]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
* sh.h (MAX_FIXED_MODE_SIZE): Define.
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
16c484c7 3 2000, 2001, 2002 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
f045b2c9
RS
22
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
8e3f41e7
MM
44/* Default string to use for cpu if not specified. */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
f984d8df
DB
49/* Common ASM definitions used by ASM_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51#define ASM_CPU_SPEC \
52"%{!mcpu*: \
53 %{mpower: %{!mpower2: -mpwr}} \
54 %{mpower2: -mpwrx} \
55 %{mpowerpc*: -mppc} \
56 %{mno-power: %{!mpowerpc*: -mcom}} \
57 %{!mno-power: %{!mpower2: %(asm_default)}}} \
58%{mcpu=common: -mcom} \
59%{mcpu=power: -mpwr} \
60%{mcpu=power2: -mpwrx} \
309323c2 61%{mcpu=power3: -m604} \
957e9e48 62%{mcpu=power4: -mpower4} \
f984d8df
DB
63%{mcpu=powerpc: -mppc} \
64%{mcpu=rios: -mpwr} \
65%{mcpu=rios1: -mpwr} \
66%{mcpu=rios2: -mpwrx} \
67%{mcpu=rsc: -mpwr} \
68%{mcpu=rsc1: -mpwr} \
69%{mcpu=401: -mppc} \
61a8515c
JS
70%{mcpu=403: -m403} \
71%{mcpu=405: -m405} \
f984d8df
DB
72%{mcpu=505: -mppc} \
73%{mcpu=601: -m601} \
74%{mcpu=602: -mppc} \
75%{mcpu=603: -mppc} \
76%{mcpu=603e: -mppc} \
77%{mcpu=ec603e: -mppc} \
78%{mcpu=604: -mppc} \
79%{mcpu=604e: -mppc} \
80%{mcpu=620: -mppc} \
309323c2 81%{mcpu=630: -m604} \
f984d8df 82%{mcpu=740: -mppc} \
fd3b43f2 83%{mcpu=7400: -mppc} \
f18c054f 84%{mcpu=7450: -mppc} \
f984d8df
DB
85%{mcpu=750: -mppc} \
86%{mcpu=801: -mppc} \
87%{mcpu=821: -mppc} \
88%{mcpu=823: -mppc} \
775db490 89%{mcpu=860: -mppc} \
a3170dc6 90%{mcpu=8540: -me500} \
775db490 91%{maltivec: -maltivec}"
f984d8df
DB
92
93#define CPP_DEFAULT_SPEC ""
94
95#define ASM_DEFAULT_SPEC ""
96
841faeed
MM
97/* This macro defines names of additional specifications to put in the specs
98 that can be used in various specifications like CC1_SPEC. Its definition
99 is an initializer with a subgrouping for each command option.
100
101 Each subgrouping contains a string constant, that defines the
102 specification name, and a string constant that used by the GNU CC driver
103 program.
104
105 Do not define this macro if it does not need to do anything. */
106
7509c759 107#define SUBTARGET_EXTRA_SPECS
7509c759 108
c81bebd7 109#define EXTRA_SPECS \
c81bebd7 110 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
111 { "asm_cpu", ASM_CPU_SPEC }, \
112 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
113 SUBTARGET_EXTRA_SPECS
114
fb623df5 115/* Architecture type. */
f045b2c9 116
fb623df5
RK
117extern int target_flags;
118
119/* Use POWER architecture instructions and MQ register. */
38c1f2d7 120#define MASK_POWER 0x00000001
fb623df5 121
6febd581 122/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 123#define MASK_POWER2 0x00000002
6febd581 124
fb623df5 125/* Use PowerPC architecture instructions. */
38c1f2d7 126#define MASK_POWERPC 0x00000004
6febd581 127
583cf4db 128/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 129#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
130
131/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 132#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 133
fb623df5 134/* Use PowerPC-64 architecture instructions. */
38c1f2d7 135#define MASK_POWERPC64 0x00000020
f045b2c9 136
fb623df5 137/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 138#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
139
140/* Disable placing fp constants in the TOC; can be turned on when the
141 TOC overflows. */
38c1f2d7 142#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 143
0b9ccabc
RK
144/* Disable placing symbol+offset constants in the TOC; can be turned on when
145 the TOC overflows. */
38c1f2d7 146#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 147
fb623df5 148/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
149 there are more than 16K unique variables/constants in an executable. With
150 this option, linking fails only if there are more than 16K modules, or
151 if there are more than 16K unique variables/constant in a single module.
152
153 This is at the cost of having 2 extra loads and one extra store per
956d6950 154 function, and one less allocable register. */
38c1f2d7 155#define MASK_MINIMAL_TOC 0x00000200
642a35f1 156
b1765bde 157/* Nonzero for the 64bit model: longs and pointers are 64 bits. */
38c1f2d7 158#define MASK_64BIT 0x00000400
9e654916 159
f85f4585 160/* Disable use of FPRs. */
38c1f2d7 161#define MASK_SOFT_FLOAT 0x00000800
f85f4585 162
4d30c363 163/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
164#define MASK_MULTIPLE 0x00001000
165#define MASK_MULTIPLE_SET 0x00002000
4d30c363 166
7e69e155 167/* Use string instructions for block moves */
38c1f2d7
MM
168#define MASK_STRING 0x00004000
169#define MASK_STRING_SET 0x00008000
7e69e155 170
38c1f2d7
MM
171/* Disable update form of load/store */
172#define MASK_NO_UPDATE 0x00010000
173
174/* Disable fused multiply/add operations */
175#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 176
9ebbca7d
GK
177/* Nonzero if we need to schedule the prolog and epilog. */
178#define MASK_SCHED_PROLOG 0x00040000
179
0ac081f6
AH
180/* Use AltiVec instructions. */
181#define MASK_ALTIVEC 0x00080000
182
6fa3f289
ZW
183/* Return small structures in memory (as the AIX ABI requires). */
184#define MASK_AIX_STRUCT_RET 0x00100000
185#define MASK_AIX_STRUCT_RET_SET 0x00200000
0ac081f6 186
6fa3f289
ZW
187/* The only remaining free bit is 0x00400000. sysv4.h uses
188 0x00800000 -> 0x40000000, and 0x80000000 is not available
189 because target_flags is signed. */
06f4e019 190
7e69e155
MM
191#define TARGET_POWER (target_flags & MASK_POWER)
192#define TARGET_POWER2 (target_flags & MASK_POWER2)
193#define TARGET_POWERPC (target_flags & MASK_POWERPC)
194#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
195#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
196#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
197#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
198#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
199#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
200#define TARGET_64BIT (target_flags & MASK_64BIT)
201#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
202#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
203#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
204#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 205#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
206#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
207#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 208#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 209#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 210#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 211
2f3e5814 212#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 213#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
214#define TARGET_UPDATE (! TARGET_NO_UPDATE)
215#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 216
996ed075
JJ
217#ifdef IN_LIBGCC2
218/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 219#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
220#define TARGET_POWERPC64 1
221#else
222#define TARGET_POWERPC64 0
223#endif
b6c9286a 224#else
9ebbca7d 225#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
226#endif
227
a3950905 228#define TARGET_XL_CALL 0
a3950905 229
fb623df5 230/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 231
fb623df5 232 Macro to define tables used to set the flags.
f045b2c9
RS
233 This is a list in braces of pairs in braces,
234 each pair being { "NAME", VALUE }
235 where VALUE is the bits to set or minus the bits to clear.
236 An empty string NAME is used to identify the default VALUE. */
237
938937d8 238#define TARGET_SWITCHES \
9ebbca7d 239 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 240 N_("Use POWER instruction set")}, \
938937d8 241 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 242 | MASK_POWER2), \
047142d3 243 N_("Use POWER2 instruction set")}, \
9ebbca7d 244 {"no-power2", - MASK_POWER2, \
047142d3 245 N_("Do not use POWER2 instruction set")}, \
938937d8 246 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 247 | MASK_STRING), \
047142d3 248 N_("Do not use POWER instruction set")}, \
9ebbca7d 249 {"powerpc", MASK_POWERPC, \
047142d3 250 N_("Use PowerPC instruction set")}, \
938937d8 251 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 252 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 253 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 254 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 255 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 256 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 257 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 258 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 259 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 260 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 261 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 262 {"powerpc64", MASK_POWERPC64, \
047142d3 263 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 264 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 265 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 266 {"altivec", MASK_ALTIVEC , \
c725bd79 267 N_("Use AltiVec instructions")}, \
f18c054f 268 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 269 N_("Don't use AltiVec instructions")}, \
9ebbca7d 270 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 271 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 272 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 273 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 274 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 275 | MASK_MINIMAL_TOC), \
047142d3 276 N_("Put everything in the regular TOC")}, \
9ebbca7d 277 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 278 N_("Place floating point constants in TOC")}, \
9ebbca7d 279 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 280 N_("Don't place floating point constants in TOC")},\
9ebbca7d 281 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 282 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 283 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 284 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
285 {"minimal-toc", MASK_MINIMAL_TOC, \
286 "Use only one TOC entry per procedure"}, \
287 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 288 ""}, \
9ebbca7d 289 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 290 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 291 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 292 N_("Use hardware fp")}, \
9ebbca7d 293 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 294 N_("Do not use hardware fp")}, \
9ebbca7d 295 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
047142d3 296 N_("Generate load/store multiple instructions")}, \
9ebbca7d 297 {"no-multiple", - MASK_MULTIPLE, \
047142d3 298 N_("Do not generate load/store multiple instructions")},\
9ebbca7d 299 {"no-multiple", MASK_MULTIPLE_SET, \
047142d3 300 ""}, \
9ebbca7d 301 {"string", MASK_STRING | MASK_STRING_SET, \
047142d3 302 N_("Generate string instructions for block moves")},\
9ebbca7d 303 {"no-string", - MASK_STRING, \
047142d3 304 N_("Do not generate string instructions for block moves")},\
9ebbca7d 305 {"no-string", MASK_STRING_SET, \
047142d3 306 ""}, \
9ebbca7d 307 {"update", - MASK_NO_UPDATE, \
047142d3 308 N_("Generate load/store with update instructions")},\
9ebbca7d 309 {"no-update", MASK_NO_UPDATE, \
047142d3 310 N_("Do not generate load/store with update instructions")},\
9ebbca7d 311 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 312 N_("Generate fused multiply/add instructions")},\
9ebbca7d 313 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 314 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
315 {"sched-prolog", MASK_SCHED_PROLOG, \
316 ""}, \
317 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 318 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
319 {"sched-epilog", MASK_SCHED_PROLOG, \
320 ""}, \
321 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
322 ""}, \
6fa3f289
ZW
323 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
324 N_("Return all structures in memory (AIX default)")},\
325 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
326 N_("Return small structures in registers (SVR4 default)")},\
327 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
328 ""},\
329 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
330 ""},\
331 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
332 ""},\
333 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
334 ""},\
938937d8 335 SUBTARGET_SWITCHES \
9ebbca7d
GK
336 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
337 ""}}
fb623df5 338
938937d8 339#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
340
341/* This is meant to be redefined in the host dependent files */
342#define SUBTARGET_SWITCHES
fb623df5 343
cac8ce95 344/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 345enum processor_type
bef84347
VM
346 {
347 PROCESSOR_RIOS1,
348 PROCESSOR_RIOS2,
3cb999d8 349 PROCESSOR_RS64A,
bef84347
VM
350 PROCESSOR_MPCCORE,
351 PROCESSOR_PPC403,
fe7f5677 352 PROCESSOR_PPC405,
bef84347
VM
353 PROCESSOR_PPC601,
354 PROCESSOR_PPC603,
355 PROCESSOR_PPC604,
356 PROCESSOR_PPC604e,
357 PROCESSOR_PPC620,
3cb999d8 358 PROCESSOR_PPC630,
ed947a96
DJ
359 PROCESSOR_PPC750,
360 PROCESSOR_PPC7400,
309323c2 361 PROCESSOR_PPC7450,
a3170dc6 362 PROCESSOR_PPC8540,
309323c2 363 PROCESSOR_POWER4
bef84347 364};
fb623df5
RK
365
366extern enum processor_type rs6000_cpu;
367
368/* Recast the processor type to the cpu attribute. */
369#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
370
8482e358 371/* Define generic processor types based upon current deployment. */
3cb999d8
DE
372#define PROCESSOR_COMMON PROCESSOR_PPC601
373#define PROCESSOR_POWER PROCESSOR_RIOS1
374#define PROCESSOR_POWERPC PROCESSOR_PPC604
375#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 376
fb623df5 377/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
378#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
379#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 380
6febd581
RK
381/* Specify the dialect of assembler to use. New mnemonics is dialect one
382 and the old mnemonics are dialect zero. */
9ebbca7d 383#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 384
956d6950 385/* This is meant to be overridden in target specific files. */
b6c9286a 386#define SUBTARGET_OPTIONS
b6c9286a 387
9ebbca7d
GK
388#define TARGET_OPTIONS \
389{ \
047142d3
PT
390 {"cpu=", &rs6000_select[1].string, \
391 N_("Use features of and schedule code for given CPU") }, \
392 {"tune=", &rs6000_select[2].string, \
393 N_("Schedule code for given CPU") }, \
394 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
57ac7be9
AM
395 {"traceback=", &rs6000_traceback_name, \
396 N_("Select full, part, or no traceback table") }, \
0ac081f6 397 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
6fa3f289
ZW
398 {"long-double-", &rs6000_long_double_size_string, \
399 N_("Specify size of long double (64 or 128 bits)") }, \
a3170dc6
AH
400 {"isel=", &rs6000_isel_string, \
401 N_("Specify yes/no if isel instructions should be generated") }, \
08b57fb3
AH
402 {"vrsave=", &rs6000_altivec_vrsave_string, \
403 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
a5c76ee6
ZW
404 {"longcall", &rs6000_longcall_switch, \
405 N_("Avoid all range limits on call instructions") }, \
406 {"no-longcall", &rs6000_longcall_switch, "" }, \
9ebbca7d 407 SUBTARGET_OPTIONS \
b6c9286a 408}
fb623df5 409
ff222560 410/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
411struct rs6000_cpu_select
412{
815cdc52
MM
413 const char *string;
414 const char *name;
8e3f41e7
MM
415 int set_tune_p;
416 int set_arch_p;
417};
418
419extern struct rs6000_cpu_select rs6000_select[];
fb623df5 420
38c1f2d7 421/* Debug support */
0ac081f6 422extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 423extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
424extern int rs6000_debug_stack; /* debug stack applications */
425extern int rs6000_debug_arg; /* debug argument handling */
426
427#define TARGET_DEBUG_STACK rs6000_debug_stack
428#define TARGET_DEBUG_ARG rs6000_debug_arg
429
57ac7be9
AM
430extern const char *rs6000_traceback_name; /* Type of traceback table. */
431
6fa3f289
ZW
432/* These are separate from target_flags because we've run out of bits
433 there. */
434extern const char *rs6000_long_double_size_string;
435extern int rs6000_long_double_type_size;
436extern int rs6000_altivec_abi;
a3170dc6
AH
437extern int rs6000_spe_abi;
438extern int rs6000_isel;
439extern int rs6000_fprs;
440extern const char *rs6000_isel_string;
08b57fb3
AH
441extern const char *rs6000_altivec_vrsave_string;
442extern int rs6000_altivec_vrsave;
a5c76ee6
ZW
443extern const char *rs6000_longcall_switch;
444extern int rs6000_default_long_calls;
6fa3f289
ZW
445
446#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
447#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
08b57fb3 448#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
6fa3f289 449
a3170dc6
AH
450#define TARGET_SPE_ABI 0
451#define TARGET_SPE 0
452#define TARGET_ISEL 0
453#define TARGET_FPRS 1
454
fb623df5
RK
455/* Sometimes certain combinations of command options do not make sense
456 on a particular target machine. You can define a macro
457 `OVERRIDE_OPTIONS' to take account of this. This macro, if
458 defined, is executed once just after all the command options have
459 been parsed.
