]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/sparc/sparc.h
*** empty log message ***
[thirdparty/gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
25
98ccf8fe 26/* Provide required defaults for linker -e and -d switches. */
1bb87f28
JW
27
28#define LINK_SPEC "%{!e*:-e start} -dc -dp %{static:-Bstatic} %{assert*}"
29
30/* Special flags to the Sun-4 assembler when using pipe for input. */
31
32#define ASM_SPEC " %{pipe:-} %{fpic:-k} %{fPIC:-k}"
33
b1fc14e5
RS
34/* Prevent error on `-sun4' and `-target sun4' options. */
35/* This used to translate -dalign to -malign, but that is no good
36 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 37
b1fc14e5 38#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28
JW
39
40#define PTRDIFF_TYPE "int"
41#define SIZE_TYPE "int"
42#define WCHAR_TYPE "short unsigned int"
43#define WCHAR_TYPE_SIZE 16
44
98ccf8fe
RK
45/* Omit frame pointer at high optimization levels. */
46
1bb87f28
JW
47#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
48{ \
49 if (OPTIMIZE >= 2) \
50 { \
51 flag_omit_frame_pointer = 1; \
1bb87f28
JW
52 } \
53}
54
55/* These compiler options take an argument. We ignore -target for now. */
56
57#define WORD_SWITCH_TAKES_ARG(STR) \
58 (!strcmp (STR, "Tdata") || !strcmp (STR, "include") \
59 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
b1fc14e5 60 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
1bb87f28
JW
61
62/* Names to predefine in the preprocessor for this target machine. */
63
64#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
65
66/* Print subsidiary information on the compiler version in use. */
67
68#define TARGET_VERSION fprintf (stderr, " (sparc)");
69
70/* Generate DBX debugging information. */
71
72#define DBX_DEBUGGING_INFO
73
74/* Run-time compilation parameters selecting different hardware subsets. */
75
76extern int target_flags;
77
78/* Nonzero if we should generate code to use the fpu. */
79#define TARGET_FPU (target_flags & 1)
80
81/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
82 use fast return insns, but lose some generality. */
83#define TARGET_EPILOGUE (target_flags & 2)
84
85/* Nonzero if we assume that all calls will fall within a 16MB
86 pc-relative range. Useful with -fomit-frame-pointer. */
87#define TARGET_TAIL_CALL (target_flags & 8)
88
b1fc14e5
RS
89/* Nonzero means that reference doublewords as if they were guaranteed
90 to be aligned...if they aren't, too bad for the user!
91 Like -fast in Sun cc. */
92#define TARGET_HOPE_ALIGN (target_flags & 16)
93
94/* Nonzero means that make sure all doubles are on 8-byte boundaries. */
95#define TARGET_FORCE_ALIGN (target_flags & 32)
1bb87f28
JW
96
97/* Macro to define tables used to set the flags.
98 This is a list in braces of pairs in braces,
99 each pair being { "NAME", VALUE }
100 where VALUE is the bits to set or minus the bits to clear.
101 An empty string NAME is used to identify the default VALUE. */
102
103#define TARGET_SWITCHES \
104 { {"fpu", 1}, \
105 {"soft-float", -1}, \
106 {"epilogue", 2}, \
107 {"no-epilogue", -2}, \
108 {"tail-call", 8}, \
b1fc14e5
RS
109 {"hope-align", 16}, \
110 {"force-align", 48}, \
111 { "", TARGET_DEFAULT}}
1bb87f28
JW
112
113#define TARGET_DEFAULT 3
114\f
115/* target machine storage layout */
116
117/* Define this if most significant bit is lowest numbered
118 in instructions that operate on numbered bit-fields. */
119#define BITS_BIG_ENDIAN 1
120
121/* Define this if most significant byte of a word is the lowest numbered. */
122/* This is true on the SPARC. */
123#define BYTES_BIG_ENDIAN 1
124
125/* Define this if most significant word of a multiword number is the lowest
126 numbered. */
127/* Doubles are stored in memory with the high order word first. This
128 matters when cross-compiling. */
129#define WORDS_BIG_ENDIAN 1
130
b4ac57ab 131/* number of bits in an addressable storage unit */
1bb87f28
JW
132#define BITS_PER_UNIT 8
133
134/* Width in bits of a "word", which is the contents of a machine register.
135 Note that this is not necessarily the width of data type `int';
136 if using 16-bit ints on a 68000, this would still be 32.
137 But on a machine with 16-bit registers, this would be 16. */
138#define BITS_PER_WORD 32
139#define MAX_BITS_PER_WORD 32
140
141/* Width of a word, in units (bytes). */
142#define UNITS_PER_WORD 4
143
144/* Width in bits of a pointer.
145 See also the macro `Pmode' defined below. */
146#define POINTER_SIZE 32
147
148/* Allocation boundary (in *bits*) for storing arguments in argument list. */
149#define PARM_BOUNDARY 32
150
151/* Boundary (in *bits*) on which stack pointer should be aligned. */
152#define STACK_BOUNDARY 64
153
154/* Allocation boundary (in *bits*) for the code of a function. */
155#define FUNCTION_BOUNDARY 32
156
157/* Alignment of field after `int : 0' in a structure. */
158#define EMPTY_FIELD_BOUNDARY 32
159
160/* Every structure's size must be a multiple of this. */
161#define STRUCTURE_SIZE_BOUNDARY 8
162
163/* A bitfield declared as `int' forces `int' alignment for the struct. */
164#define PCC_BITFIELD_TYPE_MATTERS 1
165
166/* No data type wants to be aligned rounder than this. */
167#define BIGGEST_ALIGNMENT 64
168
169/* Make strings word-aligned so strcpy from constants will be faster. */
170#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
171 (TREE_CODE (EXP) == STRING_CST \
172 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
173
174/* Make arrays of chars word-aligned for the same reasons. */
175#define DATA_ALIGNMENT(TYPE, ALIGN) \
176 (TREE_CODE (TYPE) == ARRAY_TYPE \
177 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
178 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
179
b4ac57ab 180/* Set this nonzero if move instructions will actually fail to work
1bb87f28 181 when given unaligned data. */
b4ac57ab 182#define STRICT_ALIGNMENT 1
1bb87f28
JW
183
184/* Things that must be doubleword aligned cannot go in the text section,
185 because the linker fails to align the text section enough!
186 Put them in the data section. */
187#define MAX_TEXT_ALIGN 32
188
189#define SELECT_SECTION(T,RELOC) \
190{ \
191 if (TREE_CODE (T) == VAR_DECL) \
192 { \
193 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
194 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
195 && ! (flag_pic && (RELOC))) \
196 text_section (); \
197 else \
198 data_section (); \
199 } \
200 else if (TREE_CODE (T) == CONSTRUCTOR) \
201 { \
202 if (flag_pic != 0 && (RELOC) != 0) \
203 data_section (); \
204 } \
205 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
206 { \
207 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
208 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
209 data_section (); \
210 else \
211 text_section (); \
212 } \
213}
214
215/* Use text section for a constant
216 unless we need more alignment than that offers. */
217#define SELECT_RTX_SECTION(MODE, X) \
218{ \
219 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
220 && ! (flag_pic && symbolic_operand (X))) \
221 text_section (); \
222 else \
223 data_section (); \
224}
225\f
226/* Standard register usage. */
227
228/* Number of actual hardware registers.
