]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/s390/s390.h
S/390 Add vector scalar instruction support.
[thirdparty/gcc.git] / gcc / config / s390 / s390.h
CommitLineData
9db1d521 1/* Definitions of target machine for GNU compiler, for IBM S/390
5624e564 2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
9db1d521 3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
f314b9b1 4 Ulrich Weigand (uweigand@de.ibm.com).
963fc8d0 5 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
9db1d521 6
58add37a 7This file is part of GCC.
9db1d521 8
58add37a
UW
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
2f83c7d6 11Software Foundation; either version 3, or (at your option) any later
58add37a
UW
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
9db1d521
HP
18
19You should have received a copy of the GNU General Public License
2f83c7d6
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
9db1d521
HP
22
23#ifndef _S390_H
24#define _S390_H
25
f13e0d4e
UW
26/* Optional architectural facilities supported by the processor. */
27
28enum processor_flags
29{
30 PF_IEEE_FLOAT = 1,
31 PF_ZARCH = 2,
ec24698e 32 PF_LONG_DISPLACEMENT = 4,
85dae55a 33 PF_EXTIMM = 8,
93538e8e 34 PF_DFP = 16,
65b1d8ea 35 PF_Z10 = 32,
22ac2c2f 36 PF_Z196 = 64,
5a3fe9b6 37 PF_ZEC12 = 128,
55ac540c
AK
38 PF_TX = 256,
39 PF_Z13 = 512,
40 PF_VX = 1024
f13e0d4e
UW
41};
42
90c6fd8a
AK
43/* This is necessary to avoid a warning about comparing different enum
44 types. */
45#define s390_tune_attr ((enum attr_cpu)s390_tune)
46
963fc8d0
AK
47/* These flags indicate that the generated code should run on a cpu
48 providing the respective hardware facility regardless of the
49 current cpu mode (ESA or z/Architecture). */
50
f13e0d4e
UW
51#define TARGET_CPU_IEEE_FLOAT \
52 (s390_arch_flags & PF_IEEE_FLOAT)
53#define TARGET_CPU_ZARCH \
54 (s390_arch_flags & PF_ZARCH)
55#define TARGET_CPU_LONG_DISPLACEMENT \
56 (s390_arch_flags & PF_LONG_DISPLACEMENT)
ec24698e
UW
57#define TARGET_CPU_EXTIMM \
58 (s390_arch_flags & PF_EXTIMM)
85dae55a
AK
59#define TARGET_CPU_DFP \
60 (s390_arch_flags & PF_DFP)
93538e8e
AK
61#define TARGET_CPU_Z10 \
62 (s390_arch_flags & PF_Z10)
65b1d8ea
AK
63#define TARGET_CPU_Z196 \
64 (s390_arch_flags & PF_Z196)
22ac2c2f
AK
65#define TARGET_CPU_ZEC12 \
66 (s390_arch_flags & PF_ZEC12)
5a3fe9b6
AK
67#define TARGET_CPU_HTM \
68 (s390_arch_flags & PF_TX)
55ac540c
AK
69#define TARGET_CPU_Z13 \
70 (s390_arch_flags & PF_Z13)
71#define TARGET_CPU_VX \
72 (s390_arch_flags & PF_VX)
f13e0d4e 73
963fc8d0
AK
74/* These flags indicate that the generated code should run on a cpu
75 providing the respective hardware facility when run in
76 z/Architecture mode. */
77
f13e0d4e
UW
78#define TARGET_LONG_DISPLACEMENT \
79 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
ec24698e
UW
80#define TARGET_EXTIMM \
81 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
85dae55a 82#define TARGET_DFP \
fb068247 83 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
93538e8e
AK
84#define TARGET_Z10 \
85 (TARGET_ZARCH && TARGET_CPU_Z10)
65b1d8ea
AK
86#define TARGET_Z196 \
87 (TARGET_ZARCH && TARGET_CPU_Z196)
22ac2c2f
AK
88#define TARGET_ZEC12 \
89 (TARGET_ZARCH && TARGET_CPU_ZEC12)
167f68ed 90#define TARGET_HTM (TARGET_OPT_HTM)
55ac540c
AK
91#define TARGET_Z13 \
92 (TARGET_ZARCH && TARGET_CPU_Z13)
93#define TARGET_VX \
94 (TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
65b1d8ea 95
55ac540c
AK
96/* Use the ABI introduced with IBM z13:
97 - pass vector arguments <= 16 bytes in VRs
98 - align *all* vector types to 8 bytes */
99#define TARGET_VX_ABI TARGET_VX
65b1d8ea
AK
100
101#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
42c78618 102
862a2d83 103/* Run-time target specification. */
9db1d521 104
a771c4b3
UW
105/* Defaults for option flags defined only on some subtargets. */
106#ifndef TARGET_TPF_PROFILING
107#define TARGET_TPF_PROFILING 0
108#endif
109
4798630c
D
110/* This will be overridden by OS headers. */
111#define TARGET_TPF 0
112
862a2d83 113/* Target CPU builtins. */
5a3fe9b6
AK
114#define TARGET_CPU_CPP_BUILTINS() \
115 do \
116 { \
117 builtin_assert ("cpu=s390"); \
118 builtin_assert ("machine=s390"); \
119 builtin_define ("__s390__"); \
120 if (TARGET_ZARCH) \
121 builtin_define ("__zarch__"); \
122 if (TARGET_64BIT) \
123 builtin_define ("__s390x__"); \
124 if (TARGET_LONG_DOUBLE_128) \
125 builtin_define ("__LONG_DOUBLE_128__"); \
126 if (TARGET_HTM) \
127 builtin_define ("__HTM__"); \
128 } \
862a2d83 129 while (0)
9db1d521 130
58d10f89 131#ifdef DEFAULT_TARGET_64BIT
55ac540c
AK
132#define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \
133 | MASK_OPT_HTM | MASK_OPT_VX)
58d10f89 134#else
85dae55a 135#define TARGET_DEFAULT 0
58d10f89
UW
136#endif
137
f13e0d4e
UW
138/* Support for configure-time defaults. */
139#define OPTION_DEFAULT_SPECS \
