]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/v850/v850.h
Fix typo in old ChangeLog entry.
[thirdparty/gcc.git] / gcc / config / v850 / v850.h
CommitLineData
956d6950 1/* Definitions of target machine for GNU compiler. NEC V850 series
83310f56 2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
16c484c7 3 Free Software Foundation, Inc.
ae180d84
JL
4 Contributed by Jeff Law (law@cygnus.com).
5
301ee2f3 6 This file is part of GCC.
ae180d84 7
301ee2f3 8 GCC is free software; you can redistribute it and/or modify
8376061d
CM
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
ae180d84 12
301ee2f3 13 GCC is distributed in the hope that it will be useful,
8376061d
CM
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
ae180d84 17
8376061d 18 You should have received a copy of the GNU General Public License
301ee2f3 19 along with GCC; see the file COPYING. If not, write to
39d14dda
KC
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
ae180d84 22
8b97c5f8
ZW
23#ifndef GCC_V850_H
24#define GCC_V850_H
25
5f9b0711 26/* These are defined in svr4.h but we want to override them. */
ae180d84
JL
27#undef LIB_SPEC
28#undef ENDFILE_SPEC
29#undef LINK_SPEC
30#undef STARTFILE_SPEC
7a846a6c 31#undef ASM_SPEC
ae180d84 32
7a846a6c 33#define TARGET_CPU_generic 1
b4378319 34#define TARGET_CPU_v850e 2
232830b7 35#define TARGET_CPU_v850e1 3
74aca74b 36
7a846a6c
NC
37#ifndef TARGET_CPU_DEFAULT
38#define TARGET_CPU_DEFAULT TARGET_CPU_generic
74aca74b 39#endif
ae180d84 40
7a846a6c
NC
41#define MASK_DEFAULT MASK_V850
42#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
43#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
44#define TARGET_VERSION fprintf (stderr, " (NEC V850)");
45
b4378319
NC
46/* Choose which processor will be the default.
47 We must pass a -mv850xx option to the assembler if no explicit -mv* option
48 is given, because the assembler's processor default may not be correct. */
49#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
50#undef MASK_DEFAULT
51#define MASK_DEFAULT MASK_V850E
52#undef SUBTARGET_ASM_SPEC
53#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
54#undef SUBTARGET_CPP_SPEC
55#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
56#undef TARGET_VERSION
57#define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
58#endif
7a846a6c 59
232830b7
NC
60#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
61#undef MASK_DEFAULT
62#define MASK_DEFAULT MASK_V850E /* No practical difference. */
63#undef SUBTARGET_ASM_SPEC
64#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
65#undef SUBTARGET_CPP_SPEC
66#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
67#undef TARGET_VERSION
68#define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
69#endif
70
7a846a6c 71#define ASM_SPEC "%{mv*:-mv%*}"
b4378319 72#define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
7a846a6c
NC
73
74#define EXTRA_SPECS \
75 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
76 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
77
78/* Names to predefine in the preprocessor for this target machine. */
cc956ba2
NB
79#define TARGET_CPU_CPP_BUILTINS() do { \
80 builtin_define( "__v851__" ); \
81 builtin_define( "__v850" ); \
82 builtin_assert( "machine=v850" ); \
83 builtin_assert( "cpu=v850" ); \
2ec6cd51
NC
84 if (TARGET_EP) \
85 builtin_define ("__EP__"); \
cc956ba2 86} while(0)
ae180d84 87
0a0da1bc 88#define MASK_CPU (MASK_V850 | MASK_V850E)
ae180d84
JL
89
90/* Information about the various small memory areas. */
91struct small_memory_info {
8b97c5f8 92 const char *name;
ae180d84
JL
93 long max;
94 long physical_max;
95};
96
97enum small_memory_type {
98 /* tiny data area, using EP as base register */
99 SMALL_MEMORY_TDA = 0,
100 /* small data area using dp as base register */
101 SMALL_MEMORY_SDA,
102 /* zero data area using r0 as base register */
103 SMALL_MEMORY_ZDA,
104 SMALL_MEMORY_max
105};
106
107extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
108
ae180d84
JL
109/* Show we can debug even without a frame pointer. */
110#define CAN_DEBUG_WITHOUT_FP
111
112/* Some machines may desire to change what optimizations are
113 performed for various optimization levels. This macro, if
114 defined, is executed once just after the optimization level is
115 determined and before the remainder of the command options have
116 been parsed. Values set in this macro are used as the default
117 values for the other command line options.
118
119 LEVEL is the optimization level specified; 2 if `-O2' is
120 specified, 1 if `-O' is specified, and 0 if neither is specified.
121
5e7a8ee0 122 SIZE is nonzero if `-Os' is specified, 0 otherwise.
c6aded7c 123
ae180d84
JL
124 You should not use this macro to change options that are not
125 machine-specific. These should uniformly selected by the same
126 optimization level on all supported machines. Use this macro to
127 enable machine-specific optimizations.
