]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/rs6000/rs6000.h
re PR target/49244 (__sync or __atomic builtins will not emit 'lock bts/btr/btc')
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
818ab71a 2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 4
5de601cf 5 This file is part of GCC.
f045b2c9 6
5de601cf
NC
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
5de601cf 10 option) any later version.
f045b2c9 11
5de601cf
NC
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f045b2c9 16
748086b7
JJ
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 24 <http://www.gnu.org/licenses/>. */
f045b2c9
RS
25
26/* Note that some other tm.h files include this one and then override
9ebbca7d 27 many of the definitions. */
f045b2c9 28
fd438373
MM
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
9ebbca7d
GK
33/* Definitions for the object file format. These are set at
34 compile-time. */
f045b2c9 35
9ebbca7d
GK
36#define OBJECT_XCOFF 1
37#define OBJECT_ELF 2
38#define OBJECT_PEF 3
ee890fe2 39#define OBJECT_MACHO 4
f045b2c9 40
9ebbca7d 41#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 42#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 43#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 44#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 45
2bfcf297
DB
46#ifndef TARGET_AIX
47#define TARGET_AIX 0
48#endif
49
78009d9f
MM
50#ifndef TARGET_AIX_OS
51#define TARGET_AIX_OS 0
52#endif
53
85b776df
AM
54/* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56#define DOT_SYMBOLS 1
57
8e3f41e7
MM
58/* Default string to use for cpu if not specified. */
59#ifndef TARGET_CPU_DEFAULT
60#define TARGET_CPU_DEFAULT ((char *)0)
61#endif
62
f565b0a1 63/* If configured for PPC405, support PPC405CR Erratum77. */
b0bfee6e 64#ifdef CONFIG_PPC405CR
f565b0a1
DE
65#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66#else
67#define PPC405_ERRATUM77 0
68#endif
69
96038623
DE
70#ifndef TARGET_PAIRED_FLOAT
71#define TARGET_PAIRED_FLOAT 0
72#endif
73
cd679487
BE
74#ifdef HAVE_AS_POPCNTB
75#define ASM_CPU_POWER5_SPEC "-mpower5"
76#else
77#define ASM_CPU_POWER5_SPEC "-mpower4"
78#endif
79
80#ifdef HAVE_AS_DFP
81#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82#else
83#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84#endif
85
cacf1ca8 86#ifdef HAVE_AS_POPCNTD
d40c9e33
PB
87#define ASM_CPU_POWER7_SPEC "-mpower7"
88#else
89#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90#endif
91
428bffcb
PB
92#ifdef HAVE_AS_POWER8
93#define ASM_CPU_POWER8_SPEC "-mpower8"
94#else
f62511da 95#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
428bffcb
PB
96#endif
97
d1f0d376
MM
98#ifdef HAVE_AS_POWER9
99#define ASM_CPU_POWER9_SPEC "-mpower9"
100#else
101#define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102#endif
103
47f67e51
PB
104#ifdef HAVE_AS_DCI
105#define ASM_CPU_476_SPEC "-m476"
106#else
107#define ASM_CPU_476_SPEC "-mpower4"
108#endif
109
cacf1ca8
MM
110/* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
f984d8df
DB
114#define ASM_CPU_SPEC \
115"%{!mcpu*: \
93ae5495 116 %{mpowerpc64*: -mppc64} \
a441dedb 117 %{!mpowerpc64*: %(asm_default)}} \
cacf1ca8 118%{mcpu=native: %(asm_cpu_native)} \
d296e02e 119%{mcpu=cell: -mcell} \
93ae5495 120%{mcpu=power3: -mppc64} \
957e9e48 121%{mcpu=power4: -mpower4} \
cd679487
BE
122%{mcpu=power5: %(asm_cpu_power5)} \
123%{mcpu=power5+: %(asm_cpu_power5)} \
124%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
d40c9e33 126%{mcpu=power7: %(asm_cpu_power7)} \
428bffcb 127%{mcpu=power8: %(asm_cpu_power8)} \
d1f0d376 128%{mcpu=power9: %(asm_cpu_power9)} \
ebde32fd 129%{mcpu=a2: -ma2} \
f984d8df 130%{mcpu=powerpc: -mppc} \
fa17b3db 131%{mcpu=powerpc64le: %(asm_cpu_power8)} \
93ae5495 132%{mcpu=rs64a: -mppc64} \
f984d8df 133%{mcpu=401: -mppc} \
61a8515c
JS
134%{mcpu=403: -m403} \
135%{mcpu=405: -m405} \
2c9d95ef
DE
136%{mcpu=405fp: -m405} \
137%{mcpu=440: -m440} \
138%{mcpu=440fp: -m440} \
4adf8008
PB
139%{mcpu=464: -m440} \
140%{mcpu=464fp: -m440} \
47f67e51
PB
141%{mcpu=476: %(asm_cpu_476)} \
142%{mcpu=476fp: %(asm_cpu_476)} \
f984d8df
DB
143%{mcpu=505: -mppc} \
144%{mcpu=601: -m601} \
145%{mcpu=602: -mppc} \
146%{mcpu=603: -mppc} \
147%{mcpu=603e: -mppc} \
148%{mcpu=ec603e: -mppc} \
149%{mcpu=604: -mppc} \
150%{mcpu=604e: -mppc} \
93ae5495
AM
151%{mcpu=620: -mppc64} \
152%{mcpu=630: -mppc64} \
f984d8df
DB
153%{mcpu=740: -mppc} \
154%{mcpu=750: -mppc} \
49ffe578 155%{mcpu=G3: -mppc} \
93ae5495
AM
156%{mcpu=7400: -mppc -maltivec} \
157%{mcpu=7450: -mppc -maltivec} \
158%{mcpu=G4: -mppc -maltivec} \
f984d8df
DB
159%{mcpu=801: -mppc} \
160%{mcpu=821: -mppc} \
161%{mcpu=823: -mppc} \
775db490 162%{mcpu=860: -mppc} \
93ae5495
AM
163%{mcpu=970: -mpower4 -maltivec} \
164%{mcpu=G5: -mpower4 -maltivec} \
a3170dc6 165%{mcpu=8540: -me500} \
5ca0373f 166%{mcpu=8548: -me500} \
fa41c305
EW
167%{mcpu=e300c2: -me300} \
168%{mcpu=e300c3: -me300} \
edae5fe3 169%{mcpu=e500mc: -me500mc} \
b17f98b1 170%{mcpu=e500mc64: -me500mc64} \
683ed19e
EW
171%{mcpu=e5500: -me5500} \
172%{mcpu=e6500: -me6500} \
93ae5495 173%{maltivec: -maltivec} \
2c9ccc21 174%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
0258b6e4 175%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
93ae5495 176-many"
f984d8df
DB
177
178#define CPP_DEFAULT_SPEC ""
179
180#define ASM_DEFAULT_SPEC ""
181
841faeed
MM
182/* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
5de601cf 187 specification name, and a string constant that used by the GCC driver
841faeed
MM
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
7509c759 192#define SUBTARGET_EXTRA_SPECS
7509c759 193
c81bebd7 194#define EXTRA_SPECS \
c81bebd7 195 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7 196 { "asm_cpu", ASM_CPU_SPEC }, \
cacf1ca8 197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
c81bebd7 198 { "asm_default", ASM_DEFAULT_SPEC }, \
0eab6840 199 { "cc1_cpu", CC1_CPU_SPEC }, \
cd679487
BE
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
d40c9e33 202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
428bffcb 203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
d1f0d376 204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
47f67e51 205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
7509c759
MM
206 SUBTARGET_EXTRA_SPECS
207
0eab6840
DE
208/* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212/* In driver-rs6000.c. */
213extern const char *host_detect_local_cpu (int argc, const char **argv);
214#define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216#define HAVE_LOCAL_CPU_DETECT
cacf1ca8
MM
217#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219#else
220#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
0eab6840
DE
221#endif
222
ee7caeb3
DE
223#ifndef CC1_CPU_SPEC
224#ifdef HAVE_LOCAL_CPU_DETECT
0eab6840
DE
225#define CC1_CPU_SPEC \
226"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
ee7caeb3
DE
228#else
229#define CC1_CPU_SPEC ""
230#endif
0eab6840
DE
231#endif
232
fb623df5 233/* Architecture type. */
f045b2c9 234
bb22512c 235/* Define TARGET_MFCRF if the target assembler does not support the
78f5898b 236 optional field operand for mfcr. */
fb623df5 237
78f5898b 238#ifndef HAVE_AS_MFCRF
432218ba 239#undef TARGET_MFCRF
ffa22984
DE
240#define TARGET_MFCRF 0
241#endif
242
0fa2e4df 243/* Define TARGET_POPCNTB if the target assembler does not support the
432218ba
DE
244 popcount byte instruction. */
245
246#ifndef HAVE_AS_POPCNTB
247#undef TARGET_POPCNTB
248#define TARGET_POPCNTB 0
249#endif
250
9719f3b7
DE
251/* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254#ifndef HAVE_AS_FPRND
255#undef TARGET_FPRND
256#define TARGET_FPRND 0
257#endif
258
b639c3c2
JJ
259/* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262#ifndef HAVE_AS_CMPB
263#undef TARGET_CMPB
264#define TARGET_CMPB 0
265#endif
266
44cd321e
PS
267/* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270#ifndef HAVE_AS_MFPGPR
271#undef TARGET_MFPGPR
272#define TARGET_MFPGPR 0
273#endif
274
b639c3c2
JJ
275/* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277#ifndef HAVE_AS_DFP
278#undef TARGET_DFP
279#define TARGET_DFP 0
280#endif
281
cacf1ca8
MM
282/* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285#ifndef HAVE_AS_POPCNTD
286#undef TARGET_POPCNTD
287#define TARGET_POPCNTD 0
288#endif
289
f62511da
MM
290/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294#ifndef HAVE_AS_POWER8
295#undef TARGET_DIRECT_MOVE
296#undef TARGET_CRYPTO
0258b6e4 297#undef TARGET_HTM
f62511da
MM
298#undef TARGET_P8_VECTOR
299#define TARGET_DIRECT_MOVE 0
300#define TARGET_CRYPTO 0
0258b6e4 301#define TARGET_HTM 0
f62511da
MM
302#define TARGET_P8_VECTOR 0
303#endif
304
cacf1ca8
MM
305/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
306 not, generate the lwsync code as an integer constant. */
307#ifdef HAVE_AS_LWSYNC
308#define TARGET_LWSYNC_INSTRUCTION 1
309#else
310#define TARGET_LWSYNC_INSTRUCTION 0
311#endif
312
9752c4ad
AM
313/* Define TARGET_TLS_MARKERS if the target assembler does not support
314 arg markers for __tls_get_addr calls. */
315#ifndef HAVE_AS_TLS_MARKERS
316#undef TARGET_TLS_MARKERS
317#define TARGET_TLS_MARKERS 0
318#else
319#define TARGET_TLS_MARKERS tls_markers
320#endif
321
7f970b70
AM
322#ifndef TARGET_SECURE_PLT
323#define TARGET_SECURE_PLT 0
324#endif
325
070b27da
AM
326#ifndef TARGET_CMODEL
327#define TARGET_CMODEL CMODEL_SMALL
328#endif
329
2f3e5814 330#define TARGET_32BIT (! TARGET_64BIT)
d14a6d05 331
c4501e62
JJ
332#ifndef HAVE_AS_TLS
333#define HAVE_AS_TLS 0
334#endif
335
be26142a
PB
336#ifndef TARGET_LINK_STACK
337#define TARGET_LINK_STACK 0
338#endif
339
340#ifndef SET_TARGET_LINK_STACK
341#define SET_TARGET_LINK_STACK(X) do { } while (0)
342#endif
343
48d72335
DE
344/* Return 1 for a symbol ref for a thread-local storage symbol. */
345#define RS6000_SYMBOL_REF_TLS_P(RTX) \
346 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
347
996ed075
JJ
348#ifdef IN_LIBGCC2
349/* For libgcc2 we make sure this is a compile time constant */
67796c1f 350#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
78f5898b 351#undef TARGET_POWERPC64
996ed075
JJ
352#define TARGET_POWERPC64 1
353#else
78f5898b 354#undef TARGET_POWERPC64
996ed075
JJ
355#define TARGET_POWERPC64 0
356#endif
b6c9286a 357#else
78f5898b 358 /* The option machinery will define this. */
b6c9286a
MM
359#endif
360
c28a7c24 361#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
9ebbca7d 362
696e45ba
ME
363/* FPU operations supported.
364 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
365 also test TARGET_HARD_FLOAT. */
366#define TARGET_SINGLE_FLOAT 1
367#define TARGET_DOUBLE_FLOAT 1
368#define TARGET_SINGLE_FPU 0
369#define TARGET_SIMPLE_FPU 0
0bb7b92e 370#define TARGET_XILINX_FPU 0
696e45ba 371
fb623df5
RK
372/* Recast the processor type to the cpu attribute. */
373#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
374
8482e358 375/* Define generic processor types based upon current deployment. */
3cb999d8 376#define PROCESSOR_COMMON PROCESSOR_PPC601
3cb999d8
DE
377#define PROCESSOR_POWERPC PROCESSOR_PPC604
378#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 379
fb623df5 380/* Define the default processor. This is overridden by other tm.h files. */
f3061fa4 381#define PROCESSOR_DEFAULT PROCESSOR_PPC603
3cb999d8 382#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 383
59ac9a55
JJ
384/* Specify the dialect of assembler to use. Only new mnemonics are supported
385 starting with GCC 4.8, i.e. just one dialect, but for backwards
386 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
387 defined. */
388#define ASSEMBLER_DIALECT 1
389
38c1f2d7 390/* Debug support */
fd438373
MM
391#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
392#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
393#define MASK_DEBUG_REG 0x04 /* debug register handling */
394#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
395#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
396#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
7fa14a01 397#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
fd438373
MM
398#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
399 | MASK_DEBUG_ARG \
400 | MASK_DEBUG_REG \
401 | MASK_DEBUG_ADDR \
402 | MASK_DEBUG_COST \
7fa14a01
MM
403 | MASK_DEBUG_TARGET \
404 | MASK_DEBUG_BUILTIN)
fd438373
MM
405
406#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
407#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
408#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
409#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
410#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
411#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
7fa14a01 412#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
cacf1ca8 413
2c83faf8
MM
414/* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
415 long double format that uses a pair of doubles, or IEEE 128-bit floating
416 point. KFmode was added as a way to represent IEEE 128-bit floating point,
417 even if the default for long double is the IBM long double format.
