]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/s390/s390.h
redirect_jump* can take a rtx_insn *
[thirdparty/gcc.git] / gcc / config / s390 / s390.h
CommitLineData
9db1d521 1/* Definitions of target machine for GNU compiler, for IBM S/390
5624e564 2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
9db1d521 3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
f314b9b1 4 Ulrich Weigand (uweigand@de.ibm.com).
963fc8d0 5 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
9db1d521 6
58add37a 7This file is part of GCC.
9db1d521 8
58add37a
UW
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
2f83c7d6 11Software Foundation; either version 3, or (at your option) any later
58add37a
UW
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
9db1d521
HP
18
19You should have received a copy of the GNU General Public License
2f83c7d6
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
9db1d521
HP
22
23#ifndef _S390_H
24#define _S390_H
25
f13e0d4e
UW
26/* Optional architectural facilities supported by the processor. */
27
28enum processor_flags
29{
30 PF_IEEE_FLOAT = 1,
31 PF_ZARCH = 2,
ec24698e 32 PF_LONG_DISPLACEMENT = 4,
85dae55a 33 PF_EXTIMM = 8,
93538e8e 34 PF_DFP = 16,
65b1d8ea 35 PF_Z10 = 32,
22ac2c2f 36 PF_Z196 = 64,
5a3fe9b6
AK
37 PF_ZEC12 = 128,
38 PF_TX = 256
f13e0d4e
UW
39};
40
90c6fd8a
AK
41/* This is necessary to avoid a warning about comparing different enum
42 types. */
43#define s390_tune_attr ((enum attr_cpu)s390_tune)
44
963fc8d0
AK
45/* These flags indicate that the generated code should run on a cpu
46 providing the respective hardware facility regardless of the
47 current cpu mode (ESA or z/Architecture). */
48
f13e0d4e
UW
49#define TARGET_CPU_IEEE_FLOAT \
50 (s390_arch_flags & PF_IEEE_FLOAT)
51#define TARGET_CPU_ZARCH \
52 (s390_arch_flags & PF_ZARCH)
53#define TARGET_CPU_LONG_DISPLACEMENT \
54 (s390_arch_flags & PF_LONG_DISPLACEMENT)
ec24698e
UW
55#define TARGET_CPU_EXTIMM \
56 (s390_arch_flags & PF_EXTIMM)
85dae55a
AK
57#define TARGET_CPU_DFP \
58 (s390_arch_flags & PF_DFP)
93538e8e
AK
59#define TARGET_CPU_Z10 \
60 (s390_arch_flags & PF_Z10)
65b1d8ea
AK
61#define TARGET_CPU_Z196 \
62 (s390_arch_flags & PF_Z196)
22ac2c2f
AK
63#define TARGET_CPU_ZEC12 \
64 (s390_arch_flags & PF_ZEC12)
5a3fe9b6
AK
65#define TARGET_CPU_HTM \
66 (s390_arch_flags & PF_TX)
f13e0d4e 67
963fc8d0
AK
68/* These flags indicate that the generated code should run on a cpu
69 providing the respective hardware facility when run in
70 z/Architecture mode. */
71
f13e0d4e
UW
72#define TARGET_LONG_DISPLACEMENT \
73 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
ec24698e
UW
74#define TARGET_EXTIMM \
75 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
85dae55a 76#define TARGET_DFP \
fb068247 77 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
93538e8e
AK
78#define TARGET_Z10 \
79 (TARGET_ZARCH && TARGET_CPU_Z10)
65b1d8ea
AK
80#define TARGET_Z196 \
81 (TARGET_ZARCH && TARGET_CPU_Z196)
22ac2c2f
AK
82#define TARGET_ZEC12 \
83 (TARGET_ZARCH && TARGET_CPU_ZEC12)
167f68ed 84#define TARGET_HTM (TARGET_OPT_HTM)
65b1d8ea
AK
85
86
87#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
42c78618 88
862a2d83 89/* Run-time target specification. */
9db1d521 90
a771c4b3
UW
91/* Defaults for option flags defined only on some subtargets. */
92#ifndef TARGET_TPF_PROFILING
93#define TARGET_TPF_PROFILING 0
94#endif
95
4798630c
D
96/* This will be overridden by OS headers. */
97#define TARGET_TPF 0
98
862a2d83 99/* Target CPU builtins. */
5a3fe9b6
AK
100#define TARGET_CPU_CPP_BUILTINS() \
101 do \
102 { \
103 builtin_assert ("cpu=s390"); \
104 builtin_assert ("machine=s390"); \
105 builtin_define ("__s390__"); \
106 if (TARGET_ZARCH) \
107 builtin_define ("__zarch__"); \
108 if (TARGET_64BIT) \
109 builtin_define ("__s390x__"); \
110 if (TARGET_LONG_DOUBLE_128) \
111 builtin_define ("__LONG_DOUBLE_128__"); \
112 if (TARGET_HTM) \
113 builtin_define ("__HTM__"); \
114 } \
862a2d83 115 while (0)
9db1d521 116
58d10f89 117#ifdef DEFAULT_TARGET_64BIT
5a3fe9b6 118#define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP | MASK_OPT_HTM)
58d10f89 119#else
85dae55a 120#define TARGET_DEFAULT 0
58d10f89
UW
121#endif
122
f13e0d4e
UW
123/* Support for configure-time defaults. */
124#define OPTION_DEFAULT_SPECS \
125 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
126 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
