]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/xtensa/xtensa.c
trans.c (gnat_gimplify_expr): Use buildN instead of build.
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.c
CommitLineData
03984308 1/* Subroutines for insn-output.c for Tensilica's Xtensa architecture.
8eb1bc5c 2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
03984308
BW
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
39d14dda
KC
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA. */
03984308
BW
21
22#include "config.h"
23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
03984308
BW
26#include "rtl.h"
27#include "regs.h"
03984308
BW
28#include "hard-reg-set.h"
29#include "basic-block.h"
30#include "real.h"
31#include "insn-config.h"
32#include "conditions.h"
33#include "insn-flags.h"
34#include "insn-attr.h"
35#include "insn-codes.h"
36#include "recog.h"
37#include "output.h"
38#include "tree.h"
39#include "expr.h"
40#include "flags.h"
41#include "reload.h"
42#include "tm_p.h"
43#include "function.h"
44#include "toplev.h"
45#include "optabs.h"
46#include "libfuncs.h"
07232638 47#include "ggc.h"
03984308
BW
48#include "target.h"
49#include "target-def.h"
540eaea8 50#include "langhooks.h"
85d53c1d
RH
51#include "tree-gimple.h"
52
03984308
BW
53
54/* Enumeration for all of the relational tests, so that we can build
55 arrays indexed by the test type, and not worry about the order
638db43e 56 of EQ, NE, etc. */
03984308 57
ffbc8796
BW
58enum internal_test
59{
60 ITEST_EQ,
61 ITEST_NE,
62 ITEST_GT,
63 ITEST_GE,
64 ITEST_LT,
65 ITEST_LE,
66 ITEST_GTU,
67 ITEST_GEU,
68 ITEST_LTU,
69 ITEST_LEU,
70 ITEST_MAX
71};
03984308
BW
72
73/* Cached operands, and operator to compare for use in set/branch on
74 condition codes. */
75rtx branch_cmp[2];
76
77/* what type of branch to use */
78enum cmp_type branch_type;
79
80/* Array giving truth value on whether or not a given hard register
81 can support a given mode. */
82char xtensa_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
83
84/* Current frame size calculated by compute_frame_size. */
85unsigned xtensa_current_frame_size;
86
a46bbb5a 87/* Largest block move to handle in-line. */
03984308
BW
88#define LARGEST_MOVE_RATIO 15
89
90/* Define the structure for the machine field in struct function. */
e2500fed 91struct machine_function GTY(())
03984308
BW
92{
93 int accesses_prev_frame;
997b8b4d
BW
94 bool need_a7_copy;
95 bool vararg_a7;
96 rtx set_frame_ptr_insn;
03984308
BW
97};
98
99/* Vector, indexed by hard register number, which contains 1 for a
100 register that is allowable in a candidate for leaf function
638db43e 101 treatment. */
03984308
BW
102
103const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER] =
104{
105 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
106 1, 1, 1,
107 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
108 1
109};
110
111/* Map hard register number to register class */
112const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER] =
113{
89f6025d
BW
114 RL_REGS, SP_REG, RL_REGS, RL_REGS,
115 RL_REGS, RL_REGS, RL_REGS, GR_REGS,
116 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
117 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
03984308
BW
118 AR_REGS, AR_REGS, BR_REGS,
119 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
120 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
121 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
122 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
123 ACC_REG,
124};
125
126/* Map register constraint character to register class. */
127enum reg_class xtensa_char_to_class[256] =
128{
129 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
130 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
131 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
132 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
133 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
134 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
135 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
136 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
137 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
138 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
139 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
140 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
141 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
142 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
143 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
144 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
145 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
146 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
147 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
148 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
149 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
150 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
151 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
152 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
153 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
154 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
155 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
156 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
157 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
158 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
159 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
160 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
161 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
162 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
163 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
164 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
165 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
166 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
167 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
168 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
169 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
170 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
171 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
172 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
173 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
174 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
175 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
176 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
177 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
178 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
179 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
180 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
181 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
182 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
183 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
184 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
185 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
186 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
187 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
188 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
189 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
190 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
191 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
192 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
193};
194
ffbc8796
BW
195static enum internal_test map_test_to_internal_test (enum rtx_code);
196static rtx gen_int_relational (enum rtx_code, rtx, rtx, int *);
197static rtx gen_float_relational (enum rtx_code, rtx, rtx);
198static rtx gen_conditional_move (rtx);
199static rtx fixup_subreg_mem (rtx);
ffbc8796 200static struct machine_function * xtensa_init_machine_status (void);
6e5ff6e7 201static bool xtensa_return_in_msb (tree);
ffbc8796
BW
202static void printx (FILE *, signed int);
203static void xtensa_function_epilogue (FILE *, HOST_WIDE_INT);
4c45af42 204static rtx xtensa_builtin_saveregs (void);
ffbc8796
BW
205static unsigned int xtensa_multibss_section_type_flags (tree, const char *,
206 int) ATTRIBUTE_UNUSED;
207static void xtensa_select_rtx_section (enum machine_mode, rtx,
208 unsigned HOST_WIDE_INT);
209static bool xtensa_rtx_costs (rtx, int, int, int *);
c35d187f 210static tree xtensa_build_builtin_va_list (void);
4c45af42 211static bool xtensa_return_in_memory (tree, tree);
85d53c1d 212static tree xtensa_gimplify_va_arg_expr (tree, tree, tree *, tree *);
b64a1b53 213
b64a1b53
RH
214static const int reg_nonleaf_alloc_order[FIRST_PSEUDO_REGISTER] =
215 REG_ALLOC_ORDER;
216\f
03984308
BW
217
218/* This macro generates the assembly code for function exit,
219 on machines that need it. If FUNCTION_EPILOGUE is not defined
220 then individual return instructions are generated for each
221 return statement. Args are same as for FUNCTION_PROLOGUE. */
222
223#undef TARGET_ASM_FUNCTION_EPILOGUE
224#define TARGET_ASM_FUNCTION_EPILOGUE xtensa_function_epilogue
225
226/* These hooks specify assembly directives for creating certain kinds
227 of integer object. */
228
229#undef TARGET_ASM_ALIGNED_SI_OP
230#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
231
b64a1b53
RH
232#undef TARGET_ASM_SELECT_RTX_SECTION
233#define TARGET_ASM_SELECT_RTX_SECTION xtensa_select_rtx_section
03984308 234
66beb87a
RS
235#undef TARGET_DEFAULT_TARGET_FLAGS
236#define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | MASK_FUSED_MADD)
237
3c50106f
RH
238#undef TARGET_RTX_COSTS
239#define TARGET_RTX_COSTS xtensa_rtx_costs
dcefdf67
RH
240#undef TARGET_ADDRESS_COST
241#define TARGET_ADDRESS_COST hook_int_rtx_0
3c50106f 242
c35d187f
RH
243#undef TARGET_BUILD_BUILTIN_VA_LIST
244#define TARGET_BUILD_BUILTIN_VA_LIST xtensa_build_builtin_va_list
245
4c45af42
KH
246#undef TARGET_PROMOTE_FUNCTION_ARGS
247#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
248#undef TARGET_PROMOTE_FUNCTION_RETURN
249#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
250#undef TARGET_PROMOTE_PROTOTYPES
251#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
252
4c45af42
KH
253#undef TARGET_RETURN_IN_MEMORY
254#define TARGET_RETURN_IN_MEMORY xtensa_return_in_memory
42ba5130
RH
255#undef TARGET_SPLIT_COMPLEX_ARG
256#define TARGET_SPLIT_COMPLEX_ARG hook_bool_tree_true
fe984136
RH
257#undef TARGET_MUST_PASS_IN_STACK
258#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
4c45af42
KH
259
260#undef TARGET_EXPAND_BUILTIN_SAVEREGS
261#define TARGET_EXPAND_BUILTIN_SAVEREGS xtensa_builtin_saveregs
85d53c1d
RH
262#undef TARGET_GIMPLIFY_VA_ARG_EXPR
263#define TARGET_GIMPLIFY_VA_ARG_EXPR xtensa_gimplify_va_arg_expr
4c45af42 264
6e5ff6e7
BW
265#undef TARGET_RETURN_IN_MSB
266#define TARGET_RETURN_IN_MSB xtensa_return_in_msb
267
b64a1b53
RH
268struct gcc_target targetm = TARGET_INITIALIZER;
269\f
03984308
BW
270
271/*
272 * Functions to test Xtensa immediate operand validity.
