]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/sparc/sparc.h
(untyped_call+1, untyped_call+2): Use std not st for fp
[thirdparty/gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
d95c3733
JW
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
25 %{a:/usr/lib/bb_link.o}"
1bb87f28 26
98ccf8fe 27/* Provide required defaults for linker -e and -d switches. */
1bb87f28 28
d6f04508 29#define LINK_SPEC \
197a1140 30 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
31
32/* Special flags to the Sun-4 assembler when using pipe for input. */
33
cf8a904b 34#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 35
885d8175 36/* Define macros to distinguish architectures. */
bc9e02ae
JW
37#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mf930:-D__sparclite__} \
38%{mf934:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 39
b1fc14e5
RS
40/* Prevent error on `-sun4' and `-target sun4' options. */
41/* This used to translate -dalign to -malign, but that is no good
42 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 43
b1fc14e5 44#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28
JW
45
46#define PTRDIFF_TYPE "int"
1ede52a6
RS
47/* In 2.4 it should work to delete this.
48 #define SIZE_TYPE "int" */
1bb87f28
JW
49#define WCHAR_TYPE "short unsigned int"
50#define WCHAR_TYPE_SIZE 16
51
98ccf8fe
RK
52/* Omit frame pointer at high optimization levels. */
53
1bb87f28
JW
54#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
55{ \
56 if (OPTIMIZE >= 2) \
57 { \
58 flag_omit_frame_pointer = 1; \
1bb87f28
JW
59 } \
60}
61
5b485d2c
JW
62/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
63 code into the rtl. Also, if we are profiling, we cannot eliminate
64 the frame pointer (because the return address will get smashed). */
65
66#define OVERRIDE_OPTIONS \
84ab3bfb
JW
67{ \
68 if (profile_flag || profile_block_flag) \
69 flag_omit_frame_pointer = 0, flag_pic = 0; \
70 SUBTARGET_OVERRIDE_OPTIONS \
71 }
72
73/* This is meant to be redefined in the host dependent files */
74#define SUBTARGET_OVERRIDE_OPTIONS
5b485d2c 75
1bb87f28
JW
76/* These compiler options take an argument. We ignore -target for now. */
77
78#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
79 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
80 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28
JW
81
82/* Names to predefine in the preprocessor for this target machine. */
83
f19c1a78
JW
84/* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
85 new versions, which have an incompatible va-sparc.h file. This matters
86 because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
87 wrong varargs file when it is compiled with a different version of gcc. */
88
65c42379
DE
89#define CPP_PREDEFINES \
90 "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \
91 -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)"
1bb87f28
JW
92
93/* Print subsidiary information on the compiler version in use. */
94
95#define TARGET_VERSION fprintf (stderr, " (sparc)");
96
97/* Generate DBX debugging information. */
98
99#define DBX_DEBUGGING_INFO
100
101/* Run-time compilation parameters selecting different hardware subsets. */
102
103extern int target_flags;
104
105/* Nonzero if we should generate code to use the fpu. */
106#define TARGET_FPU (target_flags & 1)
107
108/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
109 use fast return insns, but lose some generality. */
110#define TARGET_EPILOGUE (target_flags & 2)
111
95dea81f
JW
112/* Nonzero if we should assume that double pointers might be unaligned.
113 This can happen when linking gcc compiled code with other compilers,
114 because the ABI only guarantees 4 byte alignment. */
115#define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
1bb87f28 116
885d8175
JW
117/* Nonzero means that we should generate code for a v8 sparc. */
118#define TARGET_V8 (target_flags & 64)
119
bc9e02ae
JW
120/* Nonzero means that we should generate code for a sparclite.
121 This enables the sparclite specific instructions, but does not affect
122 whether FPU instructions are emitted. */
885d8175
JW
123#define TARGET_SPARCLITE (target_flags & 128)
124
5b485d2c 125/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
126 model, i.e. no save/restore instructions are generated, in the most
127 efficient manner. This code is not compatible with normal sparc code. */
128/* This is not a user selectable option yet, because it requires changes
129 that are not yet switchable via command line arguments. */
5b485d2c
JW
130#define TARGET_FRW (target_flags & 256)
131
9a1c7cd7
JW
132/* Nonzero means that we should generate code using a flat register window
133 model, i.e. no save/restore instructions are generated, but which is
134 compatible with normal sparc code. This is the same as above, except
135 that the frame pointer is %l6 instead of %fp. This code is not as efficient
136 as TARGET_FRW, because it has one less allocatable register. */
137/* This is not a user selectable option yet, because it requires changes
138 that are not yet switchable via command line arguments. */
139#define TARGET_FRW_COMPAT (target_flags & 512)
140
1bb87f28
JW
141/* Macro to define tables used to set the flags.
142 This is a list in braces of pairs in braces,
143 each pair being { "NAME", VALUE }
144 where VALUE is the bits to set or minus the bits to clear.
145 An empty string NAME is used to identify the default VALUE. */
146
bc9e02ae
JW
147/* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
148 The Fujitsu MB86934 is the recent sparclite chip, with an fup.
149 We use -mf930 and -mf934 options to choose which.
150 ??? These should perhaps be -mcpu= options. */
151
1bb87f28
JW
152#define TARGET_SWITCHES \
153 { {"fpu", 1}, \
26c5587d
JW
154 {"no-fpu", -1}, \
155 {"hard-float", 1}, \
1bb87f28
JW
156 {"soft-float", -1}, \
157 {"epilogue", 2}, \
158 {"no-epilogue", -2}, \
95dea81f
JW
159 {"unaligned-doubles", 4}, \
160 {"no-unaligned-doubles", -4},\
885d8175
JW
161 {"v8", 64}, \
162 {"no-v8", -64}, \
163 {"sparclite", 128}, \
164 {"no-sparclite", -128}, \
9a1c7cd7
JW
165/* {"frw", 256}, */ \
166/* {"no-frw", -256}, */ \
167/* {"frw-compat", 256+512}, */ \
168/* {"no-frw-compat", -(256+512)}, */ \
bc9e02ae
JW
169 {"f930", 128}, \
170 {"f930", -1}, \
171 {"f934", 128}, \
84ab3bfb 172 SUBTARGET_SWITCHES \
b1fc14e5 173 { "", TARGET_DEFAULT}}
1bb87f28
JW
174
175#define TARGET_DEFAULT 3
84ab3bfb
JW
176
177/* This is meant to be redefined in the host dependent files */
178#define SUBTARGET_SWITCHES
1bb87f28
JW
179\f
180/* target machine storage layout */
181
360b1451
JW
182#if 0
183/* ??? This does not work in SunOS 4.x, so it is not enabled here.
184 Instead, it is enabled in sol2.h, because it does work under Solaris. */
d667538b
JW
185/* Define for support of TFmode long double and REAL_ARITHMETIC.
186 Sparc ABI says that long double is 4 words. */
187#define LONG_DOUBLE_TYPE_SIZE 128
360b1451 188#endif
d667538b
JW
189
190/* Define for cross-compilation to a sparc target with no TFmode from a host
191 with a different float format (e.g. VAX). */
192#define REAL_ARITHMETIC
193
1bb87f28
JW
194/* Define this if most significant bit is lowest numbered
195 in instructions that operate on numbered bit-fields. */
196#define BITS_BIG_ENDIAN 1
197
198/* Define this if most significant byte of a word is the lowest numbered. */
199/* This is true on the SPARC. */
200#define BYTES_BIG_ENDIAN 1
201
202/* Define this if most significant word of a multiword number is the lowest
203 numbered. */
204/* Doubles are stored in memory with the high order word first. This
205 matters when cross-compiling. */
206#define WORDS_BIG_ENDIAN 1
207
b4ac57ab 208/* number of bits in an addressable storage unit */
1bb87f28
JW
209#define BITS_PER_UNIT 8
210
211/* Width in bits of a "word", which is the contents of a machine register.
212 Note that this is not necessarily the width of data type `int';
213 if using 16-bit ints on a 68000, this would still be 32.
214 But on a machine with 16-bit registers, this would be 16. */
215#define BITS_PER_WORD 32
216#define MAX_BITS_PER_WORD 32
217
218/* Width of a word, in units (bytes). */
219#define UNITS_PER_WORD 4
220
221/* Width in bits of a pointer.