127 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
128
129/* Defaulting rules. */
130#ifdef DEFAULT_TARGET_64BIT
131#define DRIVER_SELF_SPECS \
132 "%{!m31:%{!m64:-m64}}", \
133 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
134 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
135#else
136#define DRIVER_SELF_SPECS \
137 "%{!m31:%{!m64:-m31}}", \
138 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
139 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
140#endif
141
638e37c2 142/* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
0387c142
WG
143#define S390_TDC_POSITIVE_ZERO (1 << 11)
144#define S390_TDC_NEGATIVE_ZERO (1 << 10)
145#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
146#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
147#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
148#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
149#define S390_TDC_POSITIVE_INFINITY (1 << 5)
150#define S390_TDC_NEGATIVE_INFINITY (1 << 4)
151#define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
152#define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
153#define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
154#define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
155
156/* The following values are different for DFP. */
157#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
158#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
159#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
160#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
161
f4aa3848 162/* For signbit, the BFP-DFP-difference makes no difference. */
0f67fa83 163#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
0387c142
WG
164 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
165 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
0f67fa83
WG
166 | S390_TDC_NEGATIVE_INFINITY \
167 | S390_TDC_NEGATIVE_QUIET_NAN \
168 | S390_TDC_NEGATIVE_SIGNALING_NAN )
169
638e37c2
WG
170#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
171 | S390_TDC_NEGATIVE_INFINITY )
9db1d521 172
a5ba7b92
AK
173/* This is used by float.h to define the float_t and double_t data
174 types. For historical reasons both are double on s390 what cannot
175 be changed anymore. */
176#define TARGET_FLT_EVAL_METHOD 1
177
9db1d521
HP
178/* Target machine storage layout. */
179
862a2d83 180/* Everything is big-endian. */
9db1d521 181#define BITS_BIG_ENDIAN 1
9db1d521 182#define BYTES_BIG_ENDIAN 1
9db1d521
HP
183#define WORDS_BIG_ENDIAN 1
184
9602b6a1
AK
185#define STACK_SIZE_MODE (Pmode)
186
fe86047c 187#ifndef IN_LIBGCC2
9602b6a1
AK
188
189/* Width of a word, in units (bytes). */
190 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
191
192/* Width of a pointer. To be used instead of UNITS_PER_WORD in
193 ABI-relevant contexts. This always matches
194 GET_MODE_SIZE (Pmode). */
195 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
196 #define MIN_UNITS_PER_WORD 4
197 #define MAX_BITS_PER_WORD 64
198#else
199
200 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
201 the library should export TImode functions or not. Thus, we have
202 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
203 #ifdef __s390x__
204 #define UNITS_PER_WORD 8
205 #else
206 #define UNITS_PER_WORD 4
207 #endif
fe86047c 208#endif
9602b6a1
AK
209
210/* Width of a pointer, in bits. */
211#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
9db1d521 212
9db1d521 213/* Allocation boundary (in *bits*) for storing arguments in argument list. */
9db1d521
HP
214#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
215
216/* Boundary (in *bits*) on which stack pointer should be aligned. */
9db1d521
HP
217#define STACK_BOUNDARY 64
218
219/* Allocation boundary (in *bits*) for the code of a function. */
d0de9e13 220#define FUNCTION_BOUNDARY 64
9db1d521
HP
221
222/* There is no point aligning anything to a rounder boundary than this. */
9db1d521
HP
223#define BIGGEST_ALIGNMENT 64
224
225/* Alignment of field after `int : 0' in a structure. */
9db1d521
HP
226#define EMPTY_FIELD_BOUNDARY 32
227
f710504c 228/* Alignment on even addresses for LARL instruction. */
9db1d521 229#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
df8a1d28 230#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
9db1d521 231
862a2d83 232/* Alignment is not required by the hardware. */
9db1d521
HP
233#define STRICT_ALIGNMENT 0
234
862a2d83
UW
235/* Mode of stack savearea.