128
129 *Do not examine `write_symbols' in this macro!* The debugging
d4de0221 130 options are not supposed to alter the generated code. */
ae180d84 131
c6aded7c 132#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
ae180d84 133{ \
8376061d 134 target_flags |= MASK_STRICT_ALIGN; \
ae180d84 135 if (LEVEL) \
2ec6cd51
NC
136 /* Note - we no longer enable MASK_EP when optimizing. This is \
137 because of a hardware bug which stops the SLD and SST instructions\
138 from correctly detecting some hazards. If the user is sure that \
139 their hardware is fixed or that their program will not encounter \
140 the conditions that trigger the bug then they can enable -mep by \
141 hand. */ \
142 target_flags |= MASK_PROLOG_FUNCTION; \
ae180d84
JL
143}
144
145\f
146/* Target machine storage layout */
147
148/* Define this if most significant bit is lowest numbered
149 in instructions that operate on numbered bit-fields.
150 This is not true on the NEC V850. */
151#define BITS_BIG_ENDIAN 0
152
153/* Define this if most significant byte of a word is the lowest numbered. */
154/* This is not true on the NEC V850. */
155#define BYTES_BIG_ENDIAN 0
156
157/* Define this if most significant word of a multiword number is lowest
158 numbered.
159 This is not true on the NEC V850. */
160#define WORDS_BIG_ENDIAN 0
161
ae180d84
JL
162/* Width of a word, in units (bytes). */
163#define UNITS_PER_WORD 4
164
ae180d84
JL
165/* Define this macro if it is advisable to hold scalars in registers
166 in a wider mode than that declared by the program. In such cases,
167 the value is constrained to be within the bounds of the declared
168 type, but kept valid in the wider mode. The signedness of the
169 extension may differ from that of the type.
170
171 Some simple experiments have shown that leaving UNSIGNEDP alone
172 generates the best overall code. */
173
174#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
175 if (GET_MODE_CLASS (MODE) == MODE_INT \
176 && GET_MODE_SIZE (MODE) < 4) \
177 { (MODE) = SImode; }
178
179/* Allocation boundary (in *bits*) for storing arguments in argument list. */
180#define PARM_BOUNDARY 32
181
182/* The stack goes in 32 bit lumps. */
183#define STACK_BOUNDARY 32
184
185/* Allocation boundary (in *bits*) for the code of a function.
186 16 is the minimum boundary; 32 would give better performance. */
187#define FUNCTION_BOUNDARY 16
188
189/* No data type wants to be aligned rounder than this. */
190#define BIGGEST_ALIGNMENT 32
191
192/* Alignment of field after `int : 0' in a structure. */
193#define EMPTY_FIELD_BOUNDARY 32
194
195/* No structure field wants to be aligned rounder than this. */
196#define BIGGEST_FIELD_ALIGNMENT 32
197
198/* Define this if move instructions will actually fail to work
199 when given unaligned data. */
8376061d 200#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
ae180d84
JL
201
202/* Define this as 1 if `char' should by default be signed; else as 0.
203
d4de0221 204 On the NEC V850, loads do sign extension, so make this default. */
ae180d84 205#define DEFAULT_SIGNED_CHAR 1
ae180d84
JL
206\f
207/* Standard register usage. */
208
209/* Number of actual hardware registers.
210 The hardware registers are assigned numbers for the compiler
211 from 0 to just below FIRST_PSEUDO_REGISTER.
212
213 All registers that the compiler knows about must be given numbers,
214 even those that are not normally considered general registers. */
215
216#define FIRST_PSEUDO_REGISTER 34
217
218/* 1 for registers that have pervasive standard uses
219 and are not available for the register allocator. */
220
221#define FIXED_REGISTERS \
222 { 1, 1, 0, 1, 1, 0, 0, 0, \
223 0, 0, 0, 0, 0, 0, 0, 0, \
224 0, 0, 0, 0, 0, 0, 0, 0, \
225 0, 0, 0, 0, 0, 0, 1, 0, \
226 1, 1}
227
228/* 1 for registers not available across function calls.
229 These must include the FIXED_REGISTERS and also any
230 registers that can be used without being saved.
231 The latter must include the registers where values are returned
232 and the register where structure-value addresses are passed.
233 Aside from that, you can include as many other registers as you
234 like. */
235
236#define CALL_USED_REGISTERS \
237 { 1, 1, 0, 1, 1, 1, 1, 1, \
238 1, 1, 1, 1, 1, 1, 1, 1, \
239 1, 1, 1, 1, 0, 0, 0, 0, \
240 0, 0, 0, 0, 0, 0, 1, 1, \
241 1, 1}
242
243/* List the order in which to allocate registers. Each register must be
244 listed once, even those in FIXED_REGISTERS.
245
246 On the 850, we make the return registers first, then all of the volatile
247 registers, then the saved registers in reverse order to better save the
956d6950 248 registers with an out of line function, and finally the fixed
ae180d84
JL
249 registers. */
250
251#define REG_ALLOC_ORDER \
252{ \
253 10, 11, /* return registers */ \
254 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
255 6, 7, 8, 9, 31, /* argument registers */ \
256 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
257 21, 20, 2, \
258 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
259}
260
0a0da1bc 261/* If TARGET_APP_REGS is not defined then add r2 and r5 to
d4de0221 262 the pool of fixed registers. See PR 14505. */
b4378319
NC
263#define CONDITIONAL_REGISTER_USAGE \
264{ \
0a0da1bc 265 if (!TARGET_APP_REGS) \
b4378319 266 { \
0a0da1bc
RS
267 fixed_regs[2] = 1; call_used_regs[2] = 1; \
268 fixed_regs[5] = 1; call_used_regs[5] = 1; \
b4378319
NC
269 } \
270}
271
ae180d84
JL
272/* Return number of consecutive hard regs needed starting at reg REGNO
273 to hold something of mode MODE.
