]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/s390/s390.h
Add newline in copyright block.
[thirdparty/gcc.git] / gcc / config / s390 / s390.h
CommitLineData
9db1d521
HP
1/* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
f314b9b1 4 Ulrich Weigand (uweigand@de.ibm.com).
9db1d521
HP
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22#ifndef _S390_H
23#define _S390_H
24
25#define TARGET_VERSION fprintf (stderr, " (S/390)");
26
27extern int flag_pic;
28
29/* Run-time compilation parameters selecting different hardware subsets. */
30
31extern int target_flags;
32
33/* Target macros checked at runtime of compiler. */
34
35#define TARGET_HARD_FLOAT (target_flags & 1)
36#define TARGET_BACKCHAIN (target_flags & 2)
37#define TARGET_SMALL_EXEC (target_flags & 4)
38#define TARGET_DEBUG_ARG (target_flags & 8)
39#define TARGET_64BIT (target_flags & 16)
40#define TARGET_MVCLE (target_flags & 32)
41
42#define TARGET_DEFAULT 0x3
43#define TARGET_SOFT_FLOAT (!(target_flags & 1))
44
45/* Macro to define tables used to set the flags. This is a list in braces
46 of pairs in braces, each pair being { "NAME", VALUE }
47 where VALUE is the bits to set or minus the bits to clear.
48 An empty string NAME is used to identify the default VALUE. */
49
50#define TARGET_SWITCHES \
994fe660
UW
51{ { "hard-float", 1, N_("Use hardware fp")}, \
52 { "soft-float", -1, N_("Don't use hardware fp")}, \
53 { "backchain", 2, N_("Set backchain")}, \
54 { "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")}, \
55 { "small-exec", 4, N_("Use bras for execucable < 64k")}, \
56 { "no-small-exec",-4, N_("Don't use bras")}, \
57 { "debug", 8, N_("Additional debug prints")}, \
58 { "no-debug", -8, N_("Don't print additional debug prints")}, \
59 { "64", 16, N_("64 bit mode")}, \
60 { "31", -16, N_("31 bit mode")}, \
61 { "mvcle", 32, N_("mvcle use")}, \
62 { "no-mvcle", -32, N_("mvc&ex")}, \
9db1d521
HP
63 { "", TARGET_DEFAULT, 0 } }
64
65/* Define this to change the optimizations performed by default. */
994fe660 66#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
9db1d521 67
70eeb10b
UW
68/* Defines for REAL_ARITHMETIC. */
69#define IEEE_FLOAT 1
70#define TARGET_IBM_FLOAT 0
71#define TARGET_IEEE_FLOAT 1
72
9db1d521
HP
73/* The current function count for create unique internal labels. */
74
75extern int s390_function_count;
76
77/* The amount of space used for outgoing arguments. */
78
79extern int current_function_outgoing_args_size;
80
81/* Target machine storage layout. */
82
83/* Define this if most significant bit is lowest numbered in instructions
84 that operate on numbered bit-fields. */
85
86#define BITS_BIG_ENDIAN 1
87
88/* Define this if most significant byte of a word is the lowest numbered. */
89
90#define BYTES_BIG_ENDIAN 1
91
92/* Define this if MS word of a multiword is the lowest numbered. */
93
94#define WORDS_BIG_ENDIAN 1
95
96/* Number of bits in an addressable storage unit. */
97
98#define BITS_PER_UNIT 8
99
100/* Width in bits of a "word", which is the contents of a machine register. */
101
102#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
f314b9b1 103#define MAX_BITS_PER_WORD 64
9db1d521
HP
104
105/* Width of a word, in units (bytes). */
106
107#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
108#define MIN_UNITS_PER_WORD 4
109
110/* Width in bits of a pointer. See also the macro `Pmode' defined below. */
111
112#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
113
114/* A C expression for the size in bits of the type `short' on the
115 target machine. If you don't define this, the default is half a
116 word. (If this would be less than one storage unit, it is
117 rounded up to one unit.) */
118#define SHORT_TYPE_SIZE 16
119
120/* A C expression for the size in bits of the type `int' on the
121 target machine. If you don't define this, the default is one
122 word. */
123#define INT_TYPE_SIZE 32
124
125/* A C expression for the size in bits of the type `long' on the
126 target machine. If you don't define this, the default is one
127 word. */
128#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
f314b9b1 129#define MAX_LONG_TYPE_SIZE 64
9db1d521
HP
130
131/* A C expression for the size in bits of the type `long long' on the
132 target machine. If you don't define this, the default is two
133 words. */
134#define LONG_LONG_TYPE_SIZE 64
135
136/* Right now we only support two floating point formats, the
137 32 and 64 bit ieee formats. */
138
139#define FLOAT_TYPE_SIZE 32
140#define DOUBLE_TYPE_SIZE 64
141#define LONG_DOUBLE_TYPE_SIZE 64
142
143/* Define this macro if it is advisable to hold scalars in registers
144 in a wider mode than that declared by the program. In such cases,
145 the value is constrained to be within the bounds of the declared
146 type, but kept valid in the wider mode. The signedness of the
147 extension may differ from that of the type. */
148
149#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
150if (INTEGRAL_MODE_P (MODE) && \
151 GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
152 (MODE) = Pmode; \
153 }
154
155/* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
156 extensions applied to char/short functions arguments. Defining
157 PROMOTE_FUNCTION_RETURN does the same for function returns. */
158
159#define PROMOTE_FUNCTION_ARGS
160#define PROMOTE_FUNCTION_RETURN
161#define PROMOTE_FOR_CALL_ONLY
162
163/* Allocation boundary (in *bits*) for storing pointers in memory. */
164
165#define POINTER_BOUNDARY 32
166
167/* Allocation boundary (in *bits*) for storing arguments in argument list. */
168
169#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
170
171/* Boundary (in *bits*) on which stack pointer should be aligned. */
172
173#define STACK_BOUNDARY 64
174
175/* Allocation boundary (in *bits*) for the code of a function. */
176
177#define FUNCTION_BOUNDARY 32
178
179/* There is no point aligning anything to a rounder boundary than this. */
180
181#define BIGGEST_ALIGNMENT 64
182
183/* Alignment of field after `int : 0' in a structure. */
184
185#define EMPTY_FIELD_BOUNDARY 32
186
f710504c 187/* Alignment on even addresses for LARL instruction. */
9db1d521
HP
188
189#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
190
191#define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
192
193/* Define this if move instructions will actually fail to work when given
194 unaligned data. */
195
196#define STRICT_ALIGNMENT 0
197
198/* real arithmetic */
199
200#define REAL_ARITHMETIC
201
202/* Define target floating point format. */
203
204#undef TARGET_FLOAT_FORMAT
205#ifdef IEEE_FLOAT
206#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
207#else
208#define TARGET_FLOAT_FORMAT IBM_FLOAT_FORMAT
209#endif
210
211/* Define if special allocation order desired. */
212
213#define REG_ALLOC_ORDER \
214{ 1, 2, 3, 4, 5, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, \
215 16, 17, 18, 19, 20, 21, 22, 23, \
216 24, 25, 26, 27, 28, 29, 30, 31, \
217 15, 32, 33 }
218
219/* Standard register usage. */
220
994fe660 221#define INT_REGNO_P(N) ( (int)(N) >= 0 && (N) < 16 )
9db1d521
HP
222#ifdef IEEE_FLOAT
223#define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 32 )
224#else
225#define FLOAT_REGNO_P(N) ( (N) >= 16 && (N) < 20 )
226#endif
227#define CC_REGNO_P(N) ( (N) == 33 )