273 */
274
8eb1bc5c
BW
275bool
276xtensa_simm8 (HOST_WIDE_INT v)
277{
278 return v >= -128 && v <= 127;
279}
280
281
282bool
283xtensa_simm8x256 (HOST_WIDE_INT v)
284{
285 return (v & 255) == 0 && (v >= -32768 && v <= 32512);
286}
287
288
289bool
290xtensa_simm12b (HOST_WIDE_INT v)
291{
292 return v >= -2048 && v <= 2047;
293}
294
295
296static bool
297xtensa_uimm8 (HOST_WIDE_INT v)
298{
299 return v >= 0 && v <= 255;
300}
301
302
303static bool
304xtensa_uimm8x2 (HOST_WIDE_INT v)
305{
306 return (v & 1) == 0 && (v >= 0 && v <= 510);
307}
308
309
310static bool
311xtensa_uimm8x4 (HOST_WIDE_INT v)
312{
313 return (v & 3) == 0 && (v >= 0 && v <= 1020);
314}
315
316
317static bool
318xtensa_b4const (HOST_WIDE_INT v)
03984308
BW
319{
320 switch (v)
321 {
8eb1bc5c
BW
322 case -1:
323 case 1:
03984308
BW
324 case 2:
325 case 3:
326 case 4:
327 case 5:
328 case 6:
329 case 7:
330 case 8:
331 case 10:
332 case 12:
333 case 16:
334 case 32:
335 case 64:
336 case 128:
337 case 256:
8eb1bc5c 338 return true;
03984308 339 }
8eb1bc5c 340 return false;
03984308
BW
341}
342
03984308 343
8eb1bc5c
BW
344bool
345xtensa_b4const_or_zero (HOST_WIDE_INT v)
03984308 346{
8eb1bc5c
BW
347 if (v == 0)
348 return true;
349 return xtensa_b4const (v);
03984308
BW
350}
351
03984308 352
8eb1bc5c
BW
353bool
354xtensa_b4constu (HOST_WIDE_INT v)
03984308
BW
355{
356 switch (v)
357 {
8eb1bc5c
BW
358 case 32768:
359 case 65536:
03984308
BW
360 case 2:
361 case 3:
362 case 4:
363 case 5:
364 case 6:
365 case 7:
366 case 8:
367 case 10:
368 case 12:
369 case 16:
370 case 32:
371 case 64:
372 case 128:
373 case 256:
8eb1bc5c 374 return true;
03984308 375 }
8eb1bc5c 376 return false;
03984308
BW
377}
378
03984308 379
8eb1bc5c
BW
380bool
381xtensa_mask_immediate (HOST_WIDE_INT v)
03984308 382{
8eb1bc5c
BW
383#define MAX_MASK_SIZE 16
384 int mask_size;
03984308 385
8eb1bc5c
BW
386 for (mask_size = 1; mask_size <= MAX_MASK_SIZE; mask_size++)
387 {
388 if ((v & 1) == 0)
389 return false;
390 v = v >> 1;
391 if (v == 0)
392 return true;
393 }
03984308 394
8eb1bc5c 395 return false;
03984308
BW
396}
397
03984308 398
8eb1bc5c
BW
399bool
400xtensa_const_ok_for_letter_p (HOST_WIDE_INT v, int c)
03984308 401{
8eb1bc5c
BW
402 switch (c)
403 {
404 case 'I': return xtensa_simm12b (v);
405 case 'J': return xtensa_simm8 (v);
406 case 'K': return (v == 0 || xtensa_b4const (v));
407 case 'L': return xtensa_b4constu (v);
408 case 'M': return (v >= -32 && v <= 95);
409 case 'N': return xtensa_simm8x256 (v);
410 case 'O': return (v == -1 || (v >= 1 && v <= 15));
411 case 'P': return xtensa_mask_immediate (v);
412 default: break;
413 }
414 return false;
03984308
BW
415}
416
417
418/* This is just like the standard true_regnum() function except that it
638db43e 419 works even when reg_renumber is not initialized. */
03984308
BW
420
421int
ffbc8796 422xt_true_regnum (rtx x)
03984308
BW
423{
424 if (GET_CODE (x) == REG)
425 {
426 if (reg_renumber
427 && REGNO (x) >= FIRST_PSEUDO_REGISTER
428 && reg_renumber[REGNO (x)] >= 0)
429 return reg_renumber[REGNO (x)];
430 return REGNO (x);
431 }
432 if (GET_CODE (x) == SUBREG)
433 {
434 int base = xt_true_regnum (SUBREG_REG (x));
435 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
436 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
437 GET_MODE (SUBREG_REG (x)),
438 SUBREG_BYTE (x), GET_MODE (x));
439 }
440 return -1;
441}
442
443
03984308 444int
ffbc8796 445xtensa_valid_move (enum machine_mode mode, rtx *operands)
03984308 446{
a8cacfd2
BW
447 /* Either the destination or source must be a register, and the
448 MAC16 accumulator doesn't count. */
449
450 if (register_operand (operands[0], mode))
451 {
452 int dst_regnum = xt_true_regnum (operands[0]);
453
638db43e 454 /* The stack pointer can only be assigned with a MOVSP opcode. */
a8cacfd2
BW
455 if (dst_regnum == STACK_POINTER_REGNUM)
456 return (mode == SImode
457 && register_operand (operands[1], mode)
458 && !ACC_REG_P (xt_true_regnum (operands[1])));
459
460 if (!ACC_REG_P (dst_regnum))
461 return true;
462 }
3437320b 463 if (register_operand (operands[1], mode))
a8cacfd2
BW
464 {
465 int src_regnum = xt_true_regnum (operands[1]);
466 if (!ACC_REG_P (src_regnum))
467 return true;
468 }
03984308
BW
469 return FALSE;
470}
471
472
03984308 473int
ffbc8796 474smalloffset_mem_p (rtx op)
03984308
BW
475{
476 if (GET_CODE (op) == MEM)
477 {
478 rtx addr = XEXP (op, 0);
479 if (GET_CODE (addr) == REG)
480 return REG_OK_FOR_BASE_P (addr);
481 if (GET_CODE (addr) == PLUS)
482 {
483 rtx offset = XEXP (addr, 0);
8eb1bc5c 484 HOST_WIDE_INT val;
03984308
BW
485 if (GET_CODE (offset) != CONST_INT)
486 offset = XEXP (addr, 1);
487 if (GET_CODE (offset) != CONST_INT)
488 return FALSE;
8eb1bc5c
BW
489
490 val = INTVAL (offset);
491 return (val & 3) == 0 && (val >= 0 && val <= 60);
03984308
BW
492 }
493 }
494 return FALSE;
495}
496
497
03984308 498int
ffbc8796 499constantpool_address_p (rtx addr)
03984308
BW
500{
501 rtx sym = addr;
502
503 if (GET_CODE (addr) == CONST)
504 {
505 rtx offset;
506
3bbc2af6 507 /* Only handle (PLUS (SYM, OFFSET)) form. */
03984308
BW
508 addr = XEXP (addr, 0);
509 if (GET_CODE (addr) != PLUS)
510 return FALSE;
511
3bbc2af6 512 /* Make sure the address is word aligned. */
03984308
BW
513 offset = XEXP (addr, 1);
514 if ((GET_CODE (offset) != CONST_INT)
515 || ((INTVAL (offset) & 3) != 0))
516 return FALSE;
517
518 sym = XEXP (addr, 0);
519 }
520
521 if ((GET_CODE (sym) == SYMBOL_REF)
522 && CONSTANT_POOL_ADDRESS_P (sym))
523 return TRUE;
524 return FALSE;
525}
526
527
528int
ffbc8796 529constantpool_mem_p (rtx op)
03984308
BW
530{
531 if (GET_CODE (op) == MEM)
532 return constantpool_address_p (XEXP (op, 0));
533 return FALSE;
534}
535
536
03984308 537void
ffbc8796 538xtensa_extend_reg (rtx dst, rtx src)
03984308
BW
539{
540 rtx temp = gen_reg_rtx (SImode);
541 rtx shift = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (GET_MODE (src)));
542
3bbc2af6 543 /* Generate paradoxical subregs as needed so that the modes match. */
03984308
BW
544 src = simplify_gen_subreg (SImode, src, GET_MODE (src), 0);
545 dst = simplify_gen_subreg (SImode, dst, GET_MODE (dst), 0);
546
547 emit_insn (gen_ashlsi3 (temp, src, shift));
548 emit_insn (gen_ashrsi3 (dst, temp, shift));
549}
550
551
8eb1bc5c 552bool
ffbc8796 553xtensa_mem_offset (unsigned v, enum machine_mode mode)
03984308
BW
554{
555 switch (mode)
556 {
557 case BLKmode:
558 /* Handle the worst case for block moves. See xtensa_expand_block_move
559 where we emit an optimized block move operation if the block can be
560 moved in < "move_ratio" pieces. The worst case is when the block is
561 aligned but has a size of (3 mod 4) (does this happen?) so that the
638db43e 562 last piece requires a byte load/store. */
f42f5a1b
BW
563 return (xtensa_uimm8 (v)
564 && xtensa_uimm8 (v + MOVE_MAX * LARGEST_MOVE_RATIO));
03984308
BW
565
566 case QImode:
567 return xtensa_uimm8 (v);
568
569 case HImode:
570 return xtensa_uimm8x2 (v);
571
572 case DFmode:
573 return (xtensa_uimm8x4 (v) && xtensa_uimm8x4 (v + 4));
574
575 default:
576 break;
577 }
578
579 return xtensa_uimm8x4 (v);
580}
581
582
8eb1bc5c
BW
583bool
584xtensa_extra_constraint (rtx op, int c)
585{
586 /* Allow pseudo registers during reload. */
587 if (GET_CODE (op) != MEM)
588 return (c >= 'R' && c <= 'U'
589 && reload_in_progress && GET_CODE (op) == REG
590 && REGNO (op) >= FIRST_PSEUDO_REGISTER);
591
592 switch (c)
593 {
594 case 'R': return smalloffset_mem_p (op);
595 case 'T': return !TARGET_CONST16 && constantpool_mem_p (op);
596 case 'U': return !constantpool_mem_p (op);
597 default: break;
598 }
599 return false;
600}
601
602
ffbc8796 603/* Make normal rtx_code into something we can index from an array. */
03984308
BW
604
605static enum internal_test
ffbc8796 606map_test_to_internal_test (enum rtx_code test_code)
03984308
BW
607{
608 enum internal_test test = ITEST_MAX;
609
610 switch (test_code)
611 {
612 default: break;
613 case EQ: test = ITEST_EQ; break;
614 case NE: test = ITEST_NE; break;
615 case GT: test = ITEST_GT; break;
616 case GE: test = ITEST_GE; break;
617 case LT: test = ITEST_LT; break;
618 case LE: test = ITEST_LE; break;
619 case GTU: test = ITEST_GTU; break;
620 case GEU: test = ITEST_GEU; break;
621 case LTU: test = ITEST_LTU; break;
622 case LEU: test = ITEST_LEU; break;
623 }
624
625 return test;
626}
627
628
629/* Generate the code to compare two integer values. The return value is
638db43e 630 the comparison expression. */
03984308
BW
631
632static rtx
ffbc8796
BW
633gen_int_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
634 rtx cmp0, /* first operand to compare */
635 rtx cmp1, /* second operand to compare */
636 int *p_invert /* whether branch needs to reverse test */)
03984308 637{
ffbc8796
BW
638 struct cmp_info
639 {
03984308 640 enum rtx_code test_code; /* test code to use in insn */
8eb1bc5c 641 bool (*const_range_p) (HOST_WIDE_INT); /* range check function */
03984308
BW
642 int const_add; /* constant to add (convert LE -> LT) */
643 int reverse_regs; /* reverse registers in test */
644 int invert_const; /* != 0 if invert value if cmp1 is constant */
645 int invert_reg; /* != 0 if invert value if cmp1 is register */
646 int unsignedp; /* != 0 for unsigned comparisons. */
647 };
648
649 static struct cmp_info info[ (int)ITEST_MAX ] = {
650
8eb1bc5c
BW
651 { EQ, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* EQ */
652 { NE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* NE */
03984308 653
8eb1bc5c
BW
654 { LT, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* GT */
655 { GE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* GE */
656 { LT, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* LT */
657 { GE, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* LE */
03984308
BW
658
659 { LTU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* GTU */
660 { GEU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* GEU */
661 { LTU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* LTU */
662 { GEU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* LEU */
663 };
664
665 enum internal_test test;
666 enum machine_mode mode;
667 struct cmp_info *p_info;
668
669 test = map_test_to_internal_test (test_code);
177b6be0 670 gcc_assert (test != ITEST_MAX);
03984308
BW
671
672 p_info = &info[ (int)test ];
673
674 mode = GET_MODE (cmp0);
675 if (mode == VOIDmode)
676 mode = GET_MODE (cmp1);
677
678 /* Make sure we can handle any constants given to us. */
679 if (GET_CODE (cmp1) == CONST_INT)
680 {
681 HOST_WIDE_INT value = INTVAL (cmp1);
682 unsigned HOST_WIDE_INT uvalue = (unsigned HOST_WIDE_INT)value;
683
684 /* if the immediate overflows or does not fit in the immediate field,
685 spill it to a register */
686
687 if ((p_info->unsignedp ?
