]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/v850/v850.h
* MAINTAINERS (Write After Approval): Add self.
[thirdparty/gcc.git] / gcc / config / v850 / v850.h
CommitLineData
956d6950 1/* Definitions of target machine for GNU compiler. NEC V850 series
16c484c7
JM
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
ae180d84
JL
4 Contributed by Jeff Law (law@cygnus.com).
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
22
8b97c5f8
ZW
23#ifndef GCC_V850_H
24#define GCC_V850_H
25
7a846a6c 26/* These are defiend in svr4.h but we want to override them. */
ae180d84
JL
27#undef ASM_FINAL_SPEC
28#undef LIB_SPEC
29#undef ENDFILE_SPEC
30#undef LINK_SPEC
31#undef STARTFILE_SPEC
7a846a6c 32#undef ASM_SPEC
ae180d84 33
74aca74b 34
7a846a6c 35#define TARGET_CPU_generic 1
74aca74b 36
7a846a6c
NC
37#ifndef TARGET_CPU_DEFAULT
38#define TARGET_CPU_DEFAULT TARGET_CPU_generic
74aca74b 39#endif
ae180d84 40
7a846a6c
NC
41#define MASK_DEFAULT MASK_V850
42#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
43#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
44#define TARGET_VERSION fprintf (stderr, " (NEC V850)");
45
46
47#define ASM_SPEC "%{mv*:-mv%*}"
48#define CPP_SPEC "%{mv850ea:-D__v850ea__} %{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
49
50#define EXTRA_SPECS \
51 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
52 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
53
54/* Names to predefine in the preprocessor for this target machine. */
55#define CPP_PREDEFINES "-D__v851__ -D__v850"
ae180d84
JL
56
57/* Run-time compilation parameters selecting different hardware subsets. */
58
59extern int target_flags;
60
61/* Target flags bits, see below for an explanation of the bits. */
62#define MASK_GHS 0x00000001
63#define MASK_LONG_CALLS 0x00000002
64#define MASK_EP 0x00000004
65#define MASK_PROLOG_FUNCTION 0x00000008
66#define MASK_DEBUG 0x40000000
67
145870b5
NC
68#define MASK_CPU 0x00000030
69#define MASK_V850 0x00000010
70
1933ec7e
JW
71#define MASK_BIG_SWITCH 0x00000100
72
ae180d84
JL
73/* Macros used in the machine description to test the flags. */
74
75/* The GHS calling convention support doesn't really work,
76 mostly due to a lack of documentation. Outstanding issues:
77
78 * How do varargs & stdarg really work. How to they handle
79 passing structures (if at all).
80
81 * Doubles are normally 4 byte aligned, except in argument
82 lists where they are 8 byte aligned. Is the alignment
83 in the argument list based on the first parameter,
3ce15347 84 first stack parameter, etc etc.
ae180d84
JL
85
86 * Passing/returning of large structures probably isn't the same
87 as GHS. We don't have enough documentation on their conventions
956d6950 88 to be compatible.
ae180d84
JL
89
90 * Tests of SETUP_INCOMING_VARARGS need to be made runtime checks
91 since it depends on TARGET_GHS. */
92#define TARGET_GHS (target_flags & MASK_GHS)
93
94/* Don't do PC-relative calls, instead load the address of the target
95 function into a register and perform a register indirect call. */
96#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
97
98/* Whether to optimize space by using ep (r30) for pointers with small offsets
99 in basic blocks. */
100#define TARGET_EP (target_flags & MASK_EP)
101
102/* Whether to call out-of-line functions to save registers or not. */
103#define TARGET_PROLOG_FUNCTION (target_flags & MASK_PROLOG_FUNCTION)
104
7a846a6c
NC
105#define TARGET_V850 ((target_flags & MASK_CPU) == MASK_V850)
106
1933ec7e
JW
107/* Whether to emit 2 byte per entry or 4 byte per entry switch tables. */
108#define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
109
ae180d84
JL
110/* General debug flag */
111#define TARGET_DEBUG (target_flags & MASK_DEBUG)
112
113/* Macro to define tables used to set the flags.
114 This is a list in braces of pairs in braces,
115 each pair being { "NAME", VALUE }
116 where VALUE is the bits to set or minus the bits to clear.
117 An empty string NAME is used to identify the default VALUE. */
118
119#define TARGET_SWITCHES \
047142d3 120 {{ "ghs", MASK_GHS, N_("Support Green Hills ABI") }, \
3ce15347
NC
121 { "no-ghs", -MASK_GHS, "" }, \
122 { "long-calls", MASK_LONG_CALLS, \
047142d3 123 N_("Prohibit PC relative function calls") },\
3ce15347
NC
124 { "no-long-calls", -MASK_LONG_CALLS, "" }, \
125 { "ep", MASK_EP, \
047142d3 126 N_("Reuse r30 on a per function basis") }, \
3ce15347
NC
127 { "no-ep", -MASK_EP, "" }, \
128 { "prolog-function", MASK_PROLOG_FUNCTION, \
047142d3 129 N_("Use stubs for function prologues") }, \
3ce15347
NC
130 { "no-prolog-function", -MASK_PROLOG_FUNCTION, "" }, \
131 { "space", MASK_EP | MASK_PROLOG_FUNCTION, \
047142d3
PT
132 N_("Same as: -mep -mprolog-function") }, \
133 { "debug", MASK_DEBUG, N_("Enable backend debugging") }, \
3ce15347 134 { "v850", MASK_V850, \
047142d3 135 N_("Compile for the v850 processor") }, \
3ce15347
NC
136 { "v850", -(MASK_V850 ^ MASK_CPU), "" }, \
137 { "big-switch", MASK_BIG_SWITCH, \
047142d3 138 N_("Use 4 byte entries in switch tables") },\
7a846a6c 139 { "", MASK_DEFAULT, ""}}
ae180d84
JL
140
141/* Information about the various small memory areas. */
142struct small_memory_info {
8b97c5f8 143 const char *name;
b54480a7 144 const char *value;
ae180d84
JL
145 long max;
146 long physical_max;
147};
148
149enum small_memory_type {
150 /* tiny data area, using EP as base register */
151 SMALL_MEMORY_TDA = 0,
152 /* small data area using dp as base register */
153 SMALL_MEMORY_SDA,
154 /* zero data area using r0 as base register */
155 SMALL_MEMORY_ZDA,
156 SMALL_MEMORY_max
157};
158
159extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
160
ae180d84
JL
161#define TARGET_OPTIONS \
162{ \
3ce15347 163 { "tda=", &small_memory[ (int)SMALL_MEMORY_TDA ].value, \
047142d3 164 N_("Set the max size of data eligible for the TDA area") }, \
3ce15347
NC
165 { "tda-", &small_memory[ (int)SMALL_MEMORY_TDA ].value, "" }, \
166 { "sda=", &small_memory[ (int)SMALL_MEMORY_SDA ].value, \
047142d3 167 N_("Set the max size of data eligible for the SDA area") }, \
3ce15347
NC
168 { "sda-", &small_memory[ (int)SMALL_MEMORY_SDA ].value, "" }, \
169 { "zda=", &small_memory[ (int)SMALL_MEMORY_ZDA ].value, \
047142d3 170 N_("Set the max size of data eligible for the ZDA area") }, \
3ce15347 171 { "zda-", &small_memory[ (int)SMALL_MEMORY_ZDA ].value, "" }, \
ae180d84
JL
172}
173
ae180d84
JL
174/* Sometimes certain combinations of command options do not make
175 sense on a particular target machine. You can define a macro
176 `OVERRIDE_OPTIONS' to take account of this. This macro, if
177 defined, is executed once just after all the command options have
178 been parsed.