228
229/* Number of actual hardware registers. The hardware registers are
230 assigned numbers for the compiler from 0 to just below
231 FIRST_PSEUDO_REGISTER.
232 All registers that the compiler knows about must be given numbers,
233 even those that are not normally considered general registers.
234 For the 390, we give the data registers numbers 0-15,
235 and the floating point registers numbers 16-19.
236 G5 and following have 16 IEEE floating point register,
237 which get numbers 16-31. */
238
239#define FIRST_PSEUDO_REGISTER 34
240
241/* The following register have a fix usage
242 GPR 12: GOT register points to the GOT, setup in prologue,
243 GOT contains pointer to variables in shared libraries
244 GPR 13: Base register setup in prologue to point to the
245 literal table of each function
246 GPR 14: Return registers holds the return address
247 GPR 15: Stack pointer */
248
249#define PIC_OFFSET_TABLE_REGNUM 12
250#define BASE_REGISTER 13
251#define RETURN_REGNUM 14
252#define STACK_POINTER_REGNUM 15
253
254#define FIXED_REGISTERS \
255{ 0, 0, 0, 0, \
256 0, 0, 0, 0, \
257 0, 0, 0, 0, \
258 0, 1, 1, 1, \
259 0, 0, 0, 0, \
260 0, 0, 0, 0, \
261 0, 0, 0, 0, \
262 0, 0, 0, 0, \
263 1, 1 }
264
265/* 1 for registers not available across function calls. These must include
266 the FIXED_REGISTERS and also any registers that can be used without being
267 saved.
268 The latter must include the registers where values are returned
269 and the register where structure-value addresses are passed. */
270
271#define CALL_USED_REGISTERS \
272{ 1, 1, 1, 1, \
273 1, 1, 0, 0, \
274 0, 0, 0, 0, \
275 0, 1, 1, 1, \
276 1, 1, 0, 0, \
277 1, 1, 1, 1, \
278 1, 1, 1, 1, \
279 1, 1, 1, 1, \
280 1, 1 }
281
282/* If not pic code, gpr 12 can be used. */
283
284#define CONDITIONAL_REGISTER_USAGE \
285do \
286 { \
287 if (flag_pic) \
288 { \
289 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
290 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
291 } \
292 } while (0)
293
294/* The following register have a special usage
295 GPR 11: Frame pointer if needed to point to automatic variables.
296 GPR 32: In functions with more the 5 args this register
297 points to that arguments, it is always eliminated
298 with stack- or frame-pointer.
299 GPR 33: Condition code 'register' */
300
301#define FRAME_POINTER_REGNUM 11
302
303#define ARG_POINTER_REGNUM 32
304
305#define CC_REGNUM 33
306
307/* We use the register %r0 to pass the static chain to a nested function.
308
309 Note: It is assumed that this register is call-clobbered!
310 We can't use any of the function-argument registers either,
311 and register 1 is needed by the trampoline code, so we have
312 no other choice but using this one ... */
313
314#define STATIC_CHAIN_REGNUM 0
315
316/* Return number of consecutive hard regs needed starting at reg REGNO
317 to hold something of mode MODE.
318 This is ordinarily the length in words of a value of mode MODE
319 but can be less for certain modes in special long registers. */
320
321#define HARD_REGNO_NREGS(REGNO, MODE) \
322 (FLOAT_REGNO_P(REGNO)? \
323 (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
324 INT_REGNO_P(REGNO)? \
325 ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
326 1)
327
328/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
329 The gprs can hold QI, HI, SI, SF, DF, SC and DC.
330 Even gprs can hold DI.
331 The floating point registers can hold DF, SF, DC and SC. */
332
333#define HARD_REGNO_MODE_OK(REGNO, MODE) \
334 (FLOAT_REGNO_P(REGNO)? \
335 (GET_MODE_CLASS(MODE) == MODE_FLOAT || \
336 GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT) : \
337 INT_REGNO_P(REGNO)? \
f314b9b1 338 (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
9db1d521
HP
339 CC_REGNO_P(REGNO)? \
340 GET_MODE_CLASS (MODE) == MODE_CC : \
341 0)
342
343/* Value is 1 if it is a good idea to tie two pseudo registers when one has
344 mode MODE1 and one has mode MODE2.
345 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
346 for any hard reg, then this must be 0 for correct output. */
347
348#define MODES_TIEABLE_P(MODE1, MODE2) \
349 (((MODE1) == SFmode || (MODE1) == DFmode) \
350 == ((MODE2) == SFmode || (MODE2) == DFmode))
351
352
353/* Define this macro if references to a symbol must be treated
354 differently depending on something about the variable or
355 function named by the symbol (such as what section it is in).