460
5accd822
DE
461 Don't use this macro to turn on various extra optimizations for
462 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
463
fb623df5
RK
464 On the RS/6000 this is used to define the target cpu type. */
465
8e3f41e7 466#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 467
5accd822
DE
468/* Define this to change the optimizations performed by default. */
469#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
470
4c4eb375
GK
471/* Show we can debug even without a frame pointer. */
472#define CAN_DEBUG_WITHOUT_FP
473
a5c76ee6
ZW
474/* Target pragma. */
475#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
476 cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
477} while (0)
478
4c4eb375
GK
479/* Target #defines. */
480#define TARGET_CPU_CPP_BUILTINS() \
481 rs6000_cpu_cpp_builtins (pfile)
f045b2c9 482\f
4c4eb375 483/* Target machine storage layout. */
f045b2c9 484
13d39dbc 485/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 486 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
487 the value is constrained to be within the bounds of the declared
488 type, but kept valid in the wider mode. The signedness of the
489 extension may differ from that of the type. */
490
39403d82
DE
491#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
492 if (GET_MODE_CLASS (MODE) == MODE_INT \
493 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 494 (MODE) = word_mode;
39403d82
DE
495
496/* Define this if function arguments should also be promoted using the above
497 procedure. */
498
499#define PROMOTE_FUNCTION_ARGS
500
501/* Likewise, if the function return value is promoted. */
502
503#define PROMOTE_FUNCTION_RETURN
ef457bda 504
f045b2c9 505/* Define this if most significant bit is lowest numbered
82e41834
KH
506 in instructions that operate on numbered bit-fields. */
507/* That is true on RS/6000. */
f045b2c9
RS
508#define BITS_BIG_ENDIAN 1
509
510/* Define this if most significant byte of a word is the lowest numbered. */
511/* That is true on RS/6000. */
512#define BYTES_BIG_ENDIAN 1
513
514/* Define this if most significant word of a multiword number is lowest
c81bebd7 515 numbered.
f045b2c9
RS
516
517 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 518 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
519#define WORDS_BIG_ENDIAN 1
520
2e360ab3 521#define MAX_BITS_PER_WORD 64
f045b2c9
RS
522
523/* Width of a word, in units (bytes). */
2f3e5814 524#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 525#define MIN_UNITS_PER_WORD 4
2e360ab3 526#define UNITS_PER_FP_WORD 8
0ac081f6 527#define UNITS_PER_ALTIVEC_WORD 16
a3170dc6 528#define UNITS_PER_SPE_WORD 8
f045b2c9 529
915f619f
JW
530/* Type used for ptrdiff_t, as a string used in a declaration. */
531#define PTRDIFF_TYPE "int"
532
058ef853
DE
533/* Type used for size_t, as a string used in a declaration. */
534#define SIZE_TYPE "long unsigned int"
535
f045b2c9
RS
536/* Type used for wchar_t, as a string used in a declaration. */
537#define WCHAR_TYPE "short unsigned int"
538
539/* Width of wchar_t in bits. */
540#define WCHAR_TYPE_SIZE 16
541
9e654916
RK
542/* A C expression for the size in bits of the type `short' on the
543 target machine. If you don't define this, the default is half a
544 word. (If this would be less than one storage unit, it is
545 rounded up to one unit.) */
546#define SHORT_TYPE_SIZE 16
547
548/* A C expression for the size in bits of the type `int' on the
549 target machine. If you don't define this, the default is one
550 word. */
19d2d16f 551#define INT_TYPE_SIZE 32
9e654916
RK
552
553/* A C expression for the size in bits of the type `long' on the
554 target machine. If you don't define this, the default is one
555 word. */
2f3e5814 556#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
557#define MAX_LONG_TYPE_SIZE 64
558
559/* A C expression for the size in bits of the type `long long' on the
560 target machine. If you don't define this, the default is two
561 words. */
562#define LONG_LONG_TYPE_SIZE 64
563
9e654916
RK
564/* A C expression for the size in bits of the type `float' on the
565 target machine. If you don't define this, the default is one
566 word. */
567#define FLOAT_TYPE_SIZE 32
568
569/* A C expression for the size in bits of the type `double' on the
570 target machine. If you don't define this, the default is two
571 words. */
572#define DOUBLE_TYPE_SIZE 64
573
574/* A C expression for the size in bits of the type `long double' on
575 the target machine. If you don't define this, the default is two
576 words. */
6fa3f289 577#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
578
579/* Constant which presents upper bound of the above value. */
580#define MAX_LONG_DOUBLE_TYPE_SIZE 128
581
582/* Define this to set long double type size to use in libgcc2.c, which can
583 not depend on target_flags. */
584#ifdef __LONG_DOUBLE_128__
585#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
586#else
587#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
588#endif
9e654916 589
f045b2c9
RS
590/* Width in bits of a pointer.
591 See also the macro `Pmode' defined below. */
2f3e5814 592#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
593
594/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 595#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
596
597/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 598#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
599
600/* Allocation boundary (in *bits*) for the code of a function. */
601#define FUNCTION_BOUNDARY 32
602
603/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
604#define BIGGEST_ALIGNMENT 128
605
606/* A C expression to compute the alignment for a variables in the
607 local store. TYPE is the data type, and ALIGN is the alignment
608 that the object would ordinarily have. */
609#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a3170dc6
AH
610 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
611 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
b73fd26c 612
f045b2c9
RS
613/* Alignment of field after `int : 0' in a structure. */
614#define EMPTY_FIELD_BOUNDARY 32
615
616/* Every structure's size must be a multiple of this. */
617#define STRUCTURE_SIZE_BOUNDARY 8
618
a3170dc6
AH
619/* Return 1 if a structure or array containing FIELD should be
620 accessed using `BLKMODE'.
621
622 For the SPE, simd types are V2SI, and gcc can be tempted to put the
623 entire thing in a DI and use subregs to access the internals.
624 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
625 back-end. Because a single GPR can hold a V2SI, but not a DI, the
626 best thing to do is set structs to BLKmode and avoid Severe Tire
627 Damage. */
628#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
629 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
630
f045b2c9
RS
631/* A bitfield declared as `int' forces `int' alignment for the struct. */
632#define PCC_BITFIELD_TYPE_MATTERS 1
633
69ef87e2
AH
634/* Make strings word-aligned so strcpy from constants will be faster.
635 Make vector constants quadword aligned. */
636#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
637 (TREE_CODE (EXP) == STRING_CST \
638 && (ALIGN) < BITS_PER_WORD \
639 ? BITS_PER_WORD \
640 : (ALIGN))
f045b2c9 641
0ac081f6
AH
642/* Make arrays of chars word-aligned for the same reasons.
643 Align vectors to 128 bits. */
f045b2c9 644#define DATA_ALIGNMENT(TYPE, ALIGN) \
a3170dc6 645 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
0ac081f6 646 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
647 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
648 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
649
fdaff8ba 650/* Non-zero if move instructions will actually fail to work
f045b2c9 651 when given unaligned data. */
fdaff8ba 652#define STRICT_ALIGNMENT 0
e1565e65
DE
653
654/* Define this macro to be the value 1 if unaligned accesses have a cost
655 many times greater than aligned accesses, for example if they are
656 emulated in a trap handler. */
41543739
GK
657#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
658 (STRICT_ALIGNMENT \
659 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
660 && (ALIGN) < 32))
f045b2c9
RS
661\f
662/* Standard register usage. */
663
664/* Number of actual hardware registers.
665 The hardware registers are assigned numbers for the compiler
666 from 0 to just below FIRST_PSEUDO_REGISTER.
667 All registers that the compiler knows about must be given numbers,
668 even those that are not normally considered general registers.
669
670 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
671 an MQ register, a count register, a link register, and 8 condition
672 register fields, which we view here as separate registers.
673
674 In addition, the difference between the frame and argument pointers is
675 a function of the number of registers saved, so we need to have a
676 register for AP that will later be eliminated in favor of SP or FP.
802a0058 677 This is a normal register, but it is fixed.
f045b2c9 678
802a0058
MM
679 We also create a pseudo register for float/int conversions, that will
680 really represent the memory location used. It is represented here as
681 a register, in order to work around problems in allocating stack storage
682 in inline functions. */
683
a3170dc6 684#define FIRST_PSEUDO_REGISTER 113
f045b2c9 685
d6a7951f 686/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 687#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 688
f045b2c9
RS
689/* 1 for registers that have pervasive standard uses
690 and are not available for the register allocator.
691
5dead3e5
DJ
692 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
693 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 694
a127c4e5
RK
695 cr5 is not supposed to be used.
696
697 On System V implementations, r13 is fixed and not available for use. */
698
f045b2c9 699#define FIXED_REGISTERS \
5dead3e5 700 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
701 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
702 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
703 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
704 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
705 /* AltiVec registers. */ \
706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
707 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 708 1, 1 \
a3170dc6 709 , 1, 1 \
0ac081f6 710}
f045b2c9
RS
711
712/* 1 for registers not available across function calls.
713 These must include the FIXED_REGISTERS and also any
714 registers that can be used without being saved.
715 The latter must include the registers where values are returned
716 and the register where structure-value addresses are passed.
717 Aside from that, you can include as many other registers as you like. */
718
719#define CALL_USED_REGISTERS \
a127c4e5 720 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
721 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
722 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
723 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
724 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
725 /* AltiVec registers. */ \
726 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
727 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 728 1, 1 \
a3170dc6 729 , 1, 1 \
0ac081f6
AH
730}
731
289e96b2
AH
732/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
733 the entire set of `FIXED_REGISTERS' be included.
734 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
735 This macro is optional. If not specified, it defaults to the value
736 of `CALL_USED_REGISTERS'. */
737
738#define CALL_REALLY_USED_REGISTERS \
739 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
741 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
742 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
743 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
744 /* AltiVec registers. */ \
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 747 0, 0 \
a3170dc6 748 , 0, 0 \
289e96b2 749}
f045b2c9 750
9ebbca7d
GK
751#define MQ_REGNO 64
752#define CR0_REGNO 68
753#define CR1_REGNO 69
754#define CR2_REGNO 70
755#define CR3_REGNO 71
756#define CR4_REGNO 72
757#define MAX_CR_REGNO 75
758#define XER_REGNO 76
0ac081f6
AH
759#define FIRST_ALTIVEC_REGNO 77
760#define LAST_ALTIVEC_REGNO 108
28bcfd4d 761#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 762#define VRSAVE_REGNO 109
5f004351 763#define VSCR_REGNO 110
a3170dc6
AH
764#define SPE_ACC_REGNO 111
765#define SPEFSCR_REGNO 112
9ebbca7d 766
f045b2c9
RS
767/* List the order in which to allocate registers. Each register must be
768 listed once, even those in FIXED_REGISTERS.
769
770 We allocate in the following order:
771 fp0 (not saved or used for anything)
772 fp13 - fp2 (not saved; incoming fp arg registers)
773 fp1 (not saved; return value)
774 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
775 cr7, cr6 (not saved or special)
776 cr1 (not saved, but used for FP operations)
f045b2c9 777 cr0 (not saved, but used for arithmetic operations)
5accd822 778 cr4, cr3, cr2 (saved)
f045b2c9
RS
779 r0 (not saved; cannot be base reg)
780 r9 (not saved; best for TImode)
781 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
782 r3 (not saved; return value register)
783 r31 - r13 (saved; order given to save least number)
784 r12 (not saved; if used for DImode or DFmode would use r13)
785 mq (not saved; best to use it if we can)
786 ctr (not saved; when we have the choice ctr is better)
787 lr (saved)
5f004351 788 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
a3170dc6 789 spe_acc, spefscr (fixed)
0ac081f6
AH
790
791 AltiVec registers:
792 v0 - v1 (not saved or used for anything)
793 v13 - v3 (not saved; incoming vector arg registers)
794 v2 (not saved; incoming vector arg reg; return value)
795 v19 - v14 (not saved or used for anything)
796 v31 - v20 (saved; order given to save least number)
797*/
798
f045b2c9
RS
799
800#define REG_ALLOC_ORDER \
801 {32, \
802 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
803 33, \
804 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
805 50, 49, 48, 47, 46, \
5accd822 806 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
807 0, \
808 9, 11, 10, 8, 7, 6, 5, 4, \
809 3, \
810 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
811 18, 17, 16, 15, 14, 13, 12, \
812 64, 66, 65, \
0ac081f6
AH
813 73, 1, 2, 67, 76, \
814 /* AltiVec registers. */ \
815 77, 78, \
816 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
817 79, \
818 96, 95, 94, 93, 92, 91, \
58568475 819 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
5f004351 820 97, 109, 110 \
a3170dc6 821 , 111, 112 \
0ac081f6 822}
f045b2c9
RS
823
824/* True if register is floating-point. */
825#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
826
827/* True if register is a condition register. */
828#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
829
815cdc52
MM
830/* True if register is a condition register, but not cr0. */
831#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
832
f045b2c9 833/* True if register is an integer register. */
9ebbca7d 834#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 835
a3170dc6
AH
836/* SPE SIMD registers are just the GPRs. */
837#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
838
0d86f538 839/* True if register is the XER register. */
9ebbca7d 840#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 841
0ac081f6
AH
842/* True if register is an AltiVec register. */
843#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
844
f045b2c9
RS
845/* Return number of consecutive hard regs needed starting at reg REGNO
846 to hold something of mode MODE.
847 This is ordinarily the length in words of a value of mode MODE
848 but can be less for certain modes in special long registers.
849
a3170dc6
AH
850 For the SPE, GPRs are 64 bits but only 32 bits are visible in
851 scalar instructions. The upper 32 bits are only available to the
852 SIMD instructions.
853
a260abc9
DE
854 POWER and PowerPC GPRs hold 32 bits worth;
855 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 856
802a0058 857#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 858 (FP_REGNO_P (REGNO) \
2e360ab3 859 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
a3170dc6
AH
860 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
861 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
0ac081f6
AH
862 : ALTIVEC_REGNO_P (REGNO) \
863 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
864 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
865
0ac081f6 866#define ALTIVEC_VECTOR_MODE(MODE) \
cb2a532e
AH
867 ((MODE) == V16QImode \
868 || (MODE) == V8HImode \
869 || (MODE) == V4SFmode \
6e1f54e2 870 || (MODE) == V4SImode)
0ac081f6 871
a3170dc6
AH
872#define SPE_VECTOR_MODE(MODE) \
873 ((MODE) == V4HImode \
874 || (MODE) == V2SFmode \
875 || (MODE) == V2SImode)
876
0ac081f6
AH
877/* Define this macro to be nonzero if the port is prepared to handle
878 insns involving vector mode MODE. At the very least, it must have
879 move patterns for this mode. */
880
a3170dc6
AH
881#define VECTOR_MODE_SUPPORTED_P(MODE) \
882 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
883 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
0ac081f6 884
f045b2c9 885/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
886 For POWER and PowerPC, the GPRs can hold any mode, but the float
887 registers only can hold floating modes and DImode, and CR register only
888 can hold CC modes. We cannot put TImode anywhere except general
82e41834 889 register and it must be able to fit within the register set. */
f045b2c9 890
802a0058
MM
891#define HARD_REGNO_MODE_OK(REGNO, MODE) \
892 (FP_REGNO_P (REGNO) ? \
893 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
894 || (GET_MODE_CLASS (MODE) == MODE_INT \
895 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 896 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
a3170dc6 897 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
802a0058 898 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 899 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
802a0058 900 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 901 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
902 : 1)
903
904/* Value is 1 if it is a good idea to tie two pseudo registers
905 when one has mode MODE1 and one has mode MODE2.
906 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
907 for any hard reg, then this must be 0 for correct output. */
908#define MODES_TIEABLE_P(MODE1, MODE2) \
909 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
910 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
911 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
912 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
913 : GET_MODE_CLASS (MODE1) == MODE_CC \
914 ? GET_MODE_CLASS (MODE2) == MODE_CC \
915 : GET_MODE_CLASS (MODE2) == MODE_CC \
916 ? GET_MODE_CLASS (MODE1) == MODE_CC \
0ac081f6
AH
917 : ALTIVEC_VECTOR_MODE (MODE1) \
918 ? ALTIVEC_VECTOR_MODE (MODE2) \
919 : ALTIVEC_VECTOR_MODE (MODE2) \
920 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
921 : 1)
922
923/* A C expression returning the cost of moving data from a register of class
924 CLASS1 to one of CLASS2.
925
926 On the RS/6000, copying between floating-point and fixed-point
927 registers is expensive. */
928
cf011243 929#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
0ac081f6 930 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
f045b2c9
RS
931 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
932 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
0ac081f6
AH
933 : (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
934 : (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
a4b970a0 935 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
936 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
937 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 938 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 939 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 940 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
941 : 2)
942
943/* A C expressions returning the cost of moving data of MODE from a register to
944 or from memory.
945
946 On the RS/6000, bump this up a bit. */
947
e1565e65
DE
948#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
949 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
ab4a5fc9
RK
950 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
951 ? 3 : 2) \
952 + 4)
f045b2c9
RS
953
954/* Specify the cost of a branch insn; roughly the number of extra insns that
955 should be added to avoid a branch.