179
180 Don't use this macro to turn on various extra optimizations for
181 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
182#define OVERRIDE_OPTIONS override_options ()
183
184
185/* Show we can debug even without a frame pointer. */
186#define CAN_DEBUG_WITHOUT_FP
187
188/* Some machines may desire to change what optimizations are
189 performed for various optimization levels. This macro, if
190 defined, is executed once just after the optimization level is
191 determined and before the remainder of the command options have
192 been parsed. Values set in this macro are used as the default
193 values for the other command line options.
194
195 LEVEL is the optimization level specified; 2 if `-O2' is
196 specified, 1 if `-O' is specified, and 0 if neither is specified.
197
c6aded7c
AG
198 SIZE is non-zero if `-Os' is specified, 0 otherwise.
199
ae180d84
JL
200 You should not use this macro to change options that are not
201 machine-specific. These should uniformly selected by the same
202 optimization level on all supported machines. Use this macro to
203 enable machine-specific optimizations.
204
205 *Do not examine `write_symbols' in this macro!* The debugging
206 options are not supposed to alter the generated code. */
207
c6aded7c 208#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
ae180d84
JL
209{ \
210 if (LEVEL) \
211 target_flags |= (MASK_EP | MASK_PROLOG_FUNCTION); \
212}
213
214\f
215/* Target machine storage layout */
216
217/* Define this if most significant bit is lowest numbered
218 in instructions that operate on numbered bit-fields.
219 This is not true on the NEC V850. */
220#define BITS_BIG_ENDIAN 0
221
222/* Define this if most significant byte of a word is the lowest numbered. */
223/* This is not true on the NEC V850. */
224#define BYTES_BIG_ENDIAN 0
225
226/* Define this if most significant word of a multiword number is lowest
227 numbered.
228 This is not true on the NEC V850. */
229#define WORDS_BIG_ENDIAN 0
230
ae180d84
JL
231/* Width of a word, in units (bytes). */
232#define UNITS_PER_WORD 4
233
ae180d84
JL
234/* Define this macro if it is advisable to hold scalars in registers
235 in a wider mode than that declared by the program. In such cases,
236 the value is constrained to be within the bounds of the declared
237 type, but kept valid in the wider mode. The signedness of the
238 extension may differ from that of the type.
239
240 Some simple experiments have shown that leaving UNSIGNEDP alone
241 generates the best overall code. */
242
243#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
244 if (GET_MODE_CLASS (MODE) == MODE_INT \
245 && GET_MODE_SIZE (MODE) < 4) \
246 { (MODE) = SImode; }
247
248/* Allocation boundary (in *bits*) for storing arguments in argument list. */
249#define PARM_BOUNDARY 32
250
251/* The stack goes in 32 bit lumps. */
252#define STACK_BOUNDARY 32
253
254/* Allocation boundary (in *bits*) for the code of a function.
255 16 is the minimum boundary; 32 would give better performance. */
256#define FUNCTION_BOUNDARY 16
257
258/* No data type wants to be aligned rounder than this. */
259#define BIGGEST_ALIGNMENT 32
260
261/* Alignment of field after `int : 0' in a structure. */
262#define EMPTY_FIELD_BOUNDARY 32
263
264/* No structure field wants to be aligned rounder than this. */
265#define BIGGEST_FIELD_ALIGNMENT 32
266
267/* Define this if move instructions will actually fail to work
268 when given unaligned data. */
b201442f 269#define STRICT_ALIGNMENT 1
ae180d84
JL
270
271/* Define this as 1 if `char' should by default be signed; else as 0.
272
273 On the NEC V850, loads do sign extension, so make this default. */
274#define DEFAULT_SIGNED_CHAR 1
ae180d84
JL
275\f
276/* Standard register usage. */
277
278/* Number of actual hardware registers.
279 The hardware registers are assigned numbers for the compiler
280 from 0 to just below FIRST_PSEUDO_REGISTER.
281
282 All registers that the compiler knows about must be given numbers,
283 even those that are not normally considered general registers. */
284
285#define FIRST_PSEUDO_REGISTER 34
286
287/* 1 for registers that have pervasive standard uses
288 and are not available for the register allocator. */
289
290#define FIXED_REGISTERS \
291 { 1, 1, 0, 1, 1, 0, 0, 0, \
292 0, 0, 0, 0, 0, 0, 0, 0, \
293 0, 0, 0, 0, 0, 0, 0, 0, \
294 0, 0, 0, 0, 0, 0, 1, 0, \
295 1, 1}
296
297/* 1 for registers not available across function calls.
298 These must include the FIXED_REGISTERS and also any
299 registers that can be used without being saved.
300 The latter must include the registers where values are returned
301 and the register where structure-value addresses are passed.
302 Aside from that, you can include as many other registers as you
303 like. */
304
305#define CALL_USED_REGISTERS \
306 { 1, 1, 0, 1, 1, 1, 1, 1, \
307 1, 1, 1, 1, 1, 1, 1, 1, \
308 1, 1, 1, 1, 0, 0, 0, 0, \
309 0, 0, 0, 0, 0, 0, 1, 1, \
310 1, 1}
311
312/* List the order in which to allocate registers. Each register must be
313 listed once, even those in FIXED_REGISTERS.
314
315 On the 850, we make the return registers first, then all of the volatile
316 registers, then the saved registers in reverse order to better save the
956d6950 317 registers with an out of line function, and finally the fixed
ae180d84
JL
318 registers. */
319
320#define REG_ALLOC_ORDER \
321{ \
322 10, 11, /* return registers */ \
323 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
324 6, 7, 8, 9, 31, /* argument registers */ \
325 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
326 21, 20, 2, \
327 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
328}
329
330/* Return number of consecutive hard regs needed starting at reg REGNO
331 to hold something of mode MODE.