418 Similarly IFmode is the IBM long double format even if the default is IEEE
419 128-bit. */
420#define FLOAT128_IEEE_P(MODE) \
421 (((MODE) == TFmode && TARGET_IEEEQUAD) \
422 || ((MODE) == KFmode))
423
424#define FLOAT128_IBM_P(MODE) \
425 (((MODE) == TFmode && !TARGET_IEEEQUAD) \
426 || ((MODE) == IFmode))
427
428/* Helper macros to say whether a 128-bit floating point type can go in a
429 single vector register, or whether it needs paired scalar values. */
430#define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128 && FLOAT128_IEEE_P (MODE))
431
432#define FLOAT128_2REG_P(MODE) \
433 (FLOAT128_IBM_P (MODE) \
434 || ((MODE) == TDmode) \
435 || (!TARGET_FLOAT128 && FLOAT128_IEEE_P (MODE)))
436
437/* Return true for floating point that does not use a vector register. */
438#define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
439 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
440
f62511da 441/* Describe the vector unit used for arithmetic operations. */
cacf1ca8
MM
442extern enum rs6000_vector rs6000_vector_unit[];
443
444#define VECTOR_UNIT_NONE_P(MODE) \
445 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
446
447#define VECTOR_UNIT_VSX_P(MODE) \
448 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
449
f62511da
MM
450#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
451 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
452
cacf1ca8
MM
453#define VECTOR_UNIT_ALTIVEC_P(MODE) \
454 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
455
f62511da
MM
456#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
457 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
458 (int)VECTOR_VSX, \
459 (int)VECTOR_P8_VECTOR))
460
461/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
462 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
463 compatible, so allow it as well, rather than changing all of the uses of the
464 macro. */
cacf1ca8 465#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
466 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
467 (int)VECTOR_ALTIVEC, \
468 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
469
470/* Describe whether to use VSX loads or Altivec loads. For now, just use the
471 same unit as the vector unit we are using, but we may want to migrate to
472 using VSX style loads even for types handled by altivec. */
473extern enum rs6000_vector rs6000_vector_mem[];
474
475#define VECTOR_MEM_NONE_P(MODE) \
476 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
477
478#define VECTOR_MEM_VSX_P(MODE) \
479 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
480
f62511da
MM
481#define VECTOR_MEM_P8_VECTOR_P(MODE) \
482 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
483
cacf1ca8
MM
484#define VECTOR_MEM_ALTIVEC_P(MODE) \
485 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
486
f62511da
MM
487#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
488 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
489 (int)VECTOR_VSX, \
490 (int)VECTOR_P8_VECTOR))
491
cacf1ca8 492#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
f62511da
MM
493 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
494 (int)VECTOR_ALTIVEC, \
495 (int)VECTOR_P8_VECTOR))
cacf1ca8
MM
496
497/* Return the alignment of a given vector type, which is set based on the
498 vector unit use. VSX for instance can load 32 or 64 bit aligned words
499 without problems, while Altivec requires 128-bit aligned vectors. */
500extern int rs6000_vector_align[];
501
502#define VECTOR_ALIGN(MODE) \
503 ((rs6000_vector_align[(MODE)] != 0) \
504 ? rs6000_vector_align[(MODE)] \
505 : (int)GET_MODE_BITSIZE ((MODE)))
506
6edc217d
BS
507/* Determine the element order to use for vector instructions. By
508 default we use big-endian element order when targeting big-endian,
509 and little-endian element order when targeting little-endian. For
510 programs being ported from BE Power to LE Power, it can sometimes
511 be useful to use big-endian element order when targeting little-endian.
512 This is set via -maltivec=be, for example. */
513#define VECTOR_ELT_ORDER_BIG \
514 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
515
117f16fb
MM
516/* Element number of the 64-bit value in a 128-bit vector that can be accessed
517 with scalar instructions. */
518#define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
519
dd551aa1
MM
520/* Element number of the 64-bit value in a 128-bit vector that can be accessed
521 with the ISA 3.0 MFVSRLD instructions. */
522#define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
523
025d9908
KH
524/* Alignment options for fields in structures for sub-targets following
525 AIX-like ABI.
526 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
527 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
528
529 Override the macro definitions when compiling libobjc to avoid undefined
530 reference to rs6000_alignment_flags due to library's use of GCC alignment
531 macros which use the macros below. */
f676971a 532
025d9908
KH
533#ifndef IN_TARGET_LIBS
534#define MASK_ALIGN_POWER 0x00000000
535#define MASK_ALIGN_NATURAL 0x00000001
536#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
537#else
538#define TARGET_ALIGN_NATURAL 0
539#endif
6fa3f289
ZW
540
541#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
602ea4d3 542#define TARGET_IEEEQUAD rs6000_ieeequad
6fa3f289 543#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
cacf1ca8 544#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
6fa3f289 545
a3170dc6
AH
546#define TARGET_SPE_ABI 0
547#define TARGET_SPE 0
cacf1ca8 548#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
a3170dc6 549#define TARGET_FPRS 1
4d4cbc0e
AH
550#define TARGET_E500_SINGLE 0
551#define TARGET_E500_DOUBLE 0
eca0d5e8 552#define CHECK_E500_OPTIONS do { } while (0)
a3170dc6 553
7042fe5e
MM
554/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
555 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
556 XILINX. */
c3f8384f
MM
557#define TARGET_FCFID (TARGET_POWERPC64 \
558 || TARGET_PPC_GPOPT /* 970/power4 */ \
559 || TARGET_POPCNTB /* ISA 2.02 */ \
560 || TARGET_CMPB /* ISA 2.05 */ \
561 || TARGET_POPCNTD /* ISA 2.06 */ \
7042fe5e
MM
562 || TARGET_XILINX_FPU)
563
564#define TARGET_FCTIDZ TARGET_FCFID
565#define TARGET_STFIWX TARGET_PPC_GFXOPT
566#define TARGET_LFIWAX TARGET_CMPB
567#define TARGET_LFIWZX TARGET_POPCNTD
568#define TARGET_FCFIDS TARGET_POPCNTD
569#define TARGET_FCFIDU TARGET_POPCNTD
570#define TARGET_FCFIDUS TARGET_POPCNTD
571#define TARGET_FCTIDUZ TARGET_POPCNTD
572#define TARGET_FCTIWUZ TARGET_POPCNTD
0299bc72
MM
573#define TARGET_CTZ TARGET_MODULO
574#define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
dd551aa1 575#define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
7042fe5e 576
f62511da
MM
577#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
578#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
a16a872d 579#define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
dd551aa1
MM
580#define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
581 && TARGET_POWERPC64)
f62511da
MM
582
583/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
584 in power7, so conditionalize them on p8 features. TImode syncs need quad
585 memory support. */
b846c948
MM
586#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
587 || TARGET_QUAD_MEMORY_ATOMIC \
588 || TARGET_DIRECT_MOVE)
589
590#define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
f62511da 591
c6d5ff83
MM
592/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
593 to allocate the SDmode stack slot to get the value into the proper location
594 in the register. */
595#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
596
4d967549
MM
597/* In switching from using target_flags to using rs6000_isa_flags, the options
598 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
599 OPTION_MASK_<xxx> back into MASK_<xxx>. */
600#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
601#define MASK_CMPB OPTION_MASK_CMPB
f62511da 602#define MASK_CRYPTO OPTION_MASK_CRYPTO
4d967549 603#define MASK_DFP OPTION_MASK_DFP
f62511da 604#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
4d967549
MM
605#define MASK_DLMZB OPTION_MASK_DLMZB
606#define MASK_EABI OPTION_MASK_EABI
607#define MASK_FPRND OPTION_MASK_FPRND
f62511da 608#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
4d967549 609#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
0258b6e4 610#define MASK_HTM OPTION_MASK_HTM
4d967549
MM
611#define MASK_ISEL OPTION_MASK_ISEL
612#define MASK_MFCRF OPTION_MASK_MFCRF
613#define MASK_MFPGPR OPTION_MASK_MFPGPR
614#define MASK_MULHW OPTION_MASK_MULHW
615#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
616#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
f62511da 617#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
8fa97501 618#define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
4d967549
MM
619#define MASK_POPCNTB OPTION_MASK_POPCNTB
620#define MASK_POPCNTD OPTION_MASK_POPCNTD
621#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
622#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
623#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
624#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
625#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
626#define MASK_STRING OPTION_MASK_STRING
627#define MASK_UPDATE OPTION_MASK_UPDATE
628#define MASK_VSX OPTION_MASK_VSX
c6d5ff83 629#define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
4d967549
MM
630
631#ifndef IN_LIBGCC2
632#define MASK_POWERPC64 OPTION_MASK_POWERPC64
633#endif
634
635#ifdef TARGET_64BIT
636#define MASK_64BIT OPTION_MASK_64BIT
637#endif
638
639#ifdef TARGET_RELOCATABLE
640#define MASK_RELOCATABLE OPTION_MASK_RELOCATABLE
641#endif
642
643#ifdef TARGET_LITTLE_ENDIAN
644#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
645#endif
646
647#ifdef TARGET_MINIMAL_TOC
648#define MASK_MINIMAL_TOC OPTION_MASK_MINIMAL_TOC
649#endif
650
651#ifdef TARGET_REGNAMES
652#define MASK_REGNAMES OPTION_MASK_REGNAMES
653#endif
654
655#ifdef TARGET_PROTOTYPE
656#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
657#endif
658
7fa14a01
MM
659/* For power systems, we want to enable Altivec and VSX builtins even if the
660 user did not use -maltivec or -mvsx to allow the builtins to be used inside
661 of #pragma GCC target or the target attribute to change the code level for a
662 given system. The SPE and Paired builtins are only enabled if you configure
663 the compiler for those builtins, and those machines don't support altivec or
664 VSX. */
665
666#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
667 && ((TARGET_POWERPC64 \
c3f8384f 668 || TARGET_PPC_GPOPT /* 970/power4 */ \
7fa14a01
MM
669 || TARGET_POPCNTB /* ISA 2.02 */ \
670 || TARGET_CMPB /* ISA 2.05 */ \
671 || TARGET_POPCNTD /* ISA 2.06 */ \
672 || TARGET_ALTIVEC \
f93bc5b3
PB
673 || TARGET_VSX \
674 || TARGET_HARD_FLOAT)))
7fa14a01 675
a7c6c6d6
OH
676/* E500 cores only support plain "sync", not lwsync. */
677#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
678 || rs6000_cpu == PROCESSOR_PPC8548)
7fa14a01
MM
679
680
0609bdf2
MM
681/* Whether SF/DF operations are supported on the E500. */
682#define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
683 && !TARGET_FPRS)
684
685#define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
686 && !TARGET_FPRS && TARGET_E500_DOUBLE)
687
026c3cfd 688/* Whether SF/DF operations are supported by the normal floating point unit
0609bdf2
MM
689 (or the vector/scalar unit). */
690#define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
691 && TARGET_SINGLE_FLOAT)
692
693#define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
694 && TARGET_DOUBLE_FLOAT)
695
696/* Whether SF/DF operations are supported by any hardware. */
697#define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
698#define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
699
92902797
MM
700/* Which machine supports the various reciprocal estimate instructions. */
701#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
702 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
703
704#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
705 && TARGET_DOUBLE_FLOAT \
706 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
707
708#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
709 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
710
711#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
712 && TARGET_DOUBLE_FLOAT \
713 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
714
0299bc72
MM
715/* Conditions to allow TOC fusion for loading/storing integers. */
716#define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
717 && TARGET_TOC_FUSION \
718 && (TARGET_CMODEL != CMODEL_SMALL) \
719 && TARGET_POWERPC64)
720
721/* Conditions to allow TOC fusion for loading/storing floating point. */
722#define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
723 && TARGET_TOC_FUSION \
724 && (TARGET_CMODEL != CMODEL_SMALL) \
725 && TARGET_POWERPC64 \
726 && TARGET_HARD_FLOAT \
727 && TARGET_FPRS \
728 && TARGET_SINGLE_FLOAT \
729 && TARGET_DOUBLE_FLOAT)
730
92902797
MM
731/* Whether the various reciprocal divide/square root estimate instructions
732 exist, and whether we should automatically generate code for the instruction
733 by default. */
734#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
735#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
736#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
737#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
738
739extern unsigned char rs6000_recip_bits[];
740
741#define RS6000_RECIP_HAVE_RE_P(MODE) \
742 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
743
744#define RS6000_RECIP_AUTO_RE_P(MODE) \
745 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
746
747#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
748 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
749
750#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
751 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
752
c5387660
JM
753/* The default CPU for TARGET_OPTION_OVERRIDE. */
754#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
f045b2c9 755
a5c76ee6 756/* Target pragma. */
c58b209a
NB
757#define REGISTER_TARGET_PRAGMAS() do { \
758 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
fd438373 759 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
2fab365e 760 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
7fa14a01 761 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
a5c76ee6
ZW
762} while (0)
763
4c4eb375
GK
764/* Target #defines. */
765#define TARGET_CPU_CPP_BUILTINS() \
766 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
767
768/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
769 we're compiling for. Some configurations may need to override it. */
770#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
771 do \
772 { \
773 if (BYTES_BIG_ENDIAN) \
774 { \
775 builtin_define ("__BIG_ENDIAN__"); \
776 builtin_define ("_BIG_ENDIAN"); \
777 builtin_assert ("machine=bigendian"); \
778 } \
779 else \
780 { \
781 builtin_define ("__LITTLE_ENDIAN__"); \
782 builtin_define ("_LITTLE_ENDIAN"); \
783 builtin_assert ("machine=littleendian"); \
784 } \
785 } \
786 while (0)
f045b2c9 787\f
4c4eb375 788/* Target machine storage layout. */
f045b2c9 789
13d39dbc 790/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 791 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
792 the value is constrained to be within the bounds of the declared
793 type, but kept valid in the wider mode. The signedness of the
794 extension may differ from that of the type. */
795
39403d82
DE
796#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
797 if (GET_MODE_CLASS (MODE) == MODE_INT \
96922e4c 798 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
b78d48dd 799 (MODE) = TARGET_32BIT ? SImode : DImode;
39403d82 800
f045b2c9 801/* Define this if most significant bit is lowest numbered
82e41834
KH
802 in instructions that operate on numbered bit-fields. */
803/* That is true on RS/6000. */
f045b2c9
RS
804#define BITS_BIG_ENDIAN 1
805
806/* Define this if most significant byte of a word is the lowest numbered. */
807/* That is true on RS/6000. */
808#define BYTES_BIG_ENDIAN 1
809
810/* Define this if most significant word of a multiword number is lowest
c81bebd7 811 numbered.