956
ef457bda 957 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
958 unscheduled conditional branch. */
959
ef457bda 960#define BRANCH_COST 3
f045b2c9 961
a3170dc6
AH
962
963/* A fixed register used at prologue and epilogue generation to fix
964 addressing modes. The SPE needs heavy addressing fixes at the last
965 minute, and it's best to save a register for it.
966
967 AltiVec also needs fixes, but we've gotten around using r11, which
968 is actually wrong because when use_backchain_to_restore_sp is true,
969 we end up clobbering r11.
970
971 The AltiVec case needs to be fixed. Dunno if we should break ABI
972 compatability and reserve a register for it as well.. */
973
974#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
975
6febd581
RK
976/* Define this macro to change register usage conditional on target flags.
977 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 978 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 979 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
980 Conditionally disable FPRs. */
981
8d30c4ee
FS
982#define CONDITIONAL_REGISTER_USAGE \
983{ \
e9e4208a 984 int i; \
8d30c4ee
FS
985 if (! TARGET_POWER) \
986 fixed_regs[64] = 1; \
987 if (TARGET_64BIT) \
289e96b2
AH
988 fixed_regs[13] = call_used_regs[13] \
989 = call_really_used_regs[13] = 1; \
a3170dc6 990 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
8d30c4ee 991 for (i = 32; i < 64; i++) \
289e96b2
AH
992 fixed_regs[i] = call_used_regs[i] \
993 = call_really_used_regs[i] = 1; \
1db02437
FS
994 if (DEFAULT_ABI == ABI_V4 \
995 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
996 && flag_pic == 1) \
997 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
998 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
999 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1000 if (DEFAULT_ABI == ABI_DARWIN \
1001 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1002 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1003 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1004 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1005 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
5f004351
AH
1006 if (TARGET_ALTIVEC) \
1007 global_regs[VSCR_REGNO] = 1; \
a3170dc6
AH
1008 if (TARGET_SPE) \
1009 { \
1010 global_regs[SPEFSCR_REGNO] = 1; \
1011 fixed_regs[FIXED_SCRATCH] \
1012 = call_used_regs[FIXED_SCRATCH] \
1013 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1014 } \
2473ee11 1015 if (! TARGET_ALTIVEC) \
c1f11548
DE
1016 { \
1017 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1018 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1019 call_really_used_regs[VRSAVE_REGNO] = 1; \
1020 } \
0ac081f6 1021 if (TARGET_ALTIVEC_ABI) \
2473ee11 1022 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 1023 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 1024}
6febd581 1025
f045b2c9
RS
1026/* Specify the registers used for certain standard purposes.
1027 The values of these macros are register numbers. */
1028
1029/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1030/* #define PC_REGNUM */
1031
1032/* Register to use for pushing function arguments. */
1033#define STACK_POINTER_REGNUM 1
1034
1035/* Base register for access to local variables of the function. */
1036#define FRAME_POINTER_REGNUM 31
1037
1038/* Value should be nonzero if functions must have frame pointers.
1039 Zero means the frame pointer need not be set up (and parms
1040 may be accessed via the stack pointer) in functions that seem suitable.
1041 This is computed in `reload', in reload1.c. */
1042#define FRAME_POINTER_REQUIRED 0
1043
1044/* Base register for access to arguments of the function. */
1045#define ARG_POINTER_REGNUM 67
1046
1047/* Place to put static chain when calling a function that requires it. */
1048#define STATIC_CHAIN_REGNUM 11
1049
82e41834 1050/* Link register number. */
9ebbca7d 1051#define LINK_REGISTER_REGNUM 65
b6c9286a 1052
82e41834 1053/* Count register number. */
9ebbca7d 1054#define COUNT_REGISTER_REGNUM 66
802a0058 1055
f045b2c9
RS
1056/* Place that structure value return address is placed.
1057
1058 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1059#define STRUCT_VALUE 0
f045b2c9
RS
1060\f
1061/* Define the classes of registers for register constraints in the
1062 machine description. Also define ranges of constants.
1063
1064 One of the classes must always be named ALL_REGS and include all hard regs.
1065 If there is more than one class, another class must be named NO_REGS
1066 and contain no registers.
1067
1068 The name GENERAL_REGS must be the name of a class (or an alias for
1069 another name such as ALL_REGS). This is the class of registers
1070 that is allowed by "g" or "r" in a register constraint.
1071 Also, registers outside this class are allocated only when
1072 instructions express preferences for them.
1073
1074 The classes must be numbered in nondecreasing order; that is,
1075 a larger-numbered class must never be contained completely
1076 in a smaller-numbered class.
1077
1078 For any two classes, it is very desirable that there be another
1079 class that represents their union. */
c81bebd7 1080
f045b2c9
RS
1081/* The RS/6000 has three types of registers, fixed-point, floating-point,
1082 and condition registers, plus three special registers, MQ, CTR, and the
1083 link register.
1084
1085 However, r0 is special in that it cannot be used as a base register.
1086 So make a class for registers valid as base registers.
1087
1088 Also, cr0 is the only condition code register that can be used in
0d86f538 1089 arithmetic insns, so make a separate class for it. */
f045b2c9 1090
ebedb4dd
MM
1091enum reg_class
1092{
1093 NO_REGS,
ebedb4dd
MM
1094 BASE_REGS,
1095 GENERAL_REGS,
1096 FLOAT_REGS,
0ac081f6
AH
1097 ALTIVEC_REGS,
1098 VRSAVE_REGS,
5f004351 1099 VSCR_REGS,
a3170dc6
AH
1100 SPE_ACC_REGS,
1101 SPEFSCR_REGS,
ebedb4dd
MM
1102 NON_SPECIAL_REGS,
1103 MQ_REGS,
1104 LINK_REGS,
1105 CTR_REGS,
1106 LINK_OR_CTR_REGS,
1107 SPECIAL_REGS,
1108 SPEC_OR_GEN_REGS,
1109 CR0_REGS,
ebedb4dd
MM
1110 CR_REGS,
1111 NON_FLOAT_REGS,
9ebbca7d 1112 XER_REGS,
ebedb4dd
MM
1113 ALL_REGS,
1114 LIM_REG_CLASSES
1115};
f045b2c9
RS
1116
1117#define N_REG_CLASSES (int) LIM_REG_CLASSES
1118
82e41834 1119/* Give names of register classes as strings for dump file. */
f045b2c9 1120
ebedb4dd
MM
1121#define REG_CLASS_NAMES \
1122{ \
1123 "NO_REGS", \
ebedb4dd
MM
1124 "BASE_REGS", \
1125 "GENERAL_REGS", \
1126 "FLOAT_REGS", \
0ac081f6
AH
1127 "ALTIVEC_REGS", \
1128 "VRSAVE_REGS", \
5f004351 1129 "VSCR_REGS", \
a3170dc6
AH
1130 "SPE_ACC_REGS", \
1131 "SPEFSCR_REGS", \
ebedb4dd
MM
1132 "NON_SPECIAL_REGS", \
1133 "MQ_REGS", \
1134 "LINK_REGS", \
1135 "CTR_REGS", \
1136 "LINK_OR_CTR_REGS", \
1137 "SPECIAL_REGS", \
1138 "SPEC_OR_GEN_REGS", \
1139 "CR0_REGS", \
ebedb4dd
MM
1140 "CR_REGS", \
1141 "NON_FLOAT_REGS", \
9ebbca7d 1142 "XER_REGS", \
ebedb4dd
MM
1143 "ALL_REGS" \
1144}
f045b2c9
RS
1145
1146/* Define which registers fit in which classes.
1147 This is an initializer for a vector of HARD_REG_SET
1148 of length N_REG_CLASSES. */
1149
0ac081f6
AH
1150#define REG_CLASS_CONTENTS \
1151{ \
1152 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1153 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1154 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1155 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1156 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1157 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1158 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
a3170dc6
AH
1159 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1160 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
0ac081f6
AH
1161 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1162 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1163 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1164 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1165 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1166 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1167 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1168 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1169 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1170 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1171 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1172 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1173}
f045b2c9
RS
1174
1175/* The same information, inverted:
1176 Return the class number of the smallest class containing
1177 reg number REGNO. This could be a conditional expression
1178 or could index an array. */
1179
0d86f538
GK
1180#define REGNO_REG_CLASS(REGNO) \
1181 ((REGNO) == 0 ? GENERAL_REGS \
1182 : (REGNO) < 32 ? BASE_REGS \
1183 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1184 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1185 : (REGNO) == CR0_REGNO ? CR0_REGS \
1186 : CR_REGNO_P (REGNO) ? CR_REGS \
1187 : (REGNO) == MQ_REGNO ? MQ_REGS \
1188 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1189 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1190 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1191 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1192 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
5f004351 1193 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
a3170dc6
AH
1194 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1195 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
f045b2c9
RS
1196 : NO_REGS)
1197
1198/* The class value for index registers, and the one for base regs. */
1199#define INDEX_REG_CLASS GENERAL_REGS
1200#define BASE_REG_CLASS BASE_REGS
1201
1202/* Get reg_class from a letter such as appears in the machine description. */
1203
1204#define REG_CLASS_FROM_LETTER(C) \
1205 ((C) == 'f' ? FLOAT_REGS \
1206 : (C) == 'b' ? BASE_REGS \
1207 : (C) == 'h' ? SPECIAL_REGS \
1208 : (C) == 'q' ? MQ_REGS \
1209 : (C) == 'c' ? CTR_REGS \
1210 : (C) == 'l' ? LINK_REGS \
0ac081f6 1211 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1212 : (C) == 'x' ? CR0_REGS \
1213 : (C) == 'y' ? CR_REGS \
9ebbca7d 1214 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1215 : NO_REGS)
1216
1217/* The letters I, J, K, L, M, N, and P in a register constraint string
1218 can be used to stand for particular ranges of immediate operands.
1219 This macro defines what the ranges are.
1220 C is the letter, and VALUE is a constant value.
1221 Return 1 if VALUE is in the range specified by C.
1222
9615f239 1223 `I' is a signed 16-bit constant
f045b2c9
RS
1224 `J' is a constant with only the high-order 16 bits non-zero
1225 `K' is a constant with only the low-order 16 bits non-zero
9615f239 1226 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1227 `M' is a constant that is greater than 31
2bfcf297 1228 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1229 `O' is the constant zero
1230 `P' is a constant whose negation is a signed 16-bit constant */
1231
5b6f7b96
RK
1232#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1233 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1234 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1235 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1236 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1237 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1238 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1239 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1240 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1241 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1242 : 0)
1243
1244/* Similar, but for floating constants, and defining letters G and H.
1245 Here VALUE is the CONST_DOUBLE rtx itself.
1246
1247 We flag for special constants when we can copy the constant into
4e74d8ec 1248 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1249
c4c40373 1250 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1251
1252#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1253 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1254 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1255 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1256 : 0)
f045b2c9
RS
1257
1258/* Optional extra constraints for this machine.
1259
b6c9286a
MM
1260 'Q' means that is a memory operand that is just an offset from a reg.
1261 'R' is for AIX TOC entries.
a260abc9 1262 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1263 'T' is a constant that can be placed into a 32-bit mask operand
0ba1b2ff
AM
1264 'U' is for V.4 small data references.
1265 't' is for AND masks that can be performed by two rldic{l,r} insns. */
f045b2c9 1266
e8a8bc24
RK
1267#define EXTRA_CONSTRAINT(OP, C) \
1268 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1269 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b1765bde
DE
1270 : (C) == 'S' ? mask64_operand (OP, DImode) \
1271 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1272 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1273 && small_data_operand (OP, GET_MODE (OP))) \
0ba1b2ff
AM
1274 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1275 && (fixed_regs[CR0_REGNO] \
1276 || !logical_operand (OP, DImode)) \
1277 && !mask64_operand (OP, DImode)) \
e8a8bc24 1278 : 0)
f045b2c9
RS
1279
1280/* Given an rtx X being reloaded into a reg required to be
1281 in class CLASS, return the class of reg to actually use.
1282 In general this is just CLASS; but on some machines
c81bebd7 1283 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1284
1285 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1286 floating-point CONST_DOUBLE to force it to be copied to memory.
1287
1288 We also don't want to reload integer values into floating-point
1289 registers if we can at all help it. In fact, this can
1290 cause reload to abort, if it tries to generate a reload of CTR
1291 into a FP register and discovers it doesn't have the memory location
1292 required.
1293
1294 ??? Would it be a good idea to have reload do the converse, that is
1295 try to reload floating modes into FP registers if possible?
1296 */
f045b2c9 1297
802a0058 1298#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1299 (((GET_CODE (X) == CONST_DOUBLE \
1300 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1301 ? NO_REGS \
1302 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1303 && (CLASS) == NON_SPECIAL_REGS) \
1304 ? GENERAL_REGS \
1305 : (CLASS)))
c81bebd7 1306
f045b2c9
RS
1307/* Return the register class of a scratch register needed to copy IN into
1308 or out of a register in CLASS in MODE. If it can be done directly,
1309 NO_REGS is returned. */
1310
1311#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1312 secondary_reload_class (CLASS, MODE, IN)
1313
0ac081f6
AH
1314/* If we are copying between FP or AltiVec registers and anything
1315 else, we need a memory location. */
7ea555a4 1316
0ac081f6
AH
1317#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1318 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1319 || (CLASS2) == FLOAT_REGS \
1320 || (CLASS1) == ALTIVEC_REGS \
1321 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1322
f045b2c9
RS
1323/* Return the maximum number of consecutive registers
1324 needed to represent mode MODE in a register of class CLASS.
1325
1326 On RS/6000, this is the size of MODE in words,
1327 except in the FP regs, where a single reg is enough for two words. */
802a0058 1328#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1329 (((CLASS) == FLOAT_REGS) \
2e360ab3 1330 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1331 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1332
1333/* If defined, gives a class of registers that cannot be used as the
02188693 1334 operand of a SUBREG that changes the mode of the object illegally. */
580d3230 1335
02188693
RH
1336#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
1337
1338/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1339
1340#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1341 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
f045b2c9
RS
1342\f
1343/* Stack layout; function entry, exit and calling. */
1344
6b67933e
RK
1345/* Enumeration to give which calling sequence to use. */
1346enum rs6000_abi {
1347 ABI_NONE,
1348 ABI_AIX, /* IBM's AIX */
f607bc57
ZW
1349 ABI_AIX_NODESC, /* AIX calling sequence minus
1350 function descriptors */
b6c9286a 1351 ABI_V4, /* System V.4/eabi */
ee890fe2 1352 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1353};
1354
b6c9286a
MM
1355extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1356
4697a36c
MM
1357/* Structure used to define the rs6000 stack */
1358typedef struct rs6000_stack {
1359 int first_gp_reg_save; /* first callee saved GP register used */
1360 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1361 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1362 int lr_save_p; /* true if the link reg needs to be saved */
1363 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1364 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1365 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1366 int push_p; /* true if we need to allocate stack space */
1367 int calls_p; /* true if the function makes any calls */
6b67933e 1368 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1369 int gp_save_offset; /* offset to save GP regs from initial SP */
1370 int fp_save_offset; /* offset to save FP regs from initial SP */
00b960c7 1371 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
4697a36c
MM
1372 int lr_save_offset; /* offset to save LR from initial SP */
1373 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1374 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
a3170dc6 1375 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
b6c9286a 1376 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1377 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1378 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1379 int reg_size; /* register size (4 or 8) */
1380 int varargs_size; /* size to hold V.4 args passed in regs */
1381 int vars_size; /* variable save area size */
1382 int parm_size; /* outgoing parameter size */
1383 int save_size; /* save area size */
1384 int fixed_size; /* fixed size of stack frame */
1385 int gp_size; /* size of saved GP registers */
1386 int fp_size; /* size of saved FP registers */
00b960c7 1387 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1388 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1389 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1390 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1391 int altivec_padding_size; /* size of altivec alignment padding if
1392 not in save_size */
a3170dc6
AH
1393 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1394 int spe_padding_size;
b6c9286a 1395 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1396 int total_size; /* total bytes allocated for stack */
1397} rs6000_stack_t;
1398
f045b2c9
RS
1399/* Define this if pushing a word on the stack
1400 makes the stack pointer a smaller address. */
1401#define STACK_GROWS_DOWNWARD
1402
1403/* Define this if the nominal address of the stack frame
1404 is at the high-address end of the local variables;
1405 that is, each additional local variable allocated
1406 goes at a more negative offset in the frame.