332
333 This is ordinarily the length in words of a value of mode MODE
334 but can be less for certain modes in special long registers. */
335
336#define HARD_REGNO_NREGS(REGNO, MODE) \
337 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
338
339/* Value is 1 if hard register REGNO can hold a value of machine-mode
340 MODE. */
341
342#define HARD_REGNO_MODE_OK(REGNO, MODE) \
343 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
344
345/* Value is 1 if it is a good idea to tie two pseudo registers
346 when one has mode MODE1 and one has mode MODE2.
347 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
348 for any hard reg, then this must be 0 for correct output. */
349#define MODES_TIEABLE_P(MODE1, MODE2) \
674fdc14 350 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
ae180d84
JL
351
352\f
353/* Define the classes of registers for register constraints in the
354 machine description. Also define ranges of constants.
355
356 One of the classes must always be named ALL_REGS and include all hard regs.
357 If there is more than one class, another class must be named NO_REGS
358 and contain no registers.
359
360 The name GENERAL_REGS must be the name of a class (or an alias for
361 another name such as ALL_REGS). This is the class of registers
362 that is allowed by "g" or "r" in a register constraint.
363 Also, registers outside this class are allocated only when
364 instructions express preferences for them.
365
366 The classes must be numbered in nondecreasing order; that is,
367 a larger-numbered class must never be contained completely
368 in a smaller-numbered class.
369
370 For any two classes, it is very desirable that there be another
371 class that represents their union. */
372
3ce15347
NC
373enum reg_class
374{
ae180d84
JL
375 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
376};
377
378#define N_REG_CLASSES (int) LIM_REG_CLASSES
379
380/* Give names of register classes as strings for dump file. */
381
382#define REG_CLASS_NAMES \
383{ "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
384
385/* Define which registers fit in which classes.
386 This is an initializer for a vector of HARD_REG_SET
387 of length N_REG_CLASSES. */
388
674fdc14
NC
389#define REG_CLASS_CONTENTS \
390{ \
391 { 0x00000000 }, /* NO_REGS */ \
392 { 0xffffffff }, /* GENERAL_REGS */ \
393 { 0xffffffff }, /* ALL_REGS */ \
ae180d84
JL
394}
395
396/* The same information, inverted:
397 Return the class number of the smallest class containing
398 reg number REGNO. This could be a conditional expression
399 or could index an array. */
400
401#define REGNO_REG_CLASS(REGNO) GENERAL_REGS
402
403/* The class value for index registers, and the one for base regs. */
404
405#define INDEX_REG_CLASS NO_REGS
406#define BASE_REG_CLASS GENERAL_REGS
407
408/* Get reg_class from a letter such as appears in the machine description. */
409
410#define REG_CLASS_FROM_LETTER(C) (NO_REGS)
411
412/* Macros to check register numbers against specific register classes. */
413
414/* These assume that REGNO is a hard or pseudo reg number.
415 They give nonzero only if REGNO is a hard reg of the suitable class
416 or a pseudo reg currently allocated to a suitable hard reg.
417 Since they use reg_renumber, they are safe only once reg_renumber
418 has been allocated, which happens in local-alloc.c. */
419
420#define REGNO_OK_FOR_BASE_P(regno) \
421 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
422
423#define REGNO_OK_FOR_INDEX_P(regno) 0
424
425/* Given an rtx X being reloaded into a reg required to be
426 in class CLASS, return the class of reg to actually use.
427 In general this is just CLASS; but on some machines
428 in some cases it is preferable to use a more restrictive class. */
429
430#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
431
432/* Return the maximum number of consecutive registers
433 needed to represent mode MODE in a register of class CLASS. */
434
435#define CLASS_MAX_NREGS(CLASS, MODE) \
436 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
437
438/* The letters I, J, K, L, M, N, O, P in a register constraint string
439 can be used to stand for particular ranges of immediate operands.
440 This macro defines what the ranges are.
441 C is the letter, and VALUE is a constant value.
442 Return 1 if VALUE is in the range specified by C. */
443
444#define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
445#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
1933ec7e 446/* zero */
ae180d84 447#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
1933ec7e 448/* 5 bit signed immediate */
ae180d84 449#define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
1933ec7e 450/* 16 bit signed immediate */
ae180d84 451#define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
1933ec7e 452/* valid constant for movhi instruction. */
ae180d84
JL
453#define CONST_OK_FOR_L(VALUE) \
454 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
455 && CONST_OK_FOR_I ((VALUE & 0xffff)))
1933ec7e
JW
456/* 16 bit unsigned immediate */
457#define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
458/* 5 bit unsigned immediate in shift instructions */
459#define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
ae180d84 460
ae180d84
JL
461#define CONST_OK_FOR_O(VALUE) 0
462#define CONST_OK_FOR_P(VALUE) 0
463
145870b5 464
ae180d84
JL
465#define CONST_OK_FOR_LETTER_P(VALUE, C) \
466 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
467 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
468 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
469 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
470 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
471 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
472 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
473 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
474 0)
475
476/* Similar, but for floating constants, and defining letters G and H.
477 Here VALUE is the CONST_DOUBLE rtx itself.
478
479 `G' is a zero of some form. */
480
481#define CONST_DOUBLE_OK_FOR_G(VALUE) \
482 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
483 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
484 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
485 && CONST_DOUBLE_LOW (VALUE) == 0 \
486 && CONST_DOUBLE_HIGH (VALUE) == 0))
487
488#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
489
490#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
491 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
492 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
493 : 0)
494
495\f
496/* Stack layout; function entry, exit and calling. */
497
498/* Define this if pushing a word on the stack
499 makes the stack pointer a smaller address. */
500
501#define STACK_GROWS_DOWNWARD
502
503/* Define this if the nominal address of the stack frame
504 is at the high-address end of the local variables;
505 that is, each additional local variable allocated
506 goes at a more negative offset in the frame. */
507
508#define FRAME_GROWS_DOWNWARD
509
510/* Offset within stack frame to start allocating local variables at.
511 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
512 first local allocated. Otherwise, it is the offset to the BEGINNING
513 of the first local allocated. */
514
515#define STARTING_FRAME_OFFSET 0
516
517/* Offset of first parameter from the argument pointer register value. */
518/* Is equal to the size of the saved fp + pc, even if an fp isn't
519 saved since the value is used before we know. */
520
521#define FIRST_PARM_OFFSET(FNDECL) 0
522
523/* Specify the registers used for certain standard purposes.
524 The values of these macros are register numbers. */
525
526/* Register to use for pushing function arguments. */
527#define STACK_POINTER_REGNUM 3
528
529/* Base register for access to local variables of the function. */
530#define FRAME_POINTER_REGNUM 32
531
29a65e3d
NC
532/* Register containing return address from latest function call. */
533#define LINK_POINTER_REGNUM 31
534
ae180d84
JL
535/* On some machines the offset between the frame pointer and starting
536 offset of the automatic variables is not known until after register
537 allocation has been done (for example, because the saved registers
538 are between these two locations). On those machines, define
539 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
540 be used internally until the offset is known, and define
541 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
542 used for the frame pointer.
