]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
re PR fortran/71686 (ICE on broken character continuation)
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
818ab71a 2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 4
5de601cf 5 This file is part of GCC.
f045b2c9 6
5de601cf
NC
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
5de601cf 10 option) any later version.
f045b2c9 11
5de601cf
NC
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f045b2c9 16
748086b7
JJ
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 24 <http://www.gnu.org/licenses/>. */
f045b2c9
RS
25
26/* Note that some other tm.h files include this one and then override
9ebbca7d 27 many of the definitions. */
f045b2c9 28
fd438373
MM
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
9ebbca7d
GK
33/* Definitions for the object file format. These are set at
34 compile-time. */
f045b2c9 35
9ebbca7d
GK
36#define OBJECT_XCOFF 1
37#define OBJECT_ELF 2
38#define OBJECT_PEF 3
ee890fe2 39#define OBJECT_MACHO 4
f045b2c9 40
9ebbca7d 41#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 42#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 43#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 44#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 45
2bfcf297
DB
46#ifndef TARGET_AIX
47#define TARGET_AIX 0
48#endif
49
78009d9f
MM
50#ifndef TARGET_AIX_OS
51#define TARGET_AIX_OS 0
52#endif
53
85b776df
AM
54/* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56#define DOT_SYMBOLS 1
57
8e3f41e7
MM
58/* Default string to use for cpu if not specified. */
59#ifndef TARGET_CPU_DEFAULT
60#define TARGET_CPU_DEFAULT ((char *)0)
61#endif
62
f565b0a1 63/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 64#ifdef CONFIG_PPC405CR
f565b0a1
DE
65#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66#else
67#define PPC405_ERRATUM77 0
68#endif
69
96038623
DE
70#ifndef TARGET_PAIRED_FLOAT
71#define TARGET_PAIRED_FLOAT 0
72#endif
73
cd679487
BE
74#ifdef HAVE_AS_POPCNTB
75#define ASM_CPU_POWER5_SPEC "-mpower5"
76#else
77#define ASM_CPU_POWER5_SPEC "-mpower4"
78#endif
79
80#ifdef HAVE_AS_DFP
81#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82#else
83#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84#endif
85
cacf1ca8 86#ifdef HAVE_AS_POPCNTD
d40c9e33
PB
87#define ASM_CPU_POWER7_SPEC "-mpower7"
88#else
89#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90#endif
91
428bffcb
PB
92#ifdef HAVE_AS_POWER8
93#define ASM_CPU_POWER8_SPEC "-mpower8"
94#else
f62511da 95#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
428bffcb
PB
96#endif
97
d1f0d376
MM
98#ifdef HAVE_AS_POWER9
99#define ASM_CPU_POWER9_SPEC "-mpower9"
100#else
101#define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102#endif
103
47f67e51
PB
104#ifdef HAVE_AS_DCI
105#define ASM_CPU_476_SPEC "-m476"
106#else
107#define ASM_CPU_476_SPEC "-mpower4"
108#endif
109
cacf1ca8
MM
110/* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
f984d8df
DB
114#define ASM_CPU_SPEC \
115"%{!mcpu*: \
93ae5495 116 %{mpowerpc64*: -mppc64} \
a441dedb 117 %{!mpowerpc64*: %(asm_default)}} \
cacf1ca8 118%{mcpu=native: %(asm_cpu_native)} \
d296e02e 119%{mcpu=cell: -mcell} \
93ae5495 120%{mcpu=power3: -mppc64} \
957e9e48 121%{mcpu=power4: -mpower4} \
cd679487
BE
122%{mcpu=power5: %(asm_cpu_power5)} \
123%{mcpu=power5+: %(asm_cpu_power5)} \
124%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
d40c9e33 126%{mcpu=power7: %(asm_cpu_power7)} \
428bffcb 127%{mcpu=power8: %(asm_cpu_power8)} \
d1f0d376 128%{mcpu=power9: %(asm_cpu_power9)} \
ebde32fd 129%{mcpu=a2: -ma2} \
f984d8df 130%{mcpu=powerpc: -mppc} \
fa17b3db 131%{mcpu=powerpc64le: %(asm_cpu_power8)} \
93ae5495 132%{mcpu=rs64a: -mppc64} \
f984d8df 133%{mcpu=401: -mppc} \
61a8515c
JS
134%{mcpu=403: -m403} \
135%{mcpu=405: -m405} \
2c9d95ef
DE
136%{mcpu=405fp: -m405} \
137%{mcpu=440: -m440} \
138%{mcpu=440fp: -m440} \
4adf8008
PB
139%{mcpu=464: -m440} \
140%{mcpu=464fp: -m440} \
47f67e51
PB
141%{mcpu=476: %(asm_cpu_476)} \
142%{mcpu=476fp: %(asm_cpu_476)} \
f984d8df
DB
143%{mcpu=505: -mppc} \
144%{mcpu=601: -m601} \
145%{mcpu=602: -mppc} \
146%{mcpu=603: -mppc} \
147%{mcpu=603e: -mppc} \
148%{mcpu=ec603e: -mppc} \
149%{mcpu=604: -mppc} \
150%{mcpu=604e: -mppc} \
93ae5495
AM
151%{mcpu=620: -mppc64} \
152%{mcpu=630: -mppc64} \
f984d8df
DB
153%{mcpu=740: -mppc} \
154%{mcpu=750: -mppc} \
49ffe578 155%{mcpu=G3: -mppc} \
93ae5495
AM
156%{mcpu=7400: -mppc -maltivec} \
157%{mcpu=7450: -mppc -maltivec} \
158%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
159%{mcpu=801: -mppc} \
160%{mcpu=821: -mppc} \
161%{mcpu=823: -mppc} \
775db490 162%{mcpu=860: -mppc} \
93ae5495
AM
163%{mcpu=970: -mpower4 -maltivec} \
164%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 165%{mcpu=8540: -me500} \
5ca0373f 166%{mcpu=8548: -me500} \
fa41c305
EW
167%{mcpu=e300c2: -me300} \
168%{mcpu=e300c3: -me300} \
edae5fe3 169%{mcpu=e500mc: -me500mc} \
b17f98b1 170%{mcpu=e500mc64: -me500mc64} \
683ed19e
EW
171%{mcpu=e5500: -me5500} \
172%{mcpu=e6500: -me6500} \
93ae5495 173%{maltivec: -maltivec} \
2c9ccc21 174%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
0258b6e4 175%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
93ae5495 176-many"
f984d8df
DB
177
178#define CPP_DEFAULT_SPEC ""
179
180#define ASM_DEFAULT_SPEC ""
181
841faeed
MM
182/* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
5de601cf 187 specification name, and a string constant that used by the GCC driver
841faeed
MM
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
7509c759 192#define SUBTARGET_EXTRA_SPECS
7509c759 193
c81bebd7 194#define EXTRA_SPECS \
c81bebd7 195 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7 196 { "asm_cpu", ASM_CPU_SPEC }, \
cacf1ca8 197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
c81bebd7 198 { "asm_default", ASM_DEFAULT_SPEC }, \
0eab6840 199 { "cc1_cpu", CC1_CPU_SPEC }, \
cd679487
BE
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
d40c9e33 202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
428bffcb 203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
d1f0d376 204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
47f67e51 205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
7509c759
MM
206 SUBTARGET_EXTRA_SPECS
207
0eab6840
DE
208/* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212/* In driver-rs6000.c. */
213extern const char *host_detect_local_cpu (int argc, const char **argv);
214#define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216#define HAVE_LOCAL_CPU_DETECT
cacf1ca8
MM
217#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219#else
220#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
0eab6840
DE
221#endif
222
ee7caeb3
DE
223#ifndef CC1_CPU_SPEC
224#ifdef HAVE_LOCAL_CPU_DETECT
0eab6840
DE
225#define CC1_CPU_SPEC \
226"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
ee7caeb3
DE
228#else
229#define CC1_CPU_SPEC ""
230#endif
0eab6840
DE
231#endif
232
fb623df5 233/* Architecture type. */
f045b2c9 234
bb22512c 235/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 236 optional field operand for mfcr. */
fb623df5 237
78f5898b 238#ifndef HAVE_AS_MFCRF
432218ba 239#undef TARGET_MFCRF
ffa22984
DE
240#define TARGET_MFCRF 0
241#endif
242
0fa2e4df 243/* Define TARGET_POPCNTB if the target assembler does not support the
432218ba
DE
244 popcount byte instruction. */
245
246#ifndef HAVE_AS_POPCNTB
247#undef TARGET_POPCNTB
248#define TARGET_POPCNTB 0
249#endif
250
9719f3b7
DE
251/* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254#ifndef HAVE_AS_FPRND
255#undef TARGET_FPRND
256#define TARGET_FPRND 0
257#endif
258
b639c3c2
JJ
259/* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262#ifndef HAVE_AS_CMPB
263#undef TARGET_CMPB
264#define TARGET_CMPB 0
265#endif
266
44cd321e
PS
267/* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270#ifndef HAVE_AS_MFPGPR
271#undef TARGET_MFPGPR
272#define TARGET_MFPGPR 0
273#endif
274
b639c3c2
JJ
275/* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277#ifndef HAVE_AS_DFP
278#undef TARGET_DFP
279#define TARGET_DFP 0
280#endif
281
cacf1ca8
MM
282/* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285#ifndef HAVE_AS_POPCNTD
286#undef TARGET_POPCNTD
287#define TARGET_POPCNTD 0
288#endif
289
f62511da
MM
290/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294#ifndef HAVE_AS_POWER8
295#undef TARGET_DIRECT_MOVE
296#undef TARGET_CRYPTO
0258b6e4 297#undef TARGET_HTM
f62511da
MM
298#undef TARGET_P8_VECTOR
299#define TARGET_DIRECT_MOVE 0
300#define TARGET_CRYPTO 0
0258b6e4 301#define TARGET_HTM 0
f62511da
MM
302#define TARGET_P8_VECTOR 0
303#endif
304
caea59ff
KN
305/* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
309
310#ifndef HAVE_AS_POWER9
311#undef TARGET_FLOAT128_HW
312#undef TARGET_MODULO
313#undef TARGET_P9_VECTOR
314#undef TARGET_P9_MINMAX
315#undef TARGET_P9_DFORM_SCALAR
316#undef TARGET_P9_DFORM_VECTOR
317#define TARGET_FLOAT128_HW 0
318#define TARGET_MODULO 0
319#define TARGET_P9_VECTOR 0
320#define TARGET_P9_MINMAX 0
321#define TARGET_P9_DFORM_SCALAR 0
322#define TARGET_P9_DFORM_VECTOR 0
323#endif
324
cacf1ca8
MM
325/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
326 not, generate the lwsync code as an integer constant. */
327#ifdef HAVE_AS_LWSYNC
328#define TARGET_LWSYNC_INSTRUCTION 1
329#else
330#define TARGET_LWSYNC_INSTRUCTION 0
331#endif
332
9752c4ad
AM
333/* Define TARGET_TLS_MARKERS if the target assembler does not support
334 arg markers for __tls_get_addr calls. */
335#ifndef HAVE_AS_TLS_MARKERS
336#undef TARGET_TLS_MARKERS
337#define TARGET_TLS_MARKERS 0
338#else
339#define TARGET_TLS_MARKERS tls_markers
340#endif
341
7f970b70
AM
342#ifndef TARGET_SECURE_PLT
343#define TARGET_SECURE_PLT 0
344#endif
345
070b27da
AM
346#ifndef TARGET_CMODEL
347#define TARGET_CMODEL CMODEL_SMALL
348#endif
349
2f3e5814 350#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 351
c4501e62
JJ
352#ifndef HAVE_AS_TLS
353#define HAVE_AS_TLS 0
354#endif
355
be26142a
PB
356#ifndef TARGET_LINK_STACK
357#define TARGET_LINK_STACK 0
358#endif
359
360#ifndef SET_TARGET_LINK_STACK
361#define SET_TARGET_LINK_STACK(X) do { } while (0)
362#endif
363
48d72335
DE
364/* Return 1 for a symbol ref for a thread-local storage symbol. */
365#define RS6000_SYMBOL_REF_TLS_P(RTX) \
366 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
367
996ed075
JJ
368#ifdef IN_LIBGCC2
369/* For libgcc2 we make sure this is a compile time constant */
67796c1f 370#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
78f5898b 371#undef TARGET_POWERPC64
996ed075
JJ
372#define TARGET_POWERPC64 1
373#else
78f5898b 374#undef TARGET_POWERPC64
996ed075
JJ
375#define TARGET_POWERPC64 0
376#endif
b6c9286a 377#else
78f5898b 378 /* The option machinery will define this. */
b6c9286a
MM
379#endif
380
c28a7c24 381#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
9ebbca7d 382
696e45ba
ME
383/* FPU operations supported.
384 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
385 also test TARGET_HARD_FLOAT. */
386#define TARGET_SINGLE_FLOAT 1
387#define TARGET_DOUBLE_FLOAT 1
388#define TARGET_SINGLE_FPU 0
389#define TARGET_SIMPLE_FPU 0
0bb7b92e 390#define TARGET_XILINX_FPU 0
696e45ba 391
fb623df5
RK
392/* Recast the processor type to the cpu attribute. */
393#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
394
8482e358 395/* Define generic processor types based upon current deployment. */
3cb999d8 396#define PROCESSOR_COMMON PROCESSOR_PPC601
3cb999d8
DE
397#define PROCESSOR_POWERPC PROCESSOR_PPC604
398#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 399
fb623df5 400/* Define the default processor. This is overridden by other tm.h files. */
f3061fa4 401#define PROCESSOR_DEFAULT PROCESSOR_PPC603
3cb999d8 402#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 403
59ac9a55
JJ
404/* Specify the dialect of assembler to use. Only new mnemonics are supported
405 starting with GCC 4.8, i.e. just one dialect, but for backwards
406 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
407 defined. */
408#define ASSEMBLER_DIALECT 1
409
38c1f2d7 410/* Debug support */
fd438373
MM
411#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
412#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
413#define MASK_DEBUG_REG 0x04 /* debug register handling */
414#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
415#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
416#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
7fa14a01 417#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
fd438373
MM
418#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
419 | MASK_DEBUG_ARG \
420 | MASK_DEBUG_REG \
421 | MASK_DEBUG_ADDR \
422 | MASK_DEBUG_COST \
7fa14a01
MM
423 | MASK_DEBUG_TARGET \
424 | MASK_DEBUG_BUILTIN)
fd438373
MM
425
426#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
427#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
428#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
429#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
430#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
431#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
7fa14a01 432#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
cacf1ca8 433
2c83faf8
MM
434/* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
435 long double format that uses a pair of doubles, or IEEE 128-bit floating
436 point. KFmode was added as a way to represent IEEE 128-bit floating point,
437 even if the default for long double is the IBM long double format.