1407
1408 On the RS/6000, we grow upwards, from the area after the outgoing
1409 arguments. */
1410/* #define FRAME_GROWS_DOWNWARD */
1411
4697a36c 1412/* Size of the outgoing register save area */
9ebbca7d 1413#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1414 || DEFAULT_ABI == ABI_AIX_NODESC \
1415 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1416 ? (TARGET_64BIT ? 64 : 32) \
1417 : 0)
4697a36c
MM
1418
1419/* Size of the fixed area on the stack */
9ebbca7d 1420#define RS6000_SAVE_AREA \
ee890fe2 1421 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1422 << (TARGET_64BIT ? 1 : 0))
4697a36c 1423
97f6e72f
DE
1424/* MEM representing address to save the TOC register */
1425#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1426 plus_constant (stack_pointer_rtx, \
1427 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1428
4697a36c
MM
1429/* Size of the V.4 varargs area if needed */
1430#define RS6000_VARARGS_AREA 0
1431
4697a36c 1432/* Align an address */
ed33106f 1433#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1434
1435/* Size of V.4 varargs area in bytes */
1436#define RS6000_VARARGS_SIZE \
2f3e5814 1437 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1438
f045b2c9
RS
1439/* Offset within stack frame to start allocating local variables at.
1440 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1441 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1442 of the first local allocated.
f045b2c9
RS
1443
1444 On the RS/6000, the frame pointer is the same as the stack pointer,
1445 except for dynamic allocations. So we start after the fixed area and
1446 outgoing parameter area. */
1447
802a0058 1448#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1449 (RS6000_ALIGN (current_function_outgoing_args_size, \
1450 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1451 + RS6000_VARARGS_AREA \
1452 + RS6000_SAVE_AREA)
1453
1454/* Offset from the stack pointer register to an item dynamically
1455 allocated on the stack, e.g., by `alloca'.
1456
1457 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1458 length of the outgoing arguments. The default is correct for most
1459 machines. See `function.c' for details. */
1460#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1461 (RS6000_ALIGN (current_function_outgoing_args_size, \
1462 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1463 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1464
1465/* If we generate an insn to push BYTES bytes,
1466 this says how many the stack pointer really advances by.
1467 On RS/6000, don't define this because there are no push insns. */
1468/* #define PUSH_ROUNDING(BYTES) */
1469
1470/* Offset of first parameter from the argument pointer register value.
1471 On the RS/6000, we define the argument pointer to the start of the fixed
1472 area. */
4697a36c 1473#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1474
62153b61
JM
1475/* Offset from the argument pointer register value to the top of
1476 stack. This is different from FIRST_PARM_OFFSET because of the
1477 register save area. */
1478#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1479
f045b2c9
RS
1480/* Define this if stack space is still allocated for a parameter passed
1481 in a register. The value is the number of bytes allocated to this
1482 area. */
4697a36c 1483#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1484
1485/* Define this if the above stack space is to be considered part of the
1486 space allocated by the caller. */
1487#define OUTGOING_REG_PARM_STACK_SPACE
1488
1489/* This is the difference between the logical top of stack and the actual sp.
1490
82e41834 1491 For the RS/6000, sp points past the fixed area. */
4697a36c 1492#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1493
1494/* Define this if the maximum size of all the outgoing args is to be
1495 accumulated and pushed during the prologue. The amount can be
1496 found in the variable current_function_outgoing_args_size. */
f73ad30e 1497#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1498
1499/* Value is the number of bytes of arguments automatically
1500 popped when returning from a subroutine call.
8b109b37 1501 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1502 FUNTYPE is the data type of the function (as a tree),
1503 or for a library call it is an identifier node for the subroutine name.
1504 SIZE is the number of bytes of arguments passed on the stack. */
1505
8b109b37 1506#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1507
1508/* Define how to find the value returned by a function.
1509 VALTYPE is the data type of the value (as a tree).
1510 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1511 otherwise, FUNC is 0.
1512
a3170dc6
AH
1513 On the SPE, both FPs and vectors are returned in r3.
1514
c81bebd7 1515 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1516 fp1, unless -msoft-float. */
f045b2c9 1517
39403d82
DE
1518#define FUNCTION_VALUE(VALTYPE, FUNC) \
1519 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1520 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1521 || POINTER_TYPE_P (VALTYPE) \
1522 ? word_mode : TYPE_MODE (VALTYPE), \
16861f33
AH
1523 TREE_CODE (VALTYPE) == VECTOR_TYPE \
1524 && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN \
a3170dc6
AH
1525 : TREE_CODE (VALTYPE) == REAL_TYPE \
1526 && TARGET_SPE_ABI && !TARGET_FPRS \
1527 ? GP_ARG_RETURN \
1528 : TREE_CODE (VALTYPE) == REAL_TYPE \
1529 && TARGET_HARD_FLOAT && TARGET_FPRS \
e9cf9523 1530 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9
RS
1531
1532/* Define how to find the value returned by a library function
1533 assuming the value has mode MODE. */
1534
0ac081f6
AH
1535#define LIBCALL_VALUE(MODE) \
1536 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1537 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
a3170dc6 1538 && TARGET_HARD_FLOAT && TARGET_FPRS \
0ac081f6 1539 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9 1540
6fa3f289
ZW
1541/* The AIX ABI for the RS/6000 specifies that all structures are
1542 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1543 specifies that structures <= 8 bytes are returned in r3/r4, but a
1544 draft put them in memory, and GCC used to implement the draft
1545 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1546 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1547 compatibility can change DRAFT_V4_STRUCT_RET to override the
1548 default, and -m switches get the final word. See
52acbdcb
ZW
1549 rs6000_override_options for more details.
1550
1551 int_size_in_bytes returns -1 for variable size objects, which go in
1552 memory always. The cast to unsigned makes -1 > 8. */
1553
6fa3f289
ZW
1554#define RETURN_IN_MEMORY(TYPE) \
1555 (AGGREGATE_TYPE_P (TYPE) && \
52acbdcb 1556 (TARGET_AIX_STRUCT_RET || \
0c769cf8 1557 (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8))
f045b2c9 1558
6fa3f289
ZW
1559/* DRAFT_V4_STRUCT_RET defaults off. */
1560#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1561
1562/* Let RETURN_IN_MEMORY control what happens. */
1563#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1564
a260abc9 1565/* Mode of stack savearea.
dfdfa60f
DE
1566 FUNCTION is VOIDmode because calling convention maintains SP.
1567 BLOCK needs Pmode for SP.
a260abc9
DE
1568 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1569#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1570 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1571 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1572
4697a36c
MM
1573/* Minimum and maximum general purpose registers used to hold arguments. */
1574#define GP_ARG_MIN_REG 3
1575#define GP_ARG_MAX_REG 10
1576#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1577
1578/* Minimum and maximum floating point registers used to hold arguments. */
1579#define FP_ARG_MIN_REG 33
7509c759
MM
1580#define FP_ARG_AIX_MAX_REG 45
1581#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1582#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1583 || DEFAULT_ABI == ABI_AIX_NODESC \
1584 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1585 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1586#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1587
0ac081f6
AH
1588/* Minimum and maximum AltiVec registers used to hold arguments. */
1589#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1590#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1591#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1592
4697a36c
MM
1593/* Return registers */
1594#define GP_ARG_RETURN GP_ARG_MIN_REG
1595#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1596#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1597
7509c759 1598/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1599#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1600/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1601#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1602#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1603#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1604
f045b2c9
RS
1605/* 1 if N is a possible register number for a function value
1606 as seen by the caller.
1607
0ac081f6
AH
1608 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1609#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1610 || ((N) == FP_ARG_RETURN) \
1611 || (TARGET_ALTIVEC && \
1612 (N) == ALTIVEC_ARG_RETURN))
f045b2c9
RS
1613
1614/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1615 On RS/6000, these are r3-r10 and fp1-fp13.
1616 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1617#define FUNCTION_ARG_REGNO_P(N) \
b1765bde 1618 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
0ac081f6 1619 || (TARGET_ALTIVEC && \
1a3ab9e1 1620 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
6d0f55e6 1621 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1622
f045b2c9 1623\f
00dba523
NC
1624/* A C structure for machine-specific, per-function data.
1625 This is added to the cfun structure. */
e2500fed 1626typedef struct machine_function GTY(())
00dba523
NC
1627{
1628 /* Whether a System V.4 varargs area was created. */
1629 int sysv_varargs_p;
71f123ca
FS
1630 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1631 int ra_needs_full_frame;
00dba523
NC
1632} machine_function;
1633
f045b2c9
RS
1634/* Define a data type for recording info about an argument list
1635 during the scan of that argument list. This data type should
1636 hold all necessary information about the function itself
1637 and about the args processed so far, enough to enable macros
1638 such as FUNCTION_ARG to determine where the next arg should go.
1639
1640 On the RS/6000, this is a structure. The first element is the number of
1641 total argument words, the second is used to store the next
1642 floating-point register number, and the third says how many more args we
4697a36c
MM
1643 have prototype types for.
1644
4cc833b7
RH
1645 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1646 the next availible GP register, `fregno' is the next available FP
1647 register, and `words' is the number of words used on the stack.
1648
bd227acc 1649 The varargs/stdarg support requires that this structure's size
4cc833b7 1650 be a multiple of sizeof(int). */
4697a36c
MM
1651
1652typedef struct rs6000_args
1653{
4cc833b7 1654 int words; /* # words used for passing GP registers */
6a4cee5f 1655 int fregno; /* next available FP register */
0ac081f6 1656 int vregno; /* next available AltiVec register */
6a4cee5f
MM
1657 int nargs_prototype; /* # args left in the current prototype */
1658 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1659 int prototype; /* Whether a prototype was defined */
1660 int call_cookie; /* Do special things for this call */
4cc833b7 1661 int sysv_gregno; /* next available GP register */
4697a36c 1662} CUMULATIVE_ARGS;
f045b2c9
RS
1663
1664/* Define intermediate macro to compute the size (in registers) of an argument
1665 for the RS/6000. */
1666
d34c5b80
DE
1667#define RS6000_ARG_SIZE(MODE, TYPE) \
1668((MODE) != BLKmode \
c5d71f39 1669 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
0c769cf8 1670 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1671
1672/* Initialize a variable CUM of type CUMULATIVE_ARGS
1673 for a call to a function whose data type is FNTYPE.
1674 For a library call, FNTYPE is 0. */
1675
2c7ee1a6 1676#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1677 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1678
1679/* Similar, but when scanning the definition of a procedure. We always
1680 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1681
4697a36c
MM
1682#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1683 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1684
1685/* Update the data in CUM to advance over an argument
1686 of mode MODE and data type TYPE.
1687 (TYPE is null for libcalls where that information may not be available.) */
1688
1689#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1690 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1691
1692/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1693#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1694 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1695 && (CUM).fregno <= FP_ARG_MAX_REG \
a3170dc6 1696 && TARGET_HARD_FLOAT && TARGET_FPRS)
f045b2c9 1697
0ac081f6
AH
1698/* Non-zero if we can use an AltiVec register to pass this arg. */
1699#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1700 (ALTIVEC_VECTOR_MODE (MODE) \
1701 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1702 && TARGET_ALTIVEC_ABI)
1703
f045b2c9
RS
1704/* Determine where to put an argument to a function.
1705 Value is zero to push the argument on the stack,
1706 or a hard register in which to store the argument.
1707
1708 MODE is the argument's machine mode.
1709 TYPE is the data type of the argument (as a tree).
1710 This is null for libcalls where that information may
1711 not be available.
1712 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1713 the preceding args and about the function being called.
1714 NAMED is nonzero if this argument is a named parameter
1715 (otherwise it is an extra parameter matching an ellipsis).
1716
1717 On RS/6000 the first eight words of non-FP are normally in registers
1718 and the rest are pushed. The first 13 FP args are in registers.
1719
1720 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1721 both an FP and integer register (or possibly FP reg and stack). Library
1722 functions (when TYPE is zero) always have the proper types for args,
1723 so we can pass the FP value just in one register. emit_library_function
1724 doesn't support EXPR_LIST anyway. */
f045b2c9 1725
4697a36c
MM
1726#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1727 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1728
1729/* For an arg passed partly in registers and partly in memory,
1730 this is the number of registers used.
1731 For args passed entirely in registers or entirely in memory, zero. */
1732
4697a36c
MM
1733#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1734 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1735
1736/* A C expression that indicates when an argument must be passed by
1737 reference. If nonzero for an argument, a copy of that argument is
1738 made in memory and a pointer to the argument is passed instead of
1739 the argument itself. The pointer is passed in whatever way is
82e41834 1740 appropriate for passing a pointer to that type. */
4697a36c
MM
1741
1742#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1743 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1744
c229cba9
DE
1745/* If defined, a C expression which determines whether, and in which
1746 direction, to pad out an argument with extra space. The value
1747 should be of type `enum direction': either `upward' to pad above
1748 the argument, `downward' to pad below, or `none' to inhibit
1749 padding. */
1750
9ebbca7d 1751#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1752
b6c9286a 1753/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1754 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1755 PARM_BOUNDARY is used for all arguments. */
1756
1757#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1758 function_arg_boundary (MODE, TYPE)
1759
f045b2c9 1760/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1761 variable number of arguments.
f045b2c9
RS
1762
1763 CUM is as above.
1764
1765 MODE and TYPE are the mode and type of the current parameter.
1766
1767 PRETEND_SIZE is a variable that should be set to the amount of stack
1768 that must be pushed by the prolog to pretend that our caller pushed
1769 it.
1770
1771 Normally, this macro will push all remaining incoming registers on the
1772 stack and set PRETEND_SIZE to the length of the registers pushed. */
1773
4697a36c
MM
1774#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1775 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1776
dfafc897
FS
1777/* Define the `__builtin_va_list' type for the ABI. */
1778#define BUILD_VA_LIST_TYPE(VALIST) \
1779 (VALIST) = rs6000_build_va_list ()
4697a36c 1780
dfafc897 1781/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1782#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1783 rs6000_va_start (valist, nextarg)
dfafc897
FS
1784
1785/* Implement `va_arg'. */
1786#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1787 rs6000_va_arg (valist, type)
f045b2c9 1788
2a55fd42
DE
1789/* For AIX, the rule is that structures are passed left-aligned in
1790 their stack slot. However, GCC does not presently do this:
1791 structures which are the same size as integer types are passed
1792 right-aligned, as if they were in fact integers. This only
1793 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1794 ABI_V4 does not use std_expand_builtin_va_arg. */
1795#define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1796
d34c5b80
DE
1797/* Define this macro to be a nonzero value if the location where a function
1798 argument is passed depends on whether or not it is a named argument. */
1799#define STRICT_ARGUMENT_NAMING 1
1800
5e1bf043
DJ
1801/* We do not allow indirect calls to be optimized into sibling calls, nor
1802 do we allow calls with vector parameters. */
1803#define FUNCTION_OK_FOR_SIBCALL(DECL) function_ok_for_sibcall ((DECL))
1804
f045b2c9 1805/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1806 for profiling a function entry. */
f045b2c9
RS
1807
1808#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1809 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1810
1811/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1812 the stack pointer does not matter. No definition is equivalent to
1813 always zero.
1814
1815 On the RS/6000, this is non-zero because we can restore the stack from
1816 its backpointer, which we maintain. */
1817#define EXIT_IGNORE_STACK 1
1818
a701949a
FS
1819/* Define this macro as a C expression that is nonzero for registers
1820 that are used by the epilogue or the return' pattern. The stack
1821 and frame pointer registers are already be assumed to be used as
1822 needed. */
1823
83720594
RH
1824#define EPILOGUE_USES(REGNO) \
1825 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1826 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1827 || (current_function_calls_eh_return \
3553b09d 1828 && TARGET_AIX \
83720594 1829 && (REGNO) == TOC_REGISTER))
2bfcf297 1830
f045b2c9 1831\f
eaf1bcf1 1832/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1833
1834/* Length in units of the trampoline for entering a nested function. */
1835
b6c9286a 1836#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1837
1838/* Emit RTL insns to initialize the variable parts of a trampoline.
1839 FNADDR is an RTX for the address of the function's pure code.
1840 CXT is an RTX for the static chain value for the function. */
1841
1842#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1843 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1844\f
f33985c6
MS
1845/* Definitions for __builtin_return_address and __builtin_frame_address.
