_4SF,
3010 ALTIVEC_BUILTIN_VSEL_8HI,
3011 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
3012 ALTIVEC_BUILTIN_VPERM_4SI,
3013 ALTIVEC_BUILTIN_VPERM_4SF,
3014 ALTIVEC_BUILTIN_VPERM_8HI,
3015 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
3016 ALTIVEC_BUILTIN_VPKUHUM,
3017 ALTIVEC_BUILTIN_VPKUWUM,
3018 ALTIVEC_BUILTIN_VPKPX,
3019 ALTIVEC_BUILTIN_VPKUHSS,
3020 ALTIVEC_BUILTIN_VPKSHSS,
3021 ALTIVEC_BUILTIN_VPKUWSS,
3022 ALTIVEC_BUILTIN_VPKSWSS,
3023 ALTIVEC_BUILTIN_VPKUHUS,
3024 ALTIVEC_BUILTIN_VPKSHUS,
3025 ALTIVEC_BUILTIN_VPKUWUS,
3026 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
3027 ALTIVEC_BUILTIN_VREFP,
3028 ALTIVEC_BUILTIN_VRFIM,
3029 ALTIVEC_BUILTIN_VRFIN,
3030 ALTIVEC_BUILTIN_VRFIP,
3031 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
3032 ALTIVEC_BUILTIN_VRLB,
3033 ALTIVEC_BUILTIN_VRLH,
3034 ALTIVEC_BUILTIN_VRLW,
617e0e1d 3035 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
3036 ALTIVEC_BUILTIN_VSLB,
3037 ALTIVEC_BUILTIN_VSLH,
3038 ALTIVEC_BUILTIN_VSLW,
3039 ALTIVEC_BUILTIN_VSL,
3040 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
3041 ALTIVEC_BUILTIN_VSPLTB,
3042 ALTIVEC_BUILTIN_VSPLTH,
3043 ALTIVEC_BUILTIN_VSPLTW,
3044 ALTIVEC_BUILTIN_VSPLTISB,
3045 ALTIVEC_BUILTIN_VSPLTISH,
3046 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 3047 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
3048 ALTIVEC_BUILTIN_VSRH,
3049 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
3050 ALTIVEC_BUILTIN_VSRAB,
3051 ALTIVEC_BUILTIN_VSRAH,
3052 ALTIVEC_BUILTIN_VSRAW,
3053 ALTIVEC_BUILTIN_VSR,
3054 ALTIVEC_BUILTIN_VSRO,
3055 ALTIVEC_BUILTIN_VSUBUBM,
3056 ALTIVEC_BUILTIN_VSUBUHM,
3057 ALTIVEC_BUILTIN_VSUBUWM,
3058 ALTIVEC_BUILTIN_VSUBFP,
3059 ALTIVEC_BUILTIN_VSUBCUW,
3060 ALTIVEC_BUILTIN_VSUBUBS,
3061 ALTIVEC_BUILTIN_VSUBSBS,
3062 ALTIVEC_BUILTIN_VSUBUHS,
3063 ALTIVEC_BUILTIN_VSUBSHS,
3064 ALTIVEC_BUILTIN_VSUBUWS,
3065 ALTIVEC_BUILTIN_VSUBSWS,
3066 ALTIVEC_BUILTIN_VSUM4UBS,
3067 ALTIVEC_BUILTIN_VSUM4SBS,
3068 ALTIVEC_BUILTIN_VSUM4SHS,
3069 ALTIVEC_BUILTIN_VSUM2SWS,
3070 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