236 FUNCTION is VOIDmode because calling convention maintains SP.
237 BLOCK needs Pmode for SP.
238 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
239#define STACK_SAVEAREA_MODE(LEVEL) \
240 (LEVEL == SAVE_FUNCTION ? VOIDmode \
43ab026f 241 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
862a2d83 242
9db1d521 243
862a2d83 244/* Type layout. */
9db1d521 245
862a2d83
UW
246/* Sizes in bits of the source language data types. */
247#define SHORT_TYPE_SIZE 16
248#define INT_TYPE_SIZE 32
249#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
862a2d83
UW
250#define LONG_LONG_TYPE_SIZE 64
251#define FLOAT_TYPE_SIZE 32
252#define DOUBLE_TYPE_SIZE 64
f61a2c7d
AK
253#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
254
f61a2c7d
AK
255/* Work around target_flags dependency in ada/targtyps.c. */
256#define WIDEST_HARDWARE_FP_SIZE 64
862a2d83
UW
257
258/* We use "unsigned char" as default. */
259#define DEFAULT_SIGNED_CHAR 0
260
261
262/* Register usage. */
263
264/* We have 16 general purpose registers (registers 0-15),
265 and 16 floating point registers (registers 16-31).
266 (On non-IEEE machines, we have only 4 fp registers.)
c7453384 267
862a2d83
UW
268 Amongst the general purpose registers, some are used
269 for specific purposes:
270 GPR 11: Hard frame pointer (if needed)
271 GPR 12: Global offset table pointer (if needed)
272 GPR 13: Literal pool base register
273 GPR 14: Return address register
274 GPR 15: Stack pointer
c7453384 275
c5aa1d12 276 Registers 32-35 are 'fake' hard registers that do not
862a2d83
UW
277 correspond to actual hardware:
278 Reg 32: Argument pointer
279 Reg 33: Condition code
f4aa3848 280 Reg 34: Frame pointer
c5aa1d12 281 Reg 35: Return address pointer
862a2d83 282
f4aa3848 283 Registers 36 and 37 are mapped to access registers
c5aa1d12
UW
284 0 and 1, used to implement thread-local storage. */
285
286#define FIRST_PSEUDO_REGISTER 38
862a2d83
UW
287
288/* Standard register usage. */
8e509cf9
UW
289#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
290#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
142cd70f 291#define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
8e509cf9 292#define CC_REGNO_P(N) ((N) == 33)
a38e09bc 293#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
c5aa1d12 294#define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
8e509cf9
UW
295
296#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
297#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
298#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
299#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
4888ec5d 300#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
c5aa1d12 301#define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
9db1d521 302
862a2d83 303/* Set up fixed registers and calling convention:
9db1d521 304
862a2d83
UW
305 GPRs 0-5 are always call-clobbered,
306 GPRs 6-15 are always call-saved.
307 GPR 12 is fixed if used as GOT pointer.
308 GPR 13 is always fixed (as literal pool pointer).
545d16ff 309 GPR 14 is always fixed on S/390 machines (as return address).
862a2d83
UW
310 GPR 15 is always fixed (as stack pointer).
311 The 'fake' hard registers are call-clobbered and fixed.
c5aa1d12 312 The access registers are call-saved and fixed.
9db1d521 313
862a2d83
UW
314 On 31-bit, FPRs 18-19 are call-clobbered;
315 on 64-bit, FPRs 24-31 are call-clobbered.
