]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/s390/s390.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / s390 / s390.h
CommitLineData
9db1d521 1/* Definitions of target machine for GNU compiler, for IBM S/390
a5544970 2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
9db1d521 3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
0ff3dcd6
AK
4 Ulrich Weigand (uweigand@de.ibm.com).
5 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
9db1d521 6
58add37a 7This file is part of GCC.
9db1d521 8
58add37a
UW
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
2f83c7d6 11Software Foundation; either version 3, or (at your option) any later
58add37a
UW
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
9db1d521
HP
18
19You should have received a copy of the GNU General Public License
2f83c7d6
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
9db1d521
HP
22
23#ifndef _S390_H
24#define _S390_H
25
f13e0d4e
UW
26/* Optional architectural facilities supported by the processor. */
27
28enum processor_flags
29{
30 PF_IEEE_FLOAT = 1,
31 PF_ZARCH = 2,
ec24698e 32 PF_LONG_DISPLACEMENT = 4,
85dae55a 33 PF_EXTIMM = 8,
93538e8e 34 PF_DFP = 16,
65b1d8ea 35 PF_Z10 = 32,
22ac2c2f 36 PF_Z196 = 64,
5a3fe9b6 37 PF_ZEC12 = 128,
55ac540c
AK
38 PF_TX = 256,
39 PF_Z13 = 512,
6654e96f 40 PF_VX = 1024,
e9e8efc9 41 PF_Z14 = 2048,
6654e96f 42 PF_VXE = 4096
f13e0d4e
UW
43};
44
90c6fd8a
AK
45/* This is necessary to avoid a warning about comparing different enum
46 types. */
6654e96f 47#define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_2964_Z13 ? PROCESSOR_2964_Z13 : s390_tune ))
90c6fd8a 48
963fc8d0
AK
49/* These flags indicate that the generated code should run on a cpu
50 providing the respective hardware facility regardless of the
51 current cpu mode (ESA or z/Architecture). */
52
f13e0d4e
UW
53#define TARGET_CPU_IEEE_FLOAT \
54 (s390_arch_flags & PF_IEEE_FLOAT)
ec47b086
DV
55#define TARGET_CPU_IEEE_FLOAT_P(opts) \
56 (opts->x_s390_arch_flags & PF_IEEE_FLOAT)
f13e0d4e
UW
57#define TARGET_CPU_LONG_DISPLACEMENT \
58 (s390_arch_flags & PF_LONG_DISPLACEMENT)
ec47b086
DV
59#define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
60 (opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
ec24698e 61#define TARGET_CPU_EXTIMM \
ec47b086
DV
62 (s390_arch_flags & PF_EXTIMM)
63#define TARGET_CPU_EXTIMM_P(opts) \
64 (opts->x_s390_arch_flags & PF_EXTIMM)
85dae55a 65#define TARGET_CPU_DFP \
ec47b086
DV
66 (s390_arch_flags & PF_DFP)
67#define TARGET_CPU_DFP_P(opts) \
68 (opts->x_s390_arch_flags & PF_DFP)
93538e8e 69#define TARGET_CPU_Z10 \
ec47b086
DV
70 (s390_arch_flags & PF_Z10)
71#define TARGET_CPU_Z10_P(opts) \
72 (opts->x_s390_arch_flags & PF_Z10)
65b1d8ea 73#define TARGET_CPU_Z196 \
ec47b086
DV
74 (s390_arch_flags & PF_Z196)
75#define TARGET_CPU_Z196_P(opts) \
76 (opts->x_s390_arch_flags & PF_Z196)
22ac2c2f 77#define TARGET_CPU_ZEC12 \
ec47b086
DV
78 (s390_arch_flags & PF_ZEC12)
79#define TARGET_CPU_ZEC12_P(opts) \
80 (opts->x_s390_arch_flags & PF_ZEC12)
5a3fe9b6 81#define TARGET_CPU_HTM \
ec47b086
DV
82 (s390_arch_flags & PF_TX)
83#define TARGET_CPU_HTM_P(opts) \
84 (opts->x_s390_arch_flags & PF_TX)
55ac540c 85#define TARGET_CPU_Z13 \
ec47b086
DV
86 (s390_arch_flags & PF_Z13)
87#define TARGET_CPU_Z13_P(opts) \
6654e96f 88 (opts->x_s390_arch_flags & PF_Z13)
55ac540c 89#define TARGET_CPU_VX \
6654e96f 90 (s390_arch_flags & PF_VX)
ec47b086
DV
91#define TARGET_CPU_VX_P(opts) \
92 (opts->x_s390_arch_flags & PF_VX)
e9e8efc9
AK
93#define TARGET_CPU_Z14 \
94 (s390_arch_flags & PF_Z14)
95#define TARGET_CPU_Z14_P(opts) \
96 (opts->x_s390_arch_flags & PF_Z14)
6654e96f
AK
97#define TARGET_CPU_VXE \
98 (s390_arch_flags & PF_VXE)
99#define TARGET_CPU_VXE_P(opts) \
100 (opts->x_s390_arch_flags & PF_VXE)
ec47b086
DV
101
102#define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))
f13e0d4e 103
963fc8d0
AK
104/* These flags indicate that the generated code should run on a cpu
105 providing the respective hardware facility when run in
106 z/Architecture mode. */
107
f13e0d4e 108#define TARGET_LONG_DISPLACEMENT \
ec47b086
DV
109 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
110#define TARGET_LONG_DISPLACEMENT_P(opts) \
111 (TARGET_ZARCH_P (opts->x_target_flags) \
112 && TARGET_CPU_LONG_DISPLACEMENT_P (opts))
ec24698e 113#define TARGET_EXTIMM \
ec47b086
DV
114 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
115#define TARGET_EXTIMM_P(opts) \
116 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
85dae55a 117#define TARGET_DFP \
ec47b086
DV
118 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
119#define TARGET_DFP_P(opts) \
120 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
121 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
93538e8e 122#define TARGET_Z10 \
ec47b086
DV
123 (TARGET_ZARCH && TARGET_CPU_Z10)
124#define TARGET_Z10_P(opts) \
125 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
65b1d8ea 126#define TARGET_Z196 \
ec47b086
DV
127 (TARGET_ZARCH && TARGET_CPU_Z196)
128#define TARGET_Z196_P(opts) \
129 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
22ac2c2f 130#define TARGET_ZEC12 \
ec47b086
DV
131 (TARGET_ZARCH && TARGET_CPU_ZEC12)
132#define TARGET_ZEC12_P(opts) \
133 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
167f68ed 134#define TARGET_HTM (TARGET_OPT_HTM)
ec47b086 135#define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
55ac540c 136#define TARGET_Z13 \
ec47b086
DV
137 (TARGET_ZARCH && TARGET_CPU_Z13)
138#define TARGET_Z13_P(opts) \
139 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
55ac540c 140#define TARGET_VX \
ec47b086
DV