274
275 This is ordinarily the length in words of a value of mode MODE
276 but can be less for certain modes in special long registers. */
277
278#define HARD_REGNO_NREGS(REGNO, MODE) \
279 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
280
281/* Value is 1 if hard register REGNO can hold a value of machine-mode
282 MODE. */
283
284#define HARD_REGNO_MODE_OK(REGNO, MODE) \
285 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
286
287/* Value is 1 if it is a good idea to tie two pseudo registers
288 when one has mode MODE1 and one has mode MODE2.
289 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
290 for any hard reg, then this must be 0 for correct output. */
291#define MODES_TIEABLE_P(MODE1, MODE2) \
674fdc14 292 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
ae180d84
JL
293
294\f
295/* Define the classes of registers for register constraints in the
296 machine description. Also define ranges of constants.
297
298 One of the classes must always be named ALL_REGS and include all hard regs.
299 If there is more than one class, another class must be named NO_REGS
300 and contain no registers.
301
302 The name GENERAL_REGS must be the name of a class (or an alias for
303 another name such as ALL_REGS). This is the class of registers
304 that is allowed by "g" or "r" in a register constraint.
305 Also, registers outside this class are allocated only when
306 instructions express preferences for them.
307
308 The classes must be numbered in nondecreasing order; that is,
309 a larger-numbered class must never be contained completely
310 in a smaller-numbered class.
311
312 For any two classes, it is very desirable that there be another
313 class that represents their union. */
314
3ce15347
NC
315enum reg_class
316{
ae180d84
JL
317 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
318};
319
320#define N_REG_CLASSES (int) LIM_REG_CLASSES
321
d4de0221 322/* Give names of register classes as strings for dump file. */
ae180d84
JL
323
324#define REG_CLASS_NAMES \
325{ "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
326
327/* Define which registers fit in which classes.
328 This is an initializer for a vector of HARD_REG_SET
329 of length N_REG_CLASSES. */
330
674fdc14
NC
331#define REG_CLASS_CONTENTS \
332{ \
333 { 0x00000000 }, /* NO_REGS */ \
334 { 0xffffffff }, /* GENERAL_REGS */ \
335 { 0xffffffff }, /* ALL_REGS */ \
ae180d84
JL
336}
337
338/* The same information, inverted:
339 Return the class number of the smallest class containing
340 reg number REGNO. This could be a conditional expression
341 or could index an array. */
342
343#define REGNO_REG_CLASS(REGNO) GENERAL_REGS
344
345/* The class value for index registers, and the one for base regs. */
346
347#define INDEX_REG_CLASS NO_REGS
348#define BASE_REG_CLASS GENERAL_REGS
349
350/* Get reg_class from a letter such as appears in the machine description. */
351
352#define REG_CLASS_FROM_LETTER(C) (NO_REGS)
353
354/* Macros to check register numbers against specific register classes. */
355
356/* These assume that REGNO is a hard or pseudo reg number.
357 They give nonzero only if REGNO is a hard reg of the suitable class
358 or a pseudo reg currently allocated to a suitable hard reg.
359 Since they use reg_renumber, they are safe only once reg_renumber
360 has been allocated, which happens in local-alloc.c. */
361
362#define REGNO_OK_FOR_BASE_P(regno) \
363 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
364
365#define REGNO_OK_FOR_INDEX_P(regno) 0
366
367/* Given an rtx X being reloaded into a reg required to be
368 in class CLASS, return the class of reg to actually use.
369 In general this is just CLASS; but on some machines
370 in some cases it is preferable to use a more restrictive class. */
371
372#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
373
374/* Return the maximum number of consecutive registers
375 needed to represent mode MODE in a register of class CLASS. */
376
377#define CLASS_MAX_NREGS(CLASS, MODE) \
378 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
379
380/* The letters I, J, K, L, M, N, O, P in a register constraint string
381 can be used to stand for particular ranges of immediate operands.
382 This macro defines what the ranges are.
383 C is the letter, and VALUE is a constant value.
384 Return 1 if VALUE is in the range specified by C. */
385
386#define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
387#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
1933ec7e 388/* zero */
ae180d84 389#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
1933ec7e 390/* 5 bit signed immediate */
ae180d84 391#define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
1933ec7e 392/* 16 bit signed immediate */
ae180d84 393#define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
1933ec7e 394/* valid constant for movhi instruction. */
ae180d84
JL
395#define CONST_OK_FOR_L(VALUE) \
396 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
397 && CONST_OK_FOR_I ((VALUE & 0xffff)))
1933ec7e
JW
398/* 16 bit unsigned immediate */
399#define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
400/* 5 bit unsigned immediate in shift instructions */
401#define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
b4378319
NC
402/* 9 bit signed immediate for word multiply instruction. */
403#define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
ae180d84 404
ae180d84
JL
405#define CONST_OK_FOR_P(VALUE) 0
406
407#define CONST_OK_FOR_LETTER_P(VALUE, C) \
408 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
409 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
410 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
411 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
412 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
413 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
414 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
415 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
416 0)
417
418/* Similar, but for floating constants, and defining letters G and H.
