]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
[AArch64][cleanup] Remove uses of CONST_DOUBLE_HIGH, CONST_DOUBLE_LOW
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
5624e564 2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 4
5de601cf 5 This file is part of GCC.
f045b2c9 6
5de601cf
NC
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
5de601cf 10 option) any later version.
f045b2c9 11
5de601cf
NC
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f045b2c9 16
748086b7
JJ
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 24 <http://www.gnu.org/licenses/>. */
f045b2c9
RS
25
26/* Note that some other tm.h files include this one and then override
9ebbca7d 27 many of the definitions. */
f045b2c9 28
fd438373
MM
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
9ebbca7d
GK
33/* Definitions for the object file format. These are set at
34 compile-time. */
f045b2c9 35
9ebbca7d
GK
36#define OBJECT_XCOFF 1
37#define OBJECT_ELF 2
38#define OBJECT_PEF 3
ee890fe2 39#define OBJECT_MACHO 4
f045b2c9 40
9ebbca7d 41#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 42#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 43#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 44#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 45
2bfcf297
DB
46#ifndef TARGET_AIX
47#define TARGET_AIX 0
48#endif
49
78009d9f
MM
50#ifndef TARGET_AIX_OS
51#define TARGET_AIX_OS 0
52#endif
53
85b776df
AM
54/* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56#define DOT_SYMBOLS 1
57
8e3f41e7
MM
58/* Default string to use for cpu if not specified. */
59#ifndef TARGET_CPU_DEFAULT
60#define TARGET_CPU_DEFAULT ((char *)0)
61#endif
62
f565b0a1 63/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 64#ifdef CONFIG_PPC405CR
f565b0a1
DE
65#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66#else
67#define PPC405_ERRATUM77 0
68#endif
69
96038623
DE
70#ifndef TARGET_PAIRED_FLOAT
71#define TARGET_PAIRED_FLOAT 0
72#endif
73
cd679487
BE
74#ifdef HAVE_AS_POPCNTB
75#define ASM_CPU_POWER5_SPEC "-mpower5"
76#else
77#define ASM_CPU_POWER5_SPEC "-mpower4"
78#endif
79
80#ifdef HAVE_AS_DFP
81#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82#else
83#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84#endif
85
cacf1ca8 86#ifdef HAVE_AS_POPCNTD
d40c9e33
PB
87#define ASM_CPU_POWER7_SPEC "-mpower7"
88#else
89#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90#endif
91
428bffcb
PB
92#ifdef HAVE_AS_POWER8
93#define ASM_CPU_POWER8_SPEC "-mpower8"
94#else
f62511da 95#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
428bffcb
PB
96#endif
97
47f67e51
PB
98#ifdef HAVE_AS_DCI
99#define ASM_CPU_476_SPEC "-m476"
100#else
101#define ASM_CPU_476_SPEC "-mpower4"
102#endif
103
cacf1ca8
MM
104/* Common ASM definitions used by ASM_SPEC among the various targets for
105 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
106 provide the default assembler options if the user uses -mcpu=native, so if
107 you make changes here, make them also there. */
f984d8df
DB
108#define ASM_CPU_SPEC \
109"%{!mcpu*: \
93ae5495 110 %{mpowerpc64*: -mppc64} \
a441dedb 111 %{!mpowerpc64*: %(asm_default)}} \
cacf1ca8 112%{mcpu=native: %(asm_cpu_native)} \
d296e02e 113%{mcpu=cell: -mcell} \
93ae5495 114%{mcpu=power3: -mppc64} \
957e9e48 115%{mcpu=power4: -mpower4} \
cd679487
BE
116%{mcpu=power5: %(asm_cpu_power5)} \
117%{mcpu=power5+: %(asm_cpu_power5)} \
118%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
119%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
d40c9e33 120%{mcpu=power7: %(asm_cpu_power7)} \
428bffcb 121%{mcpu=power8: %(asm_cpu_power8)} \
ebde32fd 122%{mcpu=a2: -ma2} \
f984d8df 123%{mcpu=powerpc: -mppc} \
93ae5495 124%{mcpu=rs64a: -mppc64} \
f984d8df 125%{mcpu=401: -mppc} \
61a8515c
JS
126%{mcpu=403: -m403} \
127%{mcpu=405: -m405} \
2c9d95ef
DE
128%{mcpu=405fp: -m405} \
129%{mcpu=440: -m440} \
130%{mcpu=440fp: -m440} \
4adf8008
PB
131%{mcpu=464: -m440} \
132%{mcpu=464fp: -m440} \
47f67e51
PB
133%{mcpu=476: %(asm_cpu_476)} \
134%{mcpu=476fp: %(asm_cpu_476)} \
f984d8df
DB
135%{mcpu=505: -mppc} \
136%{mcpu=601: -m601} \
137%{mcpu=602: -mppc} \
138%{mcpu=603: -mppc} \
139%{mcpu=603e: -mppc} \
140%{mcpu=ec603e: -mppc} \
141%{mcpu=604: -mppc} \
142%{mcpu=604e: -mppc} \
93ae5495
AM
143%{mcpu=620: -mppc64} \
144%{mcpu=630: -mppc64} \
f984d8df
DB
145%{mcpu=740: -mppc} \
146%{mcpu=750: -mppc} \
49ffe578 147%{mcpu=G3: -mppc} \
93ae5495
AM
148%{mcpu=7400: -mppc -maltivec} \
149%{mcpu=7450: -mppc -maltivec} \
150%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
151%{mcpu=801: -mppc} \
152%{mcpu=821: -mppc} \
153%{mcpu=823: -mppc} \
775db490 154%{mcpu=860: -mppc} \
93ae5495
AM
155%{mcpu=970: -mpower4 -maltivec} \
156%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 157%{mcpu=8540: -me500} \
5ca0373f 158%{mcpu=8548: -me500} \
fa41c305
EW
159%{mcpu=e300c2: -me300} \
160%{mcpu=e300c3: -me300} \
edae5fe3 161%{mcpu=e500mc: -me500mc} \
b17f98b1 162%{mcpu=e500mc64: -me500mc64} \
683ed19e
EW
163%{mcpu=e5500: -me5500} \
164%{mcpu=e6500: -me6500} \
93ae5495 165%{maltivec: -maltivec} \
2c9ccc21 166%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
0258b6e4 167%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
93ae5495 168-many"
f984d8df
DB
169
170#define CPP_DEFAULT_SPEC ""
171
172#define ASM_DEFAULT_SPEC ""
173
841faeed
MM
174/* This macro defines names of additional specifications to put in the specs
175 that can be used in various specifications like CC1_SPEC. Its definition
176 is an initializer with a subgrouping for each command option.
177
178 Each subgrouping contains a string constant, that defines the
5de601cf 179 specification name, and a string constant that used by the GCC driver
841faeed
MM
180 program.
181
182 Do not define this macro if it does not need to do anything. */
183
7509c759 184#define SUBTARGET_EXTRA_SPECS
7509c759 185
c81bebd7 186#define EXTRA_SPECS \
c81bebd7 187 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7 188 { "asm_cpu", ASM_CPU_SPEC }, \
cacf1ca8 189 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
c81bebd7 190 { "asm_default", ASM_DEFAULT_SPEC }, \
0eab6840 191 { "cc1_cpu", CC1_CPU_SPEC }, \
cd679487
BE
192 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
193 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
d40c9e33 194 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
428bffcb 195 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
47f67e51 196 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
7509c759
MM
197 SUBTARGET_EXTRA_SPECS
198
0eab6840
DE
199/* -mcpu=native handling only makes sense with compiler running on
200 an PowerPC chip. If changing this condition, also change
201 the condition in driver-rs6000.c. */
202#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203/* In driver-rs6000.c. */
204extern const char *host_detect_local_cpu (int argc, const char **argv);
205#define EXTRA_SPEC_FUNCTIONS \
206 { "local_cpu_detect", host_detect_local_cpu },
207#define HAVE_LOCAL_CPU_DETECT
cacf1ca8
MM
208#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
209
210#else
211#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
0eab6840
DE
212#endif
213
ee7caeb3
DE
214#ifndef CC1_CPU_SPEC
215#ifdef HAVE_LOCAL_CPU_DETECT
0eab6840
DE
216#define CC1_CPU_SPEC \
217"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
ee7caeb3
DE
219#else
220#define CC1_CPU_SPEC ""
221#endif
0eab6840
DE
222#endif
223
fb623df5 224/* Architecture type. */
f045b2c9 225
bb22512c 226/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 227 optional field operand for mfcr. */
fb623df5 228
78f5898b 229#ifndef HAVE_AS_MFCRF
432218ba 230#undef TARGET_MFCRF
ffa22984
DE
231#define TARGET_MFCRF 0
232#endif
233
0fa2e4df 234/* Define TARGET_POPCNTB if the target assembler does not support the
432218ba
DE
235 popcount byte instruction. */
236
237#ifndef HAVE_AS_POPCNTB
238#undef TARGET_POPCNTB
239#define TARGET_POPCNTB 0
240#endif
241
9719f3b7
DE
242/* Define TARGET_FPRND if the target assembler does not support the
243 fp rounding instructions. */
244
245#ifndef HAVE_AS_FPRND
246#undef TARGET_FPRND
247#define TARGET_FPRND 0
248#endif
249
b639c3c2
JJ
250/* Define TARGET_CMPB if the target assembler does not support the
251 cmpb instruction. */
252
253#ifndef HAVE_AS_CMPB
254#undef TARGET_CMPB
255#define TARGET_CMPB 0
256#endif
257
44cd321e
PS
258/* Define TARGET_MFPGPR if the target assembler does not support the
259 mffpr and mftgpr instructions. */
260
261#ifndef HAVE_AS_MFPGPR
262#undef TARGET_MFPGPR
263#define TARGET_MFPGPR 0
264#endif
265
b639c3c2
JJ
266/* Define TARGET_DFP if the target assembler does not support decimal
267 floating point instructions. */
268#ifndef HAVE_AS_DFP
269#undef TARGET_DFP
270#define TARGET_DFP 0
271#endif
272
cacf1ca8
MM
273/* Define TARGET_POPCNTD if the target assembler does not support the
274 popcount word and double word instructions. */
275
276#ifndef HAVE_AS_POPCNTD
277#undef TARGET_POPCNTD
278#define TARGET_POPCNTD 0
279#endif
280
f62511da
MM
281/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
282 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
283 instructions. */
284
285#ifndef HAVE_AS_POWER8
286#undef TARGET_DIRECT_MOVE
287#undef TARGET_CRYPTO
0258b6e4 288#undef TARGET_HTM
f62511da
MM
289#undef TARGET_P8_VECTOR
290#define TARGET_DIRECT_MOVE 0
291#define TARGET_CRYPTO 0
0258b6e4 292#define TARGET_HTM 0
f62511da
MM
293#define TARGET_P8_VECTOR 0
294#endif
295
cacf1ca8
MM
296/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
297 not, generate the lwsync code as an integer constant. */
298#ifdef HAVE_AS_LWSYNC
299#define TARGET_LWSYNC_INSTRUCTION 1
300#else
301#define TARGET_LWSYNC_INSTRUCTION 0
302#endif
303
9752c4ad
AM
304/* Define TARGET_TLS_MARKERS if the target assembler does not support
305 arg markers for __tls_get_addr calls. */
306#ifndef HAVE_AS_TLS_MARKERS
307#undef TARGET_TLS_MARKERS
308#define TARGET_TLS_MARKERS 0
309#else
310#define TARGET_TLS_MARKERS tls_markers
311#endif
312
7f970b70
AM
313#ifndef TARGET_SECURE_PLT
314#define TARGET_SECURE_PLT 0
315#endif
316
070b27da
AM
317#ifndef TARGET_CMODEL
318#define TARGET_CMODEL CMODEL_SMALL
319#endif
320
2f3e5814 321#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 322
c4501e62
JJ
323#ifndef HAVE_AS_TLS
324#define HAVE_AS_TLS 0
325#endif
326
be26142a
PB
327#ifndef TARGET_LINK_STACK
328#define TARGET_LINK_STACK 0
329#endif
330
331#ifndef SET_TARGET_LINK_STACK
332#define SET_TARGET_LINK_STACK(X) do { } while (0)
333#endif
334
48d72335
DE
335/* Return 1 for a symbol ref for a thread-local storage symbol. */
336#define RS6000_SYMBOL_REF_TLS_P(RTX) \
337 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
338
996ed075
JJ
339#ifdef IN_LIBGCC2
340/* For libgcc2 we make sure this is a compile time constant */
67796c1f 341#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
78f5898b 342#undef TARGET_POWERPC64
996ed075
JJ
343#define TARGET_POWERPC64 1
344#else
78f5898b 345#undef TARGET_POWERPC64
996ed075
JJ
346#define TARGET_POWERPC64 0
347#endif
b6c9286a 348#else
78f5898b 349 /* The option machinery will define this. */
b6c9286a
MM
350#endif
351
c28a7c24 352#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
9ebbca7d 353
696e45ba
ME
354/* FPU operations supported.