140 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
141 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
142 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
143
144/* Defaulting rules. */
145#ifdef DEFAULT_TARGET_64BIT
146#define DRIVER_SELF_SPECS \
147 "%{!m31:%{!m64:-m64}}", \
148 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
149 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
150#else
151#define DRIVER_SELF_SPECS \
152 "%{!m31:%{!m64:-m31}}", \
153 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
154 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
155#endif
156
638e37c2 157/* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
0387c142
WG
158#define S390_TDC_POSITIVE_ZERO (1 << 11)
159#define S390_TDC_NEGATIVE_ZERO (1 << 10)
160#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
161#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
162#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
163#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
164#define S390_TDC_POSITIVE_INFINITY (1 << 5)
165#define S390_TDC_NEGATIVE_INFINITY (1 << 4)
166#define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
167#define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
168#define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
169#define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
170
171/* The following values are different for DFP. */
172#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
173#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
174#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
175#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
176
f4aa3848 177/* For signbit, the BFP-DFP-difference makes no difference. */
0f67fa83 178#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
0387c142
WG
179 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
180 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
0f67fa83
WG
181 | S390_TDC_NEGATIVE_INFINITY \
182 | S390_TDC_NEGATIVE_QUIET_NAN \
183 | S390_TDC_NEGATIVE_SIGNALING_NAN )
184
638e37c2
WG
185#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
186 | S390_TDC_NEGATIVE_INFINITY )
9db1d521 187
a5ba7b92
AK
188/* This is used by float.h to define the float_t and double_t data
189 types. For historical reasons both are double on s390 what cannot
190 be changed anymore. */
191#define TARGET_FLT_EVAL_METHOD 1
192
9db1d521
HP
193/* Target machine storage layout. */
194
862a2d83 195/* Everything is big-endian. */
9db1d521 196#define BITS_BIG_ENDIAN 1
9db1d521 197#define BYTES_BIG_ENDIAN 1
9db1d521
HP
198#define WORDS_BIG_ENDIAN 1
199
9602b6a1
AK
200#define STACK_SIZE_MODE (Pmode)
201
085261c8
AK
202/* Vector arguments are left-justified when placed on the stack during
203 parameter passing. */
204#define FUNCTION_ARG_PADDING(MODE, TYPE) \
205 (s390_function_arg_vector ((MODE), (TYPE)) \
206 ? upward \
207 : DEFAULT_FUNCTION_ARG_PADDING ((MODE), (TYPE)))
208
fe86047c 209#ifndef IN_LIBGCC2
9602b6a1
AK
210
211/* Width of a word, in units (bytes). */
212 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
213
214/* Width of a pointer. To be used instead of UNITS_PER_WORD in
215 ABI-relevant contexts. This always matches
216 GET_MODE_SIZE (Pmode). */
217 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
218 #define MIN_UNITS_PER_WORD 4
219 #define MAX_BITS_PER_WORD 64
220#else
221
222 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
223 the library should export TImode functions or not. Thus, we have
224 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
225 #ifdef __s390x__
226 #define UNITS_PER_WORD 8
227 #else
228 #define UNITS_PER_WORD 4
229 #endif
fe86047c 230#endif
9602b6a1
AK
231
232/* Width of a pointer, in bits. */
233#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
9db1d521 234
9db1d521 235/* Allocation boundary (in *bits*) for storing arguments in argument list. */
9db1d521
HP
236#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
237
238/* Boundary (in *bits*) on which stack pointer should be aligned. */
9db1d521
HP
239#define STACK_BOUNDARY 64
240
241/* Allocation boundary (in *bits*) for the code of a function. */
d0de9e13 242#define FUNCTION_BOUNDARY 64
9db1d521
HP
243
244/* There is no point aligning anything to a rounder boundary than this. */
9db1d521
HP
245#define BIGGEST_ALIGNMENT 64
246
247/* Alignment of field after `int : 0' in a structure. */
9db1d521
HP
248#define EMPTY_FIELD_BOUNDARY 32
249
f710504c 250/* Alignment on even addresses for LARL instruction. */
9db1d521 251#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
df8a1d28 252#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
9db1d521 253
862a2d83 254/* Alignment is not required by the hardware. */
9db1d521
HP
255#define STRICT_ALIGNMENT 0
256
862a2d83
UW
257/* Mode of stack savearea.