438 Similarly IFmode is the IBM long double format even if the default is IEEE
439 128-bit. */
440#define FLOAT128_IEEE_P(MODE) \
4304ccfd
MM
441 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
442 || ((MODE) == KFmode) || ((MODE) == KCmode))
2c83faf8
MM
443
444#define FLOAT128_IBM_P(MODE) \
4304ccfd
MM
445 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
446 || ((MODE) == IFmode) || ((MODE) == ICmode))
2c83faf8
MM
447
448/* Helper macros to say whether a 128-bit floating point type can go in a
449 single vector register, or whether it needs paired scalar values. */
450#define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128 && FLOAT128_IEEE_P (MODE))
451
452#define FLOAT128_2REG_P(MODE) \
453 (FLOAT128_IBM_P (MODE) \
454 || ((MODE) == TDmode) \
455 || (!TARGET_FLOAT128 && FLOAT128_IEEE_P (MODE)))
456
457/* Return true for floating point that does not use a vector register. */
458#define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
459 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
460
f62511da 461/* Describe the vector unit used for arithmetic operations. */
cacf1ca8
MM
462extern enum rs6000_vector rs6000_vector_unit[];
463
464#define VECTOR_UNIT_NONE_P(MODE) \
465 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
466
467#define VECTOR_UNIT_VSX_P(MODE) \
468 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
469
f62511da
MM
470#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
471 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
472
cacf1ca8
MM
473#define VECTOR_UNIT_ALTIVEC_P(MODE) \
474 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
475
f62511da
MM
476#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
477 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
478 (int)VECTOR_VSX, \
479 (int)VECTOR_P8_VECTOR))
480
481/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
482 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
483 compatible, so allow it as well, rather than changing all of the uses of the
484 macro. */
cacf1ca8 485#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
486 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
487 (int)VECTOR_ALTIVEC, \
488 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
489
490/* Describe whether to use VSX loads or Altivec loads. For now, just use the
491 same unit as the vector unit we are using, but we may want to migrate to
492 using VSX style loads even for types handled by altivec. */
493extern enum rs6000_vector rs6000_vector_mem[];
494
495#define VECTOR_MEM_NONE_P(MODE) \
496 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
497
498#define VECTOR_MEM_VSX_P(MODE) \
499 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
500
f62511da
MM
501#define VECTOR_MEM_P8_VECTOR_P(MODE) \
502 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
503
cacf1ca8
MM
504#define VECTOR_MEM_ALTIVEC_P(MODE) \
505 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
506
f62511da
MM
507#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
508 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
509 (int)VECTOR_VSX, \
510 (int)VECTOR_P8_VECTOR))
511
cacf1ca8 512#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
513 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
514 (int)VECTOR_ALTIVEC, \
515 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
516
517/* Return the alignment of a given vector type, which is set based on the
518 vector unit use. VSX for instance can load 32 or 64 bit aligned words
519 without problems, while Altivec requires 128-bit aligned vectors. */
520extern int rs6000_vector_align[];
521
522#define VECTOR_ALIGN(MODE) \
523 ((rs6000_vector_align[(MODE)] != 0) \
524 ? rs6000_vector_align[(MODE)] \
525 : (int)GET_MODE_BITSIZE ((MODE)))
526
6edc217d
BS
527/* Determine the element order to use for vector instructions. By
528 default we use big-endian element order when targeting big-endian,
529 and little-endian element order when targeting little-endian. For
530 programs being ported from BE Power to LE Power, it can sometimes
531 be useful to use big-endian element order when targeting little-endian.
532 This is set via -maltivec=be, for example. */
533#define VECTOR_ELT_ORDER_BIG \
534 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
535
117f16fb
MM
536/* Element number of the 64-bit value in a 128-bit vector that can be accessed
537 with scalar instructions. */
538#define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
539
dd551aa1
MM
540/* Element number of the 64-bit value in a 128-bit vector that can be accessed
541 with the ISA 3.0 MFVSRLD instructions. */
542#define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
543
025d9908
KH
544/* Alignment options for fields in structures for sub-targets following
545 AIX-like ABI.
546 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
547 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
548
549 Override the macro definitions when compiling libobjc to avoid undefined
550 reference to rs6000_alignment_flags due to library's use of GCC alignment
551 macros which use the macros below. */
f676971a 552
025d9908
KH
553#ifndef IN_TARGET_LIBS
554#define MASK_ALIGN_POWER 0x00000000
555#define MASK_ALIGN_NATURAL 0x00000001
556#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
557#else
558#define TARGET_ALIGN_NATURAL 0
559#endif
6fa3f289
ZW
560
561#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
602ea4d3 562#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289 563#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
cacf1ca8 564#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
6fa3f289 565
a3170dc6
AH
566#define TARGET_SPE_ABI 0
567#define TARGET_SPE 0
cacf1ca8 568#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
a3170dc6 569#define TARGET_FPRS 1
4d4cbc0e
AH
570#define TARGET_E500_SINGLE 0
571#define TARGET_E500_DOUBLE 0
eca0d5e8 572#define CHECK_E500_OPTIONS do { } while (0)
a3170dc6 573
7042fe5e
MM
574/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
575 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
576 XILINX. */
c3f8384f
MM
577#define TARGET_FCFID (TARGET_POWERPC64 \
578 || TARGET_PPC_GPOPT /* 970/power4 */ \
579 || TARGET_POPCNTB /* ISA 2.02 */ \
580 || TARGET_CMPB /* ISA 2.05 */ \
581 || TARGET_POPCNTD /* ISA 2.06 */ \
7042fe5e
MM
582 || TARGET_XILINX_FPU)
583
584#define TARGET_FCTIDZ TARGET_FCFID
585#define TARGET_STFIWX TARGET_PPC_GFXOPT
586#define TARGET_LFIWAX TARGET_CMPB
587#define TARGET_LFIWZX TARGET_POPCNTD
588#define TARGET_FCFIDS TARGET_POPCNTD
589#define TARGET_FCFIDU TARGET_POPCNTD
590#define TARGET_FCFIDUS TARGET_POPCNTD
591#define TARGET_FCTIDUZ TARGET_POPCNTD
592#define TARGET_FCTIWUZ TARGET_POPCNTD
0299bc72
MM
593#define TARGET_CTZ TARGET_MODULO
594#define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
dd551aa1 595#define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
7042fe5e 596
f62511da
MM
597#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
598#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
a16a872d 599#define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
dd551aa1
MM
600#define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
601 && TARGET_POWERPC64)
f62511da
MM
602
603/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
604 in power7, so conditionalize them on p8 features. TImode syncs need quad
605 memory support. */
b846c948
MM
606#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
607 || TARGET_QUAD_MEMORY_ATOMIC \
608 || TARGET_DIRECT_MOVE)
609
610#define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
f62511da 611
c6d5ff83
MM
612/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
613 to allocate the SDmode stack slot to get the value into the proper location
614 in the register. */
615#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
616
21316320
MM
617/* ISA 3.0 has new min/max functions that don't need fast math that are being
618 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
619 answers if the arguments are not in the normal range. */
620#define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
621 && (TARGET_P9_MINMAX || !flag_trapping_math))
622
623#define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
624 && (TARGET_P9_MINMAX || !flag_trapping_math))
625
4d967549
MM
626/* In switching from using target_flags to using rs6000_isa_flags, the options
627 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
628 OPTION_MASK_<xxx> back into MASK_<xxx>. */
629#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
630#define MASK_CMPB OPTION_MASK_CMPB
f62511da 631#define MASK_CRYPTO OPTION_MASK_CRYPTO
4d967549 632#define MASK_DFP OPTION_MASK_DFP
f62511da 633#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
4d967549
MM
634#define MASK_DLMZB OPTION_MASK_DLMZB
635#define MASK_EABI OPTION_MASK_EABI
636#define MASK_FPRND OPTION_MASK_FPRND
f62511da 637#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
4d967549 638#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
0258b6e4 639#define MASK_HTM OPTION_MASK_HTM
4d967549
MM
640#define MASK_ISEL OPTION_MASK_ISEL
641#define MASK_MFCRF OPTION_MASK_MFCRF
642#define MASK_MFPGPR OPTION_MASK_MFPGPR
643#define MASK_MULHW OPTION_MASK_MULHW
644#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
645#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
f62511da 646#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
8fa97501 647#define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
4d967549
MM
648#define MASK_POPCNTB OPTION_MASK_POPCNTB
649#define MASK_POPCNTD OPTION_MASK_POPCNTD
650#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
651#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
652#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
653#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
654#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
655#define MASK_STRING OPTION_MASK_STRING
656#define MASK_UPDATE OPTION_MASK_UPDATE
657#define MASK_VSX OPTION_MASK_VSX
c6d5ff83 658#define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
4d967549
MM
659
660#ifndef IN_LIBGCC2
661#define MASK_POWERPC64 OPTION_MASK_POWERPC64
662#endif
663
664#ifdef TARGET_64BIT
665#define MASK_64BIT OPTION_MASK_64BIT
666#endif
667
4d967549
MM
668#ifdef TARGET_LITTLE_ENDIAN
669#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
670#endif
671
4d967549
MM
672#ifdef TARGET_REGNAMES
673#define MASK_REGNAMES OPTION_MASK_REGNAMES
674#endif
675
676#ifdef TARGET_PROTOTYPE
677#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
678#endif
679
4f45da44
KN
680#ifdef TARGET_MODULO
681#define RS6000_BTM_MODULO OPTION_MASK_MODULO
682#endif
683
684
7fa14a01
MM
685/* For power systems, we want to enable Altivec and VSX builtins even if the
686 user did not use -maltivec or -mvsx to allow the builtins to be used inside
687 of #pragma GCC target or the target attribute to change the code level for a
688 given system. The SPE and Paired builtins are only enabled if you configure
689 the compiler for those builtins, and those machines don't support altivec or
690 VSX. */
691
692#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
693 && ((TARGET_POWERPC64 \
c3f8384f 694 || TARGET_PPC_GPOPT /* 970/power4 */ \
7fa14a01
MM
695 || TARGET_POPCNTB /* ISA 2.02 */ \
696 || TARGET_CMPB /* ISA 2.05 */ \
697 || TARGET_POPCNTD /* ISA 2.06 */ \
698 || TARGET_ALTIVEC \
f93bc5b3
PB
699 || TARGET_VSX \
700 || TARGET_HARD_FLOAT)))
7fa14a01 701
a7c6c6d6
OH
702/* E500 cores only support plain "sync", not lwsync. */
703#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
704 || rs6000_cpu == PROCESSOR_PPC8548)
7fa14a01
MM
705
706
0609bdf2
MM
707/* Whether SF/DF operations are supported on the E500. */
708#define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
709 && !TARGET_FPRS)
710
711#define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
712 && !TARGET_FPRS && TARGET_E500_DOUBLE)
713
026c3cfd 714/* Whether SF/DF operations are supported by the normal floating point unit
0609bdf2
MM
715 (or the vector/scalar unit). */
716#define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
717 && TARGET_SINGLE_FLOAT)
718
719#define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
720 && TARGET_DOUBLE_FLOAT)
721
722/* Whether SF/DF operations are supported by any hardware. */
723#define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
724#define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
725
92902797
MM
726/* Which machine supports the various reciprocal estimate instructions. */
727#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
728 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
729
730#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
731 && TARGET_DOUBLE_FLOAT \
732 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
733
734#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
735 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
736
737#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
738 && TARGET_DOUBLE_FLOAT \
739 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
740
0299bc72
MM
741/* Conditions to allow TOC fusion for loading/storing integers. */
742#define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
743 && TARGET_TOC_FUSION \
744 && (TARGET_CMODEL != CMODEL_SMALL) \
745 && TARGET_POWERPC64)
746
747/* Conditions to allow TOC fusion for loading/storing floating point. */
748#define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
749 && TARGET_TOC_FUSION \
750 && (TARGET_CMODEL != CMODEL_SMALL) \
751 && TARGET_POWERPC64 \
752 && TARGET_HARD_FLOAT \
753 && TARGET_FPRS \
754 && TARGET_SINGLE_FLOAT \
755 && TARGET_DOUBLE_FLOAT)
756
92902797
MM
757/* Whether the various reciprocal divide/square root estimate instructions
758 exist, and whether we should automatically generate code for the instruction
759 by default. */
760#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
761#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
762#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
763#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
764
765extern unsigned char rs6000_recip_bits[];
766
767#define RS6000_RECIP_HAVE_RE_P(MODE) \
768 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
769
770#define RS6000_RECIP_AUTO_RE_P(MODE) \
771 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
772
773#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
774 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
775
776#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
777 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
778
c5387660
JM
779/* The default CPU for TARGET_OPTION_OVERRIDE. */
780#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
f045b2c9 781
a5c76ee6 782/* Target pragma. */
c58b209a
NB
783#define REGISTER_TARGET_PRAGMAS() do { \
784 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
fd438373 785 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
2fab365e 786 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
7fa14a01 787 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
a5c76ee6
ZW
788} while (0)
789
4c4eb375
GK
790/* Target #defines. */
791#define TARGET_CPU_CPP_BUILTINS() \
792 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
793
794/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
795 we're compiling for. Some configurations may need to override it. */
796#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
797 do \
798 { \
799 if (BYTES_BIG_ENDIAN) \
800 { \
801 builtin_define ("__BIG_ENDIAN__"); \
802 builtin_define ("_BIG_ENDIAN"); \
803 builtin_assert ("machine=bigendian"); \
804 } \
805 else \
806 { \
807 builtin_define ("__LITTLE_ENDIAN__"); \
808 builtin_define ("_LITTLE_ENDIAN"); \
809 builtin_assert ("machine=littleendian"); \
810 } \
811 } \
812 while (0)
f045b2c9 813\f
4c4eb375 814/* Target machine storage layout. */
f045b2c9 815
13d39dbc 816/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 817 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
818 the value is constrained to be within the bounds of the declared
819 type, but kept valid in the wider mode. The signedness of the
820 extension may differ from that of the type. */
821
39403d82
DE
822#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
823 if (GET_MODE_CLASS (MODE) == MODE_INT \
96922e4c 824 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
b78d48dd 825 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 826
f045b2c9 827/* Define this if most significant bit is lowest numbered
82e41834
KH
828 in instructions that operate on numbered bit-fields. */
829/* That is true on RS/6000. */
f045b2c9
RS
830#define BITS_BIG_ENDIAN 1
831
832/* Define this if most significant byte of a word is the lowest numbered. */
833/* That is true on RS/6000. */
834#define BYTES_BIG_ENDIAN 1
835
836/* Define this if most significant word of a multiword number is lowest
c81bebd7 837 numbered.