356
357 On s390, if using PIC, mark a SYMBOL_REF for a non-global symbol
358 so that we may access it directly in the GOT. */
359
360#define ENCODE_SECTION_INFO(DECL) \
361do \
362 { \
363 if (flag_pic) \
364 { \
365 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
366 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
367 \
368 if (GET_CODE (rtl) == MEM) \
369 { \
370 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
371 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
372 || ! TREE_PUBLIC (DECL)); \
373 } \
374 } \
375 } \
376while (0)
377
378
379/* This is an array of structures. Each structure initializes one pair
380 of eliminable registers. The "from" register number is given first,
381 followed by "to". Eliminations of the same "from" register are listed
382 in order of preference. */
383
384#define ELIMINABLE_REGS \
385{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
386 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
387 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}}
388
389#define CAN_ELIMINATE(FROM, TO) (1)
390
391#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
392{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
393 { (OFFSET) = 0; } \
394 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
395 { (OFFSET) = s390_arg_frame_offset (); } \
396 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
397 { (OFFSET) = s390_arg_frame_offset (); } \
b3656137
KG
398 else \
399 abort(); \
9db1d521
HP
400}
401
402#define CAN_DEBUG_WITHOUT_FP
403
404/* Value should be nonzero if functions must have frame pointers.
405 Zero means the frame pointer need not be set up (and parms may be
406 accessed via the stack pointer) in functions that seem suitable.
407 This is computed in `reload', in reload1.c. */
408
409#define FRAME_POINTER_REQUIRED 0
410
411/* Define the classes of registers for register constraints in the
412 machine description. Also define ranges of constants.
413
414 One of the classes must always be named ALL_REGS and include all hard regs.
415 If there is more than one class, another class must be named NO_REGS
416 and contain no registers.
417
418 The name GENERAL_REGS must be the name of a class (or an alias for
419 another name such as ALL_REGS). This is the class of registers
420 that is allowed by "g" or "r" in a register constraint.
421 Also, registers outside this class are allocated only when
422 instructions express preferences for them.
423
424 The classes must be numbered in nondecreasing order; that is,
425 a larger-numbered class must never be contained completely
426 in a smaller-numbered class.
427
428 For any two classes, it is very desirable that there be another
429 class that represents their union. */
430
431/*#define SMALL_REGISTER_CLASSES 1*/
432
433enum reg_class
434{
435 NO_REGS, ADDR_REGS, GENERAL_REGS,
f314b9b1 436 FP_REGS, ALL_REGS, LIM_REG_CLASSES
9db1d521
HP
437};
438
439#define N_REG_CLASSES (int) LIM_REG_CLASSES
440
441/* Give names of register classes as strings for dump file. */
442
443#define REG_CLASS_NAMES \
f314b9b1 444{ "NO_REGS","ADDR_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
9db1d521
HP
445
446/* Define which registers fit in which classes. This is an initializer for
447 a vector of HARD_REG_SET of length N_REG_CLASSES.
448 G5 and latter have 16 register and support IEEE floating point operations. */
449
450#define REG_CLASS_CONTENTS \
451{ \
452 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
453 { 0x0000fffe, 0x00000001 }, /* ADDR_REGS */ \
454 { 0x0000ffff, 0x00000001 }, /* GENERAL_REGS */ \
455 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
9db1d521
HP
456 { 0xffffffff, 0x00000003 }, /* ALL_REGS */ \
457}
458
459
460/* The same information, inverted:
461 Return the class number of the smallest class containing
462 reg number REGNO. This could be a conditional expression
463 or could index an array. */
464
465#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
466
467extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
468
469/* The class value for index registers, and the one for base regs. */
470
471#define INDEX_REG_CLASS ADDR_REGS
472#define BASE_REG_CLASS ADDR_REGS
473
474/* Get reg_class from a letter such as appears in the machine description. */
475
476#define REG_CLASS_FROM_LETTER(C) \
477 ((C) == 'a' ? ADDR_REGS : \
478 (C) == 'd' ? GENERAL_REGS : \
479 (C) == 'f' ? FP_REGS : NO_REGS)
480
481/* The letters I, J, K, L and M in a register constraint string can be used
482 to stand for particular ranges of immediate operands.
483 This macro defines what the ranges are.
484 C is the letter, and VALUE is a constant value.
485 Return 1 if VALUE is in the range specified by C. */
486
487#define CONST_OK_FOR_LETTER_P(VALUE, C) \
488 ((C) == 'I' ? (unsigned long) (VALUE) < 256 : \
489 (C) == 'J' ? (unsigned long) (VALUE) < 4096 : \
490 (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : \
491 (C) == 'L' ? (unsigned long) (VALUE) < 65536 : 0)
492
493/* Similar, but for floating constants, and defining letters G and H.
494 Here VALUE is the CONST_DOUBLE rtx itself. */
495
496#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
497
498/* 'Q' means a memory-reference for a S-type operand. */
499
500#define EXTRA_CONSTRAINT(OP, C) \
501 ((C) == 'Q' ? s_operand (OP, GET_MODE (OP)) : \
502 (C) == 'S' ? larl_operand (OP, GET_MODE (OP)) : 0)
503
504/* Given an rtx X being reloaded into a reg required to be in class CLASS,
505 return the class of reg to actually use. In general this is just CLASS;
506 but on some machines in some cases it is preferable to use a more
507 restrictive class. */
508
509#define PREFERRED_RELOAD_CLASS(X, CLASS) \
510 (GET_CODE (X) == CONST_DOUBLE ? \
511 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? FP_REGS : ADDR_REGS) :\
512 (GET_CODE (X) == CONST_INT ? \
513 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? FP_REGS : ADDR_REGS) :\
514 GET_CODE (X) == PLUS || \
515 GET_CODE (X) == LABEL_REF || \
516 GET_CODE (X) == SYMBOL_REF || \
517 GET_CODE (X) == CONST ? ADDR_REGS : (CLASS)))
518
519/* Return the maximum number of consecutive registers needed to represent
520 mode MODE in a register of class CLASS. */
521
522#define CLASS_MAX_NREGS(CLASS, MODE) \
523 ((CLASS) == FP_REGS ? \
524 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
525 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
526
527/* If we are copying between FP registers and anything else, we need a memory
528 location. */
529
530#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
531 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
532
533/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
d65f7478 534 because the movsi and movsf patterns don't handle r/f moves. */
9db1d521
HP
535
536#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
537 (GET_MODE_BITSIZE (MODE) < 32 \
538 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
539 : MODE)
540
541
542/* A C expression whose value is nonzero if pseudos that have been
543 assigned to registers of class CLASS would likely be spilled
544 because registers of CLASS are needed for spill registers.
