]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/sparc/sparc.h
(consttable_end): Delete call to text_section.
[thirdparty/gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28 1/* Definitions of target machine for GNU compiler, for Sun SPARC.
6f64bf5f 2 Copyright (C) 1987, 88, 89, 92, 94, 95, 1996 Free Software Foundation, Inc.
1bb87f28 3 Contributed by Michael Tiemann (tiemann@cygnus.com).
7a6cf439
DE
4 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
1bb87f28
JW
6
7This file is part of GNU CC.
8
9GNU CC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
14GNU CC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
21the Free Software Foundation, 59 Temple Place - Suite 330,
22Boston, MA 02111-1307, USA. */
1bb87f28
JW
23
24/* Note that some other tm.h files include this one and then override
25 many of the definitions that relate to assembler syntax. */
26
7a6cf439
DE
27/* Sparc64 support has been added by trying to allow for a day when one
28 compiler can handle both v8 and v9. There are a few cases where this
6f64bf5f
DE
29 isn't doable, but keep them to a minimum!
30
31 TARGET_V9 is used to select at runtime the sparc64 chip.
32 TARGET_ARCH64 is used to select at runtime a 64 bit environment.
33 SPARC_V9 is defined as 0 or 1 (so it may be used inside and outside
34 #define's), and says whether the cpu is a sparc64 chip (which may be
35 running in a 32 or 64 bit environment).
36 SPARC_ARCH64 is defined as 0 for a 32 bit environment and 1 for a 64 bit
37 environment.
38
39 In places where it is possible to choose at runtime, use TARGET_V9 and
40 TARGET_ARCH64. In places where it is currently not possible to select
41 between the two at runtime use SPARC_{V9,ARCH64}. Again, keep uses of
42 SPARC_{V9,ARCH64} to a minimum. No attempt is made to support both v8
43 and v9 in the v9 compiler.
7a6cf439
DE
44
45 If a combination v8/v9 compiler is too slow, it should always be possible
6f64bf5f
DE
46 to #define TARGET_{V9,ARCH64} as 0 (and potentially other v9-only
47 options), and #define SPARC_{V9,ARCH64} as 0.
48 I measured the difference once and it was around 10%. /dje 960120
49*/
7a6cf439 50
6f64bf5f
DE
51#ifndef SPARC_V9
52#define SPARC_V9 0
53#endif
54#ifndef SPARC_ARCH64
55#define SPARC_ARCH64 0
56#endif
57
bafb031b
DE
58/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile. */
59#define TARGET_CPU_sparc 0
60#define TARGET_CPU_sparclet 1
61#define TARGET_CPU_sparclite 2
62#define TARGET_CPU_sparc64 3
63
64#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc
65#define CPP_DEFAULT_SPEC ""
66#define ASM_DEFAULT_SPEC ""
67#else
68#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
69#define CPP_DEFAULT_SPEC "-D__sparclet__"
70#define ASM_DEFAULT_SPEC "-Asparclet"
71#else
72#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
73#define CPP_DEFAULT_SPEC "-D__sparclite__"
74#define ASM_DEFAULT_SPEC "-Asparclite"
75#else
76#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc64
77/* ??? What does Sun's CC pass? */
78#define CPP_DEFAULT_SPEC "-D__sparc_v9__"
79/* ??? It's not clear how other assemblers will handle this, so by default
80 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
81 is handled in sol2.h. */
82#define ASM_DEFAULT_SPEC "-Av9"
83#else
84Unrecognized value in TARGET_CPU_DEFAULT.
85#endif
86#endif
87#endif
88#endif
89
7a6cf439
DE
90/* Names to predefine in the preprocessor for this target machine. */
91
92/* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
93 the right varags.h file when bootstrapping. */
bafb031b
DE
94/* ??? It's not clear what value we want to use for -Acpu/machine for
95 sparc64 in 32 bit environments, so for now we only use `sparc64' in
96 64 bit environments. */
97/* ??? __arch64__ is subject to change. */
7a6cf439 98
6f64bf5f 99#if SPARC_ARCH64
7a6cf439 100#define CPP_PREDEFINES \
bafb031b 101 "-Dsparc -Dsun -Dunix -D__arch64__ \
7a6cf439
DE
102 -Asystem(unix) -Asystem(bsd) -Acpu(sparc64) -Amachine(sparc64)"
103#else
104#define CPP_PREDEFINES \
105 "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \
857458c4 106 -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)"
7a6cf439
DE
107#endif
108
885d8175 109/* Define macros to distinguish architectures. */
857458c4 110
6f64bf5f 111#if SPARC_ARCH64
857458c4
DE
112#define CPP_SPEC "\
113%{mint64:-D__INT_MAX__=9223372036854775807LL -D__LONG_MAX__=9223372036854775807LL} \
114%{mlong64:-D__LONG_MAX__=9223372036854775807LL} \
115"
116#else
bafb031b
DE
117#define CPP_SPEC "%(cpp_cpu)"
118#endif
119
120/* Common CPP definitions used by CPP_SPEC amongst the various targets
121 for handling -mcpu=xxx switches. */
122#define CPP_CPU_SPEC "\
123%{mcypress:} \
7a6cf439
DE
124%{msparclite:-D__sparclite__} \
125%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
126%{mv8:-D__sparc_v8__} \
bafb031b
DE
127%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
128%{mcpu=sparclite:-D__sparclite__} \
129%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
130%{mcpu=v8:-D__sparc_v8__} \
131%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
132%{mcpu=v9:-D__sparc_v9__} \
133%{mcpu=ultrasparc:-D__sparc_v9__} \
134%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_default)}}}}}}} \
7a6cf439 135"
885d8175 136
b1fc14e5
RS
137/* Prevent error on `-sun4' and `-target sun4' options. */
138/* This used to translate -dalign to -malign, but that is no good
139 because it can't turn off the usual meaning of making debugging dumps. */
bafb031b
DE
140/* Translate old style -m<cpu> into new style -mcpu=<cpu>.
141 At some point support for -m<cpu> will be deleted. */
142
143#define CC1_SPEC "\
144%{sun4:} %{target:} \
145%{mcypress:-mcpu=cypress} \
146%{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
147%{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
148"
149
150#define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}"
151
152/* Provide required defaults for linker -e and -d switches. */
153
154#define LINK_SPEC \
155 "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \
156 %{assert*} %{shared:%{!mimpure-text:-assert pure-text}}"
157
158/* Special flags to the Sun-4 assembler when using pipe for input. */
159
160#define ASM_SPEC "\
161%| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
162%(asm_cpu) \
163"
164
165/* Override in target specific files. */
166#define ASM_CPU_SPEC "\
167%{msparclite:-Asparclite} \
168%{mf930:-Asparclite} %{mf934:-Asparclite} \
169%{mcpu=sparclite:-Asparclite} \
170%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
171%{mcpu=v9:-Av9} \
172%{mcpu=ultrasparc:-Av9} \
173%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_default)}}}}}}} \
174"
175
176/* This macro defines names of additional specifications to put in the specs
177 that can be used in various specifications like CC1_SPEC. Its definition
178 is an initializer with a subgrouping for each command option.
179
180 Each subgrouping contains a string constant, that defines the
181 specification name, and a string constant that used by the GNU CC driver
182 program.
183
184 Do not define this macro if it does not need to do anything. */
1bb87f28 185
bafb031b
DE
186#define EXTRA_SPECS \
187 { "cpp_cpu", CPP_CPU_SPEC }, \
188 { "cpp_default", CPP_DEFAULT_SPEC }, \
189 { "asm_cpu", ASM_CPU_SPEC }, \
190 { "asm_default", ASM_DEFAULT_SPEC }, \
191 SUBTARGET_EXTRA_SPECS
1bb87f28 192
bafb031b
DE
193#define SUBTARGET_EXTRA_SPECS
194\f
6f64bf5f 195#if SPARC_ARCH64
857458c4
DE
196#define PTRDIFF_TYPE "long long int"
197#define SIZE_TYPE "long long unsigned int"
198#else
199#define PTRDIFF_TYPE "int"
bafb031b 200/* The default value for SIZE_TYPE is "unsigned int" which is what we want. */
857458c4 201#endif
7a6cf439
DE
202
203/* ??? This should be 32 bits for v9 but what can we do? */
1bb87f28
JW
204#define WCHAR_TYPE "short unsigned int"
205#define WCHAR_TYPE_SIZE 16
7a6cf439 206#define MAX_WCHAR_TYPE_SIZE 16
1bb87f28 207
4f074454
RK
208/* Show we can debug even without a frame pointer. */
209#define CAN_DEBUG_WITHOUT_FP
1bb87f28 210
5b485d2c
JW
211/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
212 code into the rtl. Also, if we are profiling, we cannot eliminate
213 the frame pointer (because the return address will get smashed). */
214
7a6cf439
DE
215void sparc_override_options ();
216
5b485d2c 217#define OVERRIDE_OPTIONS \
7a6cf439
DE
218 do { \
219 if (profile_flag || profile_block_flag) \
220 { \
221 if (flag_pic) \
222 { \
223 char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC"; \
224 warning ("%s and profiling conflict: disabling %s", \
225 pic_string, pic_string); \
226 flag_pic = 0; \
227 } \
228 flag_omit_frame_pointer = 0; \
229 } \
7a6cf439 230 sparc_override_options (); \
bafb031b 231 SUBTARGET_OVERRIDE_OPTIONS; \
7a6cf439 232 } while (0)
84ab3bfb 233
cf9be6f0 234/* This is meant to be redefined in the host dependent files. */
84ab3bfb 235#define SUBTARGET_OVERRIDE_OPTIONS
5b485d2c 236
1bb87f28
JW
237/* These compiler options take an argument. We ignore -target for now. */
238
239#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
240 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
241 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28 242
1bb87f28
JW
243/* Print subsidiary information on the compiler version in use. */
244
245#define TARGET_VERSION fprintf (stderr, " (sparc)");
246
247/* Generate DBX debugging information. */
248
249#define DBX_DEBUGGING_INFO
7a6cf439 250\f
1bb87f28
JW
251/* Run-time compilation parameters selecting different hardware subsets. */
252
253extern int target_flags;
254
255/* Nonzero if we should generate code to use the fpu. */
7a6cf439
DE
256#define MASK_FPU 1
257#define TARGET_FPU (target_flags & MASK_FPU)
1bb87f28
JW
258
259/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
260 use fast return insns, but lose some generality. */
7a6cf439
DE
261#define MASK_EPILOGUE 2
262#define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
1bb87f28 263
95dea81f
JW
264/* Nonzero if we should assume that double pointers might be unaligned.
265 This can happen when linking gcc compiled code with other compilers,
266 because the ABI only guarantees 4 byte alignment. */
7a6cf439
DE
267#define MASK_UNALIGNED_DOUBLES 4
268#define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
269
885d8175 270/* Nonzero means that we should generate code for a v8 sparc. */
6f64bf5f 271#define MASK_V8 0x8
7a6cf439 272#define TARGET_V8 (target_flags & MASK_V8)
885d8175 273
bc9e02ae
JW
274/* Nonzero means that we should generate code for a sparclite.
275 This enables the sparclite specific instructions, but does not affect
276 whether FPU instructions are emitted. */
6f64bf5f 277#define MASK_SPARCLITE 0x10
7a6cf439 278#define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
885d8175 279
bafb031b
DE
280/* Nonzero if we're compiling for the sparclet. */
281#define MASK_SPARCLET 0x20
282#define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
6f64bf5f
DE
283
284/* Nonzero if we're compiling for v9 sparc.
285 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
bafb031b 286 the word size is 64. */
6f64bf5f
DE
287#define MASK_V9 0x40
288#define TARGET_V9 (target_flags & MASK_V9)
289
bafb031b
DE
290/* Non-zero to generate code that uses the instructions deprecated in
291 the v9 architecture. This option only applies to v9 systems. */
292/* ??? This isn't user selectable yet. It's used to enable such insns
293 on 32 bit v9 systems and for the moment they're permanently disabled
294 on 64 bit v9 systems. */
295#define MASK_DEPRECATED_V8_INSNS 0x80
296#define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
6f64bf5f 297
bafb031b
DE
298/* Mask of all CPU selection flags. */
299#define MASK_ISA \
300(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
6f64bf5f 301
bafb031b
DE
302/* Non-zero means don't pass `-assert pure-text' to the linker. */
303#define MASK_IMPURE_TEXT 0x100
304#define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
5b485d2c 305
9a1c7cd7 306/* Nonzero means that we should generate code using a flat register window
bafb031b
DE
307 model, i.e. no save/restore instructions are generated, which is
308 compatible with normal sparc code.
309 The frame pointer is %i7 instead of %fp. */
7a6cf439
DE
310#define MASK_FLAT 0x200
311#define TARGET_FLAT (target_flags & MASK_FLAT)
9a1c7cd7 312
34ad7aaf 313/* Nonzero means use the registers that the Sparc ABI reserves for
bafb031b
DE
314 application software. This must be the default to coincide with the
315 setting in FIXED_REGISTERS. */
7a6cf439
DE
316#define MASK_APP_REGS 0x400
317#define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
34ad7aaf 318
eb582c5d
DE
319/* Option to select how quad word floating point is implemented.
320 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
321 Otherwise, we use the SPARC ABI quad library functions. */
7a6cf439
DE
322#define MASK_HARD_QUAD 0x800
323#define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
324
bafb031b 325/* Bit 0x1000 currently unused. */
7a6cf439
DE
326
327/* Nonzero if ints are 64 bits.
328 This automatically implies longs are 64 bits too.
329 This option is for v9 only. */
330#define MASK_INT64 0x2000
331#define TARGET_INT64 (target_flags & MASK_INT64)
332
333/* Nonzero if longs are 64 bits.
334 This option is for v9 only. */
335#define MASK_LONG64 0x4000
336#define TARGET_LONG64 (target_flags & MASK_LONG64)
337
338/* Nonzero if pointers are 64 bits.
857458c4
DE
339 This is not a user selectable option, though it may be one day -
340 so it is used to determine pointer size instead of an architecture flag. */
7a6cf439
DE
341#define MASK_PTR64 0x8000
342#define TARGET_PTR64 (target_flags & MASK_PTR64)
343
6f64bf5f
DE
344/* Nonzero if generating code to run in a 64 bit environment. */
345#define MASK_ARCH64 0x10000
346#define TARGET_ARCH64 (target_flags & MASK_ARCH64)
6f64bf5f 347#define TARGET_ARCH32 (! TARGET_ARCH64)
7a6cf439 348
6f64bf5f 349/* SPARC64 memory models.
eb582c5d
DE
350 TARGET_MEDLOW: 32 bit address space, top 32 bits = 0,
351 avoid generating %uhi and %ulo terms.
352 (pointers can be 32 or 64 bits)
6f64bf5f
DE
353 TARGET_MEDANY: 64 bit address space, data segment restricted to 4G, but
354 can be loaded anywhere (use %g4 as offset).
355 TARGET_FULLANY: 64 bit address space, no restrictions.
356 This option is not fully supported yet.
7a6cf439
DE
357 These options are for v9 only. All mask values are nonzero so the v8
358 compiler can assume this stuff won't interfere. */
359#define MASK_MEDLOW 0x20000
360#define MASK_MEDANY 0x40000
361#define MASK_FULLANY 0x60000
362#define MASK_CODE_MODEL (MASK_MEDLOW + MASK_MEDANY)
363#define TARGET_MEDLOW ((target_flags & MASK_CODE_MODEL) == MASK_MEDLOW)
364#define TARGET_MEDANY ((target_flags & MASK_CODE_MODEL) == MASK_MEDANY)
365#define TARGET_FULLANY ((target_flags & MASK_CODE_MODEL) == MASK_FULLANY)
366
367/* ??? There are hardcoded references to this reg in the .md file. */
368#define MEDANY_BASE_REG "%g4"
369
370/* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
371 adding 2047 to %sp. This option is for v9 only and is the default. */
372#define MASK_STACK_BIAS 0x80000
373#define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
8248e2bc 374
1bb87f28
JW
375/* Macro to define tables used to set the flags.
376 This is a list in braces of pairs in braces,
377 each pair being { "NAME", VALUE }
378 where VALUE is the bits to set or minus the bits to clear.