f045b2c9
RS
838
839 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 840 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
841#define WORDS_BIG_ENDIAN 1
842
50751417
AM
843/* This says that for the IBM long double the larger magnitude double
844 comes first. It's really a two element double array, and arrays
845 don't index differently between little- and big-endian. */
846#define LONG_DOUBLE_LARGE_FIRST 1
847
2e360ab3 848#define MAX_BITS_PER_WORD 64
f045b2c9
RS
849
850/* Width of a word, in units (bytes). */
c1aa3958 851#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
852#ifdef IN_LIBGCC2
853#define MIN_UNITS_PER_WORD UNITS_PER_WORD
854#else
ef0e53ce 855#define MIN_UNITS_PER_WORD 4
f34fc46e 856#endif
2e360ab3 857#define UNITS_PER_FP_WORD 8
0ac081f6 858#define UNITS_PER_ALTIVEC_WORD 16
cacf1ca8 859#define UNITS_PER_VSX_WORD 16
a3170dc6 860#define UNITS_PER_SPE_WORD 8
96038623 861#define UNITS_PER_PAIRED_WORD 8
f045b2c9 862
915f619f
JW
863/* Type used for ptrdiff_t, as a string used in a declaration. */
864#define PTRDIFF_TYPE "int"
865
058ef853
DE
866/* Type used for size_t, as a string used in a declaration. */
867#define SIZE_TYPE "long unsigned int"
868
f045b2c9
RS
869/* Type used for wchar_t, as a string used in a declaration. */
870#define WCHAR_TYPE "short unsigned int"
871
872/* Width of wchar_t in bits. */
873#define WCHAR_TYPE_SIZE 16
874
9e654916
RK
875/* A C expression for the size in bits of the type `short' on the
876 target machine. If you don't define this, the default is half a
877 word. (If this would be less than one storage unit, it is
878 rounded up to one unit.) */
879#define SHORT_TYPE_SIZE 16
880
881/* A C expression for the size in bits of the type `int' on the
882 target machine. If you don't define this, the default is one
883 word. */
19d2d16f 884#define INT_TYPE_SIZE 32
9e654916
RK
885
886/* A C expression for the size in bits of the type `long' on the
887 target machine. If you don't define this, the default is one
888 word. */
2f3e5814 889#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
890
891/* A C expression for the size in bits of the type `long long' on the
892 target machine. If you don't define this, the default is two
893 words. */
894#define LONG_LONG_TYPE_SIZE 64
895
9e654916
RK
896/* A C expression for the size in bits of the type `float' on the
897 target machine. If you don't define this, the default is one
898 word. */
899#define FLOAT_TYPE_SIZE 32
900
901/* A C expression for the size in bits of the type `double' on the
902 target machine. If you don't define this, the default is two
903 words. */
904#define DOUBLE_TYPE_SIZE 64
905
906/* A C expression for the size in bits of the type `long double' on
907 the target machine. If you don't define this, the default is two
908 words. */
6fa3f289 909#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 910
5b8f5865
DE
911/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
912#define WIDEST_HARDWARE_FP_SIZE 64
913
f045b2c9
RS
914/* Width in bits of a pointer.
915 See also the macro `Pmode' defined below. */
cacf1ca8
MM
916extern unsigned rs6000_pointer_size;
917#define POINTER_SIZE rs6000_pointer_size
f045b2c9
RS
918
919/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 920#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
921
922/* Boundary (in *bits*) on which stack pointer should be aligned. */
cacf1ca8
MM
923#define STACK_BOUNDARY \
924 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
925 ? 64 : 128)
f045b2c9
RS
926
927/* Allocation boundary (in *bits*) for the code of a function. */
928#define FUNCTION_BOUNDARY 32
929
930/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
931#define BIGGEST_ALIGNMENT 128
932
f045b2c9
RS
933/* Alignment of field after `int : 0' in a structure. */
934#define EMPTY_FIELD_BOUNDARY 32
935
936/* Every structure's size must be a multiple of this. */
937#define STRUCTURE_SIZE_BOUNDARY 8
938
43a88a8c 939/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
940#define PCC_BITFIELD_TYPE_MATTERS 1
941
69eff9da
AM
942enum data_align { align_abi, align_opt, align_both };
943
944/* A C expression to compute the alignment for a variables in the
945 local store. TYPE is the data type, and ALIGN is the alignment
946 that the object would ordinarily have. */
947#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
948 rs6000_data_alignment (TYPE, ALIGN, align_both)
949
950/* Make strings word-aligned so strcpy from constants will be faster. */
69ef87e2
AH
951#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
952 (TREE_CODE (EXP) == STRING_CST \
153fbec8 953 && (STRICT_ALIGNMENT || !optimize_size) \
69ef87e2
AH
954 && (ALIGN) < BITS_PER_WORD \
955 ? BITS_PER_WORD \
956 : (ALIGN))
f045b2c9 957
69eff9da
AM
958/* Make arrays of chars word-aligned for the same reasons. */
959#define DATA_ALIGNMENT(TYPE, ALIGN) \
960 rs6000_data_alignment (TYPE, ALIGN, align_opt)
961
962/* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
f82f556d 963 64 bits. */
69eff9da
AM
964#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
965 rs6000_data_alignment (TYPE, ALIGN, align_abi)
f045b2c9 966
a0ab749a 967/* Nonzero if move instructions will actually fail to work
f045b2c9 968 when given unaligned data. */
fdaff8ba 969#define STRICT_ALIGNMENT 0
e1565e65
DE
970
971/* Define this macro to be the value 1 if unaligned accesses have a cost
972 many times greater than aligned accesses, for example if they are
973 emulated in a trap handler. */
cacf1ca8
MM
974/* Altivec vector memory instructions simply ignore the low bits; SPE vector
975 memory instructions trap on unaligned accesses; VSX memory instructions are
976 aligned to 4 or 8 bytes. */
41543739
GK
977#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
978 (STRICT_ALIGNMENT \
2c83faf8 979 || (SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
047b83ff 980 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
2c83faf8
MM
981 && ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
982 && (((int)(ALIGN)) < VECTOR_ALIGN (MODE)))))
cacf1ca8 983
f045b2c9
RS
984\f
985/* Standard register usage. */
986
987/* Number of actual hardware registers.
988 The hardware registers are assigned numbers for the compiler
989 from 0 to just below FIRST_PSEUDO_REGISTER.
990 All registers that the compiler knows about must be given numbers,
991 even those that are not normally considered general registers.
992
993 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
462f7901
SB
994 a count register, a link register, and 8 condition register fields,
995 which we view here as separate registers. AltiVec adds 32 vector
996 registers and a VRsave register.
f045b2c9
RS
997
998 In addition, the difference between the frame and argument pointers is
999 a function of the number of registers saved, so we need to have a
1000 register for AP that will later be eliminated in favor of SP or FP.
802a0058 1001 This is a normal register, but it is fixed.
f045b2c9 1002
802a0058
MM
1003 We also create a pseudo register for float/int conversions, that will
1004 really represent the memory location used. It is represented here as
1005 a register, in order to work around problems in allocating stack storage
7d5175e1 1006 in inline functions.
802a0058 1007
7d5175e1 1008 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
7a5add18
PB
1009 pointer, which is eventually eliminated in favor of SP or FP.
1010
1011 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
7d5175e1 1012
23742a9e 1013#define FIRST_PSEUDO_REGISTER 149
f045b2c9 1014
d6a7951f 1015/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 1016#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 1017
23742a9e
RAR
1018/* True if register is an SPE High register. */
1019#define SPE_HIGH_REGNO_P(N) \
1020 ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
1021
1022/* SPE high registers added as hard regs.
1023 The sfp register and 3 HTM registers
1024 aren't included in DWARF_FRAME_REGISTERS. */
1025#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
c19de7aa 1026
93c9d1ba
AM
1027/* The SPE has an additional 32 synthetic registers, with DWARF debug
1028 info numbering for these registers starting at 1200. While eh_frame
1029 register numbering need not be the same as the debug info numbering,
23742a9e 1030 we choose to number these regs for eh_frame at 1200 too.
93c9d1ba
AM
1031
1032 We must map them here to avoid huge unwinder tables mostly consisting
f676971a 1033 of unused space. */
93c9d1ba 1034#define DWARF_REG_TO_UNWIND_COLUMN(r) \
23742a9e 1035 ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
93c9d1ba 1036
ed1cf8ff 1037/* Use standard DWARF numbering for DWARF debugging information. */
3d36d470 1038#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
ed1cf8ff 1039
93c9d1ba 1040/* Use gcc hard register numbering for eh_frame. */
3d36d470 1041#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 1042
ed1cf8ff
GK
1043/* Map register numbers held in the call frame info that gcc has
1044 collected using DWARF_FRAME_REGNUM to those that should be output in
3d36d470
UW
1045 .debug_frame and .eh_frame. */
1046#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1047 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
ed1cf8ff 1048
f045b2c9
RS
1049/* 1 for registers that have pervasive standard uses
1050 and are not available for the register allocator.
1051
5dead3e5
DJ
1052 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1053 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 1054
a127c4e5
RK
1055 On System V implementations, r13 is fixed and not available for use. */
1056
f045b2c9 1057#define FIXED_REGISTERS \
5dead3e5 1058 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
1059 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1060 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1061 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
36bd0c3e 1062 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
0ac081f6
AH
1063 /* AltiVec registers. */ \
1064 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1065 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1066 1, 1 \
23742a9e
RAR
1067 , 1, 1, 1, 1, 1, 1, \
1068 /* SPE High registers. */ \
1069 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1070 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6 1071}
f045b2c9
RS
1072
1073/* 1 for registers not available across function calls.
1074 These must include the FIXED_REGISTERS and also any
1075 registers that can be used without being saved.
1076 The latter must include the registers where values are returned
1077 and the register where structure-value addresses are passed.
1078 Aside from that, you can include as many other registers as you like. */
1079
1080#define CALL_USED_REGISTERS \
a127c4e5 1081 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
1082 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1083 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1084 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
1085 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1086 /* AltiVec registers. */ \
1087 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1088 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1089 1, 1 \
23742a9e
RAR
1090 , 1, 1, 1, 1, 1, 1, \
1091 /* SPE High registers. */ \
1092 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1093 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6
AH
1094}
1095
289e96b2
AH
1096/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1097 the entire set of `FIXED_REGISTERS' be included.
1098 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1099 This macro is optional. If not specified, it defaults to the value
1100 of `CALL_USED_REGISTERS'. */
f676971a 1101
289e96b2
AH
1102#define CALL_REALLY_USED_REGISTERS \
1103 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1104 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1105 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1106 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1107 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1108 /* AltiVec registers. */ \
1109 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1110 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1111 0, 0 \
23742a9e
RAR
1112 , 0, 0, 0, 0, 0, 0, \
1113 /* SPE High registers. */ \
1114 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1115 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
289e96b2 1116}
f045b2c9 1117
28bcfd4d 1118#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
9ebbca7d 1119
d62294f5 1120#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
b427dd7a
AM
1121#define FIRST_SAVED_FP_REGNO (14+32)
1122#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
d62294f5 1123
f045b2c9
RS
1124/* List the order in which to allocate registers. Each register must be
1125 listed once, even those in FIXED_REGISTERS.
