]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
Turn HARD_REGNO_NREGS into a target hook
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
cbe34bb5 2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 4
5de601cf 5 This file is part of GCC.
f045b2c9 6
5de601cf
NC
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
5de601cf 10 option) any later version.
f045b2c9 11
5de601cf
NC
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f045b2c9 16
748086b7
JJ
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 24 <http://www.gnu.org/licenses/>. */
f045b2c9
RS
25
26/* Note that some other tm.h files include this one and then override
9ebbca7d 27 many of the definitions. */
f045b2c9 28
fd438373
MM
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
9ebbca7d
GK
33/* Definitions for the object file format. These are set at
34 compile-time. */
f045b2c9 35
9ebbca7d
GK
36#define OBJECT_XCOFF 1
37#define OBJECT_ELF 2
38#define OBJECT_PEF 3
ee890fe2 39#define OBJECT_MACHO 4
f045b2c9 40
9ebbca7d 41#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 42#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 43#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 44#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 45
2bfcf297
DB
46#ifndef TARGET_AIX
47#define TARGET_AIX 0
48#endif
49
78009d9f
MM
50#ifndef TARGET_AIX_OS
51#define TARGET_AIX_OS 0
52#endif
53
85b776df
AM
54/* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56#define DOT_SYMBOLS 1
57
8e3f41e7
MM
58/* Default string to use for cpu if not specified. */
59#ifndef TARGET_CPU_DEFAULT
60#define TARGET_CPU_DEFAULT ((char *)0)
61#endif
62
f565b0a1 63/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 64#ifdef CONFIG_PPC405CR
f565b0a1
DE
65#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66#else
67#define PPC405_ERRATUM77 0
68#endif
69
96038623
DE
70#ifndef TARGET_PAIRED_FLOAT
71#define TARGET_PAIRED_FLOAT 0
72#endif
73
cd679487
BE
74#ifdef HAVE_AS_POPCNTB
75#define ASM_CPU_POWER5_SPEC "-mpower5"
76#else
77#define ASM_CPU_POWER5_SPEC "-mpower4"
78#endif
79
80#ifdef HAVE_AS_DFP
81#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82#else
83#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84#endif
85
cacf1ca8 86#ifdef HAVE_AS_POPCNTD
d40c9e33
PB
87#define ASM_CPU_POWER7_SPEC "-mpower7"
88#else
89#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90#endif
91
428bffcb
PB
92#ifdef HAVE_AS_POWER8
93#define ASM_CPU_POWER8_SPEC "-mpower8"
94#else
f62511da 95#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
428bffcb
PB
96#endif
97
d1f0d376
MM
98#ifdef HAVE_AS_POWER9
99#define ASM_CPU_POWER9_SPEC "-mpower9"
100#else
101#define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102#endif
103
47f67e51
PB
104#ifdef HAVE_AS_DCI
105#define ASM_CPU_476_SPEC "-m476"
106#else
107#define ASM_CPU_476_SPEC "-mpower4"
108#endif
109
cacf1ca8
MM
110/* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
f984d8df
DB
114#define ASM_CPU_SPEC \
115"%{!mcpu*: \
93ae5495 116 %{mpowerpc64*: -mppc64} \
a441dedb 117 %{!mpowerpc64*: %(asm_default)}} \
cacf1ca8 118%{mcpu=native: %(asm_cpu_native)} \
d296e02e 119%{mcpu=cell: -mcell} \
93ae5495 120%{mcpu=power3: -mppc64} \
957e9e48 121%{mcpu=power4: -mpower4} \
cd679487
BE
122%{mcpu=power5: %(asm_cpu_power5)} \
123%{mcpu=power5+: %(asm_cpu_power5)} \
124%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
d40c9e33 126%{mcpu=power7: %(asm_cpu_power7)} \
428bffcb 127%{mcpu=power8: %(asm_cpu_power8)} \
d1f0d376 128%{mcpu=power9: %(asm_cpu_power9)} \
ebde32fd 129%{mcpu=a2: -ma2} \
f984d8df 130%{mcpu=powerpc: -mppc} \
fa17b3db 131%{mcpu=powerpc64le: %(asm_cpu_power8)} \
93ae5495 132%{mcpu=rs64a: -mppc64} \
f984d8df 133%{mcpu=401: -mppc} \
61a8515c
JS
134%{mcpu=403: -m403} \
135%{mcpu=405: -m405} \
2c9d95ef
DE
136%{mcpu=405fp: -m405} \
137%{mcpu=440: -m440} \
138%{mcpu=440fp: -m440} \
4adf8008
PB
139%{mcpu=464: -m440} \
140%{mcpu=464fp: -m440} \
47f67e51
PB
141%{mcpu=476: %(asm_cpu_476)} \
142%{mcpu=476fp: %(asm_cpu_476)} \
f984d8df
DB
143%{mcpu=505: -mppc} \
144%{mcpu=601: -m601} \
145%{mcpu=602: -mppc} \
146%{mcpu=603: -mppc} \
147%{mcpu=603e: -mppc} \
148%{mcpu=ec603e: -mppc} \
149%{mcpu=604: -mppc} \
150%{mcpu=604e: -mppc} \
93ae5495
AM
151%{mcpu=620: -mppc64} \
152%{mcpu=630: -mppc64} \
f984d8df
DB
153%{mcpu=740: -mppc} \
154%{mcpu=750: -mppc} \
49ffe578 155%{mcpu=G3: -mppc} \
93ae5495
AM
156%{mcpu=7400: -mppc -maltivec} \
157%{mcpu=7450: -mppc -maltivec} \
158%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
159%{mcpu=801: -mppc} \
160%{mcpu=821: -mppc} \
161%{mcpu=823: -mppc} \
775db490 162%{mcpu=860: -mppc} \
93ae5495
AM
163%{mcpu=970: -mpower4 -maltivec} \
164%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 165%{mcpu=8540: -me500} \
5ca0373f 166%{mcpu=8548: -me500} \
fa41c305
EW
167%{mcpu=e300c2: -me300} \
168%{mcpu=e300c3: -me300} \
edae5fe3 169%{mcpu=e500mc: -me500mc} \
b17f98b1 170%{mcpu=e500mc64: -me500mc64} \
683ed19e
EW
171%{mcpu=e5500: -me5500} \
172%{mcpu=e6500: -me6500} \
93ae5495 173%{maltivec: -maltivec} \
2c9ccc21 174%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
0258b6e4 175%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
93ae5495 176-many"
f984d8df
DB
177
178#define CPP_DEFAULT_SPEC ""
179
180#define ASM_DEFAULT_SPEC ""
181
841faeed
MM
182/* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
5de601cf 187 specification name, and a string constant that used by the GCC driver
841faeed
MM
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
7509c759 192#define SUBTARGET_EXTRA_SPECS
7509c759 193
c81bebd7 194#define EXTRA_SPECS \
c81bebd7 195 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7 196 { "asm_cpu", ASM_CPU_SPEC }, \
cacf1ca8 197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
c81bebd7 198 { "asm_default", ASM_DEFAULT_SPEC }, \
0eab6840 199 { "cc1_cpu", CC1_CPU_SPEC }, \
cd679487
BE
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
d40c9e33 202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
428bffcb 203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
d1f0d376 204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
47f67e51 205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
7509c759
MM
206 SUBTARGET_EXTRA_SPECS
207
0eab6840
DE
208/* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212/* In driver-rs6000.c. */
213extern const char *host_detect_local_cpu (int argc, const char **argv);
214#define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216#define HAVE_LOCAL_CPU_DETECT
cacf1ca8
MM
217#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219#else
220#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
0eab6840
DE
221#endif
222
ee7caeb3
DE
223#ifndef CC1_CPU_SPEC
224#ifdef HAVE_LOCAL_CPU_DETECT
0eab6840
DE
225#define CC1_CPU_SPEC \
226"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
ee7caeb3
DE
228#else
229#define CC1_CPU_SPEC ""
230#endif
0eab6840
DE
231#endif
232
fb623df5 233/* Architecture type. */
f045b2c9 234
bb22512c 235/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 236 optional field operand for mfcr. */
fb623df5 237
78f5898b 238#ifndef HAVE_AS_MFCRF
432218ba 239#undef TARGET_MFCRF
ffa22984
DE
240#define TARGET_MFCRF 0
241#endif
242
0fa2e4df 243/* Define TARGET_POPCNTB if the target assembler does not support the
432218ba
DE
244 popcount byte instruction. */
245
246#ifndef HAVE_AS_POPCNTB
247#undef TARGET_POPCNTB
248#define TARGET_POPCNTB 0
249#endif
250
9719f3b7
DE
251/* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254#ifndef HAVE_AS_FPRND
255#undef TARGET_FPRND
256#define TARGET_FPRND 0
257#endif
258
b639c3c2
JJ
259/* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262#ifndef HAVE_AS_CMPB
263#undef TARGET_CMPB
264#define TARGET_CMPB 0
265#endif
266
44cd321e
PS
267/* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270#ifndef HAVE_AS_MFPGPR
271#undef TARGET_MFPGPR
272#define TARGET_MFPGPR 0
273#endif
274
b639c3c2
JJ
275/* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277#ifndef HAVE_AS_DFP
278#undef TARGET_DFP
279#define TARGET_DFP 0
280#endif
281
cacf1ca8
MM
282/* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285#ifndef HAVE_AS_POPCNTD
286#undef TARGET_POPCNTD
287#define TARGET_POPCNTD 0
288#endif
289
f62511da
MM
290/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294#ifndef HAVE_AS_POWER8
295#undef TARGET_DIRECT_MOVE
296#undef TARGET_CRYPTO
0258b6e4 297#undef TARGET_HTM
f62511da
MM
298#undef TARGET_P8_VECTOR
299#define TARGET_DIRECT_MOVE 0
300#define TARGET_CRYPTO 0
0258b6e4 301#define TARGET_HTM 0
f62511da
MM
302#define TARGET_P8_VECTOR 0
303#endif
304
caea59ff
KN
305/* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
309
310#ifndef HAVE_AS_POWER9
311#undef TARGET_FLOAT128_HW
312#undef TARGET_MODULO
313#undef TARGET_P9_VECTOR
314#undef TARGET_P9_MINMAX
5a3a6a5e 315#undef TARGET_P9_MISC
caea59ff
KN
316#define TARGET_FLOAT128_HW 0
317#define TARGET_MODULO 0
318#define TARGET_P9_VECTOR 0
319#define TARGET_P9_MINMAX 0
5a3a6a5e 320#define TARGET_P9_MISC 0
caea59ff
KN
321#endif
322
cacf1ca8
MM
323/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
324 not, generate the lwsync code as an integer constant. */
325#ifdef HAVE_AS_LWSYNC
326#define TARGET_LWSYNC_INSTRUCTION 1
327#else
328#define TARGET_LWSYNC_INSTRUCTION 0
329#endif
330
9752c4ad
AM
331/* Define TARGET_TLS_MARKERS if the target assembler does not support
332 arg markers for __tls_get_addr calls. */
333#ifndef HAVE_AS_TLS_MARKERS
334#undef TARGET_TLS_MARKERS
335#define TARGET_TLS_MARKERS 0
336#else
337#define TARGET_TLS_MARKERS tls_markers
338#endif
339
7f970b70
AM
340#ifndef TARGET_SECURE_PLT
341#define TARGET_SECURE_PLT 0
342#endif
343
070b27da
AM
344#ifndef TARGET_CMODEL
345#define TARGET_CMODEL CMODEL_SMALL
346#endif
347
2f3e5814 348#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 349
c4501e62
JJ
350#ifndef HAVE_AS_TLS
351#define HAVE_AS_TLS 0
352#endif
353
be26142a
PB
354#ifndef TARGET_LINK_STACK
355#define TARGET_LINK_STACK 0
356#endif
357
358#ifndef SET_TARGET_LINK_STACK
359#define SET_TARGET_LINK_STACK(X) do { } while (0)
360#endif
361
08213983
MM
362#ifndef TARGET_FLOAT128_ENABLE_TYPE
363#define TARGET_FLOAT128_ENABLE_TYPE 0
364#endif
365
48d72335
DE
366/* Return 1 for a symbol ref for a thread-local storage symbol. */
367#define RS6000_SYMBOL_REF_TLS_P(RTX) \
368 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
369
996ed075
JJ
370#ifdef IN_LIBGCC2
371/* For libgcc2 we make sure this is a compile time constant */
67796c1f 372#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
78f5898b 373#undef TARGET_POWERPC64
996ed075
JJ
374#define TARGET_POWERPC64 1
375#else
78f5898b 376#undef TARGET_POWERPC64
996ed075
JJ
377#define TARGET_POWERPC64 0
378#endif
b6c9286a 379#else
78f5898b 380 /* The option machinery will define this. */
b6c9286a
MM
381#endif
382
c28a7c24 383#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
9ebbca7d 384
696e45ba
ME
385/* FPU operations supported.