229 The hardware registers are assigned numbers for the compiler
230 from 0 to just below FIRST_PSEUDO_REGISTER.
231 All registers that the compiler knows about must be given numbers,
232 even those that are not normally considered general registers.
233
234 SPARC has 32 integer registers and 32 floating point registers. */
235
236#define FIRST_PSEUDO_REGISTER 64
237
238/* 1 for registers that have pervasive standard uses
239 and are not available for the register allocator.
240 0 is used for the condition code and not to represent %g0, which is
241 hardwired to 0, so reg 0 is *not* fixed.
242 2 and 3 are free to use as temporaries.
243 4 through 7 are expected to become usefully defined in the future.
244 Your milage may vary. */
245#define FIXED_REGISTERS \
246 {0, 0, 0, 0, 1, 1, 1, 1, \
247 0, 0, 0, 0, 0, 0, 1, 0, \
248 0, 0, 0, 0, 0, 0, 0, 0, \
249 0, 0, 0, 0, 0, 0, 1, 1, \
250 \
251 0, 0, 0, 0, 0, 0, 0, 0, \
252 0, 0, 0, 0, 0, 0, 0, 0, \
253 0, 0, 0, 0, 0, 0, 0, 0, \
254 0, 0, 0, 0, 0, 0, 0, 0}
255
256/* 1 for registers not available across function calls.
257 These must include the FIXED_REGISTERS and also any
258 registers that can be used without being saved.
259 The latter must include the registers where values are returned
260 and the register where structure-value addresses are passed.
261 Aside from that, you can include as many other registers as you like. */
262#define CALL_USED_REGISTERS \
263 {1, 1, 1, 1, 1, 1, 1, 1, \
264 1, 1, 1, 1, 1, 1, 1, 1, \
265 0, 0, 0, 0, 0, 0, 0, 0, \
266 0, 0, 0, 0, 0, 0, 1, 1, \
267 \
268 1, 1, 1, 1, 1, 1, 1, 1, \
269 1, 1, 1, 1, 1, 1, 1, 1, \
270 1, 1, 1, 1, 1, 1, 1, 1, \
271 1, 1, 1, 1, 1, 1, 1, 1}
272
273/* Return number of consecutive hard regs needed starting at reg REGNO
274 to hold something of mode MODE.
275 This is ordinarily the length in words of a value of mode MODE
276 but can be less for certain modes in special long registers.
277
278 On SPARC, ordinary registers hold 32 bits worth;
279 this means both integer and floating point registers.
280
281 We use vectors to keep this information about registers. */
282
283/* How many hard registers it takes to make a register of this mode. */
284extern int hard_regno_nregs[];
285
286#define HARD_REGNO_NREGS(REGNO, MODE) \
287 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
288
289/* Value is 1 if register/mode pair is acceptable on sparc. */
290extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
291
292/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
293 On SPARC, the cpu registers can hold any mode but the float registers
294 can only hold SFmode or DFmode. See sparc.c for how we
295 initialize this. */
296#define HARD_REGNO_MODE_OK(REGNO, MODE) \
297 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
298
299/* Value is 1 if it is a good idea to tie two pseudo registers
300 when one has mode MODE1 and one has mode MODE2.
301 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
302 for any hard reg, then this must be 0 for correct output. */
303#define MODES_TIEABLE_P(MODE1, MODE2) \
304 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
305
306/* Specify the registers used for certain standard purposes.
307 The values of these macros are register numbers. */
308
309/* SPARC pc isn't overloaded on a register that the compiler knows about. */
310/* #define PC_REGNUM */
311
312/* Register to use for pushing function arguments. */
313#define STACK_POINTER_REGNUM 14
314
315/* Actual top-of-stack address is 92 greater than the contents
316 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
317 for the ins and local registers, 4 byte for structure return address, and
318 24 bytes for the 6 register parameters. */
319#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
320
321/* Base register for access to local variables of the function. */
322#define FRAME_POINTER_REGNUM 30
323
324#if 0
325/* Register that is used for the return address. */
326#define RETURN_ADDR_REGNUM 15
327#endif
328
329/* Value should be nonzero if functions must have frame pointers.
330 Zero means the frame pointer need not be set up (and parms
331 may be accessed via the stack pointer) in functions that seem suitable.
332 This is computed in `reload', in reload1.c.
333
334 Used in flow.c, global-alloc.c, and reload1.c. */
335extern int leaf_function;
492f34e0 336extern int compute_last_arg_offset ();
1bb87f28 337
492f34e0 338/* Return 0 if span from stack ptr to last stack arg is too far. */
1bb87f28 339#define FRAME_POINTER_REQUIRED \
492f34e0
RS
340 (! (leaf_function_p () && only_leaf_regs_used () \
341 && compute_last_arg_offset () < 4090))
1bb87f28
JW
342
343/* C statement to store the difference between the frame pointer
344 and the stack pointer values immediately after the function prologue.
345
346 Note, we always pretend that this is a leaf function because if
347 it's not, there's no point in trying to eliminate the
348 frame pointer. If it is a leaf function, we guessed right! */
349#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
350 do { (VAR) = compute_frame_size (get_frame_size (), 1); } while (0)
351
352/* Base register for access to arguments of the function. */
353#define ARG_POINTER_REGNUM 30
354
355/* Register in which static-chain is passed to a function. */
356/* ??? */
357#define STATIC_CHAIN_REGNUM 1
358
359/* Register which holds offset table for position-independent
360 data references. */
361
362#define PIC_OFFSET_TABLE_REGNUM 23
363
364#define INITIALIZE_PIC initialize_pic ()
365#define FINALIZE_PIC finalize_pic ()
366
367/* Functions which return large structures get the address
368 to place the wanted value at offset 64 from the frame.
369 Must reserve 64 bytes for the in and local registers. */
370/* Used only in other #defines in this file. */
371#define STRUCT_VALUE_OFFSET 64
372
373#define STRUCT_VALUE \
374 gen_rtx (MEM, Pmode, \
375 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
376 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
377#define STRUCT_VALUE_INCOMING \
378 gen_rtx (MEM, Pmode, \
379 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
380 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
381\f
382/* Define the classes of registers for register constraints in the
383 machine description. Also define ranges of constants.
384
385 One of the classes must always be named ALL_REGS and include all hard regs.
386 If there is more than one class, another class must be named NO_REGS
387 and contain no registers.
388
389 The name GENERAL_REGS must be the name of a class (or an alias for
390 another name such as ALL_REGS). This is the class of registers
391 that is allowed by "g" or "r" in a register constraint.
392 Also, registers outside this class are allocated only when
393 instructions express preferences for them.
394
395 The classes must be numbered in nondecreasing order; that is,
396 a larger-numbered class must never be contained completely
397 in a smaller-numbered class.
398
399 For any two classes, it is very desirable that there be another
400 class that represents their union. */
401
402/* The SPARC has two kinds of registers, general and floating point. */
403
404enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
405
406#define N_REG_CLASSES (int) LIM_REG_CLASSES
407
408/* Give names of register classes as strings for dump file. */
409
410#define REG_CLASS_NAMES \
411 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
412
413/* Define which registers fit in which classes.