1126
1127 We allocate in the following order:
1128 fp0 (not saved or used for anything)
1129 fp13 - fp2 (not saved; incoming fp arg registers)
1130 fp1 (not saved; return value)
9390387d 1131 fp31 - fp14 (saved; order given to save least number)
36bd0c3e
SB
1132 cr7, cr5 (not saved or special)
1133 cr6 (not saved, but used for vector operations)
5accd822 1134 cr1 (not saved, but used for FP operations)
f045b2c9 1135 cr0 (not saved, but used for arithmetic operations)
5accd822 1136 cr4, cr3, cr2 (saved)
f045b2c9 1137 r9 (not saved; best for TImode)
d44b26bd 1138 r10, r8-r4 (not saved; highest first for less conflict with params)
9390387d 1139 r3 (not saved; return value register)
d44b26bd
AM
1140 r11 (not saved; later alloc to help shrink-wrap)
1141 r0 (not saved; cannot be base reg)
f045b2c9
RS
1142 r31 - r13 (saved; order given to save least number)
1143 r12 (not saved; if used for DImode or DFmode would use r13)
f045b2c9
RS
1144 ctr (not saved; when we have the choice ctr is better)
1145 lr (saved)
36bd0c3e 1146 r1, r2, ap, ca (fixed)
9390387d
AM
1147 v0 - v1 (not saved or used for anything)
1148 v13 - v3 (not saved; incoming vector arg registers)
1149 v2 (not saved; incoming vector arg reg; return value)
1150 v19 - v14 (not saved or used for anything)
1151 v31 - v20 (saved; order given to save least number)
1152 vrsave, vscr (fixed)
a3170dc6 1153 spe_acc, spefscr (fixed)
7d5175e1 1154 sfp (fixed)
0258b6e4
PB
1155 tfhar (fixed)
1156 tfiar (fixed)
1157 texasr (fixed)
0ac081f6 1158*/
f676971a 1159
6b13641d
DJ
1160#if FIXED_R2 == 1
1161#define MAYBE_R2_AVAILABLE
1162#define MAYBE_R2_FIXED 2,
1163#else
1164#define MAYBE_R2_AVAILABLE 2,
1165#define MAYBE_R2_FIXED
1166#endif
f045b2c9 1167
d44b26bd
AM
1168#if FIXED_R13 == 1
1169#define EARLY_R12 12,
1170#define LATE_R12
1171#else
1172#define EARLY_R12
1173#define LATE_R12 12,
1174#endif
1175
9390387d
AM
1176#define REG_ALLOC_ORDER \
1177 {32, \
f62511da
MM
1178 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1179 /* not use fr14 which is a saved register. */ \
1180 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
9390387d
AM
1181 33, \
1182 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1183 50, 49, 48, 47, 46, \
36bd0c3e 1184 75, 73, 74, 69, 68, 72, 71, 70, \
d44b26bd
AM
1185 MAYBE_R2_AVAILABLE \
1186 9, 10, 8, 7, 6, 5, 4, \
1187 3, EARLY_R12 11, 0, \
9390387d 1188 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
d44b26bd 1189 18, 17, 16, 15, 14, 13, LATE_R12 \
462f7901 1190 66, 65, \
36bd0c3e 1191 1, MAYBE_R2_FIXED 67, 76, \
9390387d
AM
1192 /* AltiVec registers. */ \
1193 77, 78, \
1194 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1195 79, \
1196 96, 95, 94, 93, 92, 91, \
1197 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1198 109, 110, \
23742a9e
RAR
1199 111, 112, 113, 114, 115, 116, \
1200 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, \
1201 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, \
1202 141, 142, 143, 144, 145, 146, 147, 148 \
0ac081f6 1203}
f045b2c9
RS
1204
1205/* True if register is floating-point. */
1206#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1207
1208/* True if register is a condition register. */
1de43f85 1209#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
f045b2c9 1210
815cdc52 1211/* True if register is a condition register, but not cr0. */
1de43f85 1212#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
815cdc52 1213
f045b2c9 1214/* True if register is an integer register. */
7d5175e1
JJ
1215#define INT_REGNO_P(N) \
1216 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 1217
a3170dc6
AH
1218/* SPE SIMD registers are just the GPRs. */
1219#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1220
96038623
DE
1221/* PAIRED SIMD registers are just the FPRs. */
1222#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1223
f6b5d695
SB
1224/* True if register is the CA register. */
1225#define CA_REGNO_P(N) ((N) == CA_REGNO)
802a0058 1226
0ac081f6
AH
1227/* True if register is an AltiVec register. */
1228#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1229
cacf1ca8
MM
1230/* True if register is a VSX register. */
1231#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1232
1233/* Alternate name for any vector register supporting floating point, no matter
1234 which instruction set(s) are available. */
1235#define VFLOAT_REGNO_P(N) \
1236 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1237
1238/* Alternate name for any vector register supporting integer, no matter which
1239 instruction set(s) are available. */
1240#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1241
1242/* Alternate name for any vector register supporting logical operations, no
dd7a40e1
MM
1243 matter which instruction set(s) are available. Allow GPRs as well as the
1244 vector registers. */
f62511da 1245#define VLOGICAL_REGNO_P(N) \
dd7a40e1
MM
1246 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1247 || (TARGET_VSX && FP_REGNO_P (N))) \
cacf1ca8 1248
f045b2c9 1249/* Return number of consecutive hard regs needed starting at reg REGNO
d8ecbcdb
AH
1250 to hold something of mode MODE. */
1251
cacf1ca8 1252#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
0e67400a 1253
79eefb0d 1254/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
5ec6aff2
MM
1255 enough space to account for vectors in FP regs. However, TFmode/TDmode
1256 should not use VSX instructions to do a caller save. */
dbcc9f08
MM
1257#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1258 (TARGET_VSX \
1259 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
5ec6aff2
MM
1260 && FP_REGNO_P (REGNO) \
1261 ? V2DFmode \
bbdb5098 1262 : TARGET_E500_DOUBLE && ((MODE) == VOIDmode || (MODE) == DFmode) \
5ec6aff2 1263 ? DFmode \
2c83faf8 1264 : !TARGET_E500_DOUBLE && FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
bbdb5098
MR
1265 ? DFmode \
1266 : !TARGET_E500_DOUBLE && (MODE) == TDmode && FP_REGNO_P (REGNO) \
5ec6aff2 1267 ? DImode \
79eefb0d
PH
1268 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1269
3fc841c8
MM
1270#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1271 (((TARGET_32BIT && TARGET_POWERPC64 \
1272 && (GET_MODE_SIZE (MODE) > 4) \
1273 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1274 || (TARGET_VSX && FP_REGNO_P (REGNO) \
2c83faf8 1275 && GET_MODE_SIZE (MODE) > 8 && !FLOAT128_2REG_P (MODE)))
f045b2c9 1276
cacf1ca8
MM
1277#define VSX_VECTOR_MODE(MODE) \
1278 ((MODE) == V4SFmode \
1279 || (MODE) == V2DFmode) \
1280
bdb60a10
MM
1281/* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1282 really a vector, but we want to treat it as a vector for moves, and
1283 such. */
1284
1285#define ALTIVEC_VECTOR_MODE(MODE) \
1286 ((MODE) == V16QImode \
1287 || (MODE) == V8HImode \
1288 || (MODE) == V4SFmode \
1289 || (MODE) == V4SImode \
1290 || FLOAT128_VECTOR_P (MODE))
0ac081f6 1291
dbcc9f08
MM
1292#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1293 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
a16a872d 1294 || (MODE) == V2DImode || (MODE) == V1TImode)
dbcc9f08 1295
a3170dc6
AH
1296#define SPE_VECTOR_MODE(MODE) \
1297 ((MODE) == V4HImode \
1298 || (MODE) == V2SFmode \
00a892b8 1299 || (MODE) == V1DImode \
a3170dc6
AH
1300 || (MODE) == V2SImode)
1301
96038623
DE
1302#define PAIRED_VECTOR_MODE(MODE) \
1303 ((MODE) == V2SFmode)
1304
0d1fbc8c
AH
1305/* Value is TRUE if hard register REGNO can hold a value of
1306 machine-mode MODE. */
1307#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1308 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
f045b2c9
RS
1309
1310/* Value is 1 if it is a good idea to tie two pseudo registers
1311 when one has mode MODE1 and one has mode MODE2.
1312 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
f161bfd3
MM
1313 for any hard reg, then this must be 0 for correct output.
1314
1315 PTImode cannot tie with other modes because PTImode is restricted to even
1316 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
bdb60a10
MM
1317 57744).
1318
1319 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
1320 128-bit floating point on VSX systems ties with other vectors. */
f62511da 1321#define MODES_TIEABLE_P(MODE1, MODE2) \
f161bfd3
MM
1322 ((MODE1) == PTImode \
1323 ? (MODE2) == PTImode \
1324 : (MODE2) == PTImode \
1325 ? 0 \
bdb60a10
MM
1326 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1327 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1328 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1329 ? 0 \
f161bfd3 1330 : SCALAR_FLOAT_MODE_P (MODE1) \
ebb109ad
BE
1331 ? SCALAR_FLOAT_MODE_P (MODE2) \
1332 : SCALAR_FLOAT_MODE_P (MODE2) \
f161bfd3 1333 ? 0 \
f045b2c9
RS
1334 : GET_MODE_CLASS (MODE1) == MODE_CC \
1335 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1336 : GET_MODE_CLASS (MODE2) == MODE_CC \
f161bfd3 1337 ? 0 \
4dcc01f3
AH
1338 : SPE_VECTOR_MODE (MODE1) \
1339 ? SPE_VECTOR_MODE (MODE2) \
1340 : SPE_VECTOR_MODE (MODE2) \
f161bfd3 1341 ? 0 \
f045b2c9
RS
1342 : 1)
1343
c8ae788f
SB
1344/* Post-reload, we can't use any new AltiVec registers, as we already
1345 emitted the vrsave mask. */
1346
1347#define HARD_REGNO_RENAME_OK(SRC, DST) \
6fb5fa3c 1348 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
c8ae788f 1349
f045b2c9
RS
1350/* Specify the cost of a branch insn; roughly the number of extra insns that
1351 should be added to avoid a branch.
1352
ef457bda 1353 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1354 unscheduled conditional branch. */
1355
3a4fd356 1356#define BRANCH_COST(speed_p, predictable_p) 3
f045b2c9 1357
85e50b6b 1358/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 1359 performance for removing short circuiting from the logical ops. */
85e50b6b 1360
b8610a53 1361#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6 1362
52ff33d0
NF
1363/* A fixed register used at epilogue generation to address SPE registers
1364 with negative offsets. The 64-bit load/store instructions on the SPE
1365 only take positive offsets (and small ones at that), so we need to
1366 reserve a register for consing up negative offsets. */
a3170dc6 1367
52ff33d0 1368#define FIXED_SCRATCH 0
a3170dc6 1369
f045b2c9
RS
1370/* Specify the registers used for certain standard purposes.
1371 The values of these macros are register numbers. */
1372
1373/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1374/* #define PC_REGNUM */
1375
1376/* Register to use for pushing function arguments. */
1377#define STACK_POINTER_REGNUM 1
1378
1379/* Base register for access to local variables of the function. */
7d5175e1
JJ
1380#define HARD_FRAME_POINTER_REGNUM 31
1381
1382/* Base register for access to local variables of the function. */
1383#define FRAME_POINTER_REGNUM 113
f045b2c9 1384
f045b2c9
RS
1385/* Base register for access to arguments of the function. */
1386#define ARG_POINTER_REGNUM 67
1387
1388/* Place to put static chain when calling a function that requires it. */
1389#define STATIC_CHAIN_REGNUM 11
1390
26a2e6ae
PB
1391/* Base register for access to thread local storage variables. */
1392#define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1393
f045b2c9
RS
1394\f
1395/* Define the classes of registers for register constraints in the
1396 machine description. Also define ranges of constants.
1397
1398 One of the classes must always be named ALL_REGS and include all hard regs.
1399 If there is more than one class, another class must be named NO_REGS
1400 and contain no registers.
1401
1402 The name GENERAL_REGS must be the name of a class (or an alias for
1403 another name such as ALL_REGS). This is the class of registers
1404 that is allowed by "g" or "r" in a register constraint.
1405 Also, registers outside this class are allocated only when
1406 instructions express preferences for them.
1407
1408 The classes must be numbered in nondecreasing order; that is,
1409 a larger-numbered class must never be contained completely
1410 in a smaller-numbered class.
1411
1412 For any two classes, it is very desirable that there be another
1413 class that represents their union. */
c81bebd7 1414
cacf1ca8 1415/* The RS/6000 has three types of registers, fixed-point, floating-point, and
462f7901 1416 condition registers, plus three special registers, CTR, and the link
cacf1ca8
MM
1417 register. AltiVec adds a vector register class. VSX registers overlap the
1418 FPR registers and the Altivec registers.
f045b2c9
RS
1419
1420 However, r0 is special in that it cannot be used as a base register.
1421 So make a class for registers valid as base registers.
1422
1423 Also, cr0 is the only condition code register that can be used in
0d86f538 1424 arithmetic insns, so make a separate class for it. */
f045b2c9 1425
ebedb4dd
MM
1426enum reg_class
1427{
1428 NO_REGS,
ebedb4dd
MM
1429 BASE_REGS,
1430 GENERAL_REGS,
1431 FLOAT_REGS,
0ac081f6 1432 ALTIVEC_REGS,
8beb65e3 1433 VSX_REGS,
0ac081f6 1434 VRSAVE_REGS,
5f004351 1435 VSCR_REGS,
a3170dc6
AH
1436 SPE_ACC_REGS,
1437 SPEFSCR_REGS,
0258b6e4 1438 SPR_REGS,
ebedb4dd 1439 NON_SPECIAL_REGS,
ebedb4dd
MM
1440 LINK_REGS,
1441 CTR_REGS,
1442 LINK_OR_CTR_REGS,
1443 SPECIAL_REGS,
1444 SPEC_OR_GEN_REGS,
1445 CR0_REGS,
ebedb4dd
MM
1446 CR_REGS,
1447 NON_FLOAT_REGS,
f6b5d695 1448 CA_REGS,
23742a9e 1449 SPE_HIGH_REGS,
ebedb4dd
MM
1450 ALL_REGS,
1451 LIM_REG_CLASSES
1452};
f045b2c9
RS
1453
1454#define N_REG_CLASSES (int) LIM_REG_CLASSES
1455
82e41834 1456/* Give names of register classes as strings for dump file. */
f045b2c9 1457
ebedb4dd
MM
1458#define REG_CLASS_NAMES \
1459{ \
1460 "NO_REGS", \
ebedb4dd
MM
1461 "BASE_REGS", \
1462 "GENERAL_REGS", \
1463 "FLOAT_REGS", \
0ac081f6 1464 "ALTIVEC_REGS", \
8beb65e3 1465 "VSX_REGS", \
0ac081f6 1466 "VRSAVE_REGS", \
5f004351 1467 "VSCR_REGS", \
a3170dc6
AH
1468 "SPE_ACC_REGS", \
1469 "SPEFSCR_REGS", \
0258b6e4 1470 "SPR_REGS", \
ebedb4dd 1471 "NON_SPECIAL_REGS", \
ebedb4dd
MM
1472 "LINK_REGS", \
1473 "CTR_REGS", \
1474 "LINK_OR_CTR_REGS", \
1475 "SPECIAL_REGS", \
1476 "SPEC_OR_GEN_REGS", \
1477 "CR0_REGS", \
ebedb4dd
MM
1478 "CR_REGS", \
1479 "NON_FLOAT_REGS", \
f6b5d695 1480 "CA_REGS", \
23742a9e 1481 "SPE_HIGH_REGS", \
ebedb4dd
MM
1482 "ALL_REGS" \
1483}
f045b2c9
RS
1484
1485/* Define which registers fit in which classes.