222 See also the macro `Pmode' defined below. */
223#define POINTER_SIZE 32
224
225/* Allocation boundary (in *bits*) for storing arguments in argument list. */
226#define PARM_BOUNDARY 32
227
228/* Boundary (in *bits*) on which stack pointer should be aligned. */
229#define STACK_BOUNDARY 64
230
10d1b70f
JW
231/* ALIGN FRAMES on double word boundaries */
232
233#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
234
1bb87f28
JW
235/* Allocation boundary (in *bits*) for the code of a function. */
236#define FUNCTION_BOUNDARY 32
237
238/* Alignment of field after `int : 0' in a structure. */
239#define EMPTY_FIELD_BOUNDARY 32
240
241/* Every structure's size must be a multiple of this. */
242#define STRUCTURE_SIZE_BOUNDARY 8
243
244/* A bitfield declared as `int' forces `int' alignment for the struct. */
245#define PCC_BITFIELD_TYPE_MATTERS 1
246
247/* No data type wants to be aligned rounder than this. */
248#define BIGGEST_ALIGNMENT 64
249
77a02b01
JW
250/* The best alignment to use in cases where we have a choice. */
251#define FASTEST_ALIGNMENT 64
252
1bb87f28
JW
253/* Make strings word-aligned so strcpy from constants will be faster. */
254#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
255 ((TREE_CODE (EXP) == STRING_CST \
256 && (ALIGN) < FASTEST_ALIGNMENT) \
257 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
258
259/* Make arrays of chars word-aligned for the same reasons. */
260#define DATA_ALIGNMENT(TYPE, ALIGN) \
261 (TREE_CODE (TYPE) == ARRAY_TYPE \
262 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 263 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 264
b4ac57ab 265/* Set this nonzero if move instructions will actually fail to work
1bb87f28 266 when given unaligned data. */
b4ac57ab 267#define STRICT_ALIGNMENT 1
1bb87f28
JW
268
269/* Things that must be doubleword aligned cannot go in the text section,
270 because the linker fails to align the text section enough!
271 Put them in the data section. */
272#define MAX_TEXT_ALIGN 32
273
274#define SELECT_SECTION(T,RELOC) \
275{ \
276 if (TREE_CODE (T) == VAR_DECL) \
277 { \
278 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
279 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
280 && ! (flag_pic && (RELOC))) \
281 text_section (); \
282 else \
283 data_section (); \
284 } \
285 else if (TREE_CODE (T) == CONSTRUCTOR) \
286 { \
287 if (flag_pic != 0 && (RELOC) != 0) \
288 data_section (); \
289 } \
290 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
291 { \
292 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
293 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
294 data_section (); \
295 else \
296 text_section (); \
297 } \
298}
299
300/* Use text section for a constant
301 unless we need more alignment than that offers. */
302#define SELECT_RTX_SECTION(MODE, X) \
303{ \
304 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
305 && ! (flag_pic && symbolic_operand (X))) \
306 text_section (); \
307 else \
308 data_section (); \
309}
310\f
311/* Standard register usage. */
312
313/* Number of actual hardware registers.
314 The hardware registers are assigned numbers for the compiler
315 from 0 to just below FIRST_PSEUDO_REGISTER.
316 All registers that the compiler knows about must be given numbers,
317 even those that are not normally considered general registers.
318
319 SPARC has 32 integer registers and 32 floating point registers. */
320
321#define FIRST_PSEUDO_REGISTER 64
322
323/* 1 for registers that have pervasive standard uses
324 and are not available for the register allocator.
5b485d2c 325 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 326 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
327 g1 through g4 are free to use as temporaries.
328 g5 through g7 are reserved for the operating system. */
1bb87f28 329#define FIXED_REGISTERS \
d9ca49d5 330 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
331 0, 0, 0, 0, 0, 0, 1, 0, \
332 0, 0, 0, 0, 0, 0, 0, 0, \
333 0, 0, 0, 0, 0, 0, 1, 1, \
334 \
335 0, 0, 0, 0, 0, 0, 0, 0, \
336 0, 0, 0, 0, 0, 0, 0, 0, \
337 0, 0, 0, 0, 0, 0, 0, 0, \
338 0, 0, 0, 0, 0, 0, 0, 0}
339
340/* 1 for registers not available across function calls.
341 These must include the FIXED_REGISTERS and also any
342 registers that can be used without being saved.
343 The latter must include the registers where values are returned
344 and the register where structure-value addresses are passed.
345 Aside from that, you can include as many other registers as you like. */
346#define CALL_USED_REGISTERS \
347 {1, 1, 1, 1, 1, 1, 1, 1, \
348 1, 1, 1, 1, 1, 1, 1, 1, \
349 0, 0, 0, 0, 0, 0, 0, 0, \
350 0, 0, 0, 0, 0, 0, 1, 1, \
351 \
352 1, 1, 1, 1, 1, 1, 1, 1, \
353 1, 1, 1, 1, 1, 1, 1, 1, \
354 1, 1, 1, 1, 1, 1, 1, 1, \
355 1, 1, 1, 1, 1, 1, 1, 1}
356
26c5587d
JW
357/* If !TARGET_FPU, then make the fp registers fixed so that they won't
358 be allocated. */
359
360#define CONDITIONAL_REGISTER_USAGE \
361do \
362 { \
363 if (! TARGET_FPU) \
364 { \
365 int regno; \
366 for (regno = 32; regno < 64; regno++) \
367 fixed_regs[regno] = 1; \
368 } \
369 } \
370while (0)
371
1bb87f28
JW
372/* Return number of consecutive hard regs needed starting at reg REGNO
373 to hold something of mode MODE.
374 This is ordinarily the length in words of a value of mode MODE
375 but can be less for certain modes in special long registers.
376
377 On SPARC, ordinary registers hold 32 bits worth;
378 this means both integer and floating point registers.
379
380 We use vectors to keep this information about registers. */
381
382/* How many hard registers it takes to make a register of this mode. */
383extern int hard_regno_nregs[];
384
385#define HARD_REGNO_NREGS(REGNO, MODE) \
386 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
387
388/* Value is 1 if register/mode pair is acceptable on sparc. */
389extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
390
391/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
392 On SPARC, the cpu registers can hold any mode but the float registers
393 can only hold SFmode or DFmode. See sparc.c for how we
394 initialize this. */
395#define HARD_REGNO_MODE_OK(REGNO, MODE) \
396 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
397
398/* Value is 1 if it is a good idea to tie two pseudo registers
399 when one has mode MODE1 and one has mode MODE2.
400 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
401 for any hard reg, then this must be 0 for correct output. */
402#define MODES_TIEABLE_P(MODE1, MODE2) \
403 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
404
405/* Specify the registers used for certain standard purposes.
406 The values of these macros are register numbers. */
407
408/* SPARC pc isn't overloaded on a register that the compiler knows about. */
409/* #define PC_REGNUM */
410
411/* Register to use for pushing function arguments. */
412#define STACK_POINTER_REGNUM 14
413
414/* Actual top-of-stack address is 92 greater than the contents
415 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
416 for the ins and local registers, 4 byte for structure return address, and
417 24 bytes for the 6 register parameters. */
418#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
419
420/* Base register for access to local variables of the function. */
421#define FRAME_POINTER_REGNUM 30
422
423#if 0
424/* Register that is used for the return address. */
425#define RETURN_ADDR_REGNUM 15
426#endif
427
428/* Value should be nonzero if functions must have frame pointers.
429 Zero means the frame pointer need not be set up (and parms
430 may be accessed via the stack pointer) in functions that seem suitable.
431 This is computed in `reload', in reload1.c.
432
c0524a34 433 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
434extern int leaf_function;
435
436#define FRAME_POINTER_REQUIRED \
a72cb8ec 437 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
438
439/* C statement to store the difference between the frame pointer
440 and the stack pointer values immediately after the function prologue.