414 This is an initializer for a vector of HARD_REG_SET
415 of length N_REG_CLASSES. */
416
417#if 0 && defined (__GNUC__)
418#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
419#else
420#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
421#endif
422
423/* The same information, inverted:
424 Return the class number of the smallest class containing
425 reg number REGNO. This could be a conditional expression
426 or could index an array. */
427
428#define REGNO_REG_CLASS(REGNO) \
429 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
430
431/* This is the order in which to allocate registers
432 normally. */
433#define REG_ALLOC_ORDER \
b4ac57ab
RS
434{ 8, 9, 10, 11, 12, 13, 2, 3, \
435 15, 16, 17, 18, 19, 20, 21, 22, \
436 23, 24, 25, 26, 27, 28, 29, 31, \
1bb87f28
JW
437 32, 33, 34, 35, 36, 37, 38, 39, \
438 40, 41, 42, 43, 44, 45, 46, 47, \
439 48, 49, 50, 51, 52, 53, 54, 55, \
440 56, 57, 58, 59, 60, 61, 62, 63, \
441 1, 4, 5, 6, 7, 0, 14, 30};
442
443/* This is the order in which to allocate registers for
444 leaf functions. If all registers can fit in the "i" registers,
445 then we have the possibility of having a leaf function. */
446#define REG_LEAF_ALLOC_ORDER \
447{ 2, 3, 24, 25, 26, 27, 28, 29, \
448 15, 8, 9, 10, 11, 12, 13, \
449 16, 17, 18, 19, 20, 21, 22, 23, \
450 32, 33, 34, 35, 36, 37, 38, 39, \
451 40, 41, 42, 43, 44, 45, 46, 47, \
452 48, 49, 50, 51, 52, 53, 54, 55, \
453 56, 57, 58, 59, 60, 61, 62, 63, \
454 1, 4, 5, 6, 7, 0, 14, 30, 31};
455
456#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
457
458#define LEAF_REGISTERS \
459{ 1, 1, 1, 1, 1, 1, 1, 1, \
460 0, 0, 0, 0, 0, 0, 1, 0, \
461 0, 0, 0, 0, 0, 0, 0, 0, \
462 1, 1, 1, 1, 1, 1, 0, 1, \
463 1, 1, 1, 1, 1, 1, 1, 1, \
464 1, 1, 1, 1, 1, 1, 1, 1, \
465 1, 1, 1, 1, 1, 1, 1, 1, \
466 1, 1, 1, 1, 1, 1, 1, 1};
467
468extern char leaf_reg_remap[];
469#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
470extern char leaf_reg_backmap[];
471#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
472
473#define REG_USED_SO_FAR(REGNO) \
474 ((REGNO) >= 24 && (REGNO) < 30 \
475 ? (regs_ever_live[24] \
476 || regs_ever_live[25] \
477 || regs_ever_live[26] \
478 || regs_ever_live[27] \
479 || regs_ever_live[28] \
480 || regs_ever_live[29]) : 0)
481
482/* The class value for index registers, and the one for base regs. */
483#define INDEX_REG_CLASS GENERAL_REGS
484#define BASE_REG_CLASS GENERAL_REGS
485
486/* Get reg_class from a letter such as appears in the machine description. */
487
488#define REG_CLASS_FROM_LETTER(C) \
489 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
490
491/* The letters I, J, K, L and M in a register constraint string
492 can be used to stand for particular ranges of immediate operands.
493 This macro defines what the ranges are.
494 C is the letter, and VALUE is a constant value.
495 Return 1 if VALUE is in the range specified by C.
496
497 For SPARC, `I' is used for the range of constants an insn
498 can actually contain.
499 `J' is used for the range which is just zero (since that is R0).
500 `K' is used for the 5-bit operand of a compare insns. */
501
502#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
503
504#define CONST_OK_FOR_LETTER_P(VALUE, C) \
505 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
506 : (C) == 'J' ? (VALUE) == 0 \
507 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
508 : 0)
509
510/* Similar, but for floating constants, and defining letters G and H.
511 Here VALUE is the CONST_DOUBLE rtx itself. */
512
513#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
514 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
515 && CONST_DOUBLE_LOW (VALUE) == 0 \
516 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
517 : 0)
518
519/* Given an rtx X being reloaded into a reg required to be
520 in class CLASS, return the class of reg to actually use.
521 In general this is just CLASS; but on some machines
522 in some cases it is preferable to use a more restrictive class. */
523#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
524
525/* Return the register class of a scratch register needed to load IN into
526 a register of class CLASS in MODE.
527
528 On the SPARC, when PIC, we need a temporary when loading some addresses
529 into a register. */
530
531#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
532 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS : NO_REGS)
533
534/* Return the maximum number of consecutive registers
535 needed to represent mode MODE in a register of class CLASS. */
536/* On SPARC, this is the size of MODE in words. */
537#define CLASS_MAX_NREGS(CLASS, MODE) \
538 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
539\f
540/* Stack layout; function entry, exit and calling. */
541
542/* Define the number of register that can hold parameters.
543 These two macros are used only in other macro definitions below. */
544#define NPARM_REGS 6
545
546/* Define this if pushing a word on the stack
547 makes the stack pointer a smaller address. */
548#define STACK_GROWS_DOWNWARD
549
550/* Define this if the nominal address of the stack frame
551 is at the high-address end of the local variables;
552 that is, each additional local variable allocated
553 goes at a more negative offset in the frame. */
554#define FRAME_GROWS_DOWNWARD
555
556/* Offset within stack frame to start allocating local variables at.
557 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
558 first local allocated. Otherwise, it is the offset to the BEGINNING
559 of the first local allocated. */
560#define STARTING_FRAME_OFFSET (-16)
561
562/* If we generate an insn to push BYTES bytes,
563 this says how many the stack pointer really advances by.
564 On SPARC, don't define this because there are no push insns. */
565/* #define PUSH_ROUNDING(BYTES) */
566
567/* Offset of first parameter from the argument pointer register value.
568 This is 64 for the ins and locals, plus 4 for the struct-return reg
569 even if this function isn't going to use it. */
570#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
571
572/* Offset from top-of-stack address to location to store the
573 function parameter if it can't go in a register.
574 Addresses for following parameters are computed relative to this one. */
575#define FIRST_PARM_CALLER_OFFSET(FNDECL) \
576 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD - STACK_POINTER_OFFSET)
577
578/* When a parameter is passed in a register, stack space is still
579 allocated for it. */
580#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
581
582/* Keep the stack pointer constant throughout the function.
b4ac57ab 583 This is both an optimization and a necessity: longjmp
1bb87f28
JW
584 doesn't behave itself when the stack pointer moves within
585 the function! */
586#define ACCUMULATE_OUTGOING_ARGS
587
588/* Value is the number of bytes of arguments automatically
589 popped when returning from a subroutine call.
590 FUNTYPE is the data type of the function (as a tree),
591 or for a library call it is an identifier node for the subroutine name.
592 SIZE is the number of bytes of arguments passed on the stack. */
593
594#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
595
596/* Some subroutine macros specific to this machine. */
597#define BASE_RETURN_VALUE_REG(MODE) \
598 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 8)
599#define BASE_OUTGOING_VALUE_REG(MODE) \
600 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 24)
601#define BASE_PASSING_ARG_REG(MODE) (8)
602#define BASE_INCOMING_ARG_REG(MODE) (24)
603
604/* Define how to find the value returned by a function.