688 (uvalue + p_info->const_add > uvalue) :
689 (value + p_info->const_add > value)) != (p_info->const_add > 0))
690 {
691 cmp1 = force_reg (mode, cmp1);
692 }
693 else if (!(p_info->const_range_p) (value + p_info->const_add))
694 {
695 cmp1 = force_reg (mode, cmp1);
696 }
697 }
698 else if ((GET_CODE (cmp1) != REG) && (GET_CODE (cmp1) != SUBREG))
699 {
700 cmp1 = force_reg (mode, cmp1);
701 }
702
703 /* See if we need to invert the result. */
704 *p_invert = ((GET_CODE (cmp1) == CONST_INT)
705 ? p_info->invert_const
706 : p_info->invert_reg);
707
708 /* Comparison to constants, may involve adding 1 to change a LT into LE.
709 Comparison between two registers, may involve switching operands. */
710 if (GET_CODE (cmp1) == CONST_INT)
711 {
712 if (p_info->const_add != 0)
713 cmp1 = GEN_INT (INTVAL (cmp1) + p_info->const_add);
714
715 }
716 else if (p_info->reverse_regs)
717 {
718 rtx temp = cmp0;
719 cmp0 = cmp1;
720 cmp1 = temp;
721 }
722
1c563bed 723 return gen_rtx_fmt_ee (p_info->test_code, VOIDmode, cmp0, cmp1);
03984308
BW
724}
725
726
727/* Generate the code to compare two float values. The return value is
638db43e 728 the comparison expression. */
03984308
BW
729
730static rtx
ffbc8796
BW
731gen_float_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
732 rtx cmp0, /* first operand to compare */
733 rtx cmp1 /* second operand to compare */)
03984308 734{
ffbc8796 735 rtx (*gen_fn) (rtx, rtx, rtx);
03984308
BW
736 rtx brtmp;
737 int reverse_regs, invert;
738
739 switch (test_code)
740 {
741 case EQ: reverse_regs = 0; invert = 0; gen_fn = gen_seq_sf; break;
742 case NE: reverse_regs = 0; invert = 1; gen_fn = gen_seq_sf; break;
743 case LE: reverse_regs = 0; invert = 0; gen_fn = gen_sle_sf; break;
744 case GT: reverse_regs = 1; invert = 0; gen_fn = gen_slt_sf; break;
745 case LT: reverse_regs = 0; invert = 0; gen_fn = gen_slt_sf; break;
746 case GE: reverse_regs = 1; invert = 0; gen_fn = gen_sle_sf; break;
633e4eb4 747 default:
1c563bed 748 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
03984308
BW
749 reverse_regs = 0; invert = 0; gen_fn = 0; /* avoid compiler warnings */
750 }
751
752 if (reverse_regs)
753 {
754 rtx temp = cmp0;
755 cmp0 = cmp1;
756 cmp1 = temp;
757 }
758
759 brtmp = gen_rtx_REG (CCmode, FPCC_REGNUM);
760 emit_insn (gen_fn (brtmp, cmp0, cmp1));
761
1c563bed 762 return gen_rtx_fmt_ee (invert ? EQ : NE, VOIDmode, brtmp, const0_rtx);
03984308
BW
763}
764
765
766void
ffbc8796 767xtensa_expand_conditional_branch (rtx *operands, enum rtx_code test_code)
03984308
BW
768{
769 enum cmp_type type = branch_type;
770 rtx cmp0 = branch_cmp[0];
771 rtx cmp1 = branch_cmp[1];
772 rtx cmp;
773 int invert;
774 rtx label1, label2;
775
776 switch (type)
777 {
778 case CMP_DF:
779 default:
1c563bed 780 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
03984308
BW
781
782 case CMP_SI:
783 invert = FALSE;
784 cmp = gen_int_relational (test_code, cmp0, cmp1, &invert);
785 break;
786
787 case CMP_SF:
788 if (!TARGET_HARD_FLOAT)
1c563bed 789 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
03984308
BW
790 invert = FALSE;
791 cmp = gen_float_relational (test_code, cmp0, cmp1);
792 break;
793 }
794
795 /* Generate the branch. */
796
797 label1 = gen_rtx_LABEL_REF (VOIDmode, operands[0]);
798 label2 = pc_rtx;
799
800 if (invert)
801 {
802 label2 = label1;
803 label1 = pc_rtx;
804 }
805
806 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
807 gen_rtx_IF_THEN_ELSE (VOIDmode, cmp,
808 label1,
809 label2)));
810}
811
812
813static rtx
ffbc8796 814gen_conditional_move (rtx cmp)
03984308
BW
815{
816 enum rtx_code code = GET_CODE (cmp);
817 rtx op0 = branch_cmp[0];
818 rtx op1 = branch_cmp[1];
819
820 if (branch_type == CMP_SI)
821 {
822 /* Jump optimization calls get_condition() which canonicalizes
823 comparisons like (GE x <const>) to (GT x <const-1>).