355 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
356 also test TARGET_HARD_FLOAT. */
357#define TARGET_SINGLE_FLOAT 1
358#define TARGET_DOUBLE_FLOAT 1
359#define TARGET_SINGLE_FPU 0
360#define TARGET_SIMPLE_FPU 0
0bb7b92e 361#define TARGET_XILINX_FPU 0
696e45ba 362
fb623df5
RK
363/* Recast the processor type to the cpu attribute. */
364#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
365
8482e358 366/* Define generic processor types based upon current deployment. */
3cb999d8 367#define PROCESSOR_COMMON PROCESSOR_PPC601
3cb999d8
DE
368#define PROCESSOR_POWERPC PROCESSOR_PPC604
369#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 370
fb623df5 371/* Define the default processor. This is overridden by other tm.h files. */
f3061fa4 372#define PROCESSOR_DEFAULT PROCESSOR_PPC603
3cb999d8 373#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 374
59ac9a55
JJ
375/* Specify the dialect of assembler to use. Only new mnemonics are supported
376 starting with GCC 4.8, i.e. just one dialect, but for backwards
377 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
378 defined. */
379#define ASSEMBLER_DIALECT 1
380
38c1f2d7 381/* Debug support */
fd438373
MM
382#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
383#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
384#define MASK_DEBUG_REG 0x04 /* debug register handling */
385#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
386#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
387#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
7fa14a01 388#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
fd438373
MM
389#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
390 | MASK_DEBUG_ARG \
391 | MASK_DEBUG_REG \
392 | MASK_DEBUG_ADDR \
393 | MASK_DEBUG_COST \
7fa14a01
MM
394 | MASK_DEBUG_TARGET \
395 | MASK_DEBUG_BUILTIN)
fd438373
MM
396
397#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
398#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
399#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
400#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
401#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
402#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
7fa14a01 403#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
cacf1ca8 404
2c83faf8
MM
405/* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
406 long double format that uses a pair of doubles, or IEEE 128-bit floating
407 point. KFmode was added as a way to represent IEEE 128-bit floating point,
408 even if the default for long double is the IBM long double format.
409 Similarly IFmode is the IBM long double format even if the default is IEEE
410 128-bit. */
411#define FLOAT128_IEEE_P(MODE) \
412 (((MODE) == TFmode && TARGET_IEEEQUAD) \
413 || ((MODE) == KFmode))
414
415#define FLOAT128_IBM_P(MODE) \
416 (((MODE) == TFmode && !TARGET_IEEEQUAD) \
417 || ((MODE) == IFmode))
418
419/* Helper macros to say whether a 128-bit floating point type can go in a
420 single vector register, or whether it needs paired scalar values. */
421#define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128 && FLOAT128_IEEE_P (MODE))
422
423#define FLOAT128_2REG_P(MODE) \
424 (FLOAT128_IBM_P (MODE) \
425 || ((MODE) == TDmode) \
426 || (!TARGET_FLOAT128 && FLOAT128_IEEE_P (MODE)))
427
428/* Return true for floating point that does not use a vector register. */
429#define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
430 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
431
f62511da 432/* Describe the vector unit used for arithmetic operations. */
cacf1ca8
MM
433extern enum rs6000_vector rs6000_vector_unit[];
434
435#define VECTOR_UNIT_NONE_P(MODE) \
436 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
437
438#define VECTOR_UNIT_VSX_P(MODE) \
439 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
440
f62511da
MM
441#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
442 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
443
cacf1ca8
MM
444#define VECTOR_UNIT_ALTIVEC_P(MODE) \
445 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
446
f62511da
MM
447#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
448 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
449 (int)VECTOR_VSX, \
450 (int)VECTOR_P8_VECTOR))
451
452/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
453 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
454 compatible, so allow it as well, rather than changing all of the uses of the
455 macro. */
cacf1ca8 456#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
457 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
458 (int)VECTOR_ALTIVEC, \
459 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
460
461/* Describe whether to use VSX loads or Altivec loads. For now, just use the
462 same unit as the vector unit we are using, but we may want to migrate to
463 using VSX style loads even for types handled by altivec. */
464extern enum rs6000_vector rs6000_vector_mem[];
465
466#define VECTOR_MEM_NONE_P(MODE) \
467 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
468
469#define VECTOR_MEM_VSX_P(MODE) \
470 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
471
f62511da
MM
472#define VECTOR_MEM_P8_VECTOR_P(MODE) \
473 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
474
cacf1ca8
MM
475#define VECTOR_MEM_ALTIVEC_P(MODE) \
476 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
477
f62511da
MM
478#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
479 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
480 (int)VECTOR_VSX, \
481 (int)VECTOR_P8_VECTOR))
482
cacf1ca8 483#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
484 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
485 (int)VECTOR_ALTIVEC, \
486 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
487
488/* Return the alignment of a given vector type, which is set based on the
489 vector unit use. VSX for instance can load 32 or 64 bit aligned words
490 without problems, while Altivec requires 128-bit aligned vectors. */
491extern int rs6000_vector_align[];
492
493#define VECTOR_ALIGN(MODE) \
494 ((rs6000_vector_align[(MODE)] != 0) \
495 ? rs6000_vector_align[(MODE)] \
496 : (int)GET_MODE_BITSIZE ((MODE)))
497
6edc217d
BS
498/* Determine the element order to use for vector instructions. By
499 default we use big-endian element order when targeting big-endian,
500 and little-endian element order when targeting little-endian. For
501 programs being ported from BE Power to LE Power, it can sometimes
502 be useful to use big-endian element order when targeting little-endian.
503 This is set via -maltivec=be, for example. */
504#define VECTOR_ELT_ORDER_BIG \
505 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
506
117f16fb
MM
507/* Element number of the 64-bit value in a 128-bit vector that can be accessed
508 with scalar instructions. */
509#define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
510
025d9908
KH
511/* Alignment options for fields in structures for sub-targets following
512 AIX-like ABI.
513 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
514 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
515
516 Override the macro definitions when compiling libobjc to avoid undefined
517 reference to rs6000_alignment_flags due to library's use of GCC alignment
518 macros which use the macros below. */
f676971a 519
025d9908
KH
520#ifndef IN_TARGET_LIBS
521#define MASK_ALIGN_POWER 0x00000000
522#define MASK_ALIGN_NATURAL 0x00000001
523#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
524#else
525#define TARGET_ALIGN_NATURAL 0
526#endif
6fa3f289
ZW
527
528#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
602ea4d3 529#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289 530#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
cacf1ca8 531#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
6fa3f289 532
a3170dc6
AH
533#define TARGET_SPE_ABI 0
534#define TARGET_SPE 0
cacf1ca8 535#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
a3170dc6 536#define TARGET_FPRS 1
4d4cbc0e
AH
537#define TARGET_E500_SINGLE 0
538#define TARGET_E500_DOUBLE 0
eca0d5e8 539#define CHECK_E500_OPTIONS do { } while (0)
a3170dc6 540
7042fe5e
MM
541/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
542 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
543 XILINX. */
c3f8384f
MM
544#define TARGET_FCFID (TARGET_POWERPC64 \
545 || TARGET_PPC_GPOPT /* 970/power4 */ \
546 || TARGET_POPCNTB /* ISA 2.02 */ \
547 || TARGET_CMPB /* ISA 2.05 */ \
548 || TARGET_POPCNTD /* ISA 2.06 */ \
7042fe5e
MM
549 || TARGET_XILINX_FPU)
550
551#define TARGET_FCTIDZ TARGET_FCFID
552#define TARGET_STFIWX TARGET_PPC_GFXOPT
553#define TARGET_LFIWAX TARGET_CMPB
554#define TARGET_LFIWZX TARGET_POPCNTD
555#define TARGET_FCFIDS TARGET_POPCNTD
556#define TARGET_FCFIDU TARGET_POPCNTD
557#define TARGET_FCFIDUS TARGET_POPCNTD
558#define TARGET_FCTIDUZ TARGET_POPCNTD
559#define TARGET_FCTIWUZ TARGET_POPCNTD
560
f62511da
MM
561#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
562#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
a16a872d 563#define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
f62511da
MM
564
565/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
566 in power7, so conditionalize them on p8 features. TImode syncs need quad
567 memory support. */
b846c948
MM
568#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
569 || TARGET_QUAD_MEMORY_ATOMIC \
570 || TARGET_DIRECT_MOVE)
571
572#define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
f62511da 573
c6d5ff83
MM
574/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
575 to allocate the SDmode stack slot to get the value into the proper location
576 in the register. */
577#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
578
4d967549
MM
579/* In switching from using target_flags to using rs6000_isa_flags, the options
580 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
581 OPTION_MASK_<xxx> back into MASK_<xxx>. */
582#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
583#define MASK_CMPB OPTION_MASK_CMPB
f62511da 584#define MASK_CRYPTO OPTION_MASK_CRYPTO
4d967549 585#define MASK_DFP OPTION_MASK_DFP
f62511da 586#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
4d967549
MM
587#define MASK_DLMZB OPTION_MASK_DLMZB
588#define MASK_EABI OPTION_MASK_EABI
589#define MASK_FPRND OPTION_MASK_FPRND
f62511da 590#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
4d967549 591#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
0258b6e4 592#define MASK_HTM OPTION_MASK_HTM
4d967549
MM
593#define MASK_ISEL OPTION_MASK_ISEL
594#define MASK_MFCRF OPTION_MASK_MFCRF
595#define MASK_MFPGPR OPTION_MASK_MFPGPR
596#define MASK_MULHW OPTION_MASK_MULHW
597#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
598#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
f62511da 599#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
4d967549
MM
600#define MASK_POPCNTB OPTION_MASK_POPCNTB
601#define MASK_POPCNTD OPTION_MASK_POPCNTD
602#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
603#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
604#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
605#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
606#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
607#define MASK_STRING OPTION_MASK_STRING
608#define MASK_UPDATE OPTION_MASK_UPDATE
609#define MASK_VSX OPTION_MASK_VSX
c6d5ff83 610#define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
4d967549
MM
611
612#ifndef IN_LIBGCC2
613#define MASK_POWERPC64 OPTION_MASK_POWERPC64
614#endif
615
616#ifdef TARGET_64BIT
617#define MASK_64BIT OPTION_MASK_64BIT
618#endif
619
620#ifdef TARGET_RELOCATABLE
621#define MASK_RELOCATABLE OPTION_MASK_RELOCATABLE
622#endif
623
624#ifdef TARGET_LITTLE_ENDIAN
625#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
626#endif
627
628#ifdef TARGET_MINIMAL_TOC
629#define MASK_MINIMAL_TOC OPTION_MASK_MINIMAL_TOC
630#endif
631
632#ifdef TARGET_REGNAMES
633#define MASK_REGNAMES OPTION_MASK_REGNAMES
634#endif
635
636#ifdef TARGET_PROTOTYPE
637#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
638#endif
639
7fa14a01
MM
640/* For power systems, we want to enable Altivec and VSX builtins even if the
641 user did not use -maltivec or -mvsx to allow the builtins to be used inside
642 of #pragma GCC target or the target attribute to change the code level for a
643 given system. The SPE and Paired builtins are only enabled if you configure
644 the compiler for those builtins, and those machines don't support altivec or
645 VSX. */
646
647#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
648 && ((TARGET_POWERPC64 \
c3f8384f 649 || TARGET_PPC_GPOPT /* 970/power4 */ \
7fa14a01
MM
650 || TARGET_POPCNTB /* ISA 2.02 */ \
651 || TARGET_CMPB /* ISA 2.05 */ \
652 || TARGET_POPCNTD /* ISA 2.06 */ \
653 || TARGET_ALTIVEC \
f93bc5b3
PB
654 || TARGET_VSX \
655 || TARGET_HARD_FLOAT)))
7fa14a01 656
a7c6c6d6
OH
657/* E500 cores only support plain "sync", not lwsync. */
658#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
659 || rs6000_cpu == PROCESSOR_PPC8548)
7fa14a01
MM
660
661
0609bdf2
MM
662/* Whether SF/DF operations are supported on the E500. */
663#define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
664 && !TARGET_FPRS)
665
666#define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
667 && !TARGET_FPRS && TARGET_E500_DOUBLE)
668
026c3cfd 669/* Whether SF/DF operations are supported by the normal floating point unit
0609bdf2
MM
670 (or the vector/scalar unit). */
671#define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
672 && TARGET_SINGLE_FLOAT)
673
674#define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
675 && TARGET_DOUBLE_FLOAT)
676
677/* Whether SF/DF operations are supported by any hardware. */
678#define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
679#define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
680
92902797
MM
681/* Which machine supports the various reciprocal estimate instructions. */
682#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
683 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
684
685#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
686 && TARGET_DOUBLE_FLOAT \
687 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
688
689#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
690 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
691
692#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
693 && TARGET_DOUBLE_FLOAT \
694 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
695
696/* Whether the various reciprocal divide/square root estimate instructions
697 exist, and whether we should automatically generate code for the instruction
698 by default. */
699#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
700#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
701#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
702#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
703
704extern unsigned char rs6000_recip_bits[];
705
706#define RS6000_RECIP_HAVE_RE_P(MODE) \
707 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
708
709#define RS6000_RECIP_AUTO_RE_P(MODE) \
710 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
711
712#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
713 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
714
715#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
716 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
717
c5387660
JM
718/* The default CPU for TARGET_OPTION_OVERRIDE. */
719#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
f045b2c9 720
a5c76ee6 721/* Target pragma. */
c58b209a
NB
722#define REGISTER_TARGET_PRAGMAS() do { \
723 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
fd438373 724 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
2fab365e 725 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
7fa14a01 726 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
a5c76ee6
ZW
727} while (0)
728
4c4eb375
GK
729/* Target #defines. */
730#define TARGET_CPU_CPP_BUILTINS() \
731 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
732
733/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
734 we're compiling for. Some configurations may need to override it. */
735#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
736 do \
737 { \
738 if (BYTES_BIG_ENDIAN) \
739 { \
740 builtin_define ("__BIG_ENDIAN__"); \
741 builtin_define ("_BIG_ENDIAN"); \
742 builtin_assert ("machine=bigendian"); \
743 } \
744 else \
745 { \
746 builtin_define ("__LITTLE_ENDIAN__"); \
747 builtin_define ("_LITTLE_ENDIAN"); \
748 builtin_assert ("machine=littleendian"); \
749 } \
750 } \
751 while (0)
f045b2c9 752\f
4c4eb375 753/* Target machine storage layout. */
f045b2c9 754
13d39dbc 755/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 756 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
757 the value is constrained to be within the bounds of the declared
758 type, but kept valid in the wider mode. The signedness of the
759 extension may differ from that of the type. */
760
39403d82
DE
761#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
762 if (GET_MODE_CLASS (MODE) == MODE_INT \
96922e4c 763 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
b78d48dd 764 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 765
f045b2c9 766/* Define this if most significant bit is lowest numbered
82e41834
KH
767 in instructions that operate on numbered bit-fields. */
768/* That is true on RS/6000. */
f045b2c9
RS
769#define BITS_BIG_ENDIAN 1
770
771/* Define this if most significant byte of a word is the lowest numbered. */
772/* That is true on RS/6000. */
773#define BYTES_BIG_ENDIAN 1
774
775/* Define this if most significant word of a multiword number is lowest
c81bebd7 776 numbered.