1486 This is an initializer for a vector of HARD_REG_SET
1487 of length N_REG_CLASSES. */
1488
23742a9e
RAR
1489#define REG_CLASS_CONTENTS \
1490{ \
1491 /* NO_REGS. */ \
1492 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1493 /* BASE_REGS. */ \
1494 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1495 /* GENERAL_REGS. */ \
1496 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1497 /* FLOAT_REGS. */ \
1498 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, \
1499 /* ALTIVEC_REGS. */ \
1500 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 }, \
1501 /* VSX_REGS. */ \
1502 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 }, \
1503 /* VRSAVE_REGS. */ \
1504 { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 }, \
1505 /* VSCR_REGS. */ \
1506 { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 }, \
1507 /* SPE_ACC_REGS. */ \
1508 { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 }, \
1509 /* SPEFSCR_REGS. */ \
1510 { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 }, \
1511 /* SPR_REGS. */ \
1512 { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 }, \
1513 /* NON_SPECIAL_REGS. */ \
1514 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 }, \
1515 /* LINK_REGS. */ \
1516 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 }, \
1517 /* CTR_REGS. */ \
1518 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 }, \
1519 /* LINK_OR_CTR_REGS. */ \
1520 { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 }, \
1521 /* SPECIAL_REGS. */ \
1522 { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 }, \
1523 /* SPEC_OR_GEN_REGS. */ \
1524 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 }, \
1525 /* CR0_REGS. */ \
1526 { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 }, \
1527 /* CR_REGS. */ \
1528 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 }, \
1529 /* NON_FLOAT_REGS. */ \
1530 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 }, \
1531 /* CA_REGS. */ \
1532 { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 }, \
1533 /* SPE_HIGH_REGS. */ \
1534 { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff }, \
1535 /* ALL_REGS. */ \
1536 { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff } \
ebedb4dd 1537}
f045b2c9
RS
1538
1539/* The same information, inverted:
1540 Return the class number of the smallest class containing
1541 reg number REGNO. This could be a conditional expression
1542 or could index an array. */
1543
cacf1ca8
MM
1544extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1545
cacf1ca8 1546#define REGNO_REG_CLASS(REGNO) \
e28c2052 1547 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
cacf1ca8
MM
1548 rs6000_regno_regclass[(REGNO)])
1549
a72c65c7
MM
1550/* Register classes for various constraints that are based on the target
1551 switches. */
1552enum r6000_reg_class_enum {
1553 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1554 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1555 RS6000_CONSTRAINT_v, /* Altivec registers */
1556 RS6000_CONSTRAINT_wa, /* Any VSX register */
d5906efc 1557 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
a72c65c7 1558 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
dd551aa1 1559 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
a72c65c7 1560 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
5e8586d7 1561 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
59f5868d
MM
1562 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1563 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1564 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1565 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
c6d5ff83 1566 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
f62511da 1567 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
4e8a3a35 1568 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
c477a667
MM
1569 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1570 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
f62511da 1571 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
a72c65c7 1572 RS6000_CONSTRAINT_ws, /* VSX register for DF */
c6d5ff83 1573 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
5e8586d7
MM
1574 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1575 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1576 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
c6d5ff83 1577 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
5e8586d7 1578 RS6000_CONSTRAINT_wy, /* VSX register for SF */
c6d5ff83 1579 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
a72c65c7
MM
1580 RS6000_CONSTRAINT_MAX
1581};
1582
1583extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
f045b2c9
RS
1584
1585/* The class value for index registers, and the one for base regs. */
1586#define INDEX_REG_CLASS GENERAL_REGS
1587#define BASE_REG_CLASS BASE_REGS
1588
cacf1ca8
MM
1589/* Return whether a given register class can hold VSX objects. */
1590#define VSX_REG_CLASS_P(CLASS) \
1591 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1592
59f5868d
MM
1593/* Return whether a given register class targets general purpose registers. */
1594#define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1595
f045b2c9
RS
1596/* Given an rtx X being reloaded into a reg required to be
1597 in class CLASS, return the class of reg to actually use.
1598 In general this is just CLASS; but on some machines
c81bebd7 1599 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1600
1601 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1602 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1603
1604 We also don't want to reload integer values into floating-point
1605 registers if we can at all help it. In fact, this can
37409796 1606 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1607 into a FP register and discovers it doesn't have the memory location
1608 required.
1609
1610 ??? Would it be a good idea to have reload do the converse, that is
1611 try to reload floating modes into FP registers if possible?
1612 */
f045b2c9 1613
802a0058 1614#define PREFERRED_RELOAD_CLASS(X,CLASS) \
8beb65e3 1615 rs6000_preferred_reload_class_ptr (X, CLASS)
c81bebd7 1616
f045b2c9
RS
1617/* Return the register class of a scratch register needed to copy IN into
1618 or out of a register in CLASS in MODE. If it can be done directly,
1619 NO_REGS is returned. */
1620
1621#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
8beb65e3 1622 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
f045b2c9 1623
0ac081f6 1624/* If we are copying between FP or AltiVec registers and anything
44cd321e
PS
1625 else, we need a memory location. The exception is when we are
1626 targeting ppc64 and the move to/from fpr to gpr instructions
1627 are available.*/
1628
1629#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
8beb65e3 1630 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
7ea555a4 1631
e41b2a33
PB
1632/* For cpus that cannot load/store SDmode values from the 64-bit
1633 FP registers without using a full 64-bit load/store, we need
1634 to allocate a full 64-bit stack slot for them. */
1635
1636#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1637 rs6000_secondary_memory_needed_rtx (MODE)
1638
01b1efaa
VM
1639/* Specify the mode to be used for memory when a secondary memory
1640 location is needed. For cpus that cannot load/store SDmode values
1641 from the 64-bit FP registers without using a full 64-bit
1642 load/store, we need a wider mode. */
1643#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1644 rs6000_secondary_memory_needed_mode (MODE)
1645
f045b2c9
RS
1646/* Return the maximum number of consecutive registers
1647 needed to represent mode MODE in a register of class CLASS.
1648
cacf1ca8
MM
1649 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1650 a single reg is enough for two words, unless we have VSX, where the FP
1651 registers can hold 128 bits. */
1652#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
580d3230 1653
ca0e79d9
AM
1654/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1655
1656#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
8beb65e3 1657 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
02188693 1658
f045b2c9
RS
1659/* Stack layout; function entry, exit and calling. */
1660
1661/* Define this if pushing a word on the stack
1662 makes the stack pointer a smaller address. */
62f9f30b 1663#define STACK_GROWS_DOWNWARD 1
f045b2c9 1664
327e5343
FJ
1665/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1666#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1667
a4d05547 1668/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1669 is at the high-address end of the local variables;
1670 that is, each additional local variable allocated
1671 goes at a more negative offset in the frame.
1672
1673 On the RS/6000, we grow upwards, from the area after the outgoing
1674 arguments. */
de5a5fa1
MP
1675#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1676 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
f045b2c9 1677
4697a36c 1678/* Size of the fixed area on the stack */
9ebbca7d 1679#define RS6000_SAVE_AREA \
b54214fe
UW
1680 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1681 << (TARGET_64BIT ? 1 : 0))
4697a36c 1682
b54214fe
UW
1683/* Stack offset for toc save slot. */
1684#define RS6000_TOC_SAVE_SLOT \
1685 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
b6c9286a 1686
4697a36c 1687/* Align an address */
4f59f9f2 1688#define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
4697a36c 1689
f045b2c9
RS
1690/* Offset within stack frame to start allocating local variables at.
1691 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1692 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1693 of the first local allocated.
f045b2c9
RS
1694
1695 On the RS/6000, the frame pointer is the same as the stack pointer,
1696 except for dynamic allocations. So we start after the fixed area and
1697 outgoing parameter area. */
1698
802a0058 1699#define STARTING_FRAME_OFFSET \
7d5175e1
JJ
1700 (FRAME_GROWS_DOWNWARD \
1701 ? 0 \
cacf1ca8
MM
1702 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1703 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
7d5175e1 1704 + RS6000_SAVE_AREA))
802a0058
MM
1705
1706/* Offset from the stack pointer register to an item dynamically
1707 allocated on the stack, e.g., by `alloca'.
1708
1709 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1710 length of the outgoing arguments. The default is correct for most
1711 machines. See `function.c' for details. */
1712#define STACK_DYNAMIC_OFFSET(FUNDECL) \
cacf1ca8
MM
1713 (RS6000_ALIGN (crtl->outgoing_args_size, \
1714 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
802a0058 1715 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1716
1717/* If we generate an insn to push BYTES bytes,
1718 this says how many the stack pointer really advances by.
1719 On RS/6000, don't define this because there are no push insns. */
1720/* #define PUSH_ROUNDING(BYTES) */
1721
1722/* Offset of first parameter from the argument pointer register value.
1723 On the RS/6000, we define the argument pointer to the start of the fixed
1724 area. */
4697a36c 1725#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1726
62153b61
JM
1727/* Offset from the argument pointer register value to the top of
1728 stack. This is different from FIRST_PARM_OFFSET because of the
1729 register save area. */
1730#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1731
f045b2c9
RS
1732/* Define this if stack space is still allocated for a parameter passed
1733 in a register. The value is the number of bytes allocated to this
1734 area. */
ddbb449f
AM
1735#define REG_PARM_STACK_SPACE(FNDECL) \
1736 rs6000_reg_parm_stack_space ((FNDECL), false)
1737
1738/* Define this macro if space guaranteed when compiling a function body
1739 is different to space required when making a call, a situation that
1740 can arise with K&R style function definitions. */
1741#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1742 rs6000_reg_parm_stack_space ((FNDECL), true)
f045b2c9
RS
1743
1744/* Define this if the above stack space is to be considered part of the
1745 space allocated by the caller. */
81464b2c 1746#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
f045b2c9
RS
1747
1748/* This is the difference between the logical top of stack and the actual sp.
1749
82e41834 1750 For the RS/6000, sp points past the fixed area. */
4697a36c 1751#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1752
1753/* Define this if the maximum size of all the outgoing args is to be
1754 accumulated and pushed during the prologue. The amount can be
38173d38 1755 found in the variable crtl->outgoing_args_size. */
f73ad30e 1756#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9 1757
f045b2c9
RS
1758/* Define how to find the value returned by a library function
1759 assuming the value has mode MODE. */
1760
ded9bf77 1761#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1762
6fa3f289
ZW
1763/* DRAFT_V4_STRUCT_RET defaults off. */
1764#define DRAFT_V4_STRUCT_RET 0
f607bc57 1765
bd5bd7ac 1766/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1767#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1768
a260abc9 1769/* Mode of stack savearea.
dfdfa60f
DE
1770 FUNCTION is VOIDmode because calling convention maintains SP.
1771 BLOCK needs Pmode for SP.
a260abc9
DE
1772 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1773#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f 1774 (LEVEL == SAVE_FUNCTION ? VOIDmode \
c6d5ff83 1775 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
a260abc9 1776
4697a36c
MM
1777/* Minimum and maximum general purpose registers used to hold arguments. */
1778#define GP_ARG_MIN_REG 3
1779#define GP_ARG_MAX_REG 10
1780#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1781
1782/* Minimum and maximum floating point registers used to hold arguments. */
1783#define FP_ARG_MIN_REG 33
7509c759
MM
1784#define FP_ARG_AIX_MAX_REG 45
1785#define FP_ARG_V4_MAX_REG 40
008e32c0
UW
1786#define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1787 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
4697a36c
MM
1788#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1789
0ac081f6
AH
1790/* Minimum and maximum AltiVec registers used to hold arguments. */
1791#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1792#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1793#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1794
b54214fe
UW
1795/* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1796#define AGGR_ARG_NUM_REG 8
1797
4697a36c
MM
1798/* Return registers */
1799#define GP_ARG_RETURN GP_ARG_MIN_REG
1800#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1801#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
b54214fe
UW
1802#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1803 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4304ccfd
MM
1804#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1805 ? (ALTIVEC_ARG_RETURN \
1806 + (TARGET_FLOAT128 ? 1 : 0)) \
b54214fe 1807 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4697a36c 1808
7509c759 1809/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1810#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1811/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1812#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1813#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1814#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1815#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1816
f57fe068
AM
1817/* We don't have prologue and epilogue functions to save/restore
1818 everything for most ABIs. */
1819#define WORLD_SAVE_P(INFO) 0
1820
f045b2c9
RS
1821/* 1 if N is a possible register number for a function value
1822 as seen by the caller.
1823
0ac081f6 1824 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1825#define FUNCTION_VALUE_REGNO_P(N) \
1826 ((N) == GP_ARG_RETURN \
b54214fe
UW
1827 || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
1828 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1829 || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
1830 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1831
1832/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1833 On RS/6000, these are r3-r10 and fp1-fp13.
1834 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1835#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1836 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1837 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
44688022 1838 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
e87a88d3 1839 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
b2df7d08 1840 && TARGET_HARD_FLOAT && TARGET_FPRS))
f045b2c9
RS
1841\f
1842/* Define a data type for recording info about an argument list
1843 during the scan of that argument list. This data type should
1844 hold all necessary information about the function itself
1845 and about the args processed so far, enough to enable macros
1846 such as FUNCTION_ARG to determine where the next arg should go.