3071 ALTIVEC_BUILTIN_VXOR,
3072 ALTIVEC_BUILTIN_VSLDOI_16QI,
3073 ALTIVEC_BUILTIN_VSLDOI_8HI,
3074 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
3075 ALTIVEC_BUILTIN_VSLDOI_4SF,
3076 ALTIVEC_BUILTIN_VUPKHSB,
3077 ALTIVEC_BUILTIN_VUPKHPX,
3078 ALTIVEC_BUILTIN_VUPKHSH,
3079 ALTIVEC_BUILTIN_VUPKLSB,
3080 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 3081 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
3082 ALTIVEC_BUILTIN_MTVSCR,
3083 ALTIVEC_BUILTIN_MFVSCR,
3084 ALTIVEC_BUILTIN_DSSALL,
3085 ALTIVEC_BUILTIN_DSS,
3086 ALTIVEC_BUILTIN_LVSL,
3087 ALTIVEC_BUILTIN_LVSR,
3088 ALTIVEC_BUILTIN_DSTT,
3089 ALTIVEC_BUILTIN_DSTST,
3090 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
3091 ALTIVEC_BUILTIN_DST,
3092 ALTIVEC_BUILTIN_LVEBX,
3093 ALTIVEC_BUILTIN_LVEHX,
3094 ALTIVEC_BUILTIN_LVEWX,
3095 ALTIVEC_BUILTIN_LVXL,
3096 ALTIVEC_BUILTIN_LVX,
3097 ALTIVEC_BUILTIN_STVX,
3098 ALTIVEC_BUILTIN_STVEBX,
3099 ALTIVEC_BUILTIN_STVEHX,
3100 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
3101 ALTIVEC_BUILTIN_STVXL,
3102 ALTIVEC_BUILTIN_VCMPBFP_P,
3103 ALTIVEC_BUILTIN_VCMPEQFP_P,
3104 ALTIVEC_BUILTIN_VCMPEQUB_P,
3105 ALTIVEC_BUILTIN_VCMPEQUH_P,
3106 ALTIVEC_BUILTIN_VCMPEQUW_P,
3107 ALTIVEC_BUILTIN_VCMPGEFP_P,
3108 ALTIVEC_BUILTIN_VCMPGTFP_P,
3109 ALTIVEC_BUILTIN_VCMPGTSB_P,
3110 ALTIVEC_BUILTIN_VCMPGTSH_P,
3111 ALTIVEC_BUILTIN_VCMPGTSW_P,
3112 ALTIVEC_BUILTIN_VCMPGTUB_P,
3113 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
3114 ALTIVEC_BUILTIN_VCMPGTUW_P,
3115 ALTIVEC_BUILTIN_ABSS_V4SI,
3116 ALTIVEC_BUILTIN_ABSS_V8HI,
3117 ALTIVEC_BUILTIN_ABSS_V16QI,
3118 ALTIVEC_BUILTIN_ABS_V4SI,
3119 ALTIVEC_BUILTIN_ABS_V4SF,
3120 ALTIVEC_BUILTIN_ABS_V8HI,
3121 ALTIVEC_BUILTIN_ABS_V16QI
a3170dc6
AH
3122 /* SPE builtins. */
3123 , SPE_BUILTIN_EVADDW,
3124 SPE_BUILTIN_EVAND,
3125 SPE_BUILTIN_EVANDC,
3126 SPE_BUILTIN_EVDIVWS,
3127 SPE_BUILTIN_EVDIVWU,
3128 SPE_BUILTIN_EVEQV,
3129 SPE_BUILTIN_EVFSADD,
3130 SPE_BUILTIN_EVFSDIV,
3131 SPE_BUILTIN_EVFSMUL,
3132 SPE_BUILTIN_EVFSSUB,
3133 SPE_BUILTIN_EVLDDX,
3134 SPE_BUILTIN_EVLDHX,
3135 SPE_BUILTIN_EVLDWX,
3136 SPE_BUILTIN_EVLHHESPLATX,