824 Transform those comparisons back to GE, since that is the
825 comparison supported in Xtensa. We shouldn't have to
826 transform <LE x const> comparisons, because neither
827 xtensa_expand_conditional_branch() nor get_condition() will
638db43e 828 produce them. */
03984308
BW
829
830 if ((code == GT) && (op1 == constm1_rtx))
831 {
832 code = GE;
833 op1 = const0_rtx;
834 }
1c563bed 835 cmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
03984308
BW
836
837 if (boolean_operator (cmp, VOIDmode))
838 {
3bbc2af6 839 /* Swap the operands to make const0 second. */
03984308
BW
840 if (op0 == const0_rtx)
841 {
842 op0 = op1;
843 op1 = const0_rtx;
844 }
845
3bbc2af6 846 /* If not comparing against zero, emit a comparison (subtract). */
03984308
BW
847 if (op1 != const0_rtx)
848 {
849 op0 = expand_binop (SImode, sub_optab, op0, op1,
850 0, 0, OPTAB_LIB_WIDEN);
851 op1 = const0_rtx;
852 }
853 }
854 else if (branch_operator (cmp, VOIDmode))
855 {
3bbc2af6 856 /* Swap the operands to make const0 second. */
03984308
BW
857 if (op0 == const0_rtx)
858 {
859 op0 = op1;
860 op1 = const0_rtx;
861
862 switch (code)
863 {
864 case LT: code = GE; break;
865 case GE: code = LT; break;
177b6be0 866 default: gcc_unreachable ();
03984308
BW
867 }
868 }
869
870 if (op1 != const0_rtx)
871 return 0;
872 }
873 else
874 return 0;
875
1c563bed 876 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
03984308
BW
877 }
878
879 if (TARGET_HARD_FLOAT && (branch_type == CMP_SF))
880 return gen_float_relational (code, op0, op1);
881
882 return 0;
883}
884
885
886int
ffbc8796 887xtensa_expand_conditional_move (rtx *operands, int isflt)
03984308
BW
888{
889 rtx cmp;
ffbc8796 890 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
03984308
BW
891
892 if (!(cmp = gen_conditional_move (operands[1])))
893 return 0;
894
895 if (isflt)
896 gen_fn = (branch_type == CMP_SI
897 ? gen_movsfcc_internal0
898 : gen_movsfcc_internal1);
899 else
900 gen_fn = (branch_type == CMP_SI
901 ? gen_movsicc_internal0
902 : gen_movsicc_internal1);
903
904 emit_insn (gen_fn (operands[0], XEXP (cmp, 0),
905 operands[2], operands[3], cmp));
906 return 1;
907}
908
909
910int
ffbc8796 911xtensa_expand_scc (rtx *operands)
03984308
BW
912{
913 rtx dest = operands[0];
914 rtx cmp = operands[1];
915 rtx one_tmp, zero_tmp;
ffbc8796 916 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
03984308
BW
917
918 if (!(cmp = gen_conditional_move (cmp)))
919 return 0;
920
921 one_tmp = gen_reg_rtx (SImode);
922 zero_tmp = gen_reg_rtx (SImode);
923 emit_insn (gen_movsi (one_tmp, const_true_rtx));
924 emit_insn (gen_movsi (zero_tmp, const0_rtx));
925
926 gen_fn = (branch_type == CMP_SI
927 ? gen_movsicc_internal0
928 : gen_movsicc_internal1);
929 emit_insn (gen_fn (dest, XEXP (cmp, 0), one_tmp, zero_tmp, cmp));
930 return 1;
931}
932
933
633e4eb4
BW
934/* Split OP[1] into OP[2,3] and likewise for OP[0] into OP[0,1]. MODE is
935 for the output, i.e., the input operands are twice as big as MODE. */
936
937void
ffbc8796 938xtensa_split_operand_pair (rtx operands[4], enum machine_mode mode)
633e4eb4
BW
939{
940 switch (GET_CODE (operands[1]))
941 {
942 case REG:
943 operands[3] = gen_rtx_REG (mode, REGNO (operands[1]) + 1);
944 operands[2] = gen_rtx_REG (mode, REGNO (operands[1]));
945 break;
946
947 case MEM:
948 operands[3] = adjust_address (operands[1], mode, GET_MODE_SIZE (mode));
949 operands[2] = adjust_address (operands[1], mode, 0);
950 break;
951
952 case CONST_INT:
953 case CONST_DOUBLE:
954 split_double (operands[1], &operands[2], &operands[3]);
955 break;
956
957 default:
177b6be0 958 gcc_unreachable ();
633e4eb4
BW
959 }
960
961 switch (GET_CODE (operands[0]))
962 {
963 case REG:
964 operands[1] = gen_rtx_REG (mode, REGNO (operands[0]) + 1);
965 operands[0] = gen_rtx_REG (mode, REGNO (operands[0]));
966 break;
967
968 case MEM:
969 operands[1] = adjust_address (operands[0], mode, GET_MODE_SIZE (mode));
970 operands[0] = adjust_address (operands[0], mode, 0);
971 break;
972
973 default:
177b6be0 974 gcc_unreachable ();
633e4eb4
BW
975 }
976}
977
978
03984308 979/* Emit insns to move operands[1] into operands[0].
03984308
BW
980 Return 1 if we have written out everything that needs to be done to
981 do the move. Otherwise, return 0 and the caller will emit the move
982 normally. */
983
984int
ffbc8796 985xtensa_emit_move_sequence (rtx *operands, enum machine_mode mode)
03984308
BW
986{
987 if (CONSTANT_P (operands[1])
03984308
BW
988 && (GET_CODE (operands[1]) != CONST_INT
989 || !xtensa_simm12b (INTVAL (operands[1]))))
990 {
f42f5a1b
BW
991 if (!TARGET_CONST16)
992 operands[1] = force_const_mem (SImode, operands[1]);
993
994 /* PC-relative loads are always SImode, and CONST16 is only
995 supported in the movsi pattern, so add a SUBREG for any other
996 (smaller) mode. */
997
998 if (mode != SImode)
999 {
1000 if (register_operand (operands[0], mode))
1001 {
1002 operands[0] = simplify_gen_subreg (SImode, operands[0], mode, 0);
1003 emit_move_insn (operands[0], operands[1]);
1004 return 1;
1005 }
1006 else
1007 {
1008 operands[1] = force_reg (SImode, operands[1]);
1009 operands[1] = gen_lowpart_SUBREG (mode, operands[1]);
1010 }
1011 }
03984308
BW
1012 }
1013
997b8b4d
BW
1014 if (!(reload_in_progress | reload_completed)
1015 && !xtensa_valid_move (mode, operands))
1016 operands[1] = force_reg (mode, operands[1]);
03984308 1017
997b8b4d 1018 operands[1] = xtensa_copy_incoming_a7 (operands[1]);
03984308
BW
1019
1020 /* During reload we don't want to emit (subreg:X (mem:Y)) since that
638db43e
BW
1021 instruction won't be recognized after reload, so we remove the
1022 subreg and adjust mem accordingly. */
03984308
BW
1023 if (reload_in_progress)
1024 {
1025 operands[0] = fixup_subreg_mem (operands[0]);
1026 operands[1] = fixup_subreg_mem (operands[1]);
1027 }
1028 return 0;
1029}
1030
f42f5a1b 1031
03984308 1032static rtx
ffbc8796 1033fixup_subreg_mem (rtx x)
03984308
BW
1034{
1035 if (GET_CODE (x) == SUBREG
1036 && GET_CODE (SUBREG_REG (x)) == REG
1037 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1038 {
1039 rtx temp =
1040 gen_rtx_SUBREG (GET_MODE (x),
1041 reg_equiv_mem [REGNO (SUBREG_REG (x))],
1042 SUBREG_BYTE (x));
1043 x = alter_subreg (&temp);
1044 }
1045 return x;
1046}
1047
1048
997b8b4d
BW
1049/* Check if an incoming argument in a7 is expected to be used soon and
1050 if OPND is a register or register pair that includes a7. If so,
1051 create a new pseudo and copy a7 into that pseudo at the very
1052 beginning of the function, followed by the special "set_frame_ptr"
1053 unspec_volatile insn. The return value is either the original
1054 operand, if it is not a7, or the new pseudo containing a copy of
1055 the incoming argument. This is necessary because the register
1056 allocator will ignore conflicts with a7 and may either assign some
1057 other pseudo to a7 or use a7 as the hard_frame_pointer, clobbering
1058 the incoming argument in a7. By copying the argument out of a7 as
1059 the very first thing, and then immediately following that with an
1060 unspec_volatile to keep the scheduler away, we should avoid any
1061 problems. Putting the set_frame_ptr insn at the beginning, with
1062 only the a7 copy before it, also makes it easier for the prologue
1063 expander to initialize the frame pointer after the a7 copy and to
1064 fix up the a7 copy to use the stack pointer instead of the frame
1065 pointer. */
58db834b 1066
997b8b4d
BW
1067rtx
1068xtensa_copy_incoming_a7 (rtx opnd)
58db834b 1069{
997b8b4d
BW
1070 rtx entry_insns = 0;
1071 rtx reg, tmp;
1072 enum machine_mode mode;
1073
1074 if (!cfun->machine->need_a7_copy)
1075 return opnd;
1076
1077 /* This function should never be called again once a7 has been copied. */
177b6be0 1078 gcc_assert (!cfun->machine->set_frame_ptr_insn);
997b8b4d
BW
1079
1080 mode = GET_MODE (opnd);
1081
1082 /* The operand using a7 may come in a later instruction, so just return
1083 the original operand if it doesn't use a7. */
1084 reg = opnd;
1085 if (GET_CODE (reg) == SUBREG)
58db834b 1086 {
177b6be0 1087 gcc_assert (SUBREG_BYTE (reg) == 0);
997b8b4d
BW
1088 reg = SUBREG_REG (reg);
1089 }
1090 if (GET_CODE (reg) != REG
1091 || REGNO (reg) > A7_REG
1092 || REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) <= A7_REG)
1093 return opnd;
e6aecf8e 1094
997b8b4d 1095 /* 1-word args will always be in a7; 2-word args in a6/a7. */
177b6be0 1096 gcc_assert (REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) - 1 == A7_REG);
58db834b 1097
997b8b4d 1098 cfun->machine->need_a7_copy = false;
58db834b 1099
997b8b4d
BW
1100 /* Copy a7 to a new pseudo at the function entry. Use gen_raw_REG to
1101 create the REG for a7 so that hard_frame_pointer_rtx is not used. */
58db834b 1102
997b8b4d
BW
1103 push_to_sequence (entry_insns);
1104 tmp = gen_reg_rtx (mode);
58db834b 1105
997b8b4d
BW
1106 switch (mode)
1107 {
1108 case DFmode:
1109 case DImode:
1110 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 0),
1111 gen_rtx_REG (SImode, A7_REG - 1)));
1112 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 4),
1113 gen_raw_REG (SImode, A7_REG)));
1114 break;
1115 case SFmode:
1116 emit_insn (gen_movsf_internal (tmp, gen_raw_REG (mode, A7_REG)));
1117 break;
1118 case SImode:
1119 emit_insn (gen_movsi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1120 break;
1121 case HImode:
1122 emit_insn (gen_movhi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1123 break;
1124 case QImode:
1125 emit_insn (gen_movqi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1126 break;
1127 default:
177b6be0 1128 gcc_unreachable ();
58db834b
BW
1129 }
1130
997b8b4d
BW
1131 cfun->machine->set_frame_ptr_insn = emit_insn (gen_set_frame_ptr ());
1132 entry_insns = get_insns ();
1133 end_sequence ();
1134
1135 if (cfun->machine->vararg_a7)
1136 {
1137 /* This is called from within builtin_savereg, so we're already
1138 inside a start_sequence that will be placed at the start of
1139 the function. */
1140 emit_insn (entry_insns);
1141 }
1142 else
1143 {
1144 /* Put entry_insns after the NOTE that starts the function. If
1145 this is inside a start_sequence, make the outer-level insn
1146 chain current, so the code is placed at the start of the
1147 function. */
1148 push_topmost_sequence ();
1149 emit_insn_after (entry_insns, get_insns ());
1150 pop_topmost_sequence ();
1151 }
1152
1153 return tmp;
58db834b
BW
1154}
1155
1156
a46bbb5a
BW
1157/* Try to expand a block move operation to a sequence of RTL move
1158 instructions. If not optimizing, or if the block size is not a
1159 constant, or if the block is too large, the expansion fails and GCC
1160 falls back to calling memcpy().