379 An empty string NAME is used to identify the default VALUE. */
380
381#define TARGET_SWITCHES \
7a6cf439
DE
382 { {"fpu", MASK_FPU}, \
383 {"no-fpu", -MASK_FPU}, \
384 {"hard-float", MASK_FPU}, \
385 {"soft-float", -MASK_FPU}, \
386 {"epilogue", MASK_EPILOGUE}, \
387 {"no-epilogue", -MASK_EPILOGUE}, \
388 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES}, \
389 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES}, \
bafb031b
DE
390 {"impure-text", MASK_IMPURE_TEXT}, \
391 {"no-impure-text", -MASK_IMPURE_TEXT}, \
392 {"flat", MASK_FLAT}, \
393 {"no-flat", -MASK_FLAT}, \
7a6cf439
DE
394 {"app-regs", MASK_APP_REGS}, \
395 {"no-app-regs", -MASK_APP_REGS}, \
396 {"hard-quad-float", MASK_HARD_QUAD}, \
397 {"soft-quad-float", -MASK_HARD_QUAD}, \
bafb031b
DE
398 /* ??? These are coerced to -mcpu=. Delete in 2.9. */ \
399 {"cypress", 0}, \
400 {"sparclite", 0}, \
401 {"f930", 0}, \
402 {"f934", 0}, \
403 {"v8", 0}, \
404 {"supersparc", 0}, \
7a6cf439 405 SUBTARGET_SWITCHES \
eb582c5d 406 ARCH64_SWITCHES \
b1fc14e5 407 { "", TARGET_DEFAULT}}
1bb87f28 408
bafb031b
DE
409/* MASK_APP_REGS must always be the default because that's what
410 FIXED_REGISTERS is set to and -ffixed- is processed before
411 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
7a6cf439 412#define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
84ab3bfb 413
bafb031b 414/* This is meant to be redefined in target specific files. */
84ab3bfb 415#define SUBTARGET_SWITCHES
1bb87f28 416
eb582c5d
DE
417/* ??? Until we support a combination 32/64 bit compiler, these options
418 are only defined for the v9 compiler in a true 64 bit environment. */
6f64bf5f 419#if SPARC_ARCH64
eb582c5d 420#define ARCH64_SWITCHES \
6f64bf5f
DE
421/* {"arch32", -MASK_ARCH64}, */ \
422/* {"arch64", MASK_ARCH64}, */ \
7a6cf439
DE
423 {"int64", MASK_INT64+MASK_LONG64}, \
424 {"int32", -MASK_INT64}, \
fa653e40
DE
425 {"int32", MASK_LONG64}, \
426 {"long64", -MASK_INT64}, \
7a6cf439 427 {"long64", MASK_LONG64}, \
fa653e40
DE
428 {"long32", -(MASK_INT64+MASK_LONG64)}, \
429/* {"ptr64", MASK_PTR64}, */ \
430/* {"ptr32", -MASK_PTR64}, */ \
7a6cf439 431 {"stack-bias", MASK_STACK_BIAS}, \
2454c8d4
JW
432 {"no-stack-bias", -MASK_STACK_BIAS}, \
433 {"medlow", -MASK_CODE_MODEL}, \
434 {"medlow", MASK_MEDLOW}, \
435 {"medany", -MASK_CODE_MODEL}, \
6f64bf5f
DE
436 {"medany", MASK_MEDANY}, \
437 {"fullany", -MASK_CODE_MODEL}, \
438 {"fullany", MASK_FULLANY},
7a6cf439 439#else
eb582c5d 440#define ARCH64_SWITCHES
360b1451 441#endif
bafb031b
DE
442
443extern enum attr_cpu sparc_cpu;
444
445/* This macro is similar to `TARGET_SWITCHES' but defines names of
446 command options that have values. Its definition is an
447 initializer with a subgrouping for each command option.
448
449 Each subgrouping contains a string constant, that defines the
450 fixed part of the option name, and the address of a variable.
451 The variable, type `char *', is set to the variable part of the
452 given option if the fixed part matches. The actual option name
453 is made by appending `-m' to the specified name.
454
455 Here is an example which defines `-mshort-data-NUMBER'. If the
456 given option is `-mshort-data-512', the variable `m88k_short_data'
457 will be set to the string `"512"'.
458
459 extern char *m88k_short_data;
460 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
461
462/* ??? This isn't as fancy as rs6000.h. Maybe in time. */
463extern char *sparc_cpu_string;
464
465#define TARGET_OPTIONS \
466{ \
467 { "cpu=", &sparc_cpu_string }, \
468 SUBTARGET_OPTIONS \
469}
470
471/* This is meant to be redefined in target specific files. */
472#define SUBTARGET_OPTIONS
7a6cf439
DE
473\f
474/* target machine storage layout */
475
d667538b
JW
476/* Define for cross-compilation to a sparc target with no TFmode from a host
477 with a different float format (e.g. VAX). */
478#define REAL_ARITHMETIC
479
1bb87f28
JW
480/* Define this if most significant bit is lowest numbered
481 in instructions that operate on numbered bit-fields. */
482#define BITS_BIG_ENDIAN 1
483
484/* Define this if most significant byte of a word is the lowest numbered. */
485/* This is true on the SPARC. */
486#define BYTES_BIG_ENDIAN 1
487
488/* Define this if most significant word of a multiword number is the lowest
489 numbered. */
490/* Doubles are stored in memory with the high order word first. This
491 matters when cross-compiling. */
492#define WORDS_BIG_ENDIAN 1
493
b4ac57ab 494/* number of bits in an addressable storage unit */
1bb87f28
JW
495#define BITS_PER_UNIT 8
496
497/* Width in bits of a "word", which is the contents of a machine register.
498 Note that this is not necessarily the width of data type `int';
499 if using 16-bit ints on a 68000, this would still be 32.
500 But on a machine with 16-bit registers, this would be 16. */
6f64bf5f 501#define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32)
7a6cf439 502#define MAX_BITS_PER_WORD 64
1bb87f28
JW
503
504/* Width of a word, in units (bytes). */
6f64bf5f 505#define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
ef0e53ce 506#define MIN_UNITS_PER_WORD 4
7a6cf439
DE
507
508/* Now define the sizes of the C data types. */
509
510#define SHORT_TYPE_SIZE 16
511#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
512#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
513#define LONG_LONG_TYPE_SIZE 64
514#define FLOAT_TYPE_SIZE 32
515#define DOUBLE_TYPE_SIZE 64
516
517#define MAX_INT_TYPE_SIZE 64
518#define MAX_LONG_TYPE_SIZE 64
519
6f64bf5f 520#if SPARC_ARCH64
7a6cf439
DE
521/* ??? This does not work in SunOS 4.x, so it is not enabled here.
522 Instead, it is enabled in sol2.h, because it does work under Solaris. */
523/* Define for support of TFmode long double and REAL_ARITHMETIC.
524 Sparc ABI says that long double is 4 words. */
525#define LONG_DOUBLE_TYPE_SIZE 128
526#endif
1bb87f28
JW
527
528/* Width in bits of a pointer.
529 See also the macro `Pmode' defined below. */
7a6cf439 530#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
1bb87f28
JW
531
532/* Allocation boundary (in *bits*) for storing arguments in argument list. */
6f64bf5f 533#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
1bb87f28
JW
534
535/* Boundary (in *bits*) on which stack pointer should be aligned. */
6f64bf5f 536#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
1bb87f28 537
10d1b70f
JW
538/* ALIGN FRAMES on double word boundaries */
539
7a6cf439 540#define SPARC_STACK_ALIGN(LOC) \
6f64bf5f 541 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
10d1b70f 542
1bb87f28
JW
543/* Allocation boundary (in *bits*) for the code of a function. */
544#define FUNCTION_BOUNDARY 32
545
546/* Alignment of field after `int : 0' in a structure. */
7a6cf439 547/* ??? Should this be based on TARGET_INT64? */
6f64bf5f 548#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
1bb87f28
JW
549
550/* Every structure's size must be a multiple of this. */
551#define STRUCTURE_SIZE_BOUNDARY 8
552
553/* A bitfield declared as `int' forces `int' alignment for the struct. */
554#define PCC_BITFIELD_TYPE_MATTERS 1
555
556/* No data type wants to be aligned rounder than this. */
6f64bf5f 557#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
1bb87f28 558
77a02b01
JW
559/* The best alignment to use in cases where we have a choice. */
560#define FASTEST_ALIGNMENT 64
561
1bb87f28
JW
562/* Make strings word-aligned so strcpy from constants will be faster. */
563#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
564 ((TREE_CODE (EXP) == STRING_CST \
565 && (ALIGN) < FASTEST_ALIGNMENT) \
566 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
567
568/* Make arrays of chars word-aligned for the same reasons. */
569#define DATA_ALIGNMENT(TYPE, ALIGN) \
570 (TREE_CODE (TYPE) == ARRAY_TYPE \
571 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 572 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 573
b4ac57ab 574/* Set this nonzero if move instructions will actually fail to work
1bb87f28 575 when given unaligned data. */
b4ac57ab 576#define STRICT_ALIGNMENT 1
1bb87f28
JW
577
578/* Things that must be doubleword aligned cannot go in the text section,
579 because the linker fails to align the text section enough!
7a6cf439 580 Put them in the data section. This macro is only used in this file. */
1bb87f28
JW
581#define MAX_TEXT_ALIGN 32
582
68d69835
JM
583/* This forces all variables and constants to the data section when PIC.
584 This is because the SunOS 4 shared library scheme thinks everything in
585 text is a function, and patches the address to point to a loader stub. */
586/* This is defined to zero for every system which doesn't use the a.out object
587 file format. */
588#ifndef SUNOS4_SHARED_LIBRARIES
589#define SUNOS4_SHARED_LIBRARIES 0
590#endif
591
7a6cf439 592/* This is defined differently for v9 in a cover file. */
1bb87f28
JW
593#define SELECT_SECTION(T,RELOC) \
594{ \
595 if (TREE_CODE (T) == VAR_DECL) \
596 { \
597 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
ed8969fa
JW
598 && DECL_INITIAL (T) \
599 && (DECL_INITIAL (T) == error_mark_node \
600 || TREE_CONSTANT (DECL_INITIAL (T))) \
1bb87f28 601 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
68d69835 602 && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
1bb87f28
JW
603 text_section (); \
604 else \
605 data_section (); \
606 } \
607 else if (TREE_CODE (T) == CONSTRUCTOR) \
608 { \
68d69835 609 if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \
1bb87f28
JW
610 data_section (); \
611 } \
07516036 612 else if (TREE_CODE_CLASS (TREE_CODE (T)) == 'c') \
1bb87f28
JW
613 { \
614 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
68d69835
JM
615 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \
616 || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
1bb87f28
JW
617 data_section (); \
618 else \
619 text_section (); \
620 } \
621}
622
623/* Use text section for a constant
624 unless we need more alignment than that offers. */
7a6cf439 625/* This is defined differently for v9 in a cover file. */
1bb87f28
JW
626#define SELECT_RTX_SECTION(MODE, X) \
627{ \
628 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
68d69835 629 && ! (flag_pic && (symbolic_operand (X) || SUNOS4_SHARED_LIBRARIES))) \
1bb87f28
JW
630 text_section (); \
631 else \
632 data_section (); \
633}
634\f
635/* Standard register usage. */
636
637/* Number of actual hardware registers.
638 The hardware registers are assigned numbers for the compiler
639 from 0 to just below FIRST_PSEUDO_REGISTER.
640 All registers that the compiler knows about must be given numbers,
641 even those that are not normally considered general registers.
642
7a6cf439
DE
643 SPARC has 32 integer registers and 32 floating point registers.
644 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
645 accessible. We still account for them to simplify register computations
646 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
647 32+32+32+4 == 100.
648 Register 0 is used as the integer condition code register. */
1bb87f28 649
6f64bf5f 650#if SPARC_V9
7a6cf439
DE
651#define FIRST_PSEUDO_REGISTER 100
652#else
1bb87f28 653#define FIRST_PSEUDO_REGISTER 64
7a6cf439 654#endif
1bb87f28
JW
655
656/* 1 for registers that have pervasive standard uses
657 and are not available for the register allocator.
5b485d2c 658 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 659 hardwired to 0, so reg 0 is *not* fixed.
7a6cf439 660 On non-v9 systems:
34ad7aaf
JW
661 g1 is free to use as temporary.
662 g2-g4 are reserved for applications. Gcc normally uses them as
663 temporaries, but this can be disabled via the -mno-app-regs option.
7a6cf439
DE
664 g5 through g7 are reserved for the operating system.
665 On v9 systems:
666 g1 and g5 are free to use as temporaries.
bafb031b
DE
667 g2-g4 are reserved for applications. Gcc normally uses them as
668 temporaries, but this can be disabled via the -mno-app-regs option.
7a6cf439
DE
669 g6-g7 are reserved for the operating system.
670 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
671 currently be a fixed register until this pattern is rewritten.
672 Register 1 is also used when restoring call-preserved registers in large
673 stack frames. */
674
6f64bf5f 675#if SPARC_V9
7a6cf439 676#define FIXED_REGISTERS \
bafb031b 677 {0, 1, 0, 0, 0, 0, 1, 1, \
7a6cf439
DE
678 0, 0, 0, 0, 0, 0, 1, 0, \
679 0, 0, 0, 0, 0, 0, 0, 0, \
680 0, 0, 0, 0, 0, 0, 1, 1, \
681 \
682 0, 0, 0, 0, 0, 0, 0, 0, \
683 0, 0, 0, 0, 0, 0, 0, 0, \
684 0, 0, 0, 0, 0, 0, 0, 0, \
685 0, 0, 0, 0, 0, 0, 0, 0, \
686 \
687 0, 0, 0, 0, 0, 0, 0, 0, \
688 0, 0, 0, 0, 0, 0, 0, 0, \
689 0, 0, 0, 0, 0, 0, 0, 0, \
690 0, 0, 0, 0, 0, 0, 0, 0, \
691 \
692 0, 0, 0, 0}
693#else
1bb87f28 694#define FIXED_REGISTERS \
d9ca49d5 695 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
696 0, 0, 0, 0, 0, 0, 1, 0, \
697 0, 0, 0, 0, 0, 0, 0, 0, \
698 0, 0, 0, 0, 0, 0, 1, 1, \
699 \
700 0, 0, 0, 0, 0, 0, 0, 0, \
701 0, 0, 0, 0, 0, 0, 0, 0, \
702 0, 0, 0, 0, 0, 0, 0, 0, \
703 0, 0, 0, 0, 0, 0, 0, 0}
7a6cf439 704#endif
1bb87f28
JW
705
706/* 1 for registers not available across function calls.
707 These must include the FIXED_REGISTERS and also any
708 registers that can be used without being saved.
709 The latter must include the registers where values are returned
710 and the register where structure-value addresses are passed.