3137 SPE_BUILTIN_EVLHHOSSPLATX,
3138 SPE_BUILTIN_EVLHHOUSPLATX,
3139 SPE_BUILTIN_EVLWHEX,
3140 SPE_BUILTIN_EVLWHOSX,
3141 SPE_BUILTIN_EVLWHOUX,
3142 SPE_BUILTIN_EVLWHSPLATX,
3143 SPE_BUILTIN_EVLWWSPLATX,
3144 SPE_BUILTIN_EVMERGEHI,
3145 SPE_BUILTIN_EVMERGEHILO,
3146 SPE_BUILTIN_EVMERGELO,
3147 SPE_BUILTIN_EVMERGELOHI,
3148 SPE_BUILTIN_EVMHEGSMFAA,
3149 SPE_BUILTIN_EVMHEGSMFAN,
3150 SPE_BUILTIN_EVMHEGSMIAA,
3151 SPE_BUILTIN_EVMHEGSMIAN,
3152 SPE_BUILTIN_EVMHEGUMIAA,
3153 SPE_BUILTIN_EVMHEGUMIAN,
3154 SPE_BUILTIN_EVMHESMF,
3155 SPE_BUILTIN_EVMHESMFA,
3156 SPE_BUILTIN_EVMHESMFAAW,
3157 SPE_BUILTIN_EVMHESMFANW,
3158 SPE_BUILTIN_EVMHESMI,
3159 SPE_BUILTIN_EVMHESMIA,
3160 SPE_BUILTIN_EVMHESMIAAW,
3161 SPE_BUILTIN_EVMHESMIANW,
3162 SPE_BUILTIN_EVMHESSF,
3163 SPE_BUILTIN_EVMHESSFA,
3164 SPE_BUILTIN_EVMHESSFAAW,
3165 SPE_BUILTIN_EVMHESSFANW,
3166 SPE_BUILTIN_EVMHESSIAAW,
3167 SPE_BUILTIN_EVMHESSIANW,
3168 SPE_BUILTIN_EVMHEUMI,
3169 SPE_BUILTIN_EVMHEUMIA,
3170 SPE_BUILTIN_EVMHEUMIAAW,
3171 SPE_BUILTIN_EVMHEUMIANW,
3172 SPE_BUILTIN_EVMHEUSIAAW,
3173 SPE_BUILTIN_EVMHEUSIANW,
3174 SPE_BUILTIN_EVMHOGSMFAA,
3175 SPE_BUILTIN_EVMHOGSMFAN,
3176 SPE_BUILTIN_EVMHOGSMIAA,
3177 SPE_BUILTIN_EVMHOGSMIAN,
3178 SPE_BUILTIN_EVMHOGUMIAA,
3179 SPE_BUILTIN_EVMHOGUMIAN,
3180 SPE_BUILTIN_EVMHOSMF,
3181 SPE_BUILTIN_EVMHOSMFA,
3182 SPE_BUILTIN_EVMHOSMFAAW,
3183 SPE_BUILTIN_EVMHOSMFANW,
3184 SPE_BUILTIN_EVMHOSMI,
3185 SPE_BUILTIN_EVMHOSMIA,
3186 SPE_BUILTIN_EVMHOSMIAAW,
3187 SPE_BUILTIN_EVMHOSMIANW,
3188 SPE_BUILTIN_EVMHOSSF,
3189 SPE_BUILTIN_EVMHOSSFA,
3190 SPE_BUILTIN_EVMHOSSFAAW,
3191 SPE_BUILTIN_EVMHOSSFANW,
3192 SPE_BUILTIN_EVMHOSSIAAW,
3193 SPE_BUILTIN_EVMHOSSIANW,
3194 SPE_BUILTIN_EVMHOUMI,
3195 SPE_BUILTIN_EVMHOUMIA,
3196 SPE_BUILTIN_EVMHOUMIAAW,
3197 SPE_BUILTIN_EVMHOUMIANW,
3198 SPE_BUILTIN_EVMHOUSIAAW,
3199 SPE_BUILTIN_EVMHOUSIANW,
3200 SPE_BUILTIN_EVMWHSMF,
3201 SPE_BUILTIN_EVMWHSMFA,
3202 SPE_BUILTIN_EVMWHSMI,
3203 SPE_BUILTIN_EVMWHSMIA,
3204 SPE_BUILTIN_EVMWHSSF,
3205 SPE_BUILTIN_EVMWHSSFA,
3206 SPE_BUILTIN_EVMWHUMI,
3207 SPE_BUILTIN_EVMWHUMIA,
3208 SPE_BUILTIN_EVMWLSMF,
3209 SPE_BUILTIN_EVMWLSMFA,
