]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/sparc/sparc.h
PR target/34210 PR target/35508 * config.host (avr-*-*): Add avr cpu_type and avr...
[thirdparty/gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28 1/* Definitions of target machine for GNU compiler, for Sun SPARC.
4592bdcb 2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
2f83c7d6 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
1bb87f28 4 Contributed by Michael Tiemann (tiemann@cygnus.com).
3e2cc1d1 5 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
7a6cf439 6 at Cygnus Support.
1bb87f28 7
7ec022b2 8This file is part of GCC.
1bb87f28 9
7ec022b2 10GCC is free software; you can redistribute it and/or modify
1bb87f28 11it under the terms of the GNU General Public License as published by
2f83c7d6 12the Free Software Foundation; either version 3, or (at your option)
1bb87f28
JW
13any later version.
14
7ec022b2 15GCC is distributed in the hope that it will be useful,
1bb87f28
JW
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
2f83c7d6
NC
21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
1bb87f28 23
1910440e
RS
24#include "config/vxworks-dummy.h"
25
1bb87f28 26/* Note that some other tm.h files include this one and then override
a0a301fc
DE
27 whatever definitions are necessary. */
28
18df6de9
DM
29/* Define the specific costs for a given cpu */
30
31struct processor_costs {
32 /* Integer load */
33 const int int_load;
34
35 /* Integer signed load */
36 const int int_sload;
37
38 /* Integer zeroed load */
39 const int int_zload;
40
41 /* Float load */
42 const int float_load;
43
44 /* fmov, fneg, fabs */
45 const int float_move;
46
47 /* fadd, fsub */
48 const int float_plusminus;
49
50 /* fcmp */
51 const int float_cmp;
52
53 /* fmov, fmovr */
54 const int float_cmove;
55
56 /* fmul */
57 const int float_mul;
58
59 /* fdivs */
60 const int float_div_sf;
61
62 /* fdivd */
63 const int float_div_df;
64
65 /* fsqrts */
66 const int float_sqrt_sf;
67
68 /* fsqrtd */
69 const int float_sqrt_df;
70
71 /* umul/smul */
72 const int int_mul;
73
74 /* mulX */
75 const int int_mulX;
76
77 /* integer multiply cost for each bit set past the most
78 significant 3, so the formula for multiply cost becomes:
79
80 if (rs1 < 0)
81 highest_bit = highest_clear_bit(rs1);
82 else
83 highest_bit = highest_set_bit(rs1);
84 if (highest_bit < 3)
85 highest_bit = 3;
86 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
87
88 A value of zero indicates that the multiply costs is fixed,
89 and not variable. */
90 const int int_mul_bit_factor;
91
92 /* udiv/sdiv */
93 const int int_div;
94
95 /* divX */
96 const int int_divX;
97
98 /* movcc, movr */
99 const int int_cmove;
100
101 /* penalty for shifts, due to scheduling rules etc. */
102 const int shift_penalty;
103};
104
105extern const struct processor_costs *sparc_costs;
106
094a51ff 107/* Target CPU builtins. FIXME: Defining sparc is for the benefit of
fae778eb 108 Solaris only; otherwise just define __sparc__. Sadly the headers
094a51ff 109 are such a mess there is no Solaris-specific header. */
9b8466f4
NB
110#define TARGET_CPU_CPP_BUILTINS() \
111 do \
112 { \
094a51ff 113 builtin_define_std ("sparc"); \
9b8466f4
NB
114 if (TARGET_64BIT) \
115 { \
8b93ca2d
KG
116 builtin_assert ("cpu=sparc64"); \
117 builtin_assert ("machine=sparc64"); \
9b8466f4
NB
118 } \
119 else \
120 { \
8b93ca2d
KG
121 builtin_assert ("cpu=sparc"); \
122 builtin_assert ("machine=sparc"); \
9b8466f4
NB
123 } \
124 } \
125 while (0)
126
a0a301fc
DE
127/* Specify this in a cover file to provide bi-architecture (32/64) support. */
128/* #define SPARC_BI_ARCH */
129
130/* Macro used later in this file to determine default architecture. */
131#define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
7a6cf439 132
a0a301fc
DE
133/* TARGET_ARCH{32,64} are the main macros to decide which of the two
134 architectures to compile for. We allow targets to choose compile time or
135 runtime selection. */
959eb758 136#ifdef IN_LIBGCC2
afdac905 137#if defined(__sparcv9) || defined(__arch64__)
959eb758
DM
138#define TARGET_ARCH32 0
139#else
140#define TARGET_ARCH32 1
afdac905 141#endif /* sparc64 */
959eb758 142#else
53f4a9f6 143#ifdef SPARC_BI_ARCH
a0a301fc
DE
144#define TARGET_ARCH32 (! TARGET_64BIT)
145#else
146#define TARGET_ARCH32 (DEFAULT_ARCH32_P)
959eb758 147#endif /* SPARC_BI_ARCH */
53f4a9f6 148#endif /* IN_LIBGCC2 */
a0a301fc
DE
149#define TARGET_ARCH64 (! TARGET_ARCH32)
150
ed38d6fe
EB
151/* Code model selection in 64-bit environment.
152
153 The machine mode used for addresses is 32-bit wide:
154
155 TARGET_CM_32: 32-bit address space.
156 It is the code model used when generating 32-bit code.
157
158 The machine mode used for addresses is 64-bit wide:
159
160 TARGET_CM_MEDLOW: 32-bit address space.
161 The executable must be in the low 32 bits of memory.
162 This avoids generating %uhi and %ulo terms. Programs
163 can be statically or dynamically linked.
164
165 TARGET_CM_MEDMID: 44-bit address space.
166 The executable must be in the low 44 bits of memory,
167 and the %[hml]44 terms are used. The text and data
168 segments have a maximum size of 2GB (31-bit span).
169 The maximum offset from any instruction to the label
170 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
171
172 TARGET_CM_MEDANY: 64-bit address space.
173 The text and data segments have a maximum size of 2GB
174 (31-bit span) and may be located anywhere in memory.
175 The maximum offset from any instruction to the label
176 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
177
178 TARGET_CM_EMBMEDANY: 64-bit address space.
179 The text and data segments have a maximum size of 2GB
180 (31-bit span) and may be located anywhere in memory.
181 The global register %g4 contains the start address of
182 the data segment. Programs are statically linked and
183 PIC is not supported.
184
185 Different code models are not supported in 32-bit environment. */
a0a301fc
DE
186
187enum cmodel {
188 CM_32,
189 CM_MEDLOW,
190 CM_MEDMID,
191 CM_MEDANY,
192 CM_EMBMEDANY
193};
194
a0a301fc
DE
195/* One of CM_FOO. */
196extern enum cmodel sparc_cmodel;
197
198/* V9 code model selection. */
199#define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
200#define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
201#define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
202#define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
203
a330e73b 204#define SPARC_DEFAULT_CMODEL CM_32
6f64bf5f 205
548a6c4f
EB
206/* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
207 which requires the following macro to be true if enabled. Prior to V9,
208 there are no instructions to even talk about memory synchronization.
209 Note that the UltraSPARC III processors don't implement RMO, unlike the
9eeaed6e
DM
210 UltraSPARC II processors. Niagara and Niagara-2 do not implement RMO
211 either.
548a6c4f
EB
212
213 Default to false; for example, Solaris never enables RMO, only ever uses
214 total memory ordering (TMO). */
215#define SPARC_RELAXED_ORDERING false
216
5e77eb53
EB
217/* Do not use the .note.GNU-stack convention by default. */
218#define NEED_INDICATE_EXEC_STACK 0
219
a0a301fc
DE
220/* This is call-clobbered in the normal ABI, but is reserved in the
221 home grown (aka upward compatible) embedded ABI. */
222#define EMBMEDANY_BASE_REG "%g4"
223\f
224/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
225 and specified by the user via --with-cpu=foo.
226 This specifies the cpu implementation, not the architecture size. */
3aabf9a5 227/* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
8947065c 228 capable cpu's. */
2163f11b
RK
229#define TARGET_CPU_sparc 0
230#define TARGET_CPU_v7 0 /* alias for previous */
231#define TARGET_CPU_sparclet 1
232#define TARGET_CPU_sparclite 2
a0a301fc 233#define TARGET_CPU_v8 3 /* generic v8 implementation */
2163f11b 234#define TARGET_CPU_supersparc 4
8947065c 235#define TARGET_CPU_hypersparc 5
809934df 236#define TARGET_CPU_sparc86x 6
8947065c
RH
237#define TARGET_CPU_sparclite86x 6
238#define TARGET_CPU_v9 7 /* generic v9 implementation */
239#define TARGET_CPU_sparcv9 7 /* alias */
240#define TARGET_CPU_sparc64 7 /* alias */
241#define TARGET_CPU_ultrasparc 8
fae15c93 242#define TARGET_CPU_ultrasparc3 9
4c837a1e 243#define TARGET_CPU_niagara 10
9eeaed6e 244#define TARGET_CPU_niagara2 11
bafb031b 245
8947065c 246#if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
fae15c93 247 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
4c837a1e 248 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
9eeaed6e
DM
249 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
250 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
345a6161
DM
251
252#define CPP_CPU32_DEFAULT_SPEC ""
253#define ASM_CPU32_DEFAULT_SPEC ""
254
a0a301fc 255#if TARGET_CPU_DEFAULT == TARGET_CPU_v9
bafb031b 256/* ??? What does Sun's CC pass? */
345a6161 257#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
bafb031b
DE
258/* ??? It's not clear how other assemblers will handle this, so by default
259 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
260 is handled in sol2.h. */
345a6161 261#define ASM_CPU64_DEFAULT_SPEC "-Av9"
bafb031b 262#endif
a0a301fc 263#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
345a6161
DM
264#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
265#define ASM_CPU64_DEFAULT_SPEC "-Av9a"
266#endif
fae15c93
VM
267#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
268#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
269#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
270#endif
4c837a1e
DM
271#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
272#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
273#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
274#endif
9eeaed6e
DM
275#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
276#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
277#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
278#endif
345a6161
DM
279
280#else
281
282#define CPP_CPU64_DEFAULT_SPEC ""
283#define ASM_CPU64_DEFAULT_SPEC ""
284
8947065c
RH
285#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
286 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
345a6161
DM
287#define CPP_CPU32_DEFAULT_SPEC ""
288#define ASM_CPU32_DEFAULT_SPEC ""
289#endif
8947065c 290
345a6161
DM
291#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
292#define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
293#define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
bafb031b 294#endif
8947065c 295
345a6161
DM
296#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
297#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
298#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
299#endif
300
8947065c
RH
301#if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
302#define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
303#define ASM_CPU32_DEFAULT_SPEC ""
304#endif
305
306#if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
307#define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
308#define ASM_CPU32_DEFAULT_SPEC ""
309#endif
310
311#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
8d72ec32
VM
312#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
313#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
8947065c
RH
314#endif
315
345a6161
DM
316#endif
317
318#if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
3aabf9a5 319 #error Unrecognized value in TARGET_CPU_DEFAULT.
bafb031b
DE
320#endif
321
345a6161
DM
322#ifdef SPARC_BI_ARCH
323
324#define CPP_CPU_DEFAULT_SPEC \
325(DEFAULT_ARCH32_P ? "\
326%{m64:" CPP_CPU64_DEFAULT_SPEC "} \
327%{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
328" : "\
329%{m32:" CPP_CPU32_DEFAULT_SPEC "} \
330%{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
331")
332#define ASM_CPU_DEFAULT_SPEC \
333(DEFAULT_ARCH32_P ? "\
334%{m64:" ASM_CPU64_DEFAULT_SPEC "} \
335%{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
336" : "\
337%{m32:" ASM_CPU32_DEFAULT_SPEC "} \
338%{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
339")
340
341#else /* !SPARC_BI_ARCH */
342
343#define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
344#define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
345
346#endif /* !SPARC_BI_ARCH */
347
885d8175 348/* Define macros to distinguish architectures. */
857458c4 349
bafb031b
DE
350/* Common CPP definitions used by CPP_SPEC amongst the various targets
351 for handling -mcpu=xxx switches. */
352#define CPP_CPU_SPEC "\
7adb4be8 353%{msoft-float:-D_SOFT_FLOAT} \
bafb031b 354%{mcypress:} \
7a6cf439
DE
355%{msparclite:-D__sparclite__} \
356%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
357%{mv8:-D__sparc_v8__} \
bafb031b 358%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
9b7c06d2 359%{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
bafb031b
DE
360%{mcpu=sparclite:-D__sparclite__} \
361%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
362%{mcpu=v8:-D__sparc_v8__} \
363%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
8947065c 364%{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
8d72ec32 365%{mcpu=sparclite86x:-D__sparclite86x__} \
bafb031b
DE
366%{mcpu=v9:-D__sparc_v9__} \
367%{mcpu=ultrasparc:-D__sparc_v9__} \
fae15c93 368%{mcpu=ultrasparc3:-D__sparc_v9__} \
4c837a1e 369%{mcpu=niagara:-D__sparc_v9__} \
9eeaed6e 370%{mcpu=niagara2:-D__sparc_v9__} \
a0a301fc 371%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
7a6cf439 372"
9b8466f4
NB
373#define CPP_ARCH32_SPEC ""
374#define CPP_ARCH64_SPEC "-D__arch64__"
345a6161 375
a0a301fc
DE
376#define CPP_ARCH_DEFAULT_SPEC \
377(DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
378
379#define CPP_ARCH_SPEC "\
380%{m32:%(cpp_arch32)} \
381%{m64:%(cpp_arch64)} \
382%{!m32:%{!m64:%(cpp_arch_default)}} \
383"
384
385/* Macros to distinguish endianness. */
8947065c
RH
386#define CPP_ENDIAN_SPEC "\
387%{mlittle-endian:-D__LITTLE_ENDIAN__} \
388%{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
a0a301fc
DE
389
390/* Macros to distinguish the particular subtarget. */
391#define CPP_SUBTARGET_SPEC ""
392
393#define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
394
b1fc14e5
RS
395/* Prevent error on `-sun4' and `-target sun4' options. */
396/* This used to translate -dalign to -malign, but that is no good
397 because it can't turn off the usual meaning of making debugging dumps. */
bafb031b 398/* Translate old style -m<cpu> into new style -mcpu=<cpu>.