386 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
387 also test TARGET_HARD_FLOAT. */
388#define TARGET_SINGLE_FLOAT 1
389#define TARGET_DOUBLE_FLOAT 1
390#define TARGET_SINGLE_FPU 0
391#define TARGET_SIMPLE_FPU 0
0bb7b92e 392#define TARGET_XILINX_FPU 0
696e45ba 393
fb623df5
RK
394/* Recast the processor type to the cpu attribute. */
395#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
396
8482e358 397/* Define generic processor types based upon current deployment. */
3cb999d8 398#define PROCESSOR_COMMON PROCESSOR_PPC601
3cb999d8
DE
399#define PROCESSOR_POWERPC PROCESSOR_PPC604
400#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 401
fb623df5 402/* Define the default processor. This is overridden by other tm.h files. */
f3061fa4 403#define PROCESSOR_DEFAULT PROCESSOR_PPC603
3cb999d8 404#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 405
59ac9a55
JJ
406/* Specify the dialect of assembler to use. Only new mnemonics are supported
407 starting with GCC 4.8, i.e. just one dialect, but for backwards
408 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
409 defined. */
410#define ASSEMBLER_DIALECT 1
411
38c1f2d7 412/* Debug support */
fd438373
MM
413#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
414#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
415#define MASK_DEBUG_REG 0x04 /* debug register handling */
416#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
417#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
418#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
7fa14a01 419#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
fd438373
MM
420#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
421 | MASK_DEBUG_ARG \
422 | MASK_DEBUG_REG \
423 | MASK_DEBUG_ADDR \
424 | MASK_DEBUG_COST \
7fa14a01
MM
425 | MASK_DEBUG_TARGET \
426 | MASK_DEBUG_BUILTIN)
fd438373
MM
427
428#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
429#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
430#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
431#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
432#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
433#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
7fa14a01 434#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
cacf1ca8 435
2c83faf8
MM
436/* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
437 long double format that uses a pair of doubles, or IEEE 128-bit floating
438 point. KFmode was added as a way to represent IEEE 128-bit floating point,
439 even if the default for long double is the IBM long double format.
440 Similarly IFmode is the IBM long double format even if the default is IEEE
0bc36dec 441 128-bit. Don't allow IFmode if -msoft-float. */
2c83faf8 442#define FLOAT128_IEEE_P(MODE) \
4304ccfd
MM
443 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
444 || ((MODE) == KFmode) || ((MODE) == KCmode))
2c83faf8
MM
445
446#define FLOAT128_IBM_P(MODE) \
4304ccfd 447 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
11d8d07e 448 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
2c83faf8
MM
449
450/* Helper macros to say whether a 128-bit floating point type can go in a
451 single vector register, or whether it needs paired scalar values. */
08213983 452#define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
2c83faf8
MM
453
454#define FLOAT128_2REG_P(MODE) \
455 (FLOAT128_IBM_P (MODE) \
456 || ((MODE) == TDmode) \
08213983 457 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
2c83faf8
MM
458
459/* Return true for floating point that does not use a vector register. */
460#define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
461 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
462
f62511da 463/* Describe the vector unit used for arithmetic operations. */
cacf1ca8
MM
464extern enum rs6000_vector rs6000_vector_unit[];
465
466#define VECTOR_UNIT_NONE_P(MODE) \
467 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
468
469#define VECTOR_UNIT_VSX_P(MODE) \
470 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
471
f62511da
MM
472#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
473 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
474
cacf1ca8
MM
475#define VECTOR_UNIT_ALTIVEC_P(MODE) \
476 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
477
f62511da
MM
478#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
479 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
480 (int)VECTOR_VSX, \
481 (int)VECTOR_P8_VECTOR))
482
483/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
484 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
485 compatible, so allow it as well, rather than changing all of the uses of the
486 macro. */
cacf1ca8 487#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
488 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
489 (int)VECTOR_ALTIVEC, \
490 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
491
492/* Describe whether to use VSX loads or Altivec loads. For now, just use the
493 same unit as the vector unit we are using, but we may want to migrate to
494 using VSX style loads even for types handled by altivec. */
495extern enum rs6000_vector rs6000_vector_mem[];
496
497#define VECTOR_MEM_NONE_P(MODE) \
498 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
499
500#define VECTOR_MEM_VSX_P(MODE) \
501 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
502
f62511da
MM
503#define VECTOR_MEM_P8_VECTOR_P(MODE) \
504 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
505
cacf1ca8
MM
506#define VECTOR_MEM_ALTIVEC_P(MODE) \
507 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
508
f62511da
MM
509#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
510 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
511 (int)VECTOR_VSX, \
512 (int)VECTOR_P8_VECTOR))
513
cacf1ca8 514#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
515 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
516 (int)VECTOR_ALTIVEC, \
517 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
518
519/* Return the alignment of a given vector type, which is set based on the
520 vector unit use. VSX for instance can load 32 or 64 bit aligned words
521 without problems, while Altivec requires 128-bit aligned vectors. */
522extern int rs6000_vector_align[];
523
524#define VECTOR_ALIGN(MODE) \
525 ((rs6000_vector_align[(MODE)] != 0) \
526 ? rs6000_vector_align[(MODE)] \
527 : (int)GET_MODE_BITSIZE ((MODE)))
528
6edc217d
BS
529/* Determine the element order to use for vector instructions. By
530 default we use big-endian element order when targeting big-endian,
531 and little-endian element order when targeting little-endian. For
532 programs being ported from BE Power to LE Power, it can sometimes
533 be useful to use big-endian element order when targeting little-endian.
534 This is set via -maltivec=be, for example. */
535#define VECTOR_ELT_ORDER_BIG \
536 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
537
117f16fb
MM
538/* Element number of the 64-bit value in a 128-bit vector that can be accessed
539 with scalar instructions. */
540#define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
541
dd551aa1
MM
542/* Element number of the 64-bit value in a 128-bit vector that can be accessed
543 with the ISA 3.0 MFVSRLD instructions. */
544#define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
545
025d9908
KH
546/* Alignment options for fields in structures for sub-targets following
547 AIX-like ABI.
548 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
549 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
550
551 Override the macro definitions when compiling libobjc to avoid undefined
552 reference to rs6000_alignment_flags due to library's use of GCC alignment
553 macros which use the macros below. */
f676971a 554
025d9908
KH
555#ifndef IN_TARGET_LIBS
556#define MASK_ALIGN_POWER 0x00000000
557#define MASK_ALIGN_NATURAL 0x00000001
558#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
559#else
560#define TARGET_ALIGN_NATURAL 0
561#endif
6fa3f289
ZW
562
563#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
602ea4d3 564#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289 565#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
cacf1ca8 566#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
6fa3f289 567
cacf1ca8 568#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
a3170dc6 569
7042fe5e
MM
570/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
571 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
572 XILINX. */
c3f8384f
MM
573#define TARGET_FCFID (TARGET_POWERPC64 \
574 || TARGET_PPC_GPOPT /* 970/power4 */ \
575 || TARGET_POPCNTB /* ISA 2.02 */ \
576 || TARGET_CMPB /* ISA 2.05 */ \
577 || TARGET_POPCNTD /* ISA 2.06 */ \
7042fe5e
MM
578 || TARGET_XILINX_FPU)
579
580#define TARGET_FCTIDZ TARGET_FCFID
581#define TARGET_STFIWX TARGET_PPC_GFXOPT
582#define TARGET_LFIWAX TARGET_CMPB
583#define TARGET_LFIWZX TARGET_POPCNTD
584#define TARGET_FCFIDS TARGET_POPCNTD
585#define TARGET_FCFIDU TARGET_POPCNTD
586#define TARGET_FCFIDUS TARGET_POPCNTD
587#define TARGET_FCTIDUZ TARGET_POPCNTD
588#define TARGET_FCTIWUZ TARGET_POPCNTD
0299bc72
MM
589#define TARGET_CTZ TARGET_MODULO
590#define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
dd551aa1 591#define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
7042fe5e 592
f62511da
MM
593#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
594#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
a16a872d 595#define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
dd551aa1
MM
596#define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
597 && TARGET_POWERPC64)
c5e74d9d 598#define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
6bd6f4f4 599 && TARGET_POWERPC64)
fba4b861 600
fba4b861
MM
601/* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
602#define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
603#define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
604
87b44b83
AS
605/* This wants to be set for p8 and newer. On p7, overlapping unaligned
606 loads are slow. */
607#define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
f62511da
MM
608
609/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
610 in power7, so conditionalize them on p8 features. TImode syncs need quad
611 memory support. */
b846c948
MM
612#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
613 || TARGET_QUAD_MEMORY_ATOMIC \
614 || TARGET_DIRECT_MOVE)
615
616#define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
f62511da 617
c6d5ff83
MM
618/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
619 to allocate the SDmode stack slot to get the value into the proper location
620 in the register. */
621#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
622
21316320
MM
623/* ISA 3.0 has new min/max functions that don't need fast math that are being
624 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
625 answers if the arguments are not in the normal range. */
626#define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
627 && (TARGET_P9_MINMAX || !flag_trapping_math))
628
629#define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
630 && (TARGET_P9_MINMAX || !flag_trapping_math))
631
4d967549
MM
632/* In switching from using target_flags to using rs6000_isa_flags, the options
633 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
634 OPTION_MASK_<xxx> back into MASK_<xxx>. */
635#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
636#define MASK_CMPB OPTION_MASK_CMPB
f62511da 637#define MASK_CRYPTO OPTION_MASK_CRYPTO
4d967549 638#define MASK_DFP OPTION_MASK_DFP
f62511da 639#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
4d967549
MM
640#define MASK_DLMZB OPTION_MASK_DLMZB
641#define MASK_EABI OPTION_MASK_EABI
bbd35101 642#define MASK_FLOAT128_KEYWORD OPTION_MASK_FLOAT128_KEYWORD
4d967549 643#define MASK_FPRND OPTION_MASK_FPRND
f62511da 644#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
4d967549 645#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
0258b6e4 646#define MASK_HTM OPTION_MASK_HTM
4d967549
MM
647#define MASK_ISEL OPTION_MASK_ISEL
648#define MASK_MFCRF OPTION_MASK_MFCRF
649#define MASK_MFPGPR OPTION_MASK_MFPGPR
650#define MASK_MULHW OPTION_MASK_MULHW
651#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
652#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
f62511da 653#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
8fa97501 654#define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
5a3a6a5e 655#define MASK_P9_MISC OPTION_MASK_P9_MISC
4d967549
MM
656#define MASK_POPCNTB OPTION_MASK_POPCNTB
657#define MASK_POPCNTD OPTION_MASK_POPCNTD
658#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
659#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
660#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
661#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
662#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
663#define MASK_STRING OPTION_MASK_STRING
664#define MASK_UPDATE OPTION_MASK_UPDATE
665#define MASK_VSX OPTION_MASK_VSX
666
667#ifndef IN_LIBGCC2
668#define MASK_POWERPC64 OPTION_MASK_POWERPC64
669#endif
670
671#ifdef TARGET_64BIT
672#define MASK_64BIT OPTION_MASK_64BIT
673#endif
674
4d967549
MM
675#ifdef TARGET_LITTLE_ENDIAN
676#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
677#endif
678
4d967549
MM
679#ifdef TARGET_REGNAMES
680#define MASK_REGNAMES OPTION_MASK_REGNAMES
681#endif
682
683#ifdef TARGET_PROTOTYPE
684#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
685#endif
686
4f45da44
KN
687#ifdef TARGET_MODULO
688#define RS6000_BTM_MODULO OPTION_MASK_MODULO
689#endif
690
691
7fa14a01
MM
692/* For power systems, we want to enable Altivec and VSX builtins even if the
693 user did not use -maltivec or -mvsx to allow the builtins to be used inside
694 of #pragma GCC target or the target attribute to change the code level for a
6ae036b3
SB
695 given system. The Paired builtins are only enabled if you configure the
696 compiler for those builtins, and those machines don't support altivec or
7fa14a01
MM
697 VSX. */
698
e075a6cc 699#define TARGET_EXTRA_BUILTINS (!TARGET_PAIRED_FLOAT \
7fa14a01 700 && ((TARGET_POWERPC64 \
c3f8384f 701 || TARGET_PPC_GPOPT /* 970/power4 */ \
7fa14a01
MM
702 || TARGET_POPCNTB /* ISA 2.02 */ \
703 || TARGET_CMPB /* ISA 2.05 */ \
704 || TARGET_POPCNTD /* ISA 2.06 */ \
705 || TARGET_ALTIVEC \
f93bc5b3
PB
706 || TARGET_VSX \
707 || TARGET_HARD_FLOAT)))
7fa14a01 708
a7c6c6d6
OH
709/* E500 cores only support plain "sync", not lwsync. */
710#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
711 || rs6000_cpu == PROCESSOR_PPC8548)
7fa14a01
MM
712
713
026c3cfd 714/* Whether SF/DF operations are supported by the normal floating point unit
0609bdf2 715 (or the vector/scalar unit). */
11d8d07e
SB
716#define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT)