03984308
BW
1161
1162 operands[0] is the destination
1163 operands[1] is the source
1164 operands[2] is the length
1165 operands[3] is the alignment */
1166
1167int
ffbc8796 1168xtensa_expand_block_move (rtx *operands)
03984308 1169{
7eda7cda
RH
1170 static const enum machine_mode mode_from_align[] =
1171 {
1172 VOIDmode, QImode, HImode, VOIDmode, SImode,
1173 };
1174
1175 rtx dst_mem = operands[0];
1176 rtx src_mem = operands[1];
1177 HOST_WIDE_INT bytes, align;
03984308 1178 int num_pieces, move_ratio;
7eda7cda
RH
1179 rtx temp[2];
1180 enum machine_mode mode[2];
1181 int amount[2];
1182 bool active[2];
1183 int phase = 0;
1184 int next;
1185 int offset_ld = 0;
1186 int offset_st = 0;
1187 rtx x;
03984308 1188
3bbc2af6 1189 /* If this is not a fixed size move, just call memcpy. */
03984308
BW
1190 if (!optimize || (GET_CODE (operands[2]) != CONST_INT))
1191 return 0;
1192
7eda7cda
RH
1193 bytes = INTVAL (operands[2]);
1194 align = INTVAL (operands[3]);
1195
3bbc2af6 1196 /* Anything to move? */
03984308 1197 if (bytes <= 0)
7eda7cda 1198 return 0;
03984308
BW
1199
1200 if (align > MOVE_MAX)
1201 align = MOVE_MAX;
1202
3bbc2af6 1203 /* Decide whether to expand inline based on the optimization level. */
03984308
BW
1204 move_ratio = 4;
1205 if (optimize > 2)
1206 move_ratio = LARGEST_MOVE_RATIO;
3bbc2af6 1207 num_pieces = (bytes / align) + (bytes % align); /* Close enough anyway. */
7eda7cda 1208 if (num_pieces > move_ratio)
03984308
BW
1209 return 0;
1210
7eda7cda
RH
1211 x = XEXP (dst_mem, 0);
1212 if (!REG_P (x))
1213 {
1214 x = force_reg (Pmode, x);
1215 dst_mem = replace_equiv_address (dst_mem, x);
1216 }
03984308 1217
7eda7cda
RH
1218 x = XEXP (src_mem, 0);
1219 if (!REG_P (x))
1220 {
1221 x = force_reg (Pmode, x);
1222 src_mem = replace_equiv_address (src_mem, x);
1223 }
03984308 1224
7eda7cda 1225 active[0] = active[1] = false;
03984308 1226
7eda7cda 1227 do
03984308 1228 {
7eda7cda
RH
1229 next = phase;
1230 phase ^= 1;
03984308 1231
7eda7cda 1232 if (bytes > 0)
03984308 1233 {
7eda7cda 1234 int next_amount;
03984308 1235
7eda7cda
RH
1236 next_amount = (bytes >= 4 ? 4 : (bytes >= 2 ? 2 : 1));
1237 next_amount = MIN (next_amount, align);
03984308 1238
7eda7cda
RH
1239 amount[next] = next_amount;
1240 mode[next] = mode_from_align[next_amount];
1241 temp[next] = gen_reg_rtx (mode[next]);
03984308 1242
7eda7cda
RH
1243 x = adjust_address (src_mem, mode[next], offset_ld);
1244 emit_insn (gen_rtx_SET (VOIDmode, temp[next], x));
03984308 1245
7eda7cda
RH
1246 offset_ld += next_amount;
1247 bytes -= next_amount;
1248 active[next] = true;
1249 }
03984308 1250
7eda7cda
RH
1251 if (active[phase])
1252 {
1253 active[phase] = false;
1254
1255 x = adjust_address (dst_mem, mode[phase], offset_st);
1256 emit_insn (gen_rtx_SET (VOIDmode, x, temp[phase]));
03984308 1257
7eda7cda
RH
1258 offset_st += amount[phase];
1259 }
03984308 1260 }
7eda7cda 1261 while (active[next]);
03984308 1262
7eda7cda 1263 return 1;
03984308
BW
1264}
1265
1266
1267void
ffbc8796 1268xtensa_expand_nonlocal_goto (rtx *operands)
03984308
BW
1269{
1270 rtx goto_handler = operands[1];
1271 rtx containing_fp = operands[3];
1272
3bbc2af6
KH
1273 /* Generate a call to "__xtensa_nonlocal_goto" (in libgcc); the code
1274 is too big to generate in-line. */
03984308
BW
1275
1276 if (GET_CODE (containing_fp) != REG)
1277 containing_fp = force_reg (Pmode, containing_fp);
1278
1279 goto_handler = replace_rtx (copy_rtx (goto_handler),
1280 virtual_stack_vars_rtx,
1281 containing_fp);
1282
1283 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_nonlocal_goto"),
1284 0, VOIDmode, 2,
1285 containing_fp, Pmode,
1286 goto_handler, Pmode);
1287}
1288
1289
e2500fed 1290static struct machine_function *
ffbc8796 1291xtensa_init_machine_status (void)
03984308 1292{
e2500fed 1293 return ggc_alloc_cleared (sizeof (struct machine_function));
03984308
BW
1294}
1295
1296
1297void
ffbc8796 1298xtensa_setup_frame_addresses (void)
03984308 1299{
638db43e 1300 /* Set flag to cause FRAME_POINTER_REQUIRED to be set. */
03984308
BW
1301 cfun->machine->accesses_prev_frame = 1;
1302
1303 emit_library_call
1304 (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_libgcc_window_spill"),
1305 0, VOIDmode, 0);
1306}
1307
1308
638db43e
BW
1309/* Emit the assembly for the end of a zero-cost loop. Normally we just emit
1310 a comment showing where the end of the loop is. However, if there is a
03984308 1311 label or a branch at the end of the loop then we need to place a nop
638db43e 1312 there. If the loop ends with a label we need the nop so that branches
839a4992
KH
1313 targeting that label will target the nop (and thus remain in the loop),
1314 instead of targeting the instruction after the loop (and thus exiting
638db43e 1315 the loop). If the loop ends with a branch, we need the nop in case the
839a4992 1316 branch is targeting a location inside the loop. When the branch
03984308
BW
1317 executes it will cause the loop count to be decremented even if it is
1318 taken (because it is the last instruction in the loop), so we need to
1319 nop after the branch to prevent the loop count from being decremented
638db43e 1320 when the branch is taken. */
03984308
BW
1321
1322void
ffbc8796 1323xtensa_emit_loop_end (rtx insn, rtx *operands)
03984308
BW
1324{
1325 char done = 0;
1326
1327 for (insn = PREV_INSN (insn); insn && !done; insn = PREV_INSN (insn))
1328 {
1329 switch (GET_CODE (insn))
1330 {
1331 case NOTE:
1332 case BARRIER:
1333 break;
1334
1335 case CODE_LABEL:
0bd0703d 1336 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
03984308
BW
1337 done = 1;
1338 break;
1339
1340 default:
1341 {
1342 rtx body = PATTERN (insn);
1343
1344 if (GET_CODE (body) == JUMP_INSN)
1345 {
0bd0703d 1346 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
03984308
BW
1347 done = 1;
1348 }
1349 else if ((GET_CODE (body) != USE)
1350 && (GET_CODE (body) != CLOBBER))
1351 done = 1;
1352 }
1353 break;
1354 }
1355 }
1356
1357 output_asm_insn ("# loop end for %0", operands);
1358}
1359
1360
1361char *
ffbc8796 1362xtensa_emit_call (int callop, rtx *operands)
03984308 1363{
b64a1b53 1364 static char result[64];
03984308
BW
1365 rtx tgt = operands[callop];
1366
1367 if (GET_CODE (tgt) == CONST_INT)
1d0ea52e 1368 sprintf (result, "call8\t0x%lx", INTVAL (tgt));
03984308
BW
1369 else if (register_operand (tgt, VOIDmode))
1370 sprintf (result, "callx8\t%%%d", callop);
1371 else
1372 sprintf (result, "call8\t%%%d", callop);
1373
1374 return result;
1375}
1376
1377
b0c6e48f 1378/* Return the debugger register number to use for 'regno'. */
03984308
BW
1379
1380int
ffbc8796 1381xtensa_dbx_register_number (int regno)
03984308
BW
1382{
1383 int first = -1;
633e4eb4
BW
1384
1385 if (GP_REG_P (regno))
1386 {
1387 regno -= GP_REG_FIRST;
1388 first = 0;
1389 }
1390 else if (BR_REG_P (regno))
1391 {
1392 regno -= BR_REG_FIRST;
1393 first = 16;
1394 }