545
546 The default value of this macro returns 1 if CLASS has exactly one
547 register and zero otherwise. On most machines, this default
548 should be used. Only define this macro to some other expression
549 if pseudo allocated by `local-alloc.c' end up in memory because
550 their hard registers were needed for spill registers. If this
551 macro returns nonzero for those classes, those pseudos will only
552 be allocated by `global.c', which knows how to reallocate the
553 pseudo to another register. If there would not be another
554 register available for reallocation, you should not change the
555 definition of this macro since the only effect of such a
556 definition would be to slow down register allocation. */
557
558/* Stack layout; function entry, exit and calling. */
559
560/* The current return address is on Offset 56 of the current frame
561 if we are in an leaf_function. Otherwise we have to go one stack
562 back.
563 The return address of anything farther back is accessed normally
564 at an offset of 56 from the frame pointer.
565
566 FIXME: builtin_return_addr does not work correctly in a leaf
567 function, we need to find way to find out, if we
568 are in a leaf function
569 */
570
571#define _RETURN_ADDR_OFFSET (TARGET_64BIT ? 112 : 56)
572
573#define RETURN_ADDR_RTX(count, frame) \
574 gen_rtx (MEM, Pmode, \
575 memory_address (Pmode, \
576 plus_constant ( \
577 copy_to_reg (gen_rtx (MEM, Pmode, \
578 memory_address (Pmode, frame))), \
579 _RETURN_ADDR_OFFSET)));
580
581/* The following macros will turn on dwarf2 exception hndling
582 Other code location for this exception handling are
583 in s390.md (eh_return insn) and in linux.c in the prologue. */
584
585#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
586
587/* We have 31 bit mode. */
588
589#define MASK_RETURN_ADDR (GEN_INT (0x7fffffff))
590
591/* Location, from where return address to load. */
592
593#define DWARF_FRAME_RETURN_COLUMN 14
594
595/* Describe how we implement __builtin_eh_return. */
596#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
597#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
598#define EH_RETURN_HANDLER_RTX \
f314b9b1
UW
599 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
600 TARGET_64BIT? -48 : -40))
9db1d521
HP
601
602/* Define this if pushing a word on the stack makes the stack pointer a
603 smaller address. */
604
605#define STACK_GROWS_DOWNWARD
606
607/* Define this if the nominal address of the stack frame is at the
608 high-address end of the local variables; that is, each additional local
609 variable allocated goes at a more negative offset in the frame. */
610
611/* #define FRAME_GROWS_DOWNWARD */
612
613/* Offset from stack-pointer to first location of outgoing args. */
614
615#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
616
617/* Offset within stack frame to start allocating local variables at.
618 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
619 first local allocated. Otherwise, it is the offset to the BEGINNING
620 of the first local allocated. */
621
622#define STARTING_FRAME_OFFSET \
623 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
624
625#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
626
627/* If we generate an insn to push BYTES bytes, this says how many the stack
628 pointer really advances by. On S/390, we have no push instruction. */
629
630/* #define PUSH_ROUNDING(BYTES) */
631
632/* Accumulate the outgoing argument count so we can request the right
633 DSA size and determine stack offset. */
634
635#define ACCUMULATE_OUTGOING_ARGS 1
636
637/* Offset from the stack pointer register to an item dynamically
638 allocated on the stack, e.g., by `alloca'.
639
640 The default value for this macro is `STACK_POINTER_OFFSET' plus the
641 length of the outgoing arguments. The default is correct for most
642 machines. See `function.c' for details. */
643#define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
644
645/* Offset of first parameter from the argument pointer register value.
646 On the S/390, we define the argument pointer to the start of the fixed
647 area. */
648#define FIRST_PARM_OFFSET(FNDECL) 0
649
650/* Define this if stack space is still allocated for a parameter passed
651 in a register. The value is the number of bytes allocated to this
652 area. */
653/* #define REG_PARM_STACK_SPACE(FNDECL) 32 */
654
655/* Define this if the above stack space is to be considered part of the
656 space allocated by the caller. */
657/* #define OUTGOING_REG_PARM_STACK_SPACE */
658
659/* 1 if N is a possible register number for function argument passing.
660 On S390, general registers 2 - 6 and floating point register 0 and 2
661 are used in this way. */
662
663#define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
664 (N) == 16 || (N) == 17)
665
666/* Define a data type for recording info about an argument list during
667 the scan of that argument list. This data type should hold all
668 necessary information about the function itself and about the args
669 processed so far, enough to enable macros such as FUNCTION_ARG to
670 determine where the next arg should go. */
671
672typedef struct s390_arg_structure
673{
674 int gprs; /* gpr so far */
675 int fprs; /* fpr so far */
676}
677CUMULATIVE_ARGS;
678
679
680/* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to
681 a function whose data type is FNTYPE.
682 For a library call, FNTYPE is 0. */
683
684#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
685 ((CUM).gprs=0, (CUM).fprs=0)
686
687/* Update the data in CUM to advance over an argument of mode MODE and
688 data type TYPE. (TYPE is null for libcalls where that information
689 may not be available.) */
690
691#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
994fe660 692 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
9db1d521
HP
693
694/* Define where to put the arguments to a function. Value is zero to push
695 the argument on the stack, or a hard register in which to store the
696 argument. */
697
698#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
994fe660 699 s390_function_arg (&CUM, MODE, TYPE, NAMED)
9db1d521
HP
700
701/* Define where to expect the arguments of a function. Value is zero, if
702 the argument is on the stack, or a hard register in which the argument
703 is stored. It is the same like FUNCTION_ARG, except for unnamed args
704 That means, that all in case of varargs used, the arguments are expected
705 from the stack.