419 Here VALUE is the CONST_DOUBLE rtx itself.
420
421 `G' is a zero of some form. */
422
423#define CONST_DOUBLE_OK_FOR_G(VALUE) \
424 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
425 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
426 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
427 && CONST_DOUBLE_LOW (VALUE) == 0 \
428 && CONST_DOUBLE_HIGH (VALUE) == 0))
429
430#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
431
432#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
433 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
434 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
435 : 0)
436
437\f
438/* Stack layout; function entry, exit and calling. */
439
440/* Define this if pushing a word on the stack
441 makes the stack pointer a smaller address. */
442
443#define STACK_GROWS_DOWNWARD
444
a4d05547 445/* Define this to nonzero if the nominal address of the stack frame
ae180d84
JL
446 is at the high-address end of the local variables;
447 that is, each additional local variable allocated
448 goes at a more negative offset in the frame. */
449
f62c8a5c 450#define FRAME_GROWS_DOWNWARD 1
ae180d84
JL
451
452/* Offset within stack frame to start allocating local variables at.
453 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
454 first local allocated. Otherwise, it is the offset to the BEGINNING
455 of the first local allocated. */
456
457#define STARTING_FRAME_OFFSET 0
458
459/* Offset of first parameter from the argument pointer register value. */
460/* Is equal to the size of the saved fp + pc, even if an fp isn't
461 saved since the value is used before we know. */
462
463#define FIRST_PARM_OFFSET(FNDECL) 0
464
465/* Specify the registers used for certain standard purposes.
466 The values of these macros are register numbers. */
467
468/* Register to use for pushing function arguments. */
469#define STACK_POINTER_REGNUM 3
470
471/* Base register for access to local variables of the function. */
472#define FRAME_POINTER_REGNUM 32
473
29a65e3d
NC
474/* Register containing return address from latest function call. */
475#define LINK_POINTER_REGNUM 31
476
ae180d84
JL
477/* On some machines the offset between the frame pointer and starting
478 offset of the automatic variables is not known until after register
479 allocation has been done (for example, because the saved registers
480 are between these two locations). On those machines, define
481 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
482 be used internally until the offset is known, and define
483 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
484 used for the frame pointer.
485
486 You should define this macro only in the very rare circumstances
487 when it is not possible to calculate the offset between the frame
488 pointer and the automatic variables until after register
489 allocation has been completed. When this macro is defined, you
490 must also indicate in your definition of `ELIMINABLE_REGS' how to
491 eliminate `FRAME_POINTER_REGNUM' into either
492 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
493
494 Do not define this macro if it would be the same as
d4de0221 495 `FRAME_POINTER_REGNUM'. */
3ce15347 496#undef HARD_FRAME_POINTER_REGNUM
ae180d84
JL
497#define HARD_FRAME_POINTER_REGNUM 29
498
499/* Base register for access to arguments of the function. */
500#define ARG_POINTER_REGNUM 33
501
502/* Register in which static-chain is passed to a function. */
3ce15347 503#define STATIC_CHAIN_REGNUM 20
ae180d84
JL
504
505/* Value should be nonzero if functions must have frame pointers.
506 Zero means the frame pointer need not be set up (and parms
507 may be accessed via the stack pointer) in functions that seem suitable.
508 This is computed in `reload', in reload1.c. */
509#define FRAME_POINTER_REQUIRED 0
510
511/* If defined, this macro specifies a table of register pairs used to
512 eliminate unneeded registers that point into the stack frame. If
513 it is not defined, the only elimination attempted by the compiler
514 is to replace references to the frame pointer with references to
515 the stack pointer.
516
517 The definition of this macro is a list of structure
518 initializations, each of which specifies an original and
519 replacement register.
520
521 On some machines, the position of the argument pointer is not
522 known until the compilation is completed. In such a case, a
523 separate hard register must be used for the argument pointer.
524 This register can be eliminated by replacing it with either the
525 frame pointer or the argument pointer, depending on whether or not
526 the frame pointer has been eliminated.
527
528 In this case, you might specify:
529 #define ELIMINABLE_REGS \
530 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
531 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
532 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
533
534 Note that the elimination of the argument pointer with the stack
d4de0221 535 pointer is specified first since that is the preferred elimination. */
ae180d84
JL
536
537#define ELIMINABLE_REGS \
538{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
539 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
540 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
541 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
542
5e7a8ee0 543/* A C expression that returns nonzero if the compiler is allowed to
ae180d84
JL
544 try to replace register number FROM-REG with register number
545 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
546 defined, and will usually be the constant 1, since most of the
547 cases preventing register elimination are things that the compiler
d4de0221 548 already knows about. */
ae180d84
JL
549
550#define CAN_ELIMINATE(FROM, TO) \
551 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
552
553/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
554 specifies the initial difference between the specified pair of
555 registers. This macro must be defined if `ELIMINABLE_REGS' is
d4de0221 556 defined. */
ae180d84
JL
557
558#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
559{ \
560 if ((FROM) == FRAME_POINTER_REGNUM) \
561 (OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
562 else if ((FROM) == ARG_POINTER_REGNUM) \
563 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
564 else \
f2f84cba 565 gcc_unreachable (); \
ae180d84
JL
566}
567
ae180d84 568/* Keep the stack pointer constant throughout the function. */
f73ad30e 569#define ACCUMULATE_OUTGOING_ARGS 1
ae180d84
JL
570
571/* Value is the number of bytes of arguments automatically
572 popped when returning from a subroutine call.