711 Aside from that, you can include as many other registers as you like. */
7a6cf439 712
bafb031b 713#if SPARC_V9 && SPARC_ARCH64
7a6cf439
DE
714#define CALL_USED_REGISTERS \
715 {1, 1, 1, 1, 1, 1, 1, 1, \
716 1, 1, 1, 1, 1, 1, 1, 1, \
717 0, 0, 0, 0, 0, 0, 0, 0, \
718 0, 0, 0, 0, 0, 0, 1, 1, \
719 \
720 1, 1, 1, 1, 1, 1, 1, 1, \
721 1, 1, 1, 1, 1, 1, 1, 1, \
722 0, 0, 0, 0, 0, 0, 0, 0, \
723 0, 0, 0, 0, 0, 0, 0, 0, \
724 \
725 0, 0, 0, 0, 0, 0, 0, 0, \
726 0, 0, 0, 0, 0, 0, 0, 0, \
727 1, 1, 1, 1, 1, 1, 1, 1, \
728 1, 1, 1, 1, 1, 1, 1, 1, \
729 \
730 1, 1, 1, 1}
731#else
bafb031b
DE
732#if SPARC_V9 && ! SPARC_ARCH64
733#define CALL_USED_REGISTERS \
734 {1, 1, 1, 1, 1, 1, 1, 1, \
735 1, 1, 1, 1, 1, 1, 1, 1, \
736 0, 0, 0, 0, 0, 0, 0, 0, \
737 0, 0, 0, 0, 0, 0, 1, 1, \
738 \
739 1, 1, 1, 1, 1, 1, 1, 1, \
740 1, 1, 1, 1, 1, 1, 1, 1, \
741 1, 1, 1, 1, 1, 1, 1, 1, \
742 1, 1, 1, 1, 1, 1, 1, 1, \
743 \
744 1, 1, 1, 1, 1, 1, 1, 1, \
745 1, 1, 1, 1, 1, 1, 1, 1, \
746 1, 1, 1, 1, 1, 1, 1, 1, \
747 1, 1, 1, 1, 1, 1, 1, 1, \
748 \
749 1, 1, 1, 1}
750#else
1bb87f28
JW
751#define CALL_USED_REGISTERS \
752 {1, 1, 1, 1, 1, 1, 1, 1, \
753 1, 1, 1, 1, 1, 1, 1, 1, \
754 0, 0, 0, 0, 0, 0, 0, 0, \
755 0, 0, 0, 0, 0, 0, 1, 1, \
756 \
757 1, 1, 1, 1, 1, 1, 1, 1, \
758 1, 1, 1, 1, 1, 1, 1, 1, \
759 1, 1, 1, 1, 1, 1, 1, 1, \
760 1, 1, 1, 1, 1, 1, 1, 1}
7a6cf439 761#endif
bafb031b 762#endif
1bb87f28 763
26c5587d 764/* If !TARGET_FPU, then make the fp registers fixed so that they won't
7a6cf439 765 be allocated. On v9, also make the fp cc regs fixed. */
26c5587d
JW
766
767#define CONDITIONAL_REGISTER_USAGE \
768do \
769 { \
6f64bf5f
DE
770 if (SPARC_V9 && ! SPARC_ARCH64) \
771 { \
6f64bf5f 772 fixed_regs[5] = 1; \
6f64bf5f 773 } \
26c5587d
JW
774 if (! TARGET_FPU) \
775 { \
776 int regno; \
7a6cf439 777 for (regno = 32; regno < FIRST_PSEUDO_REGISTER; regno++) \
26c5587d
JW
778 fixed_regs[regno] = 1; \
779 } \
bafb031b
DE
780 /* Don't unfix g2-g4 if they were fixed with -ffixed-. */ \
781 fixed_regs[2] |= ! TARGET_APP_REGS; \
782 fixed_regs[3] |= ! TARGET_APP_REGS; \
783 fixed_regs[4] |= ! TARGET_APP_REGS || TARGET_MEDANY; \
5c56efde
DE
784 if (TARGET_FLAT) \
785 { \
786 /* Let the compiler believe the frame pointer is still \
787 %fp, but output it as %i7. */ \
788 fixed_regs[31] = 1; \
789 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
790 /* ??? This is a hack to disable leaf functions. */ \
791 global_regs[7] = 1; \
792 } \
9ee6230c
JW
793 if (profile_block_flag) \
794 { \
795 /* %g1 and %g2 must be fixed, because BLOCK_PROFILER \
796 uses them. */ \
797 fixed_regs[1] = 1; \
798 fixed_regs[2] = 1; \
799 } \
26c5587d
JW
800 } \
801while (0)
802
1bb87f28
JW
803/* Return number of consecutive hard regs needed starting at reg REGNO
804 to hold something of mode MODE.
805 This is ordinarily the length in words of a value of mode MODE
806 but can be less for certain modes in special long registers.
807
808 On SPARC, ordinary registers hold 32 bits worth;
809 this means both integer and floating point registers.
7a6cf439
DE
810 On v9, integer regs hold 64 bits worth; floating point regs hold
811 32 bits worth (this includes the new fp regs as even the odd ones are
812 included in the hard register count). */
1bb87f28 813
7a6cf439 814#define HARD_REGNO_NREGS(REGNO, MODE) \
6f64bf5f 815 (TARGET_ARCH64 \
7a6cf439
DE
816 ? ((REGNO) < 32 \
817 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
818 : (GET_MODE_SIZE (MODE) + 3) / 4) \
819 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1bb87f28
JW
820
821/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
923a8d06 822 See sparc.c for how we initialize this. */
7a6cf439
DE
823extern int *hard_regno_mode_classes;
824extern int sparc_mode_class[];
1bb87f28 825#define HARD_REGNO_MODE_OK(REGNO, MODE) \
7a6cf439 826 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1bb87f28
JW
827
828/* Value is 1 if it is a good idea to tie two pseudo registers
829 when one has mode MODE1 and one has mode MODE2.
830 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
7a6cf439
DE
831 for any hard reg, then this must be 0 for correct output.
832
833 For V9: SFmode can't be combined with other float modes, because they can't
834 be allocated to the %d registers. Also, DFmode won't fit in odd %f
835 registers, but SFmode will. */
1bb87f28 836#define MODES_TIEABLE_P(MODE1, MODE2) \
7a6cf439
DE
837 ((MODE1) == (MODE2) \
838 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
839 && (! TARGET_V9 \
840 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
841 || (MODE1 != SFmode && MODE2 != SFmode)))))
1bb87f28
JW
842
843/* Specify the registers used for certain standard purposes.
844 The values of these macros are register numbers. */
845
846/* SPARC pc isn't overloaded on a register that the compiler knows about. */
847/* #define PC_REGNUM */
848
849/* Register to use for pushing function arguments. */
850#define STACK_POINTER_REGNUM 14
851
7a6cf439
DE
852/* Actual top-of-stack address is 92/136 greater than the contents of the
853 stack pointer register for !v9/v9. That is:
854 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
855 address, and 24 bytes for the 6 register parameters.
856 - v9: 128 bytes for the in and local registers + 8 bytes reserved. */
1bb87f28
JW
857#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
858
7a6cf439
DE
859/* The stack bias (amount by which the hardware register is offset by). */
860#define SPARC_STACK_BIAS (TARGET_STACK_BIAS ? 2047 : 0)
861
1bb87f28
JW
862/* Base register for access to local variables of the function. */
863#define FRAME_POINTER_REGNUM 30
864
865#if 0
866/* Register that is used for the return address. */
867#define RETURN_ADDR_REGNUM 15
868#endif
869
870/* Value should be nonzero if functions must have frame pointers.
871 Zero means the frame pointer need not be set up (and parms
872 may be accessed via the stack pointer) in functions that seem suitable.
873 This is computed in `reload', in reload1.c.
a061b9fa 874 Used in flow.c, global.c, and reload1.c.
1bb87f28 875
a061b9fa
DE
876 Being a non-leaf function does not mean a frame pointer is needed in the
877 flat window model. However, the debugger won't be able to backtrace through
878 us with out it. */
1bb87f28 879#define FRAME_POINTER_REQUIRED \
bafb031b
DE
880 (TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \
881 || !leaf_function_p ()) \
5c56efde 882 : ! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
883
884/* C statement to store the difference between the frame pointer
885 and the stack pointer values immediately after the function prologue.
886
887 Note, we always pretend that this is a leaf function because if
888 it's not, there's no point in trying to eliminate the
889 frame pointer. If it is a leaf function, we guessed right! */
890#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
bafb031b 891 ((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \
5b485d2c 892 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
893
894/* Base register for access to arguments of the function. */
5c56efde 895#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1bb87f28 896
6098b63e 897/* Register in which static-chain is passed to a function. This must
c8392688 898 not be a register used by the prologue. */
6f64bf5f 899#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1bb87f28
JW
900
901/* Register which holds offset table for position-independent
902 data references. */
903
904#define PIC_OFFSET_TABLE_REGNUM 23
905
906#define INITIALIZE_PIC initialize_pic ()
907#define FINALIZE_PIC finalize_pic ()
908
d9ca49d5 909/* Sparc ABI says that quad-precision floats and all structures are returned
7a6cf439
DE
910 in memory.
911 For v9, all aggregates are returned in memory. */
686667bf
JW
912#define RETURN_IN_MEMORY(TYPE) \
913 (TYPE_MODE (TYPE) == BLKmode \
6f64bf5f
DE
914 || (! TARGET_ARCH64 && (TYPE_MODE (TYPE) == TFmode \
915 || TYPE_MODE (TYPE) == TCmode)))
d9ca49d5 916
1bb87f28
JW
917/* Functions which return large structures get the address
918 to place the wanted value at offset 64 from the frame.
7a6cf439
DE
919 Must reserve 64 bytes for the in and local registers.
920 v9: Functions which return large structures get the address to place the
921 wanted value from an invisible first argument. */
1bb87f28
JW
922/* Used only in other #defines in this file. */
923#define STRUCT_VALUE_OFFSET 64
924
925#define STRUCT_VALUE \
6f64bf5f 926 (TARGET_ARCH64 \
7a6cf439
DE
927 ? 0 \
928 : gen_rtx (MEM, Pmode, \
929 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
930 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))
1bb87f28 931#define STRUCT_VALUE_INCOMING \
6f64bf5f 932 (TARGET_ARCH64 \
7a6cf439
DE
933 ? 0 \
934 : gen_rtx (MEM, Pmode, \
935 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
936 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))
1bb87f28
JW
937\f
938/* Define the classes of registers for register constraints in the
939 machine description. Also define ranges of constants.
940
941 One of the classes must always be named ALL_REGS and include all hard regs.
942 If there is more than one class, another class must be named NO_REGS
943 and contain no registers.
944
945 The name GENERAL_REGS must be the name of a class (or an alias for
946 another name such as ALL_REGS). This is the class of registers
947 that is allowed by "g" or "r" in a register constraint.
948 Also, registers outside this class are allocated only when
949 instructions express preferences for them.
950
951 The classes must be numbered in nondecreasing order; that is,
952 a larger-numbered class must never be contained completely
953 in a smaller-numbered class.
954
955 For any two classes, it is very desirable that there be another
956 class that represents their union. */
957
7a6cf439 958/* The SPARC has two kinds of registers, general and floating point.
24b63396
JW
959
960 For v9 we must distinguish between the upper and lower floating point
961 registers because the upper ones can't hold SFmode values.
962 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
963 satisfying a group need for a class will also satisfy a single need for
964 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
965 regs.
966
967 It is important that one class contains all the general and all the standard
968 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
969 because reg_class_record() will bias the selection in favor of fp regs,
970 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
971 because FP_REGS > GENERAL_REGS.
972
973 It is also important that one class contain all the general and all the
974 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
975 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
976 allocate_reload_reg() to bypass it causing an abort because the compiler
977 thinks it doesn't have a spill reg when in fact it does.
978
7a6cf439
DE
979 v9 also has 4 floating point condition code registers. Since we don't
980 have a class that is the union of FPCC_REGS with either of the others,
981 it is important that it appear first. Otherwise the compiler will die
982 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
983 constraints. */
7a6cf439 984
6f64bf5f 985#if SPARC_V9
24b63396
JW
986enum reg_class { NO_REGS, FPCC_REGS, GENERAL_REGS, FP_REGS, EXTRA_FP_REGS,
987 GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
7a6cf439
DE
988 ALL_REGS, LIM_REG_CLASSES };
989#else
1bb87f28 990enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
7a6cf439 991#endif
1bb87f28
JW
992
993#define N_REG_CLASSES (int) LIM_REG_CLASSES
994
995/* Give names of register classes as strings for dump file. */
996
6f64bf5f 997#if SPARC_V9
1bb87f28 998#define REG_CLASS_NAMES \
24b63396
JW
999 { "NO_REGS", "FPCC_REGS", "GENERAL_REGS", "FP_REGS", "EXTRA_FP_REGS", \
1000 "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", "ALL_REGS" }
7a6cf439
DE
1001#else
1002#define REG_CLASS_NAMES \
24b63396 1003 { "NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
7a6cf439 1004#endif
1bb87f28
JW
1005
1006/* Define which registers fit in which classes.
1007 This is an initializer for a vector of HARD_REG_SET
1008 of length N_REG_CLASSES. */
1009
6f64bf5f 1010#if SPARC_V9
7a6cf439 1011#define REG_CLASS_CONTENTS \
24b63396
JW
1012 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {-2, 0, 0, 0}, \
1013 {0, -1, 0, 0}, {0, -1, -1, 0}, {-2, -1, 0, 0}, {-2, -1, -1, 0}, \
1014 {-2, -1, -1, 0xf}}
7a6cf439 1015#else
1bb87f28
JW
1016#if 0 && defined (__GNUC__)
1017#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
1018#else
1019#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
1020#endif
7a6cf439 1021#endif
1bb87f28
JW
1022
1023/* The same information, inverted:
1024 Return the class number of the smallest class containing
1025 reg number REGNO. This could be a conditional expression
1026 or could index an array. */
1027
6f64bf5f 1028#if SPARC_V9
24b63396
JW
1029#define REGNO_REG_CLASS(REGNO) \
1030 ((REGNO) == 0 ? NO_REGS \
1031 : (REGNO) < 32 ? GENERAL_REGS \
1032 : (REGNO) < 64 ? FP_REGS \
1033 : (REGNO) < 96 ? EXTRA_FP_REGS \
1034 : FPCC_REGS)
7a6cf439 1035#else
1bb87f28
JW
1036#define REGNO_REG_CLASS(REGNO) \
1037 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
7a6cf439 1038#endif
1bb87f28 1039
7a6cf439 1040/* This is the order in which to allocate registers normally.
51f0e748
JW
1041
1042 We put %f0/%f1 last among the float registers, so as to make it more
6a4bb1fa 1043 likely that a pseudo-register which dies in the float return register
51f0e748 1044 will get allocated to the float return register, thus saving a move
7a6cf439
DE
1045 instruction at the end of the function.
1046
1047 On v9, the float registers are ordered a little "funny" because some
1048 of them (%f16-%f47) are call-preserved. */
6f64bf5f 1049#if SPARC_V9
7a6cf439
DE
1050#define REG_ALLOC_ORDER \
1051{ 8, 9, 10, 11, 12, 13, \
1052 15, 16, 17, 18, 19, 20, 21, 22, \
1053 23, 24, 25, 26, 27, 28, 29, 31, \
1054 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
1055 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1056 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1057 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1058 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1059 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1060 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1061 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1062 32, 33, /* %f0,%f1 */ \
1063 96, 97, 98, 99, /* %fcc0-3 */ \
1064 1, 5, 2, 3, 4, 6, 7, 0, 14, 30}
1065#else
1bb87f28 1066#define REG_ALLOC_ORDER \
b4ac57ab
RS
1067{ 8, 9, 10, 11, 12, 13, 2, 3, \
1068 15, 16, 17, 18, 19, 20, 21, 22, \
1069 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 1070 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
1071 40, 41, 42, 43, 44, 45, 46, 47, \
1072 48, 49, 50, 51, 52, 53, 54, 55, \
1073 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 1074 32, 33, \
4b69d2a3 1075 1, 4, 5, 6, 7, 0, 14, 30}
7a6cf439 1076#endif
1bb87f28
JW
1077
1078/* This is the order in which to allocate registers for
1079 leaf functions. If all registers can fit in the "i" registers,
7a6cf439
DE
1080 then we have the possibility of having a leaf function.