605 VALTYPE is the data type of the value (as a tree).
606 If the precise function being called is known, FUNC is its FUNCTION_DECL;
607 otherwise, FUNC is 0. */
608
609/* On SPARC the value is found in the first "output" register. */
610
611#define FUNCTION_VALUE(VALTYPE, FUNC) \
612 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
613
614/* But the called function leaves it in the first "input" register. */
615
616#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
617 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
618
619/* Define how to find the value returned by a library function
620 assuming the value has mode MODE. */
621
622#define LIBCALL_VALUE(MODE) \
623 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
624
625/* 1 if N is a possible register number for a function value
626 as seen by the caller.
627 On SPARC, the first "output" reg is used for integer values,
628 and the first floating point register is used for floating point values. */
629
630#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
631
632/* 1 if N is a possible register number for function argument passing.
633 On SPARC, these are the "output" registers. */
634
635#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
636\f
637/* Define a data type for recording info about an argument list
638 during the scan of that argument list. This data type should
639 hold all necessary information about the function itself
640 and about the args processed so far, enough to enable macros
641 such as FUNCTION_ARG to determine where the next arg should go.
642
643 On SPARC, this is a single integer, which is a number of words
644 of arguments scanned so far (including the invisible argument,
645 if any, which holds the structure-value-address).
646 Thus 7 or more means all following args should go on the stack. */
647
648#define CUMULATIVE_ARGS int
649
650#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
651 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
652
653/* Round a register number up to a proper boundary for an arg of mode MODE.
654 Note that we need an odd/even pair for a two-word arg,
655 since that will become 8-byte aligned when stored in memory. */
656#define ROUND_REG(X, MODE) \
657 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
658 ? ((X) + ! ((X) & 1)) : (X))
1bb87f28
JW
659
660/* Initialize a variable CUM of type CUMULATIVE_ARGS
661 for a call to a function whose data type is FNTYPE.
662 For a library call, FNTYPE is 0.
663
664 On SPARC, the offset always starts at 0: the first parm reg is always
665 the same reg. */
666
667#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
668
669/* Update the data in CUM to advance over an argument
670 of mode MODE and data type TYPE.
671 (TYPE is null for libcalls where that information may not be available.) */
672
673#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
b1fc14e5
RS
674 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
675 + ((MODE) != BLKmode \
676 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
677 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
1bb87f28
JW
678
679/* Determine where to put an argument to a function.
680 Value is zero to push the argument on the stack,
681 or a hard register in which to store the argument.
682
683 MODE is the argument's machine mode.
684 TYPE is the data type of the argument (as a tree).
685 This is null for libcalls where that information may
686 not be available.
687 CUM is a variable of type CUMULATIVE_ARGS which gives info about
688 the preceding args and about the function being called.
689 NAMED is nonzero if this argument is a named parameter
690 (otherwise it is an extra parameter matching an ellipsis). */
691
692/* On SPARC the first six args are normally in registers
693 and the rest are pushed. Any arg that starts within the first 6 words
694 is at least partially passed in a register unless its data type forbids. */
695
696#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 697(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 698 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
699 && ((TYPE)==0 || (MODE) != BLKmode \
700 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
701 ? gen_rtx (REG, (MODE), \
702 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
703 : 0)
1bb87f28
JW
704
705/* Define where a function finds its arguments.
706 This is different from FUNCTION_ARG because of register windows. */
707
708#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 709(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 710 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
711 && ((TYPE)==0 || (MODE) != BLKmode \
712 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
713 ? gen_rtx (REG, (MODE), \
714 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
715 : 0)
1bb87f28
JW
716
717/* For an arg passed partly in registers and partly in memory,
718 this is the number of registers used.
719 For args passed entirely in registers or entirely in memory, zero.
720 Any arg that starts in the first 6 regs but won't entirely fit in them
721 needs partial registers on the Sparc. */
722
723#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
b1fc14e5 724 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 725 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
726 && ((TYPE)==0 || (MODE) != BLKmode \
727 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
728 && (ROUND_REG ((CUM), (MODE)) \
1bb87f28
JW
729 + ((MODE) == BLKmode \
730 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
b1fc14e5
RS
731 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
732 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
1bb87f28
JW
733 : 0)
734
735/* The SPARC ABI stipulates passing struct arguments (of any size)
736 by invisible reference. */
1bb87f28
JW
737#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
738 (TYPE && (TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE))
739
b1fc14e5
RS
740/* If defined, a C expression that gives the alignment boundary, in
741 bits, of an argument with the specified mode and type. If it is
742 not defined, `PARM_BOUNDARY' is used for all arguments.
743
744 This definition does nothing special unless TARGET_FORCE_ALIGN;
745 in that case, it aligns each arg to the natural boundary. */
746
747#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
748 (! TARGET_FORCE_ALIGN \
749 ? PARM_BOUNDARY \
750 : (((TYPE) != 0) \
751 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
752 ? PARM_BOUNDARY \
753 : TYPE_ALIGN (TYPE)) \
754 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
755 ? PARM_BOUNDARY \
756 : GET_MODE_ALIGNMENT (MODE))))
757
1bb87f28
JW
758/* Define the information needed to generate branch and scc insns. This is
759 stored from the compare operation. Note that we can't use "rtx" here
760 since it hasn't been defined! */
761
762extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
763
764/* Define the function that build the compare insn for scc and bcc. */
765
766extern struct rtx_def *gen_compare_reg ();
767\f
768/* Output the label for a function definition. */
769
770#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
771{ \
772 extern tree double_type_node, float_type_node; \
773 if (TREE_TYPE (DECL) == float_type_node) \
774 fprintf (FILE, "\t.proc 6\n"); \
775 else if (TREE_TYPE (DECL) == double_type_node) \
776 fprintf (FILE, "\t.proc 7\n"); \
777 else if (TREE_TYPE (DECL) == void_type_node) \
778 fprintf (FILE, "\t.proc 0\n"); \
779 else fprintf (FILE, "\t.proc 1\n"); \
780 ASM_OUTPUT_LABEL (FILE, NAME); \
781}
782
783/* Two views of the size of the current frame. */
784extern int actual_fsize;
785extern int apparent_fsize;
786
787/* This macro generates the assembly code for function entry.
788 FILE is a stdio stream to output the code to.
789 SIZE is an int: how many units of temporary storage to allocate.
790 Refer to the array `regs_ever_live' to determine which registers
791 to save; `regs_ever_live[I]' is nonzero if register number I
792 is ever used in the function. This macro is responsible for
793 knowing which registers should not be saved even if used. */
794
795/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
796 of memory. If any fpu reg is used in the function, we allocate
797 such a block here, at the bottom of the frame, just in case it's needed.