141 (TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
142#define TARGET_VX_P(opts) \
143 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
144 && TARGET_OPT_VX_P (opts->x_target_flags) \
145 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
e9e8efc9
AK
146#define TARGET_Z14 (TARGET_ZARCH && TARGET_CPU_Z14)
147#define TARGET_Z14_P(opts) \
148 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z14_P (opts))
6654e96f
AK
149#define TARGET_VXE \
150 (TARGET_VX && TARGET_CPU_VXE)
151#define TARGET_VXE_P(opts) \
152 (TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))
ec47b086
DV
153
154#ifdef HAVE_AS_MACHINE_MACHINEMODE
155#define S390_USE_TARGET_ATTRIBUTE 1
156#else
157#define S390_USE_TARGET_ATTRIBUTE 0
158#endif
159
160#ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
161#define S390_USE_ARCHITECTURE_MODIFIERS 1
162#else
163#define S390_USE_ARCHITECTURE_MODIFIERS 0
164#endif
165
166#if S390_USE_TARGET_ATTRIBUTE
167/* For switching between functions with different target attributes. */
168#define SWITCHABLE_TARGET 1
169#endif
65b1d8ea 170
089b05b1
DV
171#define TARGET_SUPPORTS_WIDE_INT 1
172
55ac540c
AK
173/* Use the ABI introduced with IBM z13:
174 - pass vector arguments <= 16 bytes in VRs
175 - align *all* vector types to 8 bytes */
176#define TARGET_VX_ABI TARGET_VX
65b1d8ea
AK
177
178#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
42c78618 179
4de3a1e1
AK
180/* Issue a write prefetch for the +4 cache line. */
181#define TARGET_SETMEM_PREFETCH_DISTANCE 1024
182
183/* Expand to a C expressions evaluating to true if a setmem to VAL of
184 length LEN should be emitted using prefetch instructions. */
185#define TARGET_SETMEM_PFD(VAL,LEN) \
186 (TARGET_Z10 \
187 && (s390_tune < PROCESSOR_2964_Z13 || (VAL) != const0_rtx) \
188 && (!CONST_INT_P (LEN) || INTVAL ((LEN)) > TARGET_SETMEM_PREFETCH_DISTANCE))
189
862a2d83 190/* Run-time target specification. */
9db1d521 191
a771c4b3
UW
192/* Defaults for option flags defined only on some subtargets. */
193#ifndef TARGET_TPF_PROFILING
194#define TARGET_TPF_PROFILING 0
195#endif
196
4798630c
D
197/* This will be overridden by OS headers. */
198#define TARGET_TPF 0
199
862a2d83 200/* Target CPU builtins. */
3af82a61 201#define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)
9db1d521 202
b4c522fa
IB
203/* Target CPU versions for D. */
204#define TARGET_D_CPU_VERSIONS s390_d_target_versions
205
58d10f89 206#ifdef DEFAULT_TARGET_64BIT
55ac540c 207#define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \
0ff3dcd6 208 | MASK_OPT_HTM | MASK_OPT_VX)
58d10f89 209#else
85dae55a 210#define TARGET_DEFAULT 0
58d10f89
UW
211#endif
212
f13e0d4e 213/* Support for configure-time defaults. */
0ff3dcd6 214#define OPTION_DEFAULT_SPECS \
f13e0d4e
UW
215 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
216 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
4723f0fb 217 { "tune", "%{!mtune=*:%{!march=*:-mtune=%(VALUE)}}" }
f13e0d4e 218
63281f61 219#ifdef __s390__
cb0edc39
DV
220extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
221# define EXTRA_SPEC_FUNCTIONS \
222 { "local_cpu_detect", s390_host_detect_local_cpu },
223
b1b5aa2f
DV
224#define MARCH_MTUNE_NATIVE_SPECS \
225 "%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} " \
226 "%{march=native:%<march=native" \
227 " %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}"
63281f61
DV
228#else
229# define MARCH_MTUNE_NATIVE_SPECS ""
230#endif
cb0edc39 231
f13e0d4e 232#ifdef DEFAULT_TARGET_64BIT
b1b5aa2f 233#define S390_TARGET_BITS_STRING "64"
f13e0d4e 234#else
b1b5aa2f
DV
235#define S390_TARGET_BITS_STRING "31"
236#endif
237
238/* Defaulting rules. */
f13e0d4e 239#define DRIVER_SELF_SPECS \
b1b5aa2f
DV
240 MARCH_MTUNE_NATIVE_SPECS, \
241 "%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}", \
f13e0d4e 242 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
6638efce 243 "%{!march=*:-march=z900}"
f13e0d4e 244
638e37c2 245/* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
0387c142
WG
246#define S390_TDC_POSITIVE_ZERO (1 << 11)
247#define S390_TDC_NEGATIVE_ZERO (1 << 10)
248#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
249#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
250#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
251#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
252#define S390_TDC_POSITIVE_INFINITY (1 << 5)
253#define S390_TDC_NEGATIVE_INFINITY (1 << 4)
254#define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
255#define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
256#define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
257#define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
258
259/* The following values are different for DFP. */
260#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
261#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
262#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
263#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
264
f4aa3848 265/* For signbit, the BFP-DFP-difference makes no difference. */
0f67fa83 266#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
0ff3dcd6
AK
267 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
268 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
269 | S390_TDC_NEGATIVE_INFINITY \
270 | S390_TDC_NEGATIVE_QUIET_NAN \
0f67fa83
WG
271 | S390_TDC_NEGATIVE_SIGNALING_NAN )
272
638e37c2
WG
273#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
274 | S390_TDC_NEGATIVE_INFINITY )
9db1d521
HP
275
276/* Target machine storage layout. */
277
862a2d83 278/* Everything is big-endian. */
9db1d521 279#define BITS_BIG_ENDIAN 1
9db1d521 280#define BYTES_BIG_ENDIAN 1
9db1d521