717#define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
0609bdf2
MM
718
719/* Whether SF/DF operations are supported by any hardware. */
11d8d07e
SB
720#define TARGET_SF_INSN TARGET_SF_FPR
721#define TARGET_DF_INSN TARGET_DF_FPR
0609bdf2 722
92902797
MM
723/* Which machine supports the various reciprocal estimate instructions. */
724#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
11d8d07e 725 && TARGET_SINGLE_FLOAT)
92902797 726
11d8d07e 727#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
92902797
MM
728 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
729
730#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
11d8d07e 731 && TARGET_PPC_GFXOPT && TARGET_SINGLE_FLOAT)
92902797 732
11d8d07e 733#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
92902797
MM
734 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
735
0299bc72
MM
736/* Conditions to allow TOC fusion for loading/storing integers. */
737#define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
738 && TARGET_TOC_FUSION \
739 && (TARGET_CMODEL != CMODEL_SMALL) \
740 && TARGET_POWERPC64)
741
742/* Conditions to allow TOC fusion for loading/storing floating point. */
743#define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
744 && TARGET_TOC_FUSION \
745 && (TARGET_CMODEL != CMODEL_SMALL) \
746 && TARGET_POWERPC64 \
747 && TARGET_HARD_FLOAT \
0299bc72
MM
748 && TARGET_SINGLE_FLOAT \
749 && TARGET_DOUBLE_FLOAT)
750
6019c0fc
MM
751/* Macro to say whether we can do optimizations where we need to do parts of
752 the calculation in 64-bit GPRs and then is transfered to the vector
753 registers. Do not allow -maltivec=be for these optimizations, because it
754 adds to the complexity of the code. */
e0d32185
MM
755#define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
756 && TARGET_P8_VECTOR \
757 && TARGET_POWERPC64 \
6019c0fc 758 && (rs6000_altivec_element_order != 2))
e0d32185 759
92902797
MM
760/* Whether the various reciprocal divide/square root estimate instructions
761 exist, and whether we should automatically generate code for the instruction
762 by default. */
763#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
764#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
765#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
766#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
767
768extern unsigned char rs6000_recip_bits[];
769
770#define RS6000_RECIP_HAVE_RE_P(MODE) \
771 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
772
773#define RS6000_RECIP_AUTO_RE_P(MODE) \
774 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
775
776#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
777 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
778
779#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
780 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
781
c5387660
JM
782/* The default CPU for TARGET_OPTION_OVERRIDE. */
783#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
f045b2c9 784
a5c76ee6 785/* Target pragma. */
c58b209a
NB
786#define REGISTER_TARGET_PRAGMAS() do { \
787 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
fd438373 788 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
2fab365e 789 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
7fa14a01 790 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
a5c76ee6
ZW
791} while (0)
792
4c4eb375
GK
793/* Target #defines. */
794#define TARGET_CPU_CPP_BUILTINS() \
795 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
796
797/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
798 we're compiling for. Some configurations may need to override it. */
799#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
800 do \
801 { \
802 if (BYTES_BIG_ENDIAN) \
803 { \
804 builtin_define ("__BIG_ENDIAN__"); \
805 builtin_define ("_BIG_ENDIAN"); \
806 builtin_assert ("machine=bigendian"); \
807 } \
808 else \
809 { \
810 builtin_define ("__LITTLE_ENDIAN__"); \
811 builtin_define ("_LITTLE_ENDIAN"); \
812 builtin_assert ("machine=littleendian"); \
813 } \
814 } \
815 while (0)
f045b2c9 816\f
4c4eb375 817/* Target machine storage layout. */
f045b2c9 818
13d39dbc 819/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 820 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
821 the value is constrained to be within the bounds of the declared
822 type, but kept valid in the wider mode. The signedness of the
823 extension may differ from that of the type. */
824
39403d82
DE
825#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
826 if (GET_MODE_CLASS (MODE) == MODE_INT \
96922e4c 827 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
b78d48dd 828 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 829
f045b2c9 830/* Define this if most significant bit is lowest numbered
82e41834
KH
831 in instructions that operate on numbered bit-fields. */
832/* That is true on RS/6000. */
f045b2c9
RS
833#define BITS_BIG_ENDIAN 1
834
835/* Define this if most significant byte of a word is the lowest numbered. */
836/* That is true on RS/6000. */
837#define BYTES_BIG_ENDIAN 1
838
839/* Define this if most significant word of a multiword number is lowest
c81bebd7 840 numbered.
f045b2c9
RS
841
842 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 843 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
844#define WORDS_BIG_ENDIAN 1
845
50751417
AM
846/* This says that for the IBM long double the larger magnitude double
847 comes first. It's really a two element double array, and arrays
848 don't index differently between little- and big-endian. */
849#define LONG_DOUBLE_LARGE_FIRST 1
850
2e360ab3 851#define MAX_BITS_PER_WORD 64
f045b2c9
RS
852
853/* Width of a word, in units (bytes). */
c1aa3958 854#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
855#ifdef IN_LIBGCC2
856#define MIN_UNITS_PER_WORD UNITS_PER_WORD
857#else
ef0e53ce 858#define MIN_UNITS_PER_WORD 4
f34fc46e 859#endif
2e360ab3 860#define UNITS_PER_FP_WORD 8
0ac081f6 861#define UNITS_PER_ALTIVEC_WORD 16
cacf1ca8 862#define UNITS_PER_VSX_WORD 16
96038623 863#define UNITS_PER_PAIRED_WORD 8
f045b2c9 864
915f619f
JW
865/* Type used for ptrdiff_t, as a string used in a declaration. */
866#define PTRDIFF_TYPE "int"
867
058ef853
DE
868/* Type used for size_t, as a string used in a declaration. */
869#define SIZE_TYPE "long unsigned int"
870
f045b2c9
RS
871/* Type used for wchar_t, as a string used in a declaration. */
872#define WCHAR_TYPE "short unsigned int"
873
874/* Width of wchar_t in bits. */
875#define WCHAR_TYPE_SIZE 16
876
9e654916
RK
877/* A C expression for the size in bits of the type `short' on the
878 target machine. If you don't define this, the default is half a
879 word. (If this would be less than one storage unit, it is
880 rounded up to one unit.) */
881#define SHORT_TYPE_SIZE 16
882
883/* A C expression for the size in bits of the type `int' on the
884 target machine. If you don't define this, the default is one
885 word. */
19d2d16f 886#define INT_TYPE_SIZE 32
9e654916
RK
887
888/* A C expression for the size in bits of the type `long' on the
889 target machine. If you don't define this, the default is one
890 word. */
2f3e5814 891#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
892
893/* A C expression for the size in bits of the type `long long' on the
894 target machine. If you don't define this, the default is two
895 words. */
896#define LONG_LONG_TYPE_SIZE 64
897
9e654916
RK
898/* A C expression for the size in bits of the type `float' on the
899 target machine. If you don't define this, the default is one
900 word. */
901#define FLOAT_TYPE_SIZE 32
902
903/* A C expression for the size in bits of the type `double' on the
904 target machine. If you don't define this, the default is two
905 words. */
906#define DOUBLE_TYPE_SIZE 64
907
908/* A C expression for the size in bits of the type `long double' on
909 the target machine. If you don't define this, the default is two
910 words. */
6fa3f289 911#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 912
5b8f5865
DE
913/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
914#define WIDEST_HARDWARE_FP_SIZE 64
915
f045b2c9
RS
916/* Width in bits of a pointer.
917 See also the macro `Pmode' defined below. */
cacf1ca8
MM
918extern unsigned rs6000_pointer_size;
919#define POINTER_SIZE rs6000_pointer_size
f045b2c9
RS
920
921/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 922#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
923
924/* Boundary (in *bits*) on which stack pointer should be aligned. */
cacf1ca8
MM
925#define STACK_BOUNDARY \
926 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
927 ? 64 : 128)
f045b2c9
RS
928
929/* Allocation boundary (in *bits*) for the code of a function. */
930#define FUNCTION_BOUNDARY 32
931
932/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
933#define BIGGEST_ALIGNMENT 128
934
f045b2c9
RS
935/* Alignment of field after `int : 0' in a structure. */
936#define EMPTY_FIELD_BOUNDARY 32
937
938/* Every structure's size must be a multiple of this. */
939#define STRUCTURE_SIZE_BOUNDARY 8
940
43a88a8c 941/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
942#define PCC_BITFIELD_TYPE_MATTERS 1
943
69eff9da
AM
944enum data_align { align_abi, align_opt, align_both };
945
946/* A C expression to compute the alignment for a variables in the
947 local store. TYPE is the data type, and ALIGN is the alignment
948 that the object would ordinarily have. */
949#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
950 rs6000_data_alignment (TYPE, ALIGN, align_both)
951
952/* Make strings word-aligned so strcpy from constants will be faster. */
69ef87e2
AH
953#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
954 (TREE_CODE (EXP) == STRING_CST \
153fbec8 955 && (STRICT_ALIGNMENT || !optimize_size) \
69ef87e2
AH
956 && (ALIGN) < BITS_PER_WORD \
957 ? BITS_PER_WORD \
958 : (ALIGN))
f045b2c9 959
69eff9da
AM
960/* Make arrays of chars word-aligned for the same reasons. */
961#define DATA_ALIGNMENT(TYPE, ALIGN) \
962 rs6000_data_alignment (TYPE, ALIGN, align_opt)
963
e075a6cc 964/* Align vectors to 128 bits. */
69eff9da
AM
965#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
966 rs6000_data_alignment (TYPE, ALIGN, align_abi)
f045b2c9 967
a0ab749a 968/* Nonzero if move instructions will actually fail to work
f045b2c9 969 when given unaligned data. */
fdaff8ba 970#define STRICT_ALIGNMENT 0
f045b2c9
RS
971\f
972/* Standard register usage. */
973
974/* Number of actual hardware registers.
975 The hardware registers are assigned numbers for the compiler
976 from 0 to just below FIRST_PSEUDO_REGISTER.
977 All registers that the compiler knows about must be given numbers,
978 even those that are not normally considered general registers.
979
980 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
462f7901
SB
981 a count register, a link register, and 8 condition register fields,
982 which we view here as separate registers. AltiVec adds 32 vector
983 registers and a VRsave register.
f045b2c9
RS
984
985 In addition, the difference between the frame and argument pointers is
986 a function of the number of registers saved, so we need to have a
987 register for AP that will later be eliminated in favor of SP or FP.
802a0058 988 This is a normal register, but it is fixed.
f045b2c9 989
802a0058
MM
990 We also create a pseudo register for float/int conversions, that will
991 really represent the memory location used. It is represented here as
992 a register, in order to work around problems in allocating stack storage
7d5175e1 993 in inline functions.
802a0058 994
7d5175e1 995 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
7a5add18
PB
996 pointer, which is eventually eliminated in favor of SP or FP.
997
998 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
7d5175e1 999
346081bd 1000#define FIRST_PSEUDO_REGISTER 115
f045b2c9 1001
d6a7951f 1002/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 1003#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 1004
e075a6cc 1005/* The sfp register and 3 HTM registers
23742a9e
RAR
1006 aren't included in DWARF_FRAME_REGISTERS. */
1007#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
c19de7aa 1008
ed1cf8ff 1009/* Use standard DWARF numbering for DWARF debugging information. */
3d36d470 1010#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
ed1cf8ff 1011
93c9d1ba 1012/* Use gcc hard register numbering for eh_frame. */
3d36d470 1013#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 1014
ed1cf8ff
GK
1015/* Map register numbers held in the call frame info that gcc has
1016 collected using DWARF_FRAME_REGNUM to those that should be output in
3d36d470
UW
1017 .debug_frame and .eh_frame. */
1018#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1019 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
ed1cf8ff 1020
f045b2c9
RS
1021/* 1 for registers that have pervasive standard uses
1022 and are not available for the register allocator.
1023
5dead3e5
DJ
1024 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1025 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 1026
a127c4e5
RK
1027 On System V implementations, r13 is fixed and not available for use. */
1028
f045b2c9 1029#define FIXED_REGISTERS \
5dead3e5 1030 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
1031 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1032 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1033 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
36bd0c3e 1034 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
0ac081f6
AH
1035 /* AltiVec registers. */ \
1036 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1037 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1038 1, 1 \
346081bd 1039 , 1, 1, 1, 1 \
0ac081f6 1040}
f045b2c9
RS
1041
1042/* 1 for registers not available across function calls.
1043 These must include the FIXED_REGISTERS and also any
1044 registers that can be used without being saved.
1045 The latter must include the registers where values are returned
1046 and the register where structure-value addresses are passed.
1047 Aside from that, you can include as many other registers as you like. */
1048
1049#define CALL_USED_REGISTERS \
a127c4e5 1050 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
1051 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1052 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1053 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
1054 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1055 /* AltiVec registers. */ \
1056 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1057 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1058 1, 1 \
346081bd 1059 , 1, 1, 1, 1 \
0ac081f6
AH
1060}
1061
289e96b2
AH
1062/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1063 the entire set of `FIXED_REGISTERS' be included.