441
442 Note, we always pretend that this is a leaf function because if
443 it's not, there's no point in trying to eliminate the
444 frame pointer. If it is a leaf function, we guessed right! */
445#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5b485d2c
JW
446 ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
447 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
448
449/* Base register for access to arguments of the function. */
450#define ARG_POINTER_REGNUM 30
451
6098b63e
RK
452/* Register in which static-chain is passed to a function. This must
453 not be a register used by the prologue. */
454#define STATIC_CHAIN_REGNUM 2
1bb87f28
JW
455
456/* Register which holds offset table for position-independent
457 data references. */
458
459#define PIC_OFFSET_TABLE_REGNUM 23
460
461#define INITIALIZE_PIC initialize_pic ()
462#define FINALIZE_PIC finalize_pic ()
463
d9ca49d5 464/* Sparc ABI says that quad-precision floats and all structures are returned
59d7764f 465 in memory. */
d9ca49d5 466#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 467 (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
d9ca49d5 468
1bb87f28
JW
469/* Functions which return large structures get the address
470 to place the wanted value at offset 64 from the frame.
471 Must reserve 64 bytes for the in and local registers. */
472/* Used only in other #defines in this file. */
473#define STRUCT_VALUE_OFFSET 64
474
475#define STRUCT_VALUE \
476 gen_rtx (MEM, Pmode, \
477 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
478 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
479#define STRUCT_VALUE_INCOMING \
480 gen_rtx (MEM, Pmode, \
481 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
482 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
483\f
484/* Define the classes of registers for register constraints in the
485 machine description. Also define ranges of constants.
486
487 One of the classes must always be named ALL_REGS and include all hard regs.
488 If there is more than one class, another class must be named NO_REGS
489 and contain no registers.
490
491 The name GENERAL_REGS must be the name of a class (or an alias for
492 another name such as ALL_REGS). This is the class of registers
493 that is allowed by "g" or "r" in a register constraint.
494 Also, registers outside this class are allocated only when
495 instructions express preferences for them.
496
497 The classes must be numbered in nondecreasing order; that is,
498 a larger-numbered class must never be contained completely
499 in a smaller-numbered class.
500
501 For any two classes, it is very desirable that there be another
502 class that represents their union. */
503
504/* The SPARC has two kinds of registers, general and floating point. */
505
506enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
507
508#define N_REG_CLASSES (int) LIM_REG_CLASSES
509
510/* Give names of register classes as strings for dump file. */
511
512#define REG_CLASS_NAMES \
513 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
514
515/* Define which registers fit in which classes.
516 This is an initializer for a vector of HARD_REG_SET
517 of length N_REG_CLASSES. */
518
519#if 0 && defined (__GNUC__)
520#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
521#else
522#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
523#endif
524
525/* The same information, inverted:
526 Return the class number of the smallest class containing
527 reg number REGNO. This could be a conditional expression
528 or could index an array. */
529
530#define REGNO_REG_CLASS(REGNO) \
531 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
532
533/* This is the order in which to allocate registers
51f0e748
JW
534 normally.
535
536 We put %f0/%f1 last among the float registers, so as to make it more
6a4bb1fa 537 likely that a pseudo-register which dies in the float return register
51f0e748
JW
538 will get allocated to the float return register, thus saving a move
539 instruction at the end of the function. */
1bb87f28 540#define REG_ALLOC_ORDER \
b4ac57ab
RS
541{ 8, 9, 10, 11, 12, 13, 2, 3, \
542 15, 16, 17, 18, 19, 20, 21, 22, \
543 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 544 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
545 40, 41, 42, 43, 44, 45, 46, 47, \
546 48, 49, 50, 51, 52, 53, 54, 55, \
547 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 548 32, 33, \
4b69d2a3 549 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
550
551/* This is the order in which to allocate registers for
552 leaf functions. If all registers can fit in the "i" registers,
553 then we have the possibility of having a leaf function. */
554#define REG_LEAF_ALLOC_ORDER \
555{ 2, 3, 24, 25, 26, 27, 28, 29, \
556 15, 8, 9, 10, 11, 12, 13, \
557 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 558 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
559 40, 41, 42, 43, 44, 45, 46, 47, \
560 48, 49, 50, 51, 52, 53, 54, 55, \
561 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 562 32, 33, \
4b69d2a3 563 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
564
565#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
566
567#define LEAF_REGISTERS \
568{ 1, 1, 1, 1, 1, 1, 1, 1, \
569 0, 0, 0, 0, 0, 0, 1, 0, \
570 0, 0, 0, 0, 0, 0, 0, 0, \
571 1, 1, 1, 1, 1, 1, 0, 1, \
572 1, 1, 1, 1, 1, 1, 1, 1, \
573 1, 1, 1, 1, 1, 1, 1, 1, \
574 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 575 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
576
577extern char leaf_reg_remap[];
578#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
579extern char leaf_reg_backmap[];
580#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
581
1bb87f28
JW
582/* The class value for index registers, and the one for base regs. */
583#define INDEX_REG_CLASS GENERAL_REGS
584#define BASE_REG_CLASS GENERAL_REGS
585
586/* Get reg_class from a letter such as appears in the machine description. */
587
588#define REG_CLASS_FROM_LETTER(C) \
589 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
590
591/* The letters I, J, K, L and M in a register constraint string
592 can be used to stand for particular ranges of immediate operands.
593 This macro defines what the ranges are.
594 C is the letter, and VALUE is a constant value.
595 Return 1 if VALUE is in the range specified by C.
596
597 For SPARC, `I' is used for the range of constants an insn
598 can actually contain.
599 `J' is used for the range which is just zero (since that is R0).
9ad2c692 600 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
601
602#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
603
604#define CONST_OK_FOR_LETTER_P(VALUE, C) \
605 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
606 : (C) == 'J' ? (VALUE) == 0 \
607 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
608 : 0)
609
610/* Similar, but for floating constants, and defining letters G and H.
611 Here VALUE is the CONST_DOUBLE rtx itself. */
612
613#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
96f69de5 614 ((C) == 'G' ? fp_zero_operand (VALUE) \
1bb87f28
JW
615 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
616 : 0)
617
618/* Given an rtx X being reloaded into a reg required to be
619 in class CLASS, return the class of reg to actually use.
620 In general this is just CLASS; but on some machines
621 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
622/* We can't load constants into FP registers. We can't load any FP constant
623 if an 'E' constraint fails to match it. */
624#define PREFERRED_RELOAD_CLASS(X,CLASS) \
625 (CONSTANT_P (X) \
626 && ((CLASS) == FP_REGS \
627 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
628 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
629 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
630 ? NO_REGS : (CLASS))
1bb87f28
JW
631
632/* Return the register class of a scratch register needed to load IN into
633 a register of class CLASS in MODE.
634
635 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 636 into a register.
1bb87f28 637
ae51bd97
JW
638 Also, we need a temporary when loading/storing a HImode/QImode value
639 between memory and the FPU registers. This can happen when combine puts
640 a paradoxical subreg in a float/fix conversion insn. */
641
642#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
7aca9b9c 643 (((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
ae51bd97
JW
644 && (GET_CODE (IN) == MEM \
645 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
646 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
647
648#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
649 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
650 && (GET_CODE (IN) == MEM \
651 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
652 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 653
b924cef0
JW
654/* On SPARC it is not possible to directly move data between
655 GENERAL_REGS and FP_REGS. */
656#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
657 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
658 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 659
fe1f7f24
JW
660/* Return the stack location to use for secondary memory needed reloads. */
661#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
15f67e06
JW
662 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
663 GEN_INT (STARTING_FRAME_OFFSET)))
fe1f7f24 664
1bb87f28
JW
665/* Return the maximum number of consecutive registers
666 needed to represent mode MODE in a register of class CLASS. */
667/* On SPARC, this is the size of MODE in words. */
668#define CLASS_MAX_NREGS(CLASS, MODE) \
669 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
670\f
671/* Stack layout; function entry, exit and calling. */
672
673/* Define the number of register that can hold parameters.
674 These two macros are used only in other macro definitions below. */
675#define NPARM_REGS 6
676
677/* Define this if pushing a word on the stack
678 makes the stack pointer a smaller address. */
679#define STACK_GROWS_DOWNWARD
680
681/* Define this if the nominal address of the stack frame
682 is at the high-address end of the local variables;
683 that is, each additional local variable allocated
684 goes at a more negative offset in the frame. */
685#define FRAME_GROWS_DOWNWARD
686
687/* Offset within stack frame to start allocating local variables at.