HP
281#define WORDS_BIG_ENDIAN 1
282
9602b6a1
AK
283#define STACK_SIZE_MODE (Pmode)
284
fe86047c 285#ifndef IN_LIBGCC2
9602b6a1
AK
286
287/* Width of a word, in units (bytes). */
288 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
289
290/* Width of a pointer. To be used instead of UNITS_PER_WORD in
291 ABI-relevant contexts. This always matches
292 GET_MODE_SIZE (Pmode). */
293 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
294 #define MIN_UNITS_PER_WORD 4
295 #define MAX_BITS_PER_WORD 64
296#else
297
298 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
299 the library should export TImode functions or not. Thus, we have
300 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
301 #ifdef __s390x__
302 #define UNITS_PER_WORD 8
303 #else
304 #define UNITS_PER_WORD 4
305 #endif
fe86047c 306#endif
9602b6a1
AK
307
308/* Width of a pointer, in bits. */
309#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
9db1d521 310
9db1d521 311/* Allocation boundary (in *bits*) for storing arguments in argument list. */
9db1d521
HP
312#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
313
314/* Boundary (in *bits*) on which stack pointer should be aligned. */
9db1d521
HP
315#define STACK_BOUNDARY 64
316
317/* Allocation boundary (in *bits*) for the code of a function. */
d0de9e13 318#define FUNCTION_BOUNDARY 64
9db1d521
HP
319
320/* There is no point aligning anything to a rounder boundary than this. */
9db1d521
HP
321#define BIGGEST_ALIGNMENT 64
322
323/* Alignment of field after `int : 0' in a structure. */
9db1d521
HP
324#define EMPTY_FIELD_BOUNDARY 32
325
f710504c 326/* Alignment on even addresses for LARL instruction. */
df8a1d28 327#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
9db1d521 328
862a2d83 329/* Alignment is not required by the hardware. */
9db1d521
HP
330#define STRICT_ALIGNMENT 0
331
862a2d83
UW
332/* Mode of stack savearea.
333 FUNCTION is VOIDmode because calling convention maintains SP.
334 BLOCK needs Pmode for SP.
335 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
2d6744f4
AK
336#define STACK_SAVEAREA_MODE(LEVEL) \
337 ((LEVEL) == SAVE_FUNCTION ? VOIDmode \
338 : (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
862a2d83 339
9db1d521 340
862a2d83 341/* Type layout. */
9db1d521 342
862a2d83
UW
343/* Sizes in bits of the source language data types. */
344#define SHORT_TYPE_SIZE 16
345#define INT_TYPE_SIZE 32
346#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
862a2d83
UW
347#define LONG_LONG_TYPE_SIZE 64
348#define FLOAT_TYPE_SIZE 32
349#define DOUBLE_TYPE_SIZE 64
f61a2c7d
AK
350#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
351
f61a2c7d
AK
352/* Work around target_flags dependency in ada/targtyps.c. */
353#define WIDEST_HARDWARE_FP_SIZE 64
862a2d83
UW
354
355/* We use "unsigned char" as default. */
356#define DEFAULT_SIGNED_CHAR 0
357
358
359/* Register usage. */
360
361/* We have 16 general purpose registers (registers 0-15),
362 and 16 floating point registers (registers 16-31).
363 (On non-IEEE machines, we have only 4 fp registers.)
c7453384 364
862a2d83
UW
365 Amongst the general purpose registers, some are used
366 for specific purposes:
367 GPR 11: Hard frame pointer (if needed)
368 GPR 12: Global offset table pointer (if needed)
369 GPR 13: Literal pool base register
370 GPR 14: Return address register
371 GPR 15: Stack pointer
c7453384 372
c5aa1d12 373 Registers 32-35 are 'fake' hard registers that do not
862a2d83
UW
374 correspond to actual hardware:
375 Reg 32: Argument pointer
376 Reg 33: Condition code
f4aa3848 377 Reg 34: Frame pointer
c5aa1d12 378 Reg 35: Return address pointer
862a2d83 379
f4aa3848 380 Registers 36 and 37 are mapped to access registers
085261c8
AK
381 0 and 1, used to implement thread-local storage.
382
383 Reg 38-53: Vector registers v16-v31 */
c5aa1d12 384
085261c8 385#define FIRST_PSEUDO_REGISTER 54
862a2d83
UW
386
387/* Standard register usage. */
8e509cf9
UW
388#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
389#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
142cd70f 390#define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
8e509cf9 391#define CC_REGNO_P(N) ((N) == 33)
a38e09bc 392#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
c5aa1d12 393#define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
085261c8
AK
394#define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53)
395#define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
8e509cf9
UW
396
397#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
398#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
399#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
400#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
4888ec5d 401#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
c5aa1d12 402#define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
085261c8
AK
403#define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
404#define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
9db1d521 405
862a2d83 406/* Set up fixed registers and calling convention:
9db1d521 407
862a2d83
UW
408 GPRs 0-5 are always call-clobbered,
409 GPRs 6-15 are always call-saved.
410 GPR 12 is fixed if used as GOT pointer.
411 GPR 13 is always fixed (as literal pool pointer).
545d16ff 412 GPR 14 is always fixed on S/390 machines (as return address).
862a2d83
UW
413 GPR 15 is always fixed (as stack pointer).
414 The 'fake' hard registers are call-clobbered and fixed.
c5aa1d12 415 The access registers are call-saved and fixed.
9db1d521 416
862a2d83
UW
417 On 31-bit, FPRs 18-19 are call-clobbered;
418 on 64-bit, FPRs 24-31 are call-clobbered.