3210 SPE_BUILTIN_EVMWLSMFAAW,
3211 SPE_BUILTIN_EVMWLSMFANW,
3212 SPE_BUILTIN_EVMWLSMIAAW,
3213 SPE_BUILTIN_EVMWLSMIANW,
3214 SPE_BUILTIN_EVMWLSSF,
3215 SPE_BUILTIN_EVMWLSSFA,
3216 SPE_BUILTIN_EVMWLSSFAAW,
3217 SPE_BUILTIN_EVMWLSSFANW,
3218 SPE_BUILTIN_EVMWLSSIAAW,
3219 SPE_BUILTIN_EVMWLSSIANW,
3220 SPE_BUILTIN_EVMWLUMI,
3221 SPE_BUILTIN_EVMWLUMIA,
3222 SPE_BUILTIN_EVMWLUMIAAW,
3223 SPE_BUILTIN_EVMWLUMIANW,
3224 SPE_BUILTIN_EVMWLUSIAAW,
3225 SPE_BUILTIN_EVMWLUSIANW,
3226 SPE_BUILTIN_EVMWSMF,
3227 SPE_BUILTIN_EVMWSMFA,
3228 SPE_BUILTIN_EVMWSMFAA,
3229 SPE_BUILTIN_EVMWSMFAN,
3230 SPE_BUILTIN_EVMWSMI,
3231 SPE_BUILTIN_EVMWSMIA,
3232 SPE_BUILTIN_EVMWSMIAA,
3233 SPE_BUILTIN_EVMWSMIAN,
3234 SPE_BUILTIN_EVMWHSSFAA,
3235 SPE_BUILTIN_EVMWSSF,
3236 SPE_BUILTIN_EVMWSSFA,
3237 SPE_BUILTIN_EVMWSSFAA,
3238 SPE_BUILTIN_EVMWSSFAN,
3239 SPE_BUILTIN_EVMWUMI,
3240 SPE_BUILTIN_EVMWUMIA,
3241 SPE_BUILTIN_EVMWUMIAA,
3242 SPE_BUILTIN_EVMWUMIAN,
3243 SPE_BUILTIN_EVNAND,
3244 SPE_BUILTIN_EVNOR,
3245 SPE_BUILTIN_EVOR,
3246 SPE_BUILTIN_EVORC,
3247 SPE_BUILTIN_EVRLW,
3248 SPE_BUILTIN_EVSLW,
3249 SPE_BUILTIN_EVSRWS,
3250 SPE_BUILTIN_EVSRWU,
3251 SPE_BUILTIN_EVSTDDX,
3252 SPE_BUILTIN_EVSTDHX,
3253 SPE_BUILTIN_EVSTDWX,
3254 SPE_BUILTIN_EVSTWHEX,
3255 SPE_BUILTIN_EVSTWHOX,
3256 SPE_BUILTIN_EVSTWWEX,
3257 SPE_BUILTIN_EVSTWWOX,
3258 SPE_BUILTIN_EVSUBFW,
3259 SPE_BUILTIN_EVXOR,
3260 SPE_BUILTIN_EVABS,
3261 SPE_BUILTIN_EVADDSMIAAW,
3262 SPE_BUILTIN_EVADDSSIAAW,
3263 SPE_BUILTIN_EVADDUMIAAW,
3264 SPE_BUILTIN_EVADDUSIAAW,
3265 SPE_BUILTIN_EVCNTLSW,
3266 SPE_BUILTIN_EVCNTLZW,
3267 SPE_BUILTIN_EVEXTSB,
3268 SPE_BUILTIN_EVEXTSH,
3269 SPE_BUILTIN_EVFSABS,
3270 SPE_BUILTIN_EVFSCFSF,
3271 SPE_BUILTIN_EVFSCFSI,
3272 SPE_BUILTIN_EVFSCFUF,
3273 SPE_BUILTIN_EVFSCFUI,
3274 SPE_BUILTIN_EVFSCTSF,
3275 SPE_BUILTIN_EVFSCTSI,
3276 SPE_BUILTIN_EVFSCTSIZ,
3277 SPE_BUILTIN_EVFSCTUF,
3278 SPE_BUILTIN_EVFSCTUI,
3279 SPE_BUILTIN_EVFSCTUIZ,
3280 SPE_BUILTIN_EVFSNABS,
3281 SPE_BUILTIN_EVFSNEG,
3282 SPE_BUILTIN_EVMRA,
3283 SPE_BUILTIN_EVNEG,
3284 SPE_BUILTIN_EVRNDW,
3285 SPE_BUILTIN_EVSUBFSMIAAW,
3286 SPE_BUILTIN_EVSUBFSSIAAW,