1081 v9: The floating point registers are ordered a little "funny" because some
1082 of them (%f16-%f47) are call-preserved. */
6f64bf5f 1083#if SPARC_V9
7a6cf439
DE
1084#define REG_LEAF_ALLOC_ORDER \
1085{ 24, 25, 26, 27, 28, 29, \
1086 15, 8, 9, 10, 11, 12, 13, \
1087 16, 17, 18, 19, 20, 21, 22, 23, \
1088 34, 35, 36, 37, 38, 39, \
1089 40, 41, 42, 43, 44, 45, 46, 47, \
1090 80, 81, 82, 83, 84, 85, 86, 87, \
1091 88, 89, 90, 91, 92, 93, 94, 95, \
1092 48, 49, 50, 51, 52, 53, 54, 55, \
1093 56, 57, 58, 59, 60, 61, 62, 63, \
1094 64, 65, 66, 67, 68, 69, 70, 71, \
1095 72, 73, 74, 75, 76, 77, 78, 79, \
1096 32, 33, \
1097 96, 97, 98, 99, \
1098 1, 5, 2, 3, 4, 6, 7, 0, 14, 30, 31}
1099#else
1bb87f28
JW
1100#define REG_LEAF_ALLOC_ORDER \
1101{ 2, 3, 24, 25, 26, 27, 28, 29, \
1102 15, 8, 9, 10, 11, 12, 13, \
1103 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 1104 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
1105 40, 41, 42, 43, 44, 45, 46, 47, \
1106 48, 49, 50, 51, 52, 53, 54, 55, \
1107 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 1108 32, 33, \
4b69d2a3 1109 1, 4, 5, 6, 7, 0, 14, 30, 31}
7a6cf439 1110#endif
1bb87f28
JW
1111
1112#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1113
5c56efde
DE
1114/* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when
1115 -mflat is used. Function only_leaf_regs_used will return 0 if a global
1116 register is used and is not permitted in a leaf function. We make %g7
1117 a global reg if -mflat and voila. Since %g7 is a system register and is
1118 fixed it won't be used by gcc anyway. */
6f64bf5f 1119#if SPARC_V9
7a6cf439
DE
1120#define LEAF_REGISTERS \
1121{ 1, 1, 1, 1, 1, 1, 1, 0, \
1122 0, 0, 0, 0, 0, 0, 1, 0, \
1123 0, 0, 0, 0, 0, 0, 0, 0, \
1124 1, 1, 1, 1, 1, 1, 0, 1, \
1125 1, 1, 1, 1, 1, 1, 1, 1, \
1126 1, 1, 1, 1, 1, 1, 1, 1, \
1127 1, 1, 1, 1, 1, 1, 1, 1, \
1128 1, 1, 1, 1, 1, 1, 1, 1, \
1129 1, 1, 1, 1, 1, 1, 1, 1, \
1130 1, 1, 1, 1, 1, 1, 1, 1, \
1131 1, 1, 1, 1, 1, 1, 1, 1, \
1132 1, 1, 1, 1, 1, 1, 1, 1, \
1133 1, 1, 1, 1}
1134#else
1bb87f28 1135#define LEAF_REGISTERS \
5c56efde 1136{ 1, 1, 1, 1, 1, 1, 1, 0, \
1bb87f28
JW
1137 0, 0, 0, 0, 0, 0, 1, 0, \
1138 0, 0, 0, 0, 0, 0, 0, 0, \
1139 1, 1, 1, 1, 1, 1, 0, 1, \
1140 1, 1, 1, 1, 1, 1, 1, 1, \
1141 1, 1, 1, 1, 1, 1, 1, 1, \
1142 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 1143 1, 1, 1, 1, 1, 1, 1, 1}
7a6cf439 1144#endif
1bb87f28
JW
1145
1146extern char leaf_reg_remap[];
1147#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1bb87f28 1148
1bb87f28
JW
1149/* The class value for index registers, and the one for base regs. */
1150#define INDEX_REG_CLASS GENERAL_REGS
1151#define BASE_REG_CLASS GENERAL_REGS
1152
24b63396 1153/* Local macro to handle the two v9 classes of FP regs. */
6f64bf5f 1154#if SPARC_V9
24b63396
JW
1155#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1156#else
1157#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS)
1158#endif
1159
1bb87f28
JW
1160/* Get reg_class from a letter such as appears in the machine description. */
1161
6f64bf5f 1162#if SPARC_V9
7a6cf439 1163#define REG_CLASS_FROM_LETTER(C) \
24b63396
JW
1164 ((C) == 'f' ? FP_REGS \
1165 : (C) == 'e' ? EXTRA_FP_REGS \
1166 : (C) == 'c' ? FPCC_REGS \
1167 : NO_REGS)
7a6cf439 1168#else
24b63396
JW
1169/* Coerce v9's 'e' class to 'f', so we can use 'e' in the .md file for
1170 v8 and v9. */
1bb87f28 1171#define REG_CLASS_FROM_LETTER(C) \
24b63396 1172 ((C) == 'f' ? FP_REGS : (C) == 'e' ? FP_REGS : NO_REGS)
7a6cf439 1173#endif
1bb87f28
JW
1174
1175/* The letters I, J, K, L and M in a register constraint string
1176 can be used to stand for particular ranges of immediate operands.
1177 This macro defines what the ranges are.
1178 C is the letter, and VALUE is a constant value.
1179 Return 1 if VALUE is in the range specified by C.
1180
1181 For SPARC, `I' is used for the range of constants an insn
1182 can actually contain.
1183 `J' is used for the range which is just zero (since that is R0).
9ad2c692 1184 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
1185
1186#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
1187
1188#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1189 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
1190 : (C) == 'J' ? (VALUE) == 0 \
1191 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
1192 : 0)
1193
1194/* Similar, but for floating constants, and defining letters G and H.
1195 Here VALUE is the CONST_DOUBLE rtx itself. */
1196
1197#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
96f69de5 1198 ((C) == 'G' ? fp_zero_operand (VALUE) \
1bb87f28
JW
1199 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1200 : 0)
1201
1202/* Given an rtx X being reloaded into a reg required to be
1203 in class CLASS, return the class of reg to actually use.
1204 In general this is just CLASS; but on some machines
1205 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
1206/* We can't load constants into FP registers. We can't load any FP constant
1207 if an 'E' constraint fails to match it. */
1208#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1209 (CONSTANT_P (X) \
24b63396 1210 && (FP_REG_CLASS_P (CLASS) \
2b9a9aea
JW
1211 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1212 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
1213 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
1214 ? NO_REGS : (CLASS))
1bb87f28
JW
1215
1216/* Return the register class of a scratch register needed to load IN into
1217 a register of class CLASS in MODE.
1218
1219 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 1220 into a register.
1bb87f28 1221
ae51bd97
JW
1222 Also, we need a temporary when loading/storing a HImode/QImode value
1223 between memory and the FPU registers. This can happen when combine puts
1224 a paradoxical subreg in a float/fix conversion insn. */
1225
1226#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
24b63396
JW
1227 ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \
1228 && (GET_CODE (IN) == MEM \
1229 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1230 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
ae51bd97
JW
1231
1232#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
24b63396
JW
1233 ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \
1234 && (GET_CODE (IN) == MEM \
1235 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1236 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
1bb87f28 1237
b924cef0
JW
1238/* On SPARC it is not possible to directly move data between
1239 GENERAL_REGS and FP_REGS. */
24b63396
JW
1240#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1241 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
b924cef0 1242
55be783d
JW
1243/* Return the stack location to use for secondary memory needed reloads.
1244 We want to use the reserved location just below the frame pointer.
1245 However, we must ensure that there is a frame, so use assign_stack_local
1246 if the frame size is zero. */
fe1f7f24 1247#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
55be783d 1248 (get_frame_size () == 0 \
fb3eb6f6 1249 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
55be783d
JW
1250 : gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
1251 GEN_INT (STARTING_FRAME_OFFSET))))
fe1f7f24 1252
7a6cf439
DE
1253/* Get_secondary_mem widens it's argument to BITS_PER_WORD which loses on v9
1254 because the movsi and movsf patterns don't handle r/f moves.
1255 For v8 we copy the default definition. */
1256#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
6f64bf5f 1257 (TARGET_ARCH64 \
fb3eb6f6
JW
1258 ? (GET_MODE_BITSIZE (MODE) < 32 \
1259 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
7a6cf439 1260 : MODE) \
fb3eb6f6
JW
1261 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1262 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
7a6cf439
DE
1263 : MODE))
1264
1bb87f28
JW
1265/* Return the maximum number of consecutive registers
1266 needed to represent mode MODE in a register of class CLASS. */
1267/* On SPARC, this is the size of MODE in words. */
1268#define CLASS_MAX_NREGS(CLASS, MODE) \
24b63396 1269 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
7a6cf439 1270 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1bb87f28
JW
1271\f
1272/* Stack layout; function entry, exit and calling. */
1273
1274/* Define the number of register that can hold parameters.
7a6cf439
DE
1275 These two macros are used only in other macro definitions below.
1276 MODE is the mode of the argument.
1277 !v9: All args are passed in %o0-%o5.
1278 v9: Non-float args are passed in %o0-5 and float args are passed in
1279 %f0-%f15. */
1280#define NPARM_REGS(MODE) \
6f64bf5f 1281 (TARGET_ARCH64 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 16 : 6) : 6)
1bb87f28
JW
1282
1283/* Define this if pushing a word on the stack
1284 makes the stack pointer a smaller address. */
1285#define STACK_GROWS_DOWNWARD
1286
1287/* Define this if the nominal address of the stack frame
1288 is at the high-address end of the local variables;
1289 that is, each additional local variable allocated
1290 goes at a more negative offset in the frame. */
1291#define FRAME_GROWS_DOWNWARD
1292
1293/* Offset within stack frame to start allocating local variables at.
1294 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1295 first local allocated. Otherwise, it is the offset to the BEGINNING
1296 of the first local allocated. */
7238ce3a
JW
1297/* This allows space for one TFmode floating point value. */
1298#define STARTING_FRAME_OFFSET \
6f64bf5f 1299 (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \
7a6cf439 1300 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1bb87f28
JW
1301
1302/* If we generate an insn to push BYTES bytes,
1303 this says how many the stack pointer really advances by.
1304 On SPARC, don't define this because there are no push insns. */
1305/* #define PUSH_ROUNDING(BYTES) */
1306
1307/* Offset of first parameter from the argument pointer register value.
7a6cf439
DE
1308 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1309 even if this function isn't going to use it.
1310 v9: This is 128 for the ins and locals, plus a reserved space of 8. */
1311#define FIRST_PARM_OFFSET(FNDECL) \
6f64bf5f 1312 (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 136) \
7a6cf439 1313 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1bb87f28
JW
1314
1315/* When a parameter is passed in a register, stack space is still
1316 allocated for it. */
6f64bf5f 1317#if ! SPARC_ARCH64
7a6cf439
DE
1318#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS (SImode) * UNITS_PER_WORD)
1319#endif
1bb87f28
JW
1320
1321/* Keep the stack pointer constant throughout the function.
b4ac57ab 1322 This is both an optimization and a necessity: longjmp
1bb87f28
JW
1323 doesn't behave itself when the stack pointer moves within
1324 the function! */
1325#define ACCUMULATE_OUTGOING_ARGS
1326
1327/* Value is the number of bytes of arguments automatically
1328 popped when returning from a subroutine call.
8b109b37 1329 FUNDECL is the declaration node of the function (as a tree),
1bb87f28
JW
1330 FUNTYPE is the data type of the function (as a tree),
1331 or for a library call it is an identifier node for the subroutine name.
1332 SIZE is the number of bytes of arguments passed on the stack. */
1333
8b109b37 1334#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1bb87f28 1335
5b485d2c
JW
1336/* Some subroutine macros specific to this machine.
1337 When !TARGET_FPU, put float return values in the general registers,
1338 since we don't have any fp registers. */
1bb87f28 1339#define BASE_RETURN_VALUE_REG(MODE) \
6f64bf5f
DE
1340 (TARGET_ARCH64 \
1341 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
7a6cf439 1342 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1bb87f28 1343#define BASE_OUTGOING_VALUE_REG(MODE) \
6f64bf5f
DE
1344 (TARGET_ARCH64 \
1345 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
bafb031b 1346 : TARGET_FLAT ? 8 : 24) \
7a6cf439 1347 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
bafb031b 1348 : (TARGET_FLAT ? 8 : 24)))
7a6cf439 1349#define BASE_PASSING_ARG_REG(MODE) \
6f64bf5f
DE
1350 (TARGET_ARCH64 \
1351 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
1352 : 8)
7a6cf439 1353#define BASE_INCOMING_ARG_REG(MODE) \
6f64bf5f
DE
1354 (TARGET_ARCH64 \
1355 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
bafb031b
DE
1356 : TARGET_FLAT ? 8 : 24) \
1357 : (TARGET_FLAT ? 8 : 24))
1bb87f28 1358
92ea370b
TW
1359/* Define this macro if the target machine has "register windows". This
1360 C expression returns the register number as seen by the called function
1361 corresponding to register number OUT as seen by the calling function.
1362 Return OUT if register number OUT is not an outbound register. */
1363
1364#define INCOMING_REGNO(OUT) \
bafb031b 1365 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
92ea370b
TW
1366
1367/* Define this macro if the target machine has "register windows". This
1368 C expression returns the register number as seen by the calling function
1369 corresponding to register number IN as seen by the called function.
1370 Return IN if register number IN is not an inbound register. */
1371
1372#define OUTGOING_REGNO(IN) \
bafb031b 1373 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
92ea370b 1374
1bb87f28
JW
1375/* Define how to find the value returned by a function.
1376 VALTYPE is the data type of the value (as a tree).
1377 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1378 otherwise, FUNC is 0. */
1379
1380/* On SPARC the value is found in the first "output" register. */
1381
1382#define FUNCTION_VALUE(VALTYPE, FUNC) \
1383 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1384
1385/* But the called function leaves it in the first "input" register. */
1386
1387#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1388 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
1389
1390/* Define how to find the value returned by a library function
1391 assuming the value has mode MODE. */
1392
1393#define LIBCALL_VALUE(MODE) \
1394 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
1395
1396/* 1 if N is a possible register number for a function value
1397 as seen by the caller.
1398 On SPARC, the first "output" reg is used for integer values,
1399 and the first floating point register is used for floating point values. */
1400
1401#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1402
34aaacec
JW
1403/* Define the size of space to allocate for the return value of an
1404 untyped_call. */
1405
1406#define APPLY_RESULT_SIZE 16
1407
1bb87f28 1408/* 1 if N is a possible register number for function argument passing.
7a6cf439 1409 On SPARC, these are the "output" registers. v9 also uses %f0-%f15. */
1bb87f28 1410
7a6cf439 1411#define FUNCTION_ARG_REGNO_P(N) \
6f64bf5f 1412 (TARGET_ARCH64 ? (((N) < 14 && (N) > 7) || (N) > 31 && (N) < 48) \
7a6cf439 1413 : ((N) < 14 && (N) > 7))
1bb87f28
JW
1414\f
1415/* Define a data type for recording info about an argument list
1416 during the scan of that argument list. This data type should
1417 hold all necessary information about the function itself
1418 and about the args processed so far, enough to enable macros
1419 such as FUNCTION_ARG to determine where the next arg should go.
1420
7a6cf439 1421 On SPARC (!v9), this is a single integer, which is a number of words
1bb87f28
JW
1422 of arguments scanned so far (including the invisible argument,
1423 if any, which holds the structure-value-address).
7a6cf439
DE
1424 Thus 7 or more means all following args should go on the stack.
1425
1426 For v9, we record how many of each type has been passed. Different
1427 types get passed differently.
1428
1429 - Float args are passed in %f0-15, after which they go to the stack
1430 where floats and doubles are passed 8 byte aligned and long doubles
1431 are passed 16 byte aligned.
1432 - All aggregates are passed by reference. The callee copies
1433 the structure if necessary, except if stdarg/varargs and the struct
1434 matches the ellipse in which case the caller makes a copy.
1435 - Any non-float argument might be split between memory and reg %o5.
1436 ??? I don't think this can ever happen now that structs are no
1437 longer passed in regs.
1438
1439 For v9 return values:
1440
1441 - For all aggregates, the caller allocates space for the return value,
1442 and passes the pointer as an implicit first argument, which is
1443 allocated like all other arguments.
1444 - The unimp instruction stuff for structure returns is gone. */
1445
6f64bf5f 1446#if SPARC_ARCH64
7a6cf439
DE
1447enum sparc_arg_class { SPARC_ARG_INT = 0, SPARC_ARG_FLOAT = 1 };
1448struct sparc_args {
1449 int arg_count[2]; /* must be int! (for __builtin_args_info) */
1450};
1451#define CUMULATIVE_ARGS struct sparc_args
1452
1453/* Return index into CUMULATIVE_ARGS. */
1454
1455#define GET_SPARC_ARG_CLASS(MODE) \
1456 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? SPARC_ARG_FLOAT : SPARC_ARG_INT)
1bb87f28 1457
7a6cf439
DE
1458/* Round a register number up to a proper boundary for an arg of mode MODE.
1459 This macro is only used in this file.
1460
1461 The "& (0x10000 - ...)" is used to round up to the next appropriate reg. */
1462
1463#define ROUND_REG(CUM, MODE) \
1464 (GET_MODE_CLASS (MODE) != MODE_FLOAT \
1465 ? (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \
1466 : ((CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \
1467 + GET_MODE_UNIT_SIZE (MODE) / 4 - 1) \
1468 & (0x10000 - GET_MODE_UNIT_SIZE (MODE) / 4))
1469
1470#define ROUND_ADVANCE(SIZE) \
1471 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1472
6f64bf5f
DE
1473#else /* ! SPARC_ARCH64 */
1474
1bb87f28
JW
1475#define CUMULATIVE_ARGS int
1476
7a6cf439
DE
1477#define ROUND_REG(CUM, MODE) (CUM)
1478
1bb87f28 1479#define ROUND_ADVANCE(SIZE) \
b1fc14e5 1480 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
6f64bf5f 1481#endif /* ! SPARC_ARCH64 */
b1fc14e5 1482
1bb87f28
JW
1483/* Initialize a variable CUM of type CUMULATIVE_ARGS
1484 for a call to a function whose data type is FNTYPE.