085261c8
AK
419 The remaining FPRs are call-saved.
420
421 All non-FP vector registers are call-clobbered v16-v31. */
9db1d521
HP
422
423#define FIXED_REGISTERS \
0ff3dcd6
AK
424{ 0, 0, 0, 0, \
425 0, 0, 0, 0, \
426 0, 0, 0, 0, \
9db1d521 427 0, 1, 1, 1, \
0ff3dcd6
AK
428 0, 0, 0, 0, \
429 0, 0, 0, 0, \
430 0, 0, 0, 0, \
431 0, 0, 0, 0, \
c5aa1d12 432 1, 1, 1, 1, \
085261c8 433 1, 1, \
0ff3dcd6
AK
434 0, 0, 0, 0, \
435 0, 0, 0, 0, \
436 0, 0, 0, 0, \
085261c8 437 0, 0, 0, 0 }
9db1d521 438
9db1d521 439#define CALL_USED_REGISTERS \
0ff3dcd6
AK
440{ 1, 1, 1, 1, \
441 1, 1, 0, 0, \
442 0, 0, 0, 0, \
9db1d521 443 0, 1, 1, 1, \
c5aa1d12 444 1, 1, 1, 1, \
085261c8 445 1, 1, 1, 1, \
0ff3dcd6
AK
446 1, 1, 1, 1, \
447 1, 1, 1, 1, \
448 1, 1, 1, 1, \
449 1, 1, \
450 1, 1, 1, 1, \
451 1, 1, 1, 1, \
452 1, 1, 1, 1, \
085261c8 453 1, 1, 1, 1 }
4023fb28 454
4023fb28 455#define CALL_REALLY_USED_REGISTERS \
0ff3dcd6
AK
456{ 1, 1, 1, 1, /* r0 - r15 */ \
457 1, 1, 0, 0, \
458 0, 0, 0, 0, \
4023fb28 459 0, 0, 0, 0, \
0ff3dcd6
AK
460 1, 1, 1, 1, /* f0 (16) - f15 (31) */ \
461 1, 1, 1, 1, \
462 1, 1, 1, 1, \
463 1, 1, 1, 1, \
085261c8 464 1, 1, 1, 1, /* arg, cc, fp, ret addr */ \
0ff3dcd6
AK
465 0, 0, /* a0 (36), a1 (37) */ \
466 1, 1, 1, 1, /* v16 (38) - v23 (45) */ \
c5aa1d12 467 1, 1, 1, 1, \
0ff3dcd6 468 1, 1, 1, 1, /* v24 (46) - v31 (53) */ \
085261c8 469 1, 1, 1, 1 }
9db1d521 470
862a2d83 471/* Preferred register allocation order. */
085261c8
AK
472#define REG_ALLOC_ORDER \
473 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
474 16, 17, 18, 19, 20, 21, 22, 23, \
475 24, 25, 26, 27, 28, 29, 30, 31, \
0ff3dcd6 476 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \
085261c8 477 15, 32, 33, 34, 35, 36, 37 }
9db1d521 478
9db1d521 479
74aa8b4b 480#define HARD_REGNO_RENAME_OK(FROM, TO) \
2d6744f4 481 s390_hard_regno_rename_ok ((FROM), (TO))
7633f08e 482
862a2d83
UW
483/* Maximum number of registers to represent a value of mode MODE
484 in a register of class CLASS. */
0ff3dcd6 485#define CLASS_MAX_NREGS(CLASS, MODE) \
74aa8b4b 486 s390_class_max_nregs ((CLASS), (MODE))
4023fb28 487
eca98038
AK
488/* We can reverse a CC mode safely if we know whether it comes from a
489 floating point compare or not. With the vector modes it is encoded
490 as part of the mode.
491 FIXME: It might make sense to do this for other cc modes as well. */
492#define REVERSIBLE_CC_MODE(MODE) \
493 ((MODE) == CCVIALLmode || (MODE) == CCVIANYmode \
494 || (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)
495
496/* Given a condition code and a mode, return the inverse condition. */
497#define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)
498
499
862a2d83 500/* Register classes. */
c7453384 501
862a2d83
UW
502/* We use the following register classes:
503 GENERAL_REGS All general purpose registers
504 ADDR_REGS All general purpose registers except %r0
0ff3dcd6 505 (These registers can be used in address generation)
862a2d83 506 FP_REGS All floating point registers
c5aa1d12
UW
507 CC_REGS The condition code register
508 ACCESS_REGS The access registers
c7453384 509
862a2d83
UW
510 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
511 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
c5aa1d12
UW
512 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
513 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
c7453384 514
862a2d83
UW
515 NO_REGS No registers
516 ALL_REGS All registers
c7453384 517
862a2d83 518 Note that the 'fake' frame pointer and argument pointer registers
c5aa1d12 519 are included amongst the address registers here. */
9db1d521
HP
520
521enum reg_class
522{
c5aa1d12 523 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
f4aa3848 524 ADDR_CC_REGS, GENERAL_CC_REGS,
4023fb28 525 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
085261c8 526 VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
4023fb28 527 ALL_REGS, LIM_REG_CLASSES
9db1d521 528};
9db1d521
HP
529#define N_REG_CLASSES (int) LIM_REG_CLASSES
530
c5aa1d12
UW
531#define REG_CLASS_NAMES \
532{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
533 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
085261c8
AK
534 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \
535 "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \
536 "ALL_REGS" }
9db1d521 537
862a2d83 538/* Class -> register mapping. */
085261c8
AK
539#define REG_CLASS_CONTENTS \
540{ \
9db1d521 541 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
9dc62c00 542 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
a38e09bc
AK
543 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
544 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
c5aa1d12 545 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
9dc62c00
AK
546 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
547 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
9db1d521 548 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
a38e09bc
AK
549 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
550 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
085261c8
AK
551 { 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \
552 { 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \
553 { 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \
554 { 0xffffffff, 0x003fffff }, /* ALL_REGS */ \
9db1d521
HP
555}
556
058e97ec
VM
557/* In some case register allocation order is not enough for IRA to
558 generate a good code. The following macro (if defined) increases
559 cost of REGNO for a pseudo approximately by pseudo usage frequency
560 multiplied by the macro value.