1847
1848 On the RS/6000, this is a structure. The first element is the number of
1849 total argument words, the second is used to store the next
1850 floating-point register number, and the third says how many more args we
4697a36c
MM
1851 have prototype types for.
1852
4cc833b7 1853 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1854 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1855 register, and `words' is the number of words used on the stack.
1856
bd227acc 1857 The varargs/stdarg support requires that this structure's size
4cc833b7 1858 be a multiple of sizeof(int). */
4697a36c
MM
1859
1860typedef struct rs6000_args
1861{
4cc833b7 1862 int words; /* # words used for passing GP registers */
6a4cee5f 1863 int fregno; /* next available FP register */
0ac081f6 1864 int vregno; /* next available AltiVec register */
6a4cee5f 1865 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1866 int prototype; /* Whether a prototype was defined */
a6c9bed4 1867 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1868 int call_cookie; /* Do special things for this call */
4cc833b7 1869 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1870 int intoffset; /* running offset in struct (darwin64) */
1871 int use_stack; /* any part of struct on stack (darwin64) */
a9ab25e2
IS
1872 int floats_in_gpr; /* count of SFmode floats taking up
1873 GPR space (darwin64) */
0b5383eb 1874 int named; /* false for varargs params */
617718f7 1875 int escapes; /* if function visible outside tu */
bdb60a10 1876 int libcall; /* If this is a compiler generated call. */
4697a36c 1877} CUMULATIVE_ARGS;
f045b2c9 1878
f045b2c9
RS
1879/* Initialize a variable CUM of type CUMULATIVE_ARGS
1880 for a call to a function whose data type is FNTYPE.
1881 For a library call, FNTYPE is 0. */
1882
617718f7
AM
1883#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1884 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1885 N_NAMED_ARGS, FNDECL, VOIDmode)
f045b2c9
RS
1886
1887/* Similar, but when scanning the definition of a procedure. We always
1888 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1889
0f6937fe 1890#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617718f7
AM
1891 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1892 1000, current_function_decl, VOIDmode)
b9599e46
FS
1893
1894/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1895
1896#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
617718f7
AM
1897 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1898 0, NULL_TREE, MODE)
f045b2c9 1899
c229cba9
DE
1900/* If defined, a C expression which determines whether, and in which
1901 direction, to pad out an argument with extra space. The value
1902 should be of type `enum direction': either `upward' to pad above
1903 the argument, `downward' to pad below, or `none' to inhibit
1904 padding. */
1905
9ebbca7d 1906#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1907
6e985040
AM
1908#define PAD_VARARGS_DOWN \
1909 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1910
f045b2c9 1911/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1912 for profiling a function entry. */
f045b2c9
RS
1913
1914#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1915 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1916
1917/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1918 the stack pointer does not matter. No definition is equivalent to
1919 always zero.
1920
a0ab749a 1921 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1922 its backpointer, which we maintain. */
1923#define EXIT_IGNORE_STACK 1
1924
a701949a
FS
1925/* Define this macro as a C expression that is nonzero for registers
1926 that are used by the epilogue or the return' pattern. The stack
1927 and frame pointer registers are already be assumed to be used as
1928 needed. */
1929
83720594 1930#define EPILOGUE_USES(REGNO) \
1de43f85 1931 ((reload_completed && (REGNO) == LR_REGNO) \
b1765bde 1932 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
cacf1ca8 1933 || (crtl->calls_eh_return \
3553b09d 1934 && TARGET_AIX \
ff3867ae 1935 && (REGNO) == 2))
2bfcf297 1936
f045b2c9 1937\f
f045b2c9
RS
1938/* Length in units of the trampoline for entering a nested function. */
1939
b6c9286a 1940#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9 1941\f
f33985c6
MS
1942/* Definitions for __builtin_return_address and __builtin_frame_address.
1943 __builtin_return_address (0) should give link register (65), enable
82e41834 1944 this. */
f33985c6
MS
1945/* This should be uncommented, so that the link register is used, but
1946 currently this would result in unmatched insns and spilling fixed
1947 registers so we'll leave it for another day. When these problems are
1948 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1949 (mrs) */
1950/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1951
b6c9286a
MM
1952/* Number of bytes into the frame return addresses can be found. See
1953 rs6000_stack_info in rs6000.c for more information on how the different
1954 abi's store the return address. */
008e32c0
UW
1955#define RETURN_ADDRESS_OFFSET \
1956 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
f09d4c33 1957
f33985c6
MS
1958/* The current return address is in link register (65). The return address
1959 of anything farther back is accessed normally at an offset of 8 from the
1960 frame pointer. */
71f123ca
FS
1961#define RETURN_ADDR_RTX(COUNT, FRAME) \
1962 (rs6000_return_addr (COUNT, FRAME))
1963
f33985c6 1964\f
f045b2c9
RS
1965/* Definitions for register eliminations.
1966
1967 We have two registers that can be eliminated on the RS/6000. First, the
1968 frame pointer register can often be eliminated in favor of the stack
1969 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1970 eliminated; it is replaced with either the stack or frame pointer.
1971
1972 In addition, we use the elimination mechanism to see if r30 is needed
1973 Initially we assume that it isn't. If it is, we spill it. This is done
1974 by making it an eliminable register. We replace it with itself so that
1975 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1976
1977/* This is an array of structures. Each structure initializes one pair
1978 of eliminable registers. The "from" register number is given first,
1979 followed by "to". Eliminations of the same "from" register are listed
1980 in order of preference. */
7d5175e1
JJ
1981#define ELIMINABLE_REGS \
1982{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1983 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1984 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1985 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1986 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 1987 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9 1988
f045b2c9
RS
1989/* Define the offset between two registers, one to be eliminated, and the other
1990 its replacement, at the start of a routine. */
d1d0c603
JJ
1991#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1992 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1993\f
1994/* Addressing modes, and classification of registers for them. */
1995
940da324
JL
1996#define HAVE_PRE_DECREMENT 1
1997#define HAVE_PRE_INCREMENT 1
6fb5fa3c
DB
1998#define HAVE_PRE_MODIFY_DISP 1
1999#define HAVE_PRE_MODIFY_REG 1
f045b2c9
RS
2000
2001/* Macros to check register numbers against specific register classes. */
2002
2003/* These assume that REGNO is a hard or pseudo reg number.
2004 They give nonzero only if REGNO is a hard reg of the suitable class
2005 or a pseudo reg currently allocated to a suitable hard reg.
2006 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
2007 has been allocated, which happens in reginfo.c during register
2008 allocation. */
f045b2c9
RS
2009
2010#define REGNO_OK_FOR_INDEX_P(REGNO) \
2011((REGNO) < FIRST_PSEUDO_REGISTER \
2012 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 2013 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 2014 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
2015 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2016 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
2017
2018#define REGNO_OK_FOR_BASE_P(REGNO) \
2019((REGNO) < FIRST_PSEUDO_REGISTER \
2020 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 2021 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 2022 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
2023 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2024 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
c6c3dba9
PB
2025
2026/* Nonzero if X is a hard reg that can be used as an index
2027 or if it is a pseudo reg in the non-strict case. */
2028#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2029 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2030 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
2031
2032/* Nonzero if X is a hard reg that can be used as a base reg
2033 or if it is a pseudo reg in the non-strict case. */
2034#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2035 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2036 || REGNO_OK_FOR_BASE_P (REGNO (X)))
2037
f045b2c9
RS
2038\f
2039/* Maximum number of registers that can appear in a valid memory address. */
2040
2041#define MAX_REGS_PER_ADDRESS 2
2042
2043/* Recognize any constant value that is a valid address. */
2044
6eff269e
BK
2045#define CONSTANT_ADDRESS_P(X) \
2046 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2047 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2048 || GET_CODE (X) == HIGH)
f045b2c9 2049
48d72335 2050#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3 2051#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
76492753
PB
2052 && EASY_VECTOR_15((n) >> 1) \
2053 && ((n) & 1) == 0)
48d72335 2054
29e6733c 2055#define EASY_VECTOR_MSB(n,mode) \
683be46f 2056 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
29e6733c
MM
2057 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
2058
f045b2c9 2059\f
a260abc9
DE
2060/* Try a machine-dependent way of reloading an illegitimate address
2061 operand. If we find one, push the reload and jump to WIN. This
2062 macro is used in only one place: `find_reloads_address' in reload.c.
2063
f676971a 2064 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 2065 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 2066
a9098fd0
GK
2067#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2068do { \
24ea750e 2069 int win; \
8beb65e3 2070 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
24ea750e
DJ
2071 (int)(TYPE), (IND_LEVELS), &win); \
2072 if ( win ) \
2073 goto WIN; \
a260abc9
DE
2074} while (0)
2075
944258eb 2076#define FIND_BASE_TERM rs6000_find_base_term
766a866c
MM
2077\f
2078/* The register number of the register used to address a table of
2079 static data addresses in memory. In some cases this register is
2080 defined by a processor's "application binary interface" (ABI).
2081 When this macro is defined, RTL is generated for this register
2082 once, as with the stack pointer and frame pointer registers. If
2083 this macro is not defined, it is up to the machine-dependent files
2084 to allocate such a register (if necessary). */
2085
1db02437 2086#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
24f77f59
AM
2087#define PIC_OFFSET_TABLE_REGNUM \
2088 (TARGET_TOC ? TOC_REGISTER \
2089 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
2090 : INVALID_REGNUM)
766a866c 2091
97b23853 2092#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2093
766a866c
MM
2094/* Define this macro if the register defined by
2095 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2096 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2097
2098/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2099
766a866c
MM
2100/* A C expression that is nonzero if X is a legitimate immediate
2101 operand on the target machine when generating position independent
2102 code. You can assume that X satisfies `CONSTANT_P', so you need
2103 not check this. You can also assume FLAG_PIC is true, so you need
2104 not check it either. You need not define this macro if all
2105 constants (including `SYMBOL_REF') can be immediate operands when
2106 generating position independent code. */
2107
2108/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
2109\f
2110/* Define this if some processing needs to be done immediately before
4255474b 2111 emitting code for an insn. */
f045b2c9 2112
c921bad8
AP
2113#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
2114 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
f045b2c9
RS
2115
2116/* Specify the machine mode that this machine uses
2117 for the index in the tablejump instruction. */
e1565e65 2118#define CASE_VECTOR_MODE SImode
f045b2c9 2119
18543a22
ILT
2120/* Define as C expression which evaluates to nonzero if the tablejump
2121 instruction expects the table to contain offsets from the address of the
2122 table.
82e41834 2123 Do not define this if the table should contain absolute addresses. */
18543a22 2124#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2125
f045b2c9
RS
2126/* Define this as 1 if `char' should by default be signed; else as 0. */
2127#define DEFAULT_SIGNED_CHAR 0
2128
c1618c0c
DE
2129/* An integer expression for the size in bits of the largest integer machine
2130 mode that should actually be used. */
2131
2132/* Allow pairs of registers to be used, which is the intent of the default. */
2133#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2134
f045b2c9
RS
2135/* Max number of bytes we can move from memory to memory
2136 in one reasonably fast instruction. */
2f3e5814 2137#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2138#define MAX_MOVE_MAX 8
f045b2c9
RS
2139
2140/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2141 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2142 is undesirable. */
2143#define SLOW_BYTE_ACCESS 1
2144
9a63901f
RK
2145/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2146 will either zero-extend or sign-extend. The value of this macro should
2147 be the code that says which one of the two operations is implicitly
f822d252 2148 done, UNKNOWN if none. */
9a63901f 2149#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2150
2151/* Define if loading short immediate values into registers sign extends. */
58f2ae18 2152#define SHORT_IMMEDIATES_SIGN_EXTEND 1
fdaff8ba 2153\f
f045b2c9
RS
2154/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2155 is done just by pretending it is already truncated. */
2156#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2157
94993909 2158/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122 2159#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
14670a74 2160 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
d865b122 2161
0299bc72
MM
2162/* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2163 zero. The hardware instructions added in Power9 return 32 or 64. */
2164#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2165 ((!TARGET_CTZ) \
2166 ? ((VALUE) = -1, 1) \
2167 : ((VALUE) = ((MODE) == SImode ? 32 : 64), 1))
94993909 2168
f045b2c9
RS
2169/* Specify the machine mode that pointers have.
2170 After generation of rtl, the compiler makes no further distinction
2171 between pointers and any other objects of this machine mode. */
cacf1ca8 2172extern unsigned rs6000_pmode;
ef4bddc2 2173#define Pmode ((machine_mode)rs6000_pmode)
f045b2c9 2174
a3c9585f 2175/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
2176#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2177
f045b2c9 2178/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2179 Doesn't matter on RS/6000. */
5b71a4e7 2180#define FUNCTION_MODE SImode
f045b2c9
RS
2181
2182/* Define this if addresses of constant functions
2183 shouldn't be put through pseudo regs where they can be cse'd.
2184 Desirable on machines where ordinary constants are expensive
2185 but a CALL with constant address is cheap. */
1e8552c2 2186#define NO_FUNCTION_CSE 1
f045b2c9 2187
d969caf8 2188/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2189 few bits.