1485 For a library call, FNTYPE is 0.
1486
1487 On SPARC, the offset always starts at 0: the first parm reg is always
1488 the same reg. */
1489
6f64bf5f 1490#if SPARC_ARCH64
7a6cf439
DE
1491extern int sparc_arg_count,sparc_n_named_args;
1492#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
1493 do { \
1494 (CUM).arg_count[(int) SPARC_ARG_INT] = 0; \
1495 (CUM).arg_count[(int) SPARC_ARG_FLOAT] = 0; \
1496 sparc_arg_count = 0; \
1497 sparc_n_named_args = \
1498 ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE) \
1499 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) \
1500 + (TREE_CODE (TREE_TYPE (FNTYPE)) == RECORD_TYPE \
4a5891af
DE
1501 || TREE_CODE (TREE_TYPE (FNTYPE)) == QUAL_UNION_TYPE\
1502 || TREE_CODE (TREE_TYPE (FNTYPE)) == SET_TYPE \
7a6cf439
DE
1503 || TREE_CODE (TREE_TYPE (FNTYPE)) == UNION_TYPE)) \
1504 /* Can't tell, treat 'em all as named. */ \
1505 : 10000); \
1506 } while (0)
1507#else
1bb87f28 1508#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
7a6cf439 1509#endif
1bb87f28
JW
1510
1511/* Update the data in CUM to advance over an argument
1512 of mode MODE and data type TYPE.
1513 (TYPE is null for libcalls where that information may not be available.) */
1514
6f64bf5f 1515#if SPARC_ARCH64
7a6cf439
DE
1516#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1517 do { \
1518 (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] = \
1519 ROUND_REG ((CUM), (MODE)) \
1520 + (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1521 ? GET_MODE_SIZE (MODE) / 4 \
1522 : ROUND_ADVANCE ((MODE) == BLKmode \
1523 ? GET_MODE_SIZE (Pmode) \
1524 : GET_MODE_SIZE (MODE))); \
1525 sparc_arg_count++; \
1526 } while (0)
1527#else
1bb87f28 1528#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
1529 ((CUM) += ((MODE) != BLKmode \
1530 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
1531 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
7a6cf439
DE
1532#endif
1533
1534/* Return boolean indicating arg of mode MODE will be passed in a reg.
1535 This macro is only used in this file. */
1536
6f64bf5f 1537#if SPARC_ARCH64
7a6cf439
DE
1538#define PASS_IN_REG_P(CUM, MODE, TYPE) \
1539 (ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE) \
1540 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
1541 && ((TYPE)==0 || (MODE) != BLKmode))
1542#else
1543#define PASS_IN_REG_P(CUM, MODE, TYPE) \
1544 ((CUM) < NPARM_REGS (SImode) \
1545 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
1546 && ((TYPE)==0 || (MODE) != BLKmode \
1547 || (TYPE_ALIGN (TYPE) % PARM_BOUNDARY == 0)))
1548#endif
1bb87f28
JW
1549
1550/* Determine where to put an argument to a function.
1551 Value is zero to push the argument on the stack,
1552 or a hard register in which to store the argument.
1553
1554 MODE is the argument's machine mode.
1555 TYPE is the data type of the argument (as a tree).
1556 This is null for libcalls where that information may
1557 not be available.
1558 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1559 the preceding args and about the function being called.
1560 NAMED is nonzero if this argument is a named parameter
1561 (otherwise it is an extra parameter matching an ellipsis). */
1562
1563/* On SPARC the first six args are normally in registers
1564 and the rest are pushed. Any arg that starts within the first 6 words
7a6cf439
DE
1565 is at least partially passed in a register unless its data type forbids.
1566 For v9, the first 6 int args are passed in regs and the first N
1567 float args are passed in regs (where N is such that %f0-15 are filled).
1568 The rest are pushed. Any arg that starts within the first 6 words
1bb87f28
JW
1569 is at least partially passed in a register unless its data type forbids. */
1570
1571#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
7a6cf439
DE
1572 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1573 ? gen_rtx (REG, (MODE), \
1574 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
1575 : 0)
1bb87f28
JW
1576
1577/* Define where a function finds its arguments.
1578 This is different from FUNCTION_ARG because of register windows. */
1579
1580#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
7a6cf439
DE
1581 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1582 ? gen_rtx (REG, (MODE), \
1583 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
1584 : 0)
1bb87f28
JW
1585
1586/* For an arg passed partly in registers and partly in memory,
1587 this is the number of registers used.
1588 For args passed entirely in registers or entirely in memory, zero.
1589 Any arg that starts in the first 6 regs but won't entirely fit in them
7a6cf439
DE
1590 needs partial registers on the Sparc (!v9). On v9, there are no arguments
1591 that are passed partially in registers (??? complex values?). */
1bb87f28 1592
6f64bf5f 1593#if ! SPARC_ARCH64
1bb87f28 1594#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
7a6cf439
DE
1595 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1596 && ((CUM) + ((MODE) == BLKmode \
1597 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
1598 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS (SImode) > 0)\
1599 ? (NPARM_REGS (SImode) - (CUM)) \
1bb87f28 1600 : 0)
7a6cf439 1601#endif
1bb87f28 1602
d9ca49d5 1603/* The SPARC ABI stipulates passing struct arguments (of any size) and
7a6cf439 1604 (!v9) quad-precision floats by invisible reference.
87ac3809 1605 For Pascal, also pass arrays by reference. */
3c0f5ae6
PB
1606#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1607 ((TYPE && AGGREGATE_TYPE_P (TYPE)) \
6f64bf5f 1608 || (!TARGET_ARCH64 && MODE == TFmode))
7a6cf439
DE
1609
1610/* A C expression that indicates when it is the called function's
1611 responsibility to make copies of arguments passed by reference.
1612 If the callee can determine that the argument won't be modified, it can
1613 avoid the copy. */
1614/* ??? We'd love to be able to use NAMED here. Unfortunately, it doesn't
1615 include the last named argument so we keep track of the args ourselves. */
1616
6f64bf5f 1617#if SPARC_ARCH64
7a6cf439
DE
1618#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
1619 (sparc_arg_count < sparc_n_named_args)
1620#endif
1621\f
1622/* Initialize data used by insn expanders. This is called from
1623 init_emit, once for each function, before code is generated.
1624 For v9, clear the temp slot used by float/int DImode conversions.
1625 ??? There is the 16 bytes at [%fp-16], however we'd like to delete this
1626 space at some point.
1627 ??? Use assign_stack_temp? */
1628
1629extern void sparc64_init_expanders ();
1630extern struct rtx_def *sparc64_fpconv_stack_temp ();
6f64bf5f 1631#if SPARC_ARCH64
7a6cf439
DE
1632#define INIT_EXPANDERS sparc64_init_expanders ()
1633#endif
1bb87f28
JW
1634
1635/* Define the information needed to generate branch and scc insns. This is
1636 stored from the compare operation. Note that we can't use "rtx" here
1637 since it hasn't been defined! */
1638
1639extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1640
1641/* Define the function that build the compare insn for scc and bcc. */
1642
1643extern struct rtx_def *gen_compare_reg ();
7a6cf439
DE
1644
1645/* This function handles all v9 scc insns */
1646
1647extern int gen_v9_scc ();
1bb87f28 1648\f
4b69d2a3
RS
1649/* Generate the special assembly code needed to tell the assembler whatever
1650 it might need to know about the return value of a function.
1651
1652 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1653 information to the assembler relating to peephole optimization (done in
1654 the assembler). */
1655
1656#define ASM_DECLARE_RESULT(FILE, RESULT) \
1657 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
1658
1bb87f28
JW
1659/* Output the label for a function definition. */
1660
4b69d2a3
RS
1661#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1662do { \
1663 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1664 ASM_OUTPUT_LABEL (FILE, NAME); \
1665} while (0)
1bb87f28 1666
1bb87f28
JW
1667/* This macro generates the assembly code for function entry.
1668 FILE is a stdio stream to output the code to.
1669 SIZE is an int: how many units of temporary storage to allocate.
1670 Refer to the array `regs_ever_live' to determine which registers
1671 to save; `regs_ever_live[I]' is nonzero if register number I
1672 is ever used in the function. This macro is responsible for
1673 knowing which registers should not be saved even if used. */
1674
1675/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
1676 of memory. If any fpu reg is used in the function, we allocate
1677 such a block here, at the bottom of the frame, just in case it's needed.
1678
1679 If this function is a leaf procedure, then we may choose not
1680 to do a "save" insn. The decision about whether or not
1681 to do this is made in regclass.c. */
1682
a061b9fa 1683extern int leaf_function;
bafb031b
DE
1684#define FUNCTION_PROLOGUE(FILE, SIZE) \
1685 (TARGET_FLAT ? sparc_flat_output_function_prologue (FILE, SIZE) \
5b485d2c 1686 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
1687
1688/* Output assembler code to FILE to increment profiler label # LABELNO
1689 for profiling a function entry. */
1690
d2a8e680
RS
1691#define FUNCTION_PROFILER(FILE, LABELNO) \
1692 do { \
1693 fputs ("\tsethi %hi(", (FILE)); \
1694 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
7a6cf439
DE
1695 fputs ("),%o0\n", (FILE)); \
1696 if (TARGET_MEDANY) \
1697 fprintf (FILE, "\tadd %%o0,%s,%%o0\n", \
1698 MEDANY_BASE_REG); \
1699 fputs ("\tcall mcount\n\tadd %lo(", (FILE)); \
d2a8e680
RS
1700 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
1701 fputs ("),%o0,%o0\n", (FILE)); \
1702 } while (0)
1bb87f28 1703
1bb87f28 1704
88c956eb
RK
1705/* There are three profiling modes for basic blocks available.
1706 The modes are selected at compile time by using the options
1707 -a or -ax of the gnu compiler.
1708 The variable `profile_block_flag' will be set according to the
1709 selected option.
1710
1711 profile_block_flag == 0, no option used:
1712
1713 No profiling done.
1714
1715 profile_block_flag == 1, -a option used.
1716
1717 Count frequency of execution of every basic block.
1718
1719 profile_block_flag == 2, -ax option used.
1720
1721 Generate code to allow several different profiling modes at run time.
1722 Available modes are:
1723 Produce a trace of all basic blocks.
1724 Count frequency of jump instructions executed.
1725 In every mode it is possible to start profiling upon entering
1726 certain functions and to disable profiling of some other functions.
1727
1728 The result of basic-block profiling will be written to a file `bb.out'.
1729 If the -ax option is used parameters for the profiling will be read
1730 from file `bb.in'.
1731
1732*/
1733
1734/* The following macro shall output assembler code to FILE
1735 to initialize basic-block profiling.
1736
1737 If profile_block_flag == 2
1738
1739 Output code to call the subroutine `__bb_init_trace_func'
1740 and pass two parameters to it. The first parameter is
1741 the address of a block allocated in the object module.
1742 The second parameter is the number of the first basic block
1743 of the function.
1744
1745 The name of the block is a local symbol made with this statement:
1746
1747 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1748
1749 Of course, since you are writing the definition of
1750 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1751 can take a short cut in the definition of this macro and use the
1752 name that you know will result.
1753
1754 The number of the first basic block of the function is
1755 passed to the macro in BLOCK_OR_LABEL.
1756
1757 If described in a virtual assembler language the code to be
1758 output looks like:
1759
1760 parameter1 <- LPBX0
1761 parameter2 <- BLOCK_OR_LABEL
1762 call __bb_init_trace_func
1763
1764 else if profile_block_flag != 0
1765
1766 Output code to call the subroutine `__bb_init_func'
1767 and pass one single parameter to it, which is the same
1768 as the first parameter to `__bb_init_trace_func'.
1769
1770 The first word of this parameter is a flag which will be nonzero if
1771 the object module has already been initialized. So test this word
1772 first, and do not call `__bb_init_func' if the flag is nonzero.
1773 Note: When profile_block_flag == 2 the test need not be done
1774 but `__bb_init_trace_func' *must* be called.
1775
1776 BLOCK_OR_LABEL may be used to generate a label number as a
1777 branch destination in case `__bb_init_func' will not be called.
1778
1779 If described in a virtual assembler language the code to be
1780 output looks like:
1781
1782 cmp (LPBX0),0
1783 jne local_label
1784 parameter1 <- LPBX0
1785 call __bb_init_func
1786local_label:
1787
1788*/
1789
1790#define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1791do \
1792 { \
1793 int bol = (BLOCK_OR_LABEL); \
1794 switch (profile_block_flag) \
1795 { \
1796 case 2: \
1797 if (TARGET_MEDANY) \
1798 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%0,%%lo(LPBX0),%%o0\n\tadd %%o0,%s,%%o0\n\tsethi %%hi(%d),%%o1\n\tcall ___bb_init_trace_func\n\tadd %g0,%%lo(%d),%%o1\n",\
1799 MEDANY_BASE_REG, bol, bol); \
1800 else \
1801 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%o0,%%lo(LPBX0),%%o0\n\tsethi %%hi(%d),%%o1\n\tcall ___bb_init_trace_func\n\tor %%o1,%%lo(%d),%%o1\n",\
1802 bol, bol); \
1803 break; \
1804 default: \
1805 if (TARGET_MEDANY) \
1806 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%0,%%lo(LPBX0),%%o0\n\tld [%s+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%s,%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n",\
1807 MEDANY_BASE_REG, bol, MEDANY_BASE_REG, bol);\
1808 else \
1809 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n",\
1810 bol, bol); \
1811 break; \
1812 } \
1813 } \
1814while (0)
1815
1816/* The following macro shall output assembler code to FILE
1817 to increment a counter associated with basic block number BLOCKNO.
1818
1819 If profile_block_flag == 2
1820
1821 Output code to initialize the global structure `__bb' and
1822 call the function `__bb_trace_func' which will increment the
1823 counter.
1824
1825 `__bb' consists of two words. In the first word the number
1826 of the basic block has to be stored. In the second word
1827 the address of a block allocated in the object module
1828 has to be stored.
1829
1830 The basic block number is given by BLOCKNO.
1831
1832 The address of the block is given by the label created with
1833
1834 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1835
1836 by FUNCTION_BLOCK_PROFILER.
1837
1838 Of course, since you are writing the definition of
1839 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1840 can take a short cut in the definition of this macro and use the
1841 name that you know will result.
1842
1843 If described in a virtual assembler language the code to be
1844 output looks like:
1845
1846 move BLOCKNO -> (__bb)
1847 move LPBX0 -> (__bb+4)
1848 call __bb_trace_func
1849
1850 Note that function `__bb_trace_func' must not change the
1851 machine state, especially the flag register. To grant
1852 this, you must output code to save and restore registers
1853 either in this macro or in the macros MACHINE_STATE_SAVE
1854 and MACHINE_STATE_RESTORE. The last two macros will be
1855 used in the function `__bb_trace_func', so you must make
1856 sure that the function prologue does not change any
1857 register prior to saving it with MACHINE_STATE_SAVE.
1858
1859 else if profile_block_flag != 0
1860
1861 Output code to increment the counter directly.
1862 Basic blocks are numbered separately from zero within each
1863 compiled object module. The count associated with block number
1864 BLOCKNO is at index BLOCKNO in an array of words; the name of
1865 this array is a local symbol made with this statement:
1866
1867 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
1868
1869 Of course, since you are writing the definition of
1870 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1871 can take a short cut in the definition of this macro and use the
1872 name that you know will result.
1873
1874 If described in a virtual assembler language, the code to be
1875 output looks like:
1876
1877 inc (LPBX2+4*BLOCKNO)
1878
1879*/
1880
1881#define BLOCK_PROFILER(FILE, BLOCKNO) \
1882do \
1883 { \
1884 int blockn = (BLOCKNO); \
1885 switch (profile_block_flag) \
1886 { \
1887 case 2: \
1888 if (TARGET_MEDANY) \
1889 fprintf (FILE, "\tsethi %%hi(___bb),%%g1\n\tor %%0,%%lo(___bb),%%g1\n\tsethi %%hi(%d),%%g2\n\tor %%g2,%%lo(%d),%%g2\n\tst %%g2,[%s+%%g1]\n\tsethi %%hi(LPBX0),%%g2\n\tor %%0,%%lo(LPBX0),%%g2\n\tadd %%g2,%s,%%g2\n\tadd 4,%%g1,%%g1\n\tst %%g2,[%%g1+%%lo(___bb)]\n\tmov %%o7,%%g2\n\tcall ___bb_trace_func\n\tnop\n\tmov %%g2,%%o7\n",\
1890 blockn, blockn, MEDANY_BASE_REG, MEDANY_BASE_REG); \
1891 else \
1892 fprintf (FILE, "\tsethi %%hi(___bb),%%g1\n\tsethi %%hi(%d),%%g2\n\tor %%g2,%%lo(%d),%%g2\n\tst %%g2,[%%lo(___bb)+%%g1]\n\tsethi %%hi(LPBX0),%%g2\n\tor %%g2,%%lo(LPBX0),%%g2\n\tadd 4,%%g1,%%g1\n\tst %%g2,[%%lo(___bb)+%%g1]\n\tmov %%o7,%%g2\n\tcall ___bb_trace_func\n\tnop\n\tmov %%g2,%%o7\n",\
1893 blockn, blockn); \
1894 break; \
1895 default: \
1896 if (TARGET_MEDANY) \
1897 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tor %%g1,%%lo(LPBX2+%d),%%g1\n\tld [%%g1+%s],%%g2\n\tadd %%g2,1,%%g2\n\tst %%g2,[%%g1+%s]\n", \
1898 4 * blockn, 4 * blockn, MEDANY_BASE_REG, MEDANY_BASE_REG); \
1899 else \
1900 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
7a6cf439 1901\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
88c956eb
RK
1902 4 * blockn, 4 * blockn, 4 * blockn); \
1903 break; \
1904 } \
1905 } \
1906while(0)
1907
1908/* The following macro shall output assembler code to FILE
1909 to indicate a return from function during basic-block profiling.