798
799 If this function is a leaf procedure, then we may choose not
800 to do a "save" insn. The decision about whether or not
801 to do this is made in regclass.c. */
802
803#define FUNCTION_PROLOGUE(FILE, SIZE) \
804 output_function_prologue (FILE, SIZE, leaf_function)
805
806/* Output assembler code to FILE to increment profiler label # LABELNO
807 for profiling a function entry. */
808
809#define FUNCTION_PROFILER(FILE, LABELNO) \
810 fprintf (FILE, "\tsethi %%hi(LP%d),%%o0\n\tcall mcount\n\tor %%lo(LP%d),%%o0,%%o0\n", \
811 (LABELNO), (LABELNO))
812
813/* Output assembler code to FILE to initialize this source file's
814 basic block profiling info, if that has not already been done. */
815
816#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
817 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
818 (LABELNO), (LABELNO))
819
820/* Output assembler code to FILE to increment the entry-count for
821 the BLOCKNO'th basic block in this source file. */
822
823#define BLOCK_PROFILER(FILE, BLOCKNO) \
824{ \
825 int blockn = (BLOCKNO); \
826 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
827\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
828 4 * blockn, 4 * blockn, 4 * blockn); \
829}
830
831/* Output rtl to increment the entry-count for the LABELNO'th instrumented
832 arc in this source file. */
833
834#define ARC_PROFILER(ARCNO, INSERT_AFTER) \
835 output_arc_profiler (ARCNO, INSERT_AFTER)
836
837/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
838 the stack pointer does not matter. The value is tested only in
839 functions that have frame pointers.
840 No definition is equivalent to always zero. */
841
842extern int current_function_calls_alloca;
843extern int current_function_outgoing_args_size;
844
845#define EXIT_IGNORE_STACK \
846 (get_frame_size () != 0 \
847 || current_function_calls_alloca || current_function_outgoing_args_size)
848
849/* This macro generates the assembly code for function exit,
850 on machines that need it. If FUNCTION_EPILOGUE is not defined
851 then individual return instructions are generated for each
852 return statement. Args are same as for FUNCTION_PROLOGUE.
853
854 The function epilogue should not depend on the current stack pointer!
855 It should use the frame pointer only. This is mandatory because
856 of alloca; we also take advantage of it to omit stack adjustments
857 before returning. */
858
859/* This declaration is needed due to traditional/ANSI
860 incompatibilities which cannot be #ifdefed away
861 because they occur inside of macros. Sigh. */
862extern union tree_node *current_function_decl;
863
864#define FUNCTION_EPILOGUE(FILE, SIZE) \
865 output_function_epilogue (FILE, SIZE, leaf_function, 1)
866
867#define DELAY_SLOTS_FOR_EPILOGUE 1
868#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
869 eligible_for_epilogue_delay (trial, slots_filled)
870
871/* Output assembler code for a block containing the constant parts
872 of a trampoline, leaving space for the variable parts. */
873
874/* On the sparc, the trampoline contains five instructions:
875 sethi #TOP_OF_FUNCTION,%g2
876 or #BOTTOM_OF_FUNCTION,%g2,%g2
877 sethi #TOP_OF_STATIC,%g1
878 jmp g2
879 or #BOTTOM_OF_STATIC,%g1,%g1 */
880#define TRAMPOLINE_TEMPLATE(FILE) \
881{ \
882 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
883 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
884 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
885 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
886 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
887}
888
889/* Length in units of the trampoline for entering a nested function. */
890
891#define TRAMPOLINE_SIZE 20
892
893/* Emit RTL insns to initialize the variable parts of a trampoline.
894 FNADDR is an RTX for the address of the function's pure code.
895 CXT is an RTX for the static chain value for the function.
896
897 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
898 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
899 (to store insns). This is a bit excessive. Perhaps a different
900 mechanism would be better here. */
901
902#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
903{ \
904 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
905 size_int (10), 0, 1); \
906 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
907 size_int (10), 0, 1); \
908 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
909 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
910 rtx g1_sethi = gen_rtx (HIGH, SImode, \
911 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
912 rtx g2_sethi = gen_rtx (HIGH, SImode, \
913 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
914 rtx g1_ori = gen_rtx (HIGH, SImode, \
915 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
916 rtx g2_ori = gen_rtx (HIGH, SImode, \
917 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
918 rtx tem = gen_reg_rtx (SImode); \
919 emit_move_insn (tem, g2_sethi); \
920 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
921 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
922 emit_move_insn (tem, g2_ori); \
923 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
924 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
925 emit_move_insn (tem, g1_sethi); \
926 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
927 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
928 emit_move_insn (tem, g1_ori); \
929 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
930 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
931}
932
933/* Emit code for a call to builtin_saveregs. We must emit USE insns which
934 reference the 6 input registers. Ordinarily they are not call used
935 registers, but they are for _builtin_saveregs, so we must make this
936 explicit. */
937
938#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) \
939 (emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, TImode, 24))), \
940 emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DImode, 28))), \
941 expand_call (exp, target, ignore))
942\f
943/* Addressing modes, and classification of registers for them. */
944
945/* #define HAVE_POST_INCREMENT */
946/* #define HAVE_POST_DECREMENT */
947
948/* #define HAVE_PRE_DECREMENT */
949/* #define HAVE_PRE_INCREMENT */
950
951/* Macros to check register numbers against specific register classes. */
952
953/* These assume that REGNO is a hard or pseudo reg number.
954 They give nonzero only if REGNO is a hard reg of the suitable class
955 or a pseudo reg currently allocated to a suitable hard reg.
956 Since they use reg_renumber, they are safe only once reg_renumber
957 has been allocated, which happens in local-alloc.c. */
958
959#define REGNO_OK_FOR_INDEX_P(REGNO) \
960(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
961#define REGNO_OK_FOR_BASE_P(REGNO) \
962(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
963#define REGNO_OK_FOR_FP_P(REGNO) \
964(((REGNO) ^ 0x20) < 32 \
965 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
966
967/* Now macros that check whether X is a register and also,
968 strictly, whether it is in a specified class.
969
970 These macros are specific to the SPARC, and may be used only
971 in code for printing assembler insns and in conditions for
972 define_optimization. */
973
974/* 1 if X is an fp register. */
975
976#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
977\f
978/* Maximum number of registers that can appear in a valid memory address. */
979
980#define MAX_REGS_PER_ADDRESS 2
981
982/* Recognize any constant value that is a valid address. */
983
984#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
985
986/* Nonzero if the constant value X is a legitimate general operand.
987 Anything can be made to work except floating point constants. */
988
989#define LEGITIMATE_CONSTANT_P(X) \
990 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
991
992/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
993 and check its validity for a certain class.
994 We have two alternate definitions for each of them.
995 The usual definition accepts all pseudo regs; the other rejects
996 them unless they have been allocated suitable hard regs.
997 The symbol REG_OK_STRICT causes the latter definition to be used.
998
999 Most source files want to accept pseudo regs in the hope that
1000 they will get allocated to the class that the insn wants them to be in.
1001 Source files for reload pass need to be strict.
1002 After reload, it makes no difference, since pseudo regs have
1003 been eliminated by then. */
1004
1005/* Optional extra constraints for this machine. Borrowed from romp.h.
1006
1007 For the SPARC, `Q' means that this is a memory operand but not a
1008 symbolic memory operand. Note that an unassigned pseudo register
1009 is such a memory operand. Needed because reload will generate
1010 these things in insns and then not re-recognize the insns, causing
1011 constrain_operands to fail.
1012
1013 `R' handles the LO_SUM which can be an address for `Q'.