2190
2191 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2192 have been dropped from the PowerPC architecture. */
c28a7c24 2193#define SHIFT_COUNT_TRUNCATED 0
f045b2c9 2194
f045b2c9
RS
2195/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2196 should be adjusted to reflect any required changes. This macro is used when
2197 there is some systematic length adjustment required that would be difficult
2198 to express in the length attribute. */
2199
2200/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2201
39a10a29
GK
2202/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2203 COMPARE, return the mode to be used for the comparison. For
2204 floating-point, CCFPmode should be used. CCUNSmode should be used
2205 for unsigned comparisons. CCEQmode should be used when we are
2206 doing an inequality comparison on the result of a
2207 comparison. CCmode should be used in all other cases. */
c5defebb 2208
b565a316 2209#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 2210 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 2211 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 2212 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 2213 ? CCEQmode : CCmode))
f045b2c9 2214
b39358e1
GK
2215/* Can the condition code MODE be safely reversed? This is safe in
2216 all cases on this port, because at present it doesn't use the
2217 trapping FP comparisons (fcmpo). */
2218#define REVERSIBLE_CC_MODE(MODE) 1
2219
2220/* Given a condition code and a mode, return the inverse condition. */
2221#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2222
f045b2c9
RS
2223\f
2224/* Control the assembler format that we output. */
2225
1b279f39
DE
2226/* A C string constant describing how to begin a comment in the target
2227 assembler language. The compiler assumes that the comment will end at
2228 the end of the line. */
2229#define ASM_COMMENT_START " #"
6b67933e 2230
38c1f2d7
MM
2231/* Flag to say the TOC is initialized */
2232extern int toc_initialized;
2233
f045b2c9
RS
2234/* Macro to output a special constant pool entry. Go to WIN if we output
2235 it. Otherwise, it is written the usual way.
2236
2237 On the RS/6000, toc entries are handled this way. */
2238
a9098fd0
GK
2239#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2240{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2241 { \
2242 output_toc (FILE, X, LABELNO, MODE); \
2243 goto WIN; \
2244 } \
f045b2c9
RS
2245}
2246
ebd97b96
DE
2247#ifdef HAVE_GAS_WEAK
2248#define RS6000_WEAK 1
2249#else
2250#define RS6000_WEAK 0
2251#endif
290ad355 2252
79c4e63f
AM
2253#if RS6000_WEAK
2254/* Used in lieu of ASM_WEAKEN_LABEL. */
2255#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2256 do \
2257 { \
2258 fputs ("\t.weak\t", (FILE)); \
85b776df 2259 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2260 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2261 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f 2262 { \
cbaaba19
DE
2263 if (TARGET_XCOFF) \
2264 fputs ("[DS]", (FILE)); \
ca734b39 2265 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2266 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2267 } \
2268 fputc ('\n', (FILE)); \
2269 if (VAL) \
2270 { \
2271 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2272 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2273 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2274 { \
2275 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2276 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2277 fputs (",.", (FILE)); \
cbaaba19 2278 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2279 fputc ('\n', (FILE)); \
2280 } \
2281 } \
2282 } \
2283 while (0)
2284#endif
2285
ff2d10c1
AO
2286#if HAVE_GAS_WEAKREF
2287#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2288 do \
2289 { \
2290 fputs ("\t.weakref\t", (FILE)); \
2291 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2292 fputs (", ", (FILE)); \
2293 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2294 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2295 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2296 { \
2297 fputs ("\n\t.weakref\t.", (FILE)); \
2298 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2299 fputs (", .", (FILE)); \
2300 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2301 } \
2302 fputc ('\n', (FILE)); \
2303 } while (0)
2304#endif
2305
79c4e63f
AM
2306/* This implements the `alias' attribute. */
2307#undef ASM_OUTPUT_DEF_FROM_DECLS
2308#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2309 do \
2310 { \
2311 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2312 const char *name = IDENTIFIER_POINTER (TARGET); \
2313 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2314 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2315 { \
2316 if (TREE_PUBLIC (DECL)) \
2317 { \
2318 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2319 { \
2320 fputs ("\t.globl\t.", FILE); \
cbaaba19 2321 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2322 putc ('\n', FILE); \
2323 } \
2324 } \
2325 else if (TARGET_XCOFF) \
2326 { \
c167bc5b
DE
2327 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2328 { \
2329 fputs ("\t.lglobl\t.", FILE); \
2330 RS6000_OUTPUT_BASENAME (FILE, alias); \
2331 putc ('\n', FILE); \
2332 fputs ("\t.lglobl\t", FILE); \
2333 RS6000_OUTPUT_BASENAME (FILE, alias); \
2334 putc ('\n', FILE); \
2335 } \
79c4e63f
AM
2336 } \
2337 fputs ("\t.set\t.", FILE); \
cbaaba19 2338 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2339 fputs (",.", FILE); \
cbaaba19 2340 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2341 fputc ('\n', FILE); \
2342 } \
2343 ASM_OUTPUT_DEF (FILE, alias, name); \
2344 } \
2345 while (0)
290ad355 2346
1bc7c5b6
ZW
2347#define TARGET_ASM_FILE_START rs6000_file_start
2348
f045b2c9
RS
2349/* Output to assembler file text saying following lines
2350 may contain character constants, extra white space, comments, etc. */
2351
2352#define ASM_APP_ON ""
2353
2354/* Output to assembler file text saying following lines
2355 no longer contain unusual constructs. */
2356
2357#define ASM_APP_OFF ""
2358
f045b2c9
RS
2359/* How to refer to registers in assembler output.
2360 This sequence is indexed by compiler's hard-register-number (see above). */
2361
82e41834 2362extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2363
2364#define REGISTER_NAMES \
2365{ \
2366 &rs6000_reg_names[ 0][0], /* r0 */ \
2367 &rs6000_reg_names[ 1][0], /* r1 */ \
2368 &rs6000_reg_names[ 2][0], /* r2 */ \
2369 &rs6000_reg_names[ 3][0], /* r3 */ \
2370 &rs6000_reg_names[ 4][0], /* r4 */ \
2371 &rs6000_reg_names[ 5][0], /* r5 */ \
2372 &rs6000_reg_names[ 6][0], /* r6 */ \
2373 &rs6000_reg_names[ 7][0], /* r7 */ \
2374 &rs6000_reg_names[ 8][0], /* r8 */ \
2375 &rs6000_reg_names[ 9][0], /* r9 */ \
2376 &rs6000_reg_names[10][0], /* r10 */ \
2377 &rs6000_reg_names[11][0], /* r11 */ \
2378 &rs6000_reg_names[12][0], /* r12 */ \
2379 &rs6000_reg_names[13][0], /* r13 */ \
2380 &rs6000_reg_names[14][0], /* r14 */ \
2381 &rs6000_reg_names[15][0], /* r15 */ \
2382 &rs6000_reg_names[16][0], /* r16 */ \
2383 &rs6000_reg_names[17][0], /* r17 */ \
2384 &rs6000_reg_names[18][0], /* r18 */ \
2385 &rs6000_reg_names[19][0], /* r19 */ \
2386 &rs6000_reg_names[20][0], /* r20 */ \
2387 &rs6000_reg_names[21][0], /* r21 */ \
2388 &rs6000_reg_names[22][0], /* r22 */ \
2389 &rs6000_reg_names[23][0], /* r23 */ \
2390 &rs6000_reg_names[24][0], /* r24 */ \
2391 &rs6000_reg_names[25][0], /* r25 */ \
2392 &rs6000_reg_names[26][0], /* r26 */ \
2393 &rs6000_reg_names[27][0], /* r27 */ \
2394 &rs6000_reg_names[28][0], /* r28 */ \
2395 &rs6000_reg_names[29][0], /* r29 */ \
2396 &rs6000_reg_names[30][0], /* r30 */ \
2397 &rs6000_reg_names[31][0], /* r31 */ \
2398 \
2399 &rs6000_reg_names[32][0], /* fr0 */ \
2400 &rs6000_reg_names[33][0], /* fr1 */ \
2401 &rs6000_reg_names[34][0], /* fr2 */ \
2402 &rs6000_reg_names[35][0], /* fr3 */ \
2403 &rs6000_reg_names[36][0], /* fr4 */ \
2404 &rs6000_reg_names[37][0], /* fr5 */ \
2405 &rs6000_reg_names[38][0], /* fr6 */ \
2406 &rs6000_reg_names[39][0], /* fr7 */ \
2407 &rs6000_reg_names[40][0], /* fr8 */ \
2408 &rs6000_reg_names[41][0], /* fr9 */ \
2409 &rs6000_reg_names[42][0], /* fr10 */ \
2410 &rs6000_reg_names[43][0], /* fr11 */ \
2411 &rs6000_reg_names[44][0], /* fr12 */ \
2412 &rs6000_reg_names[45][0], /* fr13 */ \
2413 &rs6000_reg_names[46][0], /* fr14 */ \
2414 &rs6000_reg_names[47][0], /* fr15 */ \
2415 &rs6000_reg_names[48][0], /* fr16 */ \
2416 &rs6000_reg_names[49][0], /* fr17 */ \
2417 &rs6000_reg_names[50][0], /* fr18 */ \
2418 &rs6000_reg_names[51][0], /* fr19 */ \
2419 &rs6000_reg_names[52][0], /* fr20 */ \
2420 &rs6000_reg_names[53][0], /* fr21 */ \
2421 &rs6000_reg_names[54][0], /* fr22 */ \
2422 &rs6000_reg_names[55][0], /* fr23 */ \
2423 &rs6000_reg_names[56][0], /* fr24 */ \
2424 &rs6000_reg_names[57][0], /* fr25 */ \
2425 &rs6000_reg_names[58][0], /* fr26 */ \
2426 &rs6000_reg_names[59][0], /* fr27 */ \
2427 &rs6000_reg_names[60][0], /* fr28 */ \
2428 &rs6000_reg_names[61][0], /* fr29 */ \
2429 &rs6000_reg_names[62][0], /* fr30 */ \
2430 &rs6000_reg_names[63][0], /* fr31 */ \
2431 \
462f7901 2432 &rs6000_reg_names[64][0], /* was mq */ \
c81bebd7
MM
2433 &rs6000_reg_names[65][0], /* lr */ \
2434 &rs6000_reg_names[66][0], /* ctr */ \
2435 &rs6000_reg_names[67][0], /* ap */ \
2436 \
2437 &rs6000_reg_names[68][0], /* cr0 */ \
2438 &rs6000_reg_names[69][0], /* cr1 */ \
2439 &rs6000_reg_names[70][0], /* cr2 */ \
2440 &rs6000_reg_names[71][0], /* cr3 */ \
2441 &rs6000_reg_names[72][0], /* cr4 */ \
2442 &rs6000_reg_names[73][0], /* cr5 */ \
2443 &rs6000_reg_names[74][0], /* cr6 */ \
2444 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2445 \
f6b5d695 2446 &rs6000_reg_names[76][0], /* ca */ \
0ac081f6
AH
2447 \
2448 &rs6000_reg_names[77][0], /* v0 */ \
2449 &rs6000_reg_names[78][0], /* v1 */ \
2450 &rs6000_reg_names[79][0], /* v2 */ \
2451 &rs6000_reg_names[80][0], /* v3 */ \
2452 &rs6000_reg_names[81][0], /* v4 */ \
2453 &rs6000_reg_names[82][0], /* v5 */ \
2454 &rs6000_reg_names[83][0], /* v6 */ \
2455 &rs6000_reg_names[84][0], /* v7 */ \
2456 &rs6000_reg_names[85][0], /* v8 */ \
2457 &rs6000_reg_names[86][0], /* v9 */ \
2458 &rs6000_reg_names[87][0], /* v10 */ \
2459 &rs6000_reg_names[88][0], /* v11 */ \
2460 &rs6000_reg_names[89][0], /* v12 */ \
2461 &rs6000_reg_names[90][0], /* v13 */ \
2462 &rs6000_reg_names[91][0], /* v14 */ \
2463 &rs6000_reg_names[92][0], /* v15 */ \
2464 &rs6000_reg_names[93][0], /* v16 */ \
2465 &rs6000_reg_names[94][0], /* v17 */ \
2466 &rs6000_reg_names[95][0], /* v18 */ \
2467 &rs6000_reg_names[96][0], /* v19 */ \
2468 &rs6000_reg_names[97][0], /* v20 */ \
2469 &rs6000_reg_names[98][0], /* v21 */ \
2470 &rs6000_reg_names[99][0], /* v22 */ \
2471 &rs6000_reg_names[100][0], /* v23 */ \
2472 &rs6000_reg_names[101][0], /* v24 */ \
2473 &rs6000_reg_names[102][0], /* v25 */ \
2474 &rs6000_reg_names[103][0], /* v26 */ \
2475 &rs6000_reg_names[104][0], /* v27 */ \
2476 &rs6000_reg_names[105][0], /* v28 */ \
2477 &rs6000_reg_names[106][0], /* v29 */ \
2478 &rs6000_reg_names[107][0], /* v30 */ \
2479 &rs6000_reg_names[108][0], /* v31 */ \
2480 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2481 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2482 &rs6000_reg_names[111][0], /* spe_acc */ \
2483 &rs6000_reg_names[112][0], /* spefscr */ \
7d5175e1 2484 &rs6000_reg_names[113][0], /* sfp */ \
0258b6e4
PB
2485 &rs6000_reg_names[114][0], /* tfhar */ \
2486 &rs6000_reg_names[115][0], /* tfiar */ \
2487 &rs6000_reg_names[116][0], /* texasr */ \
23742a9e
RAR
2488 \
2489 &rs6000_reg_names[117][0], /* SPE rh0. */ \
2490 &rs6000_reg_names[118][0], /* SPE rh1. */ \
2491 &rs6000_reg_names[119][0], /* SPE rh2. */ \
2492 &rs6000_reg_names[120][0], /* SPE rh3. */ \
2493 &rs6000_reg_names[121][0], /* SPE rh4. */ \
2494 &rs6000_reg_names[122][0], /* SPE rh5. */ \
2495 &rs6000_reg_names[123][0], /* SPE rh6. */ \
2496 &rs6000_reg_names[124][0], /* SPE rh7. */ \
2497 &rs6000_reg_names[125][0], /* SPE rh8. */ \
2498 &rs6000_reg_names[126][0], /* SPE rh9. */ \
2499 &rs6000_reg_names[127][0], /* SPE rh10. */ \
2500 &rs6000_reg_names[128][0], /* SPE rh11. */ \
2501 &rs6000_reg_names[129][0], /* SPE rh12. */ \
2502 &rs6000_reg_names[130][0], /* SPE rh13. */ \
2503 &rs6000_reg_names[131][0], /* SPE rh14. */ \
2504 &rs6000_reg_names[132][0], /* SPE rh15. */ \
2505 &rs6000_reg_names[133][0], /* SPE rh16. */ \
2506 &rs6000_reg_names[134][0], /* SPE rh17. */ \
2507 &rs6000_reg_names[135][0], /* SPE rh18. */ \
2508 &rs6000_reg_names[136][0], /* SPE rh19. */ \
2509 &rs6000_reg_names[137][0], /* SPE rh20. */ \
2510 &rs6000_reg_names[138][0], /* SPE rh21. */ \
2511 &rs6000_reg_names[139][0], /* SPE rh22. */ \
2512 &rs6000_reg_names[140][0], /* SPE rh22. */ \
2513 &rs6000_reg_names[141][0], /* SPE rh24. */ \
2514 &rs6000_reg_names[142][0], /* SPE rh25. */ \
2515 &rs6000_reg_names[143][0], /* SPE rh26. */ \
2516 &rs6000_reg_names[144][0], /* SPE rh27. */ \
2517 &rs6000_reg_names[145][0], /* SPE rh28. */ \
2518 &rs6000_reg_names[146][0], /* SPE rh29. */ \
2519 &rs6000_reg_names[147][0], /* SPE rh30. */ \
2520 &rs6000_reg_names[148][0], /* SPE rh31. */ \
c81bebd7
MM
2521}
2522
f045b2c9
RS
2523/* Table of additional register names to use in user input. */
2524
2525#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2526 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2527 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2528 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2529 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2530 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2531 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2532 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2533 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2534 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2535 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2536 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2537 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2538 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2539 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2540 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2541 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2542 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2543 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2544 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2545 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2546 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2547 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2548 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2549 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2550 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2551 {"spe_acc", 111}, {"spefscr", 112}, \
462f7901 2552 /* no additional names for: lr, ctr, ap */ \
c4d38ccb
MM
2553 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2554 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
cacf1ca8 2555 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
f6b5d695
SB
2556 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2557 {"xer", 76}, \
cacf1ca8
MM
2558 /* VSX registers overlaid on top of FR, Altivec registers */ \
2559 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2560 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2561 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2562 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2563 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2564 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2565 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2566 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2567 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2568 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2569 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2570 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2571 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2572 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2573 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