316 The remaining FPRs are call-saved. */
9db1d521
HP
317
318#define FIXED_REGISTERS \
319{ 0, 0, 0, 0, \
320 0, 0, 0, 0, \
321 0, 0, 0, 0, \
322 0, 1, 1, 1, \
323 0, 0, 0, 0, \
324 0, 0, 0, 0, \
325 0, 0, 0, 0, \
326 0, 0, 0, 0, \
c5aa1d12
UW
327 1, 1, 1, 1, \
328 1, 1 }
9db1d521 329
9db1d521
HP
330#define CALL_USED_REGISTERS \
331{ 1, 1, 1, 1, \
332 1, 1, 0, 0, \
333 0, 0, 0, 0, \
334 0, 1, 1, 1, \
4023fb28
UW
335 1, 1, 1, 1, \
336 1, 1, 1, 1, \
337 1, 1, 1, 1, \
338 1, 1, 1, 1, \
c5aa1d12
UW
339 1, 1, 1, 1, \
340 1, 1 }
4023fb28 341
4023fb28
UW
342#define CALL_REALLY_USED_REGISTERS \
343{ 1, 1, 1, 1, \
9db1d521 344 1, 1, 0, 0, \
4023fb28
UW
345 0, 0, 0, 0, \
346 0, 0, 0, 0, \
9db1d521
HP
347 1, 1, 1, 1, \
348 1, 1, 1, 1, \
349 1, 1, 1, 1, \
4023fb28 350 1, 1, 1, 1, \
c5aa1d12
UW
351 1, 1, 1, 1, \
352 0, 0 }
9db1d521 353
862a2d83
UW
354/* Preferred register allocation order. */
355#define REG_ALLOC_ORDER \
7633f08e 356{ 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
862a2d83
UW
357 16, 17, 18, 19, 20, 21, 22, 23, \
358 24, 25, 26, 27, 28, 29, 30, 31, \
c5aa1d12 359 15, 32, 33, 34, 35, 36, 37 }
9db1d521 360
9db1d521 361
862a2d83 362/* Fitting values into registers. */
c7453384 363
862a2d83
UW
364/* Integer modes <= word size fit into any GPR.
365 Integer modes > word size fit into successive GPRs, starting with
366 an even-numbered register.
367 SImode and DImode fit into FPRs as well.
c7453384 368
862a2d83
UW
369 Floating point modes <= word size fit into any FPR or GPR.
370 Floating point modes > word size (i.e. DFmode on 32-bit) fit
371 into any FPR, or an even-odd GPR pair.
f61a2c7d 372 TFmode fits only into an even-odd FPR pair.
c7453384 373
862a2d83
UW
374 Complex floating point modes fit either into two FPRs, or into
375 successive GPRs (again starting with an even number).
f61a2c7d 376 TCmode fits only into two successive even-odd FPR pairs.
c7453384 377
862a2d83 378 Condition code modes fit only into the CC register. */
9db1d521 379
74aa8b4b
AK
380/* Because all registers in a class have the same size HARD_REGNO_NREGS
381 is equivalent to CLASS_MAX_NREGS. */
9db1d521 382#define HARD_REGNO_NREGS(REGNO, MODE) \
74aa8b4b
AK
383 s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
384
385#define HARD_REGNO_MODE_OK(REGNO, MODE) \
386 s390_hard_regno_mode_ok ((REGNO), (MODE))
387
388#define HARD_REGNO_RENAME_OK(FROM, TO) \
7633f08e
UW
389 s390_hard_regno_rename_ok (FROM, TO)
390
9db1d521
HP
391#define MODES_TIEABLE_P(MODE1, MODE2) \
392 (((MODE1) == SFmode || (MODE1) == DFmode) \
393 == ((MODE2) == SFmode || (MODE2) == DFmode))
394
9602b6a1
AK
395/* When generating code that runs in z/Architecture mode,
396 but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
397 the ABI guarantees only that the lower 4 bytes are
398 saved across calls, however. */
399#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
400 (!TARGET_64BIT && TARGET_ZARCH \
401 && GET_MODE_SIZE (MODE) > 4 \
402 && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32))
403
862a2d83
UW
404/* Maximum number of registers to represent a value of mode MODE
405 in a register of class CLASS. */
406#define CLASS_MAX_NREGS(CLASS, MODE) \
74aa8b4b 407 s390_class_max_nregs ((CLASS), (MODE))
4023fb28 408
862a2d83
UW
409/* If a 4-byte value is loaded into a FPR, it is placed into the
410 *upper* half of the register, not the lower. Therefore, we
c5aa1d12
UW
411 cannot use SUBREGs to switch between modes in FP registers.