1cdbf242 399 ??? Delete support for -m<cpu> for 2.9. */
bafb031b
DE
400
401#define CC1_SPEC "\
402%{sun4:} %{target:} \
403%{mcypress:-mcpu=cypress} \
404%{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
405%{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
406"
407
bafb031b
DE
408/* Override in target specific files. */
409#define ASM_CPU_SPEC "\
9b7c06d2 410%{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
bafb031b
DE
411%{msparclite:-Asparclite} \
412%{mf930:-Asparclite} %{mf934:-Asparclite} \
413%{mcpu=sparclite:-Asparclite} \
8d72ec32 414%{mcpu=sparclite86x:-Asparclite} \
bafb031b 415%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
284d86e9 416%{mv8plus:-Av8plus} \
bafb031b 417%{mcpu=v9:-Av9} \
284d86e9 418%{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
fae15c93 419%{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
4c837a1e 420%{mcpu=niagara:%{!mv8plus:-Av9b}} \
9eeaed6e 421%{mcpu=niagara2:%{!mv8plus:-Av9b}} \
a0a301fc 422%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
bafb031b
DE
423"
424
e632a26c
DE
425/* Word size selection, among other things.
426 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
427
a0a301fc 428#define ASM_ARCH32_SPEC "-32"
6149cebb
JJ
429#ifdef HAVE_AS_REGISTER_PSEUDO_OP
430#define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
431#else
a0a301fc 432#define ASM_ARCH64_SPEC "-64"
6149cebb 433#endif
a0a301fc 434#define ASM_ARCH_DEFAULT_SPEC \
e632a26c 435(DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
a0a301fc
DE
436
437#define ASM_ARCH_SPEC "\
438%{m32:%(asm_arch32)} \
439%{m64:%(asm_arch64)} \
440%{!m32:%{!m64:%(asm_arch_default)}} \
441"
442
e95b1e6a
JJ
443#ifdef HAVE_AS_RELAX_OPTION
444#define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
445#else
446#define ASM_RELAX_SPEC ""
447#endif
448
a0a301fc
DE
449/* Special flags to the Sun-4 assembler when using pipe for input. */
450
451#define ASM_SPEC "\
24a4dd31 452%{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
e95b1e6a 453%(asm_cpu) %(asm_relax)"
a0a301fc 454
4977bab6
ZW
455#define AS_NEEDS_DASH_FOR_PIPED_INPUT
456
bafb031b
DE
457/* This macro defines names of additional specifications to put in the specs
458 that can be used in various specifications like CC1_SPEC. Its definition
459 is an initializer with a subgrouping for each command option.
460
461 Each subgrouping contains a string constant, that defines the
7ec022b2 462 specification name, and a string constant that used by the GCC driver
bafb031b
DE
463 program.
464
465 Do not define this macro if it does not need to do anything. */
1bb87f28 466
a0a301fc 467#define EXTRA_SPECS \
829245be
KG
468 { "cpp_cpu", CPP_CPU_SPEC }, \
469 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
470 { "cpp_arch32", CPP_ARCH32_SPEC }, \
471 { "cpp_arch64", CPP_ARCH64_SPEC }, \
472 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
473 { "cpp_arch", CPP_ARCH_SPEC }, \
474 { "cpp_endian", CPP_ENDIAN_SPEC }, \
475 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
476 { "asm_cpu", ASM_CPU_SPEC }, \
477 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
478 { "asm_arch32", ASM_ARCH32_SPEC }, \
479 { "asm_arch64", ASM_ARCH64_SPEC }, \
e95b1e6a 480 { "asm_relax", ASM_RELAX_SPEC }, \
829245be
KG
481 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
482 { "asm_arch", ASM_ARCH_SPEC }, \
bafb031b 483 SUBTARGET_EXTRA_SPECS
1bb87f28 484
bafb031b 485#define SUBTARGET_EXTRA_SPECS
bbd7687d
DM
486
487/* Because libgcc can generate references back to libc (via .umul etc.) we have
488 to list libc again after the second libgcc. */
489#define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
490
bafb031b 491\f
82d6b402
RH
492#define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
493#define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
7a6cf439
DE
494
495/* ??? This should be 32 bits for v9 but what can we do? */
1bb87f28
JW
496#define WCHAR_TYPE "short unsigned int"
497#define WCHAR_TYPE_SIZE 16
498
4f074454
RK
499/* Show we can debug even without a frame pointer. */
500#define CAN_DEBUG_WITHOUT_FP
1bb87f28 501
fe609b0f
EB
502/* Option handling. */
503
89a8b315 504#define OVERRIDE_OPTIONS sparc_override_options ()
7a6cf439 505\f
bafb031b
DE
506/* Mask of all CPU selection flags. */
507#define MASK_ISA \
508(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
6f64bf5f 509
284d86e9
JC
510/* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
511 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
512 to get high 32 bits. False in V8+ or V9 because multiply stores
a7b376ee 513 a 64-bit result in a register. */
284d86e9 514
bfd6bc60
JC
515#define TARGET_HARD_MUL32 \
516 ((TARGET_V8 || TARGET_SPARCLITE \
517 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
5cb01b65 518 && ! TARGET_V8PLUS && TARGET_ARCH32)
bfd6bc60
JC
519
520#define TARGET_HARD_MUL \
521 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
3aabf9a5 522 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
bfd6bc60 523
bafb031b
DE
524/* MASK_APP_REGS must always be the default because that's what
525 FIXED_REGISTERS is set to and -ffixed- is processed before
526 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
33074e5f 527#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
84ab3bfb 528
6afca97d
DE
529/* Processor type.
530 These must match the values for the cpu attribute in sparc.md. */
531enum processor_type {
532 PROCESSOR_V7,
533 PROCESSOR_CYPRESS,
534 PROCESSOR_V8,
535 PROCESSOR_SUPERSPARC,
536 PROCESSOR_SPARCLITE,
537 PROCESSOR_F930,
538 PROCESSOR_F934,
8947065c
RH
539 PROCESSOR_HYPERSPARC,
540 PROCESSOR_SPARCLITE86X,
6afca97d 541 PROCESSOR_SPARCLET,
9b7c06d2 542 PROCESSOR_TSC701,
6afca97d 543 PROCESSOR_V9,
fae15c93 544 PROCESSOR_ULTRASPARC,
4c837a1e 545 PROCESSOR_ULTRASPARC3,
9eeaed6e
DM
546 PROCESSOR_NIAGARA,
547 PROCESSOR_NIAGARA2
6afca97d
DE
548};
549
550/* This is set from -m{cpu,tune}=xxx. */
551extern enum processor_type sparc_cpu;
552
553/* Recast the cpu class to be the cpu attribute.
554 Every file includes us, but not every file includes insn-attr.h. */
555#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
bafb031b 556
7816bea0
DJ
557/* Support for a compile-time default CPU, et cetera. The rules are:
558 --with-cpu is ignored if -mcpu is specified.
559 --with-tune is ignored if -mtune is specified.
560 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
561 are specified. */
562#define OPTION_DEFAULT_SPECS \
563 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
564 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
565 {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
566
6afca97d
DE
567/* sparc_select[0] is reserved for the default cpu. */
568struct sparc_cpu_select
569{
3bb5de61 570 const char *string;
8b60264b
KG
571 const char *const name;
572 const int set_tune_p;
573 const int set_arch_p;
6afca97d
DE
574};
575
576extern struct sparc_cpu_select sparc_select[];
7a6cf439
DE
577\f
578/* target machine storage layout */
579
1bb87f28
JW
580/* Define this if most significant bit is lowest numbered
581 in instructions that operate on numbered bit-fields. */
582#define BITS_BIG_ENDIAN 1
583
584/* Define this if most significant byte of a word is the lowest numbered. */
1bb87f28
JW
585#define BYTES_BIG_ENDIAN 1
586
587/* Define this if most significant word of a multiword number is the lowest
588 numbered. */
1bb87f28
JW
589#define WORDS_BIG_ENDIAN 1
590
62f1c649
DE
591/* Define this to set the endianness to use in libgcc2.c, which can
592 not depend on target_flags. */
8947065c 593#if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
62f1c649
DE
594#define LIBGCC2_WORDS_BIG_ENDIAN 0
595#else
596#define LIBGCC2_WORDS_BIG_ENDIAN 1
597#endif
598
7a6cf439 599#define MAX_BITS_PER_WORD 64
1bb87f28
JW
600
601/* Width of a word, in units (bytes). */
6f64bf5f 602#define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
8b156b3e
JJ
603#ifdef IN_LIBGCC2
604#define MIN_UNITS_PER_WORD UNITS_PER_WORD
605#else
ef0e53ce 606#define MIN_UNITS_PER_WORD 4
8b156b3e 607#endif
7a6cf439 608
c4336539 609#define UNITS_PER_SIMD_WORD (TARGET_VIS ? 8 : UNITS_PER_WORD)
c75d6010 610
7a6cf439
DE
611/* Now define the sizes of the C data types. */
612
613#define SHORT_TYPE_SIZE 16
a0a301fc
DE
614#define INT_TYPE_SIZE 32
615#define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
7a6cf439
DE
616#define LONG_LONG_TYPE_SIZE 64
617#define FLOAT_TYPE_SIZE 32
618#define DOUBLE_TYPE_SIZE 64
9e1395f1
JM
619/* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
620 SPARC ABI says that it is 128-bit wide. */
621/* #define LONG_DOUBLE_TYPE_SIZE 128 */
1bb87f28
JW
622
623/* Width in bits of a pointer.