f045b2c9
RS
777
778 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 779 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
780#define WORDS_BIG_ENDIAN 1
781
50751417
AM
782/* This says that for the IBM long double the larger magnitude double
783 comes first. It's really a two element double array, and arrays
784 don't index differently between little- and big-endian. */
785#define LONG_DOUBLE_LARGE_FIRST 1
786
2e360ab3 787#define MAX_BITS_PER_WORD 64
f045b2c9
RS
788
789/* Width of a word, in units (bytes). */
c1aa3958 790#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
791#ifdef IN_LIBGCC2
792#define MIN_UNITS_PER_WORD UNITS_PER_WORD
793#else
ef0e53ce 794#define MIN_UNITS_PER_WORD 4
f34fc46e 795#endif
2e360ab3 796#define UNITS_PER_FP_WORD 8
0ac081f6 797#define UNITS_PER_ALTIVEC_WORD 16
cacf1ca8 798#define UNITS_PER_VSX_WORD 16
a3170dc6 799#define UNITS_PER_SPE_WORD 8
96038623 800#define UNITS_PER_PAIRED_WORD 8
f045b2c9 801
915f619f
JW
802/* Type used for ptrdiff_t, as a string used in a declaration. */
803#define PTRDIFF_TYPE "int"
804
058ef853
DE
805/* Type used for size_t, as a string used in a declaration. */
806#define SIZE_TYPE "long unsigned int"
807
f045b2c9
RS
808/* Type used for wchar_t, as a string used in a declaration. */
809#define WCHAR_TYPE "short unsigned int"
810
811/* Width of wchar_t in bits. */
812#define WCHAR_TYPE_SIZE 16
813
9e654916
RK
814/* A C expression for the size in bits of the type `short' on the
815 target machine. If you don't define this, the default is half a
816 word. (If this would be less than one storage unit, it is
817 rounded up to one unit.) */
818#define SHORT_TYPE_SIZE 16
819
820/* A C expression for the size in bits of the type `int' on the
821 target machine. If you don't define this, the default is one
822 word. */
19d2d16f 823#define INT_TYPE_SIZE 32
9e654916
RK
824
825/* A C expression for the size in bits of the type `long' on the
826 target machine. If you don't define this, the default is one
827 word. */
2f3e5814 828#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
829
830/* A C expression for the size in bits of the type `long long' on the
831 target machine. If you don't define this, the default is two
832 words. */
833#define LONG_LONG_TYPE_SIZE 64
834
9e654916
RK
835/* A C expression for the size in bits of the type `float' on the
836 target machine. If you don't define this, the default is one
837 word. */
838#define FLOAT_TYPE_SIZE 32
839
840/* A C expression for the size in bits of the type `double' on the
841 target machine. If you don't define this, the default is two
842 words. */
843#define DOUBLE_TYPE_SIZE 64
844
845/* A C expression for the size in bits of the type `long double' on
846 the target machine. If you don't define this, the default is two
847 words. */
6fa3f289 848#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 849
5b8f5865
DE
850/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
851#define WIDEST_HARDWARE_FP_SIZE 64
852
f045b2c9
RS
853/* Width in bits of a pointer.
854 See also the macro `Pmode' defined below. */
cacf1ca8
MM
855extern unsigned rs6000_pointer_size;
856#define POINTER_SIZE rs6000_pointer_size
f045b2c9
RS
857
858/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 859#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
860
861/* Boundary (in *bits*) on which stack pointer should be aligned. */
cacf1ca8
MM
862#define STACK_BOUNDARY \
863 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
864 ? 64 : 128)
f045b2c9
RS
865
866/* Allocation boundary (in *bits*) for the code of a function. */
867#define FUNCTION_BOUNDARY 32
868
869/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
870#define BIGGEST_ALIGNMENT 128
871
f045b2c9
RS
872/* Alignment of field after `int : 0' in a structure. */
873#define EMPTY_FIELD_BOUNDARY 32
874
875/* Every structure's size must be a multiple of this. */
876#define STRUCTURE_SIZE_BOUNDARY 8
877
43a88a8c 878/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
879#define PCC_BITFIELD_TYPE_MATTERS 1
880
69eff9da
AM
881enum data_align { align_abi, align_opt, align_both };
882
883/* A C expression to compute the alignment for a variables in the
884 local store. TYPE is the data type, and ALIGN is the alignment
885 that the object would ordinarily have. */
886#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
887 rs6000_data_alignment (TYPE, ALIGN, align_both)
888
889/* Make strings word-aligned so strcpy from constants will be faster. */
69ef87e2
AH
890#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
891 (TREE_CODE (EXP) == STRING_CST \
153fbec8 892 && (STRICT_ALIGNMENT || !optimize_size) \
69ef87e2
AH
893 && (ALIGN) < BITS_PER_WORD \
894 ? BITS_PER_WORD \
895 : (ALIGN))
f045b2c9 896
69eff9da
AM
897/* Make arrays of chars word-aligned for the same reasons. */
898#define DATA_ALIGNMENT(TYPE, ALIGN) \
899 rs6000_data_alignment (TYPE, ALIGN, align_opt)
900
901/* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
f82f556d 902 64 bits. */
69eff9da
AM
903#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
904 rs6000_data_alignment (TYPE, ALIGN, align_abi)
f045b2c9 905
a0ab749a 906/* Nonzero if move instructions will actually fail to work
f045b2c9 907 when given unaligned data. */
fdaff8ba 908#define STRICT_ALIGNMENT 0
e1565e65
DE
909
910/* Define this macro to be the value 1 if unaligned accesses have a cost
911 many times greater than aligned accesses, for example if they are
912 emulated in a trap handler. */
cacf1ca8
MM
913/* Altivec vector memory instructions simply ignore the low bits; SPE vector
914 memory instructions trap on unaligned accesses; VSX memory instructions are
915 aligned to 4 or 8 bytes. */
41543739
GK
916#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
917 (STRICT_ALIGNMENT \
2c83faf8 918 || (SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
047b83ff 919 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
2c83faf8
MM
920 && ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
921 && (((int)(ALIGN)) < VECTOR_ALIGN (MODE)))))
cacf1ca8 922
f045b2c9
RS
923\f
924/* Standard register usage. */
925
926/* Number of actual hardware registers.
927 The hardware registers are assigned numbers for the compiler
928 from 0 to just below FIRST_PSEUDO_REGISTER.
929 All registers that the compiler knows about must be given numbers,
930 even those that are not normally considered general registers.
931
932 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
462f7901
SB
933 a count register, a link register, and 8 condition register fields,
934 which we view here as separate registers. AltiVec adds 32 vector
935 registers and a VRsave register.
f045b2c9
RS
936
937 In addition, the difference between the frame and argument pointers is
938 a function of the number of registers saved, so we need to have a
939 register for AP that will later be eliminated in favor of SP or FP.
802a0058 940 This is a normal register, but it is fixed.
f045b2c9 941
802a0058
MM
942 We also create a pseudo register for float/int conversions, that will
943 really represent the memory location used. It is represented here as
944 a register, in order to work around problems in allocating stack storage
7d5175e1 945 in inline functions.
802a0058 946
7d5175e1 947 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
7a5add18
PB
948 pointer, which is eventually eliminated in favor of SP or FP.
949
950 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
7d5175e1 951
23742a9e 952#define FIRST_PSEUDO_REGISTER 149
f045b2c9 953
d6a7951f 954/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 955#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 956
23742a9e
RAR
957/* True if register is an SPE High register. */
958#define SPE_HIGH_REGNO_P(N) \
959 ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
960
961/* SPE high registers added as hard regs.
962 The sfp register and 3 HTM registers
963 aren't included in DWARF_FRAME_REGISTERS. */
964#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
c19de7aa 965
93c9d1ba
AM
966/* The SPE has an additional 32 synthetic registers, with DWARF debug
967 info numbering for these registers starting at 1200. While eh_frame
968 register numbering need not be the same as the debug info numbering,
23742a9e 969 we choose to number these regs for eh_frame at 1200 too.
93c9d1ba
AM
970
971 We must map them here to avoid huge unwinder tables mostly consisting
f676971a 972 of unused space. */
93c9d1ba 973#define DWARF_REG_TO_UNWIND_COLUMN(r) \
23742a9e 974 ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
93c9d1ba 975
ed1cf8ff 976/* Use standard DWARF numbering for DWARF debugging information. */
3d36d470 977#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
ed1cf8ff 978
93c9d1ba 979/* Use gcc hard register numbering for eh_frame. */
3d36d470 980#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 981
ed1cf8ff
GK
982/* Map register numbers held in the call frame info that gcc has
983 collected using DWARF_FRAME_REGNUM to those that should be output in
3d36d470
UW
984 .debug_frame and .eh_frame. */
985#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
986 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
ed1cf8ff 987
f045b2c9
RS
988/* 1 for registers that have pervasive standard uses
989 and are not available for the register allocator.
990
5dead3e5
DJ
991 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
992 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 993
a127c4e5
RK
994 On System V implementations, r13 is fixed and not available for use. */
995
f045b2c9 996#define FIXED_REGISTERS \
5dead3e5 997 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
998 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
999 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1000 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
36bd0c3e 1001 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
0ac081f6
AH
1002 /* AltiVec registers. */ \
1003 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1004 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1005 1, 1 \
23742a9e
RAR
1006 , 1, 1, 1, 1, 1, 1, \
1007 /* SPE High registers. */ \
1008 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1009 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6 1010}
f045b2c9
RS
1011
1012/* 1 for registers not available across function calls.
1013 These must include the FIXED_REGISTERS and also any
1014 registers that can be used without being saved.
1015 The latter must include the registers where values are returned
1016 and the register where structure-value addresses are passed.
1017 Aside from that, you can include as many other registers as you like. */
1018
1019#define CALL_USED_REGISTERS \
a127c4e5 1020 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
1021 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1022 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1023 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
1024 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1025 /* AltiVec registers. */ \
1026 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1027 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1028 1, 1 \
23742a9e
RAR
1029 , 1, 1, 1, 1, 1, 1, \
1030 /* SPE High registers. */ \
1031 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1032 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6
AH
1033}
1034
289e96b2
AH
1035/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1036 the entire set of `FIXED_REGISTERS' be included.
1037 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1038 This macro is optional. If not specified, it defaults to the value
1039 of `CALL_USED_REGISTERS'. */
f676971a 1040
289e96b2
AH
1041#define CALL_REALLY_USED_REGISTERS \
1042 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1043 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1044 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1045 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1046 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1047 /* AltiVec registers. */ \
1048 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1049 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1050 0, 0 \
23742a9e
RAR
1051 , 0, 0, 0, 0, 0, 0, \
1052 /* SPE High registers. */ \
1053 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1054 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
289e96b2 1055}
f045b2c9 1056
28bcfd4d 1057#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
9ebbca7d 1058
d62294f5 1059#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
b427dd7a
AM
1060#define FIRST_SAVED_FP_REGNO (14+32)
1061#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
d62294f5 1062
f045b2c9
RS
1063/* List the order in which to allocate registers. Each register must be
1064 listed once, even those in FIXED_REGISTERS.