f045b2c9
RS
812
813 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 814 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
815#define WORDS_BIG_ENDIAN 1
816
50751417
AM
817/* This says that for the IBM long double the larger magnitude double
818 comes first. It's really a two element double array, and arrays
819 don't index differently between little- and big-endian. */
820#define LONG_DOUBLE_LARGE_FIRST 1
821
2e360ab3 822#define MAX_BITS_PER_WORD 64
f045b2c9
RS
823
824/* Width of a word, in units (bytes). */
c1aa3958 825#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
826#ifdef IN_LIBGCC2
827#define MIN_UNITS_PER_WORD UNITS_PER_WORD
828#else
ef0e53ce 829#define MIN_UNITS_PER_WORD 4
f34fc46e 830#endif
2e360ab3 831#define UNITS_PER_FP_WORD 8
0ac081f6 832#define UNITS_PER_ALTIVEC_WORD 16
cacf1ca8 833#define UNITS_PER_VSX_WORD 16
a3170dc6 834#define UNITS_PER_SPE_WORD 8
96038623 835#define UNITS_PER_PAIRED_WORD 8
f045b2c9 836
915f619f
JW
837/* Type used for ptrdiff_t, as a string used in a declaration. */
838#define PTRDIFF_TYPE "int"
839
058ef853
DE
840/* Type used for size_t, as a string used in a declaration. */
841#define SIZE_TYPE "long unsigned int"
842
f045b2c9
RS
843/* Type used for wchar_t, as a string used in a declaration. */
844#define WCHAR_TYPE "short unsigned int"
845
846/* Width of wchar_t in bits. */
847#define WCHAR_TYPE_SIZE 16
848
9e654916
RK
849/* A C expression for the size in bits of the type `short' on the
850 target machine. If you don't define this, the default is half a
851 word. (If this would be less than one storage unit, it is
852 rounded up to one unit.) */
853#define SHORT_TYPE_SIZE 16
854
855/* A C expression for the size in bits of the type `int' on the
856 target machine. If you don't define this, the default is one
857 word. */
19d2d16f 858#define INT_TYPE_SIZE 32
9e654916
RK
859
860/* A C expression for the size in bits of the type `long' on the
861 target machine. If you don't define this, the default is one
862 word. */
2f3e5814 863#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
864
865/* A C expression for the size in bits of the type `long long' on the
866 target machine. If you don't define this, the default is two
867 words. */
868#define LONG_LONG_TYPE_SIZE 64
869
9e654916
RK
870/* A C expression for the size in bits of the type `float' on the
871 target machine. If you don't define this, the default is one
872 word. */
873#define FLOAT_TYPE_SIZE 32
874
875/* A C expression for the size in bits of the type `double' on the
876 target machine. If you don't define this, the default is two
877 words. */
878#define DOUBLE_TYPE_SIZE 64
879
880/* A C expression for the size in bits of the type `long double' on
881 the target machine. If you don't define this, the default is two
882 words. */
6fa3f289 883#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019 884
5b8f5865
DE
885/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
886#define WIDEST_HARDWARE_FP_SIZE 64
887
f045b2c9
RS
888/* Width in bits of a pointer.
889 See also the macro `Pmode' defined below. */
cacf1ca8
MM
890extern unsigned rs6000_pointer_size;
891#define POINTER_SIZE rs6000_pointer_size
f045b2c9
RS
892
893/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 894#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
895
896/* Boundary (in *bits*) on which stack pointer should be aligned. */
cacf1ca8
MM
897#define STACK_BOUNDARY \
898 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
899 ? 64 : 128)
f045b2c9
RS
900
901/* Allocation boundary (in *bits*) for the code of a function. */
902#define FUNCTION_BOUNDARY 32
903
904/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
905#define BIGGEST_ALIGNMENT 128
906
f045b2c9
RS
907/* Alignment of field after `int : 0' in a structure. */
908#define EMPTY_FIELD_BOUNDARY 32
909
910/* Every structure's size must be a multiple of this. */
911#define STRUCTURE_SIZE_BOUNDARY 8
912
43a88a8c 913/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
914#define PCC_BITFIELD_TYPE_MATTERS 1
915
69eff9da
AM
916enum data_align { align_abi, align_opt, align_both };
917
918/* A C expression to compute the alignment for a variables in the
919 local store. TYPE is the data type, and ALIGN is the alignment
920 that the object would ordinarily have. */
921#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
922 rs6000_data_alignment (TYPE, ALIGN, align_both)
923
924/* Make strings word-aligned so strcpy from constants will be faster. */
69ef87e2
AH
925#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
926 (TREE_CODE (EXP) == STRING_CST \
153fbec8 927 && (STRICT_ALIGNMENT || !optimize_size) \
69ef87e2
AH
928 && (ALIGN) < BITS_PER_WORD \
929 ? BITS_PER_WORD \
930 : (ALIGN))
f045b2c9 931
69eff9da
AM
932/* Make arrays of chars word-aligned for the same reasons. */
933#define DATA_ALIGNMENT(TYPE, ALIGN) \
934 rs6000_data_alignment (TYPE, ALIGN, align_opt)
935
936/* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
f82f556d 937 64 bits. */
69eff9da
AM
938#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
939 rs6000_data_alignment (TYPE, ALIGN, align_abi)
f045b2c9 940
a0ab749a 941/* Nonzero if move instructions will actually fail to work
f045b2c9 942 when given unaligned data. */
fdaff8ba 943#define STRICT_ALIGNMENT 0
e1565e65
DE
944
945/* Define this macro to be the value 1 if unaligned accesses have a cost
946 many times greater than aligned accesses, for example if they are
947 emulated in a trap handler. */
cacf1ca8
MM
948/* Altivec vector memory instructions simply ignore the low bits; SPE vector
949 memory instructions trap on unaligned accesses; VSX memory instructions are
950 aligned to 4 or 8 bytes. */
41543739
GK
951#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
952 (STRICT_ALIGNMENT \
2c83faf8 953 || (SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
047b83ff 954 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
2c83faf8
MM
955 && ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
956 && (((int)(ALIGN)) < VECTOR_ALIGN (MODE)))))
cacf1ca8 957
f045b2c9
RS
958\f
959/* Standard register usage. */
960
961/* Number of actual hardware registers.
962 The hardware registers are assigned numbers for the compiler
963 from 0 to just below FIRST_PSEUDO_REGISTER.
964 All registers that the compiler knows about must be given numbers,
965 even those that are not normally considered general registers.
966
967 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
462f7901
SB
968 a count register, a link register, and 8 condition register fields,
969 which we view here as separate registers. AltiVec adds 32 vector
970 registers and a VRsave register.
f045b2c9
RS
971
972 In addition, the difference between the frame and argument pointers is
973 a function of the number of registers saved, so we need to have a
974 register for AP that will later be eliminated in favor of SP or FP.
802a0058 975 This is a normal register, but it is fixed.
f045b2c9 976
802a0058
MM
977 We also create a pseudo register for float/int conversions, that will
978 really represent the memory location used. It is represented here as
979 a register, in order to work around problems in allocating stack storage
7d5175e1 980 in inline functions.
802a0058 981
7d5175e1 982 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
7a5add18
PB
983 pointer, which is eventually eliminated in favor of SP or FP.
984
985 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
7d5175e1 986
23742a9e 987#define FIRST_PSEUDO_REGISTER 149
f045b2c9 988
d6a7951f 989/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 990#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 991
23742a9e
RAR
992/* True if register is an SPE High register. */
993#define SPE_HIGH_REGNO_P(N) \
994 ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
995
996/* SPE high registers added as hard regs.
997 The sfp register and 3 HTM registers
998 aren't included in DWARF_FRAME_REGISTERS. */
999#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
c19de7aa 1000
93c9d1ba
AM
1001/* The SPE has an additional 32 synthetic registers, with DWARF debug
1002 info numbering for these registers starting at 1200. While eh_frame
1003 register numbering need not be the same as the debug info numbering,
23742a9e 1004 we choose to number these regs for eh_frame at 1200 too.
93c9d1ba
AM
1005
1006 We must map them here to avoid huge unwinder tables mostly consisting
f676971a 1007 of unused space. */
93c9d1ba 1008#define DWARF_REG_TO_UNWIND_COLUMN(r) \
23742a9e 1009 ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
93c9d1ba 1010
ed1cf8ff 1011/* Use standard DWARF numbering for DWARF debugging information. */
3d36d470 1012#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
ed1cf8ff 1013
93c9d1ba 1014/* Use gcc hard register numbering for eh_frame. */
3d36d470 1015#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
41f3a930 1016
ed1cf8ff
GK
1017/* Map register numbers held in the call frame info that gcc has
1018 collected using DWARF_FRAME_REGNUM to those that should be output in
3d36d470
UW
1019 .debug_frame and .eh_frame. */
1020#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1021 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
ed1cf8ff 1022
f045b2c9
RS
1023/* 1 for registers that have pervasive standard uses
1024 and are not available for the register allocator.
1025
5dead3e5
DJ
1026 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1027 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 1028
a127c4e5
RK
1029 On System V implementations, r13 is fixed and not available for use. */
1030
f045b2c9 1031#define FIXED_REGISTERS \
5dead3e5 1032 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
1033 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1034 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1035 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
36bd0c3e 1036 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
0ac081f6
AH
1037 /* AltiVec registers. */ \
1038 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1039 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1040 1, 1 \
23742a9e
RAR
1041 , 1, 1, 1, 1, 1, 1, \
1042 /* SPE High registers. */ \
1043 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1044 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6 1045}
f045b2c9
RS
1046
1047/* 1 for registers not available across function calls.
1048 These must include the FIXED_REGISTERS and also any
1049 registers that can be used without being saved.
1050 The latter must include the registers where values are returned
1051 and the register where structure-value addresses are passed.
1052 Aside from that, you can include as many other registers as you like. */
1053
1054#define CALL_USED_REGISTERS \
a127c4e5 1055 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
1056 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1057 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1058 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
1059 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1060 /* AltiVec registers. */ \
1061 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1062 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1063 1, 1 \
23742a9e
RAR
1064 , 1, 1, 1, 1, 1, 1, \
1065 /* SPE High registers. */ \
1066 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1067 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0ac081f6
AH
1068}
1069
289e96b2
AH
1070/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1071 the entire set of `FIXED_REGISTERS' be included.
1072 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1073 This macro is optional. If not specified, it defaults to the value
1074 of `CALL_USED_REGISTERS'. */
f676971a 1075
289e96b2
AH
1076#define CALL_REALLY_USED_REGISTERS \
1077 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1078 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1079 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1080 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1081 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1082 /* AltiVec registers. */ \
1083 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1084 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 1085 0, 0 \
23742a9e
RAR
1086 , 0, 0, 0, 0, 0, 0, \
1087 /* SPE High registers. */ \
1088 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1089 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
289e96b2 1090}
f045b2c9 1091
28bcfd4d 1092#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
9ebbca7d 1093
d62294f5 1094#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
b427dd7a
AM
1095#define FIRST_SAVED_FP_REGNO (14+32)
1096#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
d62294f5 1097
f045b2c9
RS
1098/* List the order in which to allocate registers. Each register must be
1099 listed once, even those in FIXED_REGISTERS.