624 See also the macro `Pmode' defined below. */
7a6cf439 625#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
1bb87f28 626
3276910d
RK
627/* If we have to extend pointers (only when TARGET_ARCH64 and not
628 TARGET_PTR64), we want to do it unsigned. This macro does nothing
629 if ptr_mode and Pmode are the same. */
630#define POINTERS_EXTEND_UNSIGNED 1
631
d4453b7a
PB
632/* For TARGET_ARCH64 we need this, as we don't have instructions
633 for arithmetic operations which do zero/sign extension at the same time,
634 so without this we end up with a srl/sra after every assignment to an
635 user variable, which means very very bad code. */
636#define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
4fb4e4b8
DE
637if (TARGET_ARCH64 \
638 && GET_MODE_CLASS (MODE) == MODE_INT \
639 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3e2cc1d1 640 (MODE) = word_mode;
4fb4e4b8 641
1bb87f28 642/* Allocation boundary (in *bits*) for storing arguments in argument list. */
6f64bf5f 643#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
1bb87f28
JW
644
645/* Boundary (in *bits*) on which stack pointer should be aligned. */
a594a19c 646/* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
2358ff91 647 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
6f64bf5f 648#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
2358ff91 649/* Temporary hack until the FIXME above is fixed. */
a594a19c 650#define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
1bb87f28 651
10d1b70f
JW
652/* ALIGN FRAMES on double word boundaries */
653
7a6cf439 654#define SPARC_STACK_ALIGN(LOC) \
6f64bf5f 655 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
10d1b70f 656
1bb87f28 657/* Allocation boundary (in *bits*) for the code of a function. */
efa3896a 658#define FUNCTION_BOUNDARY 32
1bb87f28
JW
659
660/* Alignment of field after `int : 0' in a structure. */
6f64bf5f 661#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
1bb87f28
JW
662
663/* Every structure's size must be a multiple of this. */
664#define STRUCTURE_SIZE_BOUNDARY 8
665
43a88a8c 666/* A bit-field declared as `int' forces `int' alignment for the struct. */
1bb87f28
JW
667#define PCC_BITFIELD_TYPE_MATTERS 1
668
669/* No data type wants to be aligned rounder than this. */
6f64bf5f 670#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
1bb87f28 671
77a02b01
JW
672/* The best alignment to use in cases where we have a choice. */
673#define FASTEST_ALIGNMENT 64
674
c219ddf7
BK
675/* Define this macro as an expression for the alignment of a structure
676 (given by STRUCT as a tree node) if the alignment computed in the
677 usual way is COMPUTED and the alignment explicitly specified was
678 SPECIFIED.
679
680 The default is to use SPECIFIED if it is larger; otherwise, use
681 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
682#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
683 (TARGET_FASTER_STRUCTS ? \
684 ((TREE_CODE (STRUCT) == RECORD_TYPE \
685 || TREE_CODE (STRUCT) == UNION_TYPE \
686 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
687 && TYPE_FIELDS (STRUCT) != 0 \
688 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
689 : MAX ((COMPUTED), (SPECIFIED))) \
690 : MAX ((COMPUTED), (SPECIFIED)))
691
1bb87f28
JW
692/* Make strings word-aligned so strcpy from constants will be faster. */
693#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
694 ((TREE_CODE (EXP) == STRING_CST \
695 && (ALIGN) < FASTEST_ALIGNMENT) \
696 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
697
698/* Make arrays of chars word-aligned for the same reasons. */
699#define DATA_ALIGNMENT(TYPE, ALIGN) \
700 (TREE_CODE (TYPE) == ARRAY_TYPE \
701 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 702 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 703
9eb061d7
AL
704/* Make local arrays of chars word-aligned for the same reasons. */
705#define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
706
b4ac57ab 707/* Set this nonzero if move instructions will actually fail to work
1bb87f28 708 when given unaligned data. */
b4ac57ab 709#define STRICT_ALIGNMENT 1
1bb87f28
JW
710
711/* Things that must be doubleword aligned cannot go in the text section,
712 because the linker fails to align the text section enough!
7a6cf439 713 Put them in the data section. This macro is only used in this file. */
1bb87f28 714#define MAX_TEXT_ALIGN 32
1bb87f28
JW
715\f
716/* Standard register usage. */
717
718/* Number of actual hardware registers.
719 The hardware registers are assigned numbers for the compiler
720 from 0 to just below FIRST_PSEUDO_REGISTER.
721 All registers that the compiler knows about must be given numbers,
722 even those that are not normally considered general registers.
723
7a6cf439 724 SPARC has 32 integer registers and 32 floating point registers.
a7b376ee 725 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
7a6cf439 726 accessible. We still account for them to simplify register computations
112cdef5 727 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
7a6cf439 728 32+32+32+4 == 100.
563c12b0
RH
729 Register 100 is used as the integer condition code register.
730 Register 101 is used as the soft frame pointer register. */
1bb87f28 731
563c12b0 732#define FIRST_PSEUDO_REGISTER 102
6afca97d 733
4fb4e4b8 734#define SPARC_FIRST_FP_REG 32
6afca97d 735/* Additional V9 fp regs. */
4fb4e4b8
DE
736#define SPARC_FIRST_V9_FP_REG 64
737#define SPARC_LAST_V9_FP_REG 95
c4ce6853
DE
738/* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
739#define SPARC_FIRST_V9_FCC_REG 96
740#define SPARC_LAST_V9_FCC_REG 99
741/* V8 fcc reg. */
742#define SPARC_FCC_REG 96
743/* Integer CC reg. We don't distinguish %icc from %xcc. */
744#define SPARC_ICC_REG 100
1bb87f28 745
4fb4e4b8
DE
746/* Nonzero if REGNO is an fp reg. */
747#define SPARC_FP_REG_P(REGNO) \
748((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
749
750/* Argument passing regs. */
751#define SPARC_OUTGOING_INT_ARG_FIRST 8
60b85c4c 752#define SPARC_INCOMING_INT_ARG_FIRST 24
4fb4e4b8
DE
753#define SPARC_FP_ARG_FIRST 32
754
1bb87f28
JW
755/* 1 for registers that have pervasive standard uses
756 and are not available for the register allocator.
4fb4e4b8 757
7a6cf439 758 On non-v9 systems:
34ad7aaf
JW
759 g1 is free to use as temporary.
760 g2-g4 are reserved for applications. Gcc normally uses them as
761 temporaries, but this can be disabled via the -mno-app-regs option.
7a6cf439 762 g5 through g7 are reserved for the operating system.
4fb4e4b8 763
7a6cf439 764 On v9 systems:
a0a301fc
DE
765 g1,g5 are free to use as temporaries, and are free to use between calls
766 if the call is to an external function via the PLT.
767 g4 is free to use as a temporary in the non-embedded case.
768 g4 is reserved in the embedded case.
4fb4e4b8 769 g2-g3 are reserved for applications. Gcc normally uses them as
bafb031b 770 temporaries, but this can be disabled via the -mno-app-regs option.
a0a301fc
DE
771 g6-g7 are reserved for the operating system (or application in
772 embedded case).
7a6cf439
DE
773 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
774 currently be a fixed register until this pattern is rewritten.
775 Register 1 is also used when restoring call-preserved registers in large
6afca97d
DE
776 stack frames.
777
778 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
779 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
780*/
7a6cf439 781
7a6cf439 782#define FIXED_REGISTERS \
e48addee 783 {1, 0, 2, 2, 2, 2, 1, 1, \
7a6cf439
DE
784 0, 0, 0, 0, 0, 0, 1, 0, \
785 0, 0, 0, 0, 0, 0, 0, 0, \
786 0, 0, 0, 0, 0, 0, 1, 1, \
787 \
788 0, 0, 0, 0, 0, 0, 0, 0, \
789 0, 0, 0, 0, 0, 0, 0, 0, \
790 0, 0, 0, 0, 0, 0, 0, 0, \
791 0, 0, 0, 0, 0, 0, 0, 0, \
792 \
793 0, 0, 0, 0, 0, 0, 0, 0, \
794 0, 0, 0, 0, 0, 0, 0, 0, \
795 0, 0, 0, 0, 0, 0, 0, 0, \
796 0, 0, 0, 0, 0, 0, 0, 0, \
797 \
563c12b0 798 0, 0, 0, 0, 0, 1}
1bb87f28
JW
799
800/* 1 for registers not available across function calls.
801 These must include the FIXED_REGISTERS and also any
802 registers that can be used without being saved.
803 The latter must include the registers where values are returned
804 and the register where structure-value addresses are passed.
805 Aside from that, you can include as many other registers as you like. */
7a6cf439 806
bafb031b
DE
807#define CALL_USED_REGISTERS \
808 {1, 1, 1, 1, 1, 1, 1, 1, \
809 1, 1, 1, 1, 1, 1, 1, 1, \
810 0, 0, 0, 0, 0, 0, 0, 0, \
811 0, 0, 0, 0, 0, 0, 1, 1, \
812 \
813 1, 1, 1, 1, 1, 1, 1, 1, \
814 1, 1, 1, 1, 1, 1, 1, 1, \
815 1, 1, 1, 1, 1, 1, 1, 1, \
816 1, 1, 1, 1, 1, 1, 1, 1, \
817 \
818 1, 1, 1, 1, 1, 1, 1, 1, \
819 1, 1, 1, 1, 1, 1, 1, 1, \
820 1, 1, 1, 1, 1, 1, 1, 1, \
821 1, 1, 1, 1, 1, 1, 1, 1, \
822 \
563c12b0 823 1, 1, 1, 1, 1, 1}
1bb87f28 824
c4ce6853
DE
825/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
826 they won't be allocated. */
26c5587d
JW
827
828#define CONDITIONAL_REGISTER_USAGE \
829do \
830 { \
5b43fed1 831 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
c7b2eb81
VM
832 { \
833 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
834 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
835 } \
e48addee 836 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
5e7a8ee0 837 /* then honor it. */ \
e48addee
JJ
838 if (TARGET_ARCH32 && fixed_regs[5]) \
839 fixed_regs[5] = 1; \
840 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
841 fixed_regs[5] = 0; \
6afca97d
DE
842 if (! TARGET_V9) \
843 { \
844 int regno; \
845 for (regno = SPARC_FIRST_V9_FP_REG; \
846 regno <= SPARC_LAST_V9_FP_REG; \
847 regno++) \
848 fixed_regs[regno] = 1; \
c4ce6853
DE
849 /* %fcc0 is used by v8 and v9. */ \
850 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
851 regno <= SPARC_LAST_V9_FCC_REG; \
852 regno++) \
853 fixed_regs[regno] = 1; \
6afca97d 854 } \
26c5587d
JW
855 if (! TARGET_FPU) \
856 { \
857 int regno; \
c4ce6853 858 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
26c5587d
JW
859 fixed_regs[regno] = 1; \
860 } \
e48addee 861 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
5e7a8ee0 862 /* then honor it. Likewise with g3 and g4. */ \
e48addee
JJ
863 if (fixed_regs[2] == 2) \
864 fixed_regs[2] = ! TARGET_APP_REGS; \
865 if (fixed_regs[3] == 2) \
866 fixed_regs[3] = ! TARGET_APP_REGS; \
867 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
868 fixed_regs[4] = ! TARGET_APP_REGS; \
869 else if (TARGET_CM_EMBMEDANY) \
870 fixed_regs[4] = 1; \
871 else if (fixed_regs[4] == 2) \
872 fixed_regs[4] = 0; \
26c5587d
JW
873 } \
874while (0)
875
1bb87f28
JW
876/* Return number of consecutive hard regs needed starting at reg REGNO
877 to hold something of mode MODE.
878 This is ordinarily the length in words of a value of mode MODE
879 but can be less for certain modes in special long registers.
880
881 On SPARC, ordinary registers hold 32 bits worth;
882 this means both integer and floating point registers.
7a6cf439
DE
883 On v9, integer regs hold 64 bits worth; floating point regs hold
884 32 bits worth (this includes the new fp regs as even the odd ones are
885 included in the hard register count). */
1bb87f28 886
7a6cf439 887#define HARD_REGNO_NREGS(REGNO, MODE) \
6f64bf5f 888 (TARGET_ARCH64 \
563c12b0
RH
889 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
890 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
891 : (GET_MODE_SIZE (MODE) + 3) / 4) \
7a6cf439 892 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1bb87f28 893
fae778eb 894/* Due to the ARCH64 discrepancy above we must override this next
ec8e621d 895 macro too. */
ddef6bc7
JJ
896#define REGMODE_NATURAL_SIZE(MODE) \
897 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
284d86e9 898
1bb87f28 899/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
923a8d06 900 See sparc.c for how we initialize this. */
0b5826ac 901extern const int *hard_regno_mode_classes;
7a6cf439 902extern int sparc_mode_class[];
ddef6bc7
JJ
903
904/* ??? Because of the funny way we pass parameters we should allow certain
905 ??? types of float/complex values to be in integer registers during
906 ??? RTL generation. This only matters on arch32. */
1bb87f28 907#define HARD_REGNO_MODE_OK(REGNO, MODE) \
7a6cf439 908 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1bb87f28 909
e31a1967
EB
910/* Value is 1 if it is OK to rename a hard register FROM to another hard
911 register TO. We cannot rename %g1 as it may be used before the save
912 register window instruction in the prologue. */
913#define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
914
1bb87f28
JW
915/* Value is 1 if it is a good idea to tie two pseudo registers
916 when one has mode MODE1 and one has mode MODE2.
917 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
7a6cf439
DE
918 for any hard reg, then this must be 0 for correct output.
919
920 For V9: SFmode can't be combined with other float modes, because they can't
921 be allocated to the %d registers. Also, DFmode won't fit in odd %f
922 registers, but SFmode will. */
1bb87f28 923#define MODES_TIEABLE_P(MODE1, MODE2) \
7a6cf439
DE
924 ((MODE1) == (MODE2) \
925 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
926 && (! TARGET_V9 \
927 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
928 || (MODE1 != SFmode && MODE2 != SFmode)))))
1bb87f28
JW
929
930/* Specify the registers used for certain standard purposes.