561
562 We avoid usage of BASE_REGNUM by nonzero macro value because the
563 reload can decide not to use the hard register because some
564 constant was forced to be in memory. */
565#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
2d6744f4 566 ((regno) != BASE_REGNUM ? 0.0 : 0.5)
058e97ec 567
862a2d83
UW
568/* Register -> class mapping. */
569extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
570#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
9db1d521 571
862a2d83
UW
572/* ADDR_REGS can be used as base or index register. */
573#define INDEX_REG_CLASS ADDR_REGS
574#define BASE_REG_CLASS ADDR_REGS
9db1d521 575
862a2d83
UW
576/* Check whether REGNO is a hard register of the suitable class
577 or a pseudo register currently allocated to one such. */
578#define REGNO_OK_FOR_INDEX_P(REGNO) \
0ff3dcd6
AK
579 (((REGNO) < FIRST_PSEUDO_REGISTER \
580 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
93fa8428 581 || ADDR_REGNO_P (reg_renumber[REGNO]))
862a2d83 582#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
9db1d521 583
9db1d521 584
862a2d83 585/* Stack layout and calling conventions. */
c7453384 586
862a2d83
UW
587/* Our stack grows from higher to lower addresses. However, local variables
588 are accessed by positive offsets, and function arguments are stored at
589 increasing addresses. */
62f9f30b 590#define STACK_GROWS_DOWNWARD 1
63296cb1 591#define FRAME_GROWS_DOWNWARD 1
862a2d83 592/* #undef ARGS_GROW_DOWNWARD */
9db1d521 593
862a2d83
UW
594/* The basic stack layout looks like this: the stack pointer points
595 to the register save area for called functions. Above that area
596 is the location to place outgoing arguments. Above those follow
597 dynamic allocations (alloca), and finally the local variables. */
9db1d521 598
862a2d83
UW
599/* Offset from stack-pointer to first location of outgoing args. */
600#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
9db1d521 601
862a2d83
UW
602/* Offset from the stack pointer register to an item dynamically
603 allocated on the stack, e.g., by `alloca'. */
63296cb1 604#define STACK_DYNAMIC_OFFSET(FUNDECL) \
38173d38 605 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
9db1d521 606
862a2d83
UW
607/* Offset of first parameter from the argument pointer register value.
608 We have a fake argument pointer register that points directly to
609 the argument area. */
610#define FIRST_PARM_OFFSET(FNDECL) 0
9db1d521 611
f4aa3848 612/* Defining this macro makes __builtin_frame_address(0) and
c6d01079
AK
613 __builtin_return_address(0) work with -fomit-frame-pointer. */
614#define INITIAL_FRAME_ADDRESS_RTX \
0a81f074 615 (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
c6d01079 616
c7453384 617/* The return address of the current frame is retrieved
4023fb28
UW
618 from the initial value of register RETURN_REGNUM.
619 For frames farther back, we use the stack slot where
620 the corresponding RETURN_REGNUM register was saved. */
c6d01079
AK
621#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
622 (TARGET_PACKED_STACK ? \
0a81f074
RS
623 plus_constant (Pmode, (FRAME), \
624 STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
4023fb28 625
78791a80
AK
626/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
627 builtin_frame_address. Otherwise arg pointer -
628 STACK_POINTER_OFFSET would be returned for
629 __builtin_frame_address(0) what might result in an address pointing
630 somewhere into the middle of the local variables since the packed
631 stack layout generally does not need all the bytes in the register
632 save area. */
633#define FRAME_ADDR_RTX(FRAME) \
634 DYNAMIC_CHAIN_ADDRESS ((FRAME))
635
c6d01079 636#define RETURN_ADDR_RTX(COUNT, FRAME) \
5d4d885c 637 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
9db1d521 638
862a2d83 639/* In 31-bit mode, we need to mask off the high bit of return addresses. */
a556fd39 640#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
9db1d521 641
4023fb28 642
862a2d83 643/* Exception handling. */
c7453384 644
862a2d83
UW
645/* Describe calling conventions for DWARF-2 exception handling. */
646#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
4023fb28 647#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
9db1d521
HP
648#define DWARF_FRAME_RETURN_COLUMN 14
649
650/* Describe how we implement __builtin_eh_return. */
651#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
a38e09bc 652#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
f4aa3848 653
18789f4e
UW
654/* Select a format to encode pointers in exception handling data. */
655#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
656 (flag_pic \
657 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
658 : DW_EH_PE_absptr)
659
9602b6a1
AK
660/* Register save slot alignment. */
661#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
662
f276b762
AK
663/* Let the assembler generate debug line info. */
664#define DWARF2_ASM_LINE_DEBUG_INFO 1
665
085261c8
AK
666/* Define the dwarf register mapping.
667 v16-v31 -> 68-83
668 rX -> X otherwise */
2d6744f4
AK
669#define DBX_REGISTER_NUMBER(regno) \
670 (((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))
9db1d521 671
862a2d83 672/* Frame registers. */
9db1d521 673
862a2d83
UW
674#define STACK_POINTER_REGNUM 15
675#define FRAME_POINTER_REGNUM 34
676#define HARD_FRAME_POINTER_REGNUM 11
677#define ARG_POINTER_REGNUM 32
a38e09bc 678#define RETURN_ADDRESS_POINTER_REGNUM 35
9db1d521 679
c7453384
EC
680/* The static chain must be call-clobbered, but not used for
681 function argument passing. As register 1 is clobbered by
862a2d83
UW
682 the trampoline code, we only have one option. */
683#define STATIC_CHAIN_REGNUM 0
9db1d521 684
862a2d83
UW
685/* Number of hardware registers that go into the DWARF-2 unwind info.