1065
1066 We allocate in the following order:
1067 fp0 (not saved or used for anything)
1068 fp13 - fp2 (not saved; incoming fp arg registers)
1069 fp1 (not saved; return value)
9390387d 1070 fp31 - fp14 (saved; order given to save least number)
36bd0c3e
SB
1071 cr7, cr5 (not saved or special)
1072 cr6 (not saved, but used for vector operations)
5accd822 1073 cr1 (not saved, but used for FP operations)
f045b2c9 1074 cr0 (not saved, but used for arithmetic operations)
5accd822 1075 cr4, cr3, cr2 (saved)
f045b2c9 1076 r9 (not saved; best for TImode)
d44b26bd 1077 r10, r8-r4 (not saved; highest first for less conflict with params)
9390387d 1078 r3 (not saved; return value register)
d44b26bd
AM
1079 r11 (not saved; later alloc to help shrink-wrap)
1080 r0 (not saved; cannot be base reg)
f045b2c9
RS
1081 r31 - r13 (saved; order given to save least number)
1082 r12 (not saved; if used for DImode or DFmode would use r13)
f045b2c9
RS
1083 ctr (not saved; when we have the choice ctr is better)
1084 lr (saved)
36bd0c3e 1085 r1, r2, ap, ca (fixed)
9390387d
AM
1086 v0 - v1 (not saved or used for anything)
1087 v13 - v3 (not saved; incoming vector arg registers)
1088 v2 (not saved; incoming vector arg reg; return value)
1089 v19 - v14 (not saved or used for anything)
1090 v31 - v20 (saved; order given to save least number)
1091 vrsave, vscr (fixed)
a3170dc6 1092 spe_acc, spefscr (fixed)
7d5175e1 1093 sfp (fixed)
0258b6e4
PB
1094 tfhar (fixed)
1095 tfiar (fixed)
1096 texasr (fixed)
0ac081f6 1097*/
f676971a 1098
6b13641d
DJ
1099#if FIXED_R2 == 1
1100#define MAYBE_R2_AVAILABLE
1101#define MAYBE_R2_FIXED 2,
1102#else
1103#define MAYBE_R2_AVAILABLE 2,
1104#define MAYBE_R2_FIXED
1105#endif
f045b2c9 1106
d44b26bd
AM
1107#if FIXED_R13 == 1
1108#define EARLY_R12 12,
1109#define LATE_R12
1110#else
1111#define EARLY_R12
1112#define LATE_R12 12,
1113#endif
1114
9390387d
AM
1115#define REG_ALLOC_ORDER \
1116 {32, \
f62511da
MM
1117 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1118 /* not use fr14 which is a saved register. */ \
1119 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
9390387d
AM
1120 33, \
1121 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1122 50, 49, 48, 47, 46, \
36bd0c3e 1123 75, 73, 74, 69, 68, 72, 71, 70, \
d44b26bd
AM
1124 MAYBE_R2_AVAILABLE \
1125 9, 10, 8, 7, 6, 5, 4, \
1126 3, EARLY_R12 11, 0, \
9390387d 1127 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
d44b26bd 1128 18, 17, 16, 15, 14, 13, LATE_R12 \
462f7901 1129 66, 65, \
36bd0c3e 1130 1, MAYBE_R2_FIXED 67, 76, \
9390387d
AM
1131 /* AltiVec registers. */ \
1132 77, 78, \
1133 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1134 79, \
1135 96, 95, 94, 93, 92, 91, \
1136 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1137 109, 110, \
23742a9e
RAR
1138 111, 112, 113, 114, 115, 116, \
1139 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, \
1140 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, \
1141 141, 142, 143, 144, 145, 146, 147, 148 \
0ac081f6 1142}
f045b2c9
RS
1143
1144/* True if register is floating-point. */
1145#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1146
1147/* True if register is a condition register. */
1de43f85 1148#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
f045b2c9 1149
815cdc52 1150/* True if register is a condition register, but not cr0. */
1de43f85 1151#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
815cdc52 1152
f045b2c9 1153/* True if register is an integer register. */
7d5175e1
JJ
1154#define INT_REGNO_P(N) \
1155 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 1156
a3170dc6
AH
1157/* SPE SIMD registers are just the GPRs. */
1158#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1159
96038623
DE
1160/* PAIRED SIMD registers are just the FPRs. */
1161#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1162
f6b5d695
SB
1163/* True if register is the CA register. */
1164#define CA_REGNO_P(N) ((N) == CA_REGNO)
802a0058 1165
0ac081f6
AH
1166/* True if register is an AltiVec register. */
1167#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1168
cacf1ca8
MM
1169/* True if register is a VSX register. */
1170#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1171
1172/* Alternate name for any vector register supporting floating point, no matter
1173 which instruction set(s) are available. */
1174#define VFLOAT_REGNO_P(N) \
1175 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1176
1177/* Alternate name for any vector register supporting integer, no matter which
1178 instruction set(s) are available. */
1179#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1180
1181/* Alternate name for any vector register supporting logical operations, no
dd7a40e1
MM
1182 matter which instruction set(s) are available. Allow GPRs as well as the
1183 vector registers. */
f62511da 1184#define VLOGICAL_REGNO_P(N) \
dd7a40e1
MM
1185 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1186 || (TARGET_VSX && FP_REGNO_P (N))) \
cacf1ca8 1187
f045b2c9 1188/* Return number of consecutive hard regs needed starting at reg REGNO
d8ecbcdb
AH
1189 to hold something of mode MODE. */
1190
cacf1ca8 1191#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
0e67400a 1192
79eefb0d 1193/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
5ec6aff2
MM
1194 enough space to account for vectors in FP regs. However, TFmode/TDmode
1195 should not use VSX instructions to do a caller save. */
dbcc9f08
MM
1196#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1197 (TARGET_VSX \
1198 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
5ec6aff2
MM
1199 && FP_REGNO_P (REGNO) \
1200 ? V2DFmode \
bbdb5098 1201 : TARGET_E500_DOUBLE && ((MODE) == VOIDmode || (MODE) == DFmode) \
5ec6aff2 1202 ? DFmode \
2c83faf8 1203 : !TARGET_E500_DOUBLE && FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
bbdb5098
MR
1204 ? DFmode \
1205 : !TARGET_E500_DOUBLE && (MODE) == TDmode && FP_REGNO_P (REGNO) \
5ec6aff2 1206 ? DImode \
79eefb0d
PH
1207 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1208
3fc841c8
MM
1209#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1210 (((TARGET_32BIT && TARGET_POWERPC64 \
1211 && (GET_MODE_SIZE (MODE) > 4) \
1212 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1213 || (TARGET_VSX && FP_REGNO_P (REGNO) \
2c83faf8 1214 && GET_MODE_SIZE (MODE) > 8 && !FLOAT128_2REG_P (MODE)))
f045b2c9 1215
cacf1ca8
MM
1216#define VSX_VECTOR_MODE(MODE) \
1217 ((MODE) == V4SFmode \
1218 || (MODE) == V2DFmode) \
1219
bdb60a10
MM
1220/* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1221 really a vector, but we want to treat it as a vector for moves, and
1222 such. */
1223
1224#define ALTIVEC_VECTOR_MODE(MODE) \
1225 ((MODE) == V16QImode \
1226 || (MODE) == V8HImode \
1227 || (MODE) == V4SFmode \
1228 || (MODE) == V4SImode \
1229 || FLOAT128_VECTOR_P (MODE))
0ac081f6 1230
dbcc9f08
MM
1231#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1232 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
a16a872d 1233 || (MODE) == V2DImode || (MODE) == V1TImode)
dbcc9f08 1234
a3170dc6
AH
1235#define SPE_VECTOR_MODE(MODE) \
1236 ((MODE) == V4HImode \
1237 || (MODE) == V2SFmode \
00a892b8 1238 || (MODE) == V1DImode \
a3170dc6
AH
1239 || (MODE) == V2SImode)
1240
96038623
DE
1241#define PAIRED_VECTOR_MODE(MODE) \
1242 ((MODE) == V2SFmode)
1243
0d1fbc8c
AH
1244/* Value is TRUE if hard register REGNO can hold a value of
1245 machine-mode MODE. */
1246#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1247 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
f045b2c9
RS
1248
1249/* Value is 1 if it is a good idea to tie two pseudo registers
1250 when one has mode MODE1 and one has mode MODE2.
1251 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
f161bfd3
MM
1252 for any hard reg, then this must be 0 for correct output.
1253
1254 PTImode cannot tie with other modes because PTImode is restricted to even
1255 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
bdb60a10
MM
1256 57744).
1257
1258 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
1259 128-bit floating point on VSX systems ties with other vectors. */
f62511da 1260#define MODES_TIEABLE_P(MODE1, MODE2) \
f161bfd3
MM
1261 ((MODE1) == PTImode \
1262 ? (MODE2) == PTImode \
1263 : (MODE2) == PTImode \
1264 ? 0 \
bdb60a10
MM
1265 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1266 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1267 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1268 ? 0 \
f161bfd3 1269 : SCALAR_FLOAT_MODE_P (MODE1) \
ebb109ad
BE
1270 ? SCALAR_FLOAT_MODE_P (MODE2) \
1271 : SCALAR_FLOAT_MODE_P (MODE2) \
f161bfd3 1272 ? 0 \
f045b2c9
RS
1273 : GET_MODE_CLASS (MODE1) == MODE_CC \
1274 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1275 : GET_MODE_CLASS (MODE2) == MODE_CC \
f161bfd3 1276 ? 0 \
4dcc01f3
AH
1277 : SPE_VECTOR_MODE (MODE1) \
1278 ? SPE_VECTOR_MODE (MODE2) \
1279 : SPE_VECTOR_MODE (MODE2) \
f161bfd3 1280 ? 0 \
f045b2c9
RS
1281 : 1)
1282
c8ae788f
SB
1283/* Post-reload, we can't use any new AltiVec registers, as we already
1284 emitted the vrsave mask. */
1285
1286#define HARD_REGNO_RENAME_OK(SRC, DST) \
6fb5fa3c 1287 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
c8ae788f 1288
f045b2c9
RS
1289/* Specify the cost of a branch insn; roughly the number of extra insns that
1290 should be added to avoid a branch.
1291
ef457bda 1292 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1293 unscheduled conditional branch. */
1294
3a4fd356 1295#define BRANCH_COST(speed_p, predictable_p) 3
f045b2c9 1296
85e50b6b 1297/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 1298 performance for removing short circuiting from the logical ops. */
85e50b6b 1299
b8610a53 1300#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6 1301
52ff33d0
NF
1302/* A fixed register used at epilogue generation to address SPE registers
1303 with negative offsets. The 64-bit load/store instructions on the SPE
1304 only take positive offsets (and small ones at that), so we need to
1305 reserve a register for consing up negative offsets. */
a3170dc6 1306
52ff33d0 1307#define FIXED_SCRATCH 0
a3170dc6 1308
f045b2c9
RS
1309/* Specify the registers used for certain standard purposes.
1310 The values of these macros are register numbers. */
1311
1312/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1313/* #define PC_REGNUM */
1314
1315/* Register to use for pushing function arguments. */
1316#define STACK_POINTER_REGNUM 1
1317
1318/* Base register for access to local variables of the function. */
7d5175e1
JJ
1319#define HARD_FRAME_POINTER_REGNUM 31
1320
1321/* Base register for access to local variables of the function. */
1322#define FRAME_POINTER_REGNUM 113
f045b2c9 1323
f045b2c9
RS
1324/* Base register for access to arguments of the function. */
1325#define ARG_POINTER_REGNUM 67
1326
1327/* Place to put static chain when calling a function that requires it. */
1328#define STATIC_CHAIN_REGNUM 11
1329
f045b2c9
RS
1330\f
1331/* Define the classes of registers for register constraints in the
1332 machine description. Also define ranges of constants.
1333
1334 One of the classes must always be named ALL_REGS and include all hard regs.
1335 If there is more than one class, another class must be named NO_REGS
1336 and contain no registers.
1337
1338 The name GENERAL_REGS must be the name of a class (or an alias for
1339 another name such as ALL_REGS). This is the class of registers
1340 that is allowed by "g" or "r" in a register constraint.
1341 Also, registers outside this class are allocated only when
1342 instructions express preferences for them.
1343
1344 The classes must be numbered in nondecreasing order; that is,
1345 a larger-numbered class must never be contained completely
1346 in a smaller-numbered class.
1347
1348 For any two classes, it is very desirable that there be another
1349 class that represents their union. */
c81bebd7 1350
cacf1ca8 1351/* The RS/6000 has three types of registers, fixed-point, floating-point, and
462f7901 1352 condition registers, plus three special registers, CTR, and the link
cacf1ca8
MM
1353 register. AltiVec adds a vector register class. VSX registers overlap the
1354 FPR registers and the Altivec registers.
f045b2c9
RS
1355
1356 However, r0 is special in that it cannot be used as a base register.
1357 So make a class for registers valid as base registers.
1358
1359 Also, cr0 is the only condition code register that can be used in
0d86f538 1360 arithmetic insns, so make a separate class for it. */
f045b2c9 1361
ebedb4dd
MM
1362enum reg_class
1363{
1364 NO_REGS,
ebedb4dd
MM
1365 BASE_REGS,
1366 GENERAL_REGS,
1367 FLOAT_REGS,
0ac081f6 1368 ALTIVEC_REGS,
8beb65e3 1369 VSX_REGS,
0ac081f6 1370 VRSAVE_REGS,
5f004351 1371 VSCR_REGS,
a3170dc6
AH
1372 SPE_ACC_REGS,
1373 SPEFSCR_REGS,
0258b6e4 1374 SPR_REGS,
ebedb4dd 1375 NON_SPECIAL_REGS,
ebedb4dd
MM
1376 LINK_REGS,
1377 CTR_REGS,
1378 LINK_OR_CTR_REGS,
1379 SPECIAL_REGS,
1380 SPEC_OR_GEN_REGS,
1381 CR0_REGS,
ebedb4dd
MM
1382 CR_REGS,
1383 NON_FLOAT_REGS,
f6b5d695 1384 CA_REGS,
23742a9e 1385 SPE_HIGH_REGS,
ebedb4dd
MM
1386 ALL_REGS,
1387 LIM_REG_CLASSES
1388};
f045b2c9
RS
1389
1390#define N_REG_CLASSES (int) LIM_REG_CLASSES
1391
82e41834 1392/* Give names of register classes as strings for dump file. */
f045b2c9 1393
ebedb4dd
MM
1394#define REG_CLASS_NAMES \
1395{ \
1396 "NO_REGS", \
ebedb4dd
MM
1397 "BASE_REGS", \
1398 "GENERAL_REGS", \
1399 "FLOAT_REGS", \
0ac081f6 1400 "ALTIVEC_REGS", \
8beb65e3 1401 "VSX_REGS", \
0ac081f6 1402 "VRSAVE_REGS", \
5f004351 1403 "VSCR_REGS", \
a3170dc6
AH
1404 "SPE_ACC_REGS", \
1405 "SPEFSCR_REGS", \
0258b6e4 1406 "SPR_REGS", \
ebedb4dd 1407 "NON_SPECIAL_REGS", \
ebedb4dd
MM
1408 "LINK_REGS", \
1409 "CTR_REGS", \
1410 "LINK_OR_CTR_REGS", \
1411 "SPECIAL_REGS", \
1412 "SPEC_OR_GEN_REGS", \
1413 "CR0_REGS", \
ebedb4dd
MM
1414 "CR_REGS", \
1415 "NON_FLOAT_REGS", \
f6b5d695 1416 "CA_REGS", \
23742a9e 1417 "SPE_HIGH_REGS", \
ebedb4dd
MM
1418 "ALL_REGS" \
1419}
f045b2c9
RS
1420
1421/* Define which registers fit in which classes.