1014
1015 `S' handles constraints for calls. */
1016
1017#ifndef REG_OK_STRICT
1018
1019/* Nonzero if X is a hard reg that can be used as an index
1020 or if it is a pseudo reg. */
1021#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1022/* Nonzero if X is a hard reg that can be used as a base reg
1023 or if it is a pseudo reg. */
1024#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1025
1026#define EXTRA_CONSTRAINT(OP, C) \
1027 ((C) == 'Q' ? \
1028 ((GET_CODE (OP) == MEM \
1029 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1030 && ! symbolic_memory_operand (OP, VOIDmode))) \
1031 : ((C) == 'R' ? \
1032 (GET_CODE (OP) == LO_SUM \
1033 && GET_CODE (XEXP (OP, 0)) == REG \
1034 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1035 : ((C) == 'S' \
1036 ? CONSTANT_P (OP) || memory_address_p (Pmode, OP) : 0)))
1037
1038#else
1039
1040/* Nonzero if X is a hard reg that can be used as an index. */
1041#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1042/* Nonzero if X is a hard reg that can be used as a base reg. */
1043#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1044
1045#define EXTRA_CONSTRAINT(OP, C) \
1046 ((C) == 'Q' ? \
1047 (GET_CODE (OP) == REG ? \
1048 (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1049 && reg_renumber[REGNO (OP)] < 0) \
1050 : GET_CODE (OP) == MEM) \
1051 : ((C) == 'R' ? \
1052 (GET_CODE (OP) == LO_SUM \
1053 && GET_CODE (XEXP (OP, 0)) == REG \
1054 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1055 : ((C) == 'S' \
1056 ? (CONSTANT_P (OP) \
1057 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
1058 || strict_memory_address_p (Pmode, OP)) : 0)))
1059#endif
1060\f
1061/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1062 that is a valid memory address for an instruction.
1063 The MODE argument is the machine mode for the MEM expression
1064 that wants to use this address.
1065
1066 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1067 ordinarily. This changes a bit when generating PIC.
1068
1069 If you change this, execute "rm explow.o recog.o reload.o". */
1070
1071#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1072{ if (GET_CODE (X) == REG) \
1073 { if (REG_OK_FOR_BASE_P (X)) goto ADDR; } \
1074 else if (GET_CODE (X) == PLUS) \
1075 { \
1076 if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\
1077 { \
1078 if (GET_CODE (XEXP (X, 1)) == REG \
1079 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1080 goto ADDR; \
1081 else if (flag_pic == 1 \
1082 && GET_CODE (XEXP (X, 1)) != REG \
1083 && GET_CODE (XEXP (X, 1)) != LO_SUM \
1084 && GET_CODE (XEXP (X, 1)) != MEM) \
1085 goto ADDR; \
1086 } \
1087 else if (GET_CODE (XEXP (X, 0)) == REG \
1088 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1089 { \
1090 if (GET_CODE (XEXP (X, 1)) == REG \
1091 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1092 goto ADDR; \
1093 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1094 && INTVAL (XEXP (X, 1)) >= -0x1000 \
1095 && INTVAL (XEXP (X, 1)) < 0x1000) \
1096 goto ADDR; \
1097 } \
1098 else if (GET_CODE (XEXP (X, 1)) == REG \
1099 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1100 { \
1101 if (GET_CODE (XEXP (X, 0)) == REG \
1102 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
1103 goto ADDR; \
1104 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
1105 && INTVAL (XEXP (X, 0)) >= -0x1000 \
1106 && INTVAL (XEXP (X, 0)) < 0x1000) \
1107 goto ADDR; \
1108 } \
1109 } \
1110 else if (GET_CODE (X) == LO_SUM \
1111 && GET_CODE (XEXP (X, 0)) == REG \
1112 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1113 && CONSTANT_P (XEXP (X, 1))) \
1114 goto ADDR; \
1115 else if (GET_CODE (X) == LO_SUM \
1116 && GET_CODE (XEXP (X, 0)) == SUBREG \
1117 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1118 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1119 && CONSTANT_P (XEXP (X, 1))) \
1120 goto ADDR; \
1121 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1122 goto ADDR; \
1123}
1124\f
1125/* Try machine-dependent ways of modifying an illegitimate address
1126 to be legitimate. If we find one, return the new, valid address.
1127 This macro is used in only one place: `memory_address' in explow.c.
1128
1129 OLDX is the address as it was before break_out_memory_refs was called.
1130 In some cases it is useful to look at this to decide what needs to be done.
1131
1132 MODE and WIN are passed so that this macro can use
1133 GO_IF_LEGITIMATE_ADDRESS.
1134
1135 It is always safe for this macro to do nothing. It exists to recognize
1136 opportunities to optimize the output. */
1137
1138/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1139extern struct rtx_def *legitimize_pic_address ();
1140#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1141{ rtx sparc_x = (X); \
1142 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1143 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1144 force_operand (XEXP (X, 0), 0)); \
1145 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1146 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1147 force_operand (XEXP (X, 1), 0)); \
1148 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1149 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1150 XEXP (X, 1)); \
1151 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1152 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1153 force_operand (XEXP (X, 1), 0)); \
1154 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1155 goto WIN; \
1156 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1157 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1158 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1159 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1160 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1161 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1162 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1163 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1164 || GET_CODE (X) == LABEL_REF) \
1165 (X) = gen_rtx (LO_SUM, Pmode, \
1166 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1167 if (memory_address_p (MODE, X)) \
1168 goto WIN; }
1169
1170/* Go to LABEL if ADDR (a legitimate address expression)
1171 has an effect that depends on the machine mode it is used for.
1172 On the SPARC this is never true. */
1173
1174#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1175\f
1176/* Specify the machine mode that this machine uses
1177 for the index in the tablejump instruction. */
1178#define CASE_VECTOR_MODE SImode
1179
1180/* Define this if the tablejump instruction expects the table
1181 to contain offsets from the address of the table.
1182 Do not define this if the table should contain absolute addresses. */
1183/* #define CASE_VECTOR_PC_RELATIVE */
1184
1185/* Specify the tree operation to be used to convert reals to integers. */
1186#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1187
1188/* This is the kind of divide that is easiest to do in the general case. */
1189#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1190
1191/* Define this as 1 if `char' should by default be signed; else as 0. */
1192#define DEFAULT_SIGNED_CHAR 1
1193
1194/* Max number of bytes we can move from memory to memory
1195 in one reasonably fast instruction. */
1196#define MOVE_MAX 4
1197
1198/* Define if normal loads of shorter-than-word items from memory clears
1199 the rest of the bigs in the register. */
1200#define BYTE_LOADS_ZERO_EXTEND
1201
1202/* Nonzero if access to memory by bytes is slow and undesirable.
1203 For RISC chips, it means that access to memory by bytes is no
1204 better than access by words when possible, so grab a whole word
1205 and maybe make use of that. */
1206#define SLOW_BYTE_ACCESS 1
1207
1208/* We assume that the store-condition-codes instructions store 0 for false
1209 and some other value for true. This is the value stored for true. */
1210
1211#define STORE_FLAG_VALUE 1
1212
1213/* When a prototype says `char' or `short', really pass an `int'. */
1214#define PROMOTE_PROTOTYPES
1215
1216/* Define if shifts truncate the shift count
1217 which implies one can omit a sign-extension or zero-extension
1218 of a shift count. */
1219#define SHIFT_COUNT_TRUNCATED
1220
1221/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1222 is done just by pretending it is already truncated. */
1223#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1224
1225/* Specify the machine mode that pointers have.