1846 __builtin_return_address (0) should give link register (65), enable
82e41834 1847 this. */
f33985c6
MS
1848/* This should be uncommented, so that the link register is used, but
1849 currently this would result in unmatched insns and spilling fixed
1850 registers so we'll leave it for another day. When these problems are
1851 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1852 (mrs) */
1853/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1854
b6c9286a
MM
1855/* Number of bytes into the frame return addresses can be found. See
1856 rs6000_stack_info in rs6000.c for more information on how the different
1857 abi's store the return address. */
1858#define RETURN_ADDRESS_OFFSET \
1859 ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1860 || DEFAULT_ABI == ABI_DARWIN \
05ef2698 1861 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1862 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1863 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1864
f33985c6
MS
1865/* The current return address is in link register (65). The return address
1866 of anything farther back is accessed normally at an offset of 8 from the
1867 frame pointer. */
71f123ca
FS
1868#define RETURN_ADDR_RTX(COUNT, FRAME) \
1869 (rs6000_return_addr (COUNT, FRAME))
1870
f33985c6 1871\f
f045b2c9
RS
1872/* Definitions for register eliminations.
1873
1874 We have two registers that can be eliminated on the RS/6000. First, the
1875 frame pointer register can often be eliminated in favor of the stack
1876 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1877 eliminated; it is replaced with either the stack or frame pointer.
1878
1879 In addition, we use the elimination mechanism to see if r30 is needed
1880 Initially we assume that it isn't. If it is, we spill it. This is done
1881 by making it an eliminable register. We replace it with itself so that
1882 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1883
1884/* This is an array of structures. Each structure initializes one pair
1885 of eliminable registers. The "from" register number is given first,
1886 followed by "to". Eliminations of the same "from" register are listed
1887 in order of preference. */
1888#define ELIMINABLE_REGS \
1889{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1890 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1891 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1892 { 30, 30} }
f045b2c9
RS
1893
1894/* Given FROM and TO register numbers, say whether this elimination is allowed.
1895 Frame pointer elimination is automatically handled.
1896
1897 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1898 to convert ap into fp, not sp.
1899
abc95ed3 1900 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1901 references. */
f045b2c9
RS
1902
1903#define CAN_ELIMINATE(FROM, TO) \
1904 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1905 ? ! frame_pointer_needed \
4697a36c 1906 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1907 : 1)
1908
1909/* Define the offset between two registers, one to be eliminated, and the other
1910 its replacement, at the start of a routine. */
1911#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1912{ \
4697a36c 1913 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1914 \
1915 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1916 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1917 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1918 (OFFSET) = info->total_size; \
1919 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1920 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1921 else if ((FROM) == 30) \
1922 (OFFSET) = 0; \
f045b2c9
RS
1923 else \
1924 abort (); \
1925}
1926\f
1927/* Addressing modes, and classification of registers for them. */
1928
940da324
JL
1929/* #define HAVE_POST_INCREMENT 0 */
1930/* #define HAVE_POST_DECREMENT 0 */
f045b2c9 1931
940da324
JL
1932#define HAVE_PRE_DECREMENT 1
1933#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1934
1935/* Macros to check register numbers against specific register classes. */
1936
1937/* These assume that REGNO is a hard or pseudo reg number.
1938 They give nonzero only if REGNO is a hard reg of the suitable class
1939 or a pseudo reg currently allocated to a suitable hard reg.
1940 Since they use reg_renumber, they are safe only once reg_renumber
1941 has been allocated, which happens in local-alloc.c. */
1942
1943#define REGNO_OK_FOR_INDEX_P(REGNO) \
1944((REGNO) < FIRST_PSEUDO_REGISTER \
1945 ? (REGNO) <= 31 || (REGNO) == 67 \
1946 : (reg_renumber[REGNO] >= 0 \
1947 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1948
1949#define REGNO_OK_FOR_BASE_P(REGNO) \
1950((REGNO) < FIRST_PSEUDO_REGISTER \
1951 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1952 : (reg_renumber[REGNO] > 0 \
1953 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1954\f
1955/* Maximum number of registers that can appear in a valid memory address. */
1956
1957#define MAX_REGS_PER_ADDRESS 2
1958
1959/* Recognize any constant value that is a valid address. */
1960
6eff269e
BK
1961#define CONSTANT_ADDRESS_P(X) \
1962 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1963 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1964 || GET_CODE (X) == HIGH)
f045b2c9
RS
1965
1966/* Nonzero if the constant value X is a legitimate general operand.
1967 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1968
1969 On the RS/6000, all integer constants are acceptable, most won't be valid
1970 for particular insns, though. Only easy FP constants are
1971 acceptable. */
1972
1973#define LEGITIMATE_CONSTANT_P(X) \
1974 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1975 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1976 || easy_fp_constant (X, GET_MODE (X)))
1977
1978/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1979 and check its validity for a certain class.
1980 We have two alternate definitions for each of them.
1981 The usual definition accepts all pseudo regs; the other rejects
1982 them unless they have been allocated suitable hard regs.
1983 The symbol REG_OK_STRICT causes the latter definition to be used.
1984
1985 Most source files want to accept pseudo regs in the hope that
1986 they will get allocated to the class that the insn wants them to be in.
1987 Source files for reload pass need to be strict.
1988 After reload, it makes no difference, since pseudo regs have
1989 been eliminated by then. */
1990
258bfae2
FS
1991#ifdef REG_OK_STRICT
1992# define REG_OK_STRICT_FLAG 1
1993#else
1994# define REG_OK_STRICT_FLAG 0
1995#endif
f045b2c9
RS
1996
1997/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1998 or if it is a pseudo reg in the non-strict case. */
1999#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2000 ((! (STRICT) \
2001 && (REGNO (X) <= 31 \
2002 || REGNO (X) == ARG_POINTER_REGNUM \
2003 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2004 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
2005
2006/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
2007 or if it is a pseudo reg in the non-strict case. */
2008#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2009 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 2010
258bfae2
FS
2011#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2012#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
2013\f
2014/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2015 that is a valid memory address for an instruction.
2016 The MODE argument is the machine mode for the MEM expression
2017 that wants to use this address.
2018
2019 On the RS/6000, there are four valid address: a SYMBOL_REF that
2020 refers to a constant pool entry of an address (or the sum of it
2021 plus a constant), a short (16-bit signed) constant plus a register,
2022 the sum of two registers, or a register indirect, possibly with an
2023 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 2024 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
2025 word aligned.
2026
2027 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2028 32-bit DImode, TImode), indexed addressing cannot be used because
2029 adjacent memory cells are accessed by adding word-sized offsets
2030 during assembly output. */
f045b2c9 2031
9ebbca7d
GK
2032#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2033
2034#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
f045b2c9 2035
17072732 2036/* SPE offset addressing is limited to 5-bits worth of double words. */
88c38659 2037#define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
a3170dc6 2038
f045b2c9 2039#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
9ebbca7d
GK
2040 (TARGET_TOC \
2041 && GET_CODE (X) == PLUS \
2042 && GET_CODE (XEXP (X, 0)) == REG \
2043 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
2044 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
f045b2c9 2045
7509c759 2046#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
f607bc57 2047 (DEFAULT_ABI == ABI_V4 \
81795281 2048 && !flag_pic && !TARGET_TOC \
88228c4b
MM
2049 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
2050 && small_data_operand (X, MODE))
7509c759 2051
258bfae2 2052#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
f045b2c9 2053 (GET_CODE (X) == CONST_INT \
5b6f7b96 2054 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9 2055
258bfae2
FS
2056#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
2057 (GET_CODE (X) == PLUS \
2058 && GET_CODE (XEXP (X, 0)) == REG \
2059 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2060 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
37fa124a
AM
2061 && (! ALTIVEC_VECTOR_MODE (MODE) \
2062 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
a3170dc6
AH
2063 && (! SPE_VECTOR_MODE (MODE) \
2064 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
2065 && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1))))) \
258bfae2
FS
2066 && (((MODE) != DFmode && (MODE) != DImode) \
2067 || (TARGET_32BIT \
2068 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
2069 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2070 && ((MODE) != TImode \
2071 || (TARGET_32BIT \
2072 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
2073 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1465faec 2074 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9 2075
258bfae2
FS
2076#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2077 (GET_CODE (X) == PLUS \
2078 && GET_CODE (XEXP (X, 0)) == REG \
2079 && GET_CODE (XEXP (X, 1)) == REG \
2080 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2081 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2082 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2083 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2084
2085#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2086 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2087
6ac7bf2c
GK
2088#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2089 (TARGET_ELF \
2090 && ! flag_pic && ! TARGET_TOC \
2091 && GET_MODE_NUNITS (MODE) == 1 \
2092 && (GET_MODE_BITSIZE (MODE) <= 32 \
a3170dc6 2093 || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode)) \
6ac7bf2c
GK
2094 && GET_CODE (X) == LO_SUM \
2095 && GET_CODE (XEXP (X, 0)) == REG \
2096 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
4697a36c
MM
2097 && CONSTANT_P (XEXP (X, 1)))
2098
258bfae2
FS
2099#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2100{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2101 goto ADDR; \
f045b2c9
RS
2102}
2103\f
2104/* Try machine-dependent ways of modifying an illegitimate address
2105 to be legitimate. If we find one, return the new, valid address.
2106 This macro is used in only one place: `memory_address' in explow.c.
2107
2108 OLDX is the address as it was before break_out_memory_refs was called.
2109 In some cases it is useful to look at this to decide what needs to be done.
2110
2111 MODE and WIN are passed so that this macro can use
2112 GO_IF_LEGITIMATE_ADDRESS.
2113
2114 It is always safe for this macro to do nothing. It exists to recognize
2115 opportunities to optimize the output.
2116
2117 On RS/6000, first check for the sum of a register with a constant
2118 integer that is out of range. If so, generate code to add the
2119 constant with the low-order 16 bits masked to the register and force
2120 this result into another register (this can be done with `cau').
c81bebd7 2121 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2122 possibility of bit 16 being a one.
2123
2124 Then check for the sum of a register and something not constant, try to
2125 load the other things into a register and return the sum. */
2126
9ebbca7d
GK
2127#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2128{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2129 if (result != NULL_RTX) \
2130 { \
2131 (X) = result; \
2132 goto WIN; \
2133 } \
f045b2c9
RS
2134}
2135
a260abc9
DE
2136/* Try a machine-dependent way of reloading an illegitimate address
2137 operand. If we find one, push the reload and jump to WIN. This
2138 macro is used in only one place: `find_reloads_address' in reload.c.
2139
24ea750e
DJ
2140 Implemented on rs6000 by rs6000_legitimize_reload_address.
2141 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2142
a9098fd0
GK
2143#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2144do { \
24ea750e
DJ
2145 int win; \
2146 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2147 (int)(TYPE), (IND_LEVELS), &win); \
2148 if ( win ) \
2149 goto WIN; \
a260abc9
DE
2150} while (0)
2151
f045b2c9
RS
2152/* Go to LABEL if ADDR (a legitimate address expression)
2153 has an effect that depends on the machine mode it is used for.
2154
2155 On the RS/6000 this is true if the address is valid with a zero offset
2156 but not with an offset of four (this means it cannot be used as an
2157 address for DImode or DFmode) or is a pre-increment or decrement. Since
2158 we know it is valid, we just check for an address that is not valid with
2159 an offset of four. */
2160
2161#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2162{ if (GET_CODE (ADDR) == PLUS \
2163 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2164 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2165 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2166 goto LABEL; \
38c1f2d7 2167 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2168 goto LABEL; \
38c1f2d7 2169 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2170 goto LABEL; \
4697a36c
MM
2171 if (GET_CODE (ADDR) == LO_SUM) \
2172 goto LABEL; \
f045b2c9 2173}
766a866c
MM
2174\f
2175/* The register number of the register used to address a table of
2176 static data addresses in memory. In some cases this register is
2177 defined by a processor's "application binary interface" (ABI).
2178 When this macro is defined, RTL is generated for this register
2179 once, as with the stack pointer and frame pointer registers. If
2180 this macro is not defined, it is up to the machine-dependent files
2181 to allocate such a register (if necessary). */
2182
1db02437
FS
2183#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2184#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2185
9ebbca7d
GK
2186#define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
2187
766a866c
MM
2188/* Define this macro if the register defined by
2189 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2190 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2191
2192/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2193
2194/* By generating position-independent code, when two different
2195 programs (A and B) share a common library (libC.a), the text of
2196 the library can be shared whether or not the library is linked at
2197 the same address for both programs. In some of these
2198 environments, position-independent code requires not only the use
2199 of different addressing modes, but also special code to enable the
2200 use of these addressing modes.
2201
2202 The `FINALIZE_PIC' macro serves as a hook to emit these special
2203 codes once the function is being compiled into assembly code, but
2204 not before. (It is not done before, because in the case of
2205 compiling an inline function, it would lead to multiple PIC
2206 prologues being included in functions which used inline functions
2207 and were compiled to assembly language.) */
2208
8d30c4ee 2209/* #define FINALIZE_PIC */
766a866c 2210
766a866c
MM
2211/* A C expression that is nonzero if X is a legitimate immediate
2212 operand on the target machine when generating position independent
2213 code. You can assume that X satisfies `CONSTANT_P', so you need
2214 not check this. You can also assume FLAG_PIC is true, so you need
2215 not check it either. You need not define this macro if all
2216 constants (including `SYMBOL_REF') can be immediate operands when
2217 generating position independent code. */
2218
2219/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2220
30ea98f1
MM
2221/* In rare cases, correct code generation requires extra machine
2222 dependent processing between the second jump optimization pass and
2223 delayed branch scheduling. On those machines, define this macro
9ebbca7d 2224 as a C statement to act on the code starting at INSN. */
30ea98f1 2225
9ebbca7d 2226/* #define MACHINE_DEPENDENT_REORG(INSN) */
30ea98f1 2227
f045b2c9
RS
2228\f
2229/* Define this if some processing needs to be done immediately before
4255474b 2230 emitting code for an insn. */
f045b2c9 2231
4255474b 2232/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2233
2234/* Specify the machine mode that this machine uses
2235 for the index in the tablejump instruction. */
e1565e65 2236#define CASE_VECTOR_MODE SImode
f045b2c9 2237
18543a22
ILT
2238/* Define as C expression which evaluates to nonzero if the tablejump
2239 instruction expects the table to contain offsets from the address of the
2240 table.
82e41834 2241 Do not define this if the table should contain absolute addresses. */
18543a22 2242#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2243
f045b2c9
RS
2244/* Define this as 1 if `char' should by default be signed; else as 0. */
2245#define DEFAULT_SIGNED_CHAR 0
2246
2247/* This flag, if defined, says the same insns that convert to a signed fixnum
2248 also convert validly to an unsigned one. */
2249
2250/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2251
2252/* Max number of bytes we can move from memory to memory
2253 in one reasonably fast instruction. */
2f3e5814 2254#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2255#define MAX_MOVE_MAX 8
f045b2c9
RS
2256
2257/* Nonzero if access to memory by bytes is no faster than for words.
2258 Also non-zero if doing byte operations (specifically shifts) in registers
2259 is undesirable. */
2260#define SLOW_BYTE_ACCESS 1
2261
9a63901f
RK
2262/* Define if operations between registers always perform the operation
2263 on the full register even if a narrower mode is specified. */
2264#define WORD_REGISTER_OPERATIONS
2265
2266/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2267 will either zero-extend or sign-extend. The value of this macro should
2268 be the code that says which one of the two operations is implicitly
2269 done, NIL if none. */
2270#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2271
2272/* Define if loading short immediate values into registers sign extends. */
2273#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2274\f
f045b2c9
RS
2275/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2276 is done just by pretending it is already truncated. */
2277#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2278
2279/* Specify the machine mode that pointers have.
2280 After generation of rtl, the compiler makes no further distinction
2281 between pointers and any other objects of this machine mode. */
2f3e5814 2282#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2283
2284/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2285 Doesn't matter on RS/6000. */
2f3e5814 2286#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2287
2288/* Define this if addresses of constant functions
2289 shouldn't be put through pseudo regs where they can be cse'd.
2290 Desirable on machines where ordinary constants are expensive
2291 but a CALL with constant address is cheap. */
2292#define NO_FUNCTION_CSE
2293
d969caf8 2294/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2295 few bits.
2296
2297 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2298 have been dropped from the PowerPC architecture. */
2299
4697a36c 2300#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2301
f045b2c9
RS
2302/* Compute the cost of computing a constant rtl expression RTX
2303 whose rtx-code is CODE. The body of this macro is a portion
2304 of a switch statement. If the code is computed here,
2305 return it with a return statement. Otherwise, break from the switch.