931 The values of these macros are register numbers. */
932
1bb87f28
JW
933/* Register to use for pushing function arguments. */
934#define STACK_POINTER_REGNUM 14
935
563c12b0
RH
936/* The stack bias (amount by which the hardware register is offset by). */
937#define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
938
4fb4e4b8 939/* Actual top-of-stack address is 92/176 greater than the contents of the
7a6cf439
DE
940 stack pointer register for !v9/v9. That is:
941 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
4fb4e4b8
DE
942 address, and 6*4 bytes for the 6 register parameters.
943 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
944 parameter regs. */
563c12b0 945#define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1ccfa253 946
1bb87f28 947/* Base register for access to local variables of the function. */
563c12b0
RH
948#define HARD_FRAME_POINTER_REGNUM 30
949
950/* The soft frame pointer does not have the stack bias applied. */
951#define FRAME_POINTER_REGNUM 101
952
953/* Given the stack bias, the stack pointer isn't actually aligned. */
954#define INIT_EXPANDERS \
955 do { \
ec24c3a3 956 if (rtl.emit.regno_pointer_align && SPARC_STACK_BIAS) \
563c12b0
RH
957 { \
958 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
959 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
960 } \
961 } while (0)
1bb87f28
JW
962
963/* Value should be nonzero if functions must have frame pointers.
964 Zero means the frame pointer need not be set up (and parms
965 may be accessed via the stack pointer) in functions that seem suitable.
5be9b7a1 966 Used in flow.c, global.c, ra.c and reload1.c. */
60b85c4c
EB
967#define FRAME_POINTER_REQUIRED \
968 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28 969
1bb87f28 970/* Base register for access to arguments of the function. */
5c56efde 971#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1bb87f28 972
6098b63e 973/* Register in which static-chain is passed to a function. This must
c8392688 974 not be a register used by the prologue. */
6f64bf5f 975#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1bb87f28
JW
976
977/* Register which holds offset table for position-independent
978 data references. */
979
5b43fed1 980#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1bb87f28 981
82d6b402
RH
982/* Pick a default value we can notice from override_options:
983 !v9: Default is on.
984 v9: Default is off. */
985
986#define DEFAULT_PCC_STRUCT_RETURN -1
987
1bb87f28
JW
988/* Functions which return large structures get the address
989 to place the wanted value at offset 64 from the frame.
7a6cf439
DE
990 Must reserve 64 bytes for the in and local registers.
991 v9: Functions which return large structures get the address to place the
992 wanted value from an invisible first argument. */
1bb87f28 993#define STRUCT_VALUE_OFFSET 64
1bb87f28
JW
994\f
995/* Define the classes of registers for register constraints in the
996 machine description. Also define ranges of constants.
997
998 One of the classes must always be named ALL_REGS and include all hard regs.
999 If there is more than one class, another class must be named NO_REGS
1000 and contain no registers.
1001
1002 The name GENERAL_REGS must be the name of a class (or an alias for
1003 another name such as ALL_REGS). This is the class of registers
1004 that is allowed by "g" or "r" in a register constraint.
1005 Also, registers outside this class are allocated only when
1006 instructions express preferences for them.
1007
1008 The classes must be numbered in nondecreasing order; that is,
1009 a larger-numbered class must never be contained completely
1010 in a smaller-numbered class.
1011
1012 For any two classes, it is very desirable that there be another
1013 class that represents their union. */
1014
4fb4e4b8
DE
1015/* The SPARC has various kinds of registers: general, floating point,
1016 and condition codes [well, it has others as well, but none that we
1017 care directly about].
24b63396
JW
1018
1019 For v9 we must distinguish between the upper and lower floating point
1020 registers because the upper ones can't hold SFmode values.
1021 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1022 satisfying a group need for a class will also satisfy a single need for
1023 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1024 regs.
1025
1026 It is important that one class contains all the general and all the standard
1027 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1028 because reg_class_record() will bias the selection in favor of fp regs,
1029 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1030 because FP_REGS > GENERAL_REGS.
1031
107a4b41
NS
1032 It is also important that one class contain all the general and all
1033 the fp regs. Otherwise when spilling a DFmode reg, it may be from
1034 EXTRA_FP_REGS but find_reloads() may use class
1035 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
1036 because the compiler thinks it doesn't have a spill reg when in
1037 fact it does.
24b63396 1038
7a6cf439
DE
1039 v9 also has 4 floating point condition code registers. Since we don't
1040 have a class that is the union of FPCC_REGS with either of the others,
1041 it is important that it appear first. Otherwise the compiler will die
1042 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
c4ce6853
DE
1043 constraints.
1044
1045 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1046 may try to use it to hold an SImode value. See register_operand.
956d6950 1047 ??? Should %fcc[0123] be handled similarly?
c4ce6853 1048*/
7a6cf439 1049
284d86e9
JC
1050enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1051 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
7a6cf439 1052 ALL_REGS, LIM_REG_CLASSES };
1bb87f28
JW
1053
1054#define N_REG_CLASSES (int) LIM_REG_CLASSES
1055
80ffc95e 1056/* Give names of register classes as strings for dump file. */
1bb87f28
JW
1057
1058#define REG_CLASS_NAMES \
284d86e9
JC
1059 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1060 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1061 "ALL_REGS" }
1bb87f28
JW
1062
1063/* Define which registers fit in which classes.
1064 This is an initializer for a vector of HARD_REG_SET
1065 of length N_REG_CLASSES. */
1066
563c12b0
RH
1067#define REG_CLASS_CONTENTS \
1068 {{0, 0, 0, 0}, /* NO_REGS */ \
1069 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1070 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1071 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1072 {0, -1, 0, 0}, /* FP_REGS */ \
1073 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1074 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1075 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1076 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1bb87f28 1077
1b4bda70
EB
1078/* Defines invalid mode changes. Borrowed from pa64-regs.h.
1079
1080 SImode loads to floating-point registers are not zero-extended.
1081 The definition for LOAD_EXTEND_OP specifies that integer loads
1082 narrower than BITS_PER_WORD will be zero-extended. As a result,
1083 we inhibit changes from SImode unless they are to a mode that is
1084 identical in size. */
1085
1086#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1087 (TARGET_ARCH64 \
1088 && (FROM) == SImode \
1089 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1090 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1091
1bb87f28
JW
1092/* The same information, inverted:
1093 Return the class number of the smallest class containing
1094 reg number REGNO. This could be a conditional expression
1095 or could index an array. */
1096
f540a7d3 1097extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
c4ce6853
DE
1098
1099#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1bb87f28 1100
3aabf9a5
EC
1101/* This is the order in which to allocate registers normally.
1102
af54350e 1103 We put %f0-%f7 last among the float registers, so as to make it more
6a4bb1fa 1104 likely that a pseudo-register which dies in the float return register
af54350e
DM
1105 area will get allocated to the float return register, thus saving a move
1106 instruction at the end of the function.
1107
1108 Similarly for integer return value registers.
1109
1110 We know in this case that we will not end up with a leaf function.
1111
fae778eb 1112 The register allocator is given the global and out registers first
af54350e
DM
1113 because these registers are call clobbered and thus less useful to
1114 global register allocation.
1115
1116 Next we list the local and in registers. They are not call clobbered
1117 and thus very useful for global register allocation. We list the input
1118 registers before the locals so that it is more likely the incoming
1119 arguments received in those registers can just stay there and not be
1120 reloaded. */
6afca97d 1121
7a6cf439 1122#define REG_ALLOC_ORDER \
af54350e
DM
1123{ 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1124 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1125 15, /* %o7 */ \
1126 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1127 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
7a6cf439 1128 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
7a6cf439
DE
1129 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1130 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1131 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1132 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
4fb4e4b8
DE
1133 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1134 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
af54350e
DM
1135 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1136 96, 97, 98, 99, /* %fcc0-3 */ \
1137 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1bb87f28
JW
1138
1139/* This is the order in which to allocate registers for
af54350e
DM
1140 leaf functions. If all registers can fit in the global and
1141 output registers, then we have the possibility of having a leaf
1142 function.
1143
1144 The macro actually mentioned the input registers first,
1145 because they get renumbered into the output registers once
1146 we know really do have a leaf function.
1147
1148 To be more precise, this register allocation order is used
1149 when %o7 is found to not be clobbered right before register
1150 allocation. Normally, the reason %o7 would be clobbered is
1151 due to a call which could not be transformed into a sibling
1152 call.
1153
1154 As a consequence, it is possible to use the leaf register
1155 allocation order and not end up with a leaf function. We will
1156 not get suboptimal register allocation in that case because by
1157 definition of being potentially leaf, there were no function
1158 calls. Therefore, allocation order within the local register
1159 window is not critical like it is when we do have function calls. */
6afca97d 1160
7a6cf439 1161#define REG_LEAF_ALLOC_ORDER \
af54350e
DM
1162{ 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1163 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1164 15, /* %o7 */ \
1165 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1166 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1167 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1168 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1169 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1170 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1171 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1172 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1173 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1174 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1175 96, 97, 98, 99, /* %fcc0-3 */ \
1176 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
3aabf9a5 1177
1bb87f28
JW
1178#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1179
7d167afd
JJ
1180extern char sparc_leaf_regs[];
1181#define LEAF_REGISTERS sparc_leaf_regs
1bb87f28 1182
d70e94ec 1183extern char leaf_reg_remap[];
1bb87f28 1184#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1bb87f28 1185
1bb87f28
JW
1186/* The class value for index registers, and the one for base regs. */
1187#define INDEX_REG_CLASS GENERAL_REGS
1188#define BASE_REG_CLASS GENERAL_REGS
1189
24b63396 1190/* Local macro to handle the two v9 classes of FP regs. */
24b63396 1191#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
24b63396 1192
6afca97d
DE
1193/* Get reg_class from a letter such as appears in the machine description.
1194 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
bfd6bc60 1195 .md file for v8 and v9.
284d86e9
JC
1196 'd' and 'b' are used for single and double precision VIS operations,
1197 if TARGET_VIS.
80ffc95e 1198 'h' is used for V8+ 64 bit global and out registers. */
bfd6bc60
JC
1199
1200#define REG_CLASS_FROM_LETTER(C) \
1201(TARGET_V9 \
1202 ? ((C) == 'f' ? FP_REGS \
1203 : (C) == 'e' ? EXTRA_FP_REGS \
1204 : (C) == 'c' ? FPCC_REGS \
284d86e9
JC
1205 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1206 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1207 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
bfd6bc60
JC
1208 : NO_REGS) \
1209 : ((C) == 'f' ? FP_REGS \
1210 : (C) == 'e' ? FP_REGS \
1211 : (C) == 'c' ? FPCC_REGS \
6afca97d 1212 : NO_REGS))
1bb87f28 1213
0e5d569c
EB
1214/* The letters I, J, K, L, M, N, O, P in a register constraint string
1215 can be used to stand for particular ranges of CONST_INTs.
1bb87f28
JW
1216 This macro defines what the ranges are.
1217 C is the letter, and VALUE is a constant value.
1218 Return 1 if VALUE is in the range specified by C.
1219
18c5947f 1220 `I' is used for the range of constants an insn can actually contain.
1bb87f28 1221 `J' is used for the range which is just zero (since that is R0).
18c5947f
DE
1222 `K' is used for constants which can be loaded with a single sethi insn.
1223 `L' is used for the range of constants supported by the movcc insns.
7d6040e8 1224 `M' is used for the range of constants supported by the movrcc insns.
ef0139b1 1225 `N' is like K, but for constants wider than 32 bits.
0e5d569c
EB
1226 `O' is used for the range which is just 4096.
1227 `P' is free. */
1bb87f28 1228
0e5d569c 1229/* Predicates for 10-bit, 11-bit and 13-bit signed constants. */
1ccfa253
DE
1230#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1231#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1232#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
0e5d569c
EB
1233
1234/* 10- and 11-bit immediates are only used for a few specific insns.
18c5947f
DE
1235 SMALL_INT is used throughout the port so we continue to use it. */
1236#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
0e5d569c
EB
1237
1238/* Predicate for constants that can be loaded with a sethi instruction.
1239 This is the general, 64-bit aware, bitwise version that ensures that
1240 only constants whose representation fits in the mask
1241
1242 0x00000000fffffc00
1243
1244 are accepted. It will reject, for example, negative SImode constants
1245 on 64-bit hosts, so correct handling is to mask the value beforehand
1246 according to the mode of the instruction. */
1ccfa253 1247#define SPARC_SETHI_P(X) \
7d6040e8
AO
1248 (((unsigned HOST_WIDE_INT) (X) \
1249 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
0e5d569c
EB
1250
1251/* Version of the above predicate for SImode constants and below. */
7d6040e8
AO
1252#define SPARC_SETHI32_P(X) \
1253 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1bb87f28
JW
1254
1255#define CONST_OK_FOR_LETTER_P(VALUE, C) \
18c5947f 1256 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1bb87f28 1257 : (C) == 'J' ? (VALUE) == 0 \
7d6040e8 1258 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
18c5947f
DE
1259 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1260 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
7d6040e8 1261 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
ef0139b1 1262 : (C) == 'O' ? (VALUE) == 4096 \
1bb87f28
JW
1263 : 0)
1264
0e5d569c 1265/* Similar, but for CONST_DOUBLEs, and defining letters G and H.