1395 else if (FP_REG_P (regno))
1396 {
1397 regno -= FP_REG_FIRST;
b0c6e48f 1398 first = 48;
633e4eb4 1399 }
03984308
BW
1400 else if (ACC_REG_P (regno))
1401 {
b0c6e48f
BW
1402 first = 0x200; /* Start of Xtensa special registers. */
1403 regno = 16; /* ACCLO is special register 16. */
03984308
BW
1404 }
1405
1406 /* When optimizing, we sometimes get asked about pseudo-registers
638db43e 1407 that don't represent hard registers. Return 0 for these. */
03984308
BW
1408 if (first == -1)
1409 return 0;
1410
1411 return first + regno;
1412}
1413
1414
1415/* Argument support functions. */
1416
1417/* Initialize CUMULATIVE_ARGS for a function. */
1418
1419void
997b8b4d 1420init_cumulative_args (CUMULATIVE_ARGS *cum, int incoming)
03984308
BW
1421{
1422 cum->arg_words = 0;
997b8b4d 1423 cum->incoming = incoming;
03984308
BW
1424}
1425
ffbc8796 1426
03984308
BW
1427/* Advance the argument to the next argument position. */
1428
1429void
ffbc8796 1430function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type)
03984308
BW
1431{
1432 int words, max;
1433 int *arg_words;
1434
1435 arg_words = &cum->arg_words;
1436 max = MAX_ARGS_IN_REGISTERS;
1437
1438 words = (((mode != BLKmode)
1439 ? (int) GET_MODE_SIZE (mode)
1440 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1441
85d91d5b
BW
1442 if (*arg_words < max
1443 && (targetm.calls.must_pass_in_stack (mode, type)
1444 || *arg_words + words > max))
03984308
BW
1445 *arg_words = max;
1446
1447 *arg_words += words;
1448}
1449
1450
1451/* Return an RTL expression containing the register for the given mode,
368ebcd6 1452 or 0 if the argument is to be passed on the stack. INCOMING_P is nonzero
ffbc8796 1453 if this is an incoming argument to the current function. */
03984308
BW
1454
1455rtx
ffbc8796
BW
1456function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
1457 int incoming_p)
03984308
BW
1458{
1459 int regbase, words, max;
1460 int *arg_words;
1461 int regno;
03984308
BW
1462
1463 arg_words = &cum->arg_words;
1464 regbase = (incoming_p ? GP_ARG_FIRST : GP_OUTGOING_ARG_FIRST);
1465 max = MAX_ARGS_IN_REGISTERS;
1466
1467 words = (((mode != BLKmode)
1468 ? (int) GET_MODE_SIZE (mode)
1469 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1470
1471 if (type && (TYPE_ALIGN (type) > BITS_PER_WORD))
822e895c
BW
1472 {
1473 int align = TYPE_ALIGN (type) / BITS_PER_WORD;
1474 *arg_words = (*arg_words + align - 1) & -align;
1475 }
03984308
BW
1476
1477 if (*arg_words + words > max)
1478 return (rtx)0;
1479
1480 regno = regbase + *arg_words;
03984308 1481
997b8b4d
BW
1482 if (cum->incoming && regno <= A7_REG && regno + words > A7_REG)
1483 cfun->machine->need_a7_copy = true;
03984308 1484
997b8b4d 1485 return gen_rtx_REG (mode, regno);
03984308
BW
1486}
1487
1488
6e5ff6e7
BW
1489static bool
1490xtensa_return_in_msb (tree valtype)
1491{
1492 return (TARGET_BIG_ENDIAN
1493 && AGGREGATE_TYPE_P (valtype)
1494 && int_size_in_bytes (valtype) >= UNITS_PER_WORD);
1495}
1496
1497
03984308 1498void
ffbc8796 1499override_options (void)
03984308
BW
1500{
1501 int regno;
1502 enum machine_mode mode;
1503
1504 if (!TARGET_BOOLEANS && TARGET_HARD_FLOAT)
1505 error ("boolean registers required for the floating-point option");
1506
03984308
BW
1507 xtensa_char_to_class['q'] = SP_REG;
1508 xtensa_char_to_class['a'] = GR_REGS;
1509 xtensa_char_to_class['b'] = ((TARGET_BOOLEANS) ? BR_REGS : NO_REGS);
1510 xtensa_char_to_class['f'] = ((TARGET_HARD_FLOAT) ? FP_REGS : NO_REGS);
1511 xtensa_char_to_class['A'] = ((TARGET_MAC16) ? ACC_REG : NO_REGS);
1512 xtensa_char_to_class['B'] = ((TARGET_SEXT) ? GR_REGS : NO_REGS);
1513 xtensa_char_to_class['C'] = ((TARGET_MUL16) ? GR_REGS: NO_REGS);
1514 xtensa_char_to_class['D'] = ((TARGET_DENSITY) ? GR_REGS: NO_REGS);
1515 xtensa_char_to_class['d'] = ((TARGET_DENSITY) ? AR_REGS: NO_REGS);
f42f5a1b 1516 xtensa_char_to_class['W'] = ((TARGET_CONST16) ? GR_REGS: NO_REGS);
03984308 1517
638db43e 1518 /* Set up array giving whether a given register can hold a given mode. */
03984308
BW
1519 for (mode = VOIDmode;
1520 mode != MAX_MACHINE_MODE;
1521 mode = (enum machine_mode) ((int) mode + 1))
1522 {
1523 int size = GET_MODE_SIZE (mode);
1524 enum mode_class class = GET_MODE_CLASS (mode);
1525
1526 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1527 {
1528 int temp;
1529
1530 if (ACC_REG_P (regno))
f42f5a1b
BW
1531 temp = (TARGET_MAC16
1532 && (class == MODE_INT) && (size <= UNITS_PER_WORD));
03984308
BW
1533 else if (GP_REG_P (regno))
1534 temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
1535 else if (FP_REG_P (regno))
1536 temp = (TARGET_HARD_FLOAT && (mode == SFmode));
1537 else if (BR_REG_P (regno))
1538 temp = (TARGET_BOOLEANS && (mode == CCmode));
1539 else
1540 temp = FALSE;
1541
1542 xtensa_hard_regno_mode_ok[(int) mode][regno] = temp;
1543 }
1544 }
1545
1546 init_machine_status = xtensa_init_machine_status;
03984308 1547
f42f5a1b
BW
1548 /* Check PIC settings. PIC is only supported when using L32R
1549 instructions, and some targets need to always use PIC. */
1550 if (flag_pic && TARGET_CONST16)
1551 error ("-f%s is not supported with CONST16 instructions",
1552 (flag_pic > 1 ? "PIC" : "pic"));
1553 else if (XTENSA_ALWAYS_PIC)
1554 {
1555 if (TARGET_CONST16)
1556 error ("PIC is required but not supported with CONST16 instructions");
1557 flag_pic = 1;
1558 }
1559 /* There's no need for -fPIC (as opposed to -fpic) on Xtensa. */
1560 if (flag_pic > 1)
03984308 1561 flag_pic = 1;
87c8b4be
CT
1562
1563 /* Hot/cold partitioning does not work on this architecture, because of
1564 constant pools (the load instruction cannot necessarily reach that far).
1565 Therefore disable it on this architecture. */
1566 if (flag_reorder_blocks_and_partition)
1567 {
1568 flag_reorder_blocks_and_partition = 0;
1569 flag_reorder_blocks = 1;
1570 }
03984308
BW
1571}
1572
1573
1574/* A C compound statement to output to stdio stream STREAM the
1575 assembler syntax for an instruction operand X. X is an RTL
1576 expression.
1577
1578 CODE is a value that can be used to specify one of several ways
1579 of printing the operand. It is used when identical operands
1580 must be printed differently depending on the context. CODE
1581 comes from the '%' specification that was used to request
1582 printing of the operand. If the specification was just '%DIGIT'
1583 then CODE is 0; if the specification was '%LTR DIGIT' then CODE
1584 is the ASCII code for LTR.
1585
1586 If X is a register, this macro should print the register's name.
1587 The names can be found in an array 'reg_names' whose type is
1588 'char *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'.
1589
1590 When the machine description has a specification '%PUNCT' (a '%'
1591 followed by a punctuation character), this macro is called with
1592 a null pointer for X and the punctuation character for CODE.
1593
1594 'a', 'c', 'l', and 'n' are reserved.