1100
1101 We allocate in the following order:
1102 fp0 (not saved or used for anything)
1103 fp13 - fp2 (not saved; incoming fp arg registers)
1104 fp1 (not saved; return value)
9390387d 1105 fp31 - fp14 (saved; order given to save least number)
36bd0c3e
SB
1106 cr7, cr5 (not saved or special)
1107 cr6 (not saved, but used for vector operations)
5accd822 1108 cr1 (not saved, but used for FP operations)
f045b2c9 1109 cr0 (not saved, but used for arithmetic operations)
5accd822 1110 cr4, cr3, cr2 (saved)
f045b2c9 1111 r9 (not saved; best for TImode)
d44b26bd 1112 r10, r8-r4 (not saved; highest first for less conflict with params)
9390387d 1113 r3 (not saved; return value register)
d44b26bd
AM
1114 r11 (not saved; later alloc to help shrink-wrap)
1115 r0 (not saved; cannot be base reg)
f045b2c9
RS
1116 r31 - r13 (saved; order given to save least number)
1117 r12 (not saved; if used for DImode or DFmode would use r13)
f045b2c9
RS
1118 ctr (not saved; when we have the choice ctr is better)
1119 lr (saved)
36bd0c3e 1120 r1, r2, ap, ca (fixed)
9390387d
AM
1121 v0 - v1 (not saved or used for anything)
1122 v13 - v3 (not saved; incoming vector arg registers)
1123 v2 (not saved; incoming vector arg reg; return value)
1124 v19 - v14 (not saved or used for anything)
1125 v31 - v20 (saved; order given to save least number)
1126 vrsave, vscr (fixed)
a3170dc6 1127 spe_acc, spefscr (fixed)
7d5175e1 1128 sfp (fixed)
0258b6e4
PB
1129 tfhar (fixed)
1130 tfiar (fixed)
1131 texasr (fixed)
0ac081f6 1132*/
f676971a 1133
6b13641d
DJ
1134#if FIXED_R2 == 1
1135#define MAYBE_R2_AVAILABLE
1136#define MAYBE_R2_FIXED 2,
1137#else
1138#define MAYBE_R2_AVAILABLE 2,
1139#define MAYBE_R2_FIXED
1140#endif
f045b2c9 1141
d44b26bd
AM
1142#if FIXED_R13 == 1
1143#define EARLY_R12 12,
1144#define LATE_R12
1145#else
1146#define EARLY_R12
1147#define LATE_R12 12,
1148#endif
1149
9390387d
AM
1150#define REG_ALLOC_ORDER \
1151 {32, \
f62511da
MM
1152 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1153 /* not use fr14 which is a saved register. */ \
1154 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
9390387d
AM
1155 33, \
1156 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1157 50, 49, 48, 47, 46, \
36bd0c3e 1158 75, 73, 74, 69, 68, 72, 71, 70, \
d44b26bd
AM
1159 MAYBE_R2_AVAILABLE \
1160 9, 10, 8, 7, 6, 5, 4, \
1161 3, EARLY_R12 11, 0, \
9390387d 1162 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
d44b26bd 1163 18, 17, 16, 15, 14, 13, LATE_R12 \
462f7901 1164 66, 65, \
36bd0c3e 1165 1, MAYBE_R2_FIXED 67, 76, \
9390387d
AM
1166 /* AltiVec registers. */ \
1167 77, 78, \
1168 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1169 79, \
1170 96, 95, 94, 93, 92, 91, \
1171 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1172 109, 110, \
23742a9e
RAR
1173 111, 112, 113, 114, 115, 116, \
1174 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, \
1175 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, \
1176 141, 142, 143, 144, 145, 146, 147, 148 \
0ac081f6 1177}
f045b2c9
RS
1178
1179/* True if register is floating-point. */
1180#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1181
1182/* True if register is a condition register. */
1de43f85 1183#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
f045b2c9 1184
815cdc52 1185/* True if register is a condition register, but not cr0. */
1de43f85 1186#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
815cdc52 1187
f045b2c9 1188/* True if register is an integer register. */
7d5175e1
JJ
1189#define INT_REGNO_P(N) \
1190 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
f045b2c9 1191
a3170dc6
AH
1192/* SPE SIMD registers are just the GPRs. */
1193#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1194
96038623
DE
1195/* PAIRED SIMD registers are just the FPRs. */
1196#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1197
f6b5d695
SB
1198/* True if register is the CA register. */
1199#define CA_REGNO_P(N) ((N) == CA_REGNO)
802a0058 1200
0ac081f6
AH
1201/* True if register is an AltiVec register. */
1202#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1203
cacf1ca8
MM
1204/* True if register is a VSX register. */
1205#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1206
1207/* Alternate name for any vector register supporting floating point, no matter
1208 which instruction set(s) are available. */
1209#define VFLOAT_REGNO_P(N) \
1210 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1211
1212/* Alternate name for any vector register supporting integer, no matter which
1213 instruction set(s) are available. */
1214#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1215
1216/* Alternate name for any vector register supporting logical operations, no
dd7a40e1
MM
1217 matter which instruction set(s) are available. Allow GPRs as well as the
1218 vector registers. */
f62511da 1219#define VLOGICAL_REGNO_P(N) \
dd7a40e1
MM
1220 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1221 || (TARGET_VSX && FP_REGNO_P (N))) \
cacf1ca8 1222
f045b2c9 1223/* Return number of consecutive hard regs needed starting at reg REGNO
d8ecbcdb
AH
1224 to hold something of mode MODE. */
1225
cacf1ca8 1226#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
0e67400a 1227
79eefb0d 1228/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
5ec6aff2
MM
1229 enough space to account for vectors in FP regs. However, TFmode/TDmode
1230 should not use VSX instructions to do a caller save. */
dbcc9f08
MM
1231#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1232 (TARGET_VSX \
1233 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
5ec6aff2
MM
1234 && FP_REGNO_P (REGNO) \
1235 ? V2DFmode \
bbdb5098 1236 : TARGET_E500_DOUBLE && ((MODE) == VOIDmode || (MODE) == DFmode) \
5ec6aff2 1237 ? DFmode \
2c83faf8 1238 : !TARGET_E500_DOUBLE && FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
bbdb5098
MR
1239 ? DFmode \
1240 : !TARGET_E500_DOUBLE && (MODE) == TDmode && FP_REGNO_P (REGNO) \
5ec6aff2 1241 ? DImode \
79eefb0d
PH
1242 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1243
3fc841c8
MM
1244#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1245 (((TARGET_32BIT && TARGET_POWERPC64 \
1246 && (GET_MODE_SIZE (MODE) > 4) \
1247 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1248 || (TARGET_VSX && FP_REGNO_P (REGNO) \
2c83faf8 1249 && GET_MODE_SIZE (MODE) > 8 && !FLOAT128_2REG_P (MODE)))
f045b2c9 1250
cacf1ca8
MM
1251#define VSX_VECTOR_MODE(MODE) \
1252 ((MODE) == V4SFmode \
1253 || (MODE) == V2DFmode) \
1254
bdb60a10
MM
1255/* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1256 really a vector, but we want to treat it as a vector for moves, and
1257 such. */
1258
1259#define ALTIVEC_VECTOR_MODE(MODE) \
1260 ((MODE) == V16QImode \
1261 || (MODE) == V8HImode \
1262 || (MODE) == V4SFmode \
1263 || (MODE) == V4SImode \
1264 || FLOAT128_VECTOR_P (MODE))
0ac081f6 1265
dbcc9f08
MM
1266#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1267 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
a16a872d 1268 || (MODE) == V2DImode || (MODE) == V1TImode)
dbcc9f08 1269
a3170dc6
AH
1270#define SPE_VECTOR_MODE(MODE) \
1271 ((MODE) == V4HImode \
1272 || (MODE) == V2SFmode \
00a892b8 1273 || (MODE) == V1DImode \
a3170dc6
AH
1274 || (MODE) == V2SImode)
1275
96038623
DE
1276#define PAIRED_VECTOR_MODE(MODE) \
1277 ((MODE) == V2SFmode)
1278
0d1fbc8c
AH
1279/* Value is TRUE if hard register REGNO can hold a value of
1280 machine-mode MODE. */
1281#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1282 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
f045b2c9
RS
1283
1284/* Value is 1 if it is a good idea to tie two pseudo registers
1285 when one has mode MODE1 and one has mode MODE2.
1286 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
f161bfd3
MM
1287 for any hard reg, then this must be 0 for correct output.
1288
1289 PTImode cannot tie with other modes because PTImode is restricted to even
1290 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
bdb60a10
MM
1291 57744).
1292
1293 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
1294 128-bit floating point on VSX systems ties with other vectors. */
f62511da 1295#define MODES_TIEABLE_P(MODE1, MODE2) \
f161bfd3
MM
1296 ((MODE1) == PTImode \
1297 ? (MODE2) == PTImode \
1298 : (MODE2) == PTImode \
1299 ? 0 \
bdb60a10
MM
1300 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1301 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1302 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1303 ? 0 \
f161bfd3 1304 : SCALAR_FLOAT_MODE_P (MODE1) \
ebb109ad
BE
1305 ? SCALAR_FLOAT_MODE_P (MODE2) \
1306 : SCALAR_FLOAT_MODE_P (MODE2) \
f161bfd3 1307 ? 0 \
f045b2c9
RS
1308 : GET_MODE_CLASS (MODE1) == MODE_CC \
1309 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1310 : GET_MODE_CLASS (MODE2) == MODE_CC \
f161bfd3 1311 ? 0 \
4dcc01f3
AH
1312 : SPE_VECTOR_MODE (MODE1) \
1313 ? SPE_VECTOR_MODE (MODE2) \
1314 : SPE_VECTOR_MODE (MODE2) \
f161bfd3 1315 ? 0 \
f045b2c9
RS
1316 : 1)
1317
c8ae788f
SB
1318/* Post-reload, we can't use any new AltiVec registers, as we already
1319 emitted the vrsave mask. */
1320
1321#define HARD_REGNO_RENAME_OK(SRC, DST) \
6fb5fa3c 1322 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
c8ae788f 1323
f045b2c9
RS
1324/* Specify the cost of a branch insn; roughly the number of extra insns that
1325 should be added to avoid a branch.
1326
ef457bda 1327 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1328 unscheduled conditional branch. */
1329
3a4fd356 1330#define BRANCH_COST(speed_p, predictable_p) 3
f045b2c9 1331
85e50b6b 1332/* Override BRANCH_COST heuristic which empirically produces worse
b8610a53 1333 performance for removing short circuiting from the logical ops. */
85e50b6b 1334
b8610a53 1335#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
a3170dc6 1336
52ff33d0
NF
1337/* A fixed register used at epilogue generation to address SPE registers
1338 with negative offsets. The 64-bit load/store instructions on the SPE
1339 only take positive offsets (and small ones at that), so we need to
1340 reserve a register for consing up negative offsets. */
a3170dc6 1341
52ff33d0 1342#define FIXED_SCRATCH 0
a3170dc6 1343
f045b2c9
RS
1344/* Specify the registers used for certain standard purposes.
1345 The values of these macros are register numbers. */
1346
1347/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1348/* #define PC_REGNUM */
1349
1350/* Register to use for pushing function arguments. */
1351#define STACK_POINTER_REGNUM 1
1352
1353/* Base register for access to local variables of the function. */
7d5175e1
JJ
1354#define HARD_FRAME_POINTER_REGNUM 31
1355
1356/* Base register for access to local variables of the function. */
1357#define FRAME_POINTER_REGNUM 113
f045b2c9 1358
f045b2c9
RS
1359/* Base register for access to arguments of the function. */
1360#define ARG_POINTER_REGNUM 67
1361
1362/* Place to put static chain when calling a function that requires it. */
1363#define STATIC_CHAIN_REGNUM 11
1364
26a2e6ae
PB
1365/* Base register for access to thread local storage variables. */
1366#define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1367
f045b2c9
RS
1368\f
1369/* Define the classes of registers for register constraints in the
1370 machine description. Also define ranges of constants.
1371
1372 One of the classes must always be named ALL_REGS and include all hard regs.
1373 If there is more than one class, another class must be named NO_REGS
1374 and contain no registers.
1375
1376 The name GENERAL_REGS must be the name of a class (or an alias for
1377 another name such as ALL_REGS). This is the class of registers
1378 that is allowed by "g" or "r" in a register constraint.
1379 Also, registers outside this class are allocated only when
1380 instructions express preferences for them.
1381
1382 The classes must be numbered in nondecreasing order; that is,
1383 a larger-numbered class must never be contained completely
1384 in a smaller-numbered class.
1385
1386 For any two classes, it is very desirable that there be another
1387 class that represents their union. */
c81bebd7 1388
cacf1ca8 1389/* The RS/6000 has three types of registers, fixed-point, floating-point, and
462f7901 1390 condition registers, plus three special registers, CTR, and the link
cacf1ca8
MM
1391 register. AltiVec adds a vector register class. VSX registers overlap the
1392 FPR registers and the Altivec registers.
f045b2c9
RS
1393
1394 However, r0 is special in that it cannot be used as a base register.
1395 So make a class for registers valid as base registers.
1396
1397 Also, cr0 is the only condition code register that can be used in
0d86f538 1398 arithmetic insns, so make a separate class for it. */
f045b2c9 1399
ebedb4dd
MM
1400enum reg_class
1401{
1402 NO_REGS,
ebedb4dd
MM
1403 BASE_REGS,
1404 GENERAL_REGS,
1405 FLOAT_REGS,
0ac081f6 1406 ALTIVEC_REGS,
8beb65e3 1407 VSX_REGS,
0ac081f6 1408 VRSAVE_REGS,
5f004351 1409 VSCR_REGS,
a3170dc6
AH
1410 SPE_ACC_REGS,
1411 SPEFSCR_REGS,
0258b6e4 1412 SPR_REGS,
ebedb4dd 1413 NON_SPECIAL_REGS,
ebedb4dd
MM
1414 LINK_REGS,
1415 CTR_REGS,
1416 LINK_OR_CTR_REGS,
1417 SPECIAL_REGS,
1418 SPEC_OR_GEN_REGS,
1419 CR0_REGS,
ebedb4dd
MM
1420 CR_REGS,
1421 NON_FLOAT_REGS,
f6b5d695 1422 CA_REGS,
23742a9e 1423 SPE_HIGH_REGS,
ebedb4dd
MM
1424 ALL_REGS,
1425 LIM_REG_CLASSES
1426};
f045b2c9
RS
1427
1428#define N_REG_CLASSES (int) LIM_REG_CLASSES
1429
82e41834 1430/* Give names of register classes as strings for dump file. */
f045b2c9 1431
ebedb4dd
MM
1432#define REG_CLASS_NAMES \
1433{ \
1434 "NO_REGS", \
ebedb4dd
MM
1435 "BASE_REGS", \
1436 "GENERAL_REGS", \
1437 "FLOAT_REGS", \
0ac081f6 1438 "ALTIVEC_REGS", \
8beb65e3 1439 "VSX_REGS", \
0ac081f6 1440 "VRSAVE_REGS", \
5f004351 1441 "VSCR_REGS", \
a3170dc6
AH
1442 "SPE_ACC_REGS", \
1443 "SPEFSCR_REGS", \
0258b6e4 1444 "SPR_REGS", \
ebedb4dd 1445 "NON_SPECIAL_REGS", \
ebedb4dd
MM
1446 "LINK_REGS", \
1447 "CTR_REGS", \
1448 "LINK_OR_CTR_REGS", \
1449 "SPECIAL_REGS", \
1450 "SPEC_OR_GEN_REGS", \
1451 "CR0_REGS", \
ebedb4dd
MM
1452 "CR_REGS", \
1453 "NON_FLOAT_REGS", \
f6b5d695 1454 "CA_REGS", \
23742a9e 1455 "SPE_HIGH_REGS", \
ebedb4dd
MM
1456 "ALL_REGS" \
1457}
f045b2c9
RS
1458
1459/* Define which registers fit in which classes.