2306
01554f00 2307 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2308 always returns 0. */
2309
4697a36c 2310#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2311 case CONST_INT: \
2312 case CONST: \
2313 case LABEL_REF: \
2314 case SYMBOL_REF: \
2315 case CONST_DOUBLE: \
4697a36c 2316 case HIGH: \
f045b2c9
RS
2317 return 0;
2318
2319/* Provide the costs of a rtl expression. This is in the body of a
2320 switch on CODE. */
2321
38c1f2d7
MM
2322#define RTX_COSTS(X,CODE,OUTER_CODE) \
2323 case PLUS: \
2324 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2325 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2326 + 0x8000) >= 0x10000) \
296b8152 2327 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2328 ? COSTS_N_INSNS (2) \
2329 : COSTS_N_INSNS (1)); \
2330 case AND: \
38c1f2d7
MM
2331 case IOR: \
2332 case XOR: \
a260abc9
DE
2333 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2334 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2335 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2336 ? COSTS_N_INSNS (2) \
2337 : COSTS_N_INSNS (1)); \
2338 case MULT: \
055dd007
DE
2339 if (optimize_size) \
2340 return COSTS_N_INSNS (2); \
38c1f2d7
MM
2341 switch (rs6000_cpu) \
2342 { \
2343 case PROCESSOR_RIOS1: \
fe7f5677 2344 case PROCESSOR_PPC405: \
38c1f2d7
MM
2345 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2346 ? COSTS_N_INSNS (5) \
2347 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2348 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
3cb999d8
DE
2349 case PROCESSOR_RS64A: \
2350 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2351 ? GET_MODE (XEXP (X, 1)) != DImode \
2352 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2353 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
fe7f5677 2354 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
38c1f2d7
MM
2355 case PROCESSOR_RIOS2: \
2356 case PROCESSOR_MPCCORE: \
5a41b476 2357 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2358 return COSTS_N_INSNS (2); \
2359 case PROCESSOR_PPC601: \
2360 return COSTS_N_INSNS (5); \
2361 case PROCESSOR_PPC603: \
7960cfbb 2362 case PROCESSOR_PPC7400: \
bef84347 2363 case PROCESSOR_PPC750: \
38c1f2d7
MM
2364 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2365 ? COSTS_N_INSNS (5) \
2366 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2367 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
fd3b43f2
DJ
2368 case PROCESSOR_PPC7450: \
2369 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2370 ? COSTS_N_INSNS (4) \
2371 : COSTS_N_INSNS (3)); \
38c1f2d7
MM
2372 case PROCESSOR_PPC403: \
2373 case PROCESSOR_PPC604: \
a23acaa6 2374 case PROCESSOR_PPC8540: \
38c1f2d7 2375 return COSTS_N_INSNS (4); \
3cb999d8
DE
2376 case PROCESSOR_PPC620: \
2377 case PROCESSOR_PPC630: \
309323c2 2378 case PROCESSOR_POWER4: \
3cb999d8
DE
2379 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2380 ? GET_MODE (XEXP (X, 1)) != DImode \
fe7f5677 2381 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
3cb999d8
DE
2382 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2383 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
38c1f2d7
MM
2384 } \
2385 case DIV: \
2386 case MOD: \
2387 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2388 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2389 return COSTS_N_INSNS (2); \
2390 /* otherwise fall through to normal divide. */ \
2391 case UDIV: \
2392 case UMOD: \
2393 switch (rs6000_cpu) \
2394 { \
2395 case PROCESSOR_RIOS1: \
2396 return COSTS_N_INSNS (19); \
2397 case PROCESSOR_RIOS2: \
2398 return COSTS_N_INSNS (13); \
3cb999d8
DE
2399 case PROCESSOR_RS64A: \
2400 return (GET_MODE (XEXP (X, 1)) != DImode \
2401 ? COSTS_N_INSNS (65) \
2402 : COSTS_N_INSNS (67)); \
38c1f2d7
MM
2403 case PROCESSOR_MPCCORE: \
2404 return COSTS_N_INSNS (6); \
2405 case PROCESSOR_PPC403: \
2406 return COSTS_N_INSNS (33); \
fe7f5677
DE
2407 case PROCESSOR_PPC405: \
2408 return COSTS_N_INSNS (35); \
38c1f2d7
MM
2409 case PROCESSOR_PPC601: \
2410 return COSTS_N_INSNS (36); \
2411 case PROCESSOR_PPC603: \
2412 return COSTS_N_INSNS (37); \
2413 case PROCESSOR_PPC604: \
5a41b476 2414 case PROCESSOR_PPC604e: \
38c1f2d7 2415 return COSTS_N_INSNS (20); \
3cb999d8
DE
2416 case PROCESSOR_PPC620: \
2417 case PROCESSOR_PPC630: \
309323c2 2418 case PROCESSOR_POWER4: \
3cb999d8
DE
2419 return (GET_MODE (XEXP (X, 1)) != DImode \
2420 ? COSTS_N_INSNS (21) \
2421 : COSTS_N_INSNS (37)); \
bef84347 2422 case PROCESSOR_PPC750: \
a3170dc6 2423 case PROCESSOR_PPC8540: \
ed947a96 2424 case PROCESSOR_PPC7400: \
bef84347 2425 return COSTS_N_INSNS (19); \
ed947a96
DJ
2426 case PROCESSOR_PPC7450: \
2427 return COSTS_N_INSNS (23); \
38c1f2d7
MM
2428 } \
2429 case FFS: \
2430 return COSTS_N_INSNS (4); \
2431 case MEM: \
f045b2c9
RS
2432 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2433 return 5;
2434
2435/* Compute the cost of an address. This is meant to approximate the size
2436 and/or execution delay of an insn using that address. If the cost is
2437 approximated by the RTL complexity, including CONST_COSTS above, as
2438 is usually the case for CISC machines, this macro should not be defined.
2439 For aggressively RISCy machines, only one insn format is allowed, so
2440 this macro should be a constant. The value of this macro only matters
2441 for valid addresses.
2442
2443 For the RS/6000, everything is cost 0. */
2444
2445#define ADDRESS_COST(RTX) 0
2446
2447/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2448 should be adjusted to reflect any required changes. This macro is used when
2449 there is some systematic length adjustment required that would be difficult
2450 to express in the length attribute. */
2451
2452/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2453
39a10a29
GK
2454/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2455 COMPARE, return the mode to be used for the comparison. For
2456 floating-point, CCFPmode should be used. CCUNSmode should be used
2457 for unsigned comparisons. CCEQmode should be used when we are
2458 doing an inequality comparison on the result of a
2459 comparison. CCmode should be used in all other cases. */
c5defebb 2460
b565a316 2461#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2462 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2463 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2464 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2465 ? CCEQmode : CCmode))
f045b2c9
RS
2466
2467/* Define the information needed to generate branch and scc insns. This is
2468 stored from the compare operation. Note that we can't use "rtx" here
2469 since it hasn't been defined! */
2470
e2500fed
GK
2471extern GTY(()) rtx rs6000_compare_op0;
2472extern GTY(()) rtx rs6000_compare_op1;
f045b2c9 2473extern int rs6000_compare_fp_p;
f045b2c9
RS
2474\f
2475/* Control the assembler format that we output. */
2476
1b279f39
DE
2477/* A C string constant describing how to begin a comment in the target
2478 assembler language. The compiler assumes that the comment will end at
2479 the end of the line. */
2480#define ASM_COMMENT_START " #"
6b67933e 2481
fdaff8ba
RS
2482/* Implicit library calls should use memcpy, not bcopy, etc. */
2483
2484#define TARGET_MEM_FUNCTIONS
2485
38c1f2d7
MM
2486/* Flag to say the TOC is initialized */
2487extern int toc_initialized;
2488
f045b2c9
RS
2489/* Macro to output a special constant pool entry. Go to WIN if we output
2490 it. Otherwise, it is written the usual way.
2491
2492 On the RS/6000, toc entries are handled this way. */
2493
a9098fd0
GK
2494#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2495{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2496 { \
2497 output_toc (FILE, X, LABELNO, MODE); \
2498 goto WIN; \
2499 } \
f045b2c9
RS
2500}
2501
ebd97b96
DE
2502#ifdef HAVE_GAS_WEAK
2503#define RS6000_WEAK 1
2504#else
2505#define RS6000_WEAK 0
2506#endif
290ad355 2507
79c4e63f
AM
2508#if RS6000_WEAK
2509/* Used in lieu of ASM_WEAKEN_LABEL. */
2510#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2511 do \
2512 { \
2513 fputs ("\t.weak\t", (FILE)); \
cbaaba19 2514 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2515 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2516 && DEFAULT_ABI == ABI_AIX) \
2517 { \
cbaaba19
DE
2518 if (TARGET_XCOFF) \
2519 fputs ("[DS]", (FILE)); \
ca734b39 2520 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2521 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2522 } \
2523 fputc ('\n', (FILE)); \
2524 if (VAL) \
2525 { \
2526 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2527 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2528 && DEFAULT_ABI == ABI_AIX) \
2529 { \
2530 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2531 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2532 fputs (",.", (FILE)); \
cbaaba19 2533 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2534 fputc ('\n', (FILE)); \
2535 } \
2536 } \
2537 } \
2538 while (0)
2539#endif
2540
2541/* This implements the `alias' attribute. */
2542#undef ASM_OUTPUT_DEF_FROM_DECLS
2543#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2544 do \
2545 { \
2546 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2547 const char *name = IDENTIFIER_POINTER (TARGET); \
2548 if (TREE_CODE (DECL) == FUNCTION_DECL \
2549 && DEFAULT_ABI == ABI_AIX) \
2550 { \
2551 if (TREE_PUBLIC (DECL)) \
2552 { \
2553 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2554 { \
2555 fputs ("\t.globl\t.", FILE); \
cbaaba19 2556 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2557 putc ('\n', FILE); \
2558 } \
2559 } \
2560 else if (TARGET_XCOFF) \
2561 { \
2562 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2563 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2564 putc ('\n', FILE); \
2565 } \
2566 fputs ("\t.set\t.", FILE); \
cbaaba19 2567 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2568 fputs (",.", FILE); \
cbaaba19 2569 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2570 fputc ('\n', FILE); \
2571 } \
2572 ASM_OUTPUT_DEF (FILE, alias, name); \
2573 } \
2574 while (0)
290ad355 2575
f045b2c9
RS
2576/* Output to assembler file text saying following lines
2577 may contain character constants, extra white space, comments, etc. */
2578
2579#define ASM_APP_ON ""
2580
2581/* Output to assembler file text saying following lines
2582 no longer contain unusual constructs. */
2583
2584#define ASM_APP_OFF ""
2585
f045b2c9
RS
2586/* How to refer to registers in assembler output.
2587 This sequence is indexed by compiler's hard-register-number (see above). */
2588
82e41834 2589extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2590
2591#define REGISTER_NAMES \
2592{ \
2593 &rs6000_reg_names[ 0][0], /* r0 */ \
2594 &rs6000_reg_names[ 1][0], /* r1 */ \
2595 &rs6000_reg_names[ 2][0], /* r2 */ \
2596 &rs6000_reg_names[ 3][0], /* r3 */ \
2597 &rs6000_reg_names[ 4][0], /* r4 */ \
2598 &rs6000_reg_names[ 5][0], /* r5 */ \
2599 &rs6000_reg_names[ 6][0], /* r6 */ \
2600 &rs6000_reg_names[ 7][0], /* r7 */ \
2601 &rs6000_reg_names[ 8][0], /* r8 */ \
2602 &rs6000_reg_names[ 9][0], /* r9 */ \
2603 &rs6000_reg_names[10][0], /* r10 */ \
2604 &rs6000_reg_names[11][0], /* r11 */ \
2605 &rs6000_reg_names[12][0], /* r12 */ \
2606 &rs6000_reg_names[13][0], /* r13 */ \
2607 &rs6000_reg_names[14][0], /* r14 */ \
2608 &rs6000_reg_names[15][0], /* r15 */ \
2609 &rs6000_reg_names[16][0], /* r16 */ \
2610 &rs6000_reg_names[17][0], /* r17 */ \
2611 &rs6000_reg_names[18][0], /* r18 */ \
2612 &rs6000_reg_names[19][0], /* r19 */ \
2613 &rs6000_reg_names[20][0], /* r20 */ \
2614 &rs6000_reg_names[21][0], /* r21 */ \
2615 &rs6000_reg_names[22][0], /* r22 */ \
2616 &rs6000_reg_names[23][0], /* r23 */ \
2617 &rs6000_reg_names[24][0], /* r24 */ \
2618 &rs6000_reg_names[25][0], /* r25 */ \
2619 &rs6000_reg_names[26][0], /* r26 */ \
2620 &rs6000_reg_names[27][0], /* r27 */ \
2621 &rs6000_reg_names[28][0], /* r28 */ \
2622 &rs6000_reg_names[29][0], /* r29 */ \
2623 &rs6000_reg_names[30][0], /* r30 */ \
2624 &rs6000_reg_names[31][0], /* r31 */ \
2625 \
2626 &rs6000_reg_names[32][0], /* fr0 */ \
2627 &rs6000_reg_names[33][0], /* fr1 */ \
2628 &rs6000_reg_names[34][0], /* fr2 */ \
2629 &rs6000_reg_names[35][0], /* fr3 */ \
2630 &rs6000_reg_names[36][0], /* fr4 */ \
2631 &rs6000_reg_names[37][0], /* fr5 */ \
2632 &rs6000_reg_names[38][0], /* fr6 */ \
2633 &rs6000_reg_names[39][0], /* fr7 */ \
2634 &rs6000_reg_names[40][0], /* fr8 */ \
2635 &rs6000_reg_names[41][0], /* fr9 */ \
2636 &rs6000_reg_names[42][0], /* fr10 */ \
2637 &rs6000_reg_names[43][0], /* fr11 */ \
2638 &rs6000_reg_names[44][0], /* fr12 */ \
2639 &rs6000_reg_names[45][0], /* fr13 */ \
2640 &rs6000_reg_names[46][0], /* fr14 */ \
2641 &rs6000_reg_names[47][0], /* fr15 */ \
2642 &rs6000_reg_names[48][0], /* fr16 */ \
2643 &rs6000_reg_names[49][0], /* fr17 */ \
2644 &rs6000_reg_names[50][0], /* fr18 */ \
2645 &rs6000_reg_names[51][0], /* fr19 */ \
2646 &rs6000_reg_names[52][0], /* fr20 */ \
2647 &rs6000_reg_names[53][0], /* fr21 */ \
2648 &rs6000_reg_names[54][0], /* fr22 */ \
2649 &rs6000_reg_names[55][0], /* fr23 */ \
2650 &rs6000_reg_names[56][0], /* fr24 */ \
2651 &rs6000_reg_names[57][0], /* fr25 */ \
2652 &rs6000_reg_names[58][0], /* fr26 */ \
2653 &rs6000_reg_names[59][0], /* fr27 */ \
2654 &rs6000_reg_names[60][0], /* fr28 */ \
2655 &rs6000_reg_names[61][0], /* fr29 */ \
2656 &rs6000_reg_names[62][0], /* fr30 */ \
2657 &rs6000_reg_names[63][0], /* fr31 */ \
2658 \
2659 &rs6000_reg_names[64][0], /* mq */ \
2660 &rs6000_reg_names[65][0], /* lr */ \
2661 &rs6000_reg_names[66][0], /* ctr */ \
2662 &rs6000_reg_names[67][0], /* ap */ \
2663 \
2664 &rs6000_reg_names[68][0], /* cr0 */ \
2665 &rs6000_reg_names[69][0], /* cr1 */ \
2666 &rs6000_reg_names[70][0], /* cr2 */ \
2667 &rs6000_reg_names[71][0], /* cr3 */ \
2668 &rs6000_reg_names[72][0], /* cr4 */ \
2669 &rs6000_reg_names[73][0], /* cr5 */ \
2670 &rs6000_reg_names[74][0], /* cr6 */ \
2671 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2672 \
9ebbca7d 2673 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2674 \
2675 &rs6000_reg_names[77][0], /* v0 */ \
2676 &rs6000_reg_names[78][0], /* v1 */ \
2677 &rs6000_reg_names[79][0], /* v2 */ \
2678 &rs6000_reg_names[80][0], /* v3 */ \
2679 &rs6000_reg_names[81][0], /* v4 */ \
2680 &rs6000_reg_names[82][0], /* v5 */ \
2681 &rs6000_reg_names[83][0], /* v6 */ \
2682 &rs6000_reg_names[84][0], /* v7 */ \
2683 &rs6000_reg_names[85][0], /* v8 */ \
2684 &rs6000_reg_names[86][0], /* v9 */ \
2685 &rs6000_reg_names[87][0], /* v10 */ \
2686 &rs6000_reg_names[88][0], /* v11 */ \
2687 &rs6000_reg_names[89][0], /* v12 */ \
2688 &rs6000_reg_names[90][0], /* v13 */ \
2689 &rs6000_reg_names[91][0], /* v14 */ \
2690 &rs6000_reg_names[92][0], /* v15 */ \
2691 &rs6000_reg_names[93][0], /* v16 */ \
2692 &rs6000_reg_names[94][0], /* v17 */ \
2693 &rs6000_reg_names[95][0], /* v18 */ \
2694 &rs6000_reg_names[96][0], /* v19 */ \
2695 &rs6000_reg_names[97][0], /* v20 */ \
2696 &rs6000_reg_names[98][0], /* v21 */ \
2697 &rs6000_reg_names[99][0], /* v22 */ \
2698 &rs6000_reg_names[100][0], /* v23 */ \
2699 &rs6000_reg_names[101][0], /* v24 */ \
2700 &rs6000_reg_names[102][0], /* v25 */ \
2701 &rs6000_reg_names[103][0], /* v26 */ \
2702 &rs6000_reg_names[104][0], /* v27 */ \
2703 &rs6000_reg_names[105][0], /* v28 */ \
2704 &rs6000_reg_names[106][0], /* v29 */ \
2705 &rs6000_reg_names[107][0], /* v30 */ \
2706 &rs6000_reg_names[108][0], /* v31 */ \
2707 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2708 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2709 &rs6000_reg_names[111][0], /* spe_acc */ \
2710 &rs6000_reg_names[112][0], /* spefscr */ \
c81bebd7
MM
2711}
2712
2713/* print-rtl can't handle the above REGISTER_NAMES, so define the
2714 following for it. Switch to use the alternate names since
2715 they are more mnemonic. */
2716
2717#define DEBUG_REGISTER_NAMES \
2718{ \
802a0058
MM
2719 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2720 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2721 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2722 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2723 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2724 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2725 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2726 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2727 "mq", "lr", "ctr", "ap", \
2728 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
0ac081f6
AH
2729 "xer", \
2730 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2731 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2732 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2733 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
5f004351 2734 "vrsave", "vscr" \
a3170dc6 2735 , "spe_acc", "spefscr" \
c81bebd7 2736}
f045b2c9
RS
2737
2738/* Table of additional register names to use in user input. */
2739
2740#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2741 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2742 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2743 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2744 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2745 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2746 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2747 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2748 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2749 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2750 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2751 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2752 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2753 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2754 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2755 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2756 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2757 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2758 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2759 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2760 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2761 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2762 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2763 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2764 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2765 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2766 {"spe_acc", 111}, {"spefscr", 112}, \
c4d38ccb
MM
2767 /* no additional names for: mq, lr, ctr, ap */ \
2768 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2769 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2770 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2771
0da40b09
RK
2772/* Text to write out after a CALL that may be replaced by glue code by
2773 the loader. This depends on the AIX version. */
2774#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2775
f045b2c9
RS
2776/* This is how to output an element of a case-vector that is relative. */
2777
e1565e65 2778#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2779 do { char buf[100]; \
e1565e65 2780 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2781 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2782 assemble_name (FILE, buf); \
19d2d16f 2783 putc ('-', FILE); \
3daf36a4
ILT
2784 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2785 assemble_name (FILE, buf); \
19d2d16f 2786 putc ('\n', FILE); \
3daf36a4 2787 } while (0)
f045b2c9
RS
2788
2789/* This is how to output an assembler line
2790 that says to advance the location counter
2791 to a multiple of 2**LOG bytes. */
2792
2793#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2794 if ((LOG) != 0) \
2795 fprintf (FILE, "\t.align %d\n", (LOG))
2796
f045b2c9
RS
2797/* Store in OUTPUT a string (made with alloca) containing
2798 an assembler-name for a local static variable named NAME.