3287 SPE_BUILTIN_EVSUBFUMIAAW,
3288 SPE_BUILTIN_EVSUBFUSIAAW,
3289 SPE_BUILTIN_EVADDIW,
3290 SPE_BUILTIN_EVLDD,
3291 SPE_BUILTIN_EVLDH,
3292 SPE_BUILTIN_EVLDW,
3293 SPE_BUILTIN_EVLHHESPLAT,
3294 SPE_BUILTIN_EVLHHOSSPLAT,
3295 SPE_BUILTIN_EVLHHOUSPLAT,
3296 SPE_BUILTIN_EVLWHE,
3297 SPE_BUILTIN_EVLWHOS,
3298 SPE_BUILTIN_EVLWHOU,
3299 SPE_BUILTIN_EVLWHSPLAT,
3300 SPE_BUILTIN_EVLWWSPLAT,
3301 SPE_BUILTIN_EVRLWI,
3302 SPE_BUILTIN_EVSLWI,
3303 SPE_BUILTIN_EVSRWIS,
3304 SPE_BUILTIN_EVSRWIU,
3305 SPE_BUILTIN_EVSTDD,
3306 SPE_BUILTIN_EVSTDH,
3307 SPE_BUILTIN_EVSTDW,
3308 SPE_BUILTIN_EVSTWHE,
3309 SPE_BUILTIN_EVSTWHO,
3310 SPE_BUILTIN_EVSTWWE,
3311 SPE_BUILTIN_EVSTWWO,
3312 SPE_BUILTIN_EVSUBIFW,
3313
3314 /* Compares. */
3315 SPE_BUILTIN_EVCMPEQ,
3316 SPE_BUILTIN_EVCMPGTS,
3317 SPE_BUILTIN_EVCMPGTU,
3318 SPE_BUILTIN_EVCMPLTS,
3319 SPE_BUILTIN_EVCMPLTU,
3320 SPE_BUILTIN_EVFSCMPEQ,
3321 SPE_BUILTIN_EVFSCMPGT,
3322 SPE_BUILTIN_EVFSCMPLT,
3323 SPE_BUILTIN_EVFSTSTEQ,
3324 SPE_BUILTIN_EVFSTSTGT,
3325 SPE_BUILTIN_EVFSTSTLT,
3326
3327 /* EVSEL compares. */
3328 SPE_BUILTIN_EVSEL_CMPEQ,
3329 SPE_BUILTIN_EVSEL_CMPGTS,
3330 SPE_BUILTIN_EVSEL_CMPGTU,
3331 SPE_BUILTIN_EVSEL_CMPLTS,
3332 SPE_BUILTIN_EVSEL_CMPLTU,
3333 SPE_BUILTIN_EVSEL_FSCMPEQ,
3334 SPE_BUILTIN_EVSEL_FSCMPGT,
3335 SPE_BUILTIN_EVSEL_FSCMPLT,
3336 SPE_BUILTIN_EVSEL_FSTSTEQ,
3337 SPE_BUILTIN_EVSEL_FSTSTGT,
3338 SPE_BUILTIN_EVSEL_FSTSTLT,
3339
3340 SPE_BUILTIN_EVSPLATFI,
3341 SPE_BUILTIN_EVSPLATI,
3342 SPE_BUILTIN_EVMWHSSMAA,
3343 SPE_BUILTIN_EVMWHSMFAA,
3344 SPE_BUILTIN_EVMWHSMIAA,
3345 SPE_BUILTIN_EVMWHUSIAA,
3346 SPE_BUILTIN_EVMWHUMIAA,
3347 SPE_BUILTIN_EVMWHSSFAN,
3348 SPE_BUILTIN_EVMWHSSIAN,
3349 SPE_BUILTIN_EVMWHSMFAN,
3350 SPE_BUILTIN_EVMWHSMIAN,
3351 SPE_BUILTIN_EVMWHUSIAN,
3352 SPE_BUILTIN_EVMWHUMIAN,
3353 SPE_BUILTIN_EVMWHGSSFAA,
3354 SPE_BUILTIN_EVMWHGSMFAA,
3355 SPE_BUILTIN_EVMWHGSMIAA,
3356 SPE_BUILTIN_EVMWHGUMIAA,
3357 SPE_BUILTIN_EVMWHGSSFAN,
3358 SPE_BUILTIN_EVMWHGSMFAN,
3359 SPE_BUILTIN_EVMWHGSMIAN,
3360 SPE_BUILTIN_EVMWHGUMIAN,
3361 SPE_BUILTIN_MTSPEFSCR,
3362 SPE_BUILTIN_MFSPEFSCR,
3363 SPE_BUILTIN_BRINC
0ac081f6 3364};