686 To avoid ABI incompatibility, this number must not change even as
687 'fake' hard registers are added or removed. */
688#define DWARF_FRAME_REGISTERS 34
9db1d521 689
9db1d521 690
862a2d83 691/* Frame pointer and argument pointer elimination. */
9db1d521 692
7633f08e
UW
693#define ELIMINABLE_REGS \
694{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
695 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
696 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
697 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
698 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
699 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
700 { BASE_REGNUM, BASE_REGNUM }}
9db1d521 701
91086990
UW
702#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
703 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
9db1d521 704
9db1d521 705
862a2d83 706/* Stack arguments. */
c7453384 707
862a2d83
UW
708/* We need current_function_outgoing_args to be valid. */
709#define ACCUMULATE_OUTGOING_ARGS 1
9db1d521 710
9db1d521 711
862a2d83 712/* Register arguments. */
c7453384 713
9db1d521
HP
714typedef struct s390_arg_structure
715{
716 int gprs; /* gpr so far */
717 int fprs; /* fpr so far */
085261c8 718 int vrs; /* vr so far */
9db1d521
HP
719}
720CUMULATIVE_ARGS;
721
07711f53 722#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
085261c8
AK
723 ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
724
725#define FIRST_VEC_ARG_REGNO 46
726#define LAST_VEC_ARG_REGNO 53
9db1d521 727
96e2afa8
AK
728/* Arguments can be placed in general registers 2 to 6, or in floating
729 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
730 bit. */
085261c8
AK
731#define FUNCTION_ARG_REGNO_P(N) \
732 (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \
733 || (TARGET_64BIT && ((N) == 18 || (N) == 19)) \
734 || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
9db1d521 735
9db1d521 736
085261c8
AK
737/* Only gpr 2, fpr 0, and v24 are ever used as return registers. */
738#define FUNCTION_VALUE_REGNO_P(N) \
739 ((N) == 2 || (N) == 16 \
740 || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
9db1d521 741
9db1d521 742
862a2d83 743/* Function entry and exit. */
c7453384 744
862a2d83
UW
745/* When returning from a function, the stack pointer does not matter. */
746#define EXIT_IGNORE_STACK 1
9db1d521 747
9db1d521 748
862a2d83 749/* Profiling. */
9db1d521 750
0ff3dcd6 751#define FUNCTION_PROFILER(FILE, LABELNO) \
862a2d83 752 s390_function_profiler ((FILE), ((LABELNO)))
9db1d521 753
c52a375d 754#define PROFILE_BEFORE_PROLOGUE 1
9db1d521 755
9db1d521 756
862a2d83 757/* Trampolines for nested functions. */
9db1d521 758
b81ecf6f
RH
759#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
760#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
9db1d521 761
862a2d83 762/* Addressing modes, and classification of registers for them. */
9db1d521 763
862a2d83
UW
764/* Recognize any constant value that is a valid address. */
765#define CONSTANT_ADDRESS_P(X) 0
9db1d521 766
862a2d83
UW
767/* Maximum number of registers that can appear in a valid memory address. */
768#define MAX_REGS_PER_ADDRESS 2
9db1d521 769
963fc8d0 770/* This definition replaces the formerly used 'm' constraint with a
c6c3dba9
PB
771 different constraint letter in order to avoid changing semantics of
772 the 'm' constraint when accepting new address formats in
773 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
774 must not be used in insn definitions or inline assemblies. */
963fc8d0
AK
775#define TARGET_MEM_CONSTRAINT 'e'
776
0b540f12
UW
777/* Try a machine-dependent way of reloading an illegitimate address
778 operand. If we find one, push the reload and jump to WIN. This
779 macro is used in only one place: `find_reloads_address' in reload.c. */
780#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
2d6744f4
AK
781 do { \
782 rtx new_rtx = legitimize_reload_address ((AD), (MODE), \
783 (OPNUM), (int)(TYPE)); \
784 if (new_rtx) \
785 { \
786 (AD) = new_rtx; \
787 goto WIN; \
788 } \
789 } while (0)
0b540f12 790
862a2d83 791/* Helper macro for s390.c and s390.md to check for symbolic constants. */
2d6744f4
AK
792#define SYMBOLIC_CONST(X) \
793 (GET_CODE (X) == SYMBOL_REF \
794 || GET_CODE (X) == LABEL_REF \
795 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
9db1d521 796
2d6744f4
AK
797#define TLS_SYMBOLIC_CONST(X) \
798 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
799 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
fd3cd001 800
9db1d521 801
862a2d83 802/* Condition codes. */
9db1d521 803
862a2d83
UW
804/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
805 return the mode to be used for the comparison. */
806#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
c7453384 807
862a2d83 808/* Relative costs of operations. */
9db1d521 809
9db1d521
HP
810/* A C expression for the cost of a branch instruction. A value of 1
811 is the default; other values are interpreted relative to that. */
3d427cc1 812#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
9db1d521 813
862a2d83
UW
814/* Nonzero if access to memory by bytes is slow and undesirable. */
815#define SLOW_BYTE_ACCESS 1
816
c5443745 817/* An integer expression for the size in bits of the largest integer machine
f4aa3848 818 mode that should actually be used. We allow pairs of registers. */
c5443745
UW
819#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
820
862a2d83 821/* The maximum number of bytes that a single instruction can move quickly
ff482c8d 822 between memory and registers or between two memory locations. */
9602b6a1
AK
823#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
824#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
862a2d83 825#define MAX_MOVE_MAX 16
9db1d521 826
862a2d83 827/* Don't perform CSE on function addresses. */
1e8552c2 828#define NO_FUNCTION_CSE 1
862a2d83 829
5f1b2ee6
AK
830/* This value is used in tree-sra to decide whether it might benefical
831 to split a struct move into several word-size moves. For S/390
832 only small values make sense here since struct moves are relatively
073a8998 833 cheap thanks to mvc so the small default value chosen for archs
5f1b2ee6
AK
834 with memmove patterns should be ok. But this value is multiplied
835 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
836 here to compensate for that factor since mvc costs exactly the same
837 on 31 and 64 bit. */
e04ad03d 838#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
5f1b2ee6 839
862a2d83
UW
840
841/* Sections. */
842
843/* Output before read-only data. */
844#define TEXT_SECTION_ASM_OP ".text"
845
846/* Output before writable (initialized) data. */
847#define DATA_SECTION_ASM_OP ".data"
848
849/* Output before writable (uninitialized) data. */
850#define BSS_SECTION_ASM_OP ".bss"
851
852/* S/390 constant pool breaks the devices in crtstuff.c to control section
853 in where code resides. We have to write it as asm code. */
854#ifndef __s390x__
855#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
856 asm (SECTION_OP "\n\
857 bras\t%r2,1f\n\
8580: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
8591: l\t%r3,0(%r2)\n\
860 bas\t%r14,0(%r3,%r2)\n\
861 .previous");
862#endif
63a1ff86 863
862a2d83
UW
864
865/* Position independent code. */
866
862a2d83
UW
867#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
868
869#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
63a1ff86 870
935b5226
AK
871#ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
872#define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
873#endif
874
63a1ff86
UW
875
876/* Assembler file format. */
877
878/* Character to start a comment. */
879#define ASM_COMMENT_START "#"
880
881/* Declare an uninitialized external linkage data object. */
2d6744f4
AK
882#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
883 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
63a1ff86
UW
884
885/* Globalizing directive for a label. */
886#define GLOBAL_ASM_OP ".globl "
887
888/* Advance the location counter to a multiple of 2**LOG bytes. */
889#define ASM_OUTPUT_ALIGN(FILE, LOG) \
890 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
891
892/* Advance the location counter by SIZE bytes. */
893#define ASM_OUTPUT_SKIP(FILE, SIZE) \
16998094 894 fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
63a1ff86 895
63a1ff86
UW
896/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
897#define LOCAL_LABEL_PREFIX "."