1460 This is an initializer for a vector of HARD_REG_SET
1461 of length N_REG_CLASSES. */
1462
23742a9e
RAR
1463#define REG_CLASS_CONTENTS \
1464{ \
1465 /* NO_REGS. */ \
1466 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1467 /* BASE_REGS. */ \
1468 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1469 /* GENERAL_REGS. */ \
1470 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1471 /* FLOAT_REGS. */ \
1472 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, \
1473 /* ALTIVEC_REGS. */ \
1474 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 }, \
1475 /* VSX_REGS. */ \
1476 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 }, \
1477 /* VRSAVE_REGS. */ \
1478 { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 }, \
1479 /* VSCR_REGS. */ \
1480 { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 }, \
1481 /* SPE_ACC_REGS. */ \
1482 { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 }, \
1483 /* SPEFSCR_REGS. */ \
1484 { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 }, \
1485 /* SPR_REGS. */ \
1486 { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 }, \
1487 /* NON_SPECIAL_REGS. */ \
1488 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 }, \
1489 /* LINK_REGS. */ \
1490 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 }, \
1491 /* CTR_REGS. */ \
1492 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 }, \
1493 /* LINK_OR_CTR_REGS. */ \
1494 { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 }, \
1495 /* SPECIAL_REGS. */ \
1496 { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 }, \
1497 /* SPEC_OR_GEN_REGS. */ \
1498 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 }, \
1499 /* CR0_REGS. */ \
1500 { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 }, \
1501 /* CR_REGS. */ \
1502 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 }, \
1503 /* NON_FLOAT_REGS. */ \
1504 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 }, \
1505 /* CA_REGS. */ \
1506 { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 }, \
1507 /* SPE_HIGH_REGS. */ \
1508 { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff }, \
1509 /* ALL_REGS. */ \
1510 { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff } \
ebedb4dd 1511}
f045b2c9
RS
1512
1513/* The same information, inverted:
1514 Return the class number of the smallest class containing
1515 reg number REGNO. This could be a conditional expression
1516 or could index an array. */
1517
cacf1ca8
MM
1518extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1519
cacf1ca8 1520#define REGNO_REG_CLASS(REGNO) \
e28c2052 1521 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
cacf1ca8
MM
1522 rs6000_regno_regclass[(REGNO)])
1523
a72c65c7
MM
1524/* Register classes for various constraints that are based on the target
1525 switches. */
1526enum r6000_reg_class_enum {
1527 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1528 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1529 RS6000_CONSTRAINT_v, /* Altivec registers */
1530 RS6000_CONSTRAINT_wa, /* Any VSX register */
d5906efc 1531 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
a72c65c7 1532 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
dd551aa1 1533 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
a72c65c7 1534 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
5e8586d7 1535 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
59f5868d
MM
1536 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1537 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1538 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1539 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
c6d5ff83 1540 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
f62511da 1541 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
4e8a3a35 1542 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
c477a667
MM
1543 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1544 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
f62511da 1545 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
a72c65c7 1546 RS6000_CONSTRAINT_ws, /* VSX register for DF */
c6d5ff83 1547 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
5e8586d7
MM
1548 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1549 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1550 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
c6d5ff83 1551 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
5e8586d7 1552 RS6000_CONSTRAINT_wy, /* VSX register for SF */
c6d5ff83 1553 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
a72c65c7
MM
1554 RS6000_CONSTRAINT_MAX
1555};
1556
1557extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
f045b2c9
RS
1558
1559/* The class value for index registers, and the one for base regs. */
1560#define INDEX_REG_CLASS GENERAL_REGS
1561#define BASE_REG_CLASS BASE_REGS
1562
cacf1ca8
MM
1563/* Return whether a given register class can hold VSX objects. */
1564#define VSX_REG_CLASS_P(CLASS) \
1565 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1566
59f5868d
MM
1567/* Return whether a given register class targets general purpose registers. */
1568#define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1569
f045b2c9
RS
1570/* Given an rtx X being reloaded into a reg required to be
1571 in class CLASS, return the class of reg to actually use.
1572 In general this is just CLASS; but on some machines
c81bebd7 1573 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1574
1575 On the RS/6000, we have to return NO_REGS when we want to reload a
f676971a 1576 floating-point CONST_DOUBLE to force it to be copied to memory.
1e66d555
GK
1577
1578 We also don't want to reload integer values into floating-point
1579 registers if we can at all help it. In fact, this can
37409796 1580 cause reload to die, if it tries to generate a reload of CTR
1e66d555
GK
1581 into a FP register and discovers it doesn't have the memory location
1582 required.
1583
1584 ??? Would it be a good idea to have reload do the converse, that is
1585 try to reload floating modes into FP registers if possible?
1586 */
f045b2c9 1587
802a0058 1588#define PREFERRED_RELOAD_CLASS(X,CLASS) \
8beb65e3 1589 rs6000_preferred_reload_class_ptr (X, CLASS)
c81bebd7 1590
f045b2c9
RS
1591/* Return the register class of a scratch register needed to copy IN into
1592 or out of a register in CLASS in MODE. If it can be done directly,
1593 NO_REGS is returned. */
1594
1595#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
8beb65e3 1596 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
f045b2c9 1597
0ac081f6 1598/* If we are copying between FP or AltiVec registers and anything
44cd321e
PS
1599 else, we need a memory location. The exception is when we are
1600 targeting ppc64 and the move to/from fpr to gpr instructions
1601 are available.*/
1602
1603#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
8beb65e3 1604 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
7ea555a4 1605
e41b2a33
PB
1606/* For cpus that cannot load/store SDmode values from the 64-bit
1607 FP registers without using a full 64-bit load/store, we need
1608 to allocate a full 64-bit stack slot for them. */
1609
1610#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1611 rs6000_secondary_memory_needed_rtx (MODE)
1612
01b1efaa
VM
1613/* Specify the mode to be used for memory when a secondary memory
1614 location is needed. For cpus that cannot load/store SDmode values
1615 from the 64-bit FP registers without using a full 64-bit
1616 load/store, we need a wider mode. */
1617#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1618 rs6000_secondary_memory_needed_mode (MODE)
1619
f045b2c9
RS
1620/* Return the maximum number of consecutive registers
1621 needed to represent mode MODE in a register of class CLASS.
1622
cacf1ca8
MM
1623 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1624 a single reg is enough for two words, unless we have VSX, where the FP
1625 registers can hold 128 bits. */
1626#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
580d3230 1627
ca0e79d9
AM
1628/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1629
1630#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
8beb65e3 1631 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
02188693 1632
f045b2c9
RS
1633/* Stack layout; function entry, exit and calling. */
1634
1635/* Define this if pushing a word on the stack
1636 makes the stack pointer a smaller address. */
62f9f30b 1637#define STACK_GROWS_DOWNWARD 1
f045b2c9 1638
327e5343
FJ
1639/* Offsets recorded in opcodes are a multiple of this alignment factor. */
1640#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1641
a4d05547 1642/* Define this to nonzero if the nominal address of the stack frame
f045b2c9
RS
1643 is at the high-address end of the local variables;
1644 that is, each additional local variable allocated
1645 goes at a more negative offset in the frame.
1646
1647 On the RS/6000, we grow upwards, from the area after the outgoing
1648 arguments. */
de5a5fa1
MP
1649#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1650 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
f045b2c9 1651
4697a36c 1652/* Size of the fixed area on the stack */
9ebbca7d 1653#define RS6000_SAVE_AREA \
b54214fe
UW
1654 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1655 << (TARGET_64BIT ? 1 : 0))
4697a36c 1656
b54214fe
UW
1657/* Stack offset for toc save slot. */
1658#define RS6000_TOC_SAVE_SLOT \
1659 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
b6c9286a 1660
4697a36c 1661/* Align an address */
4f59f9f2 1662#define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
4697a36c 1663
f045b2c9
RS
1664/* Offset within stack frame to start allocating local variables at.
1665 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1666 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1667 of the first local allocated.
f045b2c9
RS
1668
1669 On the RS/6000, the frame pointer is the same as the stack pointer,
1670 except for dynamic allocations. So we start after the fixed area and
1671 outgoing parameter area. */
1672
802a0058 1673#define STARTING_FRAME_OFFSET \
7d5175e1
JJ
1674 (FRAME_GROWS_DOWNWARD \
1675 ? 0 \
cacf1ca8
MM
1676 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1677 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
7d5175e1 1678 + RS6000_SAVE_AREA))
802a0058
MM
1679
1680/* Offset from the stack pointer register to an item dynamically
1681 allocated on the stack, e.g., by `alloca'.
1682
1683 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1684 length of the outgoing arguments. The default is correct for most
1685 machines. See `function.c' for details. */
1686#define STACK_DYNAMIC_OFFSET(FUNDECL) \
cacf1ca8
MM
1687 (RS6000_ALIGN (crtl->outgoing_args_size, \
1688 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
802a0058 1689 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1690
1691/* If we generate an insn to push BYTES bytes,
1692 this says how many the stack pointer really advances by.
1693 On RS/6000, don't define this because there are no push insns. */
1694/* #define PUSH_ROUNDING(BYTES) */
1695
1696/* Offset of first parameter from the argument pointer register value.
1697 On the RS/6000, we define the argument pointer to the start of the fixed
1698 area. */
4697a36c 1699#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1700
62153b61
JM
1701/* Offset from the argument pointer register value to the top of
1702 stack. This is different from FIRST_PARM_OFFSET because of the
1703 register save area. */
1704#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1705
f045b2c9
RS
1706/* Define this if stack space is still allocated for a parameter passed
1707 in a register. The value is the number of bytes allocated to this
1708 area. */
ddbb449f
AM
1709#define REG_PARM_STACK_SPACE(FNDECL) \
1710 rs6000_reg_parm_stack_space ((FNDECL), false)
1711
1712/* Define this macro if space guaranteed when compiling a function body
1713 is different to space required when making a call, a situation that
1714 can arise with K&R style function definitions. */
1715#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1716 rs6000_reg_parm_stack_space ((FNDECL), true)
f045b2c9
RS
1717
1718/* Define this if the above stack space is to be considered part of the
1719 space allocated by the caller. */
81464b2c 1720#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
f045b2c9
RS
1721
1722/* This is the difference between the logical top of stack and the actual sp.
1723
82e41834 1724 For the RS/6000, sp points past the fixed area. */
4697a36c 1725#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1726
1727/* Define this if the maximum size of all the outgoing args is to be
1728 accumulated and pushed during the prologue. The amount can be
38173d38 1729 found in the variable crtl->outgoing_args_size. */
f73ad30e 1730#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9 1731
f045b2c9
RS
1732/* Define how to find the value returned by a library function
1733 assuming the value has mode MODE. */
1734
ded9bf77 1735#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1736
6fa3f289
ZW
1737/* DRAFT_V4_STRUCT_RET defaults off. */
1738#define DRAFT_V4_STRUCT_RET 0
f607bc57 1739
bd5bd7ac 1740/* Let TARGET_RETURN_IN_MEMORY control what happens. */
f607bc57 1741#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1742
a260abc9 1743/* Mode of stack savearea.
dfdfa60f
DE
1744 FUNCTION is VOIDmode because calling convention maintains SP.
1745 BLOCK needs Pmode for SP.
a260abc9
DE
1746 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1747#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f 1748 (LEVEL == SAVE_FUNCTION ? VOIDmode \
c6d5ff83 1749 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
a260abc9 1750
4697a36c
MM
1751/* Minimum and maximum general purpose registers used to hold arguments. */
1752#define GP_ARG_MIN_REG 3
1753#define GP_ARG_MAX_REG 10
1754#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1755
1756/* Minimum and maximum floating point registers used to hold arguments. */
1757#define FP_ARG_MIN_REG 33
7509c759
MM
1758#define FP_ARG_AIX_MAX_REG 45
1759#define FP_ARG_V4_MAX_REG 40
008e32c0
UW
1760#define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1761 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
4697a36c
MM
1762#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1763
0ac081f6
AH
1764/* Minimum and maximum AltiVec registers used to hold arguments. */
1765#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1766#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1767#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1768
b54214fe
UW
1769/* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1770#define AGGR_ARG_NUM_REG 8
1771
4697a36c
MM
1772/* Return registers */
1773#define GP_ARG_RETURN GP_ARG_MIN_REG
1774#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1775#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
b54214fe
UW
1776#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1777 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1778#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? ALTIVEC_ARG_RETURN \
1779 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
4697a36c 1780
7509c759 1781/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1782#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1783/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1784#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1785#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1786#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1787#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1788
f57fe068
AM
1789/* We don't have prologue and epilogue functions to save/restore
1790 everything for most ABIs. */
1791#define WORLD_SAVE_P(INFO) 0
1792
f045b2c9
RS
1793/* 1 if N is a possible register number for a function value
1794 as seen by the caller.
1795
0ac081f6 1796 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1797#define FUNCTION_VALUE_REGNO_P(N) \
1798 ((N) == GP_ARG_RETURN \
b54214fe
UW
1799 || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
1800 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1801 || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
1802 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
f045b2c9
RS
1803
1804/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1805 On RS/6000, these are r3-r10 and fp1-fp13.
1806 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1807#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1808 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1809 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
44688022 1810 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
e87a88d3 1811 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
b2df7d08 1812 && TARGET_HARD_FLOAT && TARGET_FPRS))
f045b2c9
RS
1813\f
1814/* Define a data type for recording info about an argument list
1815 during the scan of that argument list. This data type should
1816 hold all necessary information about the function itself
1817 and about the args processed so far, enough to enable macros
1818 such as FUNCTION_ARG to determine where the next arg should go.