688 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
689 first local allocated. Otherwise, it is the offset to the BEGINNING
690 of the first local allocated. */
15f67e06
JW
691/* This is 16 to allow space for one TFmode floating point value. */
692#define STARTING_FRAME_OFFSET (-16)
1bb87f28
JW
693
694/* If we generate an insn to push BYTES bytes,
695 this says how many the stack pointer really advances by.
696 On SPARC, don't define this because there are no push insns. */
697/* #define PUSH_ROUNDING(BYTES) */
698
699/* Offset of first parameter from the argument pointer register value.
700 This is 64 for the ins and locals, plus 4 for the struct-return reg
95dea81f
JW
701 even if this function isn't going to use it. */
702#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1bb87f28
JW
703
704/* When a parameter is passed in a register, stack space is still
705 allocated for it. */
706#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
707
708/* Keep the stack pointer constant throughout the function.
b4ac57ab 709 This is both an optimization and a necessity: longjmp
1bb87f28
JW
710 doesn't behave itself when the stack pointer moves within
711 the function! */
712#define ACCUMULATE_OUTGOING_ARGS
713
714/* Value is the number of bytes of arguments automatically
715 popped when returning from a subroutine call.
716 FUNTYPE is the data type of the function (as a tree),
717 or for a library call it is an identifier node for the subroutine name.
718 SIZE is the number of bytes of arguments passed on the stack. */
719
720#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
721
5b485d2c
JW
722/* Some subroutine macros specific to this machine.
723 When !TARGET_FPU, put float return values in the general registers,
724 since we don't have any fp registers. */
1bb87f28 725#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 726 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 727#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
728 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
729 : (TARGET_FRW ? 8 : 24))
1bb87f28 730#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 731#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28 732
92ea370b
TW
733/* Define this macro if the target machine has "register windows". This
734 C expression returns the register number as seen by the called function
735 corresponding to register number OUT as seen by the calling function.
736 Return OUT if register number OUT is not an outbound register. */
737
738#define INCOMING_REGNO(OUT) \
739 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
740
741/* Define this macro if the target machine has "register windows". This
742 C expression returns the register number as seen by the calling function
743 corresponding to register number IN as seen by the called function.
744 Return IN if register number IN is not an inbound register. */
745
746#define OUTGOING_REGNO(IN) \
747 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
748
1bb87f28
JW
749/* Define how to find the value returned by a function.
750 VALTYPE is the data type of the value (as a tree).
751 If the precise function being called is known, FUNC is its FUNCTION_DECL;
752 otherwise, FUNC is 0. */
753
754/* On SPARC the value is found in the first "output" register. */
755
756#define FUNCTION_VALUE(VALTYPE, FUNC) \
757 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
758
759/* But the called function leaves it in the first "input" register. */
760
761#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
762 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
763
764/* Define how to find the value returned by a library function
765 assuming the value has mode MODE. */
766
767#define LIBCALL_VALUE(MODE) \
768 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
769
770/* 1 if N is a possible register number for a function value
771 as seen by the caller.
772 On SPARC, the first "output" reg is used for integer values,
773 and the first floating point register is used for floating point values. */
774
775#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
776
777/* 1 if N is a possible register number for function argument passing.
778 On SPARC, these are the "output" registers. */
779
780#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
781\f
782/* Define a data type for recording info about an argument list
783 during the scan of that argument list. This data type should
784 hold all necessary information about the function itself
785 and about the args processed so far, enough to enable macros
786 such as FUNCTION_ARG to determine where the next arg should go.
787
788 On SPARC, this is a single integer, which is a number of words
789 of arguments scanned so far (including the invisible argument,
790 if any, which holds the structure-value-address).
791 Thus 7 or more means all following args should go on the stack. */
792
793#define CUMULATIVE_ARGS int
794
795#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
796 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
797
1bb87f28
JW
798/* Initialize a variable CUM of type CUMULATIVE_ARGS
799 for a call to a function whose data type is FNTYPE.
800 For a library call, FNTYPE is 0.
801
802 On SPARC, the offset always starts at 0: the first parm reg is always
803 the same reg. */
804
805#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
806
807/* Update the data in CUM to advance over an argument
808 of mode MODE and data type TYPE.
809 (TYPE is null for libcalls where that information may not be available.) */
810
811#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
812 ((CUM) += ((MODE) != BLKmode \
813 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
814 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
1bb87f28
JW
815
816/* Determine where to put an argument to a function.
817 Value is zero to push the argument on the stack,
818 or a hard register in which to store the argument.
819
820 MODE is the argument's machine mode.
821 TYPE is the data type of the argument (as a tree).
822 This is null for libcalls where that information may
823 not be available.
824 CUM is a variable of type CUMULATIVE_ARGS which gives info about
825 the preceding args and about the function being called.
826 NAMED is nonzero if this argument is a named parameter
827 (otherwise it is an extra parameter matching an ellipsis). */
828
829/* On SPARC the first six args are normally in registers
830 and the rest are pushed. Any arg that starts within the first 6 words
831 is at least partially passed in a register unless its data type forbids. */
832
833#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 834((CUM) < NPARM_REGS \
1bb87f28 835 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
836 && ((TYPE)==0 || (MODE) != BLKmode \
837 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 838 ? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 839 : 0)
1bb87f28
JW
840
841/* Define where a function finds its arguments.
842 This is different from FUNCTION_ARG because of register windows. */
843
844#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 845((CUM) < NPARM_REGS \
1bb87f28 846 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
847 && ((TYPE)==0 || (MODE) != BLKmode \
848 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 849 ? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 850 : 0)
1bb87f28
JW
851
852/* For an arg passed partly in registers and partly in memory,
853 this is the number of registers used.
854 For args passed entirely in registers or entirely in memory, zero.
855 Any arg that starts in the first 6 regs but won't entirely fit in them
856 needs partial registers on the Sparc. */
857
858#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
95dea81f 859 ((CUM) < NPARM_REGS \
1bb87f28 860 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
861 && ((TYPE)==0 || (MODE) != BLKmode \
862 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f
JW
863 && ((CUM) + ((MODE) == BLKmode \
864 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
865 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
866 ? (NPARM_REGS - (CUM)) \
1bb87f28
JW
867 : 0)
868
d9ca49d5
JW
869/* The SPARC ABI stipulates passing struct arguments (of any size) and
870 quad-precision floats by invisible reference. */
1bb87f28 871#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
872 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
873 || TREE_CODE (TYPE) == UNION_TYPE)) \
874 || (MODE == TFmode))
1bb87f28
JW
875
876/* Define the information needed to generate branch and scc insns. This is
877 stored from the compare operation. Note that we can't use "rtx" here
878 since it hasn't been defined! */
879
880extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
881
882/* Define the function that build the compare insn for scc and bcc. */
883
884extern struct rtx_def *gen_compare_reg ();
885\f
4b69d2a3
RS
886/* Generate the special assembly code needed to tell the assembler whatever
887 it might need to know about the return value of a function.
888
889 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
890 information to the assembler relating to peephole optimization (done in
891 the assembler). */
892
893#define ASM_DECLARE_RESULT(FILE, RESULT) \
894 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
895
1bb87f28
JW
896/* Output the label for a function definition. */
897
4b69d2a3
RS
898#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
899do { \
900 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
901 ASM_OUTPUT_LABEL (FILE, NAME); \
902} while (0)
1bb87f28 903
1bb87f28
JW
904/* This macro generates the assembly code for function entry.
905 FILE is a stdio stream to output the code to.
906 SIZE is an int: how many units of temporary storage to allocate.
907 Refer to the array `regs_ever_live' to determine which registers
908 to save; `regs_ever_live[I]' is nonzero if register number I
909 is ever used in the function. This macro is responsible for
910 knowing which registers should not be saved even if used. */
911
912/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
913 of memory. If any fpu reg is used in the function, we allocate
914 such a block here, at the bottom of the frame, just in case it's needed.