573 FUNDECL is the declaration node of the function (as a tree),
574 FUNTYPE is the data type of the function (as a tree),
575 or for a library call it is an identifier node for the subroutine name.
576 SIZE is the number of bytes of arguments passed on the stack. */
577
578#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
579
a64761a3 580#define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
ae180d84
JL
581\f
582/* Define a data type for recording info about an argument list
583 during the scan of that argument list. This data type should
584 hold all necessary information about the function itself
585 and about the args processed so far, enough to enable macros
586 such as FUNCTION_ARG to determine where the next arg should go. */
587
588#define CUMULATIVE_ARGS struct cum_arg
66a0dfeb 589struct cum_arg { int nbytes; int anonymous_args; };
ae180d84
JL
590
591/* Define where to put the arguments to a function.
592 Value is zero to push the argument on the stack,
593 or a hard register in which to store the argument.
594
595 MODE is the argument's machine mode.
596 TYPE is the data type of the argument (as a tree).
597 This is null for libcalls where that information may
598 not be available.
599 CUM is a variable of type CUMULATIVE_ARGS which gives info about
600 the preceding args and about the function being called.
601 NAMED is nonzero if this argument is a named parameter
602 (otherwise it is an extra parameter matching an ellipsis). */
603
ae180d84
JL
604#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
605 function_arg (&CUM, MODE, TYPE, NAMED)
606
ae180d84
JL
607/* Initialize a variable CUM of type CUMULATIVE_ARGS
608 for a call to a function whose data type is FNTYPE.
609 For a library call, FNTYPE is 0. */
610
0f6937fe 611#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
66a0dfeb 612 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
ae180d84
JL
613
614/* Update the data in CUM to advance over an argument
615 of mode MODE and data type TYPE.
616 (TYPE is null for libcalls where that information may not be available.) */
617
618#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
619 ((CUM).nbytes += ((MODE) != BLKmode \
620 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
621 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
622
623/* When a parameter is passed in a register, stack space is still
624 allocated for it. */
625#define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
626
627/* Define this if the above stack space is to be considered part of the
628 space allocated by the caller. */
629#define OUTGOING_REG_PARM_STACK_SPACE
630
ae180d84
JL
631/* 1 if N is a possible register number for function argument passing. */
632
633#define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
634
635/* Define how to find the value returned by a function.
636 VALTYPE is the data type of the value (as a tree).
637 If the precise function being called is known, FUNC is its FUNCTION_DECL;
d4de0221 638 otherwise, FUNC is 0. */
ae180d84
JL
639
640#define FUNCTION_VALUE(VALTYPE, FUNC) \
c5c76735 641 gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
ae180d84
JL
642
643/* Define how to find the value returned by a library function
644 assuming the value has mode MODE. */
645
646#define LIBCALL_VALUE(MODE) \
c5c76735 647 gen_rtx_REG (MODE, 10)
ae180d84
JL
648
649/* 1 if N is a possible register number for a function value. */
650
651#define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
652
ae180d84 653#define DEFAULT_PCC_STRUCT_RETURN 0
ae180d84
JL
654
655/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
656 the stack pointer does not matter. The value is tested only in
657 functions that have frame pointers.
658 No definition is equivalent to always zero. */
659
660#define EXIT_IGNORE_STACK 1
661
bc9ec51b
JW
662/* Define this macro as a C expression that is nonzero for registers
663 used by the epilogue or the `return' pattern. */
664
665#define EPILOGUE_USES(REGNO) \
666 (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
667
ae180d84
JL
668/* Output assembler code to FILE to increment profiler label # LABELNO
669 for profiling a function entry. */
670
671#define FUNCTION_PROFILER(FILE, LABELNO) ;
672
673#define TRAMPOLINE_TEMPLATE(FILE) \
674 do { \
675 fprintf (FILE, "\tjarl .+4,r12\n"); \
6ed7412a 676 fprintf (FILE, "\tld.w 12[r12],r20\n"); \
ae180d84
JL
677 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
678 fprintf (FILE, "\tjmp [r12]\n"); \
679 fprintf (FILE, "\tnop\n"); \
680 fprintf (FILE, "\t.long 0\n"); \
681 fprintf (FILE, "\t.long 0\n"); \
682 } while (0)
683
684/* Length in units of the trampoline for entering a nested function. */
685
686#define TRAMPOLINE_SIZE 24
687
688/* Emit RTL insns to initialize the variable parts of a trampoline.
689 FNADDR is an RTX for the address of the function's pure code.
690 CXT is an RTX for the static chain value for the function. */
691
692#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
693{ \
c5c76735 694 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
ae180d84 695 (CXT)); \
c5c76735 696 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
ae180d84
JL
697 (FNADDR)); \
698}
699
700/* Addressing modes, and classification of registers for them. */
701
702\f
703/* 1 if X is an rtx for a constant that is a valid address. */
704
1933ec7e
JW
705/* ??? This seems too exclusive. May get better code by accepting more
706 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
707
ae180d84
JL
708#define CONSTANT_ADDRESS_P(X) \
709 (GET_CODE (X) == CONST_INT \
710 && CONST_OK_FOR_K (INTVAL (X)))
711
712/* Maximum number of registers that can appear in a valid memory address. */
713
714#define MAX_REGS_PER_ADDRESS 1
715
716/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
717 and check its validity for a certain class.