412 Likewise for access registers, since they have only half the
413 word size on 64-bit. */
f61a2c7d
AK
414#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
415 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
416 ? ((reg_classes_intersect_p (FP_REGS, CLASS) \
417 && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8)) \
418 || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
9db1d521 419
862a2d83 420/* Register classes. */
c7453384 421
862a2d83
UW
422/* We use the following register classes:
423 GENERAL_REGS All general purpose registers
424 ADDR_REGS All general purpose registers except %r0
425 (These registers can be used in address generation)
426 FP_REGS All floating point registers
c5aa1d12
UW
427 CC_REGS The condition code register
428 ACCESS_REGS The access registers
c7453384 429
862a2d83
UW
430 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
431 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
c5aa1d12
UW
432 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
433 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
c7453384 434
862a2d83
UW
435 NO_REGS No registers
436 ALL_REGS All registers
c7453384 437
862a2d83 438 Note that the 'fake' frame pointer and argument pointer registers
c5aa1d12 439 are included amongst the address registers here. */
9db1d521
HP
440
441enum reg_class
442{
c5aa1d12 443 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
f4aa3848 444 ADDR_CC_REGS, GENERAL_CC_REGS,
4023fb28
UW
445 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
446 ALL_REGS, LIM_REG_CLASSES
9db1d521 447};
9db1d521
HP
448#define N_REG_CLASSES (int) LIM_REG_CLASSES
449
c5aa1d12
UW
450#define REG_CLASS_NAMES \
451{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
452 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
453 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
9db1d521 454
862a2d83 455/* Class -> register mapping. */
9db1d521
HP
456#define REG_CLASS_CONTENTS \
457{ \
458 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
9dc62c00 459 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
a38e09bc
AK
460 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
461 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
c5aa1d12 462 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
9dc62c00
AK
463 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
464 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
9db1d521 465 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
a38e09bc
AK
466 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
467 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
c5aa1d12 468 { 0xffffffff, 0x0000003f }, /* ALL_REGS */ \
9db1d521
HP
469}
470
058e97ec
VM
471/* In some case register allocation order is not enough for IRA to
472 generate a good code. The following macro (if defined) increases
473 cost of REGNO for a pseudo approximately by pseudo usage frequency
474 multiplied by the macro value.
475
476 We avoid usage of BASE_REGNUM by nonzero macro value because the
477 reload can decide not to use the hard register because some
478 constant was forced to be in memory. */
479#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
dba0dd68 480 (regno != BASE_REGNUM ? 0.0 : 0.5)
058e97ec 481
862a2d83
UW
482/* Register -> class mapping. */
483extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
484#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
9db1d521 485
862a2d83
UW
486/* ADDR_REGS can be used as base or index register. */
487#define INDEX_REG_CLASS ADDR_REGS
488#define BASE_REG_CLASS ADDR_REGS
9db1d521 489
862a2d83
UW
490/* Check whether REGNO is a hard register of the suitable class
491 or a pseudo register currently allocated to one such. */
492#define REGNO_OK_FOR_INDEX_P(REGNO) \
493 (((REGNO) < FIRST_PSEUDO_REGISTER \
93fa8428
AK
494 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
495 || ADDR_REGNO_P (reg_renumber[REGNO]))
862a2d83 496#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
9db1d521 497
9db1d521 498
963fc8d0
AK
499/* We need secondary memory to move data between GPRs and FPRs. With
500 DFP the ldgr lgdr instructions are available. But these
501 instructions do not handle GPR pairs so it is not possible for 31
502 bit. */
862a2d83 503#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
85dae55a
AK
504 ((CLASS1) != (CLASS2) \
505 && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS) \
963fc8d0 506 && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
862a2d83
UW
507
508/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
509 because the movsi and movsf patterns don't handle r/f moves. */
510#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
511 (GET_MODE_BITSIZE (MODE) < 32 \
512 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
513 : MODE)
514
515
862a2d83 516/* Stack layout and calling conventions. */
c7453384 517
862a2d83
UW
518/* Our stack grows from higher to lower addresses. However, local variables
519 are accessed by positive offsets, and function arguments are stored at
520 increasing addresses. */
521#define STACK_GROWS_DOWNWARD
63296cb1 522#define FRAME_GROWS_DOWNWARD 1
862a2d83 523/* #undef ARGS_GROW_DOWNWARD */
9db1d521 524
862a2d83
UW
525/* The basic stack layout looks like this: the stack pointer points
526 to the register save area for called functions. Above that area
527 is the location to place outgoing arguments. Above those follow
528 dynamic allocations (alloca), and finally the local variables. */
9db1d521 529
862a2d83
UW
530/* Offset from stack-pointer to first location of outgoing args. */
531#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
9db1d521 532
862a2d83 533/* Offset within stack frame to start allocating local variables at. */
63296cb1 534#define STARTING_FRAME_OFFSET 0
9db1d521 535
862a2d83
UW
536/* Offset from the stack pointer register to an item dynamically
537 allocated on the stack, e.g., by `alloca'. */
63296cb1 538#define STACK_DYNAMIC_OFFSET(FUNDECL) \
38173d38 539 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
9db1d521 540
862a2d83
UW
541/* Offset of first parameter from the argument pointer register value.