1819
1820 On the RS/6000, this is a structure. The first element is the number of
1821 total argument words, the second is used to store the next
1822 floating-point register number, and the third says how many more args we
4697a36c
MM
1823 have prototype types for.
1824
4cc833b7 1825 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1826 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1827 register, and `words' is the number of words used on the stack.
1828
bd227acc 1829 The varargs/stdarg support requires that this structure's size
4cc833b7 1830 be a multiple of sizeof(int). */
4697a36c
MM
1831
1832typedef struct rs6000_args
1833{
4cc833b7 1834 int words; /* # words used for passing GP registers */
6a4cee5f 1835 int fregno; /* next available FP register */
0ac081f6 1836 int vregno; /* next available AltiVec register */
6a4cee5f 1837 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1838 int prototype; /* Whether a prototype was defined */
a6c9bed4 1839 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1840 int call_cookie; /* Do special things for this call */
4cc833b7 1841 int sysv_gregno; /* next available GP register */
0b5383eb
DJ
1842 int intoffset; /* running offset in struct (darwin64) */
1843 int use_stack; /* any part of struct on stack (darwin64) */
a9ab25e2
IS
1844 int floats_in_gpr; /* count of SFmode floats taking up
1845 GPR space (darwin64) */
0b5383eb 1846 int named; /* false for varargs params */
617718f7 1847 int escapes; /* if function visible outside tu */
bdb60a10 1848 int libcall; /* If this is a compiler generated call. */
4697a36c 1849} CUMULATIVE_ARGS;
f045b2c9 1850
f045b2c9
RS
1851/* Initialize a variable CUM of type CUMULATIVE_ARGS
1852 for a call to a function whose data type is FNTYPE.
1853 For a library call, FNTYPE is 0. */
1854
617718f7
AM
1855#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1856 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1857 N_NAMED_ARGS, FNDECL, VOIDmode)
f045b2c9
RS
1858
1859/* Similar, but when scanning the definition of a procedure. We always
1860 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1861
0f6937fe 1862#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
617718f7
AM
1863 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1864 1000, current_function_decl, VOIDmode)
b9599e46
FS
1865
1866/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1867
1868#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
617718f7
AM
1869 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1870 0, NULL_TREE, MODE)
f045b2c9 1871
c229cba9
DE
1872/* If defined, a C expression which determines whether, and in which
1873 direction, to pad out an argument with extra space. The value
1874 should be of type `enum direction': either `upward' to pad above
1875 the argument, `downward' to pad below, or `none' to inhibit
1876 padding. */
1877
9ebbca7d 1878#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1879
6e985040
AM
1880#define PAD_VARARGS_DOWN \
1881 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1882
f045b2c9 1883/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1884 for profiling a function entry. */
f045b2c9
RS
1885
1886#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1887 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1888
1889/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1890 the stack pointer does not matter. No definition is equivalent to
1891 always zero.
1892
a0ab749a 1893 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1894 its backpointer, which we maintain. */
1895#define EXIT_IGNORE_STACK 1
1896
a701949a
FS
1897/* Define this macro as a C expression that is nonzero for registers
1898 that are used by the epilogue or the return' pattern. The stack
1899 and frame pointer registers are already be assumed to be used as
1900 needed. */
1901
83720594 1902#define EPILOGUE_USES(REGNO) \
1de43f85 1903 ((reload_completed && (REGNO) == LR_REGNO) \
b1765bde 1904 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
cacf1ca8 1905 || (crtl->calls_eh_return \
3553b09d 1906 && TARGET_AIX \
ff3867ae 1907 && (REGNO) == 2))
2bfcf297 1908
f045b2c9 1909\f
f045b2c9
RS
1910/* Length in units of the trampoline for entering a nested function. */
1911
b6c9286a 1912#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9 1913\f
f33985c6
MS
1914/* Definitions for __builtin_return_address and __builtin_frame_address.
1915 __builtin_return_address (0) should give link register (65), enable
82e41834 1916 this. */
f33985c6
MS
1917/* This should be uncommented, so that the link register is used, but
1918 currently this would result in unmatched insns and spilling fixed
1919 registers so we'll leave it for another day. When these problems are
1920 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1921 (mrs) */
1922/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1923
b6c9286a
MM
1924/* Number of bytes into the frame return addresses can be found. See
1925 rs6000_stack_info in rs6000.c for more information on how the different
1926 abi's store the return address. */
008e32c0
UW
1927#define RETURN_ADDRESS_OFFSET \
1928 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
f09d4c33 1929
f33985c6
MS
1930/* The current return address is in link register (65). The return address
1931 of anything farther back is accessed normally at an offset of 8 from the
1932 frame pointer. */
71f123ca
FS
1933#define RETURN_ADDR_RTX(COUNT, FRAME) \
1934 (rs6000_return_addr (COUNT, FRAME))
1935
f33985c6 1936\f
f045b2c9
RS
1937/* Definitions for register eliminations.
1938
1939 We have two registers that can be eliminated on the RS/6000. First, the
1940 frame pointer register can often be eliminated in favor of the stack
1941 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1942 eliminated; it is replaced with either the stack or frame pointer.
1943
1944 In addition, we use the elimination mechanism to see if r30 is needed
1945 Initially we assume that it isn't. If it is, we spill it. This is done
1946 by making it an eliminable register. We replace it with itself so that
1947 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1948
1949/* This is an array of structures. Each structure initializes one pair
1950 of eliminable registers. The "from" register number is given first,
1951 followed by "to". Eliminations of the same "from" register are listed
1952 in order of preference. */
7d5175e1
JJ
1953#define ELIMINABLE_REGS \
1954{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1955 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1956 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1957 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1958 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
97b23853 1959 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9 1960
f045b2c9
RS
1961/* Define the offset between two registers, one to be eliminated, and the other
1962 its replacement, at the start of a routine. */
d1d0c603
JJ
1963#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1964 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
f045b2c9
RS
1965\f
1966/* Addressing modes, and classification of registers for them. */
1967
940da324
JL
1968#define HAVE_PRE_DECREMENT 1
1969#define HAVE_PRE_INCREMENT 1
6fb5fa3c
DB
1970#define HAVE_PRE_MODIFY_DISP 1
1971#define HAVE_PRE_MODIFY_REG 1
f045b2c9
RS
1972
1973/* Macros to check register numbers against specific register classes. */
1974
1975/* These assume that REGNO is a hard or pseudo reg number.
1976 They give nonzero only if REGNO is a hard reg of the suitable class
1977 or a pseudo reg currently allocated to a suitable hard reg.
1978 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1979 has been allocated, which happens in reginfo.c during register
1980 allocation. */
f045b2c9
RS
1981
1982#define REGNO_OK_FOR_INDEX_P(REGNO) \
1983((REGNO) < FIRST_PSEUDO_REGISTER \
1984 ? (REGNO) <= 31 || (REGNO) == 67 \
7d5175e1 1985 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1986 : (reg_renumber[REGNO] >= 0 \
7d5175e1
JJ
1987 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1988 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
f045b2c9
RS
1989
1990#define REGNO_OK_FOR_BASE_P(REGNO) \
1991((REGNO) < FIRST_PSEUDO_REGISTER \
1992 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
7d5175e1 1993 || (REGNO) == FRAME_POINTER_REGNUM \
f045b2c9 1994 : (reg_renumber[REGNO] > 0 \
7d5175e1
JJ
1995 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1996 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
c6c3dba9
PB
1997
1998/* Nonzero if X is a hard reg that can be used as an index
1999 or if it is a pseudo reg in the non-strict case. */
2000#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2001 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2002 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
2003
2004/* Nonzero if X is a hard reg that can be used as a base reg
2005 or if it is a pseudo reg in the non-strict case. */
2006#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2007 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2008 || REGNO_OK_FOR_BASE_P (REGNO (X)))
2009
f045b2c9
RS
2010\f
2011/* Maximum number of registers that can appear in a valid memory address. */
2012
2013#define MAX_REGS_PER_ADDRESS 2
2014
2015/* Recognize any constant value that is a valid address. */
2016
6eff269e
BK
2017#define CONSTANT_ADDRESS_P(X) \
2018 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2019 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2020 || GET_CODE (X) == HIGH)
f045b2c9 2021
48d72335 2022#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
66180ff3 2023#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
76492753
PB
2024 && EASY_VECTOR_15((n) >> 1) \
2025 && ((n) & 1) == 0)
48d72335 2026
29e6733c 2027#define EASY_VECTOR_MSB(n,mode) \
683be46f 2028 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
29e6733c
MM
2029 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
2030
f045b2c9 2031\f
a260abc9
DE
2032/* Try a machine-dependent way of reloading an illegitimate address
2033 operand. If we find one, push the reload and jump to WIN. This
2034 macro is used in only one place: `find_reloads_address' in reload.c.
2035
f676971a 2036 Implemented on rs6000 by rs6000_legitimize_reload_address.
24ea750e 2037 Note that (X) is evaluated twice; this is safe in current usage. */
f676971a 2038
a9098fd0
GK
2039#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2040do { \
24ea750e 2041 int win; \
8beb65e3 2042 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
24ea750e
DJ
2043 (int)(TYPE), (IND_LEVELS), &win); \
2044 if ( win ) \
2045 goto WIN; \
a260abc9
DE
2046} while (0)
2047
944258eb 2048#define FIND_BASE_TERM rs6000_find_base_term
766a866c
MM
2049\f
2050/* The register number of the register used to address a table of
2051 static data addresses in memory. In some cases this register is
2052 defined by a processor's "application binary interface" (ABI).
2053 When this macro is defined, RTL is generated for this register
2054 once, as with the stack pointer and frame pointer registers. If
2055 this macro is not defined, it is up to the machine-dependent files
2056 to allocate such a register (if necessary). */
2057
1db02437
FS
2058#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2059#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2060
97b23853 2061#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2062
766a866c
MM
2063/* Define this macro if the register defined by
2064 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2065 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2066
2067/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2068
766a866c
MM
2069/* A C expression that is nonzero if X is a legitimate immediate
2070 operand on the target machine when generating position independent
2071 code. You can assume that X satisfies `CONSTANT_P', so you need
2072 not check this. You can also assume FLAG_PIC is true, so you need
2073 not check it either. You need not define this macro if all
2074 constants (including `SYMBOL_REF') can be immediate operands when
2075 generating position independent code. */
2076
2077/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
2078\f
2079/* Define this if some processing needs to be done immediately before
4255474b 2080 emitting code for an insn. */
f045b2c9 2081
c921bad8
AP
2082#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
2083 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
f045b2c9
RS
2084
2085/* Specify the machine mode that this machine uses
2086 for the index in the tablejump instruction. */
e1565e65 2087#define CASE_VECTOR_MODE SImode
f045b2c9 2088
18543a22
ILT
2089/* Define as C expression which evaluates to nonzero if the tablejump
2090 instruction expects the table to contain offsets from the address of the
2091 table.
82e41834 2092 Do not define this if the table should contain absolute addresses. */
18543a22 2093#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2094
f045b2c9
RS
2095/* Define this as 1 if `char' should by default be signed; else as 0. */
2096#define DEFAULT_SIGNED_CHAR 0
2097
c1618c0c
DE
2098/* An integer expression for the size in bits of the largest integer machine
2099 mode that should actually be used. */
2100
2101/* Allow pairs of registers to be used, which is the intent of the default. */
2102#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2103
f045b2c9
RS
2104/* Max number of bytes we can move from memory to memory
2105 in one reasonably fast instruction. */
2f3e5814 2106#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2107#define MAX_MOVE_MAX 8
f045b2c9
RS
2108
2109/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2110 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2111 is undesirable. */
2112#define SLOW_BYTE_ACCESS 1
2113
9a63901f
RK
2114/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2115 will either zero-extend or sign-extend. The value of this macro should
2116 be the code that says which one of the two operations is implicitly
f822d252 2117 done, UNKNOWN if none. */
9a63901f 2118#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2119
2120/* Define if loading short immediate values into registers sign extends. */
58f2ae18 2121#define SHORT_IMMEDIATES_SIGN_EXTEND 1
fdaff8ba 2122\f
f045b2c9
RS
2123/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2124 is done just by pretending it is already truncated. */
2125#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2126
94993909 2127/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122 2128#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
14670a74 2129 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
d865b122 2130
0299bc72
MM
2131/* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2132 zero. The hardware instructions added in Power9 return 32 or 64. */
2133#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2134 ((!TARGET_CTZ) \
2135 ? ((VALUE) = -1, 1) \
2136 : ((VALUE) = ((MODE) == SImode ? 32 : 64), 1))
94993909 2137
f045b2c9
RS
2138/* Specify the machine mode that pointers have.
2139 After generation of rtl, the compiler makes no further distinction
2140 between pointers and any other objects of this machine mode. */
cacf1ca8 2141extern unsigned rs6000_pmode;
ef4bddc2 2142#define Pmode ((machine_mode)rs6000_pmode)
f045b2c9 2143
a3c9585f 2144/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
4c81e946
FJ
2145#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2146
f045b2c9 2147/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2148 Doesn't matter on RS/6000. */
5b71a4e7 2149#define FUNCTION_MODE SImode
f045b2c9
RS
2150
2151/* Define this if addresses of constant functions
2152 shouldn't be put through pseudo regs where they can be cse'd.
2153 Desirable on machines where ordinary constants are expensive
2154 but a CALL with constant address is cheap. */
1e8552c2 2155#define NO_FUNCTION_CSE 1
f045b2c9 2156
d969caf8 2157/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2158 few bits.