718 We have two alternate definitions for each of them.
719 The usual definition accepts all pseudo regs; the other rejects
720 them unless they have been allocated suitable hard regs.
721 The symbol REG_OK_STRICT causes the latter definition to be used.
722
723 Most source files want to accept pseudo regs in the hope that
724 they will get allocated to the class that the insn wants them to be in.
725 Source files for reload pass need to be strict.
726 After reload, it makes no difference, since pseudo regs have
727 been eliminated by then. */
728
729#ifndef REG_OK_STRICT
730
731/* Nonzero if X is a hard reg that can be used as an index
732 or if it is a pseudo reg. */
733#define REG_OK_FOR_INDEX_P(X) 0
734/* Nonzero if X is a hard reg that can be used as a base reg
735 or if it is a pseudo reg. */
736#define REG_OK_FOR_BASE_P(X) 1
737#define REG_OK_FOR_INDEX_P_STRICT(X) 0
738#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
739#define STRICT 0
740
741#else
742
743/* Nonzero if X is a hard reg that can be used as an index. */
744#define REG_OK_FOR_INDEX_P(X) 0
745/* Nonzero if X is a hard reg that can be used as a base reg. */
746#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
747#define STRICT 1
748
749#endif
750
751/* A C expression that defines the optional machine-dependent
752 constraint letters that can be used to segregate specific types of
753 operands, usually memory references, for the target machine.
754 Normally this macro will not be defined. If it is required for a
755 particular target machine, it should return 1 if VALUE corresponds
756 to the operand type represented by the constraint letter C. If C
757 is not defined as an extra constraint, the value returned should
758 be 0 regardless of VALUE.
759
760 For example, on the ROMP, load instructions cannot have their
761 output in r0 if the memory reference contains a symbolic address.
762 Constraint letter `Q' is defined as representing a memory address
763 that does *not* contain a symbolic address. An alternative is
764 specified with a `Q' constraint on the input and `r' on the
765 output. The next alternative specifies `m' on the input and a
766 register class that does not include r0 on the output. */
767
768#define EXTRA_CONSTRAINT(OP, C) \
2ec6cd51 769 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \
ae180d84 770 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
50d1ff6a
RH
771 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
772 && !SYMBOL_REF_ZDA_P (OP)) \
2ec6cd51 773 : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \
50d1ff6a
RH
774 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
775 && SYMBOL_REF_ZDA_P (OP)) \
1933ec7e
JW
776 || (GET_CODE (OP) == CONST \
777 && GET_CODE (XEXP (OP, 0)) == PLUS \
778 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
50d1ff6a 779 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
ae180d84
JL
780 : 0)
781\f
782/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
783 that is a valid memory address for an instruction.
784 The MODE argument is the machine mode for the MEM expression
785 that wants to use this address.
786
787 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
788 except for CONSTANT_ADDRESS_P which is actually
789 machine-independent. */
790
791/* Accept either REG or SUBREG where a register is valid. */
792
793#define RTX_OK_FOR_BASE_P(X) \
794 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
795 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
796 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
797
798#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
799do { \
7d866c52
NC
800 if (RTX_OK_FOR_BASE_P (X)) \
801 goto ADDR; \
ae180d84 802 if (CONSTANT_ADDRESS_P (X) \
7a846a6c
NC
803 && (MODE == QImode || INTVAL (X) % 2 == 0) \
804 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
ae180d84
JL
805 goto ADDR; \
806 if (GET_CODE (X) == LO_SUM \
7d866c52 807 && REG_P (XEXP (X, 0)) \
ae180d84
JL
808 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
809 && CONSTANT_P (XEXP (X, 1)) \
810 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
811 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
812 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
813 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
814 goto ADDR; \
815 if (special_symbolref_operand (X, MODE) \
816 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
817 goto ADDR; \
818 if (GET_CODE (X) == PLUS \
7d866c52 819 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
ae180d84 820 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
7d866c52
NC
821 && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
822 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \
823 + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
824 goto ADDR; \
ae180d84
JL
825} while (0)
826
827\f
ae180d84
JL
828/* Go to LABEL if ADDR (a legitimate address expression)
829 has an effect that depends on the machine mode it is used for. */
830
831#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
832
833/* Nonzero if the constant value X is a legitimate general operand.
834 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
835
836#define LEGITIMATE_CONSTANT_P(X) \
837 (GET_CODE (X) == CONST_DOUBLE \
838 || !(GET_CODE (X) == CONST \
839 && GET_CODE (XEXP (X, 0)) == PLUS \
840 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
841 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
842 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
ae180d84
JL
843\f
844/* Tell final.c how to eliminate redundant test instructions. */
845
846/* Here we define machine-dependent flags and fields in cc_status
8aeea6e6 847 (see `conditions.h'). No extra ones are needed for the VAX. */
ae180d84
JL
848
849/* Store in cc_status the expressions
850 that the condition codes will describe
851 after execution of an instruction whose pattern is EXP.