543
544 You should define this macro only in the very rare circumstances
545 when it is not possible to calculate the offset between the frame
546 pointer and the automatic variables until after register
547 allocation has been completed. When this macro is defined, you
548 must also indicate in your definition of `ELIMINABLE_REGS' how to
549 eliminate `FRAME_POINTER_REGNUM' into either
550 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
551
552 Do not define this macro if it would be the same as
553 `FRAME_POINTER_REGNUM'. */
3ce15347 554#undef HARD_FRAME_POINTER_REGNUM
ae180d84
JL
555#define HARD_FRAME_POINTER_REGNUM 29
556
557/* Base register for access to arguments of the function. */
558#define ARG_POINTER_REGNUM 33
559
560/* Register in which static-chain is passed to a function. */
3ce15347 561#define STATIC_CHAIN_REGNUM 20
ae180d84
JL
562
563/* Value should be nonzero if functions must have frame pointers.
564 Zero means the frame pointer need not be set up (and parms
565 may be accessed via the stack pointer) in functions that seem suitable.
566 This is computed in `reload', in reload1.c. */
567#define FRAME_POINTER_REQUIRED 0
568
569/* If defined, this macro specifies a table of register pairs used to
570 eliminate unneeded registers that point into the stack frame. If
571 it is not defined, the only elimination attempted by the compiler
572 is to replace references to the frame pointer with references to
573 the stack pointer.
574
575 The definition of this macro is a list of structure
576 initializations, each of which specifies an original and
577 replacement register.
578
579 On some machines, the position of the argument pointer is not
580 known until the compilation is completed. In such a case, a
581 separate hard register must be used for the argument pointer.
582 This register can be eliminated by replacing it with either the
583 frame pointer or the argument pointer, depending on whether or not
584 the frame pointer has been eliminated.
585
586 In this case, you might specify:
587 #define ELIMINABLE_REGS \
588 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
589 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
590 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
591
592 Note that the elimination of the argument pointer with the stack
593 pointer is specified first since that is the preferred elimination. */
594
595#define ELIMINABLE_REGS \
596{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
597 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
598 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
599 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
600
601/* A C expression that returns non-zero if the compiler is allowed to
602 try to replace register number FROM-REG with register number
603 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
604 defined, and will usually be the constant 1, since most of the
605 cases preventing register elimination are things that the compiler
606 already knows about. */
607
608#define CAN_ELIMINATE(FROM, TO) \
609 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
610
611/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
612 specifies the initial difference between the specified pair of
613 registers. This macro must be defined if `ELIMINABLE_REGS' is
614 defined. */
615
616#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
617{ \
618 if ((FROM) == FRAME_POINTER_REGNUM) \
619 (OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
620 else if ((FROM) == ARG_POINTER_REGNUM) \
621 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
622 else \
623 abort (); \
624}
625
626/* A guess for the V850. */
627#define PROMOTE_PROTOTYPES 1
628
629/* Keep the stack pointer constant throughout the function. */
f73ad30e 630#define ACCUMULATE_OUTGOING_ARGS 1
ae180d84
JL
631
632/* Value is the number of bytes of arguments automatically
633 popped when returning from a subroutine call.
634 FUNDECL is the declaration node of the function (as a tree),
635 FUNTYPE is the data type of the function (as a tree),
636 or for a library call it is an identifier node for the subroutine name.
637 SIZE is the number of bytes of arguments passed on the stack. */
638
639#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
640
a64761a3 641#define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
ae180d84
JL
642\f
643/* Define a data type for recording info about an argument list
644 during the scan of that argument list. This data type should
645 hold all necessary information about the function itself
646 and about the args processed so far, enough to enable macros
647 such as FUNCTION_ARG to determine where the next arg should go. */
648
649#define CUMULATIVE_ARGS struct cum_arg
650struct cum_arg { int nbytes; };
651
652/* Define where to put the arguments to a function.
653 Value is zero to push the argument on the stack,
654 or a hard register in which to store the argument.
655
656 MODE is the argument's machine mode.
657 TYPE is the data type of the argument (as a tree).
658 This is null for libcalls where that information may
659 not be available.
660 CUM is a variable of type CUMULATIVE_ARGS which gives info about
661 the preceding args and about the function being called.
662 NAMED is nonzero if this argument is a named parameter
663 (otherwise it is an extra parameter matching an ellipsis). */
664
ae180d84
JL
665#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
666 function_arg (&CUM, MODE, TYPE, NAMED)
667
668#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
669 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
670
671/* Initialize a variable CUM of type CUMULATIVE_ARGS
672 for a call to a function whose data type is FNTYPE.
673 For a library call, FNTYPE is 0. */
674
675#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
676 ((CUM).nbytes = 0)
677
678/* Update the data in CUM to advance over an argument
679 of mode MODE and data type TYPE.
680 (TYPE is null for libcalls where that information may not be available.) */
681
682#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
683 ((CUM).nbytes += ((MODE) != BLKmode \
684 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
685 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
686
687/* When a parameter is passed in a register, stack space is still
688 allocated for it. */
689#define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
690
691/* Define this if the above stack space is to be considered part of the
692 space allocated by the caller. */
693#define OUTGOING_REG_PARM_STACK_SPACE
694
695extern int current_function_anonymous_args;
696/* Do any setup necessary for varargs/stdargs functions. */
697#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PAS, SECOND) \
698 current_function_anonymous_args = (!TARGET_GHS ? 1 : 0);
699
bc092c4a
RH
700/* Implement `va_arg'. */
701#define EXPAND_BUILTIN_VA_ARG(valist, type) \
702 v850_va_arg (valist, type)
703
ae180d84
JL
704#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
705 ((TYPE) && int_size_in_bytes (TYPE) > 8)
706
707#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
708 ((TYPE) && int_size_in_bytes (TYPE) > 8)
709
710/* 1 if N is a possible register number for function argument passing. */
711
712#define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
713
714/* Define how to find the value returned by a function.
715 VALTYPE is the data type of the value (as a tree).
716 If the precise function being called is known, FUNC is its FUNCTION_DECL;
717 otherwise, FUNC is 0. */
718
719#define FUNCTION_VALUE(VALTYPE, FUNC) \
c5c76735 720 gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
ae180d84
JL
721
722/* Define how to find the value returned by a library function
723 assuming the value has mode MODE. */
724
725#define LIBCALL_VALUE(MODE) \
c5c76735 726 gen_rtx_REG (MODE, 10)
ae180d84
JL
727
728/* 1 if N is a possible register number for a function value. */
729
730#define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
731
732/* Return values > 8 bytes in length in memory. */
733#define DEFAULT_PCC_STRUCT_RETURN 0
734#define RETURN_IN_MEMORY(TYPE) \
735 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
736
737/* Register in which address to store a structure value
738 is passed to a function. On the V850 it's passed as
739 the first parameter. */
740
741#define STRUCT_VALUE 0
742
743/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
744 the stack pointer does not matter. The value is tested only in
745 functions that have frame pointers.