1064 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1065 This macro is optional. If not specified, it defaults to the value
1066 of `CALL_USED_REGISTERS'. */
f676971a 1067
289e96b2
AH
1068#define CALL_REALLY_USED_REGISTERS \
1069 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1070 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1071 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1072 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0b390d60 1073 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
289e96b2
AH
1074 /* AltiVec registers. */ \
1075 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1076 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1077 0, 0 \
346081bd 1078 , 0, 0, 0, 0 \
289e96b2 1079}
f045b2c9 1080
28bcfd4d 1081#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
9ebbca7d 1082
d62294f5 1083#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
b427dd7a
AM
1084#define FIRST_SAVED_FP_REGNO (14+32)
1085#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
d62294f5 1086
f045b2c9
RS
1087/* List the order in which to allocate registers. Each register must be
1088 listed once, even those in FIXED_REGISTERS.
1089
1090 We allocate in the following order:
1091 fp0 (not saved or used for anything)
1092 fp13 - fp2 (not saved; incoming fp arg registers)
1093 fp1 (not saved; return value)
9390387d 1094 fp31 - fp14 (saved; order given to save least number)
36bd0c3e
SB
1095 cr7, cr5 (not saved or special)
1096 cr6 (not saved, but used for vector operations)
5accd822 1097 cr1 (not saved, but used for FP operations)
f045b2c9 1098 cr0 (not saved, but used for arithmetic operations)
5accd822 1099 cr4, cr3, cr2 (saved)
f045b2c9 1100 r9 (not saved; best for TImode)
d44b26bd 1101 r10, r8-r4 (not saved; highest first for less conflict with params)
9390387d 1102 r3 (not saved; return value register)
d44b26bd
AM
1103 r11 (not saved; later alloc to help shrink-wrap)
1104 r0 (not saved; cannot be base reg)
f045b2c9
RS
1105 r31 - r13 (saved; order given to save least number)
1106 r12 (not saved; if used for DImode or DFmode would use r13)
f045b2c9
RS
1107 ctr (not saved; when we have the choice ctr is better)
1108 lr (saved)
36bd0c3e 1109 r1, r2, ap, ca (fixed)
9390387d
AM
1110 v0 - v1 (not saved or used for anything)
1111 v13 - v3 (not saved; incoming vector arg registers)
1112 v2 (not saved; incoming vector arg reg; return value)
1113 v19 - v14 (not saved or used for anything)
1114 v31 - v20 (saved; order given to save least number)
1115 vrsave, vscr (fixed)
7d5175e1 1116 sfp (fixed)
0258b6e4
PB
1117 tfhar (fixed)
1118 tfiar (fixed)
1119 texasr (fixed)
0ac081f6 1120*/
f676971a 1121
6b13641d
DJ
1122#if FIXED_R2 == 1
1123#define MAYBE_R2_AVAILABLE
1124#define MAYBE_R2_FIXED 2,
1125#else
1126#define MAYBE_R2_AVAILABLE 2,
1127#define MAYBE_R2_FIXED
1128#endif
f045b2c9 1129
d44b26bd
AM
1130#if FIXED_R13 == 1
1131#define EARLY_R12 12,
1132#define LATE_R12
1133#else
1134#define EARLY_R12
1135#define LATE_R12 12,
1136#endif
1137
9390387d
AM
1138#define REG_ALLOC_ORDER \
1139 {32, \
f62511da
MM
1140 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1141 /* not use fr14 which is a saved register. */ \
1142 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
9390387d
AM
1143 33, \
1144 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1145 50, 49, 48, 47, 46, \
36bd0c3e 1146 75, 73, 74, 69, 68, 72, 71, 70, \
d44b26bd
AM
1147 MAYBE_R2_AVAILABLE \
1148 9, 10, 8, 7, 6, 5, 4, \
1149 3, EARLY_R12 11, 0, \
9390387d 1150 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
d44b26bd 1151 18, 17, 16, 15, 14, 13, LATE_R12 \
462f7901 1152 66, 65, \
36bd0c3e 1153 1, MAYBE_R2_FIXED 67, 76, \
9390387d
AM
1154 /* AltiVec registers. */ \
1155 77, 78, \
1156 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1157 79, \
1158 96, 95, 94, 93, 92, 91, \
1159 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1160 109, 110, \
346081bd 1161 111, 112, 113, 114 \
0ac081f6 1162}
f045b2c9
RS
1163
1164/* True if register is floating-point. */
1165#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1166
1167/* True if register is a condition register. */
1de43f85 1168#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
f045b2c9 1169
815cdc52 1170/* True if register is a condition register, but not cr0. */
1de43f85 1171#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
815cdc52 1172
f045b2c9 1173/* True if register is an integer register. */
7d5175e1
JJ
1174#define INT_REGNO_P(N) \
1175 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 1176
96038623
DE
1177/* PAIRED SIMD registers are just the FPRs. */
1178#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1179
f6b5d695
SB
1180/* True if register is the CA register. */
1181#define CA_REGNO_P(N) ((N) == CA_REGNO)
802a0058 1182
0ac081f6
AH
1183/* True if register is an AltiVec register. */
1184#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1185
cacf1ca8
MM
1186/* True if register is a VSX register. */
1187#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1188
1189/* Alternate name for any vector register supporting floating point, no matter
1190 which instruction set(s) are available. */
1191#define VFLOAT_REGNO_P(N) \
1192 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1193
1194/* Alternate name for any vector register supporting integer, no matter which
1195 instruction set(s) are available. */
1196#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1197
1198/* Alternate name for any vector register supporting logical operations, no
dd7a40e1
MM
1199 matter which instruction set(s) are available. Allow GPRs as well as the
1200 vector registers. */
f62511da 1201#define VLOGICAL_REGNO_P(N) \
dd7a40e1
MM
1202 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1203 || (TARGET_VSX && FP_REGNO_P (N))) \
cacf1ca8 1204
79eefb0d 1205/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
5ec6aff2
MM
1206 enough space to account for vectors in FP regs. However, TFmode/TDmode
1207 should not use VSX instructions to do a caller save. */
dbcc9f08 1208#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
90b725f0
PB
1209 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1210 ? (MODE) \
1211 : TARGET_VSX \
1212 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1213 && FP_REGNO_P (REGNO) \
5ec6aff2 1214 ? V2DFmode \
f7c12ec4 1215 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
5ec6aff2 1216 ? DFmode \
f7c12ec4 1217 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
5ec6aff2 1218 ? DImode \
79eefb0d
PH
1219 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1220
cacf1ca8
MM
1221#define VSX_VECTOR_MODE(MODE) \
1222 ((MODE) == V4SFmode \
1223 || (MODE) == V2DFmode) \
1224
bdb60a10
MM
1225/* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1226 really a vector, but we want to treat it as a vector for moves, and
1227 such. */
1228
1229#define ALTIVEC_VECTOR_MODE(MODE) \
1230 ((MODE) == V16QImode \
1231 || (MODE) == V8HImode \
1232 || (MODE) == V4SFmode \
1233 || (MODE) == V4SImode \
1234 || FLOAT128_VECTOR_P (MODE))
0ac081f6 1235
dbcc9f08
MM
1236#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1237 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
a16a872d 1238 || (MODE) == V2DImode || (MODE) == V1TImode)
dbcc9f08 1239
96038623
DE
1240#define PAIRED_VECTOR_MODE(MODE) \
1241 ((MODE) == V2SFmode)
1242
c8ae788f
SB
1243/* Post-reload, we can't use any new AltiVec registers, as we already
1244 emitted the vrsave mask. */
1245
1246#define HARD_REGNO_RENAME_OK(SRC, DST) \
6fb5fa3c 1247 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
c8ae788f 1248
f045b2c9
RS
1249/* Specify the cost of a branch insn; roughly the number of extra insns that
1250 should be added to avoid a branch.
1251
ef457bda 1252 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1253 unscheduled conditional branch. */
1254
3a4fd356 1255#define BRANCH_COST(speed_p, predictable_p) 3
f045b2c9 1256
85e50b6b 1257/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 1258 performance for removing short circuiting from the logical ops. */
85e50b6b 1259
b8610a53 1260#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6 1261
f045b2c9
RS
1262/* Specify the registers used for certain standard purposes.
1263 The values of these macros are register numbers. */
1264
1265/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1266/* #define PC_REGNUM */
1267
1268/* Register to use for pushing function arguments. */
1269#define STACK_POINTER_REGNUM 1
1270
1271/* Base register for access to local variables of the function. */
7d5175e1
JJ
1272#define HARD_FRAME_POINTER_REGNUM 31
1273
1274/* Base register for access to local variables of the function. */
346081bd 1275#define FRAME_POINTER_REGNUM 111
f045b2c9 1276
f045b2c9
RS
1277/* Base register for access to arguments of the function. */
1278#define ARG_POINTER_REGNUM 67
1279
1280/* Place to put static chain when calling a function that requires it. */
1281#define STATIC_CHAIN_REGNUM 11
1282
26a2e6ae
PB
1283/* Base register for access to thread local storage variables. */
1284#define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1285
f045b2c9
RS
1286\f
1287/* Define the classes of registers for register constraints in the
1288 machine description. Also define ranges of constants.
1289
1290 One of the classes must always be named ALL_REGS and include all hard regs.
1291 If there is more than one class, another class must be named NO_REGS
1292 and contain no registers.
1293
1294 The name GENERAL_REGS must be the name of a class (or an alias for
1295 another name such as ALL_REGS). This is the class of registers
1296 that is allowed by "g" or "r" in a register constraint.
1297 Also, registers outside this class are allocated only when
1298 instructions express preferences for them.
1299
1300 The classes must be numbered in nondecreasing order; that is,
1301 a larger-numbered class must never be contained completely
1302 in a smaller-numbered class.
1303
1304 For any two classes, it is very desirable that there be another
1305 class that represents their union. */
c81bebd7 1306
cacf1ca8 1307/* The RS/6000 has three types of registers, fixed-point, floating-point, and
462f7901 1308 condition registers, plus three special registers, CTR, and the link
cacf1ca8
MM
1309 register. AltiVec adds a vector register class. VSX registers overlap the
1310 FPR registers and the Altivec registers.
f045b2c9
RS
1311
1312 However, r0 is special in that it cannot be used as a base register.
1313 So make a class for registers valid as base registers.
1314
1315 Also, cr0 is the only condition code register that can be used in
0d86f538 1316 arithmetic insns, so make a separate class for it. */
f045b2c9 1317
ebedb4dd
MM
1318enum reg_class
1319{
1320 NO_REGS,
ebedb4dd
MM
1321 BASE_REGS,
1322 GENERAL_REGS,
1323 FLOAT_REGS,
0ac081f6 1324 ALTIVEC_REGS,
8beb65e3 1325 VSX_REGS,
0ac081f6 1326 VRSAVE_REGS,
5f004351 1327 VSCR_REGS,
0258b6e4 1328 SPR_REGS,
ebedb4dd 1329 NON_SPECIAL_REGS,
ebedb4dd
MM
1330 LINK_REGS,
1331 CTR_REGS,
1332 LINK_OR_CTR_REGS,
1333 SPECIAL_REGS,
1334 SPEC_OR_GEN_REGS,
1335 CR0_REGS,
ebedb4dd
MM
1336 CR_REGS,
1337 NON_FLOAT_REGS,
f6b5d695 1338 CA_REGS,
ebedb4dd
MM
1339 ALL_REGS,
1340 LIM_REG_CLASSES
1341};
f045b2c9
RS
1342
1343#define N_REG_CLASSES (int) LIM_REG_CLASSES
1344
82e41834 1345/* Give names of register classes as strings for dump file. */
f045b2c9 1346
ebedb4dd
MM
1347#define REG_CLASS_NAMES \
1348{ \
1349 "NO_REGS", \
ebedb4dd
MM
1350 "BASE_REGS", \
1351 "GENERAL_REGS", \
1352 "FLOAT_REGS", \
0ac081f6 1353 "ALTIVEC_REGS", \
8beb65e3 1354 "VSX_REGS", \
0ac081f6 1355 "VRSAVE_REGS", \
5f004351 1356 "VSCR_REGS", \
0258b6e4 1357 "SPR_REGS", \
ebedb4dd 1358 "NON_SPECIAL_REGS", \
ebedb4dd
MM
1359 "LINK_REGS", \
1360 "CTR_REGS", \
1361 "LINK_OR_CTR_REGS", \
1362 "SPECIAL_REGS", \
1363 "SPEC_OR_GEN_REGS", \
1364 "CR0_REGS", \
ebedb4dd
MM
1365 "CR_REGS", \
1366 "NON_FLOAT_REGS", \
f6b5d695 1367 "CA_REGS", \
ebedb4dd
MM
1368 "ALL_REGS" \
1369}
f045b2c9
RS
1370
1371/* Define which registers fit in which classes.