915
916 If this function is a leaf procedure, then we may choose not
917 to do a "save" insn. The decision about whether or not
918 to do this is made in regclass.c. */
919
920#define FUNCTION_PROLOGUE(FILE, SIZE) \
5b485d2c
JW
921 (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
922 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
923
924/* Output assembler code to FILE to increment profiler label # LABELNO
925 for profiling a function entry. */
926
d2a8e680
RS
927#define FUNCTION_PROFILER(FILE, LABELNO) \
928 do { \
929 fputs ("\tsethi %hi(", (FILE)); \
930 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
931 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
932 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
933 fputs ("),%o0,%o0\n", (FILE)); \
934 } while (0)
1bb87f28
JW
935
936/* Output assembler code to FILE to initialize this source file's
937 basic block profiling info, if that has not already been done. */
d2a8e680
RS
938/* FIXME -- this does not parameterize how it generates labels (like the
939 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
940
941#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
942 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
943 (LABELNO), (LABELNO))
944
945/* Output assembler code to FILE to increment the entry-count for
946 the BLOCKNO'th basic block in this source file. */
947
948#define BLOCK_PROFILER(FILE, BLOCKNO) \
949{ \
950 int blockn = (BLOCKNO); \
951 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
952\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
953 4 * blockn, 4 * blockn, 4 * blockn); \
954}
955
1bb87f28
JW
956/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
957 the stack pointer does not matter. The value is tested only in
958 functions that have frame pointers.
959 No definition is equivalent to always zero. */
960
961extern int current_function_calls_alloca;
962extern int current_function_outgoing_args_size;
963
964#define EXIT_IGNORE_STACK \
965 (get_frame_size () != 0 \
966 || current_function_calls_alloca || current_function_outgoing_args_size)
967
968/* This macro generates the assembly code for function exit,
969 on machines that need it. If FUNCTION_EPILOGUE is not defined
970 then individual return instructions are generated for each
971 return statement. Args are same as for FUNCTION_PROLOGUE.
972
973 The function epilogue should not depend on the current stack pointer!
974 It should use the frame pointer only. This is mandatory because
975 of alloca; we also take advantage of it to omit stack adjustments
976 before returning. */
977
978/* This declaration is needed due to traditional/ANSI
979 incompatibilities which cannot be #ifdefed away
980 because they occur inside of macros. Sigh. */
981extern union tree_node *current_function_decl;
982
983#define FUNCTION_EPILOGUE(FILE, SIZE) \
5b485d2c
JW
984 (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
985 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 986
5b485d2c
JW
987#define DELAY_SLOTS_FOR_EPILOGUE \
988 (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
1bb87f28 989#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5b485d2c
JW
990 (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
991 : eligible_for_epilogue_delay (trial, slots_filled))
6a4bb1fa 992\f
1bb87f28
JW
993/* Output assembler code for a block containing the constant parts
994 of a trampoline, leaving space for the variable parts. */
995
996/* On the sparc, the trampoline contains five instructions:
6098b63e
RK
997 sethi #TOP_OF_FUNCTION,%g1
998 or #BOTTOM_OF_FUNCTION,%g1,%g1
999 sethi #TOP_OF_STATIC,%g2
1000 jmp g1
1001 or #BOTTOM_OF_STATIC,%g2,%g2 */
1bb87f28
JW
1002#define TRAMPOLINE_TEMPLATE(FILE) \
1003{ \
1004 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1005 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1006 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
6098b63e 1007 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000)); \
1bb87f28
JW
1008 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1009}
1010
1011/* Length in units of the trampoline for entering a nested function. */
1012
1013#define TRAMPOLINE_SIZE 20
1014
1015/* Emit RTL insns to initialize the variable parts of a trampoline.
1016 FNADDR is an RTX for the address of the function's pure code.
1017 CXT is an RTX for the static chain value for the function.
1018
1019 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
1020 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
1021 (to store insns). This is a bit excessive. Perhaps a different
297c72b6
RS
1022 mechanism would be better here.
1023
1024 Emit 3 FLUSH instructions (UNSPEC_VOLATILE 2) to synchonize the data
1025 and instruction caches. */
1bb87f28
JW
1026
1027#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1028{ \
1029 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1030 size_int (10), 0, 1); \
1031 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1032 size_int (10), 0, 1); \
1033 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1034 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1035 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1036 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1037 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1038 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1039 rtx g1_ori = gen_rtx (HIGH, SImode, \
1040 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1041 rtx g2_ori = gen_rtx (HIGH, SImode, \
1042 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1043 rtx tem = gen_reg_rtx (SImode); \
6098b63e 1044 emit_move_insn (tem, g1_sethi); \
1bb87f28
JW
1045 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1046 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
6098b63e 1047 emit_move_insn (tem, g1_ori); \
1bb87f28
JW
1048 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1049 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
6098b63e 1050 emit_move_insn (tem, g2_sethi); \
1bb87f28
JW
1051 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1052 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
6098b63e 1053 emit_move_insn (tem, g2_ori); \
1bb87f28
JW
1054 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1055 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
297c72b6
RS
1056 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1057 gen_rtvec (1, plus_constant (TRAMP, 0)), \
1058 2)); \
1059 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1060 gen_rtvec (1, plus_constant (TRAMP, 8)), \
1061 2)); \
1062 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1063 gen_rtvec (1, plus_constant (TRAMP, 16)), \
1064 2)); \
1bb87f28 1065}
6a4bb1fa 1066\f
9a1c7cd7
JW
1067/* Generate necessary RTL for __builtin_saveregs().
1068 ARGLIST is the argument list; see expr.c. */
1069extern struct rtx_def *sparc_builtin_saveregs ();
1070#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1071
1072/* Generate RTL to flush the register windows so as to make arbitrary frames
1073 available. */
1074#define SETUP_FRAME_ADDRESSES() \
1075 emit_insn (gen_flush_register_windows ())
1076
1077/* Given an rtx for the address of a frame,
1078 return an rtx for the address of the word in the frame
1079 that holds the dynamic chain--the previous frame's address. */
1080#define DYNAMIC_CHAIN_ADDRESS(frame) \
1081 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
1082
1083/* The return address isn't on the stack, it is in a register, so we can't
1084 access it from the current frame pointer. We can access it from the
1085 previous frame pointer though by reading a value from the register window
1086 save area. */
1087#define RETURN_ADDR_IN_PREVIOUS_FRAME
1088
1089/* The current return address is in %i7. The return address of anything
1090 farther back is in the register window save area at [%fp+60]. */
1091/* ??? This ignores the fact that the actual return address is +8 for normal
1092 returns, and +12 for structure returns. */
1093#define RETURN_ADDR_RTX(count, frame) \
1094 ((count == -1) \
1095 ? gen_rtx (REG, Pmode, 31) \
1096 : copy_to_reg (gen_rtx (MEM, Pmode, \
1097 memory_address (Pmode, plus_constant (frame, 60)))))
1bb87f28
JW
1098\f
1099/* Addressing modes, and classification of registers for them. */
1100
1101/* #define HAVE_POST_INCREMENT */
1102/* #define HAVE_POST_DECREMENT */
1103
1104/* #define HAVE_PRE_DECREMENT */
1105/* #define HAVE_PRE_INCREMENT */
1106
1107/* Macros to check register numbers against specific register classes. */
1108
1109/* These assume that REGNO is a hard or pseudo reg number.
1110 They give nonzero only if REGNO is a hard reg of the suitable class
1111 or a pseudo reg currently allocated to a suitable hard reg.
1112 Since they use reg_renumber, they are safe only once reg_renumber
1113 has been allocated, which happens in local-alloc.c. */
1114
1115#define REGNO_OK_FOR_INDEX_P(REGNO) \
1116(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1117#define REGNO_OK_FOR_BASE_P(REGNO) \
1118(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1119#define REGNO_OK_FOR_FP_P(REGNO) \
1120(((REGNO) ^ 0x20) < 32 \
1121 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1122
1123/* Now macros that check whether X is a register and also,
1124 strictly, whether it is in a specified class.
1125
1126 These macros are specific to the SPARC, and may be used only
1127 in code for printing assembler insns and in conditions for
1128 define_optimization. */
1129
1130/* 1 if X is an fp register. */
1131
1132#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1133\f
1134/* Maximum number of registers that can appear in a valid memory address. */
1135
1136#define MAX_REGS_PER_ADDRESS 2
1137
7aca9b9c
JW
1138/* Recognize any constant value that is a valid address.