1422 This is an initializer for a vector of HARD_REG_SET
1423 of length N_REG_CLASSES. */
1424
23742a9e
RAR
1425#define REG_CLASS_CONTENTS \
1426{ \
1427 /* NO_REGS. */ \
1428 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1429 /* BASE_REGS. */ \
1430 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1431 /* GENERAL_REGS. */ \
1432 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1433 /* FLOAT_REGS. */ \
1434 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, \
1435 /* ALTIVEC_REGS. */ \
1436 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 }, \
1437 /* VSX_REGS. */ \
1438 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 }, \
1439 /* VRSAVE_REGS. */ \
1440 { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 }, \
1441 /* VSCR_REGS. */ \
1442 { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 }, \
1443 /* SPE_ACC_REGS. */ \
1444 { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 }, \
1445 /* SPEFSCR_REGS. */ \
1446 { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 }, \
1447 /* SPR_REGS. */ \
1448 { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 }, \
1449 /* NON_SPECIAL_REGS. */ \
1450 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 }, \
1451 /* LINK_REGS. */ \
1452 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 }, \
1453 /* CTR_REGS. */ \
1454 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 }, \
1455 /* LINK_OR_CTR_REGS. */ \
1456 { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 }, \
1457 /* SPECIAL_REGS. */ \
1458 { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 }, \
1459 /* SPEC_OR_GEN_REGS. */ \
1460 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 }, \
1461 /* CR0_REGS. */ \
1462 { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 }, \
1463 /* CR_REGS. */ \
1464 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 }, \
1465 /* NON_FLOAT_REGS. */ \
1466 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 }, \
1467 /* CA_REGS. */ \
1468 { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 }, \
1469 /* SPE_HIGH_REGS. */ \
1470 { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff }, \
1471 /* ALL_REGS. */ \
1472 { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff } \
ebedb4dd 1473}
f045b2c9
RS
1474
1475/* The same information, inverted:
1476 Return the class number of the smallest class containing
1477 reg number REGNO. This could be a conditional expression
1478 or could index an array. */
1479
cacf1ca8
MM
1480extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1481
cacf1ca8 1482#define REGNO_REG_CLASS(REGNO) \
e28c2052 1483 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
cacf1ca8
MM
1484 rs6000_regno_regclass[(REGNO)])
1485
a72c65c7
MM
1486/* Register classes for various constraints that are based on the target
1487 switches. */
1488enum r6000_reg_class_enum {
1489 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1490 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1491 RS6000_CONSTRAINT_v, /* Altivec registers */
1492 RS6000_CONSTRAINT_wa, /* Any VSX register */
1493 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1494 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
5e8586d7 1495 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
59f5868d
MM
1496 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1497 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1498 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1499 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
c6d5ff83 1500 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
f62511da 1501 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
c477a667
MM
1502 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1503 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
f62511da 1504 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
a72c65c7 1505 RS6000_CONSTRAINT_ws, /* VSX register for DF */
c6d5ff83 1506 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
5e8586d7
MM
1507 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1508 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1509 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
c6d5ff83 1510 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
5e8586d7 1511 RS6000_CONSTRAINT_wy, /* VSX register for SF */
c6d5ff83 1512 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
a72c65c7
MM
1513 RS6000_CONSTRAINT_MAX
1514};
1515
1516extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
f045b2c9
RS
1517
1518/* The class value for index registers, and the one for base regs. */
1519#define INDEX_REG_CLASS GENERAL_REGS
1520#define BASE_REG_CLASS BASE_REGS
1521
cacf1ca8
MM
1522/* Return whether a given register class can hold VSX objects. */
1523#define VSX_REG_CLASS_P(CLASS) \
1524 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1525
59f5868d
MM
1526/* Return whether a given register class targets general purpose registers. */
1527#define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1528
f045b2c9
RS
1529/* Given an rtx X being reloaded into a reg required to be
1530 in class CLASS, return the class of reg to actually use.
1531 In general this is just CLASS; but on some machines
c81bebd7 1532 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1533
1534 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1535 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1536
1537 We also don't want to reload integer values into floating-point
1538 registers if we can at all help it. In fact, this can
37409796 1539 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1540 into a FP register and discovers it doesn't have the memory location
1541 required.
1542
1543 ??? Would it be a good idea to have reload do the converse, that is
1544 try to reload floating modes into FP registers if possible?
1545 */
f045b2c9 1546
802a0058 1547#define PREFERRED_RELOAD_CLASS(X,CLASS) \
8beb65e3 1548 rs6000_preferred_reload_class_ptr (X, CLASS)
c81bebd7 1549
f045b2c9
RS
1550/* Return the register class of a scratch register needed to copy IN into
1551 or out of a register in CLASS in MODE. If it can be done directly,
1552 NO_REGS is returned. */
1553
1554#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
8beb65e3 1555 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
f045b2c9 1556
0ac081f6 1557/* If we are copying between FP or AltiVec registers and anything
44cd321e
PS
1558 else, we need a memory location. The exception is when we are
1559 targeting ppc64 and the move to/from fpr to gpr instructions
1560 are available.*/
1561
1562#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
8beb65e3 1563 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
7ea555a4 1564
e41b2a33
PB
1565/* For cpus that cannot load/store SDmode values from the 64-bit
1566 FP registers without using a full 64-bit load/store, we need
1567 to allocate a full 64-bit stack slot for them. */
1568
1569#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1570 rs6000_secondary_memory_needed_rtx (MODE)
1571
01b1efaa
VM
1572/* Specify the mode to be used for memory when a secondary memory
1573 location is needed. For cpus that cannot load/store SDmode values
1574 from the 64-bit FP registers without using a full 64-bit
1575 load/store, we need a wider mode. */
1576#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1577 rs6000_secondary_memory_needed_mode (MODE)
1578
f045b2c9
RS
1579/* Return the maximum number of consecutive registers
1580 needed to represent mode MODE in a register of class CLASS.
1581
cacf1ca8
MM
1582 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1583 a single reg is enough for two words, unless we have VSX, where the FP
1584 registers can hold 128 bits. */
1585#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
580d3230 1586
ca0e79d9
AM
1587/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1588
1589#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
8beb65e3 1590 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
02188693 1591
f045b2c9
RS
1592/* Stack layout; function entry, exit and calling. */
1593
1594/* Define this if pushing a word on the stack
1595 makes the stack pointer a smaller address. */
62f9f30b 1596#define STACK_GROWS_DOWNWARD 1
f045b2c9 1597
327e5343
FJ
1598/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1599#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1600
a4d05547 1601/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1602 is at the high-address end of the local variables;
1603 that is, each additional local variable allocated
1604 goes at a more negative offset in the frame.
1605
1606 On the RS/6000, we grow upwards, from the area after the outgoing
1607 arguments. */
de5a5fa1
MP
1608#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1609 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
f045b2c9 1610
4697a36c 1611/* Size of the fixed area on the stack */
9ebbca7d 1612#define RS6000_SAVE_AREA \
b54214fe
UW
1613 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1614 << (TARGET_64BIT ? 1 : 0))
4697a36c 1615
b54214fe
UW
1616/* Stack offset for toc save slot. */
1617#define RS6000_TOC_SAVE_SLOT \
1618 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
b6c9286a 1619
4697a36c 1620/* Align an address */
4f59f9f2 1621#define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
4697a36c 1622
f045b2c9
RS
1623/* Offset within stack frame to start allocating local variables at.
1624 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1625 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1626 of the first local allocated.
f045b2c9
RS
1627
1628 On the RS/6000, the frame pointer is the same as the stack pointer,
1629 except for dynamic allocations. So we start after the fixed area and
1630 outgoing parameter area. */
1631
802a0058 1632#define STARTING_FRAME_OFFSET \
7d5175e1
JJ
1633 (FRAME_GROWS_DOWNWARD \
1634 ? 0 \
cacf1ca8
MM
1635 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1636 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
7d5175e1 1637 + RS6000_SAVE_AREA))
802a0058
MM
1638
1639/* Offset from the stack pointer register to an item dynamically
1640 allocated on the stack, e.g., by `alloca'.
1641
1642 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1643 length of the outgoing arguments. The default is correct for most
1644 machines. See `function.c' for details. */
1645#define STACK_DYNAMIC_OFFSET(FUNDECL) \
cacf1ca8
MM
1646 (RS6000_ALIGN (crtl->outgoing_args_size, \
1647 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
802a0058 1648 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1649
1650/* If we generate an insn to push BYTES bytes,
1651 this says how many the stack pointer really advances by.
1652 On RS/6000, don't define this because there are no push insns. */
1653/* #define PUSH_ROUNDING(BYTES) */
1654
1655/* Offset of first parameter from the argument pointer register value.
1656 On the RS/6000, we define the argument pointer to the start of the fixed
1657 area. */
4697a36c 1658#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1659
62153b61
JM
1660/* Offset from the argument pointer register value to the top of
1661 stack. This is different from FIRST_PARM_OFFSET because of the
1662 register save area. */
1663#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1664
f045b2c9
RS
1665/* Define this if stack space is still allocated for a parameter passed
1666 in a register. The value is the number of bytes allocated to this
1667 area. */
ddbb449f
AM
1668#define REG_PARM_STACK_SPACE(FNDECL) \
1669 rs6000_reg_parm_stack_space ((FNDECL), false)
1670
1671/* Define this macro if space guaranteed when compiling a function body
1672 is different to space required when making a call, a situation that
1673 can arise with K&R style function definitions. */
1674#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1675 rs6000_reg_parm_stack_space ((FNDECL), true)
f045b2c9
RS
1676
1677/* Define this if the above stack space is to be considered part of the
1678 space allocated by the caller. */
81464b2c 1679#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
f045b2c9
RS
1680
1681/* This is the difference between the logical top of stack and the actual sp.
1682
82e41834 1683 For the RS/6000, sp points past the fixed area. */
4697a36c 1684#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1685
1686/* Define this if the maximum size of all the outgoing args is to be
1687 accumulated and pushed during the prologue. The amount can be
38173d38 1688 found in the variable crtl->outgoing_args_size. */
f73ad30e 1689#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9 1690
f045b2c9
RS
1691/* Define how to find the value returned by a library function
1692 assuming the value has mode MODE. */
1693
ded9bf77 1694#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1695
6fa3f289
ZW
1696/* DRAFT_V4_STRUCT_RET defaults off. */
1697#define DRAFT_V4_STRUCT_RET 0
f607bc57 1698
bd5bd7ac 1699/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1700#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1701
a260abc9 1702/* Mode of stack savearea.
dfdfa60f
DE
1703 FUNCTION is VOIDmode because calling convention maintains SP.
1704 BLOCK needs Pmode for SP.
a260abc9
DE
1705 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1706#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f 1707 (LEVEL == SAVE_FUNCTION ? VOIDmode \
c6d5ff83 1708 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
a260abc9 1709
4697a36c
MM
1710/* Minimum and maximum general purpose registers used to hold arguments. */
1711#define GP_ARG_MIN_REG 3
1712#define GP_ARG_MAX_REG 10
1713#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1714
1715/* Minimum and maximum floating point registers used to hold arguments. */
1716#define FP_ARG_MIN_REG 33
7509c759
MM
1717#define FP_ARG_AIX_MAX_REG 45
1718#define FP_ARG_V4_MAX_REG 40
008e32c0
UW
1719#define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1720 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
4697a36c
MM
1721#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1722
0ac081f6
AH
1723/* Minimum and maximum AltiVec registers used to hold arguments. */
1724#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1725#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1726#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1727
b54214fe
UW
1728/* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1729#define AGGR_ARG_NUM_REG 8
1730
4697a36c
MM
1731/* Return registers */
1732#define GP_ARG_RETURN GP_ARG_MIN_REG
1733#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1734#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
b54214fe
UW
1735#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1736 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1737#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? ALTIVEC_ARG_RETURN \
1738 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4697a36c 1739
7509c759 1740/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1741#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1742/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1743#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1744#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1745#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1746#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1747
f57fe068
AM
1748/* We don't have prologue and epilogue functions to save/restore
1749 everything for most ABIs. */
1750#define WORLD_SAVE_P(INFO) 0
1751
f045b2c9
RS
1752/* 1 if N is a possible register number for a function value
1753 as seen by the caller.
1754
0ac081f6 1755 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1756#define FUNCTION_VALUE_REGNO_P(N) \
1757 ((N) == GP_ARG_RETURN \
b54214fe
UW
1758 || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
1759 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1760 || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
1761 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1762
1763/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1764 On RS/6000, these are r3-r10 and fp1-fp13.