1372 This is an initializer for a vector of HARD_REG_SET
1373 of length N_REG_CLASSES. */
1374
23742a9e
RAR
1375#define REG_CLASS_CONTENTS \
1376{ \
1377 /* NO_REGS. */ \
3e2bca2e 1378 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
23742a9e 1379 /* BASE_REGS. */ \
346081bd 1380 { 0xfffffffe, 0x00000000, 0x00000008, 0x00008000 }, \
23742a9e 1381 /* GENERAL_REGS. */ \
346081bd 1382 { 0xffffffff, 0x00000000, 0x00000008, 0x00008000 }, \
23742a9e 1383 /* FLOAT_REGS. */ \
3e2bca2e 1384 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
23742a9e 1385 /* ALTIVEC_REGS. */ \
3e2bca2e 1386 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, \
23742a9e 1387 /* VSX_REGS. */ \
3e2bca2e 1388 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, \
23742a9e 1389 /* VRSAVE_REGS. */ \
3e2bca2e 1390 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
23742a9e 1391 /* VSCR_REGS. */ \
3e2bca2e 1392 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, \
23742a9e 1393 /* SPR_REGS. */ \
346081bd 1394 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, \
23742a9e 1395 /* NON_SPECIAL_REGS. */ \
346081bd 1396 { 0xffffffff, 0xffffffff, 0x00000008, 0x00008000 }, \
23742a9e 1397 /* LINK_REGS. */ \
3e2bca2e 1398 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, \
23742a9e 1399 /* CTR_REGS. */ \
3e2bca2e 1400 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, \
23742a9e 1401 /* LINK_OR_CTR_REGS. */ \
3e2bca2e 1402 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, \
23742a9e 1403 /* SPECIAL_REGS. */ \
3e2bca2e 1404 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, \
23742a9e 1405 /* SPEC_OR_GEN_REGS. */ \
346081bd 1406 { 0xffffffff, 0x00000000, 0x0000000e, 0x0000a000 }, \
23742a9e 1407 /* CR0_REGS. */ \
3e2bca2e 1408 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, \
23742a9e 1409 /* CR_REGS. */ \
3e2bca2e 1410 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, \
23742a9e 1411 /* NON_FLOAT_REGS. */ \
346081bd 1412 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00008000 }, \
23742a9e 1413 /* CA_REGS. */ \
3e2bca2e 1414 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, \
23742a9e 1415 /* ALL_REGS. */ \
346081bd 1416 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0001ffff } \
ebedb4dd 1417}
f045b2c9
RS
1418
1419/* The same information, inverted:
1420 Return the class number of the smallest class containing
1421 reg number REGNO. This could be a conditional expression
1422 or could index an array. */
1423
cacf1ca8
MM
1424extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1425
cacf1ca8 1426#define REGNO_REG_CLASS(REGNO) \
e28c2052 1427 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
cacf1ca8
MM
1428 rs6000_regno_regclass[(REGNO)])
1429
a72c65c7
MM
1430/* Register classes for various constraints that are based on the target
1431 switches. */
1432enum r6000_reg_class_enum {
1433 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1434 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1435 RS6000_CONSTRAINT_v, /* Altivec registers */
1436 RS6000_CONSTRAINT_wa, /* Any VSX register */
d5906efc 1437 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
a72c65c7 1438 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
dd551aa1 1439 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
a72c65c7 1440 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
5e8586d7 1441 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
59f5868d
MM
1442 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1443 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1444 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1445 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
c6d5ff83 1446 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
f62511da 1447 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
4e8a3a35 1448 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
c477a667
MM
1449 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1450 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
f62511da 1451 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
a72c65c7 1452 RS6000_CONSTRAINT_ws, /* VSX register for DF */
c6d5ff83 1453 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
5e8586d7
MM
1454 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1455 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1456 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
c6d5ff83 1457 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
5e8586d7 1458 RS6000_CONSTRAINT_wy, /* VSX register for SF */
c6d5ff83 1459 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
99211352 1460 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
787c7a65
MM
1461 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1462 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1463 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1464 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
a72c65c7
MM
1465 RS6000_CONSTRAINT_MAX
1466};
1467
1468extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
f045b2c9
RS
1469
1470/* The class value for index registers, and the one for base regs. */
1471#define INDEX_REG_CLASS GENERAL_REGS
1472#define BASE_REG_CLASS BASE_REGS
1473
cacf1ca8
MM
1474/* Return whether a given register class can hold VSX objects. */
1475#define VSX_REG_CLASS_P(CLASS) \
1476 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1477
59f5868d
MM
1478/* Return whether a given register class targets general purpose registers. */
1479#define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1480
f045b2c9
RS
1481/* Given an rtx X being reloaded into a reg required to be
1482 in class CLASS, return the class of reg to actually use.
1483 In general this is just CLASS; but on some machines
c81bebd7 1484 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1485
1486 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1487 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1488
1489 We also don't want to reload integer values into floating-point
1490 registers if we can at all help it. In fact, this can
37409796 1491 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1492 into a FP register and discovers it doesn't have the memory location
1493 required.
1494
1495 ??? Would it be a good idea to have reload do the converse, that is
1496 try to reload floating modes into FP registers if possible?
1497 */
f045b2c9 1498
802a0058 1499#define PREFERRED_RELOAD_CLASS(X,CLASS) \
8beb65e3 1500 rs6000_preferred_reload_class_ptr (X, CLASS)
c81bebd7 1501
f045b2c9
RS
1502/* Return the register class of a scratch register needed to copy IN into
1503 or out of a register in CLASS in MODE. If it can be done directly,
1504 NO_REGS is returned. */
1505
1506#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
8beb65e3 1507 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
f045b2c9 1508
0ac081f6 1509/* If we are copying between FP or AltiVec registers and anything
44cd321e
PS
1510 else, we need a memory location. The exception is when we are
1511 targeting ppc64 and the move to/from fpr to gpr instructions
1512 are available.*/
1513
1514#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
8beb65e3 1515 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
7ea555a4 1516
01b1efaa
VM
1517/* Specify the mode to be used for memory when a secondary memory
1518 location is needed. For cpus that cannot load/store SDmode values
1519 from the 64-bit FP registers without using a full 64-bit
1520 load/store, we need a wider mode. */
1521#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1522 rs6000_secondary_memory_needed_mode (MODE)
1523
f045b2c9
RS
1524/* Return the maximum number of consecutive registers
1525 needed to represent mode MODE in a register of class CLASS.
1526
cacf1ca8
MM
1527 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1528 a single reg is enough for two words, unless we have VSX, where the FP
1529 registers can hold 128 bits. */
1530#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
580d3230 1531
ca0e79d9
AM
1532/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1533
1534#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
8beb65e3 1535 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
02188693 1536
f045b2c9
RS
1537/* Stack layout; function entry, exit and calling. */
1538
1539/* Define this if pushing a word on the stack
1540 makes the stack pointer a smaller address. */
62f9f30b 1541#define STACK_GROWS_DOWNWARD 1
f045b2c9 1542
327e5343
FJ
1543/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1544#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1545
a4d05547 1546/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1547 is at the high-address end of the local variables;
1548 that is, each additional local variable allocated
1549 goes at a more negative offset in the frame.
1550
1551 On the RS/6000, we grow upwards, from the area after the outgoing
1552 arguments. */
de5a5fa1
MP
1553#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1554 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
f045b2c9 1555
4697a36c 1556/* Size of the fixed area on the stack */
9ebbca7d 1557#define RS6000_SAVE_AREA \
b54214fe
UW
1558 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1559 << (TARGET_64BIT ? 1 : 0))
4697a36c 1560
b54214fe
UW
1561/* Stack offset for toc save slot. */
1562#define RS6000_TOC_SAVE_SLOT \
1563 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
b6c9286a 1564
4697a36c 1565/* Align an address */
4f59f9f2 1566#define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
4697a36c 1567
f045b2c9
RS
1568/* Offset within stack frame to start allocating local variables at.
1569 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1570 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1571 of the first local allocated.
f045b2c9
RS
1572
1573 On the RS/6000, the frame pointer is the same as the stack pointer,
1574 except for dynamic allocations. So we start after the fixed area and
a7790c71
DV
1575 outgoing parameter area.
1576
1577 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1578 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1579 sizes of the fixed area and the parameter area must be a multiple of
1580 STACK_BOUNDARY. */
f045b2c9 1581
802a0058 1582#define STARTING_FRAME_OFFSET \
7d5175e1
JJ
1583 (FRAME_GROWS_DOWNWARD \
1584 ? 0 \
a7790c71
DV
1585 : (cfun->calls_alloca \
1586 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1587 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1588 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1589 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1590 + RS6000_SAVE_AREA)))
802a0058
MM
1591
1592/* Offset from the stack pointer register to an item dynamically
1593 allocated on the stack, e.g., by `alloca'.
1594
1595 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1596 length of the outgoing arguments. The default is correct for most
a7790c71
DV
1597 machines. See `function.c' for details.
1598
1599 This value must be a multiple of STACK_BOUNDARY (hard coded in
1600 `emit-rtl.c'). */
802a0058 1601#define STACK_DYNAMIC_OFFSET(FUNDECL) \
a7790c71
DV
1602 RS6000_ALIGN (crtl->outgoing_args_size + STACK_POINTER_OFFSET, \
1603 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
f045b2c9
RS
1604
1605/* If we generate an insn to push BYTES bytes,
1606 this says how many the stack pointer really advances by.
1607 On RS/6000, don't define this because there are no push insns. */
1608/* #define PUSH_ROUNDING(BYTES) */
1609
1610/* Offset of first parameter from the argument pointer register value.
1611 On the RS/6000, we define the argument pointer to the start of the fixed
1612 area. */
4697a36c 1613#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1614
62153b61
JM
1615/* Offset from the argument pointer register value to the top of
1616 stack. This is different from FIRST_PARM_OFFSET because of the
1617 register save area. */
1618#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1619
f045b2c9
RS
1620/* Define this if stack space is still allocated for a parameter passed
1621 in a register. The value is the number of bytes allocated to this
1622 area. */
ddbb449f
AM
1623#define REG_PARM_STACK_SPACE(FNDECL) \
1624 rs6000_reg_parm_stack_space ((FNDECL), false)
1625
1626/* Define this macro if space guaranteed when compiling a function body
1627 is different to space required when making a call, a situation that
1628 can arise with K&R style function definitions. */
1629#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1630 rs6000_reg_parm_stack_space ((FNDECL), true)
f045b2c9
RS
1631
1632/* Define this if the above stack space is to be considered part of the
1633 space allocated by the caller. */
81464b2c 1634#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
f045b2c9
RS
1635
1636/* This is the difference between the logical top of stack and the actual sp.
1637
82e41834 1638 For the RS/6000, sp points past the fixed area. */
4697a36c 1639#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1640
1641/* Define this if the maximum size of all the outgoing args is to be
1642 accumulated and pushed during the prologue. The amount can be
38173d38 1643 found in the variable crtl->outgoing_args_size. */
f73ad30e 1644#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9 1645
f045b2c9
RS
1646/* Define how to find the value returned by a library function
1647 assuming the value has mode MODE. */
1648
ded9bf77 1649#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1650
6fa3f289
ZW
1651/* DRAFT_V4_STRUCT_RET defaults off. */
1652#define DRAFT_V4_STRUCT_RET 0
f607bc57 1653
bd5bd7ac 1654/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1655#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1656
a260abc9 1657/* Mode of stack savearea.
dfdfa60f
DE
1658 FUNCTION is VOIDmode because calling convention maintains SP.
1659 BLOCK needs Pmode for SP.
a260abc9
DE
1660 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1661#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f 1662 (LEVEL == SAVE_FUNCTION ? VOIDmode \
c6d5ff83 1663 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
a260abc9 1664
4697a36c
MM
1665/* Minimum and maximum general purpose registers used to hold arguments. */
1666#define GP_ARG_MIN_REG 3
1667#define GP_ARG_MAX_REG 10
1668#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1669
1670/* Minimum and maximum floating point registers used to hold arguments. */
1671#define FP_ARG_MIN_REG 33
7509c759
MM
1672#define FP_ARG_AIX_MAX_REG 45
1673#define FP_ARG_V4_MAX_REG 40
008e32c0
UW
1674#define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1675 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
4697a36c
MM
1676#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1677
0ac081f6
AH
1678/* Minimum and maximum AltiVec registers used to hold arguments. */
1679#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1680#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1681#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1682
b54214fe
UW
1683/* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1684#define AGGR_ARG_NUM_REG 8
1685
4697a36c
MM
1686/* Return registers */
1687#define GP_ARG_RETURN GP_ARG_MIN_REG
1688#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1689#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
b54214fe
UW
1690#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1691 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4304ccfd
MM
1692#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1693 ? (ALTIVEC_ARG_RETURN \
08213983 1694 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
b54214fe 1695 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4697a36c 1696
7509c759 1697/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1698#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1699/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1700#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1701#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1702#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1703#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1704
f57fe068
AM
1705/* We don't have prologue and epilogue functions to save/restore
1706 everything for most ABIs. */
1707#define WORLD_SAVE_P(INFO) 0
1708
f045b2c9
RS
1709/* 1 if N is a possible register number for a function value
1710 as seen by the caller.