1910
1911 If profiling_block_flag == 2:
1912
1913 Output assembler code to call function `__bb_trace_ret'.
1914
1915 Note that function `__bb_trace_ret' must not change the
1916 machine state, especially the flag register. To grant
1917 this, you must output code to save and restore registers
1918 either in this macro or in the macros MACHINE_STATE_SAVE_RET
1919 and MACHINE_STATE_RESTORE_RET. The last two macros will be
1920 used in the function `__bb_trace_ret', so you must make
1921 sure that the function prologue does not change any
1922 register prior to saving it with MACHINE_STATE_SAVE_RET.
1923
1924 else if profiling_block_flag != 0:
1925
1926 The macro will not be used, so it need not distinguish
1927 these cases.
1928*/
1929
1930#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1931 fprintf (FILE, "\tcall ___bb_trace_ret\n\tnop\n" );
1932
1933/* The function `__bb_trace_func' is called in every basic block
1934 and is not allowed to change the machine state. Saving (restoring)
1935 the state can either be done in the BLOCK_PROFILER macro,
1936 before calling function (rsp. after returning from function)
1937 `__bb_trace_func', or it can be done inside the function by
1938 defining the macros:
1939
1940 MACHINE_STATE_SAVE(ID)
1941 MACHINE_STATE_RESTORE(ID)
1942
1943 In the latter case care must be taken, that the prologue code
1944 of function `__bb_trace_func' does not already change the
1945 state prior to saving it with MACHINE_STATE_SAVE.
1946
1947 The parameter `ID' is a string identifying a unique macro use.
1948
1949 On sparc it is sufficient to save the psw register to memory.
1950 Unfortunately the psw register can be read in supervisor mode only,
1951 so we read only the condition codes by using branch instructions
1952 and hope that this is enough. */
1953
1954#define MACHINE_STATE_SAVE(ID) \
1955 asm (" mov %g0,%l0");\
1956 asm (" be,a LFLGNZ" ID);\
1957 asm (" or %l0,4,%l0");\
1958 asm ("LFLGNZ" ID ": bcs,a LFLGNC" ID);\
1959 asm (" or %l0,1,%l0");\
1960 asm ("LFLGNC" ID ": bvs,a LFLGNV" ID);\
1961 asm (" or %l0,2,%l0");\
1962 asm ("LFLGNV" ID ": bneg,a LFLGNN" ID);\
1963 asm (" or %l0,8,%l0");\
1964 asm ("LFLGNN" ID ": sethi %hi(LFLAGS" ID "),%l1");\
1965 asm (" st %l0,[%l1+%lo(LFLAGS" ID ")]"); \
1966 asm (" st %g2,[%l1+%lo(LSAVRET" ID ")]");
1967
1968/* On sparc MACHINE_STATE_RESTORE restores the psw register from memory.
1969 The psw register can be written in supervisor mode only,
1970 which is true even for simple condition codes.
1971 We use some combination of instructions to produce the
1972 proper condition codes, but some flag combinations can not
1973 be generated in this way. If this happens an unimplemented
1974 instruction will be executed to abort the program. */
1975
1976#define MACHINE_STATE_RESTORE(ID) \
1977 asm (" sethi %hi(LFLGTAB" ID "),%l1");\
1978 asm (" ld [%l1+%lo(LFLGTAB" ID "-(LFLGTAB" ID "-LFLAGS" ID "))],%l0");\
1979 asm (" ld [%l1+%lo(LFLGTAB" ID "-(LFLGTAB" ID "-LSAVRET" ID "))],%g2");\
1980 asm (" sll %l0,2,%l0");\
1981 asm (" add %l0,%l1,%l0");\
1982 asm (" ld [%l0+%lo(LFLGTAB" ID ")],%l1");\
1983 asm (" jmp %l1");\
1984 asm (" nop");\
1985 asm (".data");\
1d7f2164 1986 asm (" .align 4");\
88c956eb
RK
1987 asm ("LFLAGS" ID ":");\
1988 asm (" .word 0");\
1989 asm ("LSAVRET" ID ":");\
1990 asm (" .word 0");\
1991 asm ("LFLGTAB" ID ": ");\
1992 asm (" .word LSFLG0" ID);\
1993 asm (" .word LSFLGC" ID);\
1994 asm (" .word LSFLGV" ID);\
1995 asm (" .word LSFLGVC" ID);\
1996 asm (" .word LSFLGZ" ID);\
1997 asm (" .word LSFLGZC" ID);\
1998 asm (" .word LSFLGZV" ID);\
1999 asm (" .word LSFLGZVC" ID);\
2000 asm (" .word LSFLGN" ID);\
2001 asm (" .word LSFLGNC" ID);\
2002 asm (" .word LSFLGNV" ID);\
2003 asm (" .word LSFLGNVC" ID);\
2004 asm (" .word LSFLGNZ" ID);\
2005 asm (" .word LSFLGNZC" ID);\
2006 asm (" .word LSFLGNZV" ID);\
2007 asm (" .word LSFLGNZVC" ID);\
2008 asm (".text");\
2009 asm ("LSFLGVC" ID ": mov -1,%l0");\
2010 asm (" addcc 2,%l0,%g0");\
2011 asm (" sethi %hi(0x80000000),%l0");\
2012 asm (" mov %l0,%l1");\
2013 asm (" ba LFLGRET" ID);\
2014 asm (" addxcc %l0,%l1,%l0");\
2015 asm ("LSFLGC" ID ": mov -1,%l0");\
2016 asm (" ba LFLGRET" ID);\
2017 asm (" addcc 2,%l0,%g0");\
2018 asm ("LSFLGZC" ID ": mov -1,%l0");\
2019 asm (" ba LFLGRET" ID);\
2020 asm (" addcc 1,%l0,%l0");\
2021 asm ("LSFLGZVC" ID ": sethi %hi(0x80000000),%l0");\
2022 asm (" mov %l0,%l1");\
2023 asm (" ba LFLGRET" ID);\
2024 asm (" addcc %l0,%l1,%l0");\
2025 asm ("LSFLGZ" ID ": ba LFLGRET" ID);\
2026 asm (" subcc %g0,%g0,%g0");\
2027 asm ("LSFLGNC" ID ": add %g0,1,%l0");\
2028 asm (" ba LFLGRET" ID);\
2029 asm (" subcc %g0,%l0,%g0");\
2030 asm ("LSFLG0" ID ": ba LFLGRET" ID);\
2031 asm (" orcc 1,%g0,%g0");\
2032 asm ("LSFLGN" ID ": ba LFLGRET" ID);\
2033 asm (" orcc -1,%g0,%g0");\
2034 asm ("LSFLGV" ID ":");\
2035 asm ("LSFLGZV" ID ":");\
2036 asm ("LSFLGNV" ID ":");\
2037 asm ("LSFLGNVC" ID ":");\
2038 asm ("LSFLGNZ" ID ":");\
2039 asm ("LSFLGNZC" ID ":");\
2040 asm ("LSFLGNZV" ID ":");\
2041 asm ("LSFLGNZVC" ID ":");\
2042 asm (" unimp");\
2043 asm ("LFLGRET" ID ":");
1bb87f28 2044
1bb87f28
JW
2045/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2046 the stack pointer does not matter. The value is tested only in
2047 functions that have frame pointers.
2048 No definition is equivalent to always zero. */
2049
2050extern int current_function_calls_alloca;
2051extern int current_function_outgoing_args_size;
2052
2053#define EXIT_IGNORE_STACK \
2054 (get_frame_size () != 0 \
2055 || current_function_calls_alloca || current_function_outgoing_args_size)
2056
2057/* This macro generates the assembly code for function exit,
2058 on machines that need it. If FUNCTION_EPILOGUE is not defined
2059 then individual return instructions are generated for each
2060 return statement. Args are same as for FUNCTION_PROLOGUE.
2061
2062 The function epilogue should not depend on the current stack pointer!
2063 It should use the frame pointer only. This is mandatory because
2064 of alloca; we also take advantage of it to omit stack adjustments
2065 before returning. */
2066
2067/* This declaration is needed due to traditional/ANSI
2068 incompatibilities which cannot be #ifdefed away
2069 because they occur inside of macros. Sigh. */
2070extern union tree_node *current_function_decl;
2071
bafb031b
DE
2072#define FUNCTION_EPILOGUE(FILE, SIZE) \
2073 (TARGET_FLAT ? sparc_flat_output_function_epilogue (FILE, SIZE) \
5b485d2c 2074 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 2075
bafb031b
DE
2076#define DELAY_SLOTS_FOR_EPILOGUE \
2077 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
2078#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
2079 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
5b485d2c 2080 : eligible_for_epilogue_delay (trial, slots_filled))
6a4bb1fa 2081\f
1bb87f28
JW
2082/* Output assembler code for a block containing the constant parts
2083 of a trampoline, leaving space for the variable parts. */
2084
c8392688 2085/* On 32 bit sparcs, the trampoline contains five instructions:
6098b63e
RK
2086 sethi #TOP_OF_FUNCTION,%g1
2087 or #BOTTOM_OF_FUNCTION,%g1,%g1
2088 sethi #TOP_OF_STATIC,%g2
2089 jmp g1
c8392688
RK
2090 or #BOTTOM_OF_STATIC,%g2,%g2
2091
2092 On 64 bit sparcs, the trampoline contains 4 insns and two pseudo-immediate
2093 constants (plus some padding):
2094 rd %pc,%g1
2095 ldx[%g1+20],%g5
2096 ldx[%g1+28],%g1
2097 jmp %g1
2098 nop
2099 nop
2100 .xword context
2101 .xword function */
2102
2103#define TRAMPOLINE_TEMPLATE(FILE) \
2104do { \
6f64bf5f 2105 if (TARGET_ARCH64) \
c8392688
RK
2106 { \
2107 fprintf (FILE, "\trd %%pc,%%g1\n"); \
2108 fprintf (FILE, "\tldx [%%g1+24],%%g5\n"); \
2109 fprintf (FILE, "\tldx [%%g1+32],%%g1\n"); \
2110 fprintf (FILE, "\tjmp %%g1\n"); \
2111 fprintf (FILE, "\tnop\n"); \
2112 fprintf (FILE, "\tnop\n"); \
2113 /* -mmedlow shouldn't generate .xwords, so don't use them at all */ \
2114 fprintf (FILE, "\t.word 0,0,0,0\n"); \
2115 } \
2116 else \
2117 { \
2118 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
2119 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
2120 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
2121 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000)); \
2122 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
2123 } \
2124} while (0)
1bb87f28
JW
2125
2126/* Length in units of the trampoline for entering a nested function. */
2127
6f64bf5f 2128#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 40 : 20)
1bb87f28
JW
2129
2130/* Emit RTL insns to initialize the variable parts of a trampoline.
2131 FNADDR is an RTX for the address of the function's pure code.
7a6cf439 2132 CXT is an RTX for the static chain value for the function. */
1bb87f28 2133
7a6cf439
DE
2134void sparc_initialize_trampoline ();
2135void sparc64_initialize_trampoline ();
2136#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2137 do { \
6f64bf5f 2138 if (TARGET_ARCH64) \
7a6cf439
DE
2139 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
2140 else \
2141 sparc_initialize_trampoline (TRAMP, FNADDR, CXT); \
2142 } while (0)
6a4bb1fa 2143\f
9a1c7cd7
JW
2144/* Generate necessary RTL for __builtin_saveregs().
2145 ARGLIST is the argument list; see expr.c. */
2146extern struct rtx_def *sparc_builtin_saveregs ();
2147#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
2148
2149/* Generate RTL to flush the register windows so as to make arbitrary frames
2150 available. */
2151#define SETUP_FRAME_ADDRESSES() \
2152 emit_insn (gen_flush_register_windows ())
2153
2154/* Given an rtx for the address of a frame,
2155 return an rtx for the address of the word in the frame
7a6cf439
DE
2156 that holds the dynamic chain--the previous frame's address.
2157 ??? -mflat support? */
953fe179 2158#define DYNAMIC_CHAIN_ADDRESS(frame) \
7a6cf439 2159 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 14 * UNITS_PER_WORD))
953fe179
JW
2160
2161/* The return address isn't on the stack, it is in a register, so we can't
2162 access it from the current frame pointer. We can access it from the
2163 previous frame pointer though by reading a value from the register window
2164 save area. */
2165#define RETURN_ADDR_IN_PREVIOUS_FRAME
2166
5b6faa70 2167/* This is the offset of the return address to the true next instruction to be
9ad61776 2168 executed for the current function. */
6f64bf5f
DE
2169#define RETURN_ADDR_OFFSET \
2170 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
5b6faa70 2171
953fe179
JW
2172/* The current return address is in %i7. The return address of anything
2173 farther back is in the register window save area at [%fp+60]. */
2174/* ??? This ignores the fact that the actual return address is +8 for normal
2175 returns, and +12 for structure returns. */
2176#define RETURN_ADDR_RTX(count, frame) \
2177 ((count == -1) \
2178 ? gen_rtx (REG, Pmode, 31) \
5b6faa70
RK
2179 : gen_rtx (MEM, Pmode, \
2180 memory_address (Pmode, plus_constant (frame, 15 * UNITS_PER_WORD))))
1bb87f28
JW
2181\f
2182/* Addressing modes, and classification of registers for them. */
2183
2184/* #define HAVE_POST_INCREMENT */
2185/* #define HAVE_POST_DECREMENT */
2186
2187/* #define HAVE_PRE_DECREMENT */
2188/* #define HAVE_PRE_INCREMENT */
2189
2190/* Macros to check register numbers against specific register classes. */
2191
2192/* These assume that REGNO is a hard or pseudo reg number.
2193 They give nonzero only if REGNO is a hard reg of the suitable class
2194 or a pseudo reg currently allocated to a suitable hard reg.
2195 Since they use reg_renumber, they are safe only once reg_renumber
2196 has been allocated, which happens in local-alloc.c. */
2197
2198#define REGNO_OK_FOR_INDEX_P(REGNO) \
2199(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
2200#define REGNO_OK_FOR_BASE_P(REGNO) \
2201(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
2202#define REGNO_OK_FOR_FP_P(REGNO) \
7a6cf439
DE
2203 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? 64 : 32)) \
2204 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? 64 : 32)))
2205#define REGNO_OK_FOR_CCFP_P(REGNO) \
2206 (TARGET_V9 \
2207 && ((unsigned) (REGNO) - 96 < 4) || ((unsigned) reg_renumber[REGNO] - 96 < 4))
1bb87f28
JW
2208
2209/* Now macros that check whether X is a register and also,
2210 strictly, whether it is in a specified class.
2211
2212 These macros are specific to the SPARC, and may be used only
2213 in code for printing assembler insns and in conditions for
2214 define_optimization. */
2215
2216/* 1 if X is an fp register. */
2217
2218#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2219\f
2220/* Maximum number of registers that can appear in a valid memory address. */
2221
2222#define MAX_REGS_PER_ADDRESS 2
2223
7aca9b9c
JW
2224/* Recognize any constant value that is a valid address.
2225 When PIC, we do not accept an address that would require a scratch reg
2226 to load into a register. */
1bb87f28 2227
6eff269e
BK
2228#define CONSTANT_ADDRESS_P(X) \
2229 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
7aca9b9c
JW
2230 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2231 || (GET_CODE (X) == CONST \
2232 && ! (flag_pic && pic_address_needs_scratch (X))))
2233
2234/* Define this, so that when PIC, reload won't try to reload invalid
2235 addresses which require two reload registers. */
2236
2237#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
1bb87f28
JW
2238
2239/* Nonzero if the constant value X is a legitimate general operand.