1139 When PIC, we do not accept an address that would require a scratch reg
1140 to load into a register. */
1bb87f28 1141
6eff269e
BK
1142#define CONSTANT_ADDRESS_P(X) \
1143 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
7aca9b9c
JW
1144 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1145 || (GET_CODE (X) == CONST \
1146 && ! (flag_pic && pic_address_needs_scratch (X))))
1147
1148/* Define this, so that when PIC, reload won't try to reload invalid
1149 addresses which require two reload registers. */
1150
1151#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
1bb87f28
JW
1152
1153/* Nonzero if the constant value X is a legitimate general operand.
1154 Anything can be made to work except floating point constants. */
1155
1156#define LEGITIMATE_CONSTANT_P(X) \
1157 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1158
1159/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1160 and check its validity for a certain class.
1161 We have two alternate definitions for each of them.
1162 The usual definition accepts all pseudo regs; the other rejects
1163 them unless they have been allocated suitable hard regs.
1164 The symbol REG_OK_STRICT causes the latter definition to be used.
1165
1166 Most source files want to accept pseudo regs in the hope that
1167 they will get allocated to the class that the insn wants them to be in.
1168 Source files for reload pass need to be strict.
1169 After reload, it makes no difference, since pseudo regs have
1170 been eliminated by then. */
1171
1172/* Optional extra constraints for this machine. Borrowed from romp.h.
1173
1174 For the SPARC, `Q' means that this is a memory operand but not a
1175 symbolic memory operand. Note that an unassigned pseudo register
1176 is such a memory operand. Needed because reload will generate
1177 these things in insns and then not re-recognize the insns, causing
1178 constrain_operands to fail.
1179
1bb87f28
JW
1180 `S' handles constraints for calls. */
1181
1182#ifndef REG_OK_STRICT
1183
1184/* Nonzero if X is a hard reg that can be used as an index
1185 or if it is a pseudo reg. */
1186#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1187/* Nonzero if X is a hard reg that can be used as a base reg
1188 or if it is a pseudo reg. */
1189#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1190
1191#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1192 ((C) == 'Q' \
1193 ? ((GET_CODE (OP) == MEM \
1194 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1195 && ! symbolic_memory_operand (OP, VOIDmode)) \
1196 || (reload_in_progress && GET_CODE (OP) == REG \
1197 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
19858600
JL
1198 : (C) == 'T' \
1199 ? (mem_aligned_8 (OP)) \
1200 : (C) == 'U' \
1201 ? (register_ok_for_ldd (OP)) \
db5e449c 1202 : 0)
19858600 1203
1bb87f28
JW
1204#else
1205
1206/* Nonzero if X is a hard reg that can be used as an index. */
1207#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1208/* Nonzero if X is a hard reg that can be used as a base reg. */
1209#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1210
1211#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1212 ((C) == 'Q' \
1213 ? (GET_CODE (OP) == REG \
1214 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1215 && reg_renumber[REGNO (OP)] < 0) \
1216 : GET_CODE (OP) == MEM) \
9ad2c692 1217 : (C) == 'T' \
b165d471 1218 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
9ad2c692 1219 : (C) == 'U' \
b165d471
JW
1220 ? (GET_CODE (OP) == REG \
1221 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
1222 || reg_renumber[REGNO (OP)] > 0) \
1223 && register_ok_for_ldd (OP)) : 0)
1bb87f28
JW
1224#endif
1225\f
1226/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1227 that is a valid memory address for an instruction.
1228 The MODE argument is the machine mode for the MEM expression
1229 that wants to use this address.
1230
1231 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1232 ordinarily. This changes a bit when generating PIC.
1233
1234 If you change this, execute "rm explow.o recog.o reload.o". */
1235
bec2e359
JW
1236#define RTX_OK_FOR_BASE_P(X) \
1237 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1238 || (GET_CODE (X) == SUBREG \
1239 && GET_CODE (SUBREG_REG (X)) == REG \
1240 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1241
1242#define RTX_OK_FOR_INDEX_P(X) \
1243 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1244 || (GET_CODE (X) == SUBREG \
1245 && GET_CODE (SUBREG_REG (X)) == REG \
1246 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1247
1248#define RTX_OK_FOR_OFFSET_P(X) \
1249 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1250
1bb87f28 1251#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1252{ if (RTX_OK_FOR_BASE_P (X)) \
1253 goto ADDR; \
1bb87f28
JW
1254 else if (GET_CODE (X) == PLUS) \
1255 { \
bec2e359
JW
1256 register rtx op0 = XEXP (X, 0); \
1257 register rtx op1 = XEXP (X, 1); \
1258 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1259 { \
bec2e359 1260 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1261 goto ADDR; \
1262 else if (flag_pic == 1 \
bec2e359
JW
1263 && GET_CODE (op1) != REG \
1264 && GET_CODE (op1) != LO_SUM \
7aca9b9c
JW
1265 && GET_CODE (op1) != MEM \
1266 && (GET_CODE (op1) != CONST_INT \
1267 || SMALL_INT (op1))) \
1bb87f28
JW
1268 goto ADDR; \
1269 } \
bec2e359 1270 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1271 { \
bec2e359
JW
1272 if (RTX_OK_FOR_INDEX_P (op1) \
1273 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1274 goto ADDR; \
1275 } \
bec2e359 1276 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1277 { \
bec2e359
JW
1278 if (RTX_OK_FOR_INDEX_P (op0) \
1279 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1280 goto ADDR; \
1281 } \
1282 } \
bec2e359
JW
1283 else if (GET_CODE (X) == LO_SUM) \
1284 { \
1285 register rtx op0 = XEXP (X, 0); \
1286 register rtx op1 = XEXP (X, 1); \
1287 if (RTX_OK_FOR_BASE_P (op0) \
1288 && CONSTANT_P (op1)) \
1289 goto ADDR; \
1290 } \
1bb87f28
JW
1291 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1292 goto ADDR; \
1293}
1294\f
1295/* Try machine-dependent ways of modifying an illegitimate address
1296 to be legitimate. If we find one, return the new, valid address.
1297 This macro is used in only one place: `memory_address' in explow.c.
1298
1299 OLDX is the address as it was before break_out_memory_refs was called.
1300 In some cases it is useful to look at this to decide what needs to be done.
1301
1302 MODE and WIN are passed so that this macro can use
1303 GO_IF_LEGITIMATE_ADDRESS.
1304
1305 It is always safe for this macro to do nothing. It exists to recognize
1306 opportunities to optimize the output. */
1307
1308/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1309extern struct rtx_def *legitimize_pic_address ();
1310#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1311{ rtx sparc_x = (X); \
1312 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1313 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1314 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1315 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1316 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1317 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1318 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1319 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1320 XEXP (X, 1)); \
1321 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1322 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1323 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1324 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1325 goto WIN; \
7aca9b9c 1326 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
1bb87f28
JW
1327 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1328 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1329 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1330 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1331 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1332 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1333 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1334 || GET_CODE (X) == LABEL_REF) \
1335 (X) = gen_rtx (LO_SUM, Pmode, \
1336 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1337 if (memory_address_p (MODE, X)) \
1338 goto WIN; }
1339
1340/* Go to LABEL if ADDR (a legitimate address expression)
1341 has an effect that depends on the machine mode it is used for.
1342 On the SPARC this is never true. */
1343
1344#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1345\f
1346/* Specify the machine mode that this machine uses
1347 for the index in the tablejump instruction. */
1348#define CASE_VECTOR_MODE SImode
1349
1350/* Define this if the tablejump instruction expects the table
1351 to contain offsets from the address of the table.
1352 Do not define this if the table should contain absolute addresses. */
1353/* #define CASE_VECTOR_PC_RELATIVE */
1354
1355/* Specify the tree operation to be used to convert reals to integers. */
1356#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1357
1358/* This is the kind of divide that is easiest to do in the general case. */
1359#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1360
1361/* Define this as 1 if `char' should by default be signed; else as 0. */
1362#define DEFAULT_SIGNED_CHAR 1
1363
1364/* Max number of bytes we can move from memory to memory
1365 in one reasonably fast instruction. */
2eef2ef1 1366#define MOVE_MAX 8
1bb87f28 1367
0fb5a69e 1368#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1369/* This is the value of the error code EDOM for this machine,
1370 used by the sqrt instruction. */
1371#define TARGET_EDOM 33
1372
1373/* This is how to refer to the variable errno. */
1374#define GEN_ERRNO_RTX \
1375 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1376#endif /* 0 */
24e2a2bf 1377
9a63901f
RK
1378/* Define if operations between registers always perform the operation
1379 on the full register even if a narrower mode is specified. */
1380#define WORD_REGISTER_OPERATIONS
1381
1382/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1383 will either zero-extend or sign-extend. The value of this macro should
1384 be the code that says which one of the two operations is implicitly
1385 done, NIL if none. */
1386#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1bb87f28
JW
1387
1388/* Nonzero if access to memory by bytes is slow and undesirable.