746 No definition is equivalent to always zero. */
747
748#define EXIT_IGNORE_STACK 1
749
750/* Output assembler code to FILE to increment profiler label # LABELNO
751 for profiling a function entry. */
752
753#define FUNCTION_PROFILER(FILE, LABELNO) ;
754
755#define TRAMPOLINE_TEMPLATE(FILE) \
756 do { \
757 fprintf (FILE, "\tjarl .+4,r12\n"); \
6ed7412a 758 fprintf (FILE, "\tld.w 12[r12],r20\n"); \
ae180d84
JL
759 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
760 fprintf (FILE, "\tjmp [r12]\n"); \
761 fprintf (FILE, "\tnop\n"); \
762 fprintf (FILE, "\t.long 0\n"); \
763 fprintf (FILE, "\t.long 0\n"); \
764 } while (0)
765
766/* Length in units of the trampoline for entering a nested function. */
767
768#define TRAMPOLINE_SIZE 24
769
770/* Emit RTL insns to initialize the variable parts of a trampoline.
771 FNADDR is an RTX for the address of the function's pure code.
772 CXT is an RTX for the static chain value for the function. */
773
774#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
775{ \
c5c76735 776 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
ae180d84 777 (CXT)); \
c5c76735 778 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
ae180d84
JL
779 (FNADDR)); \
780}
781
782/* Addressing modes, and classification of registers for them. */
783
784\f
785/* 1 if X is an rtx for a constant that is a valid address. */
786
1933ec7e
JW
787/* ??? This seems too exclusive. May get better code by accepting more
788 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
789
ae180d84
JL
790#define CONSTANT_ADDRESS_P(X) \
791 (GET_CODE (X) == CONST_INT \
792 && CONST_OK_FOR_K (INTVAL (X)))
793
794/* Maximum number of registers that can appear in a valid memory address. */
795
796#define MAX_REGS_PER_ADDRESS 1
797
798/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
799 and check its validity for a certain class.
800 We have two alternate definitions for each of them.
801 The usual definition accepts all pseudo regs; the other rejects
802 them unless they have been allocated suitable hard regs.
803 The symbol REG_OK_STRICT causes the latter definition to be used.
804
805 Most source files want to accept pseudo regs in the hope that
806 they will get allocated to the class that the insn wants them to be in.
807 Source files for reload pass need to be strict.
808 After reload, it makes no difference, since pseudo regs have
809 been eliminated by then. */
810
811#ifndef REG_OK_STRICT
812
813/* Nonzero if X is a hard reg that can be used as an index
814 or if it is a pseudo reg. */
815#define REG_OK_FOR_INDEX_P(X) 0
816/* Nonzero if X is a hard reg that can be used as a base reg
817 or if it is a pseudo reg. */
818#define REG_OK_FOR_BASE_P(X) 1
819#define REG_OK_FOR_INDEX_P_STRICT(X) 0
820#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
821#define STRICT 0
822
823#else
824
825/* Nonzero if X is a hard reg that can be used as an index. */
826#define REG_OK_FOR_INDEX_P(X) 0
827/* Nonzero if X is a hard reg that can be used as a base reg. */
828#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
829#define STRICT 1
830
831#endif
832
833/* A C expression that defines the optional machine-dependent
834 constraint letters that can be used to segregate specific types of
835 operands, usually memory references, for the target machine.
836 Normally this macro will not be defined. If it is required for a
837 particular target machine, it should return 1 if VALUE corresponds
838 to the operand type represented by the constraint letter C. If C
839 is not defined as an extra constraint, the value returned should
840 be 0 regardless of VALUE.
841
842 For example, on the ROMP, load instructions cannot have their
843 output in r0 if the memory reference contains a symbolic address.
844 Constraint letter `Q' is defined as representing a memory address
845 that does *not* contain a symbolic address. An alternative is
846 specified with a `Q' constraint on the input and `r' on the
847 output. The next alternative specifies `m' on the input and a
848 register class that does not include r0 on the output. */
849
850#define EXTRA_CONSTRAINT(OP, C) \
674fdc14 851 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), 0) \
ae180d84
JL
852 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
853 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF && ! ZDA_NAME_P (XSTR (OP, 0))) \
854 : (C) == 'T' ? 0 \
1933ec7e
JW
855 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF && ZDA_NAME_P (XSTR (OP, 0))) \
856 || (GET_CODE (OP) == CONST \
857 && GET_CODE (XEXP (OP, 0)) == PLUS \
858 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
859 && ZDA_NAME_P (XSTR (XEXP (XEXP (OP, 0), 0), 0)))) \
ae180d84
JL
860 : 0)
861\f
862/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
863 that is a valid memory address for an instruction.
864 The MODE argument is the machine mode for the MEM expression
865 that wants to use this address.
866
867 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
868 except for CONSTANT_ADDRESS_P which is actually
869 machine-independent. */
870
871/* Accept either REG or SUBREG where a register is valid. */
872
873#define RTX_OK_FOR_BASE_P(X) \
874 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
875 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
876 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
877
878#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
879do { \
880 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
881 if (CONSTANT_ADDRESS_P (X) \
7a846a6c
NC
882 && (MODE == QImode || INTVAL (X) % 2 == 0) \
883 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
ae180d84
JL
884 goto ADDR; \
885 if (GET_CODE (X) == LO_SUM \
886 && GET_CODE (XEXP (X, 0)) == REG \
887 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
888 && CONSTANT_P (XEXP (X, 1)) \
889 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
890 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
891 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
892 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
893 goto ADDR; \
894 if (special_symbolref_operand (X, MODE) \
895 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
896 goto ADDR; \
897 if (GET_CODE (X) == PLUS \
898 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
899 && (MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
900 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR; \
901} while (0)
902
903\f
904/* Try machine-dependent ways of modifying an illegitimate address
905 to be legitimate. If we find one, return the new, valid address.
906 This macro is used in only one place: `memory_address' in explow.c.
907
908 OLDX is the address as it was before break_out_memory_refs was called.
909 In some cases it is useful to look at this to decide what needs to be done.
910
911 MODE and WIN are passed so that this macro can use
912 GO_IF_LEGITIMATE_ADDRESS.
913
914 It is always safe for this macro to do nothing. It exists to recognize
915 opportunities to optimize the output. */
916
917#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
918
919/* Go to LABEL if ADDR (a legitimate address expression)
920 has an effect that depends on the machine mode it is used for. */
921
922#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
923
924/* Nonzero if the constant value X is a legitimate general operand.