2240 Anything can be made to work except floating point constants. */
2241
2242#define LEGITIMATE_CONSTANT_P(X) \
2243 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
2244
2245/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2246 and check its validity for a certain class.
2247 We have two alternate definitions for each of them.
2248 The usual definition accepts all pseudo regs; the other rejects
2249 them unless they have been allocated suitable hard regs.
2250 The symbol REG_OK_STRICT causes the latter definition to be used.
2251
2252 Most source files want to accept pseudo regs in the hope that
2253 they will get allocated to the class that the insn wants them to be in.
2254 Source files for reload pass need to be strict.
2255 After reload, it makes no difference, since pseudo regs have
2256 been eliminated by then. */
2257
2258/* Optional extra constraints for this machine. Borrowed from romp.h.
2259
2260 For the SPARC, `Q' means that this is a memory operand but not a
2261 symbolic memory operand. Note that an unassigned pseudo register
2262 is such a memory operand. Needed because reload will generate
2263 these things in insns and then not re-recognize the insns, causing
2264 constrain_operands to fail.
2265
7a6cf439 2266 `S' handles constraints for calls. ??? So where is it? */
1bb87f28
JW
2267
2268#ifndef REG_OK_STRICT
2269
2270/* Nonzero if X is a hard reg that can be used as an index
2271 or if it is a pseudo reg. */
7a6cf439
DE
2272#define REG_OK_FOR_INDEX_P(X) \
2273 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0)
1bb87f28
JW
2274/* Nonzero if X is a hard reg that can be used as a base reg
2275 or if it is a pseudo reg. */
7a6cf439
DE
2276#define REG_OK_FOR_BASE_P(X) \
2277 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0)
2278
2279/* 'T', 'U' are for aligned memory loads which aren't needed for v9. */
1bb87f28
JW
2280
2281#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
2282 ((C) == 'Q' \
2283 ? ((GET_CODE (OP) == MEM \
7a6cf439 2284 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
db5e449c
RS
2285 && ! symbolic_memory_operand (OP, VOIDmode)) \
2286 || (reload_in_progress && GET_CODE (OP) == REG \
2287 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
6f64bf5f 2288 : (! TARGET_ARCH64 && (C) == 'T') \
19858600 2289 ? (mem_aligned_8 (OP)) \
6f64bf5f 2290 : (! TARGET_ARCH64 && (C) == 'U') \
19858600 2291 ? (register_ok_for_ldd (OP)) \
db5e449c 2292 : 0)
19858600 2293
1bb87f28
JW
2294#else
2295
2296/* Nonzero if X is a hard reg that can be used as an index. */
2297#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2298/* Nonzero if X is a hard reg that can be used as a base reg. */
2299#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2300
2301#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
2302 ((C) == 'Q' \
2303 ? (GET_CODE (OP) == REG \
2304 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
2305 && reg_renumber[REGNO (OP)] < 0) \
2306 : GET_CODE (OP) == MEM) \
6f64bf5f 2307 : (! TARGET_ARCH64 && (C) == 'T') \
b165d471 2308 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
6f64bf5f 2309 : (! TARGET_ARCH64 && (C) == 'U') \
b165d471
JW
2310 ? (GET_CODE (OP) == REG \
2311 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
2312 || reg_renumber[REGNO (OP)] > 0) \
2313 && register_ok_for_ldd (OP)) : 0)
1bb87f28
JW
2314#endif
2315\f
2316/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2317 that is a valid memory address for an instruction.
2318 The MODE argument is the machine mode for the MEM expression
2319 that wants to use this address.
2320
2321 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2322 ordinarily. This changes a bit when generating PIC.
2323
2324 If you change this, execute "rm explow.o recog.o reload.o". */
2325
bec2e359
JW
2326#define RTX_OK_FOR_BASE_P(X) \
2327 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2328 || (GET_CODE (X) == SUBREG \
2329 && GET_CODE (SUBREG_REG (X)) == REG \
2330 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2331
2332#define RTX_OK_FOR_INDEX_P(X) \
2333 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2334 || (GET_CODE (X) == SUBREG \
2335 && GET_CODE (SUBREG_REG (X)) == REG \
2336 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2337
2338#define RTX_OK_FOR_OFFSET_P(X) \
2339 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
2340
1bb87f28 2341#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
2342{ if (RTX_OK_FOR_BASE_P (X)) \
2343 goto ADDR; \
1bb87f28
JW
2344 else if (GET_CODE (X) == PLUS) \
2345 { \
bec2e359
JW
2346 register rtx op0 = XEXP (X, 0); \
2347 register rtx op1 = XEXP (X, 1); \
2348 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 2349 { \
bec2e359 2350 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
2351 goto ADDR; \
2352 else if (flag_pic == 1 \
bec2e359
JW
2353 && GET_CODE (op1) != REG \
2354 && GET_CODE (op1) != LO_SUM \
7aca9b9c
JW
2355 && GET_CODE (op1) != MEM \
2356 && (GET_CODE (op1) != CONST_INT \
2357 || SMALL_INT (op1))) \
1bb87f28
JW
2358 goto ADDR; \
2359 } \
bec2e359 2360 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 2361 { \
bec2e359
JW
2362 if (RTX_OK_FOR_INDEX_P (op1) \
2363 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
2364 goto ADDR; \
2365 } \
bec2e359 2366 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 2367 { \
bec2e359
JW
2368 if (RTX_OK_FOR_INDEX_P (op0) \
2369 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
2370 goto ADDR; \
2371 } \
2372 } \
bec2e359
JW
2373 else if (GET_CODE (X) == LO_SUM) \
2374 { \
2375 register rtx op0 = XEXP (X, 0); \
2376 register rtx op1 = XEXP (X, 1); \
2377 if (RTX_OK_FOR_BASE_P (op0) \
2f0da906
JW
2378 && CONSTANT_P (op1) \
2379 /* We can't allow TFmode, because an offset \
2380 greater than or equal to the alignment (8) \
2381 may cause the LO_SUM to overflow. */ \
2382 && MODE != TFmode) \
bec2e359
JW
2383 goto ADDR; \
2384 } \
1bb87f28
JW
2385 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2386 goto ADDR; \
2387}
2388\f
2389/* Try machine-dependent ways of modifying an illegitimate address
2390 to be legitimate. If we find one, return the new, valid address.
2391 This macro is used in only one place: `memory_address' in explow.c.
2392
2393 OLDX is the address as it was before break_out_memory_refs was called.
2394 In some cases it is useful to look at this to decide what needs to be done.
2395
2396 MODE and WIN are passed so that this macro can use
2397 GO_IF_LEGITIMATE_ADDRESS.
2398
2399 It is always safe for this macro to do nothing. It exists to recognize
2400 opportunities to optimize the output. */
2401
2402/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2403extern struct rtx_def *legitimize_pic_address ();
2404#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2405{ rtx sparc_x = (X); \
2406 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2407 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 2408 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
2409 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2410 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 2411 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 2412 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 2413 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
2414 XEXP (X, 1)); \
2415 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2416 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 2417 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
2418 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2419 goto WIN; \
7aca9b9c 2420 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
1bb87f28
JW
2421 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2422 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
2423 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2424 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2425 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
2426 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2427 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2428 || GET_CODE (X) == LABEL_REF) \
2429 (X) = gen_rtx (LO_SUM, Pmode, \
2430 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
2431 if (memory_address_p (MODE, X)) \
2432 goto WIN; }
2433
2434/* Go to LABEL if ADDR (a legitimate address expression)
2435 has an effect that depends on the machine mode it is used for.
2436 On the SPARC this is never true. */
2437
2438#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
7a6cf439
DE
2439
2440/* If we are referencing a function make the SYMBOL_REF special.
2441 In the Medium/Anywhere code model, %g4 points to the data segment so we
2442 must not add it to function addresses. */
2443
2444#define ENCODE_SECTION_INFO(DECL) \
2445 do { \
2446 if (TARGET_MEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2447 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2448 } while (0)
1bb87f28
JW
2449\f
2450/* Specify the machine mode that this machine uses
2451 for the index in the tablejump instruction. */
7a6cf439 2452#define CASE_VECTOR_MODE Pmode
1bb87f28
JW
2453
2454/* Define this if the tablejump instruction expects the table
2455 to contain offsets from the address of the table.
2456 Do not define this if the table should contain absolute addresses. */
2457/* #define CASE_VECTOR_PC_RELATIVE */
2458
2459/* Specify the tree operation to be used to convert reals to integers. */
2460#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2461
2462/* This is the kind of divide that is easiest to do in the general case. */
2463#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2464
2465/* Define this as 1 if `char' should by default be signed; else as 0. */
2466#define DEFAULT_SIGNED_CHAR 1
2467
2468/* Max number of bytes we can move from memory to memory
2469 in one reasonably fast instruction. */
2eef2ef1 2470#define MOVE_MAX 8
1bb87f28 2471
0fb5a69e 2472#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
2473/* This is the value of the error code EDOM for this machine,
2474 used by the sqrt instruction. */
2475#define TARGET_EDOM 33
2476
2477/* This is how to refer to the variable errno. */
2478#define GEN_ERRNO_RTX \
2479 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 2480#endif /* 0 */
24e2a2bf 2481
9a63901f
RK
2482/* Define if operations between registers always perform the operation
2483 on the full register even if a narrower mode is specified. */
2484#define WORD_REGISTER_OPERATIONS
2485
2486/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2487 will either zero-extend or sign-extend. The value of this macro should
2488 be the code that says which one of the two operations is implicitly
2489 done, NIL if none. */
2490#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1bb87f28
JW
2491
2492/* Nonzero if access to memory by bytes is slow and undesirable.
2493 For RISC chips, it means that access to memory by bytes is no
2494 better than access by words when possible, so grab a whole word
2495 and maybe make use of that. */
2496#define SLOW_BYTE_ACCESS 1
2497
2498/* We assume that the store-condition-codes instructions store 0 for false
2499 and some other value for true. This is the value stored for true. */
2500
2501#define STORE_FLAG_VALUE 1
2502
2503/* When a prototype says `char' or `short', really pass an `int'. */
2504#define PROMOTE_PROTOTYPES
2505
d969caf8
RK
2506/* Define this to be nonzero if shift instructions ignore all but the low-order
2507 few bits. */
2508#define SHIFT_COUNT_TRUNCATED 1
1bb87f28
JW
2509
2510/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2511 is done just by pretending it is already truncated. */
2512#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2513
2514/* Specify the machine mode that pointers have.
2515 After generation of rtl, the compiler makes no further distinction
2516 between pointers and any other objects of this machine mode. */
7a6cf439 2517#define Pmode (TARGET_PTR64 ? DImode : SImode)
1bb87f28 2518
b4ac57ab
RS
2519/* Generate calls to memcpy, memcmp and memset. */
2520#define TARGET_MEM_FUNCTIONS
2521
1bb87f28
JW
2522/* Add any extra modes needed to represent the condition code.
2523
2524 On the Sparc, we have a "no-overflow" mode which is used when an add or
2525 subtract insn is used to set the condition code. Different branches are
2526 used in this case for some operations.
2527
4d449554
JW
2528 We also have two modes to indicate that the relevant condition code is
2529 in the floating-point condition code register. One for comparisons which
2530 will generate an exception if the result is unordered (CCFPEmode) and
2531 one for comparisons which will never trap (CCFPmode). This really should
7a6cf439
DE
2532 be a separate register, but we don't want to go to 65 registers.
2533
2534 CCXmode and CCX_NOOVmode are only used by v9. */
2535
2536#define EXTRA_CC_MODES CCXmode, CC_NOOVmode, CCX_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
2537
2538/* Define the names for the modes specified above. */
7a6cf439
DE
2539
2540#define EXTRA_CC_NAMES "CCX", "CC_NOOV", "CCX_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
2541
2542/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
2543 return the mode to be used for the comparison. For floating-point,
2544 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
922bd191
JW
2545 PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2546 processing is needed. */
679655e6 2547#define SELECT_CC_MODE(OP,X,Y) \
4d449554 2548 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
922bd191
JW
2549 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
2550 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2551 || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
6f64bf5f
DE
2552 ? (TARGET_ARCH64 && GET_MODE (X) == DImode ? CCX_NOOVmode : CC_NOOVmode) \
2553 : (TARGET_ARCH64 && GET_MODE (X) == DImode ? CCXmode : CCmode)))
1bb87f28 2554
b331b745
RK
2555/* Return non-zero if SELECT_CC_MODE will never return MODE for a
2556 floating point inequality comparison. */
2557
2558#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
2559
1bb87f28
JW
2560/* A function address in a call instruction
2561 is a byte address (for indexing purposes)
2562 so give the MEM rtx a byte's mode. */
2563#define FUNCTION_MODE SImode
2564
2565/* Define this if addresses of constant functions
2566 shouldn't be put through pseudo regs where they can be cse'd.
2567 Desirable on machines where ordinary constants are expensive
2568 but a CALL with constant address is cheap. */
2569#define NO_FUNCTION_CSE
2570
2571/* alloca should avoid clobbering the old register save area. */
2572#define SETJMP_VIA_SAVE_AREA
2573
2574/* Define subroutines to call to handle multiply and divide.
2575 Use the subroutines that Sun's library provides.
2576 The `*' prevents an underscore from being prepended by the compiler. */
2577
2578#define DIVSI3_LIBCALL "*.div"
2579#define UDIVSI3_LIBCALL "*.udiv"
2580#define MODSI3_LIBCALL "*.rem"
2581#define UMODSI3_LIBCALL "*.urem"
2582/* .umul is a little faster than .mul. */
2583#define MULSI3_LIBCALL "*.umul"
2584
8248e2bc
JW
2585/* Define library calls for quad FP operations. These are all part of the
2586 SPARC ABI. */
b3f741ed
JW
2587#define ADDTF3_LIBCALL "_Q_add"
2588#define SUBTF3_LIBCALL "_Q_sub"
27da6752 2589#define NEGTF2_LIBCALL "_Q_neg"
b3f741ed
JW
2590#define MULTF3_LIBCALL "_Q_mul"
2591#define DIVTF3_LIBCALL "_Q_div"
b3f741ed
JW
2592#define FLOATSITF2_LIBCALL "_Q_itoq"
2593#define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2594#define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2595#define EXTENDSFTF2_LIBCALL "_Q_stoq"
2596#define TRUNCTFSF2_LIBCALL "_Q_qtos"
2597#define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2598#define TRUNCTFDF2_LIBCALL "_Q_qtod"
2599#define EQTF2_LIBCALL "_Q_feq"
2600#define NETF2_LIBCALL "_Q_fne"
2601#define GTTF2_LIBCALL "_Q_fgt"
2602#define GETF2_LIBCALL "_Q_fge"
2603#define LTTF2_LIBCALL "_Q_flt"
2604#define LETF2_LIBCALL "_Q_fle"
8248e2bc 2605
78e9b5df
JW
2606/* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2607 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2608 and the compiler will notice and try to use the TFmode sqrt instruction
2609 for calls to the builtin function sqrt, but this fails. */
27da6752
JW
2610#define INIT_TARGET_OPTABS \
2611 do { \
27da6752
JW
2612 add_optab->handlers[(int) TFmode].libfunc \
2613 = gen_rtx (SYMBOL_REF, Pmode, ADDTF3_LIBCALL); \
2614 sub_optab->handlers[(int) TFmode].libfunc \
2615 = gen_rtx (SYMBOL_REF, Pmode, SUBTF3_LIBCALL); \
2616 neg_optab->handlers[(int) TFmode].libfunc \
2617 = gen_rtx (SYMBOL_REF, Pmode, NEGTF2_LIBCALL); \
2618 smul_optab->handlers[(int) TFmode].libfunc \
2619 = gen_rtx (SYMBOL_REF, Pmode, MULTF3_LIBCALL); \
2620 flodiv_optab->handlers[(int) TFmode].libfunc \
2621 = gen_rtx (SYMBOL_REF, Pmode, DIVTF3_LIBCALL); \
2622 eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EQTF2_LIBCALL); \
2623 netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, NETF2_LIBCALL); \
2624 gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GTTF2_LIBCALL); \
2625 getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GETF2_LIBCALL); \
2626 lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LTTF2_LIBCALL); \
2627 letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LETF2_LIBCALL); \
2628 trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFSF2_LIBCALL); \
2629 trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFDF2_LIBCALL); \
2630 extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDSFTF2_LIBCALL); \
2631 extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDDFTF2_LIBCALL); \
2632 floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, FLOATSITF2_LIBCALL); \
2633 fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, FIX_TRUNCTFSI2_LIBCALL); \
2634 fixunstfsi_libfunc \
2635 = gen_rtx (SYMBOL_REF, Pmode, FIXUNS_TRUNCTFSI2_LIBCALL); \
2636 if (TARGET_FPU) \
2637 sqrt_optab->handlers[(int) TFmode].libfunc \
2638 = gen_rtx (SYMBOL_REF, Pmode, "_Q_sqrt"); \
47428190 2639 INIT_SUBTARGET_OPTABS; \
78e9b5df
JW
2640 } while (0)
2641
2642/* This is meant to be redefined in the host dependent files */
2643#define INIT_SUBTARGET_OPTABS
2644
1bb87f28
JW
2645/* Compute the cost of computing a constant rtl expression RTX
2646 whose rtx-code is CODE. The body of this macro is a portion
2647 of a switch statement. If the code is computed here,
2648 return it with a return statement. Otherwise, break from the switch. */
2649
3bb22aee 2650#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 2651 case CONST_INT: \
1bb87f28 2652 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 2653 return 0; \
1bb87f28
JW
2654 case HIGH: \
2655 return 2; \
2656 case CONST: \
2657 case LABEL_REF: \
2658 case SYMBOL_REF: \
2659 return 4; \
2660 case CONST_DOUBLE: \
2661 if (GET_MODE (RTX) == DImode) \
2662 if ((XINT (RTX, 3) == 0 \
2663 && (unsigned) XINT (RTX, 2) < 0x1000) \
2664 || (XINT (RTX, 3) == -1 \
2665 && XINT (RTX, 2) < 0 \
2666 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 2667 return 0; \
1bb87f28
JW
2668 return 8;
2669
a0a74fda 2670/* Compute the cost of an address. For the sparc, all valid addresses are
7a6cf439
DE
2671 the same cost.