1226 After generation of rtl, the compiler makes no further distinction
1227 between pointers and any other objects of this machine mode. */
1228#define Pmode SImode
1229
b4ac57ab
RS
1230/* Generate calls to memcpy, memcmp and memset. */
1231#define TARGET_MEM_FUNCTIONS
1232
1bb87f28
JW
1233/* Add any extra modes needed to represent the condition code.
1234
1235 On the Sparc, we have a "no-overflow" mode which is used when an add or
1236 subtract insn is used to set the condition code. Different branches are
1237 used in this case for some operations.
1238
1239 We also have a mode to indicate that the relevant condition code is
1240 in the floating-point condition code. This really should be a separate
1241 register, but we don't want to go to 65 registers. */
1242#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode
1243
1244/* Define the names for the modes specified above. */
1245#define EXTRA_CC_NAMES "CC_NOOV", "CCFP"
1246
1247/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1248 return the mode to be used for the comparison. For floating-point, CCFPmode
1249 should be used. CC_NOOVmode should be used when the first operand is a
1250 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1251 needed. */
1252#define SELECT_CC_MODE(OP,X) \
1253 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
1254 : (GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1255 ? CC_NOOVmode : CCmode)
1256
1257/* A function address in a call instruction
1258 is a byte address (for indexing purposes)
1259 so give the MEM rtx a byte's mode. */
1260#define FUNCTION_MODE SImode
1261
1262/* Define this if addresses of constant functions
1263 shouldn't be put through pseudo regs where they can be cse'd.
1264 Desirable on machines where ordinary constants are expensive
1265 but a CALL with constant address is cheap. */
1266#define NO_FUNCTION_CSE
1267
1268/* alloca should avoid clobbering the old register save area. */
1269#define SETJMP_VIA_SAVE_AREA
1270
1271/* Define subroutines to call to handle multiply and divide.
1272 Use the subroutines that Sun's library provides.
1273 The `*' prevents an underscore from being prepended by the compiler. */
1274
1275#define DIVSI3_LIBCALL "*.div"
1276#define UDIVSI3_LIBCALL "*.udiv"
1277#define MODSI3_LIBCALL "*.rem"
1278#define UMODSI3_LIBCALL "*.urem"
1279/* .umul is a little faster than .mul. */
1280#define MULSI3_LIBCALL "*.umul"
1281
1282/* Compute the cost of computing a constant rtl expression RTX
1283 whose rtx-code is CODE. The body of this macro is a portion
1284 of a switch statement. If the code is computed here,
1285 return it with a return statement. Otherwise, break from the switch. */
1286
1287#define CONST_COSTS(RTX,CODE) \
1288 case CONST_INT: \
1289 if (INTVAL (RTX) == 0) \
1290 return 0; \
1291 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
1292 return 1; \
1293 case HIGH: \
1294 return 2; \
1295 case CONST: \
1296 case LABEL_REF: \
1297 case SYMBOL_REF: \
1298 return 4; \
1299 case CONST_DOUBLE: \
1300 if (GET_MODE (RTX) == DImode) \
1301 if ((XINT (RTX, 3) == 0 \
1302 && (unsigned) XINT (RTX, 2) < 0x1000) \
1303 || (XINT (RTX, 3) == -1 \
1304 && XINT (RTX, 2) < 0 \
1305 && XINT (RTX, 2) >= -0x1000)) \
1306 return 1; \
1307 return 8;
1308
1309/* SPARC offers addressing modes which are "as cheap as a register".
1310 See sparc.c (or gcc.texinfo) for details. */
1311
1312#define ADDRESS_COST(RTX) \
1313 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1314
1315/* Compute extra cost of moving data between one register class
1316 and another. */
1317#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1318 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1319 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1320
1321/* Provide the costs of a rtl expression. This is in the body of a
1322 switch on CODE. The purpose for the cost of MULT is to encourage
1323 `synth_mult' to find a synthetic multiply when reasonable.
1324
1325 If we need more than 12 insns to do a multiply, then go out-of-line,
1326 since the call overhead will be < 10% of the cost of the multiply. */
1327
1328#define RTX_COSTS(X,CODE) \
1329 case MULT: \
1330 return COSTS_N_INSNS (25); \
1331 case DIV: \
1332 case UDIV: \
1333 case MOD: \
1334 case UMOD: \
1335 return COSTS_N_INSNS (20); \
1336 /* Make FLOAT more expensive than CONST_DOUBLE, \
1337 so that cse will favor the latter. */ \
1338 case FLOAT: \
1339 return 19;
1340
1341/* Conditional branches with empty delay slots have a length of two. */
1342#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1343 if (GET_CODE (INSN) == CALL_INSN \
1344 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1345 LENGTH += 1;
1346\f
1347/* Control the assembler format that we output. */
1348
1349/* Output at beginning of assembler file. */
1350
1351#define ASM_FILE_START(file)
1352
1353/* Output to assembler file text saying following lines
1354 may contain character constants, extra white space, comments, etc. */
1355
1356#define ASM_APP_ON ""
1357
1358/* Output to assembler file text saying following lines
1359 no longer contain unusual constructs. */
1360
1361#define ASM_APP_OFF ""
1362
1363/* Output before read-only data. */
1364
1365#define TEXT_SECTION_ASM_OP ".text"
1366
1367/* Output before writable data. */
1368
1369#define DATA_SECTION_ASM_OP ".data"
1370
1371/* How to refer to registers in assembler output.
1372 This sequence is indexed by compiler's hard-register-number (see above). */
1373
1374#define REGISTER_NAMES \
1375{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1376 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1377 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1378 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1379 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1380 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1381 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1382 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1383
1384/* How to renumber registers for dbx and gdb. */
1385
1386#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1387
1388/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1389 since the length can run past this up to a continuation point. */
1390#define DBX_CONTIN_LENGTH 1500
1391
1392/* This is how to output a note to DBX telling it the line number
1393 to which the following sequence of instructions corresponds.
1394
1395 This is needed for SunOS 4.0, and should not hurt for 3.2
1396 versions either. */
1397#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1398 { static int sym_lineno = 1; \
1399 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1400 line, sym_lineno, sym_lineno); \
1401 sym_lineno += 1; }
1402
1403/* This is how to output the definition of a user-level label named NAME,
1404 such as the label on a static function or variable NAME. */
1405
1406#define ASM_OUTPUT_LABEL(FILE,NAME) \
1407 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1408
1409/* This is how to output a command to make the user-level label named NAME
1410 defined for reference from other files. */
1411
1412#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1413 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1414
1415/* This is how to output a reference to a user-level label named NAME.