2159
2160 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2161 have been dropped from the PowerPC architecture. */
c28a7c24 2162#define SHIFT_COUNT_TRUNCATED 0
f045b2c9 2163
f045b2c9
RS
2164/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2165 should be adjusted to reflect any required changes. This macro is used when
2166 there is some systematic length adjustment required that would be difficult
2167 to express in the length attribute. */
2168
2169/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2170
39a10a29
GK
2171/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2172 COMPARE, return the mode to be used for the comparison. For
2173 floating-point, CCFPmode should be used. CCUNSmode should be used
2174 for unsigned comparisons. CCEQmode should be used when we are
2175 doing an inequality comparison on the result of a
2176 comparison. CCmode should be used in all other cases. */
c5defebb 2177
b565a316 2178#define SELECT_CC_MODE(OP,X,Y) \
ebb109ad 2179 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
c5defebb 2180 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
ec8e098d 2181 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
c5defebb 2182 ? CCEQmode : CCmode))
f045b2c9 2183
b39358e1
GK
2184/* Can the condition code MODE be safely reversed? This is safe in
2185 all cases on this port, because at present it doesn't use the
2186 trapping FP comparisons (fcmpo). */
2187#define REVERSIBLE_CC_MODE(MODE) 1
2188
2189/* Given a condition code and a mode, return the inverse condition. */
2190#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2191
f045b2c9
RS
2192\f
2193/* Control the assembler format that we output. */
2194
1b279f39
DE
2195/* A C string constant describing how to begin a comment in the target
2196 assembler language. The compiler assumes that the comment will end at
2197 the end of the line. */
2198#define ASM_COMMENT_START " #"
6b67933e 2199
38c1f2d7
MM
2200/* Flag to say the TOC is initialized */
2201extern int toc_initialized;
2202
f045b2c9
RS
2203/* Macro to output a special constant pool entry. Go to WIN if we output
2204 it. Otherwise, it is written the usual way.
2205
2206 On the RS/6000, toc entries are handled this way. */
2207
a9098fd0
GK
2208#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2209{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2210 { \
2211 output_toc (FILE, X, LABELNO, MODE); \
2212 goto WIN; \
2213 } \
f045b2c9
RS
2214}
2215
ebd97b96
DE
2216#ifdef HAVE_GAS_WEAK
2217#define RS6000_WEAK 1
2218#else
2219#define RS6000_WEAK 0
2220#endif
290ad355 2221
79c4e63f
AM
2222#if RS6000_WEAK
2223/* Used in lieu of ASM_WEAKEN_LABEL. */
2224#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2225 do \
2226 { \
2227 fputs ("\t.weak\t", (FILE)); \
85b776df 2228 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2229 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2230 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f 2231 { \
cbaaba19
DE
2232 if (TARGET_XCOFF) \
2233 fputs ("[DS]", (FILE)); \
ca734b39 2234 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2235 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2236 } \
2237 fputc ('\n', (FILE)); \
2238 if (VAL) \
2239 { \
2240 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2241 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2242 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2243 { \
2244 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2245 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2246 fputs (",.", (FILE)); \
cbaaba19 2247 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2248 fputc ('\n', (FILE)); \
2249 } \
2250 } \
2251 } \
2252 while (0)
2253#endif
2254
ff2d10c1
AO
2255#if HAVE_GAS_WEAKREF
2256#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2257 do \
2258 { \
2259 fputs ("\t.weakref\t", (FILE)); \
2260 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2261 fputs (", ", (FILE)); \
2262 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2263 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2264 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2265 { \
2266 fputs ("\n\t.weakref\t.", (FILE)); \
2267 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2268 fputs (", .", (FILE)); \
2269 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2270 } \
2271 fputc ('\n', (FILE)); \
2272 } while (0)
2273#endif
2274
79c4e63f
AM
2275/* This implements the `alias' attribute. */
2276#undef ASM_OUTPUT_DEF_FROM_DECLS
2277#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2278 do \
2279 { \
2280 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2281 const char *name = IDENTIFIER_POINTER (TARGET); \
2282 if (TREE_CODE (DECL) == FUNCTION_DECL \
85b776df 2283 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
79c4e63f
AM
2284 { \
2285 if (TREE_PUBLIC (DECL)) \
2286 { \
2287 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2288 { \
2289 fputs ("\t.globl\t.", FILE); \
cbaaba19 2290 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2291 putc ('\n', FILE); \
2292 } \
2293 } \
2294 else if (TARGET_XCOFF) \
2295 { \
c167bc5b
DE
2296 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2297 { \
2298 fputs ("\t.lglobl\t.", FILE); \
2299 RS6000_OUTPUT_BASENAME (FILE, alias); \
2300 putc ('\n', FILE); \
2301 fputs ("\t.lglobl\t", FILE); \
2302 RS6000_OUTPUT_BASENAME (FILE, alias); \
2303 putc ('\n', FILE); \
2304 } \
79c4e63f
AM
2305 } \
2306 fputs ("\t.set\t.", FILE); \
cbaaba19 2307 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2308 fputs (",.", FILE); \
cbaaba19 2309 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2310 fputc ('\n', FILE); \
2311 } \
2312 ASM_OUTPUT_DEF (FILE, alias, name); \
2313 } \
2314 while (0)
290ad355 2315
1bc7c5b6
ZW
2316#define TARGET_ASM_FILE_START rs6000_file_start
2317
f045b2c9
RS
2318/* Output to assembler file text saying following lines
2319 may contain character constants, extra white space, comments, etc. */
2320
2321#define ASM_APP_ON ""
2322
2323/* Output to assembler file text saying following lines
2324 no longer contain unusual constructs. */
2325
2326#define ASM_APP_OFF ""
2327
f045b2c9
RS
2328/* How to refer to registers in assembler output.
2329 This sequence is indexed by compiler's hard-register-number (see above). */
2330
82e41834 2331extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2332
2333#define REGISTER_NAMES \
2334{ \
2335 &rs6000_reg_names[ 0][0], /* r0 */ \
2336 &rs6000_reg_names[ 1][0], /* r1 */ \
2337 &rs6000_reg_names[ 2][0], /* r2 */ \
2338 &rs6000_reg_names[ 3][0], /* r3 */ \
2339 &rs6000_reg_names[ 4][0], /* r4 */ \
2340 &rs6000_reg_names[ 5][0], /* r5 */ \
2341 &rs6000_reg_names[ 6][0], /* r6 */ \
2342 &rs6000_reg_names[ 7][0], /* r7 */ \
2343 &rs6000_reg_names[ 8][0], /* r8 */ \
2344 &rs6000_reg_names[ 9][0], /* r9 */ \
2345 &rs6000_reg_names[10][0], /* r10 */ \
2346 &rs6000_reg_names[11][0], /* r11 */ \
2347 &rs6000_reg_names[12][0], /* r12 */ \
2348 &rs6000_reg_names[13][0], /* r13 */ \
2349 &rs6000_reg_names[14][0], /* r14 */ \
2350 &rs6000_reg_names[15][0], /* r15 */ \
2351 &rs6000_reg_names[16][0], /* r16 */ \
2352 &rs6000_reg_names[17][0], /* r17 */ \
2353 &rs6000_reg_names[18][0], /* r18 */ \
2354 &rs6000_reg_names[19][0], /* r19 */ \
2355 &rs6000_reg_names[20][0], /* r20 */ \
2356 &rs6000_reg_names[21][0], /* r21 */ \
2357 &rs6000_reg_names[22][0], /* r22 */ \
2358 &rs6000_reg_names[23][0], /* r23 */ \
2359 &rs6000_reg_names[24][0], /* r24 */ \
2360 &rs6000_reg_names[25][0], /* r25 */ \
2361 &rs6000_reg_names[26][0], /* r26 */ \
2362 &rs6000_reg_names[27][0], /* r27 */ \
2363 &rs6000_reg_names[28][0], /* r28 */ \
2364 &rs6000_reg_names[29][0], /* r29 */ \
2365 &rs6000_reg_names[30][0], /* r30 */ \
2366 &rs6000_reg_names[31][0], /* r31 */ \
2367 \
2368 &rs6000_reg_names[32][0], /* fr0 */ \
2369 &rs6000_reg_names[33][0], /* fr1 */ \
2370 &rs6000_reg_names[34][0], /* fr2 */ \
2371 &rs6000_reg_names[35][0], /* fr3 */ \
2372 &rs6000_reg_names[36][0], /* fr4 */ \
2373 &rs6000_reg_names[37][0], /* fr5 */ \
2374 &rs6000_reg_names[38][0], /* fr6 */ \
2375 &rs6000_reg_names[39][0], /* fr7 */ \
2376 &rs6000_reg_names[40][0], /* fr8 */ \
2377 &rs6000_reg_names[41][0], /* fr9 */ \
2378 &rs6000_reg_names[42][0], /* fr10 */ \
2379 &rs6000_reg_names[43][0], /* fr11 */ \
2380 &rs6000_reg_names[44][0], /* fr12 */ \
2381 &rs6000_reg_names[45][0], /* fr13 */ \
2382 &rs6000_reg_names[46][0], /* fr14 */ \
2383 &rs6000_reg_names[47][0], /* fr15 */ \
2384 &rs6000_reg_names[48][0], /* fr16 */ \
2385 &rs6000_reg_names[49][0], /* fr17 */ \
2386 &rs6000_reg_names[50][0], /* fr18 */ \
2387 &rs6000_reg_names[51][0], /* fr19 */ \
2388 &rs6000_reg_names[52][0], /* fr20 */ \
2389 &rs6000_reg_names[53][0], /* fr21 */ \
2390 &rs6000_reg_names[54][0], /* fr22 */ \
2391 &rs6000_reg_names[55][0], /* fr23 */ \
2392 &rs6000_reg_names[56][0], /* fr24 */ \
2393 &rs6000_reg_names[57][0], /* fr25 */ \
2394 &rs6000_reg_names[58][0], /* fr26 */ \
2395 &rs6000_reg_names[59][0], /* fr27 */ \
2396 &rs6000_reg_names[60][0], /* fr28 */ \
2397 &rs6000_reg_names[61][0], /* fr29 */ \
2398 &rs6000_reg_names[62][0], /* fr30 */ \
2399 &rs6000_reg_names[63][0], /* fr31 */ \
2400 \
462f7901 2401 &rs6000_reg_names[64][0], /* was mq */ \
c81bebd7
MM
2402 &rs6000_reg_names[65][0], /* lr */ \
2403 &rs6000_reg_names[66][0], /* ctr */ \
2404 &rs6000_reg_names[67][0], /* ap */ \
2405 \
2406 &rs6000_reg_names[68][0], /* cr0 */ \
2407 &rs6000_reg_names[69][0], /* cr1 */ \
2408 &rs6000_reg_names[70][0], /* cr2 */ \
2409 &rs6000_reg_names[71][0], /* cr3 */ \
2410 &rs6000_reg_names[72][0], /* cr4 */ \
2411 &rs6000_reg_names[73][0], /* cr5 */ \
2412 &rs6000_reg_names[74][0], /* cr6 */ \
2413 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2414 \
f6b5d695 2415 &rs6000_reg_names[76][0], /* ca */ \
0ac081f6
AH
2416 \
2417 &rs6000_reg_names[77][0], /* v0 */ \
2418 &rs6000_reg_names[78][0], /* v1 */ \
2419 &rs6000_reg_names[79][0], /* v2 */ \
2420 &rs6000_reg_names[80][0], /* v3 */ \
2421 &rs6000_reg_names[81][0], /* v4 */ \
2422 &rs6000_reg_names[82][0], /* v5 */ \
2423 &rs6000_reg_names[83][0], /* v6 */ \
2424 &rs6000_reg_names[84][0], /* v7 */ \
2425 &rs6000_reg_names[85][0], /* v8 */ \
2426 &rs6000_reg_names[86][0], /* v9 */ \
2427 &rs6000_reg_names[87][0], /* v10 */ \
2428 &rs6000_reg_names[88][0], /* v11 */ \
2429 &rs6000_reg_names[89][0], /* v12 */ \
2430 &rs6000_reg_names[90][0], /* v13 */ \
2431 &rs6000_reg_names[91][0], /* v14 */ \
2432 &rs6000_reg_names[92][0], /* v15 */ \
2433 &rs6000_reg_names[93][0], /* v16 */ \
2434 &rs6000_reg_names[94][0], /* v17 */ \
2435 &rs6000_reg_names[95][0], /* v18 */ \
2436 &rs6000_reg_names[96][0], /* v19 */ \
2437 &rs6000_reg_names[97][0], /* v20 */ \
2438 &rs6000_reg_names[98][0], /* v21 */ \
2439 &rs6000_reg_names[99][0], /* v22 */ \
2440 &rs6000_reg_names[100][0], /* v23 */ \
2441 &rs6000_reg_names[101][0], /* v24 */ \
2442 &rs6000_reg_names[102][0], /* v25 */ \
2443 &rs6000_reg_names[103][0], /* v26 */ \
2444 &rs6000_reg_names[104][0], /* v27 */ \
2445 &rs6000_reg_names[105][0], /* v28 */ \
2446 &rs6000_reg_names[106][0], /* v29 */ \
2447 &rs6000_reg_names[107][0], /* v30 */ \
2448 &rs6000_reg_names[108][0], /* v31 */ \
2449 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2450 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2451 &rs6000_reg_names[111][0], /* spe_acc */ \
2452 &rs6000_reg_names[112][0], /* spefscr */ \
7d5175e1 2453 &rs6000_reg_names[113][0], /* sfp */ \
0258b6e4
PB
2454 &rs6000_reg_names[114][0], /* tfhar */ \
2455 &rs6000_reg_names[115][0], /* tfiar */ \
2456 &rs6000_reg_names[116][0], /* texasr */ \
23742a9e
RAR
2457 \
2458 &rs6000_reg_names[117][0], /* SPE rh0. */ \
2459 &rs6000_reg_names[118][0], /* SPE rh1. */ \
2460 &rs6000_reg_names[119][0], /* SPE rh2. */ \
2461 &rs6000_reg_names[120][0], /* SPE rh3. */ \
2462 &rs6000_reg_names[121][0], /* SPE rh4. */ \
2463 &rs6000_reg_names[122][0], /* SPE rh5. */ \
2464 &rs6000_reg_names[123][0], /* SPE rh6. */ \
2465 &rs6000_reg_names[124][0], /* SPE rh7. */ \
2466 &rs6000_reg_names[125][0], /* SPE rh8. */ \
2467 &rs6000_reg_names[126][0], /* SPE rh9. */ \
2468 &rs6000_reg_names[127][0], /* SPE rh10. */ \
2469 &rs6000_reg_names[128][0], /* SPE rh11. */ \
2470 &rs6000_reg_names[129][0], /* SPE rh12. */ \
2471 &rs6000_reg_names[130][0], /* SPE rh13. */ \
2472 &rs6000_reg_names[131][0], /* SPE rh14. */ \
2473 &rs6000_reg_names[132][0], /* SPE rh15. */ \
2474 &rs6000_reg_names[133][0], /* SPE rh16. */ \
2475 &rs6000_reg_names[134][0], /* SPE rh17. */ \
2476 &rs6000_reg_names[135][0], /* SPE rh18. */ \
2477 &rs6000_reg_names[136][0], /* SPE rh19. */ \
2478 &rs6000_reg_names[137][0], /* SPE rh20. */ \
2479 &rs6000_reg_names[138][0], /* SPE rh21. */ \
2480 &rs6000_reg_names[139][0], /* SPE rh22. */ \
2481 &rs6000_reg_names[140][0], /* SPE rh22. */ \
2482 &rs6000_reg_names[141][0], /* SPE rh24. */ \
2483 &rs6000_reg_names[142][0], /* SPE rh25. */ \
2484 &rs6000_reg_names[143][0], /* SPE rh26. */ \
2485 &rs6000_reg_names[144][0], /* SPE rh27. */ \
2486 &rs6000_reg_names[145][0], /* SPE rh28. */ \
2487 &rs6000_reg_names[146][0], /* SPE rh29. */ \
2488 &rs6000_reg_names[147][0], /* SPE rh30. */ \
2489 &rs6000_reg_names[148][0], /* SPE rh31. */ \
c81bebd7
MM
2490}
2491
f045b2c9
RS
2492/* Table of additional register names to use in user input. */
2493
2494#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2495 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2496 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2497 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2498 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2499 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2500 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2501 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2502 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2503 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2504 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2505 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2506 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2507 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2508 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2509 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2510 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2511 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2512 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2513 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2514 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2515 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2516 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2517 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2518 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2519 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2520 {"spe_acc", 111}, {"spefscr", 112}, \
462f7901 2521 /* no additional names for: lr, ctr, ap */ \
c4d38ccb
MM
2522 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2523 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
cacf1ca8 2524 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
f6b5d695
SB
2525 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2526 {"xer", 76}, \
cacf1ca8
MM
2527 /* VSX registers overlaid on top of FR, Altivec registers */ \