1bb87f28
JW
1266 Here VALUE is the CONST_DOUBLE rtx itself. */
1267
1268#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
0e5d569c 1269 ((C) == 'G' ? const_zero_operand (VALUE, GET_MODE (VALUE)) \
7ce86678 1270 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1bb87f28
JW
1271 : 0)
1272
1273/* Given an rtx X being reloaded into a reg required to be
1274 in class CLASS, return the class of reg to actually use.
1275 In general this is just CLASS; but on some machines
1276 in some cases it is preferable to use a more restrictive class. */
3e7cd49f
JW
1277/* - We can't load constants into FP registers.
1278 - We can't load FP constants into integer registers when soft-float,
1279 because there is no soft-float pattern with a r/F constraint.
1573b933
JJ
1280 - We can't load FP constants into integer registers for TFmode unless
1281 it is 0.0L, because there is no movtf pattern with a r/F constraint.
8947065c
RH
1282 - Try and reload integer constants (symbolic or otherwise) back into
1283 registers directly, rather than having them dumped to memory. */
1284
2b9a9aea
JW
1285#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1286 (CONSTANT_P (X) \
8947065c 1287 ? ((FP_REG_CLASS_P (CLASS) \
7ae3e57c
DM
1288 || (CLASS) == GENERAL_OR_FP_REGS \
1289 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
2b9a9aea 1290 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1573b933
JJ
1291 && ! TARGET_FPU) \
1292 || (GET_MODE (X) == TFmode \
0e5d569c 1293 && ! const_zero_operand (X, TFmode))) \
8947065c
RH
1294 ? NO_REGS \
1295 : (!FP_REG_CLASS_P (CLASS) \
1296 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1297 ? GENERAL_REGS \
1298 : (CLASS)) \
1299 : (CLASS))
1bb87f28
JW
1300
1301/* Return the register class of a scratch register needed to load IN into
1302 a register of class CLASS in MODE.
1303
e0d80184 1304 We need a temporary when loading/storing a HImode/QImode value
ae51bd97 1305 between memory and the FPU registers. This can happen when combine puts
26aeede4
JJ
1306 a paradoxical subreg in a float/fix conversion insn.
1307
1308 We need a temporary when loading/storing a DFmode value between
1309 unaligned memory and the upper FPU registers. */
ae51bd97
JW
1310
1311#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
e0d80184
DM
1312 ((FP_REG_CLASS_P (CLASS) \
1313 && ((MODE) == HImode || (MODE) == QImode) \
24b63396 1314 && (GET_CODE (IN) == MEM \
e0d80184
DM
1315 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1316 && true_regnum (IN) == -1))) \
1317 ? GENERAL_REGS \
26aeede4
JJ
1318 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1319 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1320 && ! mem_min_alignment ((IN), 8)) \
1321 ? FP_REGS \
1322 : (((TARGET_CM_MEDANY \
1323 && symbolic_operand ((IN), (MODE))) \
1324 || (TARGET_CM_EMBMEDANY \
1325 && text_segment_operand ((IN), (MODE)))) \
1326 && !flag_pic) \
1327 ? GENERAL_REGS \
1328 : NO_REGS)
ae51bd97
JW
1329
1330#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
26aeede4 1331 ((FP_REG_CLASS_P (CLASS) \
e0d80184
DM
1332 && ((MODE) == HImode || (MODE) == QImode) \
1333 && (GET_CODE (IN) == MEM \
1334 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1335 && true_regnum (IN) == -1))) \
26aeede4
JJ
1336 ? GENERAL_REGS \
1337 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1338 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1339 && ! mem_min_alignment ((IN), 8)) \
1340 ? FP_REGS \
1341 : (((TARGET_CM_MEDANY \
1342 && symbolic_operand ((IN), (MODE))) \
1343 || (TARGET_CM_EMBMEDANY \
1344 && text_segment_operand ((IN), (MODE)))) \
1345 && !flag_pic) \
1346 ? GENERAL_REGS \
1347 : NO_REGS)
1bb87f28 1348
3aabf9a5 1349/* On SPARC it is not possible to directly move data between
b924cef0 1350 GENERAL_REGS and FP_REGS. */
24b63396
JW
1351#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1352 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
b924cef0 1353
55be783d
JW
1354/* Return the stack location to use for secondary memory needed reloads.
1355 We want to use the reserved location just below the frame pointer.
1356 However, we must ensure that there is a frame, so use assign_stack_local
1357 if the frame size is zero. */
fe1f7f24 1358#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
55be783d 1359 (get_frame_size () == 0 \
fb3eb6f6 1360 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
c5c76735
JL
1361 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1362 STARTING_FRAME_OFFSET)))
fe1f7f24 1363
9ec36da5 1364/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
7a6cf439
DE
1365 because the movsi and movsf patterns don't handle r/f moves.
1366 For v8 we copy the default definition. */
1367#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
6f64bf5f 1368 (TARGET_ARCH64 \
fb3eb6f6
JW
1369 ? (GET_MODE_BITSIZE (MODE) < 32 \
1370 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
7a6cf439 1371 : MODE) \
fb3eb6f6
JW
1372 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1373 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
7a6cf439
DE
1374 : MODE))
1375
1bb87f28
JW
1376/* Return the maximum number of consecutive registers
1377 needed to represent mode MODE in a register of class CLASS. */
1378/* On SPARC, this is the size of MODE in words. */
1379#define CLASS_MAX_NREGS(CLASS, MODE) \
24b63396 1380 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
7a6cf439 1381 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1bb87f28
JW
1382\f
1383/* Stack layout; function entry, exit and calling. */
1384
1bb87f28
JW
1385/* Define this if pushing a word on the stack
1386 makes the stack pointer a smaller address. */
1387#define STACK_GROWS_DOWNWARD
1388
a4d05547 1389/* Define this to nonzero if the nominal address of the stack frame
1bb87f28
JW
1390 is at the high-address end of the local variables;
1391 that is, each additional local variable allocated
1392 goes at a more negative offset in the frame. */
f62c8a5c 1393#define FRAME_GROWS_DOWNWARD 1
1bb87f28
JW
1394
1395/* Offset within stack frame to start allocating local variables at.
1396 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1397 first local allocated. Otherwise, it is the offset to the BEGINNING
1398 of the first local allocated. */
f8ece000
EB
1399/* This allows space for one TFmode floating point value, which is used
1400 by SECONDARY_MEMORY_NEEDED_RTX. */
7238ce3a 1401#define STARTING_FRAME_OFFSET \
563c12b0 1402 (TARGET_ARCH64 ? -16 \
7a6cf439 1403 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1bb87f28 1404
1bb87f28 1405/* Offset of first parameter from the argument pointer register value.
7a6cf439
DE
1406 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1407 even if this function isn't going to use it.
4fb4e4b8 1408 v9: This is 128 for the ins and locals. */
7a6cf439 1409#define FIRST_PARM_OFFSET(FNDECL) \
563c12b0 1410 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1bb87f28 1411
2c849145
JM
1412/* Offset from the argument pointer register value to the CFA.
1413 This is different from FIRST_PARM_OFFSET because the register window
1414 comes between the CFA and the arguments. */
c2c9f6c9 1415#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
71038426 1416
1bb87f28 1417/* When a parameter is passed in a register, stack space is still
82d6b402
RH
1418 allocated for it.
1419 !v9: All 6 possible integer registers have backing store allocated.
80ffc95e 1420 v9: Only space for the arguments passed is allocated. */
82d6b402
RH
1421/* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1422 meaning to the backend. Further, we need to be able to detect if a
1423 varargs/unprototyped function is called, as they may want to spill more
1424 registers than we've provided space. Ugly, ugly. So for now we retain
1425 all 6 slots even for v9. */
4fb4e4b8 1426#define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1bb87f28 1427
563c12b0 1428/* Definitions for register elimination. */
3aabf9a5 1429
563c12b0 1430#define ELIMINABLE_REGS \
e387e99b
JJ
1431 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1432 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
563c12b0 1433
91d4b3fd
RK
1434/* The way this is structured, we can't eliminate SFP in favor of SP
1435 if the frame pointer is required: we want to use the SFP->HFP elimination
1436 in that case. But the test in update_eliminables doesn't know we are
1437 assuming below that we only do the former elimination. */
1438#define CAN_ELIMINATE(FROM, TO) \
1439 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
563c12b0 1440
9ac617d4
EB
1441/* We always pretend that this is a leaf function because if it's not,
1442 there's no point in trying to eliminate the frame pointer. If it
1443 is a leaf function, we guessed right! */
1444#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1445 do { \
9ac617d4
EB
1446 if ((TO) == STACK_POINTER_REGNUM) \
1447 (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1); \
5be9b7a1
EB
1448 else \
1449 (OFFSET) = 0; \
9ac617d4 1450 (OFFSET) += SPARC_STACK_BIAS; \
e387e99b 1451 } while (0)
563c12b0 1452
1bb87f28 1453/* Keep the stack pointer constant throughout the function.
b4ac57ab 1454 This is both an optimization and a necessity: longjmp
1bb87f28
JW
1455 doesn't behave itself when the stack pointer moves within
1456 the function! */
f73ad30e 1457#define ACCUMULATE_OUTGOING_ARGS 1
1bb87f28
JW
1458
1459/* Value is the number of bytes of arguments automatically
1460 popped when returning from a subroutine call.
8b109b37 1461 FUNDECL is the declaration node of the function (as a tree),
1bb87f28
JW
1462 FUNTYPE is the data type of the function (as a tree),
1463 or for a library call it is an identifier node for the subroutine name.
1464 SIZE is the number of bytes of arguments passed on the stack. */
1465
8b109b37 1466#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1bb87f28 1467
92ea370b
TW
1468/* Define this macro if the target machine has "register windows". This
1469 C expression returns the register number as seen by the called function
1470 corresponding to register number OUT as seen by the calling function.
1471 Return OUT if register number OUT is not an outbound register. */
1472
1473#define INCOMING_REGNO(OUT) \
60b85c4c 1474 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
92ea370b
TW
1475
1476/* Define this macro if the target machine has "register windows". This
1477 C expression returns the register number as seen by the calling function
1478 corresponding to register number IN as seen by the called function.
1479 Return IN if register number IN is not an inbound register. */
1480
1481#define OUTGOING_REGNO(IN) \
60b85c4c 1482 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
92ea370b 1483
2a3e384f
RH
1484/* Define this macro if the target machine has register windows. This
1485 C expression returns true if the register is call-saved but is in the
1486 register window. */
1487
1488#define LOCAL_REGNO(REGNO) \
60b85c4c 1489 ((REGNO) >= 16 && (REGNO) <= 31)
2a3e384f 1490
1bb87f28
JW
1491/* Define how to find the value returned by a function.
1492 VALTYPE is the data type of the value (as a tree).
1493 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1494 otherwise, FUNC is 0. */
1495
1496/* On SPARC the value is found in the first "output" register. */
1497
82d6b402
RH
1498#define FUNCTION_VALUE(VALTYPE, FUNC) \
1499 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1bb87f28
JW
1500
1501/* But the called function leaves it in the first "input" register. */
1502
82d6b402
RH
1503#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1504 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1bb87f28
JW
1505
1506/* Define how to find the value returned by a library function
1507 assuming the value has mode MODE. */
1508
82d6b402
RH
1509#define LIBCALL_VALUE(MODE) \
1510 function_value (NULL_TREE, (MODE), 1)
1bb87f28
JW
1511
1512/* 1 if N is a possible register number for a function value
1513 as seen by the caller.
1514 On SPARC, the first "output" reg is used for integer values,
1515 and the first floating point register is used for floating point values. */
1516
1517#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1518
34aaacec
JW
1519/* Define the size of space to allocate for the return value of an
1520 untyped_call. */
1521
d24088cc 1522#define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
34aaacec 1523
1bb87f28 1524/* 1 if N is a possible register number for function argument passing.
4fb4e4b8 1525 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1bb87f28 1526
7a6cf439 1527#define FUNCTION_ARG_REGNO_P(N) \
4fb4e4b8
DE
1528(TARGET_ARCH64 \
1529 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1530 : ((N) >= 8 && (N) <= 13))
1bb87f28
JW
1531\f
1532/* Define a data type for recording info about an argument list
1533 during the scan of that argument list. This data type should
1534 hold all necessary information about the function itself
1535 and about the args processed so far, enough to enable macros
1536 such as FUNCTION_ARG to determine where the next arg should go.