706 S/390 has already space on the stack for args coming in registers,
707 they are pushed in prologue, if needed. */
708
709
710/* Define the `__builtin_va_list' type. */
711
712#define BUILD_VA_LIST_TYPE(VALIST) \
713 (VALIST) = s390_build_va_list ()
714
715/* Implement `va_start' for varargs and stdarg. */
716
717#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
718 s390_va_start (stdarg, valist, nextarg)
719
720/* Implement `va_arg'. */
721
722#define EXPAND_BUILTIN_VA_ARG(valist, type) \
723 s390_va_arg (valist, type)
724
725/* For an arg passed partly in registers and partly in memory, this is the
726 number of registers used. For args passed entirely in registers or
727 entirely in memory, zero. */
728
729#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
730
731
732/* Define if returning from a function call automatically pops the
733 arguments described by the number-of-args field in the call. */
734
735#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
736
737
738/* Define how to find the value returned by a function. VALTYPE is the
739 data type of the value (as a tree).
740 If the precise function being called is known, FUNC is its FUNCTION_DECL;
741 otherwise, FUNC is 15. */
742
743#define RET_REG(MODE) ((GET_MODE_CLASS (MODE) == MODE_INT \
744 || TARGET_SOFT_FLOAT ) ? 2 : 16)
745
746
747/* for structs the address is passed, and the Callee makes a
748 copy, only if needed */
749
750#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
751 s390_function_arg_pass_by_reference (MODE, TYPE)
752
753
754/* Register 2 (and 3) for integral values
755 or floating point register 0 (and 2) for fp values are used. */
756
757#define FUNCTION_VALUE(VALTYPE, FUNC) \
758 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
759 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
760 || POINTER_TYPE_P (VALTYPE) \
761 ? word_mode : TYPE_MODE (VALTYPE), \
762 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 16 : 2)
763
764/* Define how to find the value returned by a library function assuming
765 the value has mode MODE. */
766
767#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RET_REG (MODE))
768
769/* 1 if N is a possible register number for a function value. */
770
771#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
772
773/* The definition of this macro implies that there are cases where
774 a scalar value cannot be returned in registers. */
775
f314b9b1
UW
776#define RETURN_IN_MEMORY(type) \
777 (TYPE_MODE (type) == BLKmode || \
778 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_INT || \
779 GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT)
9db1d521
HP
780
781/* Mode of stack savearea.
782 FUNCTION is VOIDmode because calling convention maintains SP.
783 BLOCK needs Pmode for SP.
784 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
785
786#define STACK_SAVEAREA_MODE(LEVEL) \
787 (LEVEL == SAVE_FUNCTION ? VOIDmode \
788 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
789
790/* Structure value address is passed as invisible first argument (gpr 2). */
791
792#define STRUCT_VALUE 0
793
794/* This macro definition sets up a default value for `main' to return. */
795
796#define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
797
798/* Length in units of the trampoline for entering a nested function. */
799
800#define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
801
802/* Initialize the dynamic part of trampoline. */
803
804#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
805 s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
806
807/* Template for constant part of trampoline. */
808
809#define TRAMPOLINE_TEMPLATE(FILE) \
810 s390_trampoline_template (FILE)
811
812/* Output assembler code to FILE to increment profiler label # LABELNO
813 for profiling a function entry. */
814
815#define FUNCTION_PROFILER(FILE, LABELNO) \
816do { \
817 extern rtx s390_profile[]; \
994fe660 818 extern int s390_pool_count; \
9db1d521
HP
819 static char label[128]; \
820 fprintf (FILE, "# function profiler \n"); \
821 if (TARGET_64BIT) \
822 { \
823 rtx tmp[1]; \
824 output_asm_insn ("stg\t14,8(15)", tmp); \
825 sprintf (label, "%sP%d", LPREFIX, LABELNO); \
826 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, label); \
827 SYMBOL_REF_FLAG (tmp[0]) = 1; \
828 output_asm_insn ("larl\t1,%0", tmp); \
829 tmp[0] = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
830 if (flag_pic) \
831 { \
832 tmp[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, tmp[0]), 113); \
833 tmp[0] = gen_rtx_CONST (Pmode, tmp[0]); \
834 } \
835 output_asm_insn ("brasl\t14,%0", tmp); \
836 output_asm_insn ("lg\t14,8(15)", tmp); \
837 } \
838 else \
839 { \
840 output_asm_insn ("l 14,4(15)", s390_profile); \
841 s390_pool_count = 0; \
842 output_asm_insn ("st 14,4(15)", s390_profile); \
843 output_asm_insn ("l 14,%4", s390_profile); \
844 output_asm_insn ("l 1,%9", s390_profile); \
845 if (flag_pic) \
846 { \
847 output_asm_insn ("ar 1,13", s390_profile); \
848 output_asm_insn ("bas 14,0(14,13)", s390_profile); \
849 } \
850 else \
851 { \
852 output_asm_insn ("basr 14,14", s390_profile); \
853 } \
854 output_asm_insn ("l 14,4(15)", s390_profile); \
855 } \
856} while (0)
857
858/* #define PROFILE_BEFORE_PROLOGUE */
859
9db1d521
HP
860/* Define EXIT_IGNORE_STACK if, when returning from a function, the stack
861 pointer does not matter (provided there is a frame pointer). */
862
863#define EXIT_IGNORE_STACK 1
864
865/* Addressing modes, and classification of registers for them. */
866
867/* #define HAVE_POST_INCREMENT */
868/* #define HAVE_POST_DECREMENT */
869
870/* #define HAVE_PRE_DECREMENT */
871/* #define HAVE_PRE_INCREMENT */
872
873/* These assume that REGNO is a hard or pseudo reg number. They give
874 nonzero only if REGNO is a hard reg of the suitable class or a pseudo
875 reg currently allocated to a suitable hard reg.