542 We have a fake argument pointer register that points directly to
543 the argument area. */
544#define FIRST_PARM_OFFSET(FNDECL) 0
9db1d521 545
f4aa3848 546/* Defining this macro makes __builtin_frame_address(0) and
c6d01079
AK
547 __builtin_return_address(0) work with -fomit-frame-pointer. */
548#define INITIAL_FRAME_ADDRESS_RTX \
0a81f074 549 (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
c6d01079 550
c7453384 551/* The return address of the current frame is retrieved
4023fb28
UW
552 from the initial value of register RETURN_REGNUM.
553 For frames farther back, we use the stack slot where
554 the corresponding RETURN_REGNUM register was saved. */
c6d01079
AK
555#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
556 (TARGET_PACKED_STACK ? \
0a81f074
RS
557 plus_constant (Pmode, (FRAME), \
558 STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
4023fb28 559
78791a80
AK
560/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
561 builtin_frame_address. Otherwise arg pointer -
562 STACK_POINTER_OFFSET would be returned for
563 __builtin_frame_address(0) what might result in an address pointing
564 somewhere into the middle of the local variables since the packed
565 stack layout generally does not need all the bytes in the register
566 save area. */
567#define FRAME_ADDR_RTX(FRAME) \
568 DYNAMIC_CHAIN_ADDRESS ((FRAME))
569
c6d01079 570#define RETURN_ADDR_RTX(COUNT, FRAME) \
5d4d885c 571 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
9db1d521 572
862a2d83 573/* In 31-bit mode, we need to mask off the high bit of return addresses. */
a556fd39 574#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
9db1d521 575
4023fb28 576
862a2d83 577/* Exception handling. */
c7453384 578
862a2d83
UW
579/* Describe calling conventions for DWARF-2 exception handling. */
580#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
4023fb28 581#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
9db1d521
HP
582#define DWARF_FRAME_RETURN_COLUMN 14
583
584/* Describe how we implement __builtin_eh_return. */
585#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
a38e09bc 586#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
f4aa3848 587
18789f4e
UW
588/* Select a format to encode pointers in exception handling data. */
589#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
590 (flag_pic \
591 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
592 : DW_EH_PE_absptr)
593
9602b6a1
AK
594/* Register save slot alignment. */
595#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
596
f276b762
AK
597/* Let the assembler generate debug line info. */
598#define DWARF2_ASM_LINE_DEBUG_INFO 1
599
9db1d521 600
862a2d83 601/* Frame registers. */
9db1d521 602
862a2d83
UW
603#define STACK_POINTER_REGNUM 15
604#define FRAME_POINTER_REGNUM 34
605#define HARD_FRAME_POINTER_REGNUM 11
606#define ARG_POINTER_REGNUM 32
a38e09bc 607#define RETURN_ADDRESS_POINTER_REGNUM 35
9db1d521 608
c7453384
EC
609/* The static chain must be call-clobbered, but not used for
610 function argument passing. As register 1 is clobbered by
862a2d83
UW
611 the trampoline code, we only have one option. */
612#define STATIC_CHAIN_REGNUM 0
9db1d521 613
862a2d83
UW
614/* Number of hardware registers that go into the DWARF-2 unwind info.
615 To avoid ABI incompatibility, this number must not change even as
616 'fake' hard registers are added or removed. */
617#define DWARF_FRAME_REGISTERS 34
9db1d521 618
9db1d521 619
862a2d83 620/* Frame pointer and argument pointer elimination. */
9db1d521 621
7633f08e
UW
622#define ELIMINABLE_REGS \
623{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
624 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
625 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
626 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
627 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
628 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
629 { BASE_REGNUM, BASE_REGNUM }}
9db1d521 630
91086990
UW
631#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
632 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
9db1d521 633
9db1d521 634
862a2d83 635/* Stack arguments. */
c7453384 636
862a2d83
UW
637/* We need current_function_outgoing_args to be valid. */
638#define ACCUMULATE_OUTGOING_ARGS 1
9db1d521 639
9db1d521 640
862a2d83 641/* Register arguments. */
c7453384 642
9db1d521
HP
643typedef struct s390_arg_structure
644{
645 int gprs; /* gpr so far */
646 int fprs; /* fpr so far */
647}
648CUMULATIVE_ARGS;
649
07711f53 650#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
9db1d521
HP
651 ((CUM).gprs=0, (CUM).fprs=0)
652
96e2afa8
AK
653/* Arguments can be placed in general registers 2 to 6, or in floating
654 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
655 bit. */
862a2d83 656#define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
96e2afa8 657 (N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
9db1d521 658
9db1d521 659
862a2d83 660/* Only gpr 2 and fpr 0 are ever used as return registers. */
9db1d521
HP
661#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
662
9db1d521 663
862a2d83 664/* Function entry and exit. */
c7453384 665
862a2d83
UW
666/* When returning from a function, the stack pointer does not matter. */
667#define EXIT_IGNORE_STACK 1
9db1d521 668
9db1d521 669
862a2d83 670/* Profiling. */
9db1d521
HP
671
672#define FUNCTION_PROFILER(FILE, LABELNO) \
862a2d83 673 s390_function_profiler ((FILE), ((LABELNO)))
9db1d521 674
c52a375d 675#define PROFILE_BEFORE_PROLOGUE 1
9db1d521 676
9db1d521 677
862a2d83 678/* Trampolines for nested functions. */