1416 `assemble_name' uses this. */
1417
1418#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1419 fprintf (FILE, "_%s", NAME)
1420
1421/* This is how to output an internal numbered label where
1422 PREFIX is the class of label and NUM is the number within the class. */
1423
1424#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1425 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1426
1427/* This is how to store into the string LABEL
1428 the symbol_ref name of an internal numbered label where
1429 PREFIX is the class of label and NUM is the number within the class.
1430 This is suitable for output with `assemble_name'. */
1431
1432#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1433 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1434
1435/* This is how to output an assembler line defining a `double' constant. */
1436
b1fc14e5
RS
1437/* Assemblers (both gas 1.35 and as in 4.0.3)
1438 seem to treat -0.0 as if it were 0.0.
1439 They reject 99e9999, but accept inf. */
1bb87f28
JW
1440#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1441 { \
1442 if (REAL_VALUE_ISINF (VALUE)) \
b1fc14e5
RS
1443 fprintf (FILE, "\t.double 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1444 else if (REAL_VALUE_ISNAN (VALUE) \
1445 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28
JW
1446 { \
1447 union { double d; long l[2];} t; \
1448 t.d = (VALUE); \
1449 fprintf (FILE, "\t.word 0x%lx\n\t.word 0x%lx\n", t.l[0], t.l[1]); \
1450 } \
1451 else \
1452 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1453 }
1454
1455/* This is how to output an assembler line defining a `float' constant. */
1456
1457#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1458 { \
1459 if (REAL_VALUE_ISINF (VALUE)) \
b1fc14e5
RS
1460 fprintf (FILE, "\t.single 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1461 else if (REAL_VALUE_ISNAN (VALUE) \
1462 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28
JW
1463 { \
1464 union { float f; long l;} t; \
1465 t.f = (VALUE); \
1466 fprintf (FILE, "\t.word 0x%lx\n", t.l); \
1467 } \
1468 else \
1469 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1470 }
1471
1472/* This is how to output an assembler line defining an `int' constant. */
1473
1474#define ASM_OUTPUT_INT(FILE,VALUE) \
1475( fprintf (FILE, "\t.word "), \
1476 output_addr_const (FILE, (VALUE)), \
1477 fprintf (FILE, "\n"))
1478
1479/* This is how to output an assembler line defining a DImode constant. */
1480#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1481 output_double_int (FILE, VALUE)
1482
1483/* Likewise for `char' and `short' constants. */
1484
1485#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1486( fprintf (FILE, "\t.half "), \
1487 output_addr_const (FILE, (VALUE)), \
1488 fprintf (FILE, "\n"))
1489
1490#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1491( fprintf (FILE, "\t.byte "), \
1492 output_addr_const (FILE, (VALUE)), \
1493 fprintf (FILE, "\n"))
1494
1495/* This is how to output an assembler line for a numeric constant byte. */
1496
1497#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1498 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1499
1500/* This is how to output an element of a case-vector that is absolute. */
1501
1502#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1503 fprintf (FILE, "\t.word L%d\n", VALUE)
1504
1505/* This is how to output an element of a case-vector that is relative.
1506 (SPARC uses such vectors only when generating PIC.) */
1507
1508#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1509 fprintf (FILE, "\t.word L%d-1b\n", VALUE)
1510
1511/* This is how to output an assembler line
1512 that says to advance the location counter
1513 to a multiple of 2**LOG bytes. */
1514
1515#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1516 if ((LOG) != 0) \
1517 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1518
1519#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1520 fprintf (FILE, "\t.skip %u\n", (SIZE))
1521
1522/* This says how to output an assembler line
1523 to define a global common symbol. */
1524
1525#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1526( fputs ("\t.global ", (FILE)), \
1527 assemble_name ((FILE), (NAME)), \
1528 fputs ("\n\t.common ", (FILE)), \
1529 assemble_name ((FILE), (NAME)), \
1530 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1531
1532/* This says how to output an assembler line
1533 to define a local common symbol. */
1534
1535#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1536( fputs ("\n\t.reserve ", (FILE)), \
1537 assemble_name ((FILE), (NAME)), \
1538 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1539
1540/* Store in OUTPUT a string (made with alloca) containing
1541 an assembler-name for a local static variable named NAME.
1542 LABELNO is an integer which is different for each call. */
1543
1544#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1545( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1546 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1547
1548/* Define the parentheses used to group arithmetic operations
1549 in assembler code. */
1550
1551#define ASM_OPEN_PAREN "("
1552#define ASM_CLOSE_PAREN ")"
1553
1554/* Define results of standard character escape sequences. */
1555#define TARGET_BELL 007
1556#define TARGET_BS 010
1557#define TARGET_TAB 011
1558#define TARGET_NEWLINE 012
1559#define TARGET_VT 013
1560#define TARGET_FF 014
1561#define TARGET_CR 015
1562
1563#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1564 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1565
1566/* Print operand X (an rtx) in assembler syntax to file FILE.
1567 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1568 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1569
1570#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1571
1572/* Print a memory address as an operand to reference that memory location. */
1573
1574#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1575{ register rtx base, index = 0; \
1576 int offset = 0; \
1577 register rtx addr = ADDR; \
1578 if (GET_CODE (addr) == REG) \
1579 fputs (reg_names[REGNO (addr)], FILE); \
1580 else if (GET_CODE (addr) == PLUS) \
1581 { \
1582 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1583 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1584 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1585 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1586 else \
1587 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1588 fputs (reg_names[REGNO (base)], FILE); \
1589 if (index == 0) \
1590 fprintf (FILE, "%+d", offset); \
1591 else if (GET_CODE (index) == REG) \
1592 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1593 else if (GET_CODE (index) == SYMBOL_REF) \
1594 fputc ('+', FILE), output_addr_const (FILE, index); \
1595 else abort (); \
1596 } \
1597 else if (GET_CODE (addr) == MINUS \
1598 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1599 { \
1600 output_addr_const (FILE, XEXP (addr, 0)); \
1601 fputs ("-(", FILE); \
1602 output_addr_const (FILE, XEXP (addr, 1)); \
1603 fputs ("-.)", FILE); \
1604 } \
1605 else if (GET_CODE (addr) == LO_SUM) \
1606 { \
1607 output_operand (XEXP (addr, 0), 0); \
1608 fputs ("+%lo(", FILE); \
1609 output_address (XEXP (addr, 1)); \
1610 fputc (')', FILE); \
1611 } \
1612 else if (flag_pic && GET_CODE (addr) == CONST \
1613 && GET_CODE (XEXP (addr, 0)) == MINUS \
1614 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1615 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1616 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1617 { \
1618 addr = XEXP (addr, 0); \
1619 output_addr_const (FILE, XEXP (addr, 0)); \
1620 /* Group the args of the second CONST in parenthesis. */ \
1621 fputs ("-(", FILE); \
1622 /* Skip past the second CONST--it does nothing for us. */\
1623 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1624 /* Close the parenthesis. */ \
1625 fputc (')', FILE); \
1626 } \
1627 else \
1628 { \
1629 output_addr_const (FILE, addr); \
1630 } \
1631}
1632
1633/* Declare functions defined in sparc.c and used in templates. */
1634
1635extern char *singlemove_string ();
1636extern char *output_move_double ();
1637extern char *output_fp_move_double ();
1638extern char *output_block_move ();
1639extern char *output_scc_insn ();
1640extern char *output_cbranch ();
1641extern char *output_return ();
1642extern char *output_floatsisf2 ();
1643extern char *output_floatsidf2 ();
1644
1645/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1646
1647extern int flag_pic;