876 These definitions are NOT overridden anywhere. */
877
878#define REGNO_OK_FOR_INDEX_P(REGNO) \
879 (((REGNO) > 0 && (REGNO) < 16) || (REGNO) == ARG_POINTER_REGNUM \
880 /* || (REGNO) == FRAME_POINTER_REGNUM */ \
881 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
882
883#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
884
885#define REGNO_OK_FOR_DATA_P(REGNO) \
886 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
887
888#define REGNO_OK_FOR_FP_P(REGNO) \
994fe660 889 FLOAT_REGNO_P (REGNO)
9db1d521
HP
890
891/* Now macros that check whether X is a register and also,
892 strictly, whether it is in a specified class. */
893
894/* 1 if X is a data register. */
895
896#define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
897
898/* 1 if X is an fp register. */
899
900#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
901
902/* 1 if X is an address register. */
903
904#define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
905
906/* Maximum number of registers that can appear in a valid memory address. */
907
908#define MAX_REGS_PER_ADDRESS 2
909
910/* Recognize any constant value that is a valid address. */
911
912#define CONSTANT_ADDRESS_P(X) 0
913
914#define SYMBOLIC_CONST(X) \
915(GET_CODE (X) == SYMBOL_REF \
916 || GET_CODE (X) == LABEL_REF \
917 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
918
919/* General operand is everything except SYMBOL_REF, CONST and CONST_DOUBLE
920 they have to be forced to constant pool
921 CONST_INT have to be forced into constant pool, if greater than
922 64k. Depending on the insn they have to be force into constant pool
923 for smaller value; in this case we have to work with nonimmediate operand. */
924
925#define LEGITIMATE_PIC_OPERAND_P(X) \
926 legitimate_pic_operand_p (X)
927
928/* Nonzero if the constant value X is a legitimate general operand.
929 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
930
931#define LEGITIMATE_CONSTANT_P(X) \
932 legitimate_constant_p (X)
933
934/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
935 its validity for a certain class. We have two alternate definitions
936 for each of them. The usual definition accepts all pseudo regs; the
937 other rejects them all. The symbol REG_OK_STRICT causes the latter
938 definition to be used.
939
940 Most source files want to accept pseudo regs in the hope that they will
941 get allocated to the class that the insn wants them to be in.
942 Some source files that are used after register allocation
943 need to be strict. */
944
945/*
946 * Nonzero if X is a hard reg that can be used as an index or if it is
947 * a pseudo reg.
948 */
949
950#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
951((GET_MODE (X) == Pmode) && \
952 ((REGNO (X) > 0 && REGNO (X) < 16) || \
953 (REGNO (X) == ARG_POINTER_REGNUM) || \
954 (REGNO (X) >= FIRST_PSEUDO_REGISTER)))
955
956/* Nonzero if X is a hard reg that can be used as a base reg or if it is
957 a pseudo reg. */
958
959#define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
960
961/* Nonzero if X is a hard reg that can be used as an index. */
962
963#define REG_OK_FOR_INDEX_STRICT_P(X) \
964((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
965
966/* Nonzero if X is a hard reg that can be used as a base reg. */
967
968#define REG_OK_FOR_BASE_STRICT_P(X) \
969((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
970
971
972#ifndef REG_OK_STRICT
973#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
974#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
975#else
976#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
977#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
978#endif
979
980
981/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
982 valid memory address for an instruction.
983 The MODE argument is the machine mode for the MEM expression
984 that wants to use this address.
985
986 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
987 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
988
989#ifdef REG_OK_STRICT
990#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
991{ \
992 if (legitimate_address_p (MODE, X, 1)) \
993 goto ADDR; \
994}
995#else
996#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
997{ \
998 if (legitimate_address_p (MODE, X, 0)) \
999 goto ADDR; \
1000}
1001#endif
1002
1003
1004/* S/390 has no mode dependent addresses. */
1005
1006#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1007
1008/* Try machine-dependent ways of modifying an illegitimate address
1009 to be legitimate. If we find one, return the new, valid address.
1010 This macro is used in only one place: `memory_address' in explow.c. */
1011
1012#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1013{ \
1014 (X) = legitimize_address (X, OLDX, MODE); \
1015 if (memory_address_p (MODE, X)) \
1016 goto WIN; \
1017}
1018
1019/* Specify the machine mode that this machine uses for the index in the
1020 tablejump instruction. */
1021
1022#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1023
1024/* Define this if the tablejump instruction expects the table to contain
1025 offsets from the address of the table.
1026 Do not define this if the table should contain absolute addresses. */
1027
1028/* #define CASE_VECTOR_PC_RELATIVE */
1029
1030/* Load from integral MODE < SI from memory into register makes sign_extend
1031 or zero_extend
1032 In our case sign_extension happens for Halfwords, other no extension. */
1033
1034#define LOAD_EXTEND_OP(MODE) \
1035(TARGET_64BIT ? ((MODE) == QImode ? ZERO_EXTEND : \
1036 (MODE) == HImode ? SIGN_EXTEND : NIL) \
1037 : ((MODE) == HImode ? SIGN_EXTEND : NIL))
1038
1039/* Specify the tree operation to be used to convert reals to integers. */
1040
1041#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1042
1043/* Define this if fixuns_trunc is the same as fix_trunc. */
1044
1045/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1046
1047/* We use "unsigned char" as default. */
1048
1049#define DEFAULT_SIGNED_CHAR 0
1050
1051/* This is the kind of divide that is easiest to do in the general case. */
1052
1053#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1054
1055/* Max number of bytes we can move from memory to memory in one reasonably
1056 fast instruction. */
1057
1058#define MOVE_MAX 256
1059
1060/* Define this if zero-extension is slow (more than one real instruction). */
1061
1062#define SLOW_ZERO_EXTEND
1063
1064/* Nonzero if access to memory by bytes is slow and undesirable. */
1065
1066#define SLOW_BYTE_ACCESS 1
1067
1068/* Define if shifts truncate the shift count which implies one can omit
1069 a sign-extension or zero-extension of a shift count. */
1070
1071/* #define SHIFT_COUNT_TRUNCATED */
1072
1073/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1074 is done just by pretending it is already truncated. */
1075
1076#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1077
1078/* We assume that the store-condition-codes instructions store 0 for false
1079 and some other value for true. This is the value stored for true. */
1080
1081/* #define STORE_FLAG_VALUE -1 */
1082
1083/* When a prototype says `char' or `short', really pass an `int'. */
1084
1085#define PROMOTE_PROTOTYPES 1
1086
1087/* Don't perform CSE on function addresses. */
1088
1089#define NO_FUNCTION_CSE
1090
1091/* Specify the machine mode that pointers have.