1765 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1766#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1767 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1768 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
44688022 1769 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
e87a88d3 1770 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
b2df7d08 1771 && TARGET_HARD_FLOAT && TARGET_FPRS))
f045b2c9
RS
1772\f
1773/* Define a data type for recording info about an argument list
1774 during the scan of that argument list. This data type should
1775 hold all necessary information about the function itself
1776 and about the args processed so far, enough to enable macros
1777 such as FUNCTION_ARG to determine where the next arg should go.
1778
1779 On the RS/6000, this is a structure. The first element is the number of
1780 total argument words, the second is used to store the next
1781 floating-point register number, and the third says how many more args we
4697a36c
MM
1782 have prototype types for.
1783
4cc833b7 1784 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1785 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1786 register, and `words' is the number of words used on the stack.
1787
bd227acc 1788 The varargs/stdarg support requires that this structure's size
4cc833b7 1789 be a multiple of sizeof(int). */
4697a36c
MM
1790
1791typedef struct rs6000_args
1792{
4cc833b7 1793 int words; /* # words used for passing GP registers */
6a4cee5f 1794 int fregno; /* next available FP register */
0ac081f6 1795 int vregno; /* next available AltiVec register */
6a4cee5f 1796 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1797 int prototype; /* Whether a prototype was defined */
a6c9bed4 1798 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1799 int call_cookie; /* Do special things for this call */
4cc833b7 1800 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1801 int intoffset; /* running offset in struct (darwin64) */
1802 int use_stack; /* any part of struct on stack (darwin64) */
a9ab25e2
IS
1803 int floats_in_gpr; /* count of SFmode floats taking up
1804 GPR space (darwin64) */
0b5383eb 1805 int named; /* false for varargs params */
617718f7 1806 int escapes; /* if function visible outside tu */
bdb60a10 1807 int libcall; /* If this is a compiler generated call. */
4697a36c 1808} CUMULATIVE_ARGS;
f045b2c9 1809
f045b2c9
RS
1810/* Initialize a variable CUM of type CUMULATIVE_ARGS
1811 for a call to a function whose data type is FNTYPE.
1812 For a library call, FNTYPE is 0. */
1813
617718f7
AM
1814#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1815 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1816 N_NAMED_ARGS, FNDECL, VOIDmode)
f045b2c9
RS
1817
1818/* Similar, but when scanning the definition of a procedure. We always
1819 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1820
0f6937fe 1821#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617718f7
AM
1822 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1823 1000, current_function_decl, VOIDmode)
b9599e46
FS
1824
1825/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1826
1827#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
617718f7
AM
1828 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1829 0, NULL_TREE, MODE)
f045b2c9 1830
c229cba9
DE
1831/* If defined, a C expression which determines whether, and in which
1832 direction, to pad out an argument with extra space. The value
1833 should be of type `enum direction': either `upward' to pad above
1834 the argument, `downward' to pad below, or `none' to inhibit
1835 padding. */
1836
9ebbca7d 1837#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1838
6e985040
AM
1839#define PAD_VARARGS_DOWN \
1840 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1841
f045b2c9 1842/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1843 for profiling a function entry. */
f045b2c9
RS
1844
1845#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1846 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1847
1848/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1849 the stack pointer does not matter. No definition is equivalent to
1850 always zero.
1851
a0ab749a 1852 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1853 its backpointer, which we maintain. */
1854#define EXIT_IGNORE_STACK 1
1855
a701949a
FS
1856/* Define this macro as a C expression that is nonzero for registers
1857 that are used by the epilogue or the return' pattern. The stack
1858 and frame pointer registers are already be assumed to be used as
1859 needed. */
1860
83720594 1861#define EPILOGUE_USES(REGNO) \
1de43f85 1862 ((reload_completed && (REGNO) == LR_REGNO) \
b1765bde 1863 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
cacf1ca8 1864 || (crtl->calls_eh_return \
3553b09d 1865 && TARGET_AIX \
ff3867ae 1866 && (REGNO) == 2))
2bfcf297 1867
f045b2c9 1868\f
f045b2c9
RS
1869/* Length in units of the trampoline for entering a nested function. */
1870
b6c9286a 1871#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9 1872\f
f33985c6
MS
1873/* Definitions for __builtin_return_address and __builtin_frame_address.
1874 __builtin_return_address (0) should give link register (65), enable
82e41834 1875 this. */
f33985c6
MS
1876/* This should be uncommented, so that the link register is used, but
1877 currently this would result in unmatched insns and spilling fixed
1878 registers so we'll leave it for another day. When these problems are
1879 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1880 (mrs) */
1881/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1882
b6c9286a
MM
1883/* Number of bytes into the frame return addresses can be found. See
1884 rs6000_stack_info in rs6000.c for more information on how the different
1885 abi's store the return address. */
008e32c0
UW
1886#define RETURN_ADDRESS_OFFSET \
1887 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
f09d4c33 1888
f33985c6
MS
1889/* The current return address is in link register (65). The return address
1890 of anything farther back is accessed normally at an offset of 8 from the
1891 frame pointer. */
71f123ca
FS
1892#define RETURN_ADDR_RTX(COUNT, FRAME) \
1893 (rs6000_return_addr (COUNT, FRAME))
1894
f33985c6 1895\f
f045b2c9
RS
1896/* Definitions for register eliminations.
1897
1898 We have two registers that can be eliminated on the RS/6000. First, the
1899 frame pointer register can often be eliminated in favor of the stack
1900 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1901 eliminated; it is replaced with either the stack or frame pointer.
1902
1903 In addition, we use the elimination mechanism to see if r30 is needed
1904 Initially we assume that it isn't. If it is, we spill it. This is done
1905 by making it an eliminable register. We replace it with itself so that
1906 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1907
1908/* This is an array of structures. Each structure initializes one pair
1909 of eliminable registers. The "from" register number is given first,
1910 followed by "to". Eliminations of the same "from" register are listed
1911 in order of preference. */
7d5175e1
JJ
1912#define ELIMINABLE_REGS \
1913{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1914 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1915 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1916 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1917 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 1918 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9 1919
f045b2c9
RS
1920/* Define the offset between two registers, one to be eliminated, and the other
1921 its replacement, at the start of a routine. */
d1d0c603
JJ
1922#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1923 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1924\f
1925/* Addressing modes, and classification of registers for them. */
1926
940da324
JL
1927#define HAVE_PRE_DECREMENT 1
1928#define HAVE_PRE_INCREMENT 1
6fb5fa3c
DB
1929#define HAVE_PRE_MODIFY_DISP 1
1930#define HAVE_PRE_MODIFY_REG 1
f045b2c9
RS
1931
1932/* Macros to check register numbers against specific register classes. */
1933
1934/* These assume that REGNO is a hard or pseudo reg number.
1935 They give nonzero only if REGNO is a hard reg of the suitable class
1936 or a pseudo reg currently allocated to a suitable hard reg.
1937 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1938 has been allocated, which happens in reginfo.c during register
1939 allocation. */
f045b2c9
RS
1940
1941#define REGNO_OK_FOR_INDEX_P(REGNO) \
1942((REGNO) < FIRST_PSEUDO_REGISTER \
1943 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 1944 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1945 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
1946 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1947 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
1948
1949#define REGNO_OK_FOR_BASE_P(REGNO) \
1950((REGNO) < FIRST_PSEUDO_REGISTER \
1951 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 1952 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1953 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
1954 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1955 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
c6c3dba9
PB
1956
1957/* Nonzero if X is a hard reg that can be used as an index
1958 or if it is a pseudo reg in the non-strict case. */
1959#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1960 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1961 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1962
1963/* Nonzero if X is a hard reg that can be used as a base reg
1964 or if it is a pseudo reg in the non-strict case. */
1965#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1966 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1967 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1968
f045b2c9
RS
1969\f
1970/* Maximum number of registers that can appear in a valid memory address. */
1971
1972#define MAX_REGS_PER_ADDRESS 2
1973
1974/* Recognize any constant value that is a valid address. */
1975
6eff269e
BK
1976#define CONSTANT_ADDRESS_P(X) \
1977 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1978 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1979 || GET_CODE (X) == HIGH)
f045b2c9 1980
48d72335 1981#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3 1982#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
76492753
PB
1983 && EASY_VECTOR_15((n) >> 1) \
1984 && ((n) & 1) == 0)
48d72335 1985
29e6733c 1986#define EASY_VECTOR_MSB(n,mode) \
683be46f 1987 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
29e6733c
MM
1988 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1989
f045b2c9 1990\f
a260abc9
DE
1991/* Try a machine-dependent way of reloading an illegitimate address
1992 operand. If we find one, push the reload and jump to WIN. This
1993 macro is used in only one place: `find_reloads_address' in reload.c.
1994
f676971a 1995 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 1996 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 1997
a9098fd0
GK
1998#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1999do { \
24ea750e 2000 int win; \
8beb65e3 2001 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
24ea750e
DJ
2002 (int)(TYPE), (IND_LEVELS), &win); \
2003 if ( win ) \
2004 goto WIN; \
a260abc9
DE
2005} while (0)
2006
944258eb 2007#define FIND_BASE_TERM rs6000_find_base_term
766a866c
MM
2008\f
2009/* The register number of the register used to address a table of
2010 static data addresses in memory. In some cases this register is
2011 defined by a processor's "application binary interface" (ABI).
2012 When this macro is defined, RTL is generated for this register
2013 once, as with the stack pointer and frame pointer registers. If
2014 this macro is not defined, it is up to the machine-dependent files
2015 to allocate such a register (if necessary). */
2016
1db02437
FS
2017#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2018#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2019
97b23853 2020#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2021
766a866c
MM
2022/* Define this macro if the register defined by
2023 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2024 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2025
2026/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2027
766a866c
MM
2028/* A C expression that is nonzero if X is a legitimate immediate
2029 operand on the target machine when generating position independent
2030 code. You can assume that X satisfies `CONSTANT_P', so you need
2031 not check this. You can also assume FLAG_PIC is true, so you need
2032 not check it either. You need not define this macro if all
2033 constants (including `SYMBOL_REF') can be immediate operands when
2034 generating position independent code. */
2035
2036/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
2037\f
2038/* Define this if some processing needs to be done immediately before
4255474b 2039 emitting code for an insn. */
f045b2c9 2040
c921bad8
AP
2041#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
2042 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
f045b2c9
RS
2043
2044/* Specify the machine mode that this machine uses
2045 for the index in the tablejump instruction. */
e1565e65 2046#define CASE_VECTOR_MODE SImode
f045b2c9 2047
18543a22
ILT
2048/* Define as C expression which evaluates to nonzero if the tablejump
2049 instruction expects the table to contain offsets from the address of the
2050 table.
82e41834 2051 Do not define this if the table should contain absolute addresses. */
18543a22 2052#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2053
f045b2c9
RS
2054/* Define this as 1 if `char' should by default be signed; else as 0. */
2055#define DEFAULT_SIGNED_CHAR 0
2056
c1618c0c
DE
2057/* An integer expression for the size in bits of the largest integer machine
2058 mode that should actually be used. */
2059
2060/* Allow pairs of registers to be used, which is the intent of the default. */
2061#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2062
f045b2c9
RS
2063/* Max number of bytes we can move from memory to memory
2064 in one reasonably fast instruction. */
2f3e5814 2065#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2066#define MAX_MOVE_MAX 8
f045b2c9
RS
2067
2068/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2069 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2070 is undesirable. */
2071#define SLOW_BYTE_ACCESS 1
2072
9a63901f
RK
2073/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2074 will either zero-extend or sign-extend. The value of this macro should
2075 be the code that says which one of the two operations is implicitly
f822d252 2076 done, UNKNOWN if none. */
9a63901f 2077#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2078
2079/* Define if loading short immediate values into registers sign extends. */
58f2ae18 2080#define SHORT_IMMEDIATES_SIGN_EXTEND 1
fdaff8ba 2081\f
f045b2c9
RS
2082/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2083 is done just by pretending it is already truncated. */
2084#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2085
94993909 2086/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122 2087#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
14670a74 2088 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
d865b122 2089
94993909 2090/* The CTZ patterns return -1 for input of zero. */
14670a74 2091#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
94993909 2092
f045b2c9
RS
2093/* Specify the machine mode that pointers have.
2094 After generation of rtl, the compiler makes no further distinction
2095 between pointers and any other objects of this machine mode. */
cacf1ca8 2096extern unsigned rs6000_pmode;
ef4bddc2 2097#define Pmode ((machine_mode)rs6000_pmode)
f045b2c9 2098
a3c9585f 2099/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
2100#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2101
f045b2c9 2102/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2103 Doesn't matter on RS/6000. */
5b71a4e7 2104#define FUNCTION_MODE SImode
f045b2c9
RS
2105
2106/* Define this if addresses of constant functions
2107 shouldn't be put through pseudo regs where they can be cse'd.
2108 Desirable on machines where ordinary constants are expensive
2109 but a CALL with constant address is cheap. */
1e8552c2 2110#define NO_FUNCTION_CSE 1
f045b2c9 2111
d969caf8 2112/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2113 few bits.