2799 LABELNO is an integer which is different for each call. */
2800
2801#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2802( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2803 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2804
9ebbca7d
GK
2805/* Pick up the return address upon entry to a procedure. Used for
2806 dwarf2 unwind information. This also enables the table driven
2807 mechanism. */
2808
2809#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2810#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2811
83720594
RH
2812/* Describe how we implement __builtin_eh_return. */
2813#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2814#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2815
f045b2c9
RS
2816/* Print operand X (an rtx) in assembler syntax to file FILE.
2817 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2818 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2819
2820#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2821
2822/* Define which CODE values are valid. */
2823
c81bebd7 2824#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
6fa3f289 2825 ((CODE) == '.')
f045b2c9
RS
2826
2827/* Print a memory address as an operand to reference that memory location. */
2828
2829#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2830
2831/* Define the codes that are matched by predicates in rs6000.c. */
2832
39a10a29 2833#define PREDICATE_CODES \
a65c591c 2834 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
df15fbc7 2835 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
a65c591c
DE
2836 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2837 LABEL_REF, SUBREG, REG, MEM}}, \
39a10a29
GK
2838 {"short_cint_operand", {CONST_INT}}, \
2839 {"u_short_cint_operand", {CONST_INT}}, \
2840 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2841 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2842 {"gpc_reg_operand", {SUBREG, REG}}, \
2843 {"cc_reg_operand", {SUBREG, REG}}, \
2844 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2845 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2846 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2847 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2848 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2849 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2850 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2851 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2852 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2853 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2854 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2855 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2856 {"easy_fp_constant", {CONST_DOUBLE}}, \
50a0b056 2857 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2858 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2859 {"lwa_operand", {SUBREG, MEM, REG}}, \
2860 {"volatile_mem_operand", {MEM}}, \
2861 {"offsettable_mem_operand", {MEM}}, \
2862 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2863 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2864 {"non_add_cint_operand", {CONST_INT}}, \
2865 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2866 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
0ba1b2ff 2867 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2868 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2869 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2870 {"mask_operand", {CONST_INT}}, \
0ba1b2ff
AM
2871 {"mask_operand_wrap", {CONST_INT}}, \
2872 {"mask64_operand", {CONST_INT}}, \
2873 {"mask64_2_operand", {CONST_INT}}, \
39a10a29
GK
2874 {"count_register_operand", {REG}}, \
2875 {"xer_operand", {REG}}, \
cc4d5fec 2876 {"symbol_ref_operand", {SYMBOL_REF}}, \
39a10a29
GK
2877 {"call_operand", {SYMBOL_REF, REG}}, \
2878 {"current_file_function_operand", {SYMBOL_REF}}, \
2879 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2880 CONST_DOUBLE, SYMBOL_REF}}, \
2881 {"load_multiple_operation", {PARALLEL}}, \
2882 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2883 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2884 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2885 GT, LEU, LTU, GEU, GTU, \
2886 UNORDERED, ORDERED, \
2887 UNGE, UNLE }}, \
2888 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2889 UNORDERED }}, \
2890 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2891 GT, LEU, LTU, GEU, GTU, \
2892 UNORDERED, ORDERED, \
2893 UNGE, UNLE }}, \
2894 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2895 GT, LEU, LTU, GEU, GTU}}, \
2896 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2897 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2898 {"altivec_register_operand", {REG}}, \
50a0b056 2899 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2900
b6c9286a
MM
2901/* uncomment for disabling the corresponding default options */
2902/* #define MACHINE_no_sched_interblock */
2903/* #define MACHINE_no_sched_speculative */
2904/* #define MACHINE_no_sched_speculative_load */
2905
766a866c
MM
2906/* General flags. */
2907extern int flag_pic;
354b734b
MM
2908extern int optimize;
2909extern int flag_expensive_optimizations;
a7df97e6 2910extern int frame_pointer_needed;
0ac081f6
AH
2911
2912enum rs6000_builtins
2913{
2914 /* AltiVec builtins. */
f18c054f
DB
2915 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2916 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2917 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2918 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2919 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2920 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2921 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2922 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2923 ALTIVEC_BUILTIN_VADDUBM,
2924 ALTIVEC_BUILTIN_VADDUHM,
2925 ALTIVEC_BUILTIN_VADDUWM,
2926 ALTIVEC_BUILTIN_VADDFP,
2927 ALTIVEC_BUILTIN_VADDCUW,
2928 ALTIVEC_BUILTIN_VADDUBS,
2929 ALTIVEC_BUILTIN_VADDSBS,
2930 ALTIVEC_BUILTIN_VADDUHS,
2931 ALTIVEC_BUILTIN_VADDSHS,
2932 ALTIVEC_BUILTIN_VADDUWS,
2933 ALTIVEC_BUILTIN_VADDSWS,
2934 ALTIVEC_BUILTIN_VAND,
2935 ALTIVEC_BUILTIN_VANDC,
2936 ALTIVEC_BUILTIN_VAVGUB,
2937 ALTIVEC_BUILTIN_VAVGSB,
2938 ALTIVEC_BUILTIN_VAVGUH,
2939 ALTIVEC_BUILTIN_VAVGSH,
2940 ALTIVEC_BUILTIN_VAVGUW,
2941 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2942 ALTIVEC_BUILTIN_VCFUX,
2943 ALTIVEC_BUILTIN_VCFSX,
2944 ALTIVEC_BUILTIN_VCTSXS,
2945 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2946 ALTIVEC_BUILTIN_VCMPBFP,
2947 ALTIVEC_BUILTIN_VCMPEQUB,
2948 ALTIVEC_BUILTIN_VCMPEQUH,
2949 ALTIVEC_BUILTIN_VCMPEQUW,
2950 ALTIVEC_BUILTIN_VCMPEQFP,
2951 ALTIVEC_BUILTIN_VCMPGEFP,
2952 ALTIVEC_BUILTIN_VCMPGTUB,
2953 ALTIVEC_BUILTIN_VCMPGTSB,
2954 ALTIVEC_BUILTIN_VCMPGTUH,
2955 ALTIVEC_BUILTIN_VCMPGTSH,
2956 ALTIVEC_BUILTIN_VCMPGTUW,
2957 ALTIVEC_BUILTIN_VCMPGTSW,
2958 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2959 ALTIVEC_BUILTIN_VEXPTEFP,
2960 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2961 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2962 ALTIVEC_BUILTIN_VMAXUB,
2963 ALTIVEC_BUILTIN_VMAXSB,
2964 ALTIVEC_BUILTIN_VMAXUH,
2965 ALTIVEC_BUILTIN_VMAXSH,
2966 ALTIVEC_BUILTIN_VMAXUW,
2967 ALTIVEC_BUILTIN_VMAXSW,
2968 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2969 ALTIVEC_BUILTIN_VMHADDSHS,
2970 ALTIVEC_BUILTIN_VMHRADDSHS,
2971 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2972 ALTIVEC_BUILTIN_VMRGHB,
2973 ALTIVEC_BUILTIN_VMRGHH,
2974 ALTIVEC_BUILTIN_VMRGHW,
2975 ALTIVEC_BUILTIN_VMRGLB,
2976 ALTIVEC_BUILTIN_VMRGLH,
2977 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2978 ALTIVEC_BUILTIN_VMSUMUBM,
2979 ALTIVEC_BUILTIN_VMSUMMBM,
2980 ALTIVEC_BUILTIN_VMSUMUHM,
2981 ALTIVEC_BUILTIN_VMSUMSHM,
2982 ALTIVEC_BUILTIN_VMSUMUHS,
2983 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2984 ALTIVEC_BUILTIN_VMINUB,
2985 ALTIVEC_BUILTIN_VMINSB,
2986 ALTIVEC_BUILTIN_VMINUH,
2987 ALTIVEC_BUILTIN_VMINSH,
2988 ALTIVEC_BUILTIN_VMINUW,
2989 ALTIVEC_BUILTIN_VMINSW,
2990 ALTIVEC_BUILTIN_VMINFP,
2991 ALTIVEC_BUILTIN_VMULEUB,
2992 ALTIVEC_BUILTIN_VMULESB,
2993 ALTIVEC_BUILTIN_VMULEUH,
2994 ALTIVEC_BUILTIN_VMULESH,
2995 ALTIVEC_BUILTIN_VMULOUB,
2996 ALTIVEC_BUILTIN_VMULOSB,
2997 ALTIVEC_BUILTIN_VMULOUH,
2998 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2999 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
3000 ALTIVEC_BUILTIN_VNOR,
3001 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
3002 ALTIVEC_BUILTIN_VSEL_4SI,
3003 ALTIVEC_BUILTIN_VSEL_4SF,
3004 ALTIVEC_BUILTIN_VSEL_8HI,
3005 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
3006 ALTIVEC_BUILTIN_VPERM_4SI,
3007 ALTIVEC_BUILTIN_VPERM_4SF,
3008 ALTIVEC_BUILTIN_VPERM_8HI,
3009 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
3010 ALTIVEC_BUILTIN_VPKUHUM,
3011 ALTIVEC_BUILTIN_VPKUWUM,
3012 ALTIVEC_BUILTIN_VPKPX,
3013 ALTIVEC_BUILTIN_VPKUHSS,
3014 ALTIVEC_BUILTIN_VPKSHSS,
3015 ALTIVEC_BUILTIN_VPKUWSS,
3016 ALTIVEC_BUILTIN_VPKSWSS,
3017 ALTIVEC_BUILTIN_VPKUHUS,
3018 ALTIVEC_BUILTIN_VPKSHUS,
3019 ALTIVEC_BUILTIN_VPKUWUS,
3020 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
3021 ALTIVEC_BUILTIN_VREFP,
3022 ALTIVEC_BUILTIN_VRFIM,
3023 ALTIVEC_BUILTIN_VRFIN,
3024 ALTIVEC_BUILTIN_VRFIP,
3025 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
3026 ALTIVEC_BUILTIN_VRLB,
3027 ALTIVEC_BUILTIN_VRLH,
3028 ALTIVEC_BUILTIN_VRLW,
617e0e1d 3029 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
3030 ALTIVEC_BUILTIN_VSLB,
3031 ALTIVEC_BUILTIN_VSLH,
3032 ALTIVEC_BUILTIN_VSLW,