258 FUNCTION is VOIDmode because calling convention maintains SP.
259 BLOCK needs Pmode for SP.
260 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
261#define STACK_SAVEAREA_MODE(LEVEL) \
262 (LEVEL == SAVE_FUNCTION ? VOIDmode \
43ab026f 263 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
862a2d83 264
9db1d521 265
862a2d83 266/* Type layout. */
9db1d521 267
862a2d83
UW
268/* Sizes in bits of the source language data types. */
269#define SHORT_TYPE_SIZE 16
270#define INT_TYPE_SIZE 32
271#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
862a2d83
UW
272#define LONG_LONG_TYPE_SIZE 64
273#define FLOAT_TYPE_SIZE 32
274#define DOUBLE_TYPE_SIZE 64
f61a2c7d
AK
275#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
276
f61a2c7d
AK
277/* Work around target_flags dependency in ada/targtyps.c. */
278#define WIDEST_HARDWARE_FP_SIZE 64
862a2d83
UW
279
280/* We use "unsigned char" as default. */
281#define DEFAULT_SIGNED_CHAR 0
282
283
284/* Register usage. */
285
286/* We have 16 general purpose registers (registers 0-15),
287 and 16 floating point registers (registers 16-31).
288 (On non-IEEE machines, we have only 4 fp registers.)
c7453384 289
862a2d83
UW
290 Amongst the general purpose registers, some are used
291 for specific purposes:
292 GPR 11: Hard frame pointer (if needed)
293 GPR 12: Global offset table pointer (if needed)
294 GPR 13: Literal pool base register
295 GPR 14: Return address register
296 GPR 15: Stack pointer
c7453384 297
c5aa1d12 298 Registers 32-35 are 'fake' hard registers that do not
862a2d83
UW
299 correspond to actual hardware:
300 Reg 32: Argument pointer
301 Reg 33: Condition code
f4aa3848 302 Reg 34: Frame pointer
c5aa1d12 303 Reg 35: Return address pointer
862a2d83 304
f4aa3848 305 Registers 36 and 37 are mapped to access registers
085261c8
AK
306 0 and 1, used to implement thread-local storage.
307
308 Reg 38-53: Vector registers v16-v31 */
c5aa1d12 309
085261c8 310#define FIRST_PSEUDO_REGISTER 54
862a2d83
UW
311
312/* Standard register usage. */
8e509cf9
UW
313#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
314#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
142cd70f 315#define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
8e509cf9 316#define CC_REGNO_P(N) ((N) == 33)
a38e09bc 317#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
c5aa1d12 318#define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
085261c8
AK
319#define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53)
320#define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
8e509cf9
UW
321
322#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
323#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
324#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
325#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
4888ec5d 326#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
c5aa1d12 327#define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
085261c8
AK
328#define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
329#define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
9db1d521 330
862a2d83 331/* Set up fixed registers and calling convention:
9db1d521 332
862a2d83
UW
333 GPRs 0-5 are always call-clobbered,
334 GPRs 6-15 are always call-saved.
335 GPR 12 is fixed if used as GOT pointer.
336 GPR 13 is always fixed (as literal pool pointer).
545d16ff 337 GPR 14 is always fixed on S/390 machines (as return address).
862a2d83
UW
338 GPR 15 is always fixed (as stack pointer).
339 The 'fake' hard registers are call-clobbered and fixed.
c5aa1d12 340 The access registers are call-saved and fixed.
9db1d521 341
862a2d83
UW
342 On 31-bit, FPRs 18-19 are call-clobbered;
343 on 64-bit, FPRs 24-31 are call-clobbered.