925 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
926
927#define LEGITIMATE_CONSTANT_P(X) \
928 (GET_CODE (X) == CONST_DOUBLE \
929 || !(GET_CODE (X) == CONST \
930 && GET_CODE (XEXP (X, 0)) == PLUS \
931 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
932 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
933 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
934
935/* In rare cases, correct code generation requires extra machine
936 dependent processing between the second jump optimization pass and
937 delayed branch scheduling. On those machines, define this macro
938 as a C statement to act on the code starting at INSN. */
939
940#define MACHINE_DEPENDENT_REORG(INSN) v850_reorg (INSN)
941
942\f
943/* Tell final.c how to eliminate redundant test instructions. */
944
945/* Here we define machine-dependent flags and fields in cc_status
8aeea6e6 946 (see `conditions.h'). No extra ones are needed for the VAX. */
ae180d84
JL
947
948/* Store in cc_status the expressions
949 that the condition codes will describe
950 after execution of an instruction whose pattern is EXP.
951 Do not alter them if the instruction would not alter the cc's. */
952
953#define CC_OVERFLOW_UNUSABLE 0x200
954#define CC_NO_CARRY CC_NO_OVERFLOW
955#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
956
957/* A part of a C `switch' statement that describes the relative costs
958 of constant RTL expressions. It must contain `case' labels for
959 expression codes `const_int', `const', `symbol_ref', `label_ref'
960 and `const_double'. Each case must ultimately reach a `return'
961 statement to return the relative cost of the use of that kind of
962 constant value in an expression. The cost may depend on the
963 precise value of the constant, which is available for examination
964 in X, and the rtx code of the expression in which it is contained,
965 found in OUTER_CODE.
966
967 CODE is the expression code--redundant, since it can be obtained
968 with `GET_CODE (X)'. */
969
970#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
971 case CONST_INT: \
972 case CONST_DOUBLE: \
973 case CONST: \
974 case SYMBOL_REF: \
975 case LABEL_REF: \
976 { \
977 int _zxy = const_costs(RTX, CODE); \
978 return (_zxy) ? COSTS_N_INSNS (_zxy) : 0; \
979 }
980
981/* A crude cut at RTX_COSTS for the V850. */
982
983/* Provide the costs of a rtl expression. This is in the body of a
984 switch on CODE.
985
986 There aren't DImode MOD, DIV or MULT operations, so call them
956d6950 987 very expensive. Everything else is pretty much a constant cost. */
ae180d84
JL
988
989#define RTX_COSTS(RTX,CODE,OUTER_CODE) \
990 case MOD: \
991 case DIV: \
992 return 60; \
993 case MULT: \
994 return 20;
995
996/* All addressing modes have the same cost on the V850 series. */
997#define ADDRESS_COST(ADDR) 1
998
999/* Nonzero if access to memory by bytes or half words is no faster
1000 than accessing full words. */
1001#define SLOW_BYTE_ACCESS 1
1002
ae180d84
JL
1003/* According expr.c, a value of around 6 should minimize code size, and
1004 for the V850 series, that's our primary concern. */
1005#define MOVE_RATIO 6
1006
1007/* Indirect calls are expensive, never turn a direct call
1008 into an indirect call. */
1009#define NO_FUNCTION_CSE
1010
3ce15347
NC
1011/* The four different data regions on the v850. */
1012typedef enum
1013{
1014 DATA_AREA_NORMAL,
1015 DATA_AREA_SDA,
1016 DATA_AREA_TDA,
1017 DATA_AREA_ZDA
1018} v850_data_area;
1019
ae180d84
JL
1020/* A list of names for sections other than the standard two, which are
1021 `in_text' and `in_data'. You need not define this macro on a
1022 system with no other sections (that GCC needs to use). */
1023#undef EXTRA_SECTIONS
d48bc59a 1024#define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, \
19652adf 1025 in_rozdata, in_rosdata, in_sbss, in_zbss, in_zcommon, in_scommon
ae180d84
JL
1026
1027/* One or more functions to be defined in `varasm.c'. These
1028 functions should do jobs analogous to those of `text_section' and
1029 `data_section', for your additional sections. Do not define this
1030 macro if you do not define `EXTRA_SECTIONS'. */
1031#undef EXTRA_SECTION_FUNCTIONS
3ce15347
NC
1032
1033/* This could be done a lot more cleanly using ANSI C ... */
ae180d84 1034#define EXTRA_SECTION_FUNCTIONS \
ae180d84
JL
1035void \
1036sdata_section () \
1037{ \
1038 if (in_section != in_sdata) \
1039 { \
1040 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
1041 in_section = in_sdata; \
1042 } \
1043} \
1044 \
1045void \
3ce15347
NC
1046rosdata_section () \
1047{ \
1048 if (in_section != in_rosdata) \
1049 { \
1050 fprintf (asm_out_file, "%s\n", ROSDATA_SECTION_ASM_OP); \
1051 in_section = in_sdata; \
1052 } \
1053} \
1054 \
1055void \
1056sbss_section () \
1057{ \
1058 if (in_section != in_sbss) \
1059 { \
1060 fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
1061 in_section = in_sbss; \
1062 } \
1063} \
1064 \
1065void \
ae180d84
JL
1066tdata_section () \
1067{ \
1068 if (in_section != in_tdata) \
1069 { \
1070 fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP); \
1071 in_section = in_tdata; \
1072 } \
1073} \
1074 \
1075void \
1076zdata_section () \
1077{ \
1078 if (in_section != in_zdata) \
1079 { \
1080 fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP); \
1081 in_section = in_zdata; \
1082 } \
3ce15347
NC
1083} \
1084 \
1085void \
1086rozdata_section () \
1087{ \
1088 if (in_section != in_rozdata) \
1089 { \
1090 fprintf (asm_out_file, "%s\n", ROZDATA_SECTION_ASM_OP); \
1091 in_section = in_rozdata; \
1092 } \
1093} \
1094 \
1095void \
1096zbss_section () \
1097{ \
1098 if (in_section != in_zbss) \
1099 { \
1100 fprintf (asm_out_file, "%s\n", ZBSS_SECTION_ASM_OP); \
1101 in_section = in_zbss; \
1102 } \
ae180d84
JL
1103}
1104
3ce15347
NC
1105#define TEXT_SECTION_ASM_OP "\t.section .text"
1106#define DATA_SECTION_ASM_OP "\t.section .data"
1107#define BSS_SECTION_ASM_OP "\t.section .bss"
ae180d84 1108#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
3ce15347 1109#define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
ae180d84 1110#define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
3ce15347 1111#define ZBSS_SECTION_ASM_OP "\t.section .zbss,\"aw\""
ae180d84 1112#define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
3ce15347
NC
1113#define ROSDATA_SECTION_ASM_OP "\t.section .rosdata,\"a\""
1114#define ROZDATA_SECTION_ASM_OP "\t.section .rozdata,\"a\""
1115
471b6f1b
HPN
1116#define SCOMMON_ASM_OP "\t.scomm\t"
1117#define ZCOMMON_ASM_OP "\t.zcomm\t"
1118#define TCOMMON_ASM_OP "\t.tcomm\t"
ae180d84 1119
ae180d84
JL
1120/* Output at beginning/end of assembler file. */
1121#undef ASM_FILE_START
1122#define ASM_FILE_START(FILE) asm_file_start(FILE)
1123
1124#define ASM_COMMENT_START "#"
1125
1126/* Output to assembler file text saying following lines
1127 may contain character constants, extra white space, comments, etc. */
1128
1129#define ASM_APP_ON "#APP\n"
1130
1131/* Output to assembler file text saying following lines
1132 no longer contain unusual constructs. */
1133
1134#define ASM_APP_OFF "#NO_APP\n"
1135
61db4608
NC
1136#undef USER_LABEL_PREFIX
1137#define USER_LABEL_PREFIX "_"
1138
301d03af 1139/* When assemble_integer is used to emit the offsets for a switch
73a697d9
NC
1140 table it can encounter (TRUNCATE:HI (MINUS:SI (LABEL_REF:SI) (LABEL_REF:SI))).