1092 After generation of rtl, the compiler makes no further distinction
1093 between pointers and any other objects of this machine mode. */
1094
994fe660 1095#define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
9db1d521
HP
1096
1097/* A function address in a call instruction is a byte address (for
1098 indexing purposes) so give the MEM rtx a byte's mode. */
1099
1100#define FUNCTION_MODE QImode
1101
1102
1103/* A part of a C `switch' statement that describes the relative costs
1104 of constant RTL expressions. It must contain `case' labels for
1105 expression codes `const_int', `const', `symbol_ref', `label_ref'
1106 and `const_double'. Each case must ultimately reach a `return'
1107 statement to return the relative cost of the use of that kind of
1108 constant value in an expression. The cost may depend on the
1109 precise value of the constant, which is available for examination
1110 in X, and the rtx code of the expression in which it is contained,
1111 found in OUTER_CODE.
1112
1113 CODE is the expression code--redundant, since it can be obtained
1114 with `GET_CODE (X)'. */
1115/* Force_const_mem does not work out of reload, because the saveable_obstack
1116 is set to reload_obstack, which does not live long enough.
1117 Because of this we cannot use force_const_mem in addsi3.
1118 This leads to problems with gen_add2_insn with a constant greater
d65f7478 1119 than a short. Because of that we give an addition of greater
9db1d521
HP
1120 constants a cost of 3 (reload1.c 10096). */
1121
1122
1123#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1124 case CONST: \
1125 if ((GET_CODE (XEXP (RTX, 0)) == MINUS) && \
1126 (GET_CODE (XEXP (XEXP (RTX, 0), 1)) != CONST_INT)) \
1127 return 1000; \
1128 case CONST_INT: \
1129 if ((OUTER_CODE == PLUS) && \
1130 ((INTVAL (RTX) > 32767) || \
1131 (INTVAL (RTX) < -32768))) \
f314b9b1 1132 return COSTS_N_INSNS (3); \
9db1d521
HP
1133 case LABEL_REF: \
1134 case SYMBOL_REF: \
1135 case CONST_DOUBLE: \
f314b9b1 1136 return 0; \
9db1d521
HP
1137
1138
1139/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1140 This can be used, for example, to indicate how costly a multiply
1141 instruction is. In writing this macro, you can use the construct
1142 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1143 instructions. OUTER_CODE is the code of the expression in which X
1144 is contained.
1145
1146 This macro is optional; do not define it if the default cost
1147 assumptions are adequate for the target machine. */
1148
1149#define RTX_COSTS(X, CODE, OUTER_CODE) \
1150 case ASHIFT: \
1151 case ASHIFTRT: \
1152 case LSHIFTRT: \
1153 case PLUS: \
1154 case AND: \
1155 case IOR: \
1156 case XOR: \
1157 case MINUS: \
1158 case NEG: \
1159 case NOT: \
1160 return 1; \
1161 case MULT: \
1162 if (GET_MODE (XEXP (X, 0)) == DImode) \
1163 return 40; \
1164 else \
1165 return 7; \
1166 case DIV: \
1167 case UDIV: \
1168 case MOD: \
1169 case UMOD: \
1170 return 33;
1171
1172
1173/* An expression giving the cost of an addressing mode that contains
1174 ADDRESS. If not defined, the cost is computed from the ADDRESS
1175 expression and the `CONST_COSTS' values.
1176
1177 For most CISC machines, the default cost is a good approximation
1178 of the true cost of the addressing mode. However, on RISC
1179 machines, all instructions normally have the same length and
1180 execution time. Hence all addresses will have equal costs.
1181
1182 In cases where more than one form of an address is known, the form
1183 with the lowest cost will be used. If multiple forms have the
1184 same, lowest, cost, the one that is the most complex will be used.
1185
1186 For example, suppose an address that is equal to the sum of a
1187 register and a constant is used twice in the same basic block.
1188 When this macro is not defined, the address will be computed in a
1189 register and memory references will be indirect through that
1190 register. On machines where the cost of the addressing mode
1191 containing the sum is no higher than that of a simple indirect
1192 reference, this will produce an additional instruction and
1193 possibly require an additional register. Proper specification of
1194 this macro eliminates this overhead for such machines.
1195
1196 Similar use of this macro is made in strength reduction of loops.
1197
1198 ADDRESS need not be valid as an address. In such a case, the cost
1199 is not relevant and can be any value; invalid addresses need not be
1200 assigned a different cost.
1201
1202 On machines where an address involving more than one register is as
1203 cheap as an address computation involving only one register,
1204 defining `ADDRESS_COST' to reflect this can cause two registers to
1205 be live over a region of code where only one would have been if
1206 `ADDRESS_COST' were not defined in that manner. This effect should
1207 be considered in the definition of this macro. Equivalent costs
1208 should probably only be given to addresses with different numbers
1209 of registers on machines with lots of registers.
1210
1211 This macro will normally either not be defined or be defined as a
1212 constant.
1213
1214 On s390 symbols are expensive if compiled with fpic
1215 lifetimes. */
1216
1217#define ADDRESS_COST(RTX) \
1218 ((flag_pic && GET_CODE (RTX) == SYMBOL_REF) ? 2 : 1)
1219
1220/* On s390, copy between fprs and gprs is expensive. */
1221
1222#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1223 (((CLASS1 != CLASS2) && \
1224 (CLASS1 == FP_REGS || CLASS2 == FP_REGS)) ? 10 : 1)
1225
1226
1227/* A C expression for the cost of moving data of mode M between a
1228 register and memory. A value of 2 is the default; this cost is
1229 relative to those in `REGISTER_MOVE_COST'.