1711
0ac081f6 1712 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1713#define FUNCTION_VALUE_REGNO_P(N) \
1714 ((N) == GP_ARG_RETURN \
202687fb 1715 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
11d8d07e 1716 && TARGET_HARD_FLOAT) \
202687fb 1717 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
b54214fe 1718 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1719
1720/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1721 On RS/6000, these are r3-r10 and fp1-fp13.
1722 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1723#define FUNCTION_ARG_REGNO_P(N) \
202687fb
MM
1724 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1725 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
44688022 1726 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
202687fb 1727 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
11d8d07e 1728 && TARGET_HARD_FLOAT))
f045b2c9
RS
1729\f
1730/* Define a data type for recording info about an argument list
1731 during the scan of that argument list. This data type should
1732 hold all necessary information about the function itself
1733 and about the args processed so far, enough to enable macros
1734 such as FUNCTION_ARG to determine where the next arg should go.
1735
1736 On the RS/6000, this is a structure. The first element is the number of
1737 total argument words, the second is used to store the next
1738 floating-point register number, and the third says how many more args we
4697a36c
MM
1739 have prototype types for.
1740
4cc833b7 1741 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1742 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1743 register, and `words' is the number of words used on the stack.
1744
bd227acc 1745 The varargs/stdarg support requires that this structure's size
4cc833b7 1746 be a multiple of sizeof(int). */
4697a36c
MM
1747
1748typedef struct rs6000_args
1749{
4cc833b7 1750 int words; /* # words used for passing GP registers */
6a4cee5f 1751 int fregno; /* next available FP register */
0ac081f6 1752 int vregno; /* next available AltiVec register */
6a4cee5f 1753 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1754 int prototype; /* Whether a prototype was defined */
a6c9bed4 1755 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1756 int call_cookie; /* Do special things for this call */
4cc833b7 1757 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1758 int intoffset; /* running offset in struct (darwin64) */
1759 int use_stack; /* any part of struct on stack (darwin64) */
a9ab25e2
IS
1760 int floats_in_gpr; /* count of SFmode floats taking up
1761 GPR space (darwin64) */
0b5383eb 1762 int named; /* false for varargs params */
617718f7 1763 int escapes; /* if function visible outside tu */
bdb60a10 1764 int libcall; /* If this is a compiler generated call. */
4697a36c 1765} CUMULATIVE_ARGS;
f045b2c9 1766
f045b2c9
RS
1767/* Initialize a variable CUM of type CUMULATIVE_ARGS
1768 for a call to a function whose data type is FNTYPE.
1769 For a library call, FNTYPE is 0. */
1770
617718f7
AM
1771#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1772 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1773 N_NAMED_ARGS, FNDECL, VOIDmode)
f045b2c9
RS
1774
1775/* Similar, but when scanning the definition of a procedure. We always
1776 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1777
0f6937fe 1778#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617718f7
AM
1779 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1780 1000, current_function_decl, VOIDmode)
b9599e46
FS
1781
1782/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1783
1784#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
617718f7
AM
1785 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1786 0, NULL_TREE, MODE)
f045b2c9 1787
6e985040 1788#define PAD_VARARGS_DOWN \
76b0cbf8 1789 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
2a55fd42 1790
f045b2c9 1791/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1792 for profiling a function entry. */
f045b2c9
RS
1793
1794#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1795 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1796
1797/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1798 the stack pointer does not matter. No definition is equivalent to
1799 always zero.
1800
a0ab749a 1801 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1802 its backpointer, which we maintain. */
1803#define EXIT_IGNORE_STACK 1
1804
a701949a
FS
1805/* Define this macro as a C expression that is nonzero for registers
1806 that are used by the epilogue or the return' pattern. The stack
1807 and frame pointer registers are already be assumed to be used as
1808 needed. */
1809
83720594 1810#define EPILOGUE_USES(REGNO) \
1de43f85 1811 ((reload_completed && (REGNO) == LR_REGNO) \
b1765bde 1812 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
cacf1ca8 1813 || (crtl->calls_eh_return \
3553b09d 1814 && TARGET_AIX \
ff3867ae 1815 && (REGNO) == 2))
2bfcf297 1816
f045b2c9 1817\f
f045b2c9
RS
1818/* Length in units of the trampoline for entering a nested function. */
1819
b6c9286a 1820#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9 1821\f
f33985c6 1822/* Definitions for __builtin_return_address and __builtin_frame_address.
893fc0a0 1823 __builtin_return_address (0) should give link register (LR_REGNO), enable
82e41834 1824 this. */
f33985c6
MS
1825/* This should be uncommented, so that the link register is used, but
1826 currently this would result in unmatched insns and spilling fixed
1827 registers so we'll leave it for another day. When these problems are
1828 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1829 (mrs) */
1830/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1831
b6c9286a
MM
1832/* Number of bytes into the frame return addresses can be found. See
1833 rs6000_stack_info in rs6000.c for more information on how the different
1834 abi's store the return address. */
008e32c0
UW
1835#define RETURN_ADDRESS_OFFSET \
1836 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
f09d4c33 1837
f33985c6
MS
1838/* The current return address is in link register (65). The return address
1839 of anything farther back is accessed normally at an offset of 8 from the
1840 frame pointer. */
71f123ca
FS
1841#define RETURN_ADDR_RTX(COUNT, FRAME) \
1842 (rs6000_return_addr (COUNT, FRAME))
1843
f33985c6 1844\f
f045b2c9
RS
1845/* Definitions for register eliminations.
1846
1847 We have two registers that can be eliminated on the RS/6000. First, the
1848 frame pointer register can often be eliminated in favor of the stack
1849 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1850 eliminated; it is replaced with either the stack or frame pointer.
1851
1852 In addition, we use the elimination mechanism to see if r30 is needed
1853 Initially we assume that it isn't. If it is, we spill it. This is done
1854 by making it an eliminable register. We replace it with itself so that
1855 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1856
1857/* This is an array of structures. Each structure initializes one pair
1858 of eliminable registers. The "from" register number is given first,
1859 followed by "to". Eliminations of the same "from" register are listed
1860 in order of preference. */
7d5175e1
JJ
1861#define ELIMINABLE_REGS \
1862{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1863 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1864 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1865 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1866 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 1867 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9 1868
f045b2c9
RS
1869/* Define the offset between two registers, one to be eliminated, and the other
1870 its replacement, at the start of a routine. */
d1d0c603
JJ
1871#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1872 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1873\f
1874/* Addressing modes, and classification of registers for them. */
1875
940da324
JL
1876#define HAVE_PRE_DECREMENT 1
1877#define HAVE_PRE_INCREMENT 1
6fb5fa3c
DB
1878#define HAVE_PRE_MODIFY_DISP 1
1879#define HAVE_PRE_MODIFY_REG 1
f045b2c9
RS
1880
1881/* Macros to check register numbers against specific register classes. */
1882
1883/* These assume that REGNO is a hard or pseudo reg number.
1884 They give nonzero only if REGNO is a hard reg of the suitable class
1885 or a pseudo reg currently allocated to a suitable hard reg.
1886 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1887 has been allocated, which happens in reginfo.c during register
1888 allocation. */
f045b2c9
RS
1889
1890#define REGNO_OK_FOR_INDEX_P(REGNO) \
1891((REGNO) < FIRST_PSEUDO_REGISTER \
1892 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 1893 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1894 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
1895 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1896 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
1897
1898#define REGNO_OK_FOR_BASE_P(REGNO) \
1899((REGNO) < FIRST_PSEUDO_REGISTER \
1900 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 1901 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1902 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
1903 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1904 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
c6c3dba9
PB
1905
1906/* Nonzero if X is a hard reg that can be used as an index
1907 or if it is a pseudo reg in the non-strict case. */
1908#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1909 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1910 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1911
1912/* Nonzero if X is a hard reg that can be used as a base reg
1913 or if it is a pseudo reg in the non-strict case. */
1914#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1915 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1916 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1917
f045b2c9
RS
1918\f
1919/* Maximum number of registers that can appear in a valid memory address. */
1920
1921#define MAX_REGS_PER_ADDRESS 2
1922
1923/* Recognize any constant value that is a valid address. */
1924
6eff269e
BK
1925#define CONSTANT_ADDRESS_P(X) \
1926 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1927 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1928 || GET_CODE (X) == HIGH)
f045b2c9 1929
48d72335 1930#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3 1931#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
76492753
PB
1932 && EASY_VECTOR_15((n) >> 1) \
1933 && ((n) & 1) == 0)
48d72335 1934
29e6733c 1935#define EASY_VECTOR_MSB(n,mode) \
683be46f 1936 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
29e6733c
MM
1937 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1938
f045b2c9 1939\f
a260abc9
DE
1940/* Try a machine-dependent way of reloading an illegitimate address
1941 operand. If we find one, push the reload and jump to WIN. This
1942 macro is used in only one place: `find_reloads_address' in reload.c.
1943
f676971a 1944 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 1945 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 1946
a9098fd0
GK
1947#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1948do { \
24ea750e 1949 int win; \
8beb65e3 1950 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
24ea750e
DJ
1951 (int)(TYPE), (IND_LEVELS), &win); \
1952 if ( win ) \
1953 goto WIN; \
a260abc9
DE
1954} while (0)
1955
944258eb 1956#define FIND_BASE_TERM rs6000_find_base_term
766a866c
MM
1957\f
1958/* The register number of the register used to address a table of
1959 static data addresses in memory. In some cases this register is
1960 defined by a processor's "application binary interface" (ABI).
1961 When this macro is defined, RTL is generated for this register
1962 once, as with the stack pointer and frame pointer registers. If
1963 this macro is not defined, it is up to the machine-dependent files
1964 to allocate such a register (if necessary). */
1965
1db02437 1966#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
24f77f59
AM
1967#define PIC_OFFSET_TABLE_REGNUM \
1968 (TARGET_TOC ? TOC_REGISTER \
1969 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1970 : INVALID_REGNUM)
766a866c 1971
97b23853 1972#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 1973
766a866c
MM
1974/* Define this macro if the register defined by
1975 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 1976 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
1977
1978/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1979
766a866c
MM
1980/* A C expression that is nonzero if X is a legitimate immediate
1981 operand on the target machine when generating position independent
1982 code. You can assume that X satisfies `CONSTANT_P', so you need
1983 not check this. You can also assume FLAG_PIC is true, so you need
1984 not check it either. You need not define this macro if all
1985 constants (including `SYMBOL_REF') can be immediate operands when
1986 generating position independent code. */
1987
1988/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9 1989\f
f045b2c9
RS
1990/* Specify the machine mode that this machine uses
1991 for the index in the tablejump instruction. */
e1565e65 1992#define CASE_VECTOR_MODE SImode
f045b2c9 1993
18543a22
ILT
1994/* Define as C expression which evaluates to nonzero if the tablejump
1995 instruction expects the table to contain offsets from the address of the
1996 table.
82e41834 1997 Do not define this if the table should contain absolute addresses. */
18543a22 1998#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 1999
f045b2c9
RS
2000/* Define this as 1 if `char' should by default be signed; else as 0. */
2001#define DEFAULT_SIGNED_CHAR 0
2002
c1618c0c
DE
2003/* An integer expression for the size in bits of the largest integer machine
2004 mode that should actually be used. */
2005
2006/* Allow pairs of registers to be used, which is the intent of the default. */
2007#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2008
f045b2c9
RS
2009/* Max number of bytes we can move from memory to memory
2010 in one reasonably fast instruction. */
2f3e5814 2011#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2012#define MAX_MOVE_MAX 8
f045b2c9
RS
2013
2014/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2015 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2016 is undesirable. */
2017#define SLOW_BYTE_ACCESS 1
2018
9a63901f
RK
2019/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2020 will either zero-extend or sign-extend. The value of this macro should
2021 be the code that says which one of the two operations is implicitly
f822d252 2022 done, UNKNOWN if none. */
9a63901f 2023#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2024
2025/* Define if loading short immediate values into registers sign extends. */
58f2ae18 2026#define SHORT_IMMEDIATES_SIGN_EXTEND 1
fdaff8ba 2027\f
f045b2c9
RS
2028/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2029 is done just by pretending it is already truncated. */
2030#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2031
94993909 2032/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122 2033#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
bb0f9c02 2034 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
d865b122 2035
0299bc72 2036/* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
bb0f9c02
SB
2037 zero. The hardware instructions added in Power9 and the sequences using
2038 popcount return 32 or 64. */
0299bc72 2039#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
bb0f9c02
SB
2040 (TARGET_CTZ || TARGET_POPCNTD \
2041 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
2042 : ((VALUE) = -1, 2))
94993909 2043
f045b2c9
RS
2044/* Specify the machine mode that pointers have.