1141 output_addr_const will normally barf at this, but it is OK to omit
1142 the truncate and just emit the difference of the two labels. The
1143 .hword directive will automatically handle the truncation for us. */
1144
1145#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
1146 if (GET_CODE (x) == TRUNCATE) \
b3656137 1147 output_addr_const (FILE, XEXP (X, 0)); \
73a697d9
NC
1148 else \
1149 goto FAIL;
1150
ae180d84 1151/* This says how to output the assembler to define a global
6db34dd4 1152 uninitialized but not common symbol. */
ae180d84 1153
f7620587 1154#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
6db34dd4 1155 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
ae180d84 1156
3ce15347
NC
1157#undef ASM_OUTPUT_ALIGNED_BSS
1158#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1159 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1160
1161/* This says how to output the assembler to define a global
1162 uninitialized, common symbol. */
1163#undef ASM_OUTPUT_ALIGNED_COMMON
1164#undef ASM_OUTPUT_COMMON
1165#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
1166 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
1167
1168/* This says how to output the assembler to define a local
1169 uninitialized symbol. */
1170#undef ASM_OUTPUT_ALIGNED_LOCAL
1171#undef ASM_OUTPUT_LOCAL
1172#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
1173 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
1174
506a61b1
KG
1175/* Globalizing directive for a label. */
1176#define GLOBAL_ASM_OP "\t.global "
ae180d84 1177
77f43519
CM
1178/* This is how to output a reference to a user-level label named NAME.
1179 `assemble_name' uses this. */
1180
1181#undef ASM_OUTPUT_LABELREF
772c5265
RH
1182#define ASM_OUTPUT_LABELREF(FILE, NAME) \
1183 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
ae180d84
JL
1184
1185/* Store in OUTPUT a string (made with alloca) containing
1186 an assembler-name for a local static variable named NAME.
1187 LABELNO is an integer which is different for each call. */
1188
1189#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1190( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1191 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1192
1193/* This is how we tell the assembler that two symbols have the same value. */
1194
1195#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
1196 do { assemble_name(FILE, NAME1); \
1197 fputs(" = ", FILE); \
1198 assemble_name(FILE, NAME2); \
1199 fputc('\n', FILE); } while (0)
1200
1201
1202/* How to refer to registers in assembler output.
1203 This sequence is indexed by compiler's hard-register-number (see above). */
1204
1205#define REGISTER_NAMES \
1206{ "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
1207 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1208 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1209 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
1210 ".fp", ".ap"}
1211
1212#define ADDITIONAL_REGISTER_NAMES \
1213{ { "zero", 0 }, \
1214 { "hp", 2 }, \
1215 { "r3", 3 }, \
1216 { "r4", 4 }, \
1217 { "tp", 5 }, \
1218 { "fp", 29 }, \
1219 { "r30", 30 }, \
1220 { "lp", 31} }
1221
1222/* Print an instruction operand X on file FILE.
1223 look in v850.c for details */
1224
3ce15347 1225#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
ae180d84
JL
1226
1227#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1228 ((CODE) == '.')
1229
1230/* Print a memory operand whose address is X, on file FILE.
1231 This uses a function in output-vax.c. */
1232
1233#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1234
1235#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1236#define ASM_OUTPUT_REG_POP(FILE,REGNO)
1237
1238/* This is how to output an element of a case-vector that is absolute. */
1239
1240#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
761c70aa
KG
1241 fprintf (FILE, "\t%s .L%d\n", \
1242 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
ae180d84
JL
1243
1244/* This is how to output an element of a case-vector that is relative. */
1245
33f7f353 1246#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1933ec7e
JW
1247 fprintf (FILE, "\t%s .L%d-.L%d\n", \
1248 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
1249 VALUE, REL)
ae180d84 1250
674fdc14 1251#define ASM_OUTPUT_ALIGN(FILE, LOG) \
ae180d84
JL
1252 if ((LOG) != 0) \
1253 fprintf (FILE, "\t.align %d\n", (LOG))
1254
956d6950 1255/* We don't have to worry about dbx compatibility for the v850. */
ae180d84
JL
1256#define DEFAULT_GDB_EXTENSIONS 1
1257
1258/* Use stabs debugging info by default. */
1259#undef PREFERRED_DEBUGGING_TYPE
1260#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1261
ae180d84
JL
1262/* Specify the machine mode that this machine uses
1263 for the index in the tablejump instruction. */
1933ec7e 1264#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
ae180d84
JL
1265
1266/* Define this if the case instruction drops through after the table
1267 when the index is out of range. Don't define it if the case insn
1268 jumps to the default label instead. */
1933ec7e
JW
1269/* #define CASE_DROPS_THROUGH */
1270
18543a22
ILT
1271/* Define as C expression which evaluates to nonzero if the tablejump
1272 instruction expects the table to contain offsets from the address of the
1273 table.
1274 Do not define this if the table should contain absolute addresses. */
1275#define CASE_VECTOR_PC_RELATIVE 1
1933ec7e
JW
1276
1277/* The switch instruction requires that the jump table immediately follow
1278 it. */
75197b37 1279#define JUMP_TABLES_IN_TEXT_SECTION 1
1933ec7e
JW
1280
1281/* svr4.h defines this assuming that 4 byte alignment is required. */
1282#undef ASM_OUTPUT_BEFORE_CASE_LABEL
1283#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1284 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
ae180d84
JL
1285
1286#define WORD_REGISTER_OPERATIONS
1287
1288/* Byte and short loads sign extend the value to a word. */
1289#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1290
ae180d84
JL
1291/* This flag, if defined, says the same insns that convert to a signed fixnum
1292 also convert validly to an unsigned one. */
1293#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1294
ae180d84
JL
1295/* Max number of bytes we can move from memory to memory
1296 in one reasonably fast instruction. */
1297#define MOVE_MAX 4
1298
1299/* Define if shifts truncate the shift count
1300 which implies one can omit a sign-extension or zero-extension
1301 of a shift count. */
1302#define SHIFT_COUNT_TRUNCATED 1
1303
1304/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1305 is done just by pretending it is already truncated. */
1306#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1307
1308#define STORE_FLAG_VALUE 1
1309
1310/* Specify the machine mode that pointers have.