9db1d521 898
5d304e47 899#define LABEL_ALIGN(LABEL) \
2d6744f4 900 s390_label_align ((LABEL))
5d304e47 901
9db1d521
HP
902/* How to refer to registers in assembler output. This sequence is
903 indexed by compiler's hard-register-number (see above). */
9db1d521 904#define REGISTER_NAMES \
085261c8
AK
905 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
906 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
907 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
908 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
909 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \
910 "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \
911 "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \
912 }
913
914#define ADDITIONAL_REGISTER_NAMES \
915 { { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \
916 { "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \
917 { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \
918 { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
9db1d521 919
63a1ff86 920/* Print operand X (an rtx) in assembler syntax to file FILE. */
2d6744f4
AK
921#define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
922#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))
9db1d521 923
63a1ff86
UW
924/* Output an element of a case-vector that is absolute. */
925#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
926do { \
927 char buf[32]; \
9602b6a1 928 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
929 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
930 assemble_name ((FILE), buf); \
931 fputc ('\n', (FILE)); \
932} while (0)
933
934/* Output an element of a case-vector that is relative. */
935#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
936do { \
937 char buf[32]; \
9602b6a1 938 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
939 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
940 assemble_name ((FILE), buf); \
941 fputc ('-', (FILE)); \
942 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
943 assemble_name ((FILE), buf); \
944 fputc ('\n', (FILE)); \
945} while (0)
946
177bc204
RS
947/* Mark the return register as used by the epilogue so that we can
948 use it in unadorned (return) and (simple_return) instructions. */
949#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
950
d0de9e13 951#undef ASM_OUTPUT_FUNCTION_LABEL
2d6744f4
AK
952#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
953 s390_asm_output_function_label ((FILE), (NAME), (DECL))
9db1d521 954
ec47b086
DV
955#if S390_USE_TARGET_ATTRIBUTE
956/* Hook to output .machine and .machinemode at start of function. */
957#undef ASM_OUTPUT_FUNCTION_PREFIX
958#define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix
959
960/* Hook to output .machine and .machinemode at end of function. */
961#undef ASM_DECLARE_FUNCTION_SIZE
962#define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
963#endif
964
862a2d83
UW
965/* Miscellaneous parameters. */
966
862a2d83
UW
967/* Specify the machine mode that this machine uses for the index in the
968 tablejump instruction. */
969#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
970
862a2d83
UW
971/* Specify the machine mode that pointers have.
972 After generation of rtl, the compiler makes no further distinction
973 between pointers and any other objects of this machine mode. */
501623d4 974#define Pmode (TARGET_64BIT ? DImode : SImode)
862a2d83 975
c7453384
EC
976/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
977#define POINTERS_EXTEND_UNSIGNED -1
978
862a2d83
UW
979/* A function address in a call instruction is a byte address (for
980 indexing purposes) so give the MEM rtx a byte's mode. */
981#define FUNCTION_MODE QImode
982
ec24698e
UW
983/* Specify the value which is used when clz operand is zero. */
984#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
985
0bfc3f69 986/* Machine-specific symbol_ref flags. */
e63d44c2
RD
987#define SYMBOL_FLAG_ALIGN_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
988#define SYMBOL_FLAG_ALIGN_MASK \
989 ((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))
990
991#define SYMBOL_FLAG_SET_ALIGN(X, A) \
992 (SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
993 | (A << SYMBOL_FLAG_ALIGN_SHIFT))
994
995#define SYMBOL_FLAG_GET_ALIGN(X) \
996 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)
997
998/* Helpers to access symbol_ref flags. They are used in
999 check_symref_alignment() and larl_operand to detect if the
1000 available alignment matches the required one. We do not use
1001 a positive check like _ALIGN2 because in that case we would have
1002 to annotate every symbol_ref. However, we only want to touch
1003 the symbol_refs that can be misaligned and assume that the others
1004 are correctly aligned. Hence, if a symbol_ref does not have
1005 a _NOTALIGN flag it is supposed to be correctly aligned. */
2d6744f4
AK
1006#define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
1007#define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
1008#define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)
e63d44c2
RD
1009
1010#define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
2d6744f4 1011#define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2 \
e63d44c2 1012 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
2d6744f4
AK
1013#define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3 \
1014 || SYMBOL_FLAG_GET_ALIGN(X) == 2 \
e63d44c2 1015 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
0bfc3f69 1016
085261c8
AK
1017/* Check whether integer displacement is in range for a short displacement. */