085261c8
AK
344 The remaining FPRs are call-saved.
345
346 All non-FP vector registers are call-clobbered v16-v31. */
9db1d521
HP
347
348#define FIXED_REGISTERS \
349{ 0, 0, 0, 0, \
350 0, 0, 0, 0, \
351 0, 0, 0, 0, \
352 0, 1, 1, 1, \
353 0, 0, 0, 0, \
354 0, 0, 0, 0, \
355 0, 0, 0, 0, \
356 0, 0, 0, 0, \
c5aa1d12 357 1, 1, 1, 1, \
085261c8
AK
358 1, 1, \
359 0, 0, 0, 0, \
360 0, 0, 0, 0, \
361 0, 0, 0, 0, \
362 0, 0, 0, 0 }
9db1d521 363
9db1d521
HP
364#define CALL_USED_REGISTERS \
365{ 1, 1, 1, 1, \
366 1, 1, 0, 0, \
367 0, 0, 0, 0, \
368 0, 1, 1, 1, \
4023fb28
UW
369 1, 1, 1, 1, \
370 1, 1, 1, 1, \
371 1, 1, 1, 1, \
372 1, 1, 1, 1, \
c5aa1d12 373 1, 1, 1, 1, \
085261c8
AK
374 1, 1, \
375 1, 1, 1, 1, \
376 1, 1, 1, 1, \
377 1, 1, 1, 1, \
378 1, 1, 1, 1 }
4023fb28 379
4023fb28 380#define CALL_REALLY_USED_REGISTERS \
085261c8 381{ 1, 1, 1, 1, /* r0 - r15 */ \
9db1d521 382 1, 1, 0, 0, \
4023fb28
UW
383 0, 0, 0, 0, \
384 0, 0, 0, 0, \
085261c8 385 1, 1, 1, 1, /* f0 (16) - f15 (31) */ \
9db1d521
HP
386 1, 1, 1, 1, \
387 1, 1, 1, 1, \
388 1, 1, 1, 1, \
085261c8
AK
389 1, 1, 1, 1, /* arg, cc, fp, ret addr */ \
390 0, 0, /* a0 (36), a1 (37) */ \
391 1, 1, 1, 1, /* v16 (38) - v23 (45) */ \
c5aa1d12 392 1, 1, 1, 1, \
085261c8
AK
393 1, 1, 1, 1, /* v24 (46) - v31 (53) */ \
394 1, 1, 1, 1 }
9db1d521 395
862a2d83 396/* Preferred register allocation order. */
085261c8
AK
397#define REG_ALLOC_ORDER \
398 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
399 16, 17, 18, 19, 20, 21, 22, 23, \
400 24, 25, 26, 27, 28, 29, 30, 31, \
401 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \
402 15, 32, 33, 34, 35, 36, 37 }
9db1d521 403
9db1d521 404
862a2d83 405/* Fitting values into registers. */
c7453384 406
862a2d83
UW
407/* Integer modes <= word size fit into any GPR.
408 Integer modes > word size fit into successive GPRs, starting with
409 an even-numbered register.
410 SImode and DImode fit into FPRs as well.
c7453384 411
862a2d83
UW
412 Floating point modes <= word size fit into any FPR or GPR.
413 Floating point modes > word size (i.e. DFmode on 32-bit) fit
414 into any FPR, or an even-odd GPR pair.
f61a2c7d 415 TFmode fits only into an even-odd FPR pair.
c7453384 416
862a2d83
UW
417 Complex floating point modes fit either into two FPRs, or into
418 successive GPRs (again starting with an even number).
f61a2c7d 419 TCmode fits only into two successive even-odd FPR pairs.
c7453384 420
862a2d83 421 Condition code modes fit only into the CC register. */
9db1d521 422
74aa8b4b
AK
423/* Because all registers in a class have the same size HARD_REGNO_NREGS
424 is equivalent to CLASS_MAX_NREGS. */
9db1d521 425#define HARD_REGNO_NREGS(REGNO, MODE) \
74aa8b4b
AK
426 s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
427
428#define HARD_REGNO_MODE_OK(REGNO, MODE) \
429 s390_hard_regno_mode_ok ((REGNO), (MODE))
430
431#define HARD_REGNO_RENAME_OK(FROM, TO) \
7633f08e
UW
432 s390_hard_regno_rename_ok (FROM, TO)
433
9db1d521
HP
434#define MODES_TIEABLE_P(MODE1, MODE2) \
435 (((MODE1) == SFmode || (MODE1) == DFmode) \
436 == ((MODE2) == SFmode || (MODE2) == DFmode))
437
9602b6a1
AK
438/* When generating code that runs in z/Architecture mode,
439 but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
440 the ABI guarantees only that the lower 4 bytes are
441 saved across calls, however. */
085261c8
AK
442#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
443 ((!TARGET_64BIT && TARGET_ZARCH \
444 && GET_MODE_SIZE (MODE) > 4 \
445 && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32)) \
446 || (TARGET_VX \
447 && GET_MODE_SIZE (MODE) > 8 \
448 && (((TARGET_64BIT && (REGNO) >= 24 && (REGNO) <= 31)) \
449 || (!TARGET_64BIT && ((REGNO) == 18 || (REGNO) == 19)))))
9602b6a1 450
862a2d83
UW
451/* Maximum number of registers to represent a value of mode MODE
452 in a register of class CLASS. */
453#define CLASS_MAX_NREGS(CLASS, MODE) \
74aa8b4b 454 s390_class_max_nregs ((CLASS), (MODE))
4023fb28 455
f61a2c7d 456#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
085261c8 457 s390_cannot_change_mode_class ((FROM), (TO), (CLASS))
9db1d521 458
862a2d83 459/* Register classes. */
c7453384 460
862a2d83
UW
461/* We use the following register classes:
462 GENERAL_REGS All general purpose registers
463 ADDR_REGS All general purpose registers except %r0
464 (These registers can be used in address generation)
465 FP_REGS All floating point registers
c5aa1d12
UW
466 CC_REGS The condition code register
467 ACCESS_REGS The access registers
c7453384 468
862a2d83
UW
469 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
470 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
c5aa1d12
UW
471 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
472 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
c7453384 473
862a2d83
UW
474 NO_REGS No registers
475 ALL_REGS All registers
c7453384 476
862a2d83 477 Note that the 'fake' frame pointer and argument pointer registers
c5aa1d12 478 are included amongst the address registers here. */
9db1d521
HP
479
480enum reg_class
481{
c5aa1d12 482 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
f4aa3848 483 ADDR_CC_REGS, GENERAL_CC_REGS,
4023fb28 484 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
085261c8 485 VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
4023fb28 486 ALL_REGS, LIM_REG_CLASSES
9db1d521 487};
9db1d521
HP