9db1d521 679
b81ecf6f
RH
680#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
681#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
9db1d521 682
862a2d83 683/* Addressing modes, and classification of registers for them. */
9db1d521 684
862a2d83
UW
685/* Recognize any constant value that is a valid address. */
686#define CONSTANT_ADDRESS_P(X) 0
9db1d521 687
862a2d83
UW
688/* Maximum number of registers that can appear in a valid memory address. */
689#define MAX_REGS_PER_ADDRESS 2
9db1d521 690
963fc8d0 691/* This definition replaces the formerly used 'm' constraint with a
c6c3dba9
PB
692 different constraint letter in order to avoid changing semantics of
693 the 'm' constraint when accepting new address formats in
694 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
695 must not be used in insn definitions or inline assemblies. */
963fc8d0
AK
696#define TARGET_MEM_CONSTRAINT 'e'
697
0b540f12
UW
698/* Try a machine-dependent way of reloading an illegitimate address
699 operand. If we find one, push the reload and jump to WIN. This
700 macro is used in only one place: `find_reloads_address' in reload.c. */
701#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
702do { \
0a2aaacc
KG
703 rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \
704 if (new_rtx) \
0b540f12 705 { \
0a2aaacc 706 (AD) = new_rtx; \
0b540f12
UW
707 goto WIN; \
708 } \
709} while (0)
710
862a2d83
UW
711/* Helper macro for s390.c and s390.md to check for symbolic constants. */
712#define SYMBOLIC_CONST(X) \
713(GET_CODE (X) == SYMBOL_REF \
714 || GET_CODE (X) == LABEL_REF \
715 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
9db1d521 716
fd3cd001
UW
717#define TLS_SYMBOLIC_CONST(X) \
718((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
719 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
720
9db1d521 721
862a2d83 722/* Condition codes. */
9db1d521 723
862a2d83
UW
724/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
725 return the mode to be used for the comparison. */
726#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
c7453384 727
862a2d83 728/* Relative costs of operations. */
9db1d521 729
9db1d521
HP
730/* A C expression for the cost of a branch instruction. A value of 1
731 is the default; other values are interpreted relative to that. */
3d427cc1 732#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
9db1d521 733
862a2d83
UW
734/* Nonzero if access to memory by bytes is slow and undesirable. */
735#define SLOW_BYTE_ACCESS 1
736
c5443745 737/* An integer expression for the size in bits of the largest integer machine
f4aa3848 738 mode that should actually be used. We allow pairs of registers. */
c5443745
UW
739#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
740
862a2d83 741/* The maximum number of bytes that a single instruction can move quickly
ff482c8d 742 between memory and registers or between two memory locations. */
9602b6a1
AK
743#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
744#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
862a2d83 745#define MAX_MOVE_MAX 16
9db1d521 746
862a2d83 747/* Don't perform CSE on function addresses. */
1e8552c2 748#define NO_FUNCTION_CSE 1
862a2d83 749
5f1b2ee6
AK
750/* This value is used in tree-sra to decide whether it might benefical
751 to split a struct move into several word-size moves. For S/390
752 only small values make sense here since struct moves are relatively
073a8998 753 cheap thanks to mvc so the small default value chosen for archs
5f1b2ee6
AK
754 with memmove patterns should be ok. But this value is multiplied
755 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
756 here to compensate for that factor since mvc costs exactly the same
757 on 31 and 64 bit. */
e04ad03d 758#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
5f1b2ee6 759
862a2d83
UW
760
761/* Sections. */
762
763/* Output before read-only data. */
764#define TEXT_SECTION_ASM_OP ".text"
765
766/* Output before writable (initialized) data. */
767#define DATA_SECTION_ASM_OP ".data"
768
769/* Output before writable (uninitialized) data. */
770#define BSS_SECTION_ASM_OP ".bss"
771
772/* S/390 constant pool breaks the devices in crtstuff.c to control section
773 in where code resides. We have to write it as asm code. */
774#ifndef __s390x__
775#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
776 asm (SECTION_OP "\n\
777 bras\t%r2,1f\n\
7780: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
7791: l\t%r3,0(%r2)\n\
780 bas\t%r14,0(%r3,%r2)\n\
781 .previous");
782#endif
63a1ff86 783
862a2d83
UW
784
785/* Position independent code. */
786
862a2d83
UW
787#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
788
789#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
63a1ff86
UW
790
791
792/* Assembler file format. */
793
794/* Character to start a comment. */
795#define ASM_COMMENT_START "#"
796
797/* Declare an uninitialized external linkage data object. */
798#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
799 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
800
801/* Globalizing directive for a label. */
802#define GLOBAL_ASM_OP ".globl "
803
804/* Advance the location counter to a multiple of 2**LOG bytes. */
805#define ASM_OUTPUT_ALIGN(FILE, LOG) \
806 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
807
808/* Advance the location counter by SIZE bytes. */
809#define ASM_OUTPUT_SKIP(FILE, SIZE) \
58e15542 810 fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
63a1ff86 811
63a1ff86
UW
812/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
813#define LOCAL_LABEL_PREFIX "."