1018#define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
1019
0bfc3f69 1020/* Check whether integer displacement is in range. */
2d6744f4
AK
1021#define DISP_IN_RANGE(d) \
1022 (TARGET_LONG_DISPLACEMENT \
1023 ? ((d) >= -524288 && (d) <= 524287) \
1024 : SHORT_DISP_IN_RANGE(d))
0bfc3f69 1025
24a235c8
CB
1026/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
1027#define READ_CAN_USE_WRITE_PREFETCH 1
677f3fa8
JM
1028
1029extern const int processor_flags_table[];
085261c8 1030
52d4aa4f
IL
1031struct s390_processor
1032{
1033 /* The preferred name to be used in user visible output. */
1034 const char *const name;
1035 /* CPU name as it should be passed to Binutils via .machine */
1036 const char *const binutils_name;
1037 const enum processor_type processor;
1038 const struct processor_costs *cost;
1039 int arch_level;
1040};
1041
1042extern const struct s390_processor processor_table[];
1043
085261c8
AK
1044/* The truth element value for vector comparisons. Our instructions
1045 always generate -1 in that case. */
1046#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1047
3af82a61
AK
1048/* Target pragma. */
1049
1050/* resolve_overloaded_builtin can not be defined the normal way since
1051 it is defined in code which technically belongs to the
1052 front-end. */
1053#define REGISTER_TARGET_PRAGMAS() \
1054 do { \
1055 s390_register_target_pragmas (); \
1056 } while (0)
1057
84b4c7b5
AK
1058#ifndef USED_FOR_TARGET
1059/* The following structure is embedded in the machine
1060 specific part of struct function. */
1061
1062struct GTY (()) s390_frame_layout
1063{
1064 /* Offset within stack frame. */
1065 HOST_WIDE_INT gprs_offset;
1066 HOST_WIDE_INT f0_offset;
1067 HOST_WIDE_INT f4_offset;
1068 HOST_WIDE_INT f8_offset;
1069 HOST_WIDE_INT backchain_offset;
1070
1071 /* Number of first and last gpr where slots in the register
1072 save area are reserved for. */
1073 int first_save_gpr_slot;
1074 int last_save_gpr_slot;
1075
1076 /* Location (FP register number) where GPRs (r0-r15) should
1077 be saved to.
1078 0 - does not need to be saved at all
1079 -1 - stack slot */
1080#define SAVE_SLOT_NONE 0
1081#define SAVE_SLOT_STACK -1
1082 signed char gpr_save_slots[16];
1083
1084 /* Number of first and last gpr to be saved, restored. */
1085 int first_save_gpr;
1086 int first_restore_gpr;
1087 int last_save_gpr;
1088 int last_restore_gpr;
1089
1090 /* Bits standing for floating point registers. Set, if the
1091 respective register has to be saved. Starting with reg 16 (f0)
1092 at the rightmost bit.
1093 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1094 fpr 15 13 11 9 14 12 10 8 7 5 3 1 6 4 2 0
1095 reg 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 */
1096 unsigned int fpr_bitmap;
1097
1098 /* Number of floating point registers f8-f15 which must be saved. */
1099 int high_fprs;
1100
1101 /* Set if return address needs to be saved.
1102 This flag is set by s390_return_addr_rtx if it could not use
1103 the initial value of r14 and therefore depends on r14 saved
1104 to the stack. */
1105 bool save_return_addr_p;
1106
1107 /* Size of stack frame. */
1108 HOST_WIDE_INT frame_size;
1109};
1110
1111
1112/* Define the structure for the machine field in struct function. */
1113
1114struct GTY(()) machine_function
1115{
1116 struct s390_frame_layout frame_layout;
1117
1118 /* Literal pool base register. */
1119 rtx base_reg;
1120
84b4c7b5
AK
1121 bool has_landing_pad_p;
1122
1123 /* True if the current function may contain a tbegin clobbering
1124 FPRs. */
1125 bool tbegin_p;
1126
1127 /* For -fsplit-stack support: A stack local which holds a pointer to
1128 the stack arguments for a function with a variable number of
1129 arguments. This is set at the start of the function and is used
1130 to initialize the overflow_arg_area field of the va_list
1131 structure. */
1132 rtx split_stack_varargs_pointer;
1133
1134 enum indirect_branch indirect_branch_jump;
1135 enum indirect_branch indirect_branch_call;
1136
1137 enum indirect_branch function_return_mem;
1138 enum indirect_branch function_return_reg;
1139};
1140#endif
1141
1142#define TARGET_INDIRECT_BRANCH_NOBP_RET_OPTION \
1143 (cfun->machine->function_return_reg != indirect_branch_keep \
1144 || cfun->machine->function_return_mem != indirect_branch_keep)
1145
1146#define TARGET_INDIRECT_BRANCH_NOBP_RET \
1147 ((cfun->machine->function_return_reg != indirect_branch_keep \
1148 && !s390_return_addr_from_memory ()) \
1149 || (cfun->machine->function_return_mem != indirect_branch_keep \
1150 && s390_return_addr_from_memory ()))
1151
1152#define TARGET_INDIRECT_BRANCH_NOBP_JUMP \
1153 (cfun->machine->indirect_branch_jump != indirect_branch_keep)
1154
1155#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_THUNK \
1156 (cfun->machine->indirect_branch_jump == indirect_branch_thunk \
1157 || cfun->machine->indirect_branch_jump == indirect_branch_thunk_extern)
1158
1159#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_INLINE_THUNK \
1160 (cfun->machine->indirect_branch_jump == indirect_branch_thunk_inline)
1161
1162#define TARGET_INDIRECT_BRANCH_NOBP_CALL \
1163 (cfun->machine->indirect_branch_call != indirect_branch_keep)
1164
1165#ifndef TARGET_DEFAULT_INDIRECT_BRANCH_TABLE
1166#define TARGET_DEFAULT_INDIRECT_BRANCH_TABLE 0
1167#endif
1168
1169#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL "__s390_indirect_jump_r%d"
1170#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EX "__s390_indirect_jump_r%duse_r%d"
1171
1172#define TARGET_INDIRECT_BRANCH_TABLE s390_indirect_branch_table
1173
1174
085261c8 1175#endif /* S390_H */