3033 ALTIVEC_BUILTIN_VSL,
3034 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
3035 ALTIVEC_BUILTIN_VSPLTB,
3036 ALTIVEC_BUILTIN_VSPLTH,
3037 ALTIVEC_BUILTIN_VSPLTW,
3038 ALTIVEC_BUILTIN_VSPLTISB,
3039 ALTIVEC_BUILTIN_VSPLTISH,
3040 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 3041 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
3042 ALTIVEC_BUILTIN_VSRH,
3043 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
3044 ALTIVEC_BUILTIN_VSRAB,
3045 ALTIVEC_BUILTIN_VSRAH,
3046 ALTIVEC_BUILTIN_VSRAW,
3047 ALTIVEC_BUILTIN_VSR,
3048 ALTIVEC_BUILTIN_VSRO,
3049 ALTIVEC_BUILTIN_VSUBUBM,
3050 ALTIVEC_BUILTIN_VSUBUHM,
3051 ALTIVEC_BUILTIN_VSUBUWM,
3052 ALTIVEC_BUILTIN_VSUBFP,
3053 ALTIVEC_BUILTIN_VSUBCUW,
3054 ALTIVEC_BUILTIN_VSUBUBS,
3055 ALTIVEC_BUILTIN_VSUBSBS,
3056 ALTIVEC_BUILTIN_VSUBUHS,
3057 ALTIVEC_BUILTIN_VSUBSHS,
3058 ALTIVEC_BUILTIN_VSUBUWS,
3059 ALTIVEC_BUILTIN_VSUBSWS,
3060 ALTIVEC_BUILTIN_VSUM4UBS,
3061 ALTIVEC_BUILTIN_VSUM4SBS,
3062 ALTIVEC_BUILTIN_VSUM4SHS,
3063 ALTIVEC_BUILTIN_VSUM2SWS,
3064 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
3065 ALTIVEC_BUILTIN_VXOR,
3066 ALTIVEC_BUILTIN_VSLDOI_16QI,
3067 ALTIVEC_BUILTIN_VSLDOI_8HI,
3068 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
3069 ALTIVEC_BUILTIN_VSLDOI_4SF,
3070 ALTIVEC_BUILTIN_VUPKHSB,
3071 ALTIVEC_BUILTIN_VUPKHPX,
3072 ALTIVEC_BUILTIN_VUPKHSH,
3073 ALTIVEC_BUILTIN_VUPKLSB,
3074 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 3075 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
3076 ALTIVEC_BUILTIN_MTVSCR,
3077 ALTIVEC_BUILTIN_MFVSCR,
3078 ALTIVEC_BUILTIN_DSSALL,
3079 ALTIVEC_BUILTIN_DSS,
3080 ALTIVEC_BUILTIN_LVSL,
3081 ALTIVEC_BUILTIN_LVSR,
3082 ALTIVEC_BUILTIN_DSTT,
3083 ALTIVEC_BUILTIN_DSTST,
3084 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
3085 ALTIVEC_BUILTIN_DST,
3086 ALTIVEC_BUILTIN_LVEBX,
3087 ALTIVEC_BUILTIN_LVEHX,
3088 ALTIVEC_BUILTIN_LVEWX,
3089 ALTIVEC_BUILTIN_LVXL,
3090 ALTIVEC_BUILTIN_LVX,
3091 ALTIVEC_BUILTIN_STVX,
3092 ALTIVEC_BUILTIN_STVEBX,
3093 ALTIVEC_BUILTIN_STVEHX,
3094 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
3095 ALTIVEC_BUILTIN_STVXL,
3096 ALTIVEC_BUILTIN_VCMPBFP_P,
3097 ALTIVEC_BUILTIN_VCMPEQFP_P,
3098 ALTIVEC_BUILTIN_VCMPEQUB_P,
3099 ALTIVEC_BUILTIN_VCMPEQUH_P,
3100 ALTIVEC_BUILTIN_VCMPEQUW_P,
3101 ALTIVEC_BUILTIN_VCMPGEFP_P,
3102 ALTIVEC_BUILTIN_VCMPGTFP_P,
3103 ALTIVEC_BUILTIN_VCMPGTSB_P,
3104 ALTIVEC_BUILTIN_VCMPGTSH_P,
3105 ALTIVEC_BUILTIN_VCMPGTSW_P,
3106 ALTIVEC_BUILTIN_VCMPGTUB_P,
3107 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
3108 ALTIVEC_BUILTIN_VCMPGTUW_P,
3109 ALTIVEC_BUILTIN_ABSS_V4SI,
3110 ALTIVEC_BUILTIN_ABSS_V8HI,
3111 ALTIVEC_BUILTIN_ABSS_V16QI,
3112 ALTIVEC_BUILTIN_ABS_V4SI,
3113 ALTIVEC_BUILTIN_ABS_V4SF,
3114 ALTIVEC_BUILTIN_ABS_V8HI,
3115 ALTIVEC_BUILTIN_ABS_V16QI
a3170dc6
AH
3116 /* SPE builtins. */
3117 , SPE_BUILTIN_EVADDW,
3118 SPE_BUILTIN_EVAND,
3119 SPE_BUILTIN_EVANDC,
3120 SPE_BUILTIN_EVDIVWS,
3121 SPE_BUILTIN_EVDIVWU,
3122 SPE_BUILTIN_EVEQV,
3123 SPE_BUILTIN_EVFSADD,
3124 SPE_BUILTIN_EVFSDIV,
3125 SPE_BUILTIN_EVFSMUL,
3126 SPE_BUILTIN_EVFSSUB,
3127 SPE_BUILTIN_EVLDDX,
3128 SPE_BUILTIN_EVLDHX,
3129 SPE_BUILTIN_EVLDWX,
3130 SPE_BUILTIN_EVLHHESPLATX,
3131 SPE_BUILTIN_EVLHHOSSPLATX,
3132 SPE_BUILTIN_EVLHHOUSPLATX,
3133 SPE_BUILTIN_EVLWHEX,
3134 SPE_BUILTIN_EVLWHOSX,
3135 SPE_BUILTIN_EVLWHOUX,
3136 SPE_BUILTIN_EVLWHSPLATX,
3137 SPE_BUILTIN_EVLWWSPLATX,
3138 SPE_BUILTIN_EVMERGEHI,
3139 SPE_BUILTIN_EVMERGEHILO,
3140 SPE_BUILTIN_EVMERGELO,
3141 SPE_BUILTIN_EVMERGELOHI,
3142 SPE_BUILTIN_EVMHEGSMFAA,
3143 SPE_BUILTIN_EVMHEGSMFAN,
3144 SPE_BUILTIN_EVMHEGSMIAA,
3145 SPE_BUILTIN_EVMHEGSMIAN,
3146 SPE_BUILTIN_EVMHEGUMIAA,
3147 SPE_BUILTIN_EVMHEGUMIAN,
3148 SPE_BUILTIN_EVMHESMF,
3149 SPE_BUILTIN_EVMHESMFA,
3150 SPE_BUILTIN_EVMHESMFAAW,
3151 SPE_BUILTIN_EVMHESMFANW,
3152 SPE_BUILTIN_EVMHESMI,
3153 SPE_BUILTIN_EVMHESMIA,
3154 SPE_BUILTIN_EVMHESMIAAW,
3155 SPE_BUILTIN_EVMHESMIANW,
3156 SPE_BUILTIN_EVMHESSF,
3157 SPE_BUILTIN_EVMHESSFA,
3158 SPE_BUILTIN_EVMHESSFAAW,
3159 SPE_BUILTIN_EVMHESSFANW,
3160 SPE_BUILTIN_EVMHESSIAAW,
3161 SPE_BUILTIN_EVMHESSIANW,
3162 SPE_BUILTIN_EVMHEUMI,
3163 SPE_BUILTIN_EVMHEUMIA,
3164 SPE_BUILTIN_EVMHEUMIAAW,
3165 SPE_BUILTIN_EVMHEUMIANW,
3166 SPE_BUILTIN_EVMHEUSIAAW,
3167 SPE_BUILTIN_EVMHEUSIANW,
3168 SPE_BUILTIN_EVMHOGSMFAA,
3169 SPE_BUILTIN_EVMHOGSMFAN,
3170 SPE_BUILTIN_EVMHOGSMIAA,
3171 SPE_BUILTIN_EVMHOGSMIAN,
3172 SPE_BUILTIN_EVMHOGUMIAA,
3173 SPE_BUILTIN_EVMHOGUMIAN,
3174 SPE_BUILTIN_EVMHOSMF,
3175 SPE_BUILTIN_EVMHOSMFA,
3176 SPE_BUILTIN_EVMHOSMFAAW,
3177 SPE_BUILTIN_EVMHOSMFANW,
3178 SPE_BUILTIN_EVMHOSMI,
3179 SPE_BUILTIN_EVMHOSMIA,
3180 SPE_BUILTIN_EVMHOSMIAAW,
3181 SPE_BUILTIN_EVMHOSMIANW,
3182 SPE_BUILTIN_EVMHOSSF,
3183 SPE_BUILTIN_EVMHOSSFA,
3184 SPE_BUILTIN_EVMHOSSFAAW,
3185 SPE_BUILTIN_EVMHOSSFANW,
3186 SPE_BUILTIN_EVMHOSSIAAW,
3187 SPE_BUILTIN_EVMHOSSIANW,
3188 SPE_BUILTIN_EVMHOUMI,
3189 SPE_BUILTIN_EVMHOUMIA,
3190 SPE_BUILTIN_EVMHOUMIAAW,
3191 SPE_BUILTIN_EVMHOUMIANW,
3192 SPE_BUILTIN_EVMHOUSIAAW,
3193 SPE_BUILTIN_EVMHOUSIANW,
3194 SPE_BUILTIN_EVMWHSMF,
3195 SPE_BUILTIN_EVMWHSMFA,
3196 SPE_BUILTIN_EVMWHSMI,
3197 SPE_BUILTIN_EVMWHSMIA,
3198 SPE_BUILTIN_EVMWHSSF,
3199 SPE_BUILTIN_EVMWHSSFA,
3200 SPE_BUILTIN_EVMWHUMI,
3201 SPE_BUILTIN_EVMWHUMIA,
3202 SPE_BUILTIN_EVMWLSMF,
3203 SPE_BUILTIN_EVMWLSMFA,
3204 SPE_BUILTIN_EVMWLSMFAAW,
3205 SPE_BUILTIN_EVMWLSMFANW,
3206 SPE_BUILTIN_EVMWLSMIAAW,
3207 SPE_BUILTIN_EVMWLSMIANW,
3208 SPE_BUILTIN_EVMWLSSF,
3209 SPE_BUILTIN_EVMWLSSFA,
3210 SPE_BUILTIN_EVMWLSSFAAW,
3211 SPE_BUILTIN_EVMWLSSFANW,
3212 SPE_BUILTIN_EVMWLSSIAAW,
3213 SPE_BUILTIN_EVMWLSSIANW,
3214 SPE_BUILTIN_EVMWLUMI,
3215 SPE_BUILTIN_EVMWLUMIA,
3216 SPE_BUILTIN_EVMWLUMIAAW,
3217 SPE_BUILTIN_EVMWLUMIANW,
3218 SPE_BUILTIN_EVMWLUSIAAW,
3219 SPE_BUILTIN_EVMWLUSIANW,
3220 SPE_BUILTIN_EVMWSMF,
3221 SPE_BUILTIN_EVMWSMFA,
3222 SPE_BUILTIN_EVMWSMFAA,
3223 SPE_BUILTIN_EVMWSMFAN,
3224 SPE_BUILTIN_EVMWSMI,
3225 SPE_BUILTIN_EVMWSMIA,
3226 SPE_BUILTIN_EVMWSMIAA,
3227 SPE_BUILTIN_EVMWSMIAN,
3228 SPE_BUILTIN_EVMWHSSFAA,
3229 SPE_BUILTIN_EVMWSSF,
3230 SPE_BUILTIN_EVMWSSFA,
3231 SPE_BUILTIN_EVMWSSFAA,
3232 SPE_BUILTIN_EVMWSSFAN,
3233 SPE_BUILTIN_EVMWUMI,
3234 SPE_BUILTIN_EVMWUMIA,
3235 SPE_BUILTIN_EVMWUMIAA,
3236 SPE_BUILTIN_EVMWUMIAN,
3237 SPE_BUILTIN_EVNAND,
3238 SPE_BUILTIN_EVNOR,
3239 SPE_BUILTIN_EVOR,
3240 SPE_BUILTIN_EVORC,
3241 SPE_BUILTIN_EVRLW,
3242 SPE_BUILTIN_EVSLW,
3243 SPE_BUILTIN_EVSRWS,
3244 SPE_BUILTIN_EVSRWU,
3245 SPE_BUILTIN_EVSTDDX,
3246 SPE_BUILTIN_EVSTDHX,
3247 SPE_BUILTIN_EVSTDWX,
3248 SPE_BUILTIN_EVSTWHEX,
3249 SPE_BUILTIN_EVSTWHOX,
3250 SPE_BUILTIN_EVSTWWEX,
3251 SPE_BUILTIN_EVSTWWOX,
3252 SPE_BUILTIN_EVSUBFW,
3253 SPE_BUILTIN_EVXOR,
3254 SPE_BUILTIN_EVABS,
3255 SPE_BUILTIN_EVADDSMIAAW,
3256 SPE_BUILTIN_EVADDSSIAAW,
3257 SPE_BUILTIN_EVADDUMIAAW,
3258 SPE_BUILTIN_EVADDUSIAAW,
3259 SPE_BUILTIN_EVCNTLSW,
3260 SPE_BUILTIN_EVCNTLZW,
3261 SPE_BUILTIN_EVEXTSB,
3262 SPE_BUILTIN_EVEXTSH,
3263 SPE_BUILTIN_EVFSABS,
3264 SPE_BUILTIN_EVFSCFSF,
3265 SPE_BUILTIN_EVFSCFSI,
3266 SPE_BUILTIN_EVFSCFUF,
3267 SPE_BUILTIN_EVFSCFUI,
3268 SPE_BUILTIN_EVFSCTSF,
3269 SPE_BUILTIN_EVFSCTSI,
3270 SPE_BUILTIN_EVFSCTSIZ,
3271 SPE_BUILTIN_EVFSCTUF,
3272 SPE_BUILTIN_EVFSCTUI,
3273 SPE_BUILTIN_EVFSCTUIZ,
3274 SPE_BUILTIN_EVFSNABS,
3275 SPE_BUILTIN_EVFSNEG,
3276 SPE_BUILTIN_EVMRA,
3277 SPE_BUILTIN_EVNEG,
3278 SPE_BUILTIN_EVRNDW,
3279 SPE_BUILTIN_EVSUBFSMIAAW,
3280 SPE_BUILTIN_EVSUBFSSIAAW,
3281 SPE_BUILTIN_EVSUBFUMIAAW,
3282 SPE_BUILTIN_EVSUBFUSIAAW,
3283 SPE_BUILTIN_EVADDIW,
3284 SPE_BUILTIN_EVLDD,
3285 SPE_BUILTIN_EVLDH,
3286 SPE_BUILTIN_EVLDW,
3287 SPE_BUILTIN_EVLHHESPLAT,
3288 SPE_BUILTIN_EVLHHOSSPLAT,
3289 SPE_BUILTIN_EVLHHOUSPLAT,
3290 SPE_BUILTIN_EVLWHE,
3291 SPE_BUILTIN_EVLWHOS,
3292 SPE_BUILTIN_EVLWHOU,
3293 SPE_BUILTIN_EVLWHSPLAT,
3294 SPE_BUILTIN_EVLWWSPLAT,
3295 SPE_BUILTIN_EVRLWI,
3296 SPE_BUILTIN_EVSLWI,
3297 SPE_BUILTIN_EVSRWIS,
3298 SPE_BUILTIN_EVSRWIU,
3299 SPE_BUILTIN_EVSTDD,
3300 SPE_BUILTIN_EVSTDH,
3301 SPE_BUILTIN_EVSTDW,
3302 SPE_BUILTIN_EVSTWHE,
3303 SPE_BUILTIN_EVSTWHO,
3304 SPE_BUILTIN_EVSTWWE,
3305 SPE_BUILTIN_EVSTWWO,
3306 SPE_BUILTIN_EVSUBIFW,
3307
3308 /* Compares. */
3309 SPE_BUILTIN_EVCMPEQ,
3310 SPE_BUILTIN_EVCMPGTS,
3311 SPE_BUILTIN_EVCMPGTU,
3312 SPE_BUILTIN_EVCMPLTS,
3313 SPE_BUILTIN_EVCMPLTU,
3314 SPE_BUILTIN_EVFSCMPEQ,
3315 SPE_BUILTIN_EVFSCMPGT,
3316 SPE_BUILTIN_EVFSCMPLT,
3317 SPE_BUILTIN_EVFSTSTEQ,
3318 SPE_BUILTIN_EVFSTSTGT,
3319 SPE_BUILTIN_EVFSTSTLT,
3320
3321 /* EVSEL compares. */
3322 SPE_BUILTIN_EVSEL_CMPEQ,
3323 SPE_BUILTIN_EVSEL_CMPGTS,
3324 SPE_BUILTIN_EVSEL_CMPGTU,
3325 SPE_BUILTIN_EVSEL_CMPLTS,
3326 SPE_BUILTIN_EVSEL_CMPLTU,
3327 SPE_BUILTIN_EVSEL_FSCMPEQ,
3328 SPE_BUILTIN_EVSEL_FSCMPGT,
3329 SPE_BUILTIN_EVSEL_FSCMPLT,
3330 SPE_BUILTIN_EVSEL_FSTSTEQ,
3331 SPE_BUILTIN_EVSEL_FSTSTGT,
3332 SPE_BUILTIN_EVSEL_FSTSTLT,
3333
3334 SPE_BUILTIN_EVSPLATFI,
3335 SPE_BUILTIN_EVSPLATI,
3336 SPE_BUILTIN_EVMWHSSMAA,
3337 SPE_BUILTIN_EVMWHSMFAA,
3338 SPE_BUILTIN_EVMWHSMIAA,
3339 SPE_BUILTIN_EVMWHUSIAA,
3340 SPE_BUILTIN_EVMWHUMIAA,
3341 SPE_BUILTIN_EVMWHSSFAN,
3342 SPE_BUILTIN_EVMWHSSIAN,
3343 SPE_BUILTIN_EVMWHSMFAN,
3344 SPE_BUILTIN_EVMWHSMIAN,
3345 SPE_BUILTIN_EVMWHUSIAN,
3346 SPE_BUILTIN_EVMWHUMIAN,
3347 SPE_BUILTIN_EVMWHGSSFAA,
3348 SPE_BUILTIN_EVMWHGSMFAA,
3349 SPE_BUILTIN_EVMWHGSMIAA,
3350 SPE_BUILTIN_EVMWHGUMIAA,
3351 SPE_BUILTIN_EVMWHGSSFAN,
3352 SPE_BUILTIN_EVMWHGSMFAN,
3353 SPE_BUILTIN_EVMWHGSMIAN,
3354 SPE_BUILTIN_EVMWHGUMIAN,
3355 SPE_BUILTIN_MTSPEFSCR,
3356 SPE_BUILTIN_MFSPEFSCR,
3357 SPE_BUILTIN_BRINC
0ac081f6 3358};