1537
7a6cf439 1538 On SPARC (!v9), this is a single integer, which is a number of words
1bb87f28
JW
1539 of arguments scanned so far (including the invisible argument,
1540 if any, which holds the structure-value-address).
7a6cf439
DE
1541 Thus 7 or more means all following args should go on the stack.
1542
4fb4e4b8 1543 For v9, we also need to know whether a prototype is present. */
7a6cf439 1544
7a6cf439 1545struct sparc_args {
4fb4e4b8 1546 int words; /* number of words passed so far */
5e7a8ee0
KH
1547 int prototype_p; /* nonzero if a prototype is present */
1548 int libcall_p; /* nonzero if a library call */
7a6cf439
DE
1549};
1550#define CUMULATIVE_ARGS struct sparc_args
1551
1bb87f28
JW
1552/* Initialize a variable CUM of type CUMULATIVE_ARGS
1553 for a call to a function whose data type is FNTYPE.
4fb4e4b8 1554 For a library call, FNTYPE is 0. */
1bb87f28 1555
0f6937fe 1556#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
563a317a 1557init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1bb87f28
JW
1558
1559/* Update the data in CUM to advance over an argument
1560 of mode MODE and data type TYPE.
4fb4e4b8 1561 TYPE is null for libcalls where that information may not be available. */
7a6cf439 1562
4fb4e4b8
DE
1563#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1564function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1bb87f28
JW
1565
1566/* Determine where to put an argument to a function.
1567 Value is zero to push the argument on the stack,
1568 or a hard register in which to store the argument.
1569
1570 MODE is the argument's machine mode.
1571 TYPE is the data type of the argument (as a tree).
1572 This is null for libcalls where that information may
1573 not be available.
1574 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1575 the preceding args and about the function being called.
1576 NAMED is nonzero if this argument is a named parameter
1577 (otherwise it is an extra parameter matching an ellipsis). */
1578
4fb4e4b8
DE
1579#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1580function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1bb87f28
JW
1581
1582/* Define where a function finds its arguments.
1583 This is different from FUNCTION_ARG because of register windows. */
1584
4fb4e4b8
DE
1585#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1586function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1bb87f28 1587
4fb4e4b8
DE
1588/* If defined, a C expression which determines whether, and in which direction,
1589 to pad out an argument with extra space. The value should be of type
1590 `enum direction': either `upward' to pad above the argument,
1591 `downward' to pad below, or `none' to inhibit padding. */
284d86e9 1592
4fb4e4b8
DE
1593#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1594function_arg_padding ((MODE), (TYPE))
1595
1596/* If defined, a C expression that gives the alignment boundary, in bits,
1597 of an argument with the specified mode and type. If it is not defined,
1598 PARM_BOUNDARY is used for all arguments.
1599 For sparc64, objects requiring 16 byte alignment are passed that way. */
1600
1601#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1602((TARGET_ARCH64 \
1603 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1604 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1605 ? 128 : PARM_BOUNDARY)
7a6cf439 1606\f
1bb87f28
JW
1607/* Define the information needed to generate branch and scc insns. This is
1608 stored from the compare operation. Note that we can't use "rtx" here
1609 since it hasn't been defined! */
1610
e2500fed
GK
1611extern GTY(()) rtx sparc_compare_op0;
1612extern GTY(()) rtx sparc_compare_op1;
8ec11fe9 1613extern GTY(()) rtx sparc_compare_emitted;
1bb87f28 1614
1bb87f28 1615\f
4b69d2a3
RS
1616/* Generate the special assembly code needed to tell the assembler whatever
1617 it might need to know about the return value of a function.
1618
56149abc 1619 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
4b69d2a3
RS
1620 information to the assembler relating to peephole optimization (done in
1621 the assembler). */
1622
1623#define ASM_DECLARE_RESULT(FILE, RESULT) \
4f70758f 1624 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
4b69d2a3 1625
1cb36a98 1626/* Output the special assembly code needed to tell the assembler some
3aabf9a5 1627 register is used as global register variable.
730f0207
JJ
1628
1629 SPARC 64bit psABI declares registers %g2 and %g3 as application
1630 registers and %g6 and %g7 as OS registers. Any object using them
1631 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1632 and how they are used (scratch or some global variable).
1633 Linker will then refuse to link together objects which use those
1634 registers incompatibly.
1635
1636 Unless the registers are used for scratch, two different global
1637 registers cannot be declared to the same name, so in the unlikely
1638 case of a global register variable occupying more than one register
1639 we prefix the second and following registers with .gnu.part1. etc. */
1640
94fcbf65 1641extern GTY(()) char sparc_hard_reg_printed[8];
1cb36a98
RH
1642
1643#ifdef HAVE_AS_REGISTER_PSEUDO_OP
1644#define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1645do { \
1646 if (TARGET_ARCH64) \
1647 { \
730f0207
JJ
1648 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1649 int reg; \
1650 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1651 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1cb36a98 1652 { \
730f0207
JJ
1653 if (reg == (REGNO)) \
1654 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1cb36a98
RH
1655 else \
1656 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
730f0207
JJ
1657 reg, reg - (REGNO), (NAME)); \
1658 sparc_hard_reg_printed[reg] = 1; \
1cb36a98
RH
1659 } \
1660 } \
1661} while (0)
1662#endif
1663
c4ce6853 1664\f
89a8b315
RH
1665/* Emit rtl for profiling. */
1666#define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
6f334f44 1667
89a8b315
RH
1668/* All the work done in PROFILE_HOOK, but still required. */
1669#define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1bb87f28 1670
2be15d0f 1671/* Set the name of the mcount function for the system. */
2be15d0f 1672#define MCOUNT_FUNCTION "*mcount"
c4ce6853 1673\f
1bb87f28
JW
1674/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1675 the stack pointer does not matter. The value is tested only in
1676 functions that have frame pointers.
1677 No definition is equivalent to always zero. */
1678
1bb87f28
JW
1679#define EXIT_IGNORE_STACK \
1680 (get_frame_size () != 0 \
1681 || current_function_calls_alloca || current_function_outgoing_args_size)
1682
deeeee8c 1683/* Define registers used by the epilogue and return instruction. */
9ac617d4
EB
1684#define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1685 || (current_function_calls_eh_return && (REGNO) == 1))
6a4bb1fa 1686\f
1bb87f28
JW
1687/* Length in units of the trampoline for entering a nested function. */
1688
c6b0465b
JC
1689#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1690
1691#define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1bb87f28
JW
1692
1693/* Emit RTL insns to initialize the variable parts of a trampoline.
1694 FNADDR is an RTX for the address of the function's pure code.
7a6cf439 1695 CXT is an RTX for the static chain value for the function. */
1bb87f28 1696
7a6cf439 1697#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
6f64bf5f 1698 if (TARGET_ARCH64) \
7a6cf439
DE
1699 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1700 else \
c6b0465b 1701 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
6a4bb1fa 1702\f
953fe179
JW
1703/* Generate RTL to flush the register windows so as to make arbitrary frames
1704 available. */
1705#define SETUP_FRAME_ADDRESSES() \
1706 emit_insn (gen_flush_register_windows ())
1707
1708/* Given an rtx for the address of a frame,
1709 return an rtx for the address of the word in the frame
60b85c4c 1710 that holds the dynamic chain--the previous frame's address. */
8773135d
JS
1711#define DYNAMIC_CHAIN_ADDRESS(frame) \
1712 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
953fe179 1713
224869d9
EB
1714/* Given an rtx for the frame pointer,
1715 return an rtx for the address of the frame. */
1716#define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1717
953fe179
JW
1718/* The return address isn't on the stack, it is in a register, so we can't
1719 access it from the current frame pointer. We can access it from the
1720 previous frame pointer though by reading a value from the register window
1721 save area. */
1722#define RETURN_ADDR_IN_PREVIOUS_FRAME
1723
5b6faa70 1724/* This is the offset of the return address to the true next instruction to be
80ffc95e 1725 executed for the current function. */
6f64bf5f
DE
1726#define RETURN_ADDR_OFFSET \
1727 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
5b6faa70 1728
953fe179
JW
1729/* The current return address is in %i7. The return address of anything
1730 farther back is in the register window save area at [%fp+60]. */
1731/* ??? This ignores the fact that the actual return address is +8 for normal
1732 returns, and +12 for structure returns. */
1733#define RETURN_ADDR_RTX(count, frame) \
1734 ((count == -1) \
284d86e9
JC
1735 ? gen_rtx_REG (Pmode, 31) \
1736 : gen_rtx_MEM (Pmode, \
c5c76735 1737 memory_address (Pmode, plus_constant (frame, \
cd49f073
AM
1738 15 * UNITS_PER_WORD \
1739 + SPARC_STACK_BIAS))))
9704efe6 1740
d60bee3a
DE
1741/* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1742 +12, but always using +8 is close enough for frame unwind purposes.
1743 Actually, just using %o7 is close enough for unwinding, but %o7+8
1744 is something you can return to. */
1745#define INCOMING_RETURN_ADDR_RTX \
c5c76735 1746 plus_constant (gen_rtx_REG (word_mode, 15), 8)
8034da37 1747#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
d60bee3a
DE
1748
1749/* The offset from the incoming value of %sp to the top of the stack frame
1750 for the current function. On sparc64, we have to account for the stack
1751 bias if present. */
1752#define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1753
1150a841
RH
1754/* Describe how we implement __builtin_eh_return. */
1755#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1756#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1757#define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
17e9e88c
JJ
1758
1759/* Select a format to encode pointers in exception handling data. CODE
1760 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1761 true if the symbol may be affected by dynamic relocations.
1762
1763 If assembler and linker properly support .uaword %r_disp32(foo),
1764 then use PC relative 32-bit relocations instead of absolute relocs
1765 for shared libraries. On sparc64, use pc relative 32-bit relocs even
cf7b8b0d
JJ
1766 for binaries, to save memory.
1767
1768 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1769 symbol %r_disp32() is against was not local, but .hidden. In that
1770 case, we have to use DW_EH_PE_absptr for pic personality. */
17e9e88c 1771#ifdef HAVE_AS_SPARC_UA_PCREL
cf7b8b0d 1772#ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
17e9e88c
JJ
1773#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1774 (flag_pic \
1775 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1776 : ((TARGET_ARCH64 && ! GLOBAL) \
1777 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1778 : DW_EH_PE_absptr))
cf7b8b0d
JJ
1779#else
1780#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1781 (flag_pic \
1782 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1783 : ((TARGET_ARCH64 && ! GLOBAL) \
1784 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1785 : DW_EH_PE_absptr))
1786#endif
17e9e88c
JJ
1787
1788/* Emit a PC-relative relocation. */
1789#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1790 do { \
1791 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1792 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1793 assemble_name (FILE, LABEL); \
1794 fputc (')', FILE); \
1795 } while (0)
1796#endif
1bb87f28
JW
1797\f
1798/* Addressing modes, and classification of registers for them. */
1799
1bb87f28
JW
1800/* Macros to check register numbers against specific register classes. */
1801
1802/* These assume that REGNO is a hard or pseudo reg number.
1803 They give nonzero only if REGNO is a hard reg of the suitable class
1804 or a pseudo reg currently allocated to a suitable hard reg.
1805 Since they use reg_renumber, they are safe only once reg_renumber
1806 has been allocated, which happens in local-alloc.c. */
1807
1808#define REGNO_OK_FOR_INDEX_P(REGNO) \
563c12b0
RH
1809((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
1810 || (REGNO) == FRAME_POINTER_REGNUM \
1811 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1812
1813#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1814
1bb87f28 1815#define REGNO_OK_FOR_FP_P(REGNO) \
4f70758f
KG
1816 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1817 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
7a6cf439
DE
1818#define REGNO_OK_FOR_CCFP_P(REGNO) \
1819 (TARGET_V9 \
4f70758f
KG
1820 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1821 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1bb87f28
JW
1822
1823/* Now macros that check whether X is a register and also,
1824 strictly, whether it is in a specified class.
1825
1826 These macros are specific to the SPARC, and may be used only
1827 in code for printing assembler insns and in conditions for
1828 define_optimization. */
1829
1830/* 1 if X is an fp register. */
1831
1832#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
284d86e9
JC
1833
1834/* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
1835#define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1bb87f28
JW
1836\f
1837/* Maximum number of registers that can appear in a valid memory address. */
1838
1839#define MAX_REGS_PER_ADDRESS 2
1840
7aca9b9c
JW
1841/* Recognize any constant value that is a valid address.