488#define N_REG_CLASSES (int) LIM_REG_CLASSES
489
c5aa1d12
UW
490#define REG_CLASS_NAMES \
491{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
492 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
085261c8
AK
493 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \
494 "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \
495 "ALL_REGS" }
9db1d521 496
862a2d83 497/* Class -> register mapping. */
085261c8
AK
498#define REG_CLASS_CONTENTS \
499{ \
9db1d521 500 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
9dc62c00 501 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
a38e09bc
AK
502 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
503 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
c5aa1d12 504 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
9dc62c00
AK
505 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
506 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
9db1d521 507 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
a38e09bc
AK
508 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
509 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
085261c8
AK
510 { 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \
511 { 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \
512 { 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \
513 { 0xffffffff, 0x003fffff }, /* ALL_REGS */ \
9db1d521
HP
514}
515
058e97ec
VM
516/* In some case register allocation order is not enough for IRA to
517 generate a good code. The following macro (if defined) increases
518 cost of REGNO for a pseudo approximately by pseudo usage frequency
519 multiplied by the macro value.
520
521 We avoid usage of BASE_REGNUM by nonzero macro value because the
522 reload can decide not to use the hard register because some
523 constant was forced to be in memory. */
524#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
dba0dd68 525 (regno != BASE_REGNUM ? 0.0 : 0.5)
058e97ec 526
862a2d83
UW
527/* Register -> class mapping. */
528extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
529#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
9db1d521 530
862a2d83
UW
531/* ADDR_REGS can be used as base or index register. */
532#define INDEX_REG_CLASS ADDR_REGS
533#define BASE_REG_CLASS ADDR_REGS
9db1d521 534
862a2d83
UW
535/* Check whether REGNO is a hard register of the suitable class
536 or a pseudo register currently allocated to one such. */
537#define REGNO_OK_FOR_INDEX_P(REGNO) \
538 (((REGNO) < FIRST_PSEUDO_REGISTER \
93fa8428
AK
539 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
540 || ADDR_REGNO_P (reg_renumber[REGNO]))
862a2d83 541#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
9db1d521 542
9db1d521 543
085261c8
AK
544/* We need secondary memory to move data between GPRs and FPRs.
545
546 - With DFP the ldgr lgdr instructions are available. Due to the
547 different alignment we cannot use them for SFmode. For 31 bit a
548 64 bit value in GPR would be a register pair so here we still
549 need to go via memory.
550
551 - With z13 we can do the SF/SImode moves with vlgvf. Due to the
552 overlapping of FPRs and VRs we still disallow TF/TD modes to be
553 in full VRs so as before also on z13 we do these moves via
554 memory.
555
556 FIXME: Should we try splitting it into two vlgvg's/vlvg's instead? */
557#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
558 (((reg_classes_intersect_p (CLASS1, VEC_REGS) \
559 && reg_classes_intersect_p (CLASS2, GENERAL_REGS)) \
560 || (reg_classes_intersect_p (CLASS1, GENERAL_REGS) \
561 && reg_classes_intersect_p (CLASS2, VEC_REGS))) \
562 && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8) \
563 && (!TARGET_VX || (SCALAR_FLOAT_MODE_P (MODE) \
564 && GET_MODE_SIZE (MODE) > 8)))
862a2d83
UW
565
566/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
567 because the movsi and movsf patterns don't handle r/f moves. */
568#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
569 (GET_MODE_BITSIZE (MODE) < 32 \
570 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
571 : MODE)
572
573
862a2d83 574/* Stack layout and calling conventions. */
c7453384 575
862a2d83
UW
576/* Our stack grows from higher to lower addresses. However, local variables
577 are accessed by positive offsets, and function arguments are stored at
578 increasing addresses. */
579#define STACK_GROWS_DOWNWARD
63296cb1 580#define FRAME_GROWS_DOWNWARD 1
862a2d83 581/* #undef ARGS_GROW_DOWNWARD */
9db1d521 582
862a2d83
UW
583/* The basic stack layout looks like this: the stack pointer points
584 to the register save area for called functions. Above that area
585 is the location to place outgoing arguments. Above those follow
586 dynamic allocations (alloca), and finally the local variables. */
9db1d521 587
862a2d83
UW
588/* Offset from stack-pointer to first location of outgoing args. */
589#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
9db1d521 590
862a2d83 591/* Offset within stack frame to start allocating local variables at. */
63296cb1 592#define STARTING_FRAME_OFFSET 0
9db1d521 593
862a2d83
UW
594/* Offset from the stack pointer register to an item dynamically
595 allocated on the stack, e.g., by `alloca'. */
63296cb1 596#define STACK_DYNAMIC_OFFSET(FUNDECL) \
38173d38 597 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
9db1d521 598
862a2d83
UW
599/* Offset of first parameter from the argument pointer register value.