1389 For RISC chips, it means that access to memory by bytes is no
1390 better than access by words when possible, so grab a whole word
1391 and maybe make use of that. */
1392#define SLOW_BYTE_ACCESS 1
1393
1394/* We assume that the store-condition-codes instructions store 0 for false
1395 and some other value for true. This is the value stored for true. */
1396
1397#define STORE_FLAG_VALUE 1
1398
1399/* When a prototype says `char' or `short', really pass an `int'. */
1400#define PROMOTE_PROTOTYPES
1401
d969caf8
RK
1402/* Define this to be nonzero if shift instructions ignore all but the low-order
1403 few bits. */
1404#define SHIFT_COUNT_TRUNCATED 1
1bb87f28
JW
1405
1406/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1407 is done just by pretending it is already truncated. */
1408#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1409
1410/* Specify the machine mode that pointers have.
1411 After generation of rtl, the compiler makes no further distinction
1412 between pointers and any other objects of this machine mode. */
1413#define Pmode SImode
1414
b4ac57ab
RS
1415/* Generate calls to memcpy, memcmp and memset. */
1416#define TARGET_MEM_FUNCTIONS
1417
1bb87f28
JW
1418/* Add any extra modes needed to represent the condition code.
1419
1420 On the Sparc, we have a "no-overflow" mode which is used when an add or
1421 subtract insn is used to set the condition code. Different branches are
1422 used in this case for some operations.
1423
4d449554
JW
1424 We also have two modes to indicate that the relevant condition code is
1425 in the floating-point condition code register. One for comparisons which
1426 will generate an exception if the result is unordered (CCFPEmode) and
1427 one for comparisons which will never trap (CCFPmode). This really should
1428 be a separate register, but we don't want to go to 65 registers. */
1429#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1430
1431/* Define the names for the modes specified above. */
4d449554 1432#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1433
1434/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1435 return the mode to be used for the comparison. For floating-point,
1436 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
922bd191
JW
1437 PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1438 processing is needed. */
679655e6 1439#define SELECT_CC_MODE(OP,X,Y) \
4d449554 1440 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
922bd191
JW
1441 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1442 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
1443 || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
4d449554 1444 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1445
1446/* A function address in a call instruction
1447 is a byte address (for indexing purposes)
1448 so give the MEM rtx a byte's mode. */
1449#define FUNCTION_MODE SImode
1450
1451/* Define this if addresses of constant functions
1452 shouldn't be put through pseudo regs where they can be cse'd.
1453 Desirable on machines where ordinary constants are expensive
1454 but a CALL with constant address is cheap. */
1455#define NO_FUNCTION_CSE
1456
1457/* alloca should avoid clobbering the old register save area. */
1458#define SETJMP_VIA_SAVE_AREA
1459
1460/* Define subroutines to call to handle multiply and divide.
1461 Use the subroutines that Sun's library provides.
1462 The `*' prevents an underscore from being prepended by the compiler. */
1463
1464#define DIVSI3_LIBCALL "*.div"
1465#define UDIVSI3_LIBCALL "*.udiv"
1466#define MODSI3_LIBCALL "*.rem"
1467#define UMODSI3_LIBCALL "*.urem"
1468/* .umul is a little faster than .mul. */
1469#define MULSI3_LIBCALL "*.umul"
1470
1471/* Compute the cost of computing a constant rtl expression RTX
1472 whose rtx-code is CODE. The body of this macro is a portion
1473 of a switch statement. If the code is computed here,
1474 return it with a return statement. Otherwise, break from the switch. */
1475
3bb22aee 1476#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1477 case CONST_INT: \
1bb87f28 1478 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1479 return 0; \
1bb87f28
JW
1480 case HIGH: \
1481 return 2; \
1482 case CONST: \
1483 case LABEL_REF: \
1484 case SYMBOL_REF: \
1485 return 4; \
1486 case CONST_DOUBLE: \
1487 if (GET_MODE (RTX) == DImode) \
1488 if ((XINT (RTX, 3) == 0 \
1489 && (unsigned) XINT (RTX, 2) < 0x1000) \
1490 || (XINT (RTX, 3) == -1 \
1491 && XINT (RTX, 2) < 0 \
1492 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1493 return 0; \
1bb87f28
JW
1494 return 8;
1495
1496/* SPARC offers addressing modes which are "as cheap as a register".
1497 See sparc.c (or gcc.texinfo) for details. */
1498
1499#define ADDRESS_COST(RTX) \
1500 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1501
1502/* Compute extra cost of moving data between one register class
1503 and another. */
1504#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1505 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1506 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1507
1508/* Provide the costs of a rtl expression. This is in the body of a
1509 switch on CODE. The purpose for the cost of MULT is to encourage
1510 `synth_mult' to find a synthetic multiply when reasonable.
1511
1512 If we need more than 12 insns to do a multiply, then go out-of-line,
1513 since the call overhead will be < 10% of the cost of the multiply. */
1514
3bb22aee 1515#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28 1516 case MULT: \
6ffeae97 1517 return TARGET_V8 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
1bb87f28
JW
1518 case DIV: \
1519 case UDIV: \
1520 case MOD: \
1521 case UMOD: \
5b485d2c
JW
1522 return COSTS_N_INSNS (25); \
1523 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1524 so that cse will favor the latter. */ \
1525 case FLOAT: \
5b485d2c 1526 case FIX: \
1bb87f28
JW
1527 return 19;
1528
1529/* Conditional branches with empty delay slots have a length of two. */
1530#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1531 if (GET_CODE (INSN) == CALL_INSN \
1532 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1533 LENGTH += 1;
1534\f
1535/* Control the assembler format that we output. */
1536
1537/* Output at beginning of assembler file. */
1538
1539#define ASM_FILE_START(file)
1540
1541/* Output to assembler file text saying following lines
1542 may contain character constants, extra white space, comments, etc. */
1543
1544#define ASM_APP_ON ""
1545
1546/* Output to assembler file text saying following lines
1547 no longer contain unusual constructs. */
1548
1549#define ASM_APP_OFF ""
1550
303d524a
JW
1551#define ASM_LONG ".word"
1552#define ASM_SHORT ".half"
1553#define ASM_BYTE_OP ".byte"
1554
1bb87f28
JW
1555/* Output before read-only data. */
1556
1557#define TEXT_SECTION_ASM_OP ".text"
1558
1559/* Output before writable data. */
1560
1561#define DATA_SECTION_ASM_OP ".data"
1562
1563/* How to refer to registers in assembler output.
1564 This sequence is indexed by compiler's hard-register-number (see above). */
1565
1566#define REGISTER_NAMES \
1567{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1568 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1569 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1570 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1571 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1572 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1573 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1574 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1575
ea3fa5f7
JW
1576/* Define additional names for use in asm clobbers and asm declarations.
1577
1578 We define the fake Condition Code register as an alias for reg 0 (which
1579 is our `condition code' register), so that condition codes can easily
1580 be clobbered by an asm. No such register actually exists. Condition
1581 codes are partly stored in the PSR and partly in the FSR. */
1582
0eb9f40e 1583#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1584
1bb87f28
JW
1585/* How to renumber registers for dbx and gdb. */
1586
1587#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1588
1589/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1590 since the length can run past this up to a continuation point. */
1591#define DBX_CONTIN_LENGTH 1500
1592
1593/* This is how to output a note to DBX telling it the line number
1594 to which the following sequence of instructions corresponds.