2672 ??? Is this true for v9? */
1bb87f28 2673
a0a74fda 2674#define ADDRESS_COST(RTX) 1
1bb87f28
JW
2675
2676/* Compute extra cost of moving data between one register class
7a6cf439
DE
2677 and another.
2678 ??? v9: We ignore FPCC_REGS on the assumption they'll never be seen. */
1bb87f28 2679#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
24b63396
JW
2680 (((FP_REG_CLASS_P (CLASS1) && (CLASS2) == GENERAL_REGS) \
2681 || ((CLASS1) == GENERAL_REGS && FP_REG_CLASS_P (CLASS2))) ? 6 : 2)
1bb87f28
JW
2682
2683/* Provide the costs of a rtl expression. This is in the body of a
2684 switch on CODE. The purpose for the cost of MULT is to encourage
2685 `synth_mult' to find a synthetic multiply when reasonable.
2686
2687 If we need more than 12 insns to do a multiply, then go out-of-line,
2688 since the call overhead will be < 10% of the cost of the multiply. */
2689
3bb22aee 2690#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28 2691 case MULT: \
6f64bf5f
DE
2692 return (TARGET_V8 || TARGET_SPARCLITE || TARGET_V9) \
2693 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
1bb87f28
JW
2694 case DIV: \
2695 case UDIV: \
2696 case MOD: \
2697 case UMOD: \
5b485d2c
JW
2698 return COSTS_N_INSNS (25); \
2699 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
2700 so that cse will favor the latter. */ \
2701 case FLOAT: \
5b485d2c 2702 case FIX: \
1bb87f28
JW
2703 return 19;
2704
bef8d8c7
JW
2705/* Adjust the cost of dependencies. */
2706#define ADJUST_COST(INSN,LINK,DEP,COST) \
bafb031b
DE
2707 if (sparc_cpu == CPU_SUPERSPARC) \
2708 (COST) = supersparc_adjust_cost (INSN, LINK, DEP, COST)
bef8d8c7 2709
1bb87f28
JW
2710/* Conditional branches with empty delay slots have a length of two. */
2711#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2712 if (GET_CODE (INSN) == CALL_INSN \
2713 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2714 LENGTH += 1;
2715\f
2716/* Control the assembler format that we output. */
2717
2718/* Output at beginning of assembler file. */
2719
2720#define ASM_FILE_START(file)
2721
2722/* Output to assembler file text saying following lines
2723 may contain character constants, extra white space, comments, etc. */
2724
2725#define ASM_APP_ON ""
2726
2727/* Output to assembler file text saying following lines
2728 no longer contain unusual constructs. */
2729
2730#define ASM_APP_OFF ""
2731
7a6cf439
DE
2732/* ??? Try to make the style consistent here (_OP?). */
2733
2734#define ASM_LONGLONG ".xword"
303d524a
JW
2735#define ASM_LONG ".word"
2736#define ASM_SHORT ".half"
2737#define ASM_BYTE_OP ".byte"
7a6cf439
DE
2738#define ASM_FLOAT ".single"
2739#define ASM_DOUBLE ".double"
2740#define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
303d524a 2741
1bb87f28
JW
2742/* Output before read-only data. */
2743
2744#define TEXT_SECTION_ASM_OP ".text"
2745
2746/* Output before writable data. */
2747
2748#define DATA_SECTION_ASM_OP ".data"
2749
2750/* How to refer to registers in assembler output.
2751 This sequence is indexed by compiler's hard-register-number (see above). */
2752
7a6cf439
DE
2753#define REGISTER_NAMES \
2754{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2755 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2756 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2757 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2758 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2759 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2760 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2761 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
6f64bf5f
DE
2762 SPARC64_REGISTER_NAMES \
2763}
2764
2765#if SPARC_V9
2766#define SPARC64_REGISTER_NAMES \
7a6cf439
DE
2767 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2768 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2769 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2770 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
6f64bf5f 2771 "%fcc0", "%fcc1", "%fcc2", "%fcc3"
7a6cf439 2772#else
6f64bf5f 2773#define SPARC64_REGISTER_NAMES
7a6cf439 2774#endif
1bb87f28 2775
ea3fa5f7
JW
2776/* Define additional names for use in asm clobbers and asm declarations.
2777
2778 We define the fake Condition Code register as an alias for reg 0 (which
2779 is our `condition code' register), so that condition codes can easily
2780 be clobbered by an asm. No such register actually exists. Condition
2781 codes are partly stored in the PSR and partly in the FSR. */
2782
0eb9f40e 2783#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 2784
1bb87f28
JW
2785/* How to renumber registers for dbx and gdb. */
2786
2787#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2788
2789/* On Sun 4, this limit is 2048. We use 1500 to be safe,
2790 since the length can run past this up to a continuation point. */
2791#define DBX_CONTIN_LENGTH 1500
2792
2793/* This is how to output a note to DBX telling it the line number
2794 to which the following sequence of instructions corresponds.
2795
2796 This is needed for SunOS 4.0, and should not hurt for 3.2
2797 versions either. */
2798#define ASM_OUTPUT_SOURCE_LINE(file, line) \
2799 { static int sym_lineno = 1; \
2800 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
2801 line, sym_lineno, sym_lineno); \
2802 sym_lineno += 1; }
2803
2804/* This is how to output the definition of a user-level label named NAME,
2805 such as the label on a static function or variable NAME. */
2806
2807#define ASM_OUTPUT_LABEL(FILE,NAME) \
2808 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2809
2810/* This is how to output a command to make the user-level label named NAME
2811 defined for reference from other files. */
2812
2813#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2814 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2815
2816/* This is how to output a reference to a user-level label named NAME.
2817 `assemble_name' uses this. */
2818
2819#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2820 fprintf (FILE, "_%s", NAME)
2821
d2a8e680 2822/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
2823 PREFIX is the class of label and NUM is the number within the class. */
2824
2825#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2826 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2827
d2a8e680
RS
2828/* This is how to output a reference to an internal numbered label where
2829 PREFIX is the class of label and NUM is the number within the class. */
2830/* FIXME: This should be used throughout gcc, and documented in the texinfo
2831 files. There is no reason you should have to allocate a buffer and
2832 `sprintf' to reference an internal label (as opposed to defining it). */
2833
2834#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
2835 fprintf (FILE, "%s%d", PREFIX, NUM)
2836
1bb87f28
JW
2837/* This is how to store into the string LABEL
2838 the symbol_ref name of an internal numbered label where
2839 PREFIX is the class of label and NUM is the number within the class.
2840 This is suitable for output with `assemble_name'. */
2841
2842#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2843 sprintf (LABEL, "*%s%d", PREFIX, NUM)
2844
2845/* This is how to output an assembler line defining a `double' constant. */
2846
2847#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2848 { \
2e7ac77c
JW
2849 long t[2]; \
2850 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2851 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
2852 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
2853 }
2854
2855/* This is how to output an assembler line defining a `float' constant. */
2856
2857#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2858 { \
2e7ac77c
JW
2859 long t; \
2860 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2861 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
2862 } \
1bb87f28 2863
0cd02cbb
DE
2864/* This is how to output an assembler line defining a `long double'
2865 constant. */
2866
2867#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2868 { \
2869 long t[4]; \
2870 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
2871 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
2872 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
2873 }
2874
1bb87f28
JW
2875/* This is how to output an assembler line defining an `int' constant. */
2876
2877#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 2878( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
2879 output_addr_const (FILE, (VALUE)), \
2880 fprintf (FILE, "\n"))
2881
2882/* This is how to output an assembler line defining a DImode constant. */
2883#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2884 output_double_int (FILE, VALUE)
2885
2886/* Likewise for `char' and `short' constants. */
2887
2888#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 2889( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
2890 output_addr_const (FILE, (VALUE)), \
2891 fprintf (FILE, "\n"))
2892
2893#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 2894( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
2895 output_addr_const (FILE, (VALUE)), \
2896 fprintf (FILE, "\n"))
2897
2898/* This is how to output an assembler line for a numeric constant byte. */
2899
2900#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 2901 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
2902
2903/* This is how to output an element of a case-vector that is absolute. */
2904
2905#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
2906do { \
2907 char label[30]; \
2908 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
7a6cf439
DE
2909 if (Pmode == SImode) \
2910 fprintf (FILE, "\t.word\t"); \
6f64bf5f 2911 else if (TARGET_MEDLOW) \
7a6cf439
DE
2912 fprintf (FILE, "\t.word\t0\n\t.word\t"); \
2913 else \
2914 fprintf (FILE, "\t.xword\t"); \
4b69d2a3
RS
2915 assemble_name (FILE, label); \
2916 fprintf (FILE, "\n"); \
2917} while (0)
1bb87f28
JW
2918
2919/* This is how to output an element of a case-vector that is relative.
2920 (SPARC uses such vectors only when generating PIC.) */
2921
4b69d2a3
RS
2922#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2923do { \
2924 char label[30]; \
2925 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
7a6cf439
DE
2926 if (Pmode == SImode) \
2927 fprintf (FILE, "\t.word\t"); \
6f64bf5f 2928 else if (TARGET_MEDLOW) \
7a6cf439
DE
2929 fprintf (FILE, "\t.word\t0\n\t.word\t"); \
2930 else \
2931 fprintf (FILE, "\t.xword\t"); \
4b69d2a3
RS
2932 assemble_name (FILE, label); \
2933 fprintf (FILE, "-1b\n"); \
2934} while (0)
1bb87f28
JW
2935
2936/* This is how to output an assembler line
2937 that says to advance the location counter
2938 to a multiple of 2**LOG bytes. */
2939
2940#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2941 if ((LOG) != 0) \
2942 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2943
2944#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2945 fprintf (FILE, "\t.skip %u\n", (SIZE))
2946
2947/* This says how to output an assembler line
2948 to define a global common symbol. */
2949
2950#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
b277ceaf 2951( fputs ("\t.common ", (FILE)), \
1bb87f28 2952 assemble_name ((FILE), (NAME)), \
b277ceaf 2953 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
1bb87f28 2954
b277ceaf
JW
2955/* This says how to output an assembler line to define a local common
2956 symbol. */
1bb87f28 2957
b277ceaf
JW
2958#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2959( fputs ("\t.reserve ", (FILE)), \
2960 assemble_name ((FILE), (NAME)), \
2961 fprintf ((FILE), ",%u,\"bss\",%u\n", \
2962 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1bb87f28
JW
2963
2964/* Store in OUTPUT a string (made with alloca) containing
2965 an assembler-name for a local static variable named NAME.
2966 LABELNO is an integer which is different for each call. */
2967
2968#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2969( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2970 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2971
c14f2655
RS
2972#define IDENT_ASM_OP ".ident"
2973
2974/* Output #ident as a .ident. */
2975
2976#define ASM_OUTPUT_IDENT(FILE, NAME) \
2977 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
2978
1bb87f28
JW
2979/* Define the parentheses used to group arithmetic operations
2980 in assembler code. */
2981
2982#define ASM_OPEN_PAREN "("
2983#define ASM_CLOSE_PAREN ")"
2984
2985/* Define results of standard character escape sequences. */
2986#define TARGET_BELL 007
2987#define TARGET_BS 010
2988#define TARGET_TAB 011
2989#define TARGET_NEWLINE 012
2990#define TARGET_VT 013
2991#define TARGET_FF 014
2992#define TARGET_CR 015
2993
2994#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 2995 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
2996
2997/* Print operand X (an rtx) in assembler syntax to file FILE.
2998 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2999 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3000
3001#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3002
3003/* Print a memory address as an operand to reference that memory location. */
3004
3005#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
3006{ register rtx base, index = 0; \
3007 int offset = 0; \
3008 register rtx addr = ADDR; \
3009 if (GET_CODE (addr) == REG) \
3010 fputs (reg_names[REGNO (addr)], FILE); \
3011 else if (GET_CODE (addr) == PLUS) \
3012 { \
3013 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
3014 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
3015 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
3016 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
3017 else \
3018 base = XEXP (addr, 0), index = XEXP (addr, 1); \
3019 fputs (reg_names[REGNO (base)], FILE); \
3020 if (index == 0) \
3021 fprintf (FILE, "%+d", offset); \
3022 else if (GET_CODE (index) == REG) \
3023 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
72d3b324
RK
3024 else if (GET_CODE (index) == SYMBOL_REF \
3025 || GET_CODE (index) == CONST) \
1bb87f28
JW
3026 fputc ('+', FILE), output_addr_const (FILE, index); \
3027 else abort (); \
3028 } \
3029 else if (GET_CODE (addr) == MINUS \
3030 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
3031 { \
3032 output_addr_const (FILE, XEXP (addr, 0)); \
3033 fputs ("-(", FILE); \
3034 output_addr_const (FILE, XEXP (addr, 1)); \
3035 fputs ("-.)", FILE); \
3036 } \
3037 else if (GET_CODE (addr) == LO_SUM) \
3038 { \
3039 output_operand (XEXP (addr, 0), 0); \
3040 fputs ("+%lo(", FILE); \
3041 output_address (XEXP (addr, 1)); \
3042 fputc (')', FILE); \
3043 } \
3044 else if (flag_pic && GET_CODE (addr) == CONST \
3045 && GET_CODE (XEXP (addr, 0)) == MINUS \
3046 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
3047 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
3048 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
3049 { \
3050 addr = XEXP (addr, 0); \
3051 output_addr_const (FILE, XEXP (addr, 0)); \
3052 /* Group the args of the second CONST in parenthesis. */ \
3053 fputs ("-(", FILE); \
3054 /* Skip past the second CONST--it does nothing for us. */\
3055 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
3056 /* Close the parenthesis. */ \
3057 fputc (')', FILE); \
3058 } \
3059 else \
3060 { \
3061 output_addr_const (FILE, addr); \
3062 } \
3063}
3064
3065/* Declare functions defined in sparc.c and used in templates. */
3066
3067extern char *singlemove_string ();
3068extern char *output_move_double ();
795068a4 3069extern char *output_move_quad ();
1bb87f28 3070extern char *output_fp_move_double ();
795068a4 3071extern char *output_fp_move_quad ();
1bb87f28
JW
3072extern char *output_block_move ();
3073extern char *output_scc_insn ();
3074extern char *output_cbranch ();
7a6cf439 3075extern char *output_v9branch ();
1bb87f28 3076extern char *output_return ();
1bb87f28
JW
3077
3078/* Defined in flags.h, but insn-emit.c does not include flags.h. */
3079
3080extern int flag_pic;