852 Do not alter them if the instruction would not alter the cc's. */
853
854#define CC_OVERFLOW_UNUSABLE 0x200
855#define CC_NO_CARRY CC_NO_OVERFLOW
856#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
857
ae180d84
JL
858/* Nonzero if access to memory by bytes or half words is no faster
859 than accessing full words. */
860#define SLOW_BYTE_ACCESS 1
861
ae180d84
JL
862/* According expr.c, a value of around 6 should minimize code size, and
863 for the V850 series, that's our primary concern. */
864#define MOVE_RATIO 6
865
866/* Indirect calls are expensive, never turn a direct call
867 into an indirect call. */
868#define NO_FUNCTION_CSE
869
3ce15347
NC
870/* The four different data regions on the v850. */
871typedef enum
872{
873 DATA_AREA_NORMAL,
874 DATA_AREA_SDA,
875 DATA_AREA_TDA,
876 DATA_AREA_ZDA
877} v850_data_area;
878
3ce15347
NC
879#define TEXT_SECTION_ASM_OP "\t.section .text"
880#define DATA_SECTION_ASM_OP "\t.section .data"
881#define BSS_SECTION_ASM_OP "\t.section .bss"
ae180d84 882#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
3ce15347 883#define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
3ce15347 884
471b6f1b
HPN
885#define SCOMMON_ASM_OP "\t.scomm\t"
886#define ZCOMMON_ASM_OP "\t.zcomm\t"
887#define TCOMMON_ASM_OP "\t.tcomm\t"
ae180d84 888
ae180d84
JL
889#define ASM_COMMENT_START "#"
890
891/* Output to assembler file text saying following lines
892 may contain character constants, extra white space, comments, etc. */
893
894#define ASM_APP_ON "#APP\n"
895
896/* Output to assembler file text saying following lines
897 no longer contain unusual constructs. */
898
899#define ASM_APP_OFF "#NO_APP\n"
900
61db4608
NC
901#undef USER_LABEL_PREFIX
902#define USER_LABEL_PREFIX "_"
903
b4378319
NC
904#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
905 if (! v850_output_addr_const_extra (FILE, X)) \
906 goto FAIL
73a697d9 907
ae180d84 908/* This says how to output the assembler to define a global
6db34dd4 909 uninitialized but not common symbol. */
ae180d84 910
f7620587 911#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
6db34dd4 912 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
ae180d84 913
3ce15347
NC
914#undef ASM_OUTPUT_ALIGNED_BSS
915#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
916 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
917
918/* This says how to output the assembler to define a global
d4de0221 919 uninitialized, common symbol. */
3ce15347
NC
920#undef ASM_OUTPUT_ALIGNED_COMMON
921#undef ASM_OUTPUT_COMMON
922#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
923 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
924
925/* This says how to output the assembler to define a local
d4de0221 926 uninitialized symbol. */
3ce15347
NC
927#undef ASM_OUTPUT_ALIGNED_LOCAL
928#undef ASM_OUTPUT_LOCAL
929#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
930 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
931
506a61b1
KG
932/* Globalizing directive for a label. */
933#define GLOBAL_ASM_OP "\t.global "
ae180d84 934
4977bab6 935#define ASM_PN_FORMAT "%s___%lu"
ae180d84
JL
936
937/* This is how we tell the assembler that two symbols have the same value. */
938
939#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
940 do { assemble_name(FILE, NAME1); \
941 fputs(" = ", FILE); \
942 assemble_name(FILE, NAME2); \
943 fputc('\n', FILE); } while (0)
944
945
946/* How to refer to registers in assembler output.
947 This sequence is indexed by compiler's hard-register-number (see above). */
948
949#define REGISTER_NAMES \
950{ "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
951 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
952 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
953 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
954 ".fp", ".ap"}
955
956#define ADDITIONAL_REGISTER_NAMES \
957{ { "zero", 0 }, \
958 { "hp", 2 }, \
959 { "r3", 3 }, \
960 { "r4", 4 }, \
961 { "tp", 5 }, \
962 { "fp", 29 }, \
963 { "r30", 30 }, \
964 { "lp", 31} }
965
966/* Print an instruction operand X on file FILE.
967 look in v850.c for details */
968
3ce15347 969#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
ae180d84
JL
970
971#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
972 ((CODE) == '.')
973
974/* Print a memory operand whose address is X, on file FILE.
975 This uses a function in output-vax.c. */
976
977#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
978
979#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
980#define ASM_OUTPUT_REG_POP(FILE,REGNO)
981
982/* This is how to output an element of a case-vector that is absolute. */
983
984#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
761c70aa
KG
985 fprintf (FILE, "\t%s .L%d\n", \
986 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
ae180d84
JL
987
988/* This is how to output an element of a case-vector that is relative. */
989
b4378319
NC
990#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
991 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
1933ec7e 992 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
b4378319
NC
993 (! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \
994 VALUE, REL, \
995 (! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
ae180d84 996
674fdc14 997#define ASM_OUTPUT_ALIGN(FILE, LOG) \
ae180d84
JL
998 if ((LOG) != 0) \
999 fprintf (FILE, "\t.align %d\n", (LOG))
1000
956d6950 1001/* We don't have to worry about dbx compatibility for the v850. */
ae180d84
JL
1002#define DEFAULT_GDB_EXTENSIONS 1
1003
1004/* Use stabs debugging info by default. */
1005#undef PREFERRED_DEBUGGING_TYPE
1006#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1007
ae180d84
JL
1008/* Specify the machine mode that this machine uses
1009 for the index in the tablejump instruction. */
1933ec7e 1010#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
ae180d84 1011
18543a22
ILT
1012/* Define as C expression which evaluates to nonzero if the tablejump
1013 instruction expects the table to contain offsets from the address of the
1014 table.