2045 After generation of rtl, the compiler makes no further distinction
2046 between pointers and any other objects of this machine mode. */
501623d4
RS
2047extern scalar_int_mode rs6000_pmode;
2048#define Pmode rs6000_pmode
f045b2c9 2049
a3c9585f 2050/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
2051#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2052
f045b2c9 2053/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2054 Doesn't matter on RS/6000. */
5b71a4e7 2055#define FUNCTION_MODE SImode
f045b2c9
RS
2056
2057/* Define this if addresses of constant functions
2058 shouldn't be put through pseudo regs where they can be cse'd.
2059 Desirable on machines where ordinary constants are expensive
2060 but a CALL with constant address is cheap. */
1e8552c2 2061#define NO_FUNCTION_CSE 1
f045b2c9 2062
d969caf8 2063/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2064 few bits.
2065
2066 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2067 have been dropped from the PowerPC architecture. */
c28a7c24 2068#define SHIFT_COUNT_TRUNCATED 0
f045b2c9 2069
f045b2c9
RS
2070/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2071 should be adjusted to reflect any required changes. This macro is used when
2072 there is some systematic length adjustment required that would be difficult
2073 to express in the length attribute. */
2074
2075/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2076
39a10a29
GK
2077/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2078 COMPARE, return the mode to be used for the comparison. For
2079 floating-point, CCFPmode should be used. CCUNSmode should be used
2080 for unsigned comparisons. CCEQmode should be used when we are
2081 doing an inequality comparison on the result of a
2082 comparison. CCmode should be used in all other cases. */
c5defebb 2083
b565a316 2084#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 2085 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 2086 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 2087 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 2088 ? CCEQmode : CCmode))
f045b2c9 2089
b39358e1
GK
2090/* Can the condition code MODE be safely reversed? This is safe in
2091 all cases on this port, because at present it doesn't use the
2092 trapping FP comparisons (fcmpo). */
2093#define REVERSIBLE_CC_MODE(MODE) 1
2094
2095/* Given a condition code and a mode, return the inverse condition. */
2096#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2097
f045b2c9
RS
2098\f
2099/* Control the assembler format that we output. */
2100
1b279f39
DE
2101/* A C string constant describing how to begin a comment in the target
2102 assembler language. The compiler assumes that the comment will end at
2103 the end of the line. */
2104#define ASM_COMMENT_START " #"
6b67933e 2105
38c1f2d7
MM
2106/* Flag to say the TOC is initialized */
2107extern int toc_initialized;
2108
f045b2c9
RS
2109/* Macro to output a special constant pool entry. Go to WIN if we output
2110 it. Otherwise, it is written the usual way.
2111
2112 On the RS/6000, toc entries are handled this way. */
2113
a9098fd0
GK
2114#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2115{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2116 { \
2117 output_toc (FILE, X, LABELNO, MODE); \
2118 goto WIN; \
2119 } \
f045b2c9
RS
2120}
2121
ebd97b96
DE
2122#ifdef HAVE_GAS_WEAK
2123#define RS6000_WEAK 1
2124#else
2125#define RS6000_WEAK 0
2126#endif
290ad355 2127
79c4e63f
AM
2128#if RS6000_WEAK
2129/* Used in lieu of ASM_WEAKEN_LABEL. */
8d91472f
DE
2130#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2131 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
79c4e63f
AM
2132#endif
2133
ff2d10c1
AO
2134#if HAVE_GAS_WEAKREF
2135#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2136 do \
2137 { \
2138 fputs ("\t.weakref\t", (FILE)); \
2139 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2140 fputs (", ", (FILE)); \
2141 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2142 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2143 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2144 { \
2145 fputs ("\n\t.weakref\t.", (FILE)); \
2146 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2147 fputs (", .", (FILE)); \
2148 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2149 } \
2150 fputc ('\n', (FILE)); \
2151 } while (0)
2152#endif
2153
79c4e63f
AM
2154/* This implements the `alias' attribute. */
2155#undef ASM_OUTPUT_DEF_FROM_DECLS
2156#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2157 do \
2158 { \
2159 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2160 const char *name = IDENTIFIER_POINTER (TARGET); \
2161 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2162 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2163 { \
2164 if (TREE_PUBLIC (DECL)) \
2165 { \
2166 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2167 { \
2168 fputs ("\t.globl\t.", FILE); \
cbaaba19 2169 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2170 putc ('\n', FILE); \
2171 } \
2172 } \
2173 else if (TARGET_XCOFF) \
2174 { \
c167bc5b
DE
2175 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2176 { \
2177 fputs ("\t.lglobl\t.", FILE); \
2178 RS6000_OUTPUT_BASENAME (FILE, alias); \
2179 putc ('\n', FILE); \
2180 fputs ("\t.lglobl\t", FILE); \
2181 RS6000_OUTPUT_BASENAME (FILE, alias); \
2182 putc ('\n', FILE); \
2183 } \
79c4e63f
AM
2184 } \
2185 fputs ("\t.set\t.", FILE); \
cbaaba19 2186 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2187 fputs (",.", FILE); \
cbaaba19 2188 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2189 fputc ('\n', FILE); \
2190 } \
2191 ASM_OUTPUT_DEF (FILE, alias, name); \
2192 } \
2193 while (0)
290ad355 2194
1bc7c5b6
ZW
2195#define TARGET_ASM_FILE_START rs6000_file_start
2196
f045b2c9
RS
2197/* Output to assembler file text saying following lines
2198 may contain character constants, extra white space, comments, etc. */
2199
2200#define ASM_APP_ON ""
2201
2202/* Output to assembler file text saying following lines
2203 no longer contain unusual constructs. */
2204
2205#define ASM_APP_OFF ""
2206
f045b2c9
RS
2207/* How to refer to registers in assembler output.
2208 This sequence is indexed by compiler's hard-register-number (see above). */
2209
82e41834 2210extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2211
2212#define REGISTER_NAMES \
2213{ \
2214 &rs6000_reg_names[ 0][0], /* r0 */ \
2215 &rs6000_reg_names[ 1][0], /* r1 */ \
2216 &rs6000_reg_names[ 2][0], /* r2 */ \
2217 &rs6000_reg_names[ 3][0], /* r3 */ \
2218 &rs6000_reg_names[ 4][0], /* r4 */ \
2219 &rs6000_reg_names[ 5][0], /* r5 */ \
2220 &rs6000_reg_names[ 6][0], /* r6 */ \
2221 &rs6000_reg_names[ 7][0], /* r7 */ \
2222 &rs6000_reg_names[ 8][0], /* r8 */ \
2223 &rs6000_reg_names[ 9][0], /* r9 */ \
2224 &rs6000_reg_names[10][0], /* r10 */ \
2225 &rs6000_reg_names[11][0], /* r11 */ \
2226 &rs6000_reg_names[12][0], /* r12 */ \
2227 &rs6000_reg_names[13][0], /* r13 */ \
2228 &rs6000_reg_names[14][0], /* r14 */ \
2229 &rs6000_reg_names[15][0], /* r15 */ \
2230 &rs6000_reg_names[16][0], /* r16 */ \
2231 &rs6000_reg_names[17][0], /* r17 */ \
2232 &rs6000_reg_names[18][0], /* r18 */ \
2233 &rs6000_reg_names[19][0], /* r19 */ \
2234 &rs6000_reg_names[20][0], /* r20 */ \
2235 &rs6000_reg_names[21][0], /* r21 */ \
2236 &rs6000_reg_names[22][0], /* r22 */ \
2237 &rs6000_reg_names[23][0], /* r23 */ \
2238 &rs6000_reg_names[24][0], /* r24 */ \
2239 &rs6000_reg_names[25][0], /* r25 */ \
2240 &rs6000_reg_names[26][0], /* r26 */ \
2241 &rs6000_reg_names[27][0], /* r27 */ \
2242 &rs6000_reg_names[28][0], /* r28 */ \
2243 &rs6000_reg_names[29][0], /* r29 */ \
2244 &rs6000_reg_names[30][0], /* r30 */ \
2245 &rs6000_reg_names[31][0], /* r31 */ \
2246 \
2247 &rs6000_reg_names[32][0], /* fr0 */ \
2248 &rs6000_reg_names[33][0], /* fr1 */ \
2249 &rs6000_reg_names[34][0], /* fr2 */ \
2250 &rs6000_reg_names[35][0], /* fr3 */ \
2251 &rs6000_reg_names[36][0], /* fr4 */ \
2252 &rs6000_reg_names[37][0], /* fr5 */ \
2253 &rs6000_reg_names[38][0], /* fr6 */ \
2254 &rs6000_reg_names[39][0], /* fr7 */ \
2255 &rs6000_reg_names[40][0], /* fr8 */ \
2256 &rs6000_reg_names[41][0], /* fr9 */ \
2257 &rs6000_reg_names[42][0], /* fr10 */ \
2258 &rs6000_reg_names[43][0], /* fr11 */ \
2259 &rs6000_reg_names[44][0], /* fr12 */ \
2260 &rs6000_reg_names[45][0], /* fr13 */ \
2261 &rs6000_reg_names[46][0], /* fr14 */ \
2262 &rs6000_reg_names[47][0], /* fr15 */ \
2263 &rs6000_reg_names[48][0], /* fr16 */ \
2264 &rs6000_reg_names[49][0], /* fr17 */ \
2265 &rs6000_reg_names[50][0], /* fr18 */ \
2266 &rs6000_reg_names[51][0], /* fr19 */ \
2267 &rs6000_reg_names[52][0], /* fr20 */ \
2268 &rs6000_reg_names[53][0], /* fr21 */ \
2269 &rs6000_reg_names[54][0], /* fr22 */ \
2270 &rs6000_reg_names[55][0], /* fr23 */ \
2271 &rs6000_reg_names[56][0], /* fr24 */ \
2272 &rs6000_reg_names[57][0], /* fr25 */ \
2273 &rs6000_reg_names[58][0], /* fr26 */ \
2274 &rs6000_reg_names[59][0], /* fr27 */ \
2275 &rs6000_reg_names[60][0], /* fr28 */ \
2276 &rs6000_reg_names[61][0], /* fr29 */ \
2277 &rs6000_reg_names[62][0], /* fr30 */ \
2278 &rs6000_reg_names[63][0], /* fr31 */ \
2279 \
462f7901 2280 &rs6000_reg_names[64][0], /* was mq */ \
c81bebd7
MM
2281 &rs6000_reg_names[65][0], /* lr */ \
2282 &rs6000_reg_names[66][0], /* ctr */ \
2283 &rs6000_reg_names[67][0], /* ap */ \
2284 \
2285 &rs6000_reg_names[68][0], /* cr0 */ \
2286 &rs6000_reg_names[69][0], /* cr1 */ \
2287 &rs6000_reg_names[70][0], /* cr2 */ \
2288 &rs6000_reg_names[71][0], /* cr3 */ \
2289 &rs6000_reg_names[72][0], /* cr4 */ \
2290 &rs6000_reg_names[73][0], /* cr5 */ \
2291 &rs6000_reg_names[74][0], /* cr6 */ \
2292 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2293 \
f6b5d695 2294 &rs6000_reg_names[76][0], /* ca */ \
0ac081f6
AH
2295 \
2296 &rs6000_reg_names[77][0], /* v0 */ \
2297 &rs6000_reg_names[78][0], /* v1 */ \
2298 &rs6000_reg_names[79][0], /* v2 */ \
2299 &rs6000_reg_names[80][0], /* v3 */ \
2300 &rs6000_reg_names[81][0], /* v4 */ \
2301 &rs6000_reg_names[82][0], /* v5 */ \
2302 &rs6000_reg_names[83][0], /* v6 */ \
2303 &rs6000_reg_names[84][0], /* v7 */ \
2304 &rs6000_reg_names[85][0], /* v8 */ \
2305 &rs6000_reg_names[86][0], /* v9 */ \
2306 &rs6000_reg_names[87][0], /* v10 */ \
2307 &rs6000_reg_names[88][0], /* v11 */ \
2308 &rs6000_reg_names[89][0], /* v12 */ \
2309 &rs6000_reg_names[90][0], /* v13 */ \
2310 &rs6000_reg_names[91][0], /* v14 */ \
2311 &rs6000_reg_names[92][0], /* v15 */ \
2312 &rs6000_reg_names[93][0], /* v16 */ \
2313 &rs6000_reg_names[94][0], /* v17 */ \
2314 &rs6000_reg_names[95][0], /* v18 */ \
2315 &rs6000_reg_names[96][0], /* v19 */ \
2316 &rs6000_reg_names[97][0], /* v20 */ \
2317 &rs6000_reg_names[98][0], /* v21 */ \
2318 &rs6000_reg_names[99][0], /* v22 */ \
2319 &rs6000_reg_names[100][0], /* v23 */ \
2320 &rs6000_reg_names[101][0], /* v24 */ \
2321 &rs6000_reg_names[102][0], /* v25 */ \
2322 &rs6000_reg_names[103][0], /* v26 */ \
2323 &rs6000_reg_names[104][0], /* v27 */ \
2324 &rs6000_reg_names[105][0], /* v28 */ \
2325 &rs6000_reg_names[106][0], /* v29 */ \
2326 &rs6000_reg_names[107][0], /* v30 */ \
2327 &rs6000_reg_names[108][0], /* v31 */ \
2328 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2329 &rs6000_reg_names[110][0], /* vscr */ \
346081bd
SB
2330 &rs6000_reg_names[111][0], /* sfp */ \
2331 &rs6000_reg_names[112][0], /* tfhar */ \
2332 &rs6000_reg_names[113][0], /* tfiar */ \
2333 &rs6000_reg_names[114][0], /* texasr */ \
c81bebd7
MM
2334}
2335
f045b2c9
RS
2336/* Table of additional register names to use in user input. */
2337
2338#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2339 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2340 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2341 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2342 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2343 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2344 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2345 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2346 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2347 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2348 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2349 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2350 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2351 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2352 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2353 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2354 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2355 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2356 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2357 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2358 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2359 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2360 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2361 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2362 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2363 {"vrsave", 109}, {"vscr", 110}, \
462f7901 2364 /* no additional names for: lr, ctr, ap */ \
c4d38ccb
MM
2365 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2366 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
cacf1ca8 2367 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
f6b5d695
SB
2368 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2369 {"xer", 76}, \
cacf1ca8
MM
2370 /* VSX registers overlaid on top of FR, Altivec registers */ \
2371 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2372 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2373 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2374 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2375 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2376 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2377 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2378 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2379 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2380 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2381 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2382 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2383 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2384 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2385 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
0258b6e4
PB
2386 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2387 /* Transactional Memory Facility (HTM) Registers. */ \
346081bd 2388 {"tfhar", 112}, {"tfiar", 113}, {"texasr", 114}, \
23742a9e 2389}
f045b2c9 2390
f045b2c9
RS
2391/* This is how to output an element of a case-vector that is relative. */
2392
e1565e65 2393#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2394 do { char buf[100]; \
e1565e65 2395 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2396 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2397 assemble_name (FILE, buf); \
19d2d16f 2398 putc ('-', FILE); \
3daf36a4
ILT
2399 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2400 assemble_name (FILE, buf); \
19d2d16f 2401 putc ('\n', FILE); \
3daf36a4 2402 } while (0)
f045b2c9
RS
2403
2404/* This is how to output an assembler line
2405 that says to advance the location counter
2406 to a multiple of 2**LOG bytes. */
2407
2408#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2409 if ((LOG) != 0) \
2410 fprintf (FILE, "\t.align %d\n", (LOG))
2411
58082ff6
PH
2412/* How to align the given loop. */
2413#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2414
d28073d4
BS
2415/* Alignment guaranteed by __builtin_malloc. */
2416/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2417 However, specifying the stronger guarantee currently leads to
2418 a regression in SPEC CPU2006 437.leslie3d. The stronger
2419 guarantee should be implemented here once that's fixed. */
2420#define MALLOC_ABI_ALIGNMENT (64)
2421
9ebbca7d
GK
2422/* Pick up the return address upon entry to a procedure. Used for
2423 dwarf2 unwind information. This also enables the table driven
2424 mechanism. */
2425
1de43f85
DE
2426#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2427#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
9ebbca7d 2428
83720594
RH
2429/* Describe how we implement __builtin_eh_return. */
2430#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2431#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2432
f045b2c9
RS
2433/* Print operand X (an rtx) in assembler syntax to file FILE.