633e4eb4 1595
03984308
BW
1596 The Xtensa specific codes are:
1597
1598 'd' CONST_INT, print as signed decimal
1599 'x' CONST_INT, print as signed hexadecimal
1600 'K' CONST_INT, print number of bits in mask for EXTUI
1601 'R' CONST_INT, print (X & 0x1f)
1602 'L' CONST_INT, print ((32 - X) & 0x1f)
1603 'D' REG, print second register of double-word register operand
1604 'N' MEM, print address of next word following a memory operand
1605 'v' MEM, if memory reference is volatile, output a MEMW before it
f42f5a1b
BW
1606 't' any constant, add "@h" suffix for top 16 bits
1607 'b' any constant, add "@l" suffix for bottom 16 bits
03984308
BW
1608*/
1609
1610static void
ffbc8796 1611printx (FILE *file, signed int val)
03984308 1612{
ffbc8796 1613 /* Print a hexadecimal value in a nice way. */
03984308
BW
1614 if ((val > -0xa) && (val < 0xa))
1615 fprintf (file, "%d", val);
1616 else if (val < 0)
1617 fprintf (file, "-0x%x", -val);
1618 else
1619 fprintf (file, "0x%x", val);
1620}
1621
1622
1623void
ffbc8796 1624print_operand (FILE *file, rtx x, int letter)
03984308 1625{
f42f5a1b 1626 if (!x)
03984308
BW
1627 error ("PRINT_OPERAND null pointer");
1628
f42f5a1b 1629 switch (letter)
03984308 1630 {
f42f5a1b
BW
1631 case 'D':
1632 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
1633 fprintf (file, "%s", reg_names[xt_true_regnum (x) + 1]);
1634 else
1635 output_operand_lossage ("invalid %%D value");
1636 break;
03984308 1637
f42f5a1b
BW
1638 case 'v':
1639 if (GET_CODE (x) == MEM)
1640 {
1641 /* For a volatile memory reference, emit a MEMW before the
1642 load or store. */
7a29f483 1643 if (MEM_VOLATILE_P (x))
f42f5a1b
BW
1644 fprintf (file, "memw\n\t");
1645 }
1646 else
1647 output_operand_lossage ("invalid %%v value");
1648 break;
03984308 1649
f42f5a1b
BW
1650 case 'N':
1651 if (GET_CODE (x) == MEM
1652 && (GET_MODE (x) == DFmode || GET_MODE (x) == DImode))
1653 {
1654 x = adjust_address (x, GET_MODE (x) == DFmode ? SFmode : SImode, 4);
1655 output_address (XEXP (x, 0));
1656 }
1657 else
1658 output_operand_lossage ("invalid %%N value");
1659 break;
03984308 1660
f42f5a1b
BW
1661 case 'K':
1662 if (GET_CODE (x) == CONST_INT)
03984308 1663 {
f42f5a1b
BW
1664 int num_bits = 0;
1665 unsigned val = INTVAL (x);
1666 while (val & 1)
1667 {
1668 num_bits += 1;
1669 val = val >> 1;
1670 }
1671 if ((val != 0) || (num_bits == 0) || (num_bits > 16))
1672 fatal_insn ("invalid mask", x);
03984308 1673
f42f5a1b
BW
1674 fprintf (file, "%d", num_bits);
1675 }
1676 else
1677 output_operand_lossage ("invalid %%K value");
1678 break;
03984308 1679
f42f5a1b
BW
1680 case 'L':
1681 if (GET_CODE (x) == CONST_INT)
1682 fprintf (file, "%ld", (32 - INTVAL (x)) & 0x1f);
1683 else
1684 output_operand_lossage ("invalid %%L value");
1685 break;
03984308 1686
f42f5a1b
BW
1687 case 'R':
1688 if (GET_CODE (x) == CONST_INT)
1689 fprintf (file, "%ld", INTVAL (x) & 0x1f);
1690 else
1691 output_operand_lossage ("invalid %%R value");
1692 break;
03984308 1693
f42f5a1b
BW
1694 case 'x':
1695 if (GET_CODE (x) == CONST_INT)
1696 printx (file, INTVAL (x));
1697 else
1698 output_operand_lossage ("invalid %%x value");
1699 break;
03984308 1700
f42f5a1b
BW
1701 case 'd':
1702 if (GET_CODE (x) == CONST_INT)
1703 fprintf (file, "%ld", INTVAL (x));
1704 else
1705 output_operand_lossage ("invalid %%d value");
1706 break;
03984308 1707
f42f5a1b
BW
1708 case 't':
1709 case 'b':
1710 if (GET_CODE (x) == CONST_INT)
1711 {
1712 printx (file, INTVAL (x));
1713 fputs (letter == 't' ? "@h" : "@l", file);
1714 }
1715 else if (GET_CODE (x) == CONST_DOUBLE)
1716 {
1717 REAL_VALUE_TYPE r;
1718 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1719 if (GET_MODE (x) == SFmode)
1720 {
1721 long l;
1722 REAL_VALUE_TO_TARGET_SINGLE (r, l);
1723 fprintf (file, "0x%08lx@%c", l, letter == 't' ? 'h' : 'l');
1724 }
1725 else
1726 output_operand_lossage ("invalid %%t/%%b value");
1727 }
1728 else if (GET_CODE (x) == CONST)
1729 {
1730 /* X must be a symbolic constant on ELF. Write an expression
1731 suitable for 'const16' that sets the high or low 16 bits. */
1732 if (GET_CODE (XEXP (x, 0)) != PLUS
1733 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
1734 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
1735 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
1736 output_operand_lossage ("invalid %%t/%%b value");
1737 print_operand (file, XEXP (XEXP (x, 0), 0), 0);
1738 fputs (letter == 't' ? "@h" : "@l", file);
1739 /* There must be a non-alphanumeric character between 'h' or 'l'
1740 and the number. The '-' is added by print_operand() already. */
1741 if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
1742 fputs ("+", file);
1743 print_operand (file, XEXP (XEXP (x, 0), 1), 0);
1744 }
1745 else
633e4eb4 1746 {
f42f5a1b
BW
1747 output_addr_const (file, x);
1748 fputs (letter == 't' ? "@h" : "@l", file);
03984308
BW
1749 }
1750 break;
1751
1752 default:
f42f5a1b
BW
1753 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
1754 fprintf (file, "%s", reg_names[xt_true_regnum (x)]);
1755 else if (GET_CODE (x) == MEM)
1756 output_address (XEXP (x, 0));
1757 else if (GET_CODE (x) == CONST_INT)
1758 fprintf (file, "%ld", INTVAL (x));
1759 else
1760 output_addr_const (file, x);
03984308
BW
1761 }
1762}
1763
1764
1765/* A C compound statement to output to stdio stream STREAM the
1766 assembler syntax for an instruction operand that is a memory
fb49053f 1767 reference whose address is ADDR. ADDR is an RTL expression. */
03984308
BW
1768
1769void
ffbc8796 1770print_operand_address (FILE *file, rtx addr)
03984308
BW
1771{
1772 if (!addr)
1773 error ("PRINT_OPERAND_ADDRESS, null pointer");
1774
1775 switch (GET_CODE (addr))
1776 {
1777 default:
1778 fatal_insn ("invalid address", addr);
1779 break;
1780
1781 case REG:
1782 fprintf (file, "%s, 0", reg_names [REGNO (addr)]);
1783 break;
1784
1785 case PLUS:
1786 {
1787 rtx reg = (rtx)0;
1788 rtx offset = (rtx)0;
1789 rtx arg0 = XEXP (addr, 0);
1790 rtx arg1 = XEXP (addr, 1);
1791
1792 if (GET_CODE (arg0) == REG)
1793 {
1794 reg = arg0;
1795 offset = arg1;
1796 }
1797 else if (GET_CODE (arg1) == REG)
1798 {
1799 reg = arg1;
1800 offset = arg0;
1801 }
1802 else
1803 fatal_insn ("no register in address", addr);
1804
1805 if (CONSTANT_P (offset))
1806 {
1807 fprintf (file, "%s, ", reg_names [REGNO (reg)]);
1808 output_addr_const (file, offset);
1809 }
1810 else
1811 fatal_insn ("address offset not a constant", addr);
1812 }
1813 break;
1814
1815 case LABEL_REF:
1816 case SYMBOL_REF:
1817 case CONST_INT:
1818 case CONST:
1819 output_addr_const (file, addr);
1820 break;
1821 }
1822}
1823
1824
03984308 1825void
ffbc8796 1826xtensa_output_literal (FILE *file, rtx x, enum machine_mode mode, int labelno)
03984308
BW
1827{
1828 long value_long[2];
b216cd4a 1829 REAL_VALUE_TYPE r;
03984308
BW
1830 int size;
1831
1832 fprintf (file, "\t.literal .LC%u, ", (unsigned) labelno);
1833
1834 switch (GET_MODE_CLASS (mode))
1835 {
1836 case MODE_FLOAT:
177b6be0 1837 gcc_assert (GET_CODE (x) == CONST_DOUBLE);
03984308 1838
b216cd4a 1839 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
03984308
BW
1840 switch (mode)
1841 {
1842 case SFmode:
b216cd4a
ZW
1843 REAL_VALUE_TO_TARGET_SINGLE (r, value_long[0]);
1844 fprintf (file, "0x%08lx\n", value_long[0]);
03984308
BW
1845 break;
1846
1847 case DFmode:
b216cd4a
ZW
1848 REAL_VALUE_TO_TARGET_DOUBLE (r, value_long);
1849 fprintf (file, "0x%08lx, 0x%08lx\n",
1850 value_long[0], value_long[1]);
03984308
BW
1851 break;
1852
1853 default:
177b6be0 1854 gcc_unreachable ();
03984308
BW
1855 }
1856
1857 break;
1858
1859 case MODE_INT:
1860 case MODE_PARTIAL_INT:
1861 size = GET_MODE_SIZE (mode);
177b6be0 1862 switch (size)
03984308 1863 {
177b6be0 1864 case 4:
03984308
BW
1865 output_addr_const (file, x);
1866 fputs ("\n", file);
177b6be0
NS
1867 break;
1868
1869 case 8:
03984308
BW
1870 output_addr_const (file, operand_subword (x, 0, 0, DImode));
1871 fputs (", ", file);
1872 output_addr_const (file, operand_subword (x, 1, 0, DImode));
1873 fputs ("\n", file);
177b6be0
NS
1874 break;
1875
1876 default:
1877 gcc_unreachable ();
03984308 1878 }
03984308
BW
1879 break;
1880
1881 default:
177b6be0 1882 gcc_unreachable ();
03984308
BW
1883 }
1884}
1885
1886
1887/* Return the bytes needed to compute the frame pointer from the current
638db43e 1888 stack pointer. */
03984308
BW
1889
1890#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
1891#define XTENSA_STACK_ALIGN(LOC) (((LOC) + STACK_BYTES-1) & ~(STACK_BYTES-1))
1892
1893long
ffbc8796 1894compute_frame_size (int size)
03984308 1895{
ffbc8796 1896 /* Add space for the incoming static chain value. */
6de9cd9a 1897 if (cfun->static_chain_decl != NULL)
03984308
BW
1898 size += (1 * UNITS_PER_WORD);
1899
1900 xtensa_current_frame_size =
1901 XTENSA_STACK_ALIGN (size
1902 + current_function_outgoing_args_size
1903 + (WINDOW_SIZE * UNITS_PER_WORD));
1904 return xtensa_current_frame_size;
1905}
1906
1907
1908int
ffbc8796 1909xtensa_frame_pointer_required (void)
03984308
BW
1910{
1911 /* The code to expand builtin_frame_addr and builtin_return_addr
1912 currently uses the hard_frame_pointer instead of frame_pointer.