1311 After generation of rtl, the compiler makes no further distinction
1312 between pointers and any other objects of this machine mode. */
1313#define Pmode SImode
1314
1315/* A function address in a call instruction
1316 is a byte address (for indexing purposes)
1317 so give the MEM rtx a byte's mode. */
1318#define FUNCTION_MODE QImode
1319
ae180d84 1320/* Tell compiler we want to support GHS pragmas */
8b97c5f8 1321#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
8b97c5f8
ZW
1322 cpp_register_pragma (PFILE, "ghs", "interrupt", ghs_pragma_interrupt); \
1323 cpp_register_pragma (PFILE, "ghs", "section", ghs_pragma_section); \
1324 cpp_register_pragma (PFILE, "ghs", "starttda", ghs_pragma_starttda); \
1325 cpp_register_pragma (PFILE, "ghs", "startsda", ghs_pragma_startsda); \
1326 cpp_register_pragma (PFILE, "ghs", "startzda", ghs_pragma_startzda); \
1327 cpp_register_pragma (PFILE, "ghs", "endtda", ghs_pragma_endtda); \
1328 cpp_register_pragma (PFILE, "ghs", "endsda", ghs_pragma_endsda); \
1329 cpp_register_pragma (PFILE, "ghs", "endzda", ghs_pragma_endzda); \
1330} while (0)
3ce15347
NC
1331
1332/* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1333 can appear in the "ghs section" pragma. These names are used to index
1334 into the GHS_default_section_names[] and GHS_current_section_names[]
1335 that are defined in v850.c, and so the ordering of each must remain
1336 consistant.
1337
1338 These arrays give the default and current names for each kind of
1339 section defined by the GHS pragmas. The current names can be changed
1340 by the "ghs section" pragma. If the current names are null, use
1341 the default names. Note that the two arrays have different types.
1342
1343 For the *normal* section kinds (like .data, .text, etc.) we do not
1344 want to explicitly force the name of these sections, but would rather
1345 let the linker (or at least the back end) choose the name of the
1346 section, UNLESS the user has force a specific name for these section
1347 kinds. To accomplish this set the name in ghs_default_section_names
1348 to null. */
1349
1350enum GHS_section_kind
1351{
1352 GHS_SECTION_KIND_DEFAULT,
1353
1354 GHS_SECTION_KIND_TEXT,
1355 GHS_SECTION_KIND_DATA,
1356 GHS_SECTION_KIND_RODATA,
1357 GHS_SECTION_KIND_BSS,
1358 GHS_SECTION_KIND_SDATA,
1359 GHS_SECTION_KIND_ROSDATA,
1360 GHS_SECTION_KIND_TDATA,
1361 GHS_SECTION_KIND_ZDATA,
1362 GHS_SECTION_KIND_ROZDATA,
1363
1364 COUNT_OF_GHS_SECTION_KINDS /* must be last */
1365};
ae180d84 1366
c3edd394
NC
1367/* The following code is for handling pragmas supported by the
1368 v850 compiler produced by Green Hills Software. This is at
1369 the specific request of a customer. */
1370
1371typedef struct data_area_stack_element
1372{
1373 struct data_area_stack_element * prev;
1374 v850_data_area data_area; /* Current default data area. */
1375} data_area_stack_element;
1376
1377/* Track the current data area set by the
1378 data area pragma (which can be nested). */
1379extern data_area_stack_element * data_area_stack;
1380
1381/* Names of the various data areas used on the v850. */
1382extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1383extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1384
38e01259 1385/* The assembler op to start the file. */
ae180d84
JL
1386
1387#define FILE_ASM_OP "\t.file\n"
1388
1389/* Enable the register move pass to improve code. */
1390#define ENABLE_REGMOVE_PASS
1391
1392
1393/* Implement ZDA, TDA, and SDA */
1394
1395#define EP_REGNUM 30 /* ep register number */
1396
ae180d84
JL
1397#define ZDA_NAME_FLAG_CHAR '@'
1398#define TDA_NAME_FLAG_CHAR '%'
1399#define SDA_NAME_FLAG_CHAR '&'
1400
1401#define ZDA_NAME_P(NAME) (*(NAME) == ZDA_NAME_FLAG_CHAR)
1402#define TDA_NAME_P(NAME) (*(NAME) == TDA_NAME_FLAG_CHAR)
1403#define SDA_NAME_P(NAME) (*(NAME) == SDA_NAME_FLAG_CHAR)
1404
1405#define ENCODED_NAME_P(SYMBOL_NAME) \
61db4608 1406 ( ZDA_NAME_P (SYMBOL_NAME) \
ae180d84
JL
1407 || TDA_NAME_P (SYMBOL_NAME) \
1408 || SDA_NAME_P (SYMBOL_NAME))
1409
ae180d84
JL
1410/* Define this if you have defined special-purpose predicates in the
1411 file `MACHINE.c'. This macro is called within an initializer of an
1412 array of structures. The first field in the structure is the name
1413 of a predicate and the second field is an array of rtl codes. For
1414 each predicate, list all rtl codes that can be in expressions
1415 matched by the predicate. The list should have a trailing comma. */
1416
1417#define PREDICATE_CODES \
ae180d84
JL
1418{ "reg_or_0_operand", { REG, SUBREG, CONST_INT, CONST_DOUBLE }}, \
1419{ "reg_or_int5_operand", { REG, SUBREG, CONST_INT }}, \
1420{ "call_address_operand", { REG, SYMBOL_REF }}, \
1421{ "movsi_source_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
1422 CONST_DOUBLE, CONST, HIGH, MEM, \
1423 REG, SUBREG }}, \
1424{ "special_symbolref_operand", { SYMBOL_REF }}, \
1425{ "power_of_two_operand", { CONST_INT }}, \
145870b5
NC
1426{ "pattern_is_ok_for_prologue", { PARALLEL }}, \
1427{ "pattern_is_ok_for_epilogue", { PARALLEL }}, \
1428{ "register_is_ok_for_epilogue",{ REG }}, \
ae180d84 1429{ "not_power_of_two_operand", { CONST_INT }},
3ce15347 1430
88657302 1431#endif /* ! GCC_V850_H */