1842 When PIC, we do not accept an address that would require a scratch reg
1843 to load into a register. */
1bb87f28 1844
5751a10b 1845#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
7aca9b9c
JW
1846
1847/* Define this, so that when PIC, reload won't try to reload invalid
1848 addresses which require two reload registers. */
1849
5751a10b 1850#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1bb87f28
JW
1851
1852/* Nonzero if the constant value X is a legitimate general operand.
f952a238
JJ
1853 Anything can be made to work except floating point constants.
1854 If TARGET_VIS, 0.0 can be made to work as well. */
1bb87f28 1855
5751a10b 1856#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1bb87f28
JW
1857
1858/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1859 and check its validity for a certain class.
1860 We have two alternate definitions for each of them.
1861 The usual definition accepts all pseudo regs; the other rejects
1862 them unless they have been allocated suitable hard regs.
1863 The symbol REG_OK_STRICT causes the latter definition to be used.
1864
1865 Most source files want to accept pseudo regs in the hope that
1866 they will get allocated to the class that the insn wants them to be in.
1867 Source files for reload pass need to be strict.
1868 After reload, it makes no difference, since pseudo regs have
1869 been eliminated by then. */
1870
e0d80184 1871/* Optional extra constraints for this machine.
1bb87f28 1872
62190128
DM
1873 'Q' handles floating point constants which can be moved into
1874 an integer register with a single sethi instruction.
1875
1876 'R' handles floating point constants which can be moved into
1877 an integer register with a single mov instruction.
1878
1879 'S' handles floating point constants which can be moved into
1880 an integer register using a high/lo_sum sequence.
1881
e0d80184
DM
1882 'T' handles memory addresses where the alignment is known to
1883 be at least 8 bytes.
1bb87f28 1884
e0d80184 1885 `U' handles all pseudo registers or a hard even numbered
7a31a340
DM
1886 integer register, needed for ldd/std instructions.
1887
1888 'W' handles the memory operand when moving operands in/out
c75d6010
JM
1889 of 'e' constraint floating point registers.
1890
1891 'Y' handles the zero vector constant. */
1bb87f28
JW
1892
1893#ifndef REG_OK_STRICT
1894
1895/* Nonzero if X is a hard reg that can be used as an index
1896 or if it is a pseudo reg. */
7a6cf439 1897#define REG_OK_FOR_INDEX_P(X) \
563c12b0
RH
1898 (REGNO (X) < 32 \
1899 || REGNO (X) == FRAME_POINTER_REGNUM \
1900 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1901
1bb87f28
JW
1902/* Nonzero if X is a hard reg that can be used as a base reg
1903 or if it is a pseudo reg. */
563c12b0 1904#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
7a6cf439 1905
7a31a340 1906/* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
f451b552
DM
1907 'W' is like 'T' but is assumed true on arch64.
1908
1909 Remember to accept pseudo-registers for memory constraints if reload is
1910 in progress. */
1911
1912#define EXTRA_CONSTRAINT(OP, C) \
1913 sparc_extra_constraint_check(OP, C, 0)
62190128 1914
1bb87f28
JW
1915#else
1916
1917/* Nonzero if X is a hard reg that can be used as an index. */
1918#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1919/* Nonzero if X is a hard reg that can be used as a base reg. */
1920#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1921
f451b552
DM
1922#define EXTRA_CONSTRAINT(OP, C) \
1923 sparc_extra_constraint_check(OP, C, 1)
62190128 1924
1bb87f28
JW
1925#endif
1926\f
1cb36a98
RH
1927/* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1928
1929#ifdef HAVE_AS_OFFSETABLE_LO10
1930#define USE_AS_OFFSETABLE_LO10 1
1931#else
1932#define USE_AS_OFFSETABLE_LO10 0
1933#endif
1934\f
1bb87f28
JW
1935/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1936 that is a valid memory address for an instruction.
1937 The MODE argument is the machine mode for the MEM expression
1938 that wants to use this address.
1939
1940 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1941 ordinarily. This changes a bit when generating PIC.
1942
1943 If you change this, execute "rm explow.o recog.o reload.o". */
1944
731458a4
EB
1945#define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
1946
bec2e359
JW
1947#define RTX_OK_FOR_BASE_P(X) \
1948 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1949 || (GET_CODE (X) == SUBREG \
1950 && GET_CODE (SUBREG_REG (X)) == REG \
1951 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1952
1953#define RTX_OK_FOR_INDEX_P(X) \
1954 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1955 || (GET_CODE (X) == SUBREG \
1956 && GET_CODE (SUBREG_REG (X)) == REG \
1957 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1958
1959#define RTX_OK_FOR_OFFSET_P(X) \
ce3e1311 1960 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
3aabf9a5 1961
1cb36a98
RH
1962#define RTX_OK_FOR_OLO10_P(X) \
1963 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
bec2e359 1964
5751a10b 1965#ifdef REG_OK_STRICT
1bb87f28 1966#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
5751a10b
JJ
1967{ \
1968 if (legitimate_address_p (MODE, X, 1)) \
bec2e359 1969 goto ADDR; \
5751a10b
JJ
1970}
1971#else
1972#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1973{ \
1974 if (legitimate_address_p (MODE, X, 0)) \
1bb87f28
JW
1975 goto ADDR; \
1976}
5751a10b 1977#endif
731458a4
EB
1978
1979/* Go to LABEL if ADDR (a legitimate address expression)
1980 has an effect that depends on the machine mode it is used for.
1981
1982 In PIC mode,
1983
1984 (mem:HI [%l7+a])
1985
1986 is not equivalent to
1987
1988 (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
1989
1990 because [%l7+a+1] is interpreted as the address of (a+1). */
1991
1992#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1993{ \
1994 if (flag_pic == 1) \
1995 { \
1996 if (GET_CODE (ADDR) == PLUS) \
1997 { \
1998 rtx op0 = XEXP (ADDR, 0); \
1999 rtx op1 = XEXP (ADDR, 1); \
2000 if (op0 == pic_offset_table_rtx \
2001 && SYMBOLIC_CONST (op1)) \
2002 goto LABEL; \
2003 } \
2004 } \
2005}
1bb87f28
JW
2006\f
2007/* Try machine-dependent ways of modifying an illegitimate address
2008 to be legitimate. If we find one, return the new, valid address.
2009 This macro is used in only one place: `memory_address' in explow.c.
2010
2011 OLDX is the address as it was before break_out_memory_refs was called.
2012 In some cases it is useful to look at this to decide what needs to be done.
2013
2014 MODE and WIN are passed so that this macro can use
2015 GO_IF_LEGITIMATE_ADDRESS.
2016
2017 It is always safe for this macro to do nothing. It exists to recognize
2018 opportunities to optimize the output. */
2019
2020/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1bb87f28 2021#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
5751a10b
JJ
2022{ \
2023 (X) = legitimize_address (X, OLDX, MODE); \
2024 if (memory_address_p (MODE, X)) \
2025 goto WIN; \
2026}
1bb87f28 2027
8947065c
RH
2028/* Try a machine-dependent way of reloading an illegitimate address
2029 operand. If we find one, push the reload and jump to WIN. This
2030 macro is used in only one place: `find_reloads_address' in reload.c.
2031
56149abc 2032 For SPARC 32, we wish to handle addresses by splitting them into
3aabf9a5 2033 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
1256ed02
JL
2034 This cuts the number of extra insns by one.
2035
2036 Do nothing when generating PIC code and the address is a
2037 symbolic operand or requires a scratch register. */
2038
8947065c
RH
2039#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2040do { \
2041 /* Decompose SImode constants into hi+lo_sum. We do have to \
2042 rerecognize what we produce, so be careful. */ \
2043 if (CONSTANT_P (X) \
2f15e255 2044 && (MODE != TFmode || TARGET_ARCH64) \
8947065c 2045 && GET_MODE (X) == SImode \
1256ed02
JL
2046 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2047 && ! (flag_pic \
78eca9f2 2048 && (symbolic_operand (X, Pmode) \
2f15e255
RH
2049 || pic_address_needs_scratch (X))) \
2050 && sparc_cmodel <= CM_MEDLOW) \
8947065c
RH
2051 { \
2052 X = gen_rtx_LO_SUM (GET_MODE (X), \
2053 gen_rtx_HIGH (GET_MODE (X), X), X); \
df4ae160 2054 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
8947065c
RH
2055 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2056 OPNUM, TYPE); \
2057 goto WIN; \
2058 } \
2059 /* ??? 64-bit reloads. */ \
2060} while (0)
1bb87f28
JW
2061\f
2062/* Specify the machine mode that this machine uses
2063 for the index in the tablejump instruction. */
67cb8900
JJ
2064/* If we ever implement any of the full models (such as CM_FULLANY),
2065 this has to be DImode in that case */
d1accaa3 2066#ifdef HAVE_GAS_SUBSECTION_ORDERING
67cb8900
JJ
2067#define CASE_VECTOR_MODE \
2068(! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
d1accaa3
JJ
2069#else
2070/* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
80ffc95e 2071 we have to sign extend which slows things down. */
d1accaa3
JJ
2072#define CASE_VECTOR_MODE \
2073(! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2074#endif
1bb87f28 2075
1bb87f28
JW
2076/* Define this as 1 if `char' should by default be signed; else as 0. */
2077#define DEFAULT_SIGNED_CHAR 1
2078
2079/* Max number of bytes we can move from memory to memory
2080 in one reasonably fast instruction. */
2eef2ef1 2081#define MOVE_MAX 8
1bb87f28 2082
5162e02a 2083/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 2084 move-instruction pairs, we will do a movmem or libcall instead. */
5162e02a
DM
2085
2086#define MOVE_RATIO (optimize_size ? 3 : 8)
2087
9a63901f
RK
2088/* Define if operations between registers always perform the operation
2089 on the full register even if a narrower mode is specified. */
2090#define WORD_REGISTER_OPERATIONS
2091
2092/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2093 will either zero-extend or sign-extend. The value of this macro should
2094 be the code that says which one of the two operations is implicitly
f822d252 2095 done, UNKNOWN if none. */
9a63901f 2096#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1bb87f28
JW
2097
2098/* Nonzero if access to memory by bytes is slow and undesirable.
2099 For RISC chips, it means that access to memory by bytes is no
2100 better than access by words when possible, so grab a whole word
2101 and maybe make use of that. */
2102#define SLOW_BYTE_ACCESS 1
2103
d969caf8 2104/* Define this to be nonzero if shift instructions ignore all but the low-order
80ffc95e 2105 few bits. */
d969caf8 2106#define SHIFT_COUNT_TRUNCATED 1
1bb87f28
JW
2107
2108/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2109 is done just by pretending it is already truncated. */
2110#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2111
ed38d6fe 2112/* Specify the machine mode used for addresses. */
3276910d 2113#define Pmode (TARGET_ARCH64 ? DImode : SImode)
1bb87f28 2114
1bb87f28 2115/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554 2116 return the mode to be used for the comparison. For floating-point,
7913f3d0
RH
2117 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2118 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
922bd191 2119 processing is needed. */
e267e177 2120#define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1bb87f28 2121
5e7a8ee0 2122/* Return nonzero if MODE implies a floating point inequality can be
56149abc 2123 reversed. For SPARC this is always true because we have a full
46238b7d
JJ
2124 compliment of ordered and unordered comparisons, but until generic
2125 code knows how to reverse it correctly we keep the old definition. */
2126#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
b331b745 2127
3276910d
RK
2128/* A function address in a call instruction for indexing purposes. */
2129#define FUNCTION_MODE Pmode
1bb87f28
JW
2130
2131/* Define this if addresses of constant functions
2132 shouldn't be put through pseudo regs where they can be cse'd.
2133 Desirable on machines where ordinary constants are expensive
2134 but a CALL with constant address is cheap. */
2135#define NO_FUNCTION_CSE
2136
2137/* alloca should avoid clobbering the old register save area. */
2138#define SETJMP_VIA_SAVE_AREA
2139
c15c90bb
ZW
2140/* The _Q_* comparison libcalls return booleans. */
2141#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
8248e2bc 2142
4e7d5d27
DM
2143/* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2144 that the inputs are fully consumed before the output memory is clobbered. */
2145
2146#define TARGET_BUGGY_QP_LIB 0
2147
c15c90bb
ZW
2148/* Assume by default that we do not have the Solaris-specific conversion
2149 routines nor 64-bit integer multiply and divide routines. */
78e9b5df 2150
45dcc026
JJ
2151#define SUN_CONVERSION_LIBFUNCS 0
2152#define DITF_CONVERSION_LIBFUNCS 0
2153#define SUN_INTEGER_MULTIPLY_64 0
c5c60e15 2154
1bb87f28 2155/* Compute extra cost of moving data between one register class
bfd6bc60 2156 and another. */
284d86e9 2157#define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
cf011243 2158#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
284d86e9
JC
2159 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2160 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
bfd6bc60 2161 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
fae15c93 2162 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
4c837a1e 2163 || sparc_cpu == PROCESSOR_ULTRASPARC3 \
9eeaed6e
DM
2164 || sparc_cpu == PROCESSOR_NIAGARA \
2165 || sparc_cpu == PROCESSOR_NIAGARA2) ? 12 : 6) : 2)
1bb87f28 2166
2f82dbf8
DM
2167/* Provide the cost of a branch. For pre-v9 processors we use
2168 a value of 3 to take into account the potential annulling of
2169 the delay slot (which ends up being a bubble in the pipeline slot)
2170 plus a cycle to take into consideration the instruction cache
2171 effects.