9db1d521 814
5d304e47
AK
815#define LABEL_ALIGN(LABEL) \
816 s390_label_align (LABEL)
817
9db1d521
HP
818/* How to refer to registers in assembler output. This sequence is
819 indexed by compiler's hard-register-number (see above). */
9db1d521
HP
820#define REGISTER_NAMES \
821{ "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
a38e09bc 822 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
9db1d521 823 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
a38e09bc 824 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
c5aa1d12 825 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1" \
9db1d521
HP
826}
827
63a1ff86 828/* Print operand X (an rtx) in assembler syntax to file FILE. */
9db1d521 829#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
9db1d521
HP
830#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
831
63a1ff86
UW
832/* Output an element of a case-vector that is absolute. */
833#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
834do { \
835 char buf[32]; \
9602b6a1 836 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
837 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
838 assemble_name ((FILE), buf); \
839 fputc ('\n', (FILE)); \
840} while (0)
841
842/* Output an element of a case-vector that is relative. */
843#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
844do { \
845 char buf[32]; \
9602b6a1 846 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
847 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
848 assemble_name ((FILE), buf); \
849 fputc ('-', (FILE)); \
850 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
851 assemble_name ((FILE), buf); \
852 fputc ('\n', (FILE)); \
853} while (0)
854
177bc204
RS
855/* Mark the return register as used by the epilogue so that we can
856 use it in unadorned (return) and (simple_return) instructions. */
857#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
858
d0de9e13
DV
859#undef ASM_OUTPUT_FUNCTION_LABEL
860#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
861 s390_asm_output_function_label (FILE, NAME, DECL)
9db1d521 862
862a2d83
UW
863/* Miscellaneous parameters. */
864
862a2d83
UW
865/* Specify the machine mode that this machine uses for the index in the
866 tablejump instruction. */
867#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
868
862a2d83
UW
869/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
870 is done just by pretending it is already truncated. */
871#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
872
873/* Specify the machine mode that pointers have.
874 After generation of rtl, the compiler makes no further distinction
875 between pointers and any other objects of this machine mode. */
ef4bddc2 876#define Pmode ((machine_mode) (TARGET_64BIT ? DImode : SImode))
862a2d83 877
c7453384
EC
878/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
879#define POINTERS_EXTEND_UNSIGNED -1
880
862a2d83
UW
881/* A function address in a call instruction is a byte address (for
882 indexing purposes) so give the MEM rtx a byte's mode. */
883#define FUNCTION_MODE QImode
884
ec24698e
UW
885/* Specify the value which is used when clz operand is zero. */
886#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
887
0bfc3f69 888/* Machine-specific symbol_ref flags. */
963fc8d0
AK
889#define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0)
890#define SYMBOL_REF_ALIGN1_P(X) \
891 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
892#define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
893#define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
894 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
0bfc3f69
AS
895
896/* Check whether integer displacement is in range. */
897#define DISP_IN_RANGE(d) \
898 (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
899 : ((d) >= 0 && (d) <= 4095))
900
24a235c8
CB
901/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
902#define READ_CAN_USE_WRITE_PREFETCH 1
677f3fa8
JM
903
904extern const int processor_flags_table[];
c7453384 905#endif