600 We have a fake argument pointer register that points directly to
601 the argument area. */
602#define FIRST_PARM_OFFSET(FNDECL) 0
9db1d521 603
f4aa3848 604/* Defining this macro makes __builtin_frame_address(0) and
c6d01079
AK
605 __builtin_return_address(0) work with -fomit-frame-pointer. */
606#define INITIAL_FRAME_ADDRESS_RTX \
0a81f074 607 (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
c6d01079 608
c7453384 609/* The return address of the current frame is retrieved
4023fb28
UW
610 from the initial value of register RETURN_REGNUM.
611 For frames farther back, we use the stack slot where
612 the corresponding RETURN_REGNUM register was saved. */
c6d01079
AK
613#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
614 (TARGET_PACKED_STACK ? \
0a81f074
RS
615 plus_constant (Pmode, (FRAME), \
616 STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
4023fb28 617
78791a80
AK
618/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
619 builtin_frame_address. Otherwise arg pointer -
620 STACK_POINTER_OFFSET would be returned for
621 __builtin_frame_address(0) what might result in an address pointing
622 somewhere into the middle of the local variables since the packed
623 stack layout generally does not need all the bytes in the register
624 save area. */
625#define FRAME_ADDR_RTX(FRAME) \
626 DYNAMIC_CHAIN_ADDRESS ((FRAME))
627
c6d01079 628#define RETURN_ADDR_RTX(COUNT, FRAME) \
5d4d885c 629 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
9db1d521 630
862a2d83 631/* In 31-bit mode, we need to mask off the high bit of return addresses. */
a556fd39 632#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
9db1d521 633
4023fb28 634
862a2d83 635/* Exception handling. */
c7453384 636
862a2d83
UW
637/* Describe calling conventions for DWARF-2 exception handling. */
638#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
4023fb28 639#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
9db1d521
HP
640#define DWARF_FRAME_RETURN_COLUMN 14
641
642/* Describe how we implement __builtin_eh_return. */
643#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
a38e09bc 644#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
f4aa3848 645
18789f4e
UW
646/* Select a format to encode pointers in exception handling data. */
647#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
648 (flag_pic \
649 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
650 : DW_EH_PE_absptr)
651
9602b6a1
AK
652/* Register save slot alignment. */
653#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
654
f276b762
AK
655/* Let the assembler generate debug line info. */
656#define DWARF2_ASM_LINE_DEBUG_INFO 1
657
085261c8
AK
658/* Define the dwarf register mapping.
659 v16-v31 -> 68-83
660 rX -> X otherwise */
661#define DBX_REGISTER_NUMBER(regno) \
662 ((regno >= 38 && regno <= 53) ? regno + 30 : regno)
9db1d521 663
862a2d83 664/* Frame registers. */
9db1d521 665
862a2d83
UW
666#define STACK_POINTER_REGNUM 15
667#define FRAME_POINTER_REGNUM 34
668#define HARD_FRAME_POINTER_REGNUM 11
669#define ARG_POINTER_REGNUM 32
a38e09bc 670#define RETURN_ADDRESS_POINTER_REGNUM 35
9db1d521 671
c7453384
EC
672/* The static chain must be call-clobbered, but not used for
673 function argument passing. As register 1 is clobbered by
862a2d83
UW
674 the trampoline code, we only have one option. */
675#define STATIC_CHAIN_REGNUM 0
9db1d521 676
862a2d83
UW
677/* Number of hardware registers that go into the DWARF-2 unwind info.