2114
2115 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2116 have been dropped from the PowerPC architecture. */
c28a7c24 2117#define SHIFT_COUNT_TRUNCATED 0
f045b2c9 2118
f045b2c9
RS
2119/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2120 should be adjusted to reflect any required changes. This macro is used when
2121 there is some systematic length adjustment required that would be difficult
2122 to express in the length attribute. */
2123
2124/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2125
39a10a29
GK
2126/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2127 COMPARE, return the mode to be used for the comparison. For
2128 floating-point, CCFPmode should be used. CCUNSmode should be used
2129 for unsigned comparisons. CCEQmode should be used when we are
2130 doing an inequality comparison on the result of a
2131 comparison. CCmode should be used in all other cases. */
c5defebb 2132
b565a316 2133#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 2134 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 2135 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 2136 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 2137 ? CCEQmode : CCmode))
f045b2c9 2138
b39358e1
GK
2139/* Can the condition code MODE be safely reversed? This is safe in
2140 all cases on this port, because at present it doesn't use the
2141 trapping FP comparisons (fcmpo). */
2142#define REVERSIBLE_CC_MODE(MODE) 1
2143
2144/* Given a condition code and a mode, return the inverse condition. */
2145#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2146
f045b2c9
RS
2147\f
2148/* Control the assembler format that we output. */
2149
1b279f39
DE
2150/* A C string constant describing how to begin a comment in the target
2151 assembler language. The compiler assumes that the comment will end at
2152 the end of the line. */
2153#define ASM_COMMENT_START " #"
6b67933e 2154
38c1f2d7
MM
2155/* Flag to say the TOC is initialized */
2156extern int toc_initialized;
2157
f045b2c9
RS
2158/* Macro to output a special constant pool entry. Go to WIN if we output
2159 it. Otherwise, it is written the usual way.
2160
2161 On the RS/6000, toc entries are handled this way. */
2162
a9098fd0
GK
2163#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2164{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2165 { \
2166 output_toc (FILE, X, LABELNO, MODE); \
2167 goto WIN; \
2168 } \
f045b2c9
RS
2169}
2170
ebd97b96
DE
2171#ifdef HAVE_GAS_WEAK
2172#define RS6000_WEAK 1
2173#else
2174#define RS6000_WEAK 0
2175#endif
290ad355 2176
79c4e63f
AM
2177#if RS6000_WEAK
2178/* Used in lieu of ASM_WEAKEN_LABEL. */
2179#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2180 do \
2181 { \
2182 fputs ("\t.weak\t", (FILE)); \
85b776df 2183 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2184 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2185 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f 2186 { \
cbaaba19
DE
2187 if (TARGET_XCOFF) \
2188 fputs ("[DS]", (FILE)); \
ca734b39 2189 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2190 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2191 } \
2192 fputc ('\n', (FILE)); \
2193 if (VAL) \
2194 { \
2195 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2196 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2197 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2198 { \
2199 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2200 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2201 fputs (",.", (FILE)); \
cbaaba19 2202 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2203 fputc ('\n', (FILE)); \
2204 } \
2205 } \
2206 } \
2207 while (0)
2208#endif
2209
ff2d10c1
AO
2210#if HAVE_GAS_WEAKREF
2211#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2212 do \
2213 { \
2214 fputs ("\t.weakref\t", (FILE)); \
2215 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2216 fputs (", ", (FILE)); \
2217 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2218 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2219 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2220 { \
2221 fputs ("\n\t.weakref\t.", (FILE)); \
2222 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2223 fputs (", .", (FILE)); \
2224 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2225 } \
2226 fputc ('\n', (FILE)); \
2227 } while (0)
2228#endif
2229
79c4e63f
AM
2230/* This implements the `alias' attribute. */
2231#undef ASM_OUTPUT_DEF_FROM_DECLS
2232#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2233 do \
2234 { \
2235 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2236 const char *name = IDENTIFIER_POINTER (TARGET); \
2237 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2238 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2239 { \
2240 if (TREE_PUBLIC (DECL)) \
2241 { \
2242 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2243 { \
2244 fputs ("\t.globl\t.", FILE); \
cbaaba19 2245 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2246 putc ('\n', FILE); \
2247 } \
2248 } \
2249 else if (TARGET_XCOFF) \
2250 { \
c167bc5b
DE
2251 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2252 { \
2253 fputs ("\t.lglobl\t.", FILE); \
2254 RS6000_OUTPUT_BASENAME (FILE, alias); \
2255 putc ('\n', FILE); \
2256 fputs ("\t.lglobl\t", FILE); \
2257 RS6000_OUTPUT_BASENAME (FILE, alias); \
2258 putc ('\n', FILE); \
2259 } \
79c4e63f
AM
2260 } \
2261 fputs ("\t.set\t.", FILE); \
cbaaba19 2262 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2263 fputs (",.", FILE); \
cbaaba19 2264 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2265 fputc ('\n', FILE); \
2266 } \
2267 ASM_OUTPUT_DEF (FILE, alias, name); \
2268 } \
2269 while (0)
290ad355 2270
1bc7c5b6
ZW
2271#define TARGET_ASM_FILE_START rs6000_file_start
2272
f045b2c9
RS
2273/* Output to assembler file text saying following lines
2274 may contain character constants, extra white space, comments, etc. */
2275
2276#define ASM_APP_ON ""
2277
2278/* Output to assembler file text saying following lines
2279 no longer contain unusual constructs. */
2280
2281#define ASM_APP_OFF ""
2282
f045b2c9
RS
2283/* How to refer to registers in assembler output.
2284 This sequence is indexed by compiler's hard-register-number (see above). */
2285
82e41834 2286extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2287
2288#define REGISTER_NAMES \
2289{ \
2290 &rs6000_reg_names[ 0][0], /* r0 */ \
2291 &rs6000_reg_names[ 1][0], /* r1 */ \
2292 &rs6000_reg_names[ 2][0], /* r2 */ \
2293 &rs6000_reg_names[ 3][0], /* r3 */ \
2294 &rs6000_reg_names[ 4][0], /* r4 */ \
2295 &rs6000_reg_names[ 5][0], /* r5 */ \
2296 &rs6000_reg_names[ 6][0], /* r6 */ \
2297 &rs6000_reg_names[ 7][0], /* r7 */ \
2298 &rs6000_reg_names[ 8][0], /* r8 */ \
2299 &rs6000_reg_names[ 9][0], /* r9 */ \
2300 &rs6000_reg_names[10][0], /* r10 */ \
2301 &rs6000_reg_names[11][0], /* r11 */ \
2302 &rs6000_reg_names[12][0], /* r12 */ \
2303 &rs6000_reg_names[13][0], /* r13 */ \
2304 &rs6000_reg_names[14][0], /* r14 */ \
2305 &rs6000_reg_names[15][0], /* r15 */ \
2306 &rs6000_reg_names[16][0], /* r16 */ \
2307 &rs6000_reg_names[17][0], /* r17 */ \
2308 &rs6000_reg_names[18][0], /* r18 */ \
2309 &rs6000_reg_names[19][0], /* r19 */ \
2310 &rs6000_reg_names[20][0], /* r20 */ \
2311 &rs6000_reg_names[21][0], /* r21 */ \
2312 &rs6000_reg_names[22][0], /* r22 */ \
2313 &rs6000_reg_names[23][0], /* r23 */ \
2314 &rs6000_reg_names[24][0], /* r24 */ \
2315 &rs6000_reg_names[25][0], /* r25 */ \
2316 &rs6000_reg_names[26][0], /* r26 */ \
2317 &rs6000_reg_names[27][0], /* r27 */ \
2318 &rs6000_reg_names[28][0], /* r28 */ \
2319 &rs6000_reg_names[29][0], /* r29 */ \
2320 &rs6000_reg_names[30][0], /* r30 */ \
2321 &rs6000_reg_names[31][0], /* r31 */ \
2322 \
2323 &rs6000_reg_names[32][0], /* fr0 */ \
2324 &rs6000_reg_names[33][0], /* fr1 */ \
2325 &rs6000_reg_names[34][0], /* fr2 */ \
2326 &rs6000_reg_names[35][0], /* fr3 */ \
2327 &rs6000_reg_names[36][0], /* fr4 */ \
2328 &rs6000_reg_names[37][0], /* fr5 */ \
2329 &rs6000_reg_names[38][0], /* fr6 */ \
2330 &rs6000_reg_names[39][0], /* fr7 */ \
2331 &rs6000_reg_names[40][0], /* fr8 */ \
2332 &rs6000_reg_names[41][0], /* fr9 */ \
2333 &rs6000_reg_names[42][0], /* fr10 */ \
2334 &rs6000_reg_names[43][0], /* fr11 */ \
2335 &rs6000_reg_names[44][0], /* fr12 */ \
2336 &rs6000_reg_names[45][0], /* fr13 */ \
2337 &rs6000_reg_names[46][0], /* fr14 */ \
2338 &rs6000_reg_names[47][0], /* fr15 */ \
2339 &rs6000_reg_names[48][0], /* fr16 */ \
2340 &rs6000_reg_names[49][0], /* fr17 */ \
2341 &rs6000_reg_names[50][0], /* fr18 */ \
2342 &rs6000_reg_names[51][0], /* fr19 */ \
2343 &rs6000_reg_names[52][0], /* fr20 */ \
2344 &rs6000_reg_names[53][0], /* fr21 */ \
2345 &rs6000_reg_names[54][0], /* fr22 */ \
2346 &rs6000_reg_names[55][0], /* fr23 */ \
2347 &rs6000_reg_names[56][0], /* fr24 */ \
2348 &rs6000_reg_names[57][0], /* fr25 */ \
2349 &rs6000_reg_names[58][0], /* fr26 */ \
2350 &rs6000_reg_names[59][0], /* fr27 */ \
2351 &rs6000_reg_names[60][0], /* fr28 */ \
2352 &rs6000_reg_names[61][0], /* fr29 */ \
2353 &rs6000_reg_names[62][0], /* fr30 */ \
2354 &rs6000_reg_names[63][0], /* fr31 */ \
2355 \
462f7901 2356 &rs6000_reg_names[64][0], /* was mq */ \
c81bebd7
MM
2357 &rs6000_reg_names[65][0], /* lr */ \
2358 &rs6000_reg_names[66][0], /* ctr */ \
2359 &rs6000_reg_names[67][0], /* ap */ \
2360 \
2361 &rs6000_reg_names[68][0], /* cr0 */ \
2362 &rs6000_reg_names[69][0], /* cr1 */ \
2363 &rs6000_reg_names[70][0], /* cr2 */ \
2364 &rs6000_reg_names[71][0], /* cr3 */ \
2365 &rs6000_reg_names[72][0], /* cr4 */ \
2366 &rs6000_reg_names[73][0], /* cr5 */ \
2367 &rs6000_reg_names[74][0], /* cr6 */ \
2368 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2369 \
f6b5d695 2370 &rs6000_reg_names[76][0], /* ca */ \
0ac081f6
AH
2371 \
2372 &rs6000_reg_names[77][0], /* v0 */ \
2373 &rs6000_reg_names[78][0], /* v1 */ \
2374 &rs6000_reg_names[79][0], /* v2 */ \
2375 &rs6000_reg_names[80][0], /* v3 */ \
2376 &rs6000_reg_names[81][0], /* v4 */ \
2377 &rs6000_reg_names[82][0], /* v5 */ \
2378 &rs6000_reg_names[83][0], /* v6 */ \
2379 &rs6000_reg_names[84][0], /* v7 */ \
2380 &rs6000_reg_names[85][0], /* v8 */ \
2381 &rs6000_reg_names[86][0], /* v9 */ \
2382 &rs6000_reg_names[87][0], /* v10 */ \
2383 &rs6000_reg_names[88][0], /* v11 */ \
2384 &rs6000_reg_names[89][0], /* v12 */ \
2385 &rs6000_reg_names[90][0], /* v13 */ \
2386 &rs6000_reg_names[91][0], /* v14 */ \
2387 &rs6000_reg_names[92][0], /* v15 */ \
2388 &rs6000_reg_names[93][0], /* v16 */ \
2389 &rs6000_reg_names[94][0], /* v17 */ \
2390 &rs6000_reg_names[95][0], /* v18 */ \
2391 &rs6000_reg_names[96][0], /* v19 */ \
2392 &rs6000_reg_names[97][0], /* v20 */ \
2393 &rs6000_reg_names[98][0], /* v21 */ \
2394 &rs6000_reg_names[99][0], /* v22 */ \
2395 &rs6000_reg_names[100][0], /* v23 */ \
2396 &rs6000_reg_names[101][0], /* v24 */ \
2397 &rs6000_reg_names[102][0], /* v25 */ \
2398 &rs6000_reg_names[103][0], /* v26 */ \
2399 &rs6000_reg_names[104][0], /* v27 */ \
2400 &rs6000_reg_names[105][0], /* v28 */ \
2401 &rs6000_reg_names[106][0], /* v29 */ \
2402 &rs6000_reg_names[107][0], /* v30 */ \
2403 &rs6000_reg_names[108][0], /* v31 */ \
2404 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2405 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2406 &rs6000_reg_names[111][0], /* spe_acc */ \
2407 &rs6000_reg_names[112][0], /* spefscr */ \
7d5175e1 2408 &rs6000_reg_names[113][0], /* sfp */ \
0258b6e4
PB
2409 &rs6000_reg_names[114][0], /* tfhar */ \
2410 &rs6000_reg_names[115][0], /* tfiar */ \
2411 &rs6000_reg_names[116][0], /* texasr */ \
23742a9e
RAR
2412 \
2413 &rs6000_reg_names[117][0], /* SPE rh0. */ \
2414 &rs6000_reg_names[118][0], /* SPE rh1. */ \
2415 &rs6000_reg_names[119][0], /* SPE rh2. */ \
2416 &rs6000_reg_names[120][0], /* SPE rh3. */ \
2417 &rs6000_reg_names[121][0], /* SPE rh4. */ \
2418 &rs6000_reg_names[122][0], /* SPE rh5. */ \
2419 &rs6000_reg_names[123][0], /* SPE rh6. */ \
2420 &rs6000_reg_names[124][0], /* SPE rh7. */ \
2421 &rs6000_reg_names[125][0], /* SPE rh8. */ \
2422 &rs6000_reg_names[126][0], /* SPE rh9. */ \
2423 &rs6000_reg_names[127][0], /* SPE rh10. */ \
2424 &rs6000_reg_names[128][0], /* SPE rh11. */ \
2425 &rs6000_reg_names[129][0], /* SPE rh12. */ \
2426 &rs6000_reg_names[130][0], /* SPE rh13. */ \
2427 &rs6000_reg_names[131][0], /* SPE rh14. */ \
2428 &rs6000_reg_names[132][0], /* SPE rh15. */ \
2429 &rs6000_reg_names[133][0], /* SPE rh16. */ \
2430 &rs6000_reg_names[134][0], /* SPE rh17. */ \
2431 &rs6000_reg_names[135][0], /* SPE rh18. */ \
2432 &rs6000_reg_names[136][0], /* SPE rh19. */ \
2433 &rs6000_reg_names[137][0], /* SPE rh20. */ \
2434 &rs6000_reg_names[138][0], /* SPE rh21. */ \
2435 &rs6000_reg_names[139][0], /* SPE rh22. */ \
2436 &rs6000_reg_names[140][0], /* SPE rh22. */ \
2437 &rs6000_reg_names[141][0], /* SPE rh24. */ \
2438 &rs6000_reg_names[142][0], /* SPE rh25. */ \
2439 &rs6000_reg_names[143][0], /* SPE rh26. */ \
2440 &rs6000_reg_names[144][0], /* SPE rh27. */ \
2441 &rs6000_reg_names[145][0], /* SPE rh28. */ \
2442 &rs6000_reg_names[146][0], /* SPE rh29. */ \
2443 &rs6000_reg_names[147][0], /* SPE rh30. */ \
2444 &rs6000_reg_names[148][0], /* SPE rh31. */ \
c81bebd7
MM
2445}
2446
f045b2c9
RS
2447/* Table of additional register names to use in user input. */
2448
2449#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2450 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2451 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2452 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2453 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2454 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2455 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2456 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2457 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2458 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2459 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2460 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2461 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2462 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2463 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2464 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2465 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2466 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2467 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2468 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2469 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2470 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2471 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2472 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2473 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2474 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2475 {"spe_acc", 111}, {"spefscr", 112}, \
462f7901 2476 /* no additional names for: lr, ctr, ap */ \
c4d38ccb
MM
2477 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2478 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
cacf1ca8 2479 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
f6b5d695
SB
2480 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2481 {"xer", 76}, \
cacf1ca8
MM
2482 /* VSX registers overlaid on top of FR, Altivec registers */ \