1595
1596 This is needed for SunOS 4.0, and should not hurt for 3.2
1597 versions either. */
1598#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1599 { static int sym_lineno = 1; \
1600 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1601 line, sym_lineno, sym_lineno); \
1602 sym_lineno += 1; }
1603
1604/* This is how to output the definition of a user-level label named NAME,
1605 such as the label on a static function or variable NAME. */
1606
1607#define ASM_OUTPUT_LABEL(FILE,NAME) \
1608 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1609
1610/* This is how to output a command to make the user-level label named NAME
1611 defined for reference from other files. */
1612
1613#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1614 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1615
1616/* This is how to output a reference to a user-level label named NAME.
1617 `assemble_name' uses this. */
1618
1619#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1620 fprintf (FILE, "_%s", NAME)
1621
d2a8e680 1622/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1623 PREFIX is the class of label and NUM is the number within the class. */
1624
1625#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1626 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1627
d2a8e680
RS
1628/* This is how to output a reference to an internal numbered label where
1629 PREFIX is the class of label and NUM is the number within the class. */
1630/* FIXME: This should be used throughout gcc, and documented in the texinfo
1631 files. There is no reason you should have to allocate a buffer and
1632 `sprintf' to reference an internal label (as opposed to defining it). */
1633
1634#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1635 fprintf (FILE, "%s%d", PREFIX, NUM)
1636
1bb87f28
JW
1637/* This is how to store into the string LABEL
1638 the symbol_ref name of an internal numbered label where
1639 PREFIX is the class of label and NUM is the number within the class.
1640 This is suitable for output with `assemble_name'. */
1641
1642#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1643 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1644
1645/* This is how to output an assembler line defining a `double' constant. */
1646
1647#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1648 { \
2e7ac77c
JW
1649 long t[2]; \
1650 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1651 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1652 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1653 }
1654
1655/* This is how to output an assembler line defining a `float' constant. */
1656
1657#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1658 { \
2e7ac77c
JW
1659 long t; \
1660 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1661 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1662 } \
1bb87f28 1663
0cd02cbb
DE
1664/* This is how to output an assembler line defining a `long double'
1665 constant. */
1666
1667#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1668 { \
1669 long t[4]; \
1670 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
1671 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1672 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
1673 }
1674
1bb87f28
JW
1675/* This is how to output an assembler line defining an `int' constant. */
1676
1677#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1678( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1679 output_addr_const (FILE, (VALUE)), \
1680 fprintf (FILE, "\n"))
1681
1682/* This is how to output an assembler line defining a DImode constant. */
1683#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1684 output_double_int (FILE, VALUE)
1685
1686/* Likewise for `char' and `short' constants. */
1687
1688#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1689( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1690 output_addr_const (FILE, (VALUE)), \
1691 fprintf (FILE, "\n"))
1692
1693#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1694( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1695 output_addr_const (FILE, (VALUE)), \
1696 fprintf (FILE, "\n"))
1697
1698/* This is how to output an assembler line for a numeric constant byte. */
1699
1700#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1701 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1702
1703/* This is how to output an element of a case-vector that is absolute. */
1704
1705#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1706do { \
1707 char label[30]; \
1708 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1709 fprintf (FILE, "\t.word\t"); \
1710 assemble_name (FILE, label); \
1711 fprintf (FILE, "\n"); \
1712} while (0)
1bb87f28
JW
1713
1714/* This is how to output an element of a case-vector that is relative.
1715 (SPARC uses such vectors only when generating PIC.) */
1716
4b69d2a3
RS
1717#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1718do { \
1719 char label[30]; \
1720 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1721 fprintf (FILE, "\t.word\t"); \
1722 assemble_name (FILE, label); \
1723 fprintf (FILE, "-1b\n"); \
1724} while (0)
1bb87f28
JW
1725
1726/* This is how to output an assembler line
1727 that says to advance the location counter
1728 to a multiple of 2**LOG bytes. */
1729
1730#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1731 if ((LOG) != 0) \
1732 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1733
1734#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1735 fprintf (FILE, "\t.skip %u\n", (SIZE))
1736
1737/* This says how to output an assembler line
1738 to define a global common symbol. */
1739
1740#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1741( fputs ("\t.global ", (FILE)), \
1742 assemble_name ((FILE), (NAME)), \
1743 fputs ("\n\t.common ", (FILE)), \
1744 assemble_name ((FILE), (NAME)), \
1745 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1746
1747/* This says how to output an assembler line
1748 to define a local common symbol. */
1749
1750#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1751( fputs ("\n\t.reserve ", (FILE)), \
1752 assemble_name ((FILE), (NAME)), \
1753 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1754
1755/* Store in OUTPUT a string (made with alloca) containing
1756 an assembler-name for a local static variable named NAME.
1757 LABELNO is an integer which is different for each call. */
1758
1759#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1760( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1761 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1762
c14f2655
RS
1763#define IDENT_ASM_OP ".ident"
1764
1765/* Output #ident as a .ident. */
1766
1767#define ASM_OUTPUT_IDENT(FILE, NAME) \
1768 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
1769
1bb87f28
JW
1770/* Define the parentheses used to group arithmetic operations
1771 in assembler code. */
1772
1773#define ASM_OPEN_PAREN "("
1774#define ASM_CLOSE_PAREN ")"
1775
1776/* Define results of standard character escape sequences. */
1777#define TARGET_BELL 007
1778#define TARGET_BS 010
1779#define TARGET_TAB 011
1780#define TARGET_NEWLINE 012
1781#define TARGET_VT 013
1782#define TARGET_FF 014
1783#define TARGET_CR 015
1784
1785#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1786 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1787
1788/* Print operand X (an rtx) in assembler syntax to file FILE.
1789 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1790 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1791
1792#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1793
1794/* Print a memory address as an operand to reference that memory location. */
1795
1796#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1797{ register rtx base, index = 0; \
1798 int offset = 0; \
1799 register rtx addr = ADDR; \
1800 if (GET_CODE (addr) == REG) \
1801 fputs (reg_names[REGNO (addr)], FILE); \
1802 else if (GET_CODE (addr) == PLUS) \
1803 { \
1804 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1805 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1806 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1807 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1808 else \
1809 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1810 fputs (reg_names[REGNO (base)], FILE); \
1811 if (index == 0) \
1812 fprintf (FILE, "%+d", offset); \
1813 else if (GET_CODE (index) == REG) \
1814 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1815 else if (GET_CODE (index) == SYMBOL_REF) \
1816 fputc ('+', FILE), output_addr_const (FILE, index); \
1817 else abort (); \
1818 } \
1819 else if (GET_CODE (addr) == MINUS \
1820 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1821 { \
1822 output_addr_const (FILE, XEXP (addr, 0)); \
1823 fputs ("-(", FILE); \
1824 output_addr_const (FILE, XEXP (addr, 1)); \
1825 fputs ("-.)", FILE); \
1826 } \
1827 else if (GET_CODE (addr) == LO_SUM) \
1828 { \
1829 output_operand (XEXP (addr, 0), 0); \
1830 fputs ("+%lo(", FILE); \
1831 output_address (XEXP (addr, 1)); \
1832 fputc (')', FILE); \
1833 } \
1834 else if (flag_pic && GET_CODE (addr) == CONST \
1835 && GET_CODE (XEXP (addr, 0)) == MINUS \
1836 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1837 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1838 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1839 { \
1840 addr = XEXP (addr, 0); \
1841 output_addr_const (FILE, XEXP (addr, 0)); \
1842 /* Group the args of the second CONST in parenthesis. */ \
1843 fputs ("-(", FILE); \
1844 /* Skip past the second CONST--it does nothing for us. */\
1845 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1846 /* Close the parenthesis. */ \
1847 fputc (')', FILE); \
1848 } \
1849 else \
1850 { \
1851 output_addr_const (FILE, addr); \
1852 } \
1853}
1854
1855/* Declare functions defined in sparc.c and used in templates. */
1856
1857extern char *singlemove_string ();
1858extern char *output_move_double ();
795068a4 1859extern char *output_move_quad ();
1bb87f28 1860extern char *output_fp_move_double ();
795068a4 1861extern char *output_fp_move_quad ();
1bb87f28
JW
1862extern char *output_block_move ();
1863extern char *output_scc_insn ();
1864extern char *output_cbranch ();
1865extern char *output_return ();
1bb87f28
JW
1866
1867/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1868
1869extern int flag_pic;