678 To avoid ABI incompatibility, this number must not change even as
679 'fake' hard registers are added or removed. */
680#define DWARF_FRAME_REGISTERS 34
9db1d521 681
9db1d521 682
862a2d83 683/* Frame pointer and argument pointer elimination. */
9db1d521 684
7633f08e
UW
685#define ELIMINABLE_REGS \
686{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
687 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
688 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
689 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
690 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
691 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
692 { BASE_REGNUM, BASE_REGNUM }}
9db1d521 693
91086990
UW
694#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
695 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
9db1d521 696
9db1d521 697
862a2d83 698/* Stack arguments. */
c7453384 699
862a2d83
UW
700/* We need current_function_outgoing_args to be valid. */
701#define ACCUMULATE_OUTGOING_ARGS 1
9db1d521 702
9db1d521 703
862a2d83 704/* Register arguments. */
c7453384 705
9db1d521
HP
706typedef struct s390_arg_structure
707{
708 int gprs; /* gpr so far */
709 int fprs; /* fpr so far */
085261c8 710 int vrs; /* vr so far */
9db1d521
HP
711}
712CUMULATIVE_ARGS;
713
07711f53 714#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
085261c8
AK
715 ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
716
717#define FIRST_VEC_ARG_REGNO 46
718#define LAST_VEC_ARG_REGNO 53
9db1d521 719
96e2afa8
AK
720/* Arguments can be placed in general registers 2 to 6, or in floating
721 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
722 bit. */
085261c8
AK
723#define FUNCTION_ARG_REGNO_P(N) \
724 (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \
725 || (TARGET_64BIT && ((N) == 18 || (N) == 19)) \
726 || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
9db1d521 727
9db1d521 728
085261c8
AK
729/* Only gpr 2, fpr 0, and v24 are ever used as return registers. */
730#define FUNCTION_VALUE_REGNO_P(N) \
731 ((N) == 2 || (N) == 16 \
732 || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
9db1d521 733
9db1d521 734
862a2d83 735/* Function entry and exit. */
c7453384 736
862a2d83
UW
737/* When returning from a function, the stack pointer does not matter. */
738#define EXIT_IGNORE_STACK 1
9db1d521 739
9db1d521 740
862a2d83 741/* Profiling. */
9db1d521
HP
742
743#define FUNCTION_PROFILER(FILE, LABELNO) \
862a2d83 744 s390_function_profiler ((FILE), ((LABELNO)))
9db1d521 745
c52a375d 746#define PROFILE_BEFORE_PROLOGUE 1
9db1d521 747
9db1d521 748
862a2d83 749/* Trampolines for nested functions. */
9db1d521 750
b81ecf6f
RH
751#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
752#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
9db1d521 753
862a2d83 754/* Addressing modes, and classification of registers for them. */
9db1d521 755
862a2d83
UW
756/* Recognize any constant value that is a valid address. */
757#define CONSTANT_ADDRESS_P(X) 0
9db1d521 758
862a2d83
UW
759/* Maximum number of registers that can appear in a valid memory address. */
760#define MAX_REGS_PER_ADDRESS 2
9db1d521 761
963fc8d0 762/* This definition replaces the formerly used 'm' constraint with a
c6c3dba9
PB
763 different constraint letter in order to avoid changing semantics of
764 the 'm' constraint when accepting new address formats in
765 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
766 must not be used in insn definitions or inline assemblies. */
963fc8d0
AK
767#define TARGET_MEM_CONSTRAINT 'e'
768
0b540f12
UW
769/* Try a machine-dependent way of reloading an illegitimate address
770 operand. If we find one, push the reload and jump to WIN. This
771 macro is used in only one place: `find_reloads_address' in reload.c. */
772#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
773do { \
0a2aaacc
KG
774 rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \
775 if (new_rtx) \
0b540f12 776 { \
0a2aaacc 777 (AD) = new_rtx; \
0b540f12
UW
778 goto WIN; \
779 } \
780} while (0)
781
862a2d83
UW
782/* Helper macro for s390.c and s390.md to check for symbolic constants. */
783#define SYMBOLIC_CONST(X) \
784(GET_CODE (X) == SYMBOL_REF \
785 || GET_CODE (X) == LABEL_REF \
786 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
9db1d521 787
fd3cd001
UW
788#define TLS_SYMBOLIC_CONST(X) \
789((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
790 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
791
9db1d521 792
862a2d83 793/* Condition codes. */
9db1d521 794
862a2d83
UW
795/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
796 return the mode to be used for the comparison. */
797#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
c7453384 798
862a2d83 799/* Relative costs of operations. */
9db1d521 800
9db1d521
HP
801/* A C expression for the cost of a branch instruction. A value of 1
802 is the default; other values are interpreted relative to that. */
3d427cc1 803#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
9db1d521 804
862a2d83
UW
805/* Nonzero if access to memory by bytes is slow and undesirable. */
806#define SLOW_BYTE_ACCESS 1
807
c5443745 808/* An integer expression for the size in bits of the largest integer machine
f4aa3848 809 mode that should actually be used. We allow pairs of registers. */
c5443745
UW
810#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
811
862a2d83 812/* The maximum number of bytes that a single instruction can move quickly
ff482c8d 813 between memory and registers or between two memory locations. */
9602b6a1
AK
814#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
815#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
862a2d83 816#define MAX_MOVE_MAX 16
9db1d521 817
862a2d83 818/* Don't perform CSE on function addresses. */
1e8552c2 819#define NO_FUNCTION_CSE 1
862a2d83 820
5f1b2ee6
AK
821/* This value is used in tree-sra to decide whether it might benefical
822 to split a struct move into several word-size moves. For S/390
823 only small values make sense here since struct moves are relatively
073a8998 824 cheap thanks to mvc so the small default value chosen for archs
5f1b2ee6
AK
825 with memmove patterns should be ok. But this value is multiplied
826 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
827 here to compensate for that factor since mvc costs exactly the same
828 on 31 and 64 bit. */
e04ad03d 829#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
5f1b2ee6 830
862a2d83
UW
831
832/* Sections. */
833
834/* Output before read-only data. */
835#define TEXT_SECTION_ASM_OP ".text"
836
837/* Output before writable (initialized) data. */
838#define DATA_SECTION_ASM_OP ".data"
839
840/* Output before writable (uninitialized) data. */
841#define BSS_SECTION_ASM_OP ".bss"
842
843/* S/390 constant pool breaks the devices in crtstuff.c to control section
844 in where code resides. We have to write it as asm code. */
845#ifndef __s390x__
846#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
847 asm (SECTION_OP "\n\
848 bras\t%r2,1f\n\
8490: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
8501: l\t%r3,0(%r2)\n\
851 bas\t%r14,0(%r3,%r2)\n\
852 .previous");
853#endif
63a1ff86 854
862a2d83
UW
855
856/* Position independent code. */
857
862a2d83
UW
858#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
859
860#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
63a1ff86
UW
861
862
863/* Assembler file format. */
864
865/* Character to start a comment. */
866#define ASM_COMMENT_START "#"
867
868/* Declare an uninitialized external linkage data object. */
869#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
870 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
871
872/* Globalizing directive for a label. */
873#define GLOBAL_ASM_OP ".globl "
874
875/* Advance the location counter to a multiple of 2**LOG bytes. */
876#define ASM_OUTPUT_ALIGN(FILE, LOG) \
877 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
878
879/* Advance the location counter by SIZE bytes. */
880#define ASM_OUTPUT_SKIP(FILE, SIZE) \
16998094 881 fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
63a1ff86 882
63a1ff86
UW
883/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
884#define LOCAL_LABEL_PREFIX "."