2172
2173 On v9 and later, which have branch prediction facilities, we set
2174 it to the depth of the pipeline as that is the cost of a
4c837a1e
DM
2175 mispredicted branch.
2176
2177 On Niagara, normal branches insert 3 bubbles into the pipe
9eeaed6e
DM
2178 and annulled branches insert 4 bubbles.
2179
2180 On Niagara-2, a not-taken branch costs 1 cycle whereas a taken
2181 branch costs 6 cycles. */
2f82dbf8
DM
2182
2183#define BRANCH_COST \
2184 ((sparc_cpu == PROCESSOR_V9 \
2185 || sparc_cpu == PROCESSOR_ULTRASPARC) \
84643cbf
DM
2186 ? 7 \
2187 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
4c837a1e
DM
2188 ? 9 \
2189 : (sparc_cpu == PROCESSOR_NIAGARA \
2190 ? 4 \
9eeaed6e
DM
2191 : (sparc_cpu == PROCESSOR_NIAGARA2 \
2192 ? 5 \
2193 : 3))))
1bb87f28
JW
2194\f
2195/* Control the assembler format that we output. */
2196
1ccfa253
DE
2197/* A C string constant describing how to begin a comment in the target
2198 assembler language. The compiler assumes that the comment will end at
2199 the end of the line. */
2200
2201#define ASM_COMMENT_START "!"
2202
1bb87f28
JW
2203/* Output to assembler file text saying following lines
2204 may contain character constants, extra white space, comments, etc. */
2205
2206#define ASM_APP_ON ""
2207
2208/* Output to assembler file text saying following lines
2209 no longer contain unusual constructs. */
2210
2211#define ASM_APP_OFF ""
2212
1bb87f28
JW
2213/* How to refer to registers in assembler output.
2214 This sequence is indexed by compiler's hard-register-number (see above). */
2215
7a6cf439
DE
2216#define REGISTER_NAMES \
2217{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2218 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2219 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2220 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2221 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2222 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2223 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2224 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2225 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2226 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2227 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2228 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
563c12b0 2229 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
ea3fa5f7 2230
c4ce6853 2231/* Define additional names for use in asm clobbers and asm declarations. */
ea3fa5f7 2232
c4ce6853
DE
2233#define ADDITIONAL_REGISTER_NAMES \
2234{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
ea3fa5f7 2235
5bcb3f13
JM
2236/* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2237 can run past this up to a continuation point. Once we used 1500, but
2238 a single entry in C++ can run more than 500 bytes, due to the length of
2239 mangled symbol names. dbxout.c should really be fixed to do
2240 continuations when they are actually needed instead of trying to
2241 guess... */
2242#define DBX_CONTIN_LENGTH 1000
1bb87f28 2243
1bb87f28
JW
2244/* This is how to output a command to make the user-level label named NAME
2245 defined for reference from other files. */
2246
506a61b1
KG
2247/* Globalizing directive for a label. */
2248#define GLOBAL_ASM_OP "\t.global "
1bb87f28 2249
80ffc95e 2250/* The prefix to add to user-visible assembler symbols. */
1bb87f28 2251
4e0c8ad2 2252#define USER_LABEL_PREFIX "_"
1bb87f28 2253
1bb87f28
JW
2254/* This is how to store into the string LABEL
2255 the symbol_ref name of an internal numbered label where
2256 PREFIX is the class of label and NUM is the number within the class.
2257 This is suitable for output with `assemble_name'. */
2258
2259#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4f70758f 2260 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1bb87f28 2261
e0d80184
DM
2262/* This is how we hook in and defer the case-vector until the end of
2263 the function. */
e0d80184
DM
2264#define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2265 sparc_defer_case_vector ((LAB),(VEC), 0)
2266
2267#define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2268 sparc_defer_case_vector ((LAB),(VEC), 1)
2269
1bb87f28
JW
2270/* This is how to output an element of a case-vector that is absolute. */
2271
2272#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
2273do { \
2274 char label[30]; \
2275 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
67cb8900 2276 if (CASE_VECTOR_MODE == SImode) \
7a6cf439 2277 fprintf (FILE, "\t.word\t"); \
7a6cf439
DE
2278 else \
2279 fprintf (FILE, "\t.xword\t"); \
4b69d2a3 2280 assemble_name (FILE, label); \
e0d80184 2281 fputc ('\n', FILE); \
4b69d2a3 2282} while (0)
1bb87f28
JW
2283
2284/* This is how to output an element of a case-vector that is relative.
2285 (SPARC uses such vectors only when generating PIC.) */
2286
33f7f353 2287#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
4b69d2a3
RS
2288do { \
2289 char label[30]; \
e0d80184 2290 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
67cb8900 2291 if (CASE_VECTOR_MODE == SImode) \
7a6cf439 2292 fprintf (FILE, "\t.word\t"); \
7a6cf439
DE
2293 else \
2294 fprintf (FILE, "\t.xword\t"); \
4b69d2a3 2295 assemble_name (FILE, label); \
e0d80184
DM
2296 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2297 fputc ('-', FILE); \
2298 assemble_name (FILE, label); \
2299 fputc ('\n', FILE); \
4b69d2a3 2300} while (0)
1bb87f28 2301
d1accaa3
JJ
2302/* This is what to output before and after case-vector (both
2303 relative and absolute). If .subsection -1 works, we put case-vectors
2304 at the beginning of the current section. */
2305
2306#ifdef HAVE_GAS_SUBSECTION_ORDERING
2307
2308#define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2309 fprintf(FILE, "\t.subsection\t-1\n")
2310
2311#define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2312 fprintf(FILE, "\t.previous\n")
2313
2314#endif
2315
1bb87f28
JW
2316/* This is how to output an assembler line
2317 that says to advance the location counter
2318 to a multiple of 2**LOG bytes. */
2319
2320#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2321 if ((LOG) != 0) \
2322 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2323
8e16ab99
SF
2324/* This is how to output an assembler line that says to advance
2325 the location counter to a multiple of 2**LOG bytes using the
2326 "nop" instruction as padding. */
2327#define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG) \
2328 if ((LOG) != 0) \
2329 fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2330
1bb87f28 2331#define ASM_OUTPUT_SKIP(FILE,SIZE) \
58e15542 2332 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1bb87f28
JW
2333
2334/* This says how to output an assembler line
2335 to define a global common symbol. */
2336
2337#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
b277ceaf 2338( fputs ("\t.common ", (FILE)), \
1bb87f28 2339 assemble_name ((FILE), (NAME)), \
58e15542 2340 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1bb87f28 2341
b277ceaf
JW
2342/* This says how to output an assembler line to define a local common
2343 symbol. */
1bb87f28 2344
b277ceaf
JW
2345#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2346( fputs ("\t.reserve ", (FILE)), \
2347 assemble_name ((FILE), (NAME)), \
58e15542 2348 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
b277ceaf 2349 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1bb87f28 2350
101d9529
JM
2351/* A C statement (sans semicolon) to output to the stdio stream
2352 FILE the assembler definition of uninitialized global DECL named
2353 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2354 Try to use asm_output_aligned_bss to implement this macro. */
2355
2356#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2357 do { \
101d9529
JM
2358 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2359 } while (0)
2360
471b6f1b 2361#define IDENT_ASM_OP "\t.ident\t"
c14f2655
RS
2362
2363/* Output #ident as a .ident. */
2364
2365#define ASM_OUTPUT_IDENT(FILE, NAME) \
b9f7d63e 2366 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
c14f2655 2367
4e5b002b
EB
2368/* Prettify the assembly. */
2369
2370extern int sparc_indent_opcode;
2371
2372#define ASM_OUTPUT_OPCODE(FILE, PTR) \
2373 do { \
2374 if (sparc_indent_opcode) \
2375 { \
2376 putc (' ', FILE); \
2377 sparc_indent_opcode = 0; \
2378 } \
2379 } while (0)
2380
38fc66ba
EB
2381#define SPARC_SYMBOL_REF_TLS_P(RTX) \
2382 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
2383
1bb87f28 2384#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
4e5b002b
EB
2385 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '(' \
2386 || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
1bb87f28
JW
2387
2388/* Print operand X (an rtx) in assembler syntax to file FILE.
2389 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2390 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2391
2392#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2393
2394/* Print a memory address as an operand to reference that memory location. */
2395
2396#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2397{ register rtx base, index = 0; \
2398 int offset = 0; \
2399 register rtx addr = ADDR; \
2400 if (GET_CODE (addr) == REG) \
2401 fputs (reg_names[REGNO (addr)], FILE); \
2402 else if (GET_CODE (addr) == PLUS) \
2403 { \
2404 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2405 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2406 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2407 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2408 else \
2409 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1cb36a98
RH
2410 if (GET_CODE (base) == LO_SUM) \
2411 { \
f5f7d171
JM
2412 gcc_assert (USE_AS_OFFSETABLE_LO10 \
2413 && TARGET_ARCH64 \
2414 && ! TARGET_CM_MEDMID); \
1cb36a98
RH
2415 output_operand (XEXP (base, 0), 0); \
2416 fputs ("+%lo(", FILE); \
2417 output_address (XEXP (base, 1)); \
2418 fprintf (FILE, ")+%d", offset); \
2419 } \
2420 else \
2421 { \
2422 fputs (reg_names[REGNO (base)], FILE); \
2423 if (index == 0) \
2424 fprintf (FILE, "%+d", offset); \
2425 else if (GET_CODE (index) == REG) \
2426 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2427 else if (GET_CODE (index) == SYMBOL_REF \
1910440e 2428 || GET_CODE (index) == LABEL_REF \
1cb36a98
RH
2429 || GET_CODE (index) == CONST) \
2430 fputc ('+', FILE), output_addr_const (FILE, index); \
f5f7d171 2431 else gcc_unreachable (); \
1cb36a98 2432 } \
1bb87f28
JW
2433 } \
2434 else if (GET_CODE (addr) == MINUS \
2435 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2436 { \
2437 output_addr_const (FILE, XEXP (addr, 0)); \
2438 fputs ("-(", FILE); \
2439 output_addr_const (FILE, XEXP (addr, 1)); \
2440 fputs ("-.)", FILE); \
2441 } \
2442 else if (GET_CODE (addr) == LO_SUM) \
2443 { \
2444 output_operand (XEXP (addr, 0), 0); \
e0d80184
DM
2445 if (TARGET_CM_MEDMID) \
2446 fputs ("+%l44(", FILE); \
2447 else \
2448 fputs ("+%lo(", FILE); \
1bb87f28
JW
2449 output_address (XEXP (addr, 1)); \
2450 fputc (')', FILE); \
2451 } \
2452 else if (flag_pic && GET_CODE (addr) == CONST \
2453 && GET_CODE (XEXP (addr, 0)) == MINUS \
2454 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2455 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2456 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2457 { \
2458 addr = XEXP (addr, 0); \
2459 output_addr_const (FILE, XEXP (addr, 0)); \
2460 /* Group the args of the second CONST in parenthesis. */ \
2461 fputs ("-(", FILE); \
2462 /* Skip past the second CONST--it does nothing for us. */\
2463 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2464 /* Close the parenthesis. */ \
2465 fputc (')', FILE); \
2466 } \
2467 else \
2468 { \
2469 output_addr_const (FILE, addr); \
2470 } \
2471}
2472
fdbe66f2
EB
2473/* TLS support defaulting to original Sun flavor. GNU extensions
2474 must be activated in separate configuration files. */
5751a10b
JJ
2475#ifdef HAVE_AS_TLS
2476#define TARGET_TLS 1
2477#else
2478#define TARGET_TLS 0
2479#endif
fdbe66f2 2480
5751a10b
JJ
2481#define TARGET_SUN_TLS TARGET_TLS
2482#define TARGET_GNU_TLS 0
2483
27a36778
MS
2484/* The number of Pmode words for the setjmp buffer. */
2485#define JMP_BUF_SIZE 12