2434 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2435 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2436
2437#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2438
2439/* Define which CODE values are valid. */
2440
3cf437d4 2441#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
f045b2c9
RS
2442
2443/* Print a memory address as an operand to reference that memory location. */
2444
2445#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2446
c82846bc
DE
2447/* For switching between functions with different target attributes. */
2448#define SWITCHABLE_TARGET 1
2449
b6c9286a
MM
2450/* uncomment for disabling the corresponding default options */
2451/* #define MACHINE_no_sched_interblock */
2452/* #define MACHINE_no_sched_speculative */
2453/* #define MACHINE_no_sched_speculative_load */
2454
766a866c 2455/* General flags. */
a7df97e6 2456extern int frame_pointer_needed;
0ac081f6 2457
7fa14a01
MM
2458/* Classification of the builtin functions as to which switches enable the
2459 builtin, and what attributes it should have. We used to use the target
2460 flags macros, but we've run out of bits, so we now map the options into new
2461 settings used here. */
2462
2463/* Builtin attributes. */
2464#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2465#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2466#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2467#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2468#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2469#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
7fa14a01
MM
2470#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2471#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2472
2473#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
902cb7b1
KN
2474#define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2475 modifies global state. */
4f45da44
KN
2476#define RS6000_BTC_PURE 0x00000200 /* reads global
2477 state/mem and does
2478 not modify global state. */
7fa14a01
MM
2479#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2480#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2481
2482/* Miscellaneous information. */
0258b6e4
PB
2483#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2484#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
01f61a78
PB
2485#define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2486#define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
0258b6e4 2487#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
1c9df37c
MM
2488
2489/* Convenience macros to document the instruction type. */
7fa14a01
MM
2490#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2491#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2492
2493/* Builtin targets. For now, we reuse the masks for those options that are in
e075a6cc 2494 target flags, and pick two random bits for paired and ldbl128, which
8241efd1 2495 aren't in target_flags. */
4b705221 2496#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
7fa14a01 2497#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
4fd18c78 2498#define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
7fa14a01 2499#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
f62511da 2500#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
8fa97501 2501#define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
5a3a6a5e 2502#define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
f62511da 2503#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
0258b6e4 2504#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
7fa14a01
MM
2505#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2506#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2507#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2508#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2509#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2510#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
7fa14a01 2511#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
06b39289 2512#define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
f93bc5b3 2513#define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
8241efd1 2514#define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
4f45da44 2515#define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
bbd35101 2516#define RS6000_BTM_FLOAT128 MASK_FLOAT128_KEYWORD /* IEEE 128-bit float. */
7fa14a01
MM
2517
2518#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2519 | RS6000_BTM_VSX \
f62511da 2520 | RS6000_BTM_P8_VECTOR \
8fa97501 2521 | RS6000_BTM_P9_VECTOR \
5a3a6a5e 2522 | RS6000_BTM_P9_MISC \
402e60c5 2523 | RS6000_BTM_MODULO \
f62511da 2524 | RS6000_BTM_CRYPTO \
7fa14a01
MM
2525 | RS6000_BTM_FRE \
2526 | RS6000_BTM_FRES \
2527 | RS6000_BTM_FRSQRTE \
2528 | RS6000_BTM_FRSQRTES \
0258b6e4 2529 | RS6000_BTM_HTM \
7fa14a01 2530 | RS6000_BTM_POPCNTD \
06b39289 2531 | RS6000_BTM_CELL \
f93bc5b3 2532 | RS6000_BTM_DFP \
8241efd1 2533 | RS6000_BTM_HARD_FLOAT \
53605f35
BS
2534 | RS6000_BTM_LDBL128 \
2535 | RS6000_BTM_FLOAT128)
7fa14a01
MM
2536
2537/* Define builtin enum index. */
2538
4f45da44 2539#undef RS6000_BUILTIN_0
7fa14a01
MM
2540#undef RS6000_BUILTIN_1
2541#undef RS6000_BUILTIN_2
2542#undef RS6000_BUILTIN_3
2543#undef RS6000_BUILTIN_A
2544#undef RS6000_BUILTIN_D
0258b6e4 2545#undef RS6000_BUILTIN_H
7fa14a01
MM
2546#undef RS6000_BUILTIN_P
2547#undef RS6000_BUILTIN_Q
7fa14a01
MM
2548#undef RS6000_BUILTIN_X
2549
4f45da44 2550#define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2551#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2552#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2553#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2554#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2555#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
0258b6e4 2556#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2557#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2558#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01 2559#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
1c9df37c 2560
0ac081f6
AH
2561enum rs6000_builtins
2562{
1c9df37c 2563#include "rs6000-builtin.def"
a72c65c7 2564
58646b77
PB
2565 RS6000_BUILTIN_COUNT
2566};
2567
4f45da44 2568#undef RS6000_BUILTIN_0
7fa14a01
MM
2569#undef RS6000_BUILTIN_1
2570#undef RS6000_BUILTIN_2
2571#undef RS6000_BUILTIN_3
2572#undef RS6000_BUILTIN_A
2573#undef RS6000_BUILTIN_D
0258b6e4 2574#undef RS6000_BUILTIN_H
7fa14a01
MM
2575#undef RS6000_BUILTIN_P
2576#undef RS6000_BUILTIN_Q
7fa14a01 2577#undef RS6000_BUILTIN_X
1c9df37c 2578
58646b77
PB
2579enum rs6000_builtin_type_index
2580{
2581 RS6000_BTI_NOT_OPAQUE,
2582 RS6000_BTI_opaque_V2SI,
2583 RS6000_BTI_opaque_V2SF,
2584 RS6000_BTI_opaque_p_V2SI,
2585 RS6000_BTI_opaque_V4SI,
2586 RS6000_BTI_V16QI,
a16a872d 2587 RS6000_BTI_V1TI,
58646b77
PB
2588 RS6000_BTI_V2SI,
2589 RS6000_BTI_V2SF,
a72c65c7
MM
2590 RS6000_BTI_V2DI,
2591 RS6000_BTI_V2DF,
58646b77
PB
2592 RS6000_BTI_V4HI,
2593 RS6000_BTI_V4SI,
2594 RS6000_BTI_V4SF,
2595 RS6000_BTI_V8HI,
2596 RS6000_BTI_unsigned_V16QI,
a16a872d 2597 RS6000_BTI_unsigned_V1TI,
58646b77
PB
2598 RS6000_BTI_unsigned_V8HI,
2599 RS6000_BTI_unsigned_V4SI,
a72c65c7 2600 RS6000_BTI_unsigned_V2DI,
58646b77
PB
2601 RS6000_BTI_bool_char, /* __bool char */
2602 RS6000_BTI_bool_short, /* __bool short */
2603 RS6000_BTI_bool_int, /* __bool int */
a72c65c7 2604 RS6000_BTI_bool_long, /* __bool long */
58646b77
PB
2605 RS6000_BTI_pixel, /* __pixel */
2606 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2607 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2608 RS6000_BTI_bool_V4SI, /* __vector __bool int */
a72c65c7 2609 RS6000_BTI_bool_V2DI, /* __vector __bool long */
58646b77
PB
2610 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2611 RS6000_BTI_long, /* long_integer_type_node */
2612 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
c9485473
MM
2613 RS6000_BTI_long_long, /* long_long_integer_type_node */
2614 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
58646b77
PB
2615 RS6000_BTI_INTQI, /* intQI_type_node */
2616 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2617 RS6000_BTI_INTHI, /* intHI_type_node */
2618 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2619 RS6000_BTI_INTSI, /* intSI_type_node */
2620 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
a72c65c7
MM
2621 RS6000_BTI_INTDI, /* intDI_type_node */
2622 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
a16a872d
MM
2623 RS6000_BTI_INTTI, /* intTI_type_node */
2624 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
58646b77 2625 RS6000_BTI_float, /* float_type_node */
a72c65c7 2626 RS6000_BTI_double, /* double_type_node */
06b39289
MM
2627 RS6000_BTI_long_double, /* long_double_type_node */
2628 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2629 RS6000_BTI_dfloat128, /* dfloat128_type_node */
58646b77 2630 RS6000_BTI_void, /* void_type_node */
6712d6fd
MM
2631 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2632 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
53605f35 2633 RS6000_BTI_const_str, /* pointer to const char * */
58646b77 2634 RS6000_BTI_MAX
0ac081f6 2635};
58646b77
PB
2636
2637
2638#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2639#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2640#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2641#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2642#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
a16a872d 2643#define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
a72c65c7
MM
2644#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2645#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
58646b77
PB
2646#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2647#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2648#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2649#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2650#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2651#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2652#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
a16a872d 2653#define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
58646b77
PB
2654#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2655#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
a72c65c7 2656#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
58646b77
PB
2657#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2658#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2659#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
a72c65c7 2660#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
58646b77
PB
2661#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2662#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2663#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2664#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
a72c65c7 2665#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
58646b77
PB
2666#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2667
c9485473
MM
2668#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2669#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
58646b77
PB
2670#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2671#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2672#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2673#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2674#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2675#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2676#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2677#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
a72c65c7
MM
2678#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2679#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
a16a872d
MM
2680#define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2681#define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
58646b77 2682#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
a72c65c7 2683#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
06b39289
MM
2684#define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2685#define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2686#define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
58646b77 2687#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
6712d6fd
MM
2688#define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2689#define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
53605f35 2690#define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
58646b77
PB
2691
2692extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2693extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2694
807e902e 2695#define TARGET_SUPPORTS_WIDE_INT 1
08213983
MM
2696
2697#if (GCC_VERSION >= 3000)
2698#pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2699#endif