9db1d521 885
5d304e47
AK
886#define LABEL_ALIGN(LABEL) \
887 s390_label_align (LABEL)
888
9db1d521
HP
889/* How to refer to registers in assembler output. This sequence is
890 indexed by compiler's hard-register-number (see above). */
9db1d521 891#define REGISTER_NAMES \
085261c8
AK
892 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
893 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
894 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
895 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
896 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \
897 "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \
898 "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \
899 }
900
901#define ADDITIONAL_REGISTER_NAMES \
902 { { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \
903 { "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \
904 { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \
905 { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
9db1d521 906
63a1ff86 907/* Print operand X (an rtx) in assembler syntax to file FILE. */
9db1d521 908#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
9db1d521
HP
909#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
910
63a1ff86
UW
911/* Output an element of a case-vector that is absolute. */
912#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
913do { \
914 char buf[32]; \
9602b6a1 915 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
916 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
917 assemble_name ((FILE), buf); \
918 fputc ('\n', (FILE)); \
919} while (0)
920
921/* Output an element of a case-vector that is relative. */
922#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
923do { \
924 char buf[32]; \
9602b6a1 925 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
926 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
927 assemble_name ((FILE), buf); \
928 fputc ('-', (FILE)); \
929 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
930 assemble_name ((FILE), buf); \
931 fputc ('\n', (FILE)); \
932} while (0)
933
177bc204
RS
934/* Mark the return register as used by the epilogue so that we can
935 use it in unadorned (return) and (simple_return) instructions. */
936#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
937
d0de9e13
DV
938#undef ASM_OUTPUT_FUNCTION_LABEL
939#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
940 s390_asm_output_function_label (FILE, NAME, DECL)
9db1d521 941
862a2d83
UW
942/* Miscellaneous parameters. */
943
862a2d83
UW
944/* Specify the machine mode that this machine uses for the index in the
945 tablejump instruction. */
946#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
947
862a2d83
UW
948/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
949 is done just by pretending it is already truncated. */
950#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
951
952/* Specify the machine mode that pointers have.
953 After generation of rtl, the compiler makes no further distinction
954 between pointers and any other objects of this machine mode. */
ef4bddc2 955#define Pmode ((machine_mode) (TARGET_64BIT ? DImode : SImode))
862a2d83 956
c7453384
EC
957/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
958#define POINTERS_EXTEND_UNSIGNED -1
959
862a2d83
UW
960/* A function address in a call instruction is a byte address (for
961 indexing purposes) so give the MEM rtx a byte's mode. */
962#define FUNCTION_MODE QImode
963
ec24698e
UW
964/* Specify the value which is used when clz operand is zero. */
965#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
966
0bfc3f69 967/* Machine-specific symbol_ref flags. */
963fc8d0
AK
968#define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0)
969#define SYMBOL_REF_ALIGN1_P(X) \
970 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
971#define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
972#define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
973 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
0bfc3f69 974
085261c8
AK
975/* Check whether integer displacement is in range for a short displacement. */
976#define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
977
0bfc3f69
AS
978/* Check whether integer displacement is in range. */
979#define DISP_IN_RANGE(d) \
980 (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
085261c8 981 : SHORT_DISP_IN_RANGE(d))
0bfc3f69 982
24a235c8
CB
983/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
984#define READ_CAN_USE_WRITE_PREFETCH 1
677f3fa8
JM
985
986extern const int processor_flags_table[];
085261c8
AK
987
988/* The truth element value for vector comparisons. Our instructions
989 always generate -1 in that case. */
990#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
991
992#endif /* S390_H */