d4de0221 1015 Do not define this if the table should contain absolute addresses. */
18543a22 1016#define CASE_VECTOR_PC_RELATIVE 1
1933ec7e
JW
1017
1018/* The switch instruction requires that the jump table immediately follow
d4de0221 1019 it. */
75197b37 1020#define JUMP_TABLES_IN_TEXT_SECTION 1
1933ec7e
JW
1021
1022/* svr4.h defines this assuming that 4 byte alignment is required. */
1023#undef ASM_OUTPUT_BEFORE_CASE_LABEL
1024#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1025 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
ae180d84
JL
1026
1027#define WORD_REGISTER_OPERATIONS
1028
1029/* Byte and short loads sign extend the value to a word. */
1030#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1031
ae180d84
JL
1032/* This flag, if defined, says the same insns that convert to a signed fixnum
1033 also convert validly to an unsigned one. */
1034#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1035
ae180d84
JL
1036/* Max number of bytes we can move from memory to memory
1037 in one reasonably fast instruction. */
1038#define MOVE_MAX 4
1039
1040/* Define if shifts truncate the shift count
1041 which implies one can omit a sign-extension or zero-extension
1042 of a shift count. */
1043#define SHIFT_COUNT_TRUNCATED 1
1044
1045/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1046 is done just by pretending it is already truncated. */
1047#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1048
ae180d84
JL
1049/* Specify the machine mode that pointers have.
1050 After generation of rtl, the compiler makes no further distinction
1051 between pointers and any other objects of this machine mode. */
1052#define Pmode SImode
1053
1054/* A function address in a call instruction
1055 is a byte address (for indexing purposes)
1056 so give the MEM rtx a byte's mode. */
1057#define FUNCTION_MODE QImode
1058
ae180d84 1059/* Tell compiler we want to support GHS pragmas */
c58b209a
NB
1060#define REGISTER_TARGET_PRAGMAS() do { \
1061 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
1062 c_register_pragma ("ghs", "section", ghs_pragma_section); \
1063 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
1064 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
1065 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
1066 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
1067 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
1068 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
8b97c5f8 1069} while (0)
3ce15347
NC
1070
1071/* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1072 can appear in the "ghs section" pragma. These names are used to index
1073 into the GHS_default_section_names[] and GHS_current_section_names[]
1074 that are defined in v850.c, and so the ordering of each must remain
839a4992 1075 consistent.
3ce15347
NC
1076
1077 These arrays give the default and current names for each kind of
1078 section defined by the GHS pragmas. The current names can be changed
1079 by the "ghs section" pragma. If the current names are null, use
1080 the default names. Note that the two arrays have different types.
1081
1082 For the *normal* section kinds (like .data, .text, etc.) we do not
1083 want to explicitly force the name of these sections, but would rather
1084 let the linker (or at least the back end) choose the name of the
1085 section, UNLESS the user has force a specific name for these section
1086 kinds. To accomplish this set the name in ghs_default_section_names
1087 to null. */
1088
1089enum GHS_section_kind
1090{
1091 GHS_SECTION_KIND_DEFAULT,
1092
1093 GHS_SECTION_KIND_TEXT,
1094 GHS_SECTION_KIND_DATA,
1095 GHS_SECTION_KIND_RODATA,
1096 GHS_SECTION_KIND_BSS,
1097 GHS_SECTION_KIND_SDATA,
1098 GHS_SECTION_KIND_ROSDATA,
1099 GHS_SECTION_KIND_TDATA,
1100 GHS_SECTION_KIND_ZDATA,
1101 GHS_SECTION_KIND_ROZDATA,
1102
1103 COUNT_OF_GHS_SECTION_KINDS /* must be last */
1104};
ae180d84 1105
c3edd394
NC
1106/* The following code is for handling pragmas supported by the
1107 v850 compiler produced by Green Hills Software. This is at
1108 the specific request of a customer. */
1109
1110typedef struct data_area_stack_element
1111{
1112 struct data_area_stack_element * prev;
1113 v850_data_area data_area; /* Current default data area. */
1114} data_area_stack_element;
1115
1116/* Track the current data area set by the
1117 data area pragma (which can be nested). */
1118extern data_area_stack_element * data_area_stack;
1119
1120/* Names of the various data areas used on the v850. */
1121extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1122extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1123
38e01259 1124/* The assembler op to start the file. */
ae180d84
JL
1125
1126#define FILE_ASM_OP "\t.file\n"
1127
1128/* Enable the register move pass to improve code. */
1129#define ENABLE_REGMOVE_PASS
1130
1131
1132/* Implement ZDA, TDA, and SDA */
1133
1134#define EP_REGNUM 30 /* ep register number */
1135
50d1ff6a
RH
1136#define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
1137#define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
1138#define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
1139#define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
1140#define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
1141#define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
ae180d84 1142
d6b5193b
RS
1143#define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
1144
88657302 1145#endif /* ! GCC_V850_H */