0258b6e4
PB
2574 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2575 /* Transactional Memory Facility (HTM) Registers. */ \
23742a9e
RAR
2576 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116}, \
2577 /* SPE high registers. */ \
2578 {"rh0", 117}, {"rh1", 118}, {"rh2", 119}, {"rh3", 120}, \
2579 {"rh4", 121}, {"rh5", 122}, {"rh6", 123}, {"rh7", 124}, \
2580 {"rh8", 125}, {"rh9", 126}, {"rh10", 127}, {"rh11", 128}, \
2581 {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132}, \
2582 {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136}, \
2583 {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140}, \
2584 {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144}, \
2585 {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148}, \
2586}
f045b2c9 2587
f045b2c9
RS
2588/* This is how to output an element of a case-vector that is relative. */
2589
e1565e65 2590#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2591 do { char buf[100]; \
e1565e65 2592 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2593 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2594 assemble_name (FILE, buf); \
19d2d16f 2595 putc ('-', FILE); \
3daf36a4
ILT
2596 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2597 assemble_name (FILE, buf); \
19d2d16f 2598 putc ('\n', FILE); \
3daf36a4 2599 } while (0)
f045b2c9
RS
2600
2601/* This is how to output an assembler line
2602 that says to advance the location counter
2603 to a multiple of 2**LOG bytes. */
2604
2605#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2606 if ((LOG) != 0) \
2607 fprintf (FILE, "\t.align %d\n", (LOG))
2608
58082ff6
PH
2609/* How to align the given loop. */
2610#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2611
d28073d4
BS
2612/* Alignment guaranteed by __builtin_malloc. */
2613/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2614 However, specifying the stronger guarantee currently leads to
2615 a regression in SPEC CPU2006 437.leslie3d. The stronger
2616 guarantee should be implemented here once that's fixed. */
2617#define MALLOC_ABI_ALIGNMENT (64)
2618
9ebbca7d
GK
2619/* Pick up the return address upon entry to a procedure. Used for
2620 dwarf2 unwind information. This also enables the table driven
2621 mechanism. */
2622
1de43f85
DE
2623#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2624#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
9ebbca7d 2625
83720594
RH
2626/* Describe how we implement __builtin_eh_return. */
2627#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2628#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2629
f045b2c9
RS
2630/* Print operand X (an rtx) in assembler syntax to file FILE.
2631 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2632 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2633
2634#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2635
2636/* Define which CODE values are valid. */
2637
3cf437d4 2638#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
f045b2c9
RS
2639
2640/* Print a memory address as an operand to reference that memory location. */
2641
2642#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2643
c82846bc
DE
2644/* For switching between functions with different target attributes. */
2645#define SWITCHABLE_TARGET 1
2646
b6c9286a
MM
2647/* uncomment for disabling the corresponding default options */
2648/* #define MACHINE_no_sched_interblock */
2649/* #define MACHINE_no_sched_speculative */
2650/* #define MACHINE_no_sched_speculative_load */
2651
766a866c 2652/* General flags. */
a7df97e6 2653extern int frame_pointer_needed;
0ac081f6 2654
7fa14a01
MM
2655/* Classification of the builtin functions as to which switches enable the
2656 builtin, and what attributes it should have. We used to use the target
2657 flags macros, but we've run out of bits, so we now map the options into new
2658 settings used here. */
2659
2660/* Builtin attributes. */
2661#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2662#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2663#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2664#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2665#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2666#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2667#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2668#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2669#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2670
2671#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2672#define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
4f45da44
KN
2673#define RS6000_BTC_PURE 0x00000200 /* reads global
2674 state/mem and does
2675 not modify global state. */
7fa14a01
MM
2676#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2677#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2678
2679/* Miscellaneous information. */
0258b6e4
PB
2680#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2681#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
01f61a78
PB
2682#define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2683#define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
0258b6e4 2684#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
1c9df37c
MM
2685
2686/* Convenience macros to document the instruction type. */
7fa14a01
MM
2687#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2688#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2689
2690/* Builtin targets. For now, we reuse the masks for those options that are in
8241efd1
PB
2691 target flags, and pick three random bits for SPE, paired and ldbl128 which
2692 aren't in target_flags. */
4b705221 2693#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
7fa14a01
MM
2694#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2695#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
f62511da 2696#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
8fa97501 2697#define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
f62511da 2698#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
0258b6e4 2699#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
7fa14a01
MM
2700#define RS6000_BTM_SPE MASK_STRING /* E500 */
2701#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2702#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2703#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2704#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2705#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2706#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
7fa14a01 2707#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
06b39289 2708#define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
f93bc5b3 2709#define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
8241efd1 2710#define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
4f45da44 2711#define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
53605f35 2712#define RS6000_BTM_FLOAT128 MASK_P9_VECTOR /* IEEE 128-bit float. */
7fa14a01
MM
2713
2714#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2715 | RS6000_BTM_VSX \
f62511da 2716 | RS6000_BTM_P8_VECTOR \
8fa97501 2717 | RS6000_BTM_P9_VECTOR \
402e60c5 2718 | RS6000_BTM_MODULO \
f62511da 2719 | RS6000_BTM_CRYPTO \
7fa14a01
MM
2720 | RS6000_BTM_FRE \
2721 | RS6000_BTM_FRES \
2722 | RS6000_BTM_FRSQRTE \
2723 | RS6000_BTM_FRSQRTES \
0258b6e4 2724 | RS6000_BTM_HTM \
7fa14a01 2725 | RS6000_BTM_POPCNTD \
06b39289 2726 | RS6000_BTM_CELL \
f93bc5b3 2727 | RS6000_BTM_DFP \
8241efd1 2728 | RS6000_BTM_HARD_FLOAT \
53605f35
BS
2729 | RS6000_BTM_LDBL128 \
2730 | RS6000_BTM_FLOAT128)
7fa14a01
MM
2731
2732/* Define builtin enum index. */
2733
4f45da44 2734#undef RS6000_BUILTIN_0
7fa14a01
MM
2735#undef RS6000_BUILTIN_1
2736#undef RS6000_BUILTIN_2
2737#undef RS6000_BUILTIN_3
2738#undef RS6000_BUILTIN_A
2739#undef RS6000_BUILTIN_D
2740#undef RS6000_BUILTIN_E
0258b6e4 2741#undef RS6000_BUILTIN_H
7fa14a01
MM
2742#undef RS6000_BUILTIN_P
2743#undef RS6000_BUILTIN_Q
2744#undef RS6000_BUILTIN_S
2745#undef RS6000_BUILTIN_X
2746
4f45da44 2747#define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2748#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2749#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2750#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2751#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2752#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2753#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
0258b6e4 2754#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2755#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2756#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2757#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2758#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
1c9df37c 2759
0ac081f6
AH
2760enum rs6000_builtins
2761{
1c9df37c 2762#include "rs6000-builtin.def"
a72c65c7 2763
58646b77
PB
2764 RS6000_BUILTIN_COUNT
2765};
2766
4f45da44 2767#undef RS6000_BUILTIN_0
7fa14a01
MM
2768#undef RS6000_BUILTIN_1
2769#undef RS6000_BUILTIN_2
2770#undef RS6000_BUILTIN_3
2771#undef RS6000_BUILTIN_A
2772#undef RS6000_BUILTIN_D
2773#undef RS6000_BUILTIN_E
0258b6e4 2774#undef RS6000_BUILTIN_H
7fa14a01
MM
2775#undef RS6000_BUILTIN_P
2776#undef RS6000_BUILTIN_Q
2777#undef RS6000_BUILTIN_S
2778#undef RS6000_BUILTIN_X
1c9df37c 2779
58646b77
PB
2780enum rs6000_builtin_type_index
2781{
2782 RS6000_BTI_NOT_OPAQUE,
2783 RS6000_BTI_opaque_V2SI,
2784 RS6000_BTI_opaque_V2SF,
2785 RS6000_BTI_opaque_p_V2SI,
2786 RS6000_BTI_opaque_V4SI,
2787 RS6000_BTI_V16QI,
a16a872d 2788 RS6000_BTI_V1TI,
58646b77
PB
2789 RS6000_BTI_V2SI,
2790 RS6000_BTI_V2SF,
a72c65c7
MM
2791 RS6000_BTI_V2DI,
2792 RS6000_BTI_V2DF,
58646b77
PB
2793 RS6000_BTI_V4HI,
2794 RS6000_BTI_V4SI,
2795 RS6000_BTI_V4SF,
2796 RS6000_BTI_V8HI,
2797 RS6000_BTI_unsigned_V16QI,
a16a872d 2798 RS6000_BTI_unsigned_V1TI,
58646b77
PB
2799 RS6000_BTI_unsigned_V8HI,
2800 RS6000_BTI_unsigned_V4SI,
a72c65c7 2801 RS6000_BTI_unsigned_V2DI,
58646b77
PB
2802 RS6000_BTI_bool_char, /* __bool char */
2803 RS6000_BTI_bool_short, /* __bool short */
2804 RS6000_BTI_bool_int, /* __bool int */
a72c65c7 2805 RS6000_BTI_bool_long, /* __bool long */
58646b77
PB
2806 RS6000_BTI_pixel, /* __pixel */
2807 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2808 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2809 RS6000_BTI_bool_V4SI, /* __vector __bool int */
a72c65c7 2810 RS6000_BTI_bool_V2DI, /* __vector __bool long */
58646b77
PB
2811 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2812 RS6000_BTI_long, /* long_integer_type_node */
2813 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
c9485473
MM
2814 RS6000_BTI_long_long, /* long_long_integer_type_node */
2815 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
58646b77
PB
2816 RS6000_BTI_INTQI, /* intQI_type_node */
2817 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2818 RS6000_BTI_INTHI, /* intHI_type_node */
2819 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2820 RS6000_BTI_INTSI, /* intSI_type_node */
2821 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
a72c65c7
MM
2822 RS6000_BTI_INTDI, /* intDI_type_node */
2823 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
a16a872d
MM
2824 RS6000_BTI_INTTI, /* intTI_type_node */
2825 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
58646b77 2826 RS6000_BTI_float, /* float_type_node */
a72c65c7 2827 RS6000_BTI_double, /* double_type_node */
06b39289
MM
2828 RS6000_BTI_long_double, /* long_double_type_node */
2829 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2830 RS6000_BTI_dfloat128, /* dfloat128_type_node */
58646b77 2831 RS6000_BTI_void, /* void_type_node */
6712d6fd
MM
2832 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2833 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
53605f35 2834 RS6000_BTI_const_str, /* pointer to const char * */
58646b77 2835 RS6000_BTI_MAX
0ac081f6 2836};
58646b77
PB
2837
2838
2839#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2840#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2841#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2842#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2843#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
a16a872d 2844#define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
a72c65c7
MM
2845#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2846#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
58646b77
PB
2847#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2848#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2849#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2850#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2851#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2852#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2853#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
a16a872d 2854#define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
58646b77
PB
2855#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2856#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
a72c65c7 2857#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
58646b77
PB
2858#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2859#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2860#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
a72c65c7 2861#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
58646b77
PB
2862#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2863#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2864#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2865#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
a72c65c7 2866#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
58646b77
PB
2867#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2868
c9485473
MM
2869#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2870#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
58646b77
PB
2871#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2872#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2873#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2874#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2875#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2876#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2877#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2878#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
a72c65c7
MM
2879#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2880#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
a16a872d
MM
2881#define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2882#define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
58646b77 2883#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
a72c65c7 2884#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
06b39289
MM
2885#define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2886#define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2887#define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
58646b77 2888#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
6712d6fd
MM
2889#define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2890#define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
53605f35 2891#define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
58646b77
PB
2892
2893extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2894extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2895
807e902e 2896#define TARGET_SUPPORTS_WIDE_INT 1