1230
1231 If moving between registers and memory is more expensive than
1232 between two registers, you should define this macro to express the
1233 relative cost. */
1234
1235#define MEMORY_MOVE_COST(M, C, I) 1
1236
1237/* A C expression for the cost of a branch instruction. A value of 1
1238 is the default; other values are interpreted relative to that. */
1239
1240#define BRANCH_COST 1
1241
d65f7478 1242/* Add any extra modes needed to represent the condition code. */
9db1d521
HP
1243#define EXTRA_CC_MODES \
1244 CC (CCZmode, "CCZ") \
1245 CC (CCAmode, "CCA") \
ba956982 1246 CC (CCLmode, "CCL") \
9db1d521
HP
1247 CC (CCUmode, "CCU") \
1248 CC (CCSmode, "CCS") \
1249 CC (CCTmode, "CCT")
1250
1251/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
d65f7478 1252 return the mode to be used for the comparison. */
9db1d521 1253
ba956982 1254#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
9db1d521
HP
1255
1256
1257/* Define the information needed to generate branch and scc insns. This is
1258 stored from the compare operation. Note that we can't use "rtx" here
1259 since it hasn't been defined! */
1260
1261extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
9db1d521
HP
1262
1263
1264/* How to refer to registers in assembler output. This sequence is
1265 indexed by compiler's hard-register-number (see above). */
1266
1267#define REGISTER_NAMES \
1268{ "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
1269 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
1270 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
1271 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
1272 "%ap", "%cc" \
1273}
1274
1275/* implicit call of memcpy, not bcopy */
1276
1277#define TARGET_MEM_FUNCTIONS
1278
1279/* Print operand X (an rtx) in assembler syntax to file FILE.
1280 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1281 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1282
1283#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1284
1285#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1286
1287
1288/* Define the codes that are matched by predicates in aux-output.c. */
1289
1290#define PREDICATE_CODES \
1291 {"s_operand", { MEM }}, \
1292 {"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
1293 {"r_or_s_operand", { MEM, SUBREG, REG }}, \
1294 {"r_or_im8_operand", { CONST_INT, SUBREG, REG }}, \
1295 {"r_or_s_or_im8_operand", { MEM, SUBREG, REG, CONST_INT }}, \
1296 {"r_or_x_or_im16_operand", { MEM, SUBREG, REG, CONST_INT }}, \
1297 {"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
1298 {"const1_operand", { CONST_INT, CONST_DOUBLE }}, \
1299 {"tmxx_operand", { CONST_INT, MEM }},
1300
1301
9db1d521
HP
1302/* Constant Pool for all symbols operands which are changed with
1303 force_const_mem during insn generation (expand_insn). */
1304
1305extern struct rtx_def *s390_pool_start_insn;
1306extern int s390_pool_count;
1307extern int s390_nr_constants;
1308
1309/* Function is splitted in chunk, if literal pool could overflow
1310 Value need to be lowered, if problems with displacement overflow. */
1311
1312#define S390_REL_MAX 55000
1313#define S390_CHUNK_MAX 0x2000
1314#define S390_CHUNK_OV 0x8000
1315#define S390_POOL_MAX 0xe00
1316
1317#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, fndecl, size) \
1318{ \
1319 register rtx insn; \
1320 struct pool_constant *pool; \
1321 \
1322 if (s390_pool_count == -1) \
1323 { \
1324 s390_nr_constants = 0; \
1325 for (pool = first_pool; pool; pool = pool->next) \
1326 if (pool->mark) s390_nr_constants++; \
1327 return; \
1328 } \
1329 if (first_pool == 0) { \
1330 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1331 return; \
1332 } \
1333 for (pool = first_pool; pool; pool = pool->next) \
1334 pool->mark = 0; \
1335 \
1336 insn = s390_pool_start_insn; \
1337 \
1338 if (insn==NULL_RTX) \
1339 insn = get_insns (); \
1340 else \
1341 insn = NEXT_INSN (insn); \
1342 for (; insn; insn = NEXT_INSN (insn)) { \
1343 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { \
1344 if (s390_stop_dump_lit_p (insn)) { \
1345 mark_constants (PATTERN (insn)); \
1346 break; \
1347 } else \
1348 mark_constants (PATTERN (insn)); \
1349 } \
1350 } \
1351 \
1352 /* Mark entries referenced by other entries */ \
1353 for (pool = first_pool; pool; pool = pool->next) \
1354 if (pool->mark) \
c8af3574 1355 mark_constants (pool->constant); \
9db1d521
HP
1356 \
1357 s390_asm_output_pool_prologue (FILE, FUNNAME, fndecl, size); \
1358}
1359
1360/* We need to return, because otherwise the pool is deleted of the
1361 constant pool after the first output. */
1362
1363#define ASM_OUTPUT_POOL_EPILOGUE(FILE, FUNNAME, fndecl, size) return;
1364
1365#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, EXP, MODE, ALIGN, LABELNO, WIN) \
c8af3574
RH
1366{ \
1367 if ((s390_pool_count == 0) || (s390_pool_count > 0 && LABELNO >= 0)) \
1368 { \
1369 fprintf (FILE, ".LC%d:\n", LABELNO); \
1370 LABELNO = ~LABELNO; \
1371 } \
1372 if (s390_pool_count > 0) \
1373 { \
1374 fprintf (FILE, ".LC%d_%X:\n", ~LABELNO, s390_pool_count); \
1375 } \
1376 \
1377 /* Output the value of the constant itself. */ \
1378 switch (GET_MODE_CLASS (MODE)) \
1379 { \
1380 case MODE_FLOAT: \
1381 if (GET_CODE (EXP) != CONST_DOUBLE) \
1382 abort (); \
1383 \
1384 memcpy ((char *) &u, (char *) &CONST_DOUBLE_LOW (EXP), sizeof u); \
1385 assemble_real (u.d, MODE, ALIGN); \
1386 break; \
1387 \
1388 case MODE_INT: \
1389 case MODE_PARTIAL_INT: \
1390 if (flag_pic \
1391 && (GET_CODE (EXP) == CONST \
1392 || GET_CODE (EXP) == SYMBOL_REF \
1393 || GET_CODE (EXP) == LABEL_REF )) \
1394 { \
1395 fprintf (FILE, "%s\t",TARGET_64BIT ? ASM_QUAD : ASM_LONG); \
1396 s390_output_symbolic_const (FILE, EXP); \
1397 fputc ('\n', (FILE)); \
1398 } \
1399 else \
1400 assemble_integer (EXP, GET_MODE_SIZE (MODE), ALIGN, 1); \
1401 break; \
1402 \
1403 default: \
1404 abort (); \
1405 } \
1406 goto WIN; \
9db1d521
HP
1407}
1408
1409#endif