2528 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2529 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2530 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2531 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2532 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2533 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2534 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2535 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2536 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2537 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2538 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2539 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2540 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2541 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2542 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
0258b6e4
PB
2543 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2544 /* Transactional Memory Facility (HTM) Registers. */ \
23742a9e
RAR
2545 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116}, \
2546 /* SPE high registers. */ \
2547 {"rh0", 117}, {"rh1", 118}, {"rh2", 119}, {"rh3", 120}, \
2548 {"rh4", 121}, {"rh5", 122}, {"rh6", 123}, {"rh7", 124}, \
2549 {"rh8", 125}, {"rh9", 126}, {"rh10", 127}, {"rh11", 128}, \
2550 {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132}, \
2551 {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136}, \
2552 {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140}, \
2553 {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144}, \
2554 {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148}, \
2555}
f045b2c9 2556
f045b2c9
RS
2557/* This is how to output an element of a case-vector that is relative. */
2558
e1565e65 2559#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2560 do { char buf[100]; \
e1565e65 2561 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2562 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2563 assemble_name (FILE, buf); \
19d2d16f 2564 putc ('-', FILE); \
3daf36a4
ILT
2565 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2566 assemble_name (FILE, buf); \
19d2d16f 2567 putc ('\n', FILE); \
3daf36a4 2568 } while (0)
f045b2c9
RS
2569
2570/* This is how to output an assembler line
2571 that says to advance the location counter
2572 to a multiple of 2**LOG bytes. */
2573
2574#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2575 if ((LOG) != 0) \
2576 fprintf (FILE, "\t.align %d\n", (LOG))
2577
58082ff6
PH
2578/* How to align the given loop. */
2579#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2580
d28073d4
BS
2581/* Alignment guaranteed by __builtin_malloc. */
2582/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2583 However, specifying the stronger guarantee currently leads to
2584 a regression in SPEC CPU2006 437.leslie3d. The stronger
2585 guarantee should be implemented here once that's fixed. */
2586#define MALLOC_ABI_ALIGNMENT (64)
2587
9ebbca7d
GK
2588/* Pick up the return address upon entry to a procedure. Used for
2589 dwarf2 unwind information. This also enables the table driven
2590 mechanism. */
2591
1de43f85
DE
2592#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2593#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
9ebbca7d 2594
83720594
RH
2595/* Describe how we implement __builtin_eh_return. */
2596#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2597#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2598
f045b2c9
RS
2599/* Print operand X (an rtx) in assembler syntax to file FILE.
2600 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2601 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2602
2603#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2604
2605/* Define which CODE values are valid. */
2606
3cf437d4 2607#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
f045b2c9
RS
2608
2609/* Print a memory address as an operand to reference that memory location. */
2610
2611#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2612
c82846bc
DE
2613/* For switching between functions with different target attributes. */
2614#define SWITCHABLE_TARGET 1
2615
b6c9286a
MM
2616/* uncomment for disabling the corresponding default options */
2617/* #define MACHINE_no_sched_interblock */
2618/* #define MACHINE_no_sched_speculative */
2619/* #define MACHINE_no_sched_speculative_load */
2620
766a866c 2621/* General flags. */
a7df97e6 2622extern int frame_pointer_needed;
0ac081f6 2623
7fa14a01
MM
2624/* Classification of the builtin functions as to which switches enable the
2625 builtin, and what attributes it should have. We used to use the target
2626 flags macros, but we've run out of bits, so we now map the options into new
2627 settings used here. */
2628
2629/* Builtin attributes. */
2630#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2631#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2632#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2633#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2634#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2635#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2636#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2637#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2638#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2639
2640#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2641#define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
2642#define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
2643#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2644#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2645
2646/* Miscellaneous information. */
0258b6e4
PB
2647#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2648#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
01f61a78
PB
2649#define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2650#define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
0258b6e4 2651#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
1c9df37c
MM
2652
2653/* Convenience macros to document the instruction type. */
7fa14a01
MM
2654#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2655#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2656
2657/* Builtin targets. For now, we reuse the masks for those options that are in
8241efd1
PB
2658 target flags, and pick three random bits for SPE, paired and ldbl128 which
2659 aren't in target_flags. */
4b705221 2660#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
7fa14a01
MM
2661#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2662#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
f62511da 2663#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
8fa97501 2664#define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
f62511da 2665#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
0258b6e4 2666#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
7fa14a01
MM
2667#define RS6000_BTM_SPE MASK_STRING /* E500 */
2668#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2669#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2670#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2671#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2672#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2673#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
7fa14a01 2674#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
06b39289 2675#define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
f93bc5b3 2676#define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
8241efd1 2677#define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
7fa14a01
MM
2678
2679#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2680 | RS6000_BTM_VSX \
f62511da 2681 | RS6000_BTM_P8_VECTOR \
8fa97501 2682 | RS6000_BTM_P9_VECTOR \
f62511da 2683 | RS6000_BTM_CRYPTO \
7fa14a01
MM
2684 | RS6000_BTM_FRE \
2685 | RS6000_BTM_FRES \
2686 | RS6000_BTM_FRSQRTE \
2687 | RS6000_BTM_FRSQRTES \
0258b6e4 2688 | RS6000_BTM_HTM \
7fa14a01 2689 | RS6000_BTM_POPCNTD \
06b39289 2690 | RS6000_BTM_CELL \
f93bc5b3 2691 | RS6000_BTM_DFP \
8241efd1 2692 | RS6000_BTM_HARD_FLOAT \
006df05d 2693 | RS6000_BTM_LDBL128)
7fa14a01
MM
2694
2695/* Define builtin enum index. */
2696
2697#undef RS6000_BUILTIN_1
2698#undef RS6000_BUILTIN_2
2699#undef RS6000_BUILTIN_3
2700#undef RS6000_BUILTIN_A
2701#undef RS6000_BUILTIN_D
2702#undef RS6000_BUILTIN_E
0258b6e4 2703#undef RS6000_BUILTIN_H
7fa14a01
MM
2704#undef RS6000_BUILTIN_P
2705#undef RS6000_BUILTIN_Q
2706#undef RS6000_BUILTIN_S
2707#undef RS6000_BUILTIN_X
2708
2709#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2710#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2711#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2712#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2713#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2714#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
0258b6e4 2715#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
7fa14a01
MM
2716#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2717#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2718#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2719#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
1c9df37c 2720
0ac081f6
AH
2721enum rs6000_builtins
2722{
1c9df37c 2723#include "rs6000-builtin.def"
a72c65c7 2724
58646b77
PB
2725 RS6000_BUILTIN_COUNT
2726};
2727
7fa14a01
MM
2728#undef RS6000_BUILTIN_1
2729#undef RS6000_BUILTIN_2
2730#undef RS6000_BUILTIN_3
2731#undef RS6000_BUILTIN_A
2732#undef RS6000_BUILTIN_D
2733#undef RS6000_BUILTIN_E
0258b6e4 2734#undef RS6000_BUILTIN_H
7fa14a01
MM
2735#undef RS6000_BUILTIN_P
2736#undef RS6000_BUILTIN_Q
2737#undef RS6000_BUILTIN_S
2738#undef RS6000_BUILTIN_X
1c9df37c 2739
58646b77
PB
2740enum rs6000_builtin_type_index
2741{
2742 RS6000_BTI_NOT_OPAQUE,
2743 RS6000_BTI_opaque_V2SI,
2744 RS6000_BTI_opaque_V2SF,
2745 RS6000_BTI_opaque_p_V2SI,
2746 RS6000_BTI_opaque_V4SI,
2747 RS6000_BTI_V16QI,
a16a872d 2748 RS6000_BTI_V1TI,
58646b77
PB
2749 RS6000_BTI_V2SI,
2750 RS6000_BTI_V2SF,
a72c65c7
MM
2751 RS6000_BTI_V2DI,
2752 RS6000_BTI_V2DF,
58646b77
PB
2753 RS6000_BTI_V4HI,
2754 RS6000_BTI_V4SI,
2755 RS6000_BTI_V4SF,
2756 RS6000_BTI_V8HI,
2757 RS6000_BTI_unsigned_V16QI,
a16a872d 2758 RS6000_BTI_unsigned_V1TI,
58646b77
PB
2759 RS6000_BTI_unsigned_V8HI,
2760 RS6000_BTI_unsigned_V4SI,
a72c65c7 2761 RS6000_BTI_unsigned_V2DI,
58646b77
PB
2762 RS6000_BTI_bool_char, /* __bool char */
2763 RS6000_BTI_bool_short, /* __bool short */
2764 RS6000_BTI_bool_int, /* __bool int */
a72c65c7 2765 RS6000_BTI_bool_long, /* __bool long */
58646b77
PB
2766 RS6000_BTI_pixel, /* __pixel */
2767 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2768 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2769 RS6000_BTI_bool_V4SI, /* __vector __bool int */
a72c65c7 2770 RS6000_BTI_bool_V2DI, /* __vector __bool long */
58646b77
PB
2771 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2772 RS6000_BTI_long, /* long_integer_type_node */
2773 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
c9485473
MM
2774 RS6000_BTI_long_long, /* long_long_integer_type_node */
2775 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
58646b77
PB
2776 RS6000_BTI_INTQI, /* intQI_type_node */
2777 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2778 RS6000_BTI_INTHI, /* intHI_type_node */
2779 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2780 RS6000_BTI_INTSI, /* intSI_type_node */
2781 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
a72c65c7
MM
2782 RS6000_BTI_INTDI, /* intDI_type_node */
2783 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
a16a872d
MM
2784 RS6000_BTI_INTTI, /* intTI_type_node */
2785 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
58646b77 2786 RS6000_BTI_float, /* float_type_node */
a72c65c7 2787 RS6000_BTI_double, /* double_type_node */
06b39289
MM
2788 RS6000_BTI_long_double, /* long_double_type_node */
2789 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2790 RS6000_BTI_dfloat128, /* dfloat128_type_node */
58646b77 2791 RS6000_BTI_void, /* void_type_node */
6712d6fd
MM
2792 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2793 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
58646b77 2794 RS6000_BTI_MAX
0ac081f6 2795};
58646b77
PB
2796
2797
2798#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2799#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2800#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2801#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2802#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
a16a872d 2803#define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
a72c65c7
MM
2804#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2805#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
58646b77
PB
2806#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2807#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2808#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2809#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2810#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2811#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2812#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
a16a872d 2813#define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
58646b77
PB
2814#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2815#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
a72c65c7 2816#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
58646b77
PB
2817#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2818#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2819#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
a72c65c7 2820#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
58646b77
PB
2821#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2822#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2823#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2824#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
a72c65c7 2825#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
58646b77
PB
2826#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2827
c9485473
MM
2828#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2829#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
58646b77
PB
2830#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2831#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2832#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2833#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2834#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2835#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2836#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2837#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
a72c65c7
MM
2838#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2839#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
a16a872d
MM
2840#define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2841#define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
58646b77 2842#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
a72c65c7 2843#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
06b39289
MM
2844#define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2845#define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2846#define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
58646b77 2847#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
6712d6fd
MM
2848#define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2849#define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
58646b77
PB
2850
2851extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2852extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2853
807e902e 2854#define TARGET_SUPPORTS_WIDE_INT 1