2483 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2484 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2485 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2486 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2487 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2488 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2489 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2490 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2491 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2492 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2493 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2494 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2495 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2496 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2497 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
0258b6e4
PB
2498 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2499 /* Transactional Memory Facility (HTM) Registers. */ \
23742a9e
RAR
2500 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116}, \
2501 /* SPE high registers. */ \
2502 {"rh0", 117}, {"rh1", 118}, {"rh2", 119}, {"rh3", 120}, \
2503 {"rh4", 121}, {"rh5", 122}, {"rh6", 123}, {"rh7", 124}, \
2504 {"rh8", 125}, {"rh9", 126}, {"rh10", 127}, {"rh11", 128}, \
2505 {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132}, \
2506 {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136}, \
2507 {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140}, \
2508 {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144}, \
2509 {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148}, \
2510}
f045b2c9 2511
f045b2c9
RS
2512/* This is how to output an element of a case-vector that is relative. */
2513
e1565e65 2514#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2515 do { char buf[100]; \
e1565e65 2516 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2517 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2518 assemble_name (FILE, buf); \
19d2d16f 2519 putc ('-', FILE); \
3daf36a4
ILT
2520 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2521 assemble_name (FILE, buf); \
19d2d16f 2522 putc ('\n', FILE); \
3daf36a4 2523 } while (0)
f045b2c9
RS
2524
2525/* This is how to output an assembler line
2526 that says to advance the location counter
2527 to a multiple of 2**LOG bytes. */
2528
2529#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2530 if ((LOG) != 0) \
2531 fprintf (FILE, "\t.align %d\n", (LOG))
2532
58082ff6
PH
2533/* How to align the given loop. */
2534#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2535
d28073d4
BS
2536/* Alignment guaranteed by __builtin_malloc. */
2537/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2538 However, specifying the stronger guarantee currently leads to
2539 a regression in SPEC CPU2006 437.leslie3d. The stronger
2540 guarantee should be implemented here once that's fixed. */
2541#define MALLOC_ABI_ALIGNMENT (64)
2542
9ebbca7d
GK
2543/* Pick up the return address upon entry to a procedure. Used for
2544 dwarf2 unwind information. This also enables the table driven
2545 mechanism. */
2546
1de43f85
DE
2547#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2548#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
9ebbca7d 2549
83720594
RH
2550/* Describe how we implement __builtin_eh_return. */
2551#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2552#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2553
f045b2c9
RS
2554/* Print operand X (an rtx) in assembler syntax to file FILE.
2555 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2556 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2557
2558#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2559
2560/* Define which CODE values are valid. */
2561
3cf437d4 2562#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
f045b2c9
RS
2563
2564/* Print a memory address as an operand to reference that memory location. */
2565
2566#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2567
c82846bc
DE
2568/* For switching between functions with different target attributes. */
2569#define SWITCHABLE_TARGET 1
2570
b6c9286a
MM
2571/* uncomment for disabling the corresponding default options */
2572/* #define MACHINE_no_sched_interblock */
2573/* #define MACHINE_no_sched_speculative */
2574/* #define MACHINE_no_sched_speculative_load */
2575
766a866c 2576/* General flags. */
a7df97e6 2577extern int frame_pointer_needed;
0ac081f6 2578
7fa14a01
MM
2579/* Classification of the builtin functions as to which switches enable the
2580 builtin, and what attributes it should have. We used to use the target
2581 flags macros, but we've run out of bits, so we now map the options into new
2582 settings used here. */
2583
2584/* Builtin attributes. */
2585#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2586#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2587#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2588#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2589#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2590#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2591#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2592#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2593#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2594
2595#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2596#define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
2597#define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
2598#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2599#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2600
2601/* Miscellaneous information. */
0258b6e4
PB
2602#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2603#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
01f61a78
PB
2604#define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2605#define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
0258b6e4 2606#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
1c9df37c
MM
2607
2608/* Convenience macros to document the instruction type. */
7fa14a01
MM
2609#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2610#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2611
2612/* Builtin targets. For now, we reuse the masks for those options that are in
8241efd1
PB
2613 target flags, and pick three random bits for SPE, paired and ldbl128 which
2614 aren't in target_flags. */
4b705221 2615#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
7fa14a01
MM
2616#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2617#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
f62511da
MM
2618#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2619#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
0258b6e4 2620#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
7fa14a01
MM
2621#define RS6000_BTM_SPE MASK_STRING /* E500 */
2622#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2623#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2624#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2625#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2626#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2627#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
7fa14a01 2628#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
06b39289 2629#define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
f93bc5b3 2630#define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
8241efd1 2631#define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
7fa14a01
MM
2632
2633#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2634 | RS6000_BTM_VSX \
f62511da
MM
2635 | RS6000_BTM_P8_VECTOR \
2636 | RS6000_BTM_CRYPTO \
7fa14a01
MM
2637 | RS6000_BTM_FRE \
2638 | RS6000_BTM_FRES \
2639 | RS6000_BTM_FRSQRTE \
2640 | RS6000_BTM_FRSQRTES \
0258b6e4 2641 | RS6000_BTM_HTM \
7fa14a01 2642 | RS6000_BTM_POPCNTD \
06b39289 2643 | RS6000_BTM_CELL \
f93bc5b3 2644 | RS6000_BTM_DFP \
8241efd1
PB
2645 | RS6000_BTM_HARD_FLOAT \
2646 | RS6000_BTM_LDBL128)
7fa14a01
MM
2647
2648/* Define builtin enum index. */
2649
2650#undef RS6000_BUILTIN_1
2651#undef RS6000_BUILTIN_2
2652#undef RS6000_BUILTIN_3
2653#undef RS6000_BUILTIN_A
2654#undef RS6000_BUILTIN_D
2655#undef RS6000_BUILTIN_E
0258b6e4 2656#undef RS6000_BUILTIN_H
7fa14a01
MM
2657#undef RS6000_BUILTIN_P
2658#undef RS6000_BUILTIN_Q
2659#undef RS6000_BUILTIN_S
2660#undef RS6000_BUILTIN_X
2661
2662#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2663#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2664#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2665#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2666#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2667#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
0258b6e4 2668#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2669#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2670#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2671#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2672#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
1c9df37c 2673
0ac081f6
AH
2674enum rs6000_builtins
2675{
1c9df37c 2676#include "rs6000-builtin.def"
a72c65c7 2677
58646b77
PB
2678 RS6000_BUILTIN_COUNT
2679};
2680
7fa14a01
MM
2681#undef RS6000_BUILTIN_1
2682#undef RS6000_BUILTIN_2
2683#undef RS6000_BUILTIN_3
2684#undef RS6000_BUILTIN_A
2685#undef RS6000_BUILTIN_D
2686#undef RS6000_BUILTIN_E
0258b6e4 2687#undef RS6000_BUILTIN_H
7fa14a01
MM
2688#undef RS6000_BUILTIN_P
2689#undef RS6000_BUILTIN_Q
2690#undef RS6000_BUILTIN_S
2691#undef RS6000_BUILTIN_X
1c9df37c 2692
58646b77
PB
2693enum rs6000_builtin_type_index
2694{
2695 RS6000_BTI_NOT_OPAQUE,
2696 RS6000_BTI_opaque_V2SI,
2697 RS6000_BTI_opaque_V2SF,
2698 RS6000_BTI_opaque_p_V2SI,
2699 RS6000_BTI_opaque_V4SI,
2700 RS6000_BTI_V16QI,
a16a872d 2701 RS6000_BTI_V1TI,
58646b77
PB
2702 RS6000_BTI_V2SI,
2703 RS6000_BTI_V2SF,
a72c65c7
MM
2704 RS6000_BTI_V2DI,
2705 RS6000_BTI_V2DF,
58646b77
PB
2706 RS6000_BTI_V4HI,
2707 RS6000_BTI_V4SI,
2708 RS6000_BTI_V4SF,
2709 RS6000_BTI_V8HI,
2710 RS6000_BTI_unsigned_V16QI,
a16a872d 2711 RS6000_BTI_unsigned_V1TI,
58646b77
PB
2712 RS6000_BTI_unsigned_V8HI,
2713 RS6000_BTI_unsigned_V4SI,
a72c65c7 2714 RS6000_BTI_unsigned_V2DI,
58646b77
PB
2715 RS6000_BTI_bool_char, /* __bool char */
2716 RS6000_BTI_bool_short, /* __bool short */
2717 RS6000_BTI_bool_int, /* __bool int */
a72c65c7 2718 RS6000_BTI_bool_long, /* __bool long */
58646b77
PB
2719 RS6000_BTI_pixel, /* __pixel */
2720 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2721 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2722 RS6000_BTI_bool_V4SI, /* __vector __bool int */
a72c65c7 2723 RS6000_BTI_bool_V2DI, /* __vector __bool long */
58646b77
PB
2724 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2725 RS6000_BTI_long, /* long_integer_type_node */
2726 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
c9485473
MM
2727 RS6000_BTI_long_long, /* long_long_integer_type_node */
2728 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
58646b77
PB
2729 RS6000_BTI_INTQI, /* intQI_type_node */
2730 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2731 RS6000_BTI_INTHI, /* intHI_type_node */
2732 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2733 RS6000_BTI_INTSI, /* intSI_type_node */
2734 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
a72c65c7
MM
2735 RS6000_BTI_INTDI, /* intDI_type_node */
2736 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
a16a872d
MM
2737 RS6000_BTI_INTTI, /* intTI_type_node */
2738 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
58646b77 2739 RS6000_BTI_float, /* float_type_node */
a72c65c7 2740 RS6000_BTI_double, /* double_type_node */
06b39289
MM
2741 RS6000_BTI_long_double, /* long_double_type_node */
2742 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2743 RS6000_BTI_dfloat128, /* dfloat128_type_node */
58646b77 2744 RS6000_BTI_void, /* void_type_node */
6712d6fd
MM
2745 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2746 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
58646b77 2747 RS6000_BTI_MAX
0ac081f6 2748};
58646b77
PB
2749
2750
2751#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2752#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2753#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2754#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2755#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
a16a872d 2756#define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
a72c65c7
MM
2757#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2758#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
58646b77
PB
2759#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2760#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2761#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2762#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2763#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2764#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2765#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
a16a872d 2766#define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
58646b77
PB
2767#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2768#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
a72c65c7 2769#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
58646b77
PB
2770#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2771#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2772#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
a72c65c7 2773#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
58646b77
PB
2774#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2775#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2776#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2777#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
a72c65c7 2778#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
58646b77
PB
2779#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2780
c9485473
MM
2781#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2782#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
58646b77
PB
2783#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2784#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2785#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2786#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2787#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2788#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2789#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2790#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
a72c65c7
MM
2791#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2792#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
a16a872d
MM
2793#define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2794#define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
58646b77 2795#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
a72c65c7 2796#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
06b39289
MM
2797#define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2798#define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2799#define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
58646b77 2800#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
6712d6fd
MM
2801#define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2802#define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
58646b77
PB
2803
2804extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2805extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2806
807e902e 2807#define TARGET_SUPPORTS_WIDE_INT 1