1913 This seems wrong but maybe it's necessary for other architectures.
638db43e 1914 This function is derived from the i386 code. */
03984308
BW
1915
1916 if (cfun->machine->accesses_prev_frame)
1917 return 1;
1918
1919 return 0;
1920}
1921
1922
f42f5a1b 1923void
ffbc8796 1924xtensa_expand_prologue (void)
f42f5a1b
BW
1925{
1926 HOST_WIDE_INT total_size;
1927 rtx size_rtx;
18dbd950 1928
f42f5a1b
BW
1929 total_size = compute_frame_size (get_frame_size ());
1930 size_rtx = GEN_INT (total_size);
18dbd950 1931
f42f5a1b
BW
1932 if (total_size < (1 << (12+3)))
1933 emit_insn (gen_entry (size_rtx, size_rtx));
03984308
BW
1934 else
1935 {
f42f5a1b
BW
1936 /* Use a8 as a temporary since a0-a7 may be live. */
1937 rtx tmp_reg = gen_rtx_REG (Pmode, A8_REG);
1938 emit_insn (gen_entry (size_rtx, GEN_INT (MIN_FRAME_SIZE)));
1939 emit_move_insn (tmp_reg, GEN_INT (total_size - MIN_FRAME_SIZE));
1940 emit_insn (gen_subsi3 (tmp_reg, stack_pointer_rtx, tmp_reg));
1941 emit_move_insn (stack_pointer_rtx, tmp_reg);
03984308
BW
1942 }
1943
f42f5a1b 1944 if (frame_pointer_needed)
03984308 1945 {
997b8b4d 1946 if (cfun->machine->set_frame_ptr_insn)
03984308 1947 {
997b8b4d 1948 rtx first, insn;
03984308 1949
997b8b4d
BW
1950 push_topmost_sequence ();
1951 first = get_insns ();
1952 pop_topmost_sequence ();
03984308 1953
f42f5a1b
BW
1954 /* For all instructions prior to set_frame_ptr_insn, replace
1955 hard_frame_pointer references with stack_pointer. */
1956 for (insn = first;
997b8b4d 1957 insn != cfun->machine->set_frame_ptr_insn;
f42f5a1b
BW
1958 insn = NEXT_INSN (insn))
1959 {
1960 if (INSN_P (insn))
1961 PATTERN (insn) = replace_rtx (copy_rtx (PATTERN (insn)),
1962 hard_frame_pointer_rtx,
1963 stack_pointer_rtx);
1964 }
1965 }
1966 else
1967 emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
03984308
BW
1968 }
1969}
1970
1971
f42f5a1b 1972/* Clear variables at function end. */
03984308
BW
1973
1974void
ffbc8796
BW
1975xtensa_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
1976 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
03984308 1977{
03984308
BW
1978 xtensa_current_frame_size = 0;
1979}
1980
1981
0c14a54d 1982rtx
ffbc8796 1983xtensa_return_addr (int count, rtx frame)
0c14a54d
BW
1984{
1985 rtx result, retaddr;
1986
1987 if (count == -1)
f42f5a1b 1988 retaddr = gen_rtx_REG (Pmode, A0_REG);
0c14a54d
BW
1989 else
1990 {
1991 rtx addr = plus_constant (frame, -4 * UNITS_PER_WORD);
1992 addr = memory_address (Pmode, addr);
1993 retaddr = gen_reg_rtx (Pmode);
1994 emit_move_insn (retaddr, gen_rtx_MEM (Pmode, addr));
1995 }
1996
1997 /* The 2 most-significant bits of the return address on Xtensa hold
1998 the register window size. To get the real return address, these
1999 bits must be replaced with the high bits from the current PC. */
2000
2001 result = gen_reg_rtx (Pmode);
2002 emit_insn (gen_fix_return_addr (result, retaddr));
2003 return result;
2004}
2005
2006
03984308 2007/* Create the va_list data type.
822e895c
BW
2008
2009 This structure is set up by __builtin_saveregs. The __va_reg field
2010 points to a stack-allocated region holding the contents of the
2011 incoming argument registers. The __va_ndx field is an index
2012 initialized to the position of the first unnamed (variable)
2013 argument. This same index is also used to address the arguments
2014 passed in memory. Thus, the __va_stk field is initialized to point
2015 to the position of the first argument in memory offset to account
2016 for the arguments passed in registers and to account for the size
2017 of the argument registers not being 16-byte aligned. E.G., there
2018 are 6 argument registers of 4 bytes each, but we want the __va_ndx
2019 for the first stack argument to have the maximal alignment of 16
2020 bytes, so we offset the __va_stk address by 32 bytes so that
2021 __va_stk[32] references the first argument on the stack. */
03984308 2022
c35d187f
RH
2023static tree
2024xtensa_build_builtin_va_list (void)
03984308 2025{
540eaea8 2026 tree f_stk, f_reg, f_ndx, record, type_decl;
03984308 2027
540eaea8
BW
2028 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
2029 type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
03984308
BW
2030
2031 f_stk = build_decl (FIELD_DECL, get_identifier ("__va_stk"),
2032 ptr_type_node);
2033 f_reg = build_decl (FIELD_DECL, get_identifier ("__va_reg"),
2034 ptr_type_node);
2035 f_ndx = build_decl (FIELD_DECL, get_identifier ("__va_ndx"),
2036 integer_type_node);
2037
2038 DECL_FIELD_CONTEXT (f_stk) = record;
2039 DECL_FIELD_CONTEXT (f_reg) = record;
2040 DECL_FIELD_CONTEXT (f_ndx) = record;
2041
540eaea8
BW
2042 TREE_CHAIN (record) = type_decl;
2043 TYPE_NAME (record) = type_decl;
03984308
BW
2044 TYPE_FIELDS (record) = f_stk;
2045 TREE_CHAIN (f_stk) = f_reg;
2046 TREE_CHAIN (f_reg) = f_ndx;
2047
2048 layout_type (record);
2049 return record;
2050}
2051
2052
2053/* Save the incoming argument registers on the stack. Returns the
638db43e 2054 address of the saved registers. */
03984308 2055
4c45af42 2056static rtx
ffbc8796 2057xtensa_builtin_saveregs (void)
03984308
BW
2058{
2059 rtx gp_regs, dest;
79e9ebdc 2060 int arg_words = current_function_args_info.arg_words;
03984308 2061 int gp_left = MAX_ARGS_IN_REGISTERS - arg_words;
03984308 2062
997b8b4d 2063 if (gp_left <= 0)
03984308
BW
2064 return const0_rtx;
2065
3bbc2af6 2066 /* Allocate the general-purpose register space. */
03984308
BW
2067 gp_regs = assign_stack_local
2068 (BLKmode, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1);
540eaea8 2069 set_mem_alias_set (gp_regs, get_varargs_alias_set ());
03984308
BW
2070
2071 /* Now store the incoming registers. */
2072 dest = change_address (gp_regs, SImode,
2073 plus_constant (XEXP (gp_regs, 0),
2074 arg_words * UNITS_PER_WORD));
997b8b4d
BW
2075 cfun->machine->need_a7_copy = true;
2076 cfun->machine->vararg_a7 = true;
2077 move_block_from_reg (GP_ARG_FIRST + arg_words, dest, gp_left);
03984308
BW
2078
2079 return XEXP (gp_regs, 0);
2080}
2081
2082
2083/* Implement `va_start' for varargs and stdarg. We look at the
638db43e 2084 current function to fill in an initial va_list. */
03984308
BW
2085
2086void
ffbc8796 2087xtensa_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
03984308
BW
2088{
2089 tree f_stk, stk;
2090 tree f_reg, reg;
2091 tree f_ndx, ndx;
2092 tree t, u;
2093 int arg_words;
2094
2095 arg_words = current_function_args_info.arg_words;
2096
2097 f_stk = TYPE_FIELDS (va_list_type_node);
2098 f_reg = TREE_CHAIN (f_stk);
2099 f_ndx = TREE_CHAIN (f_reg);
2100
44de5aeb
RK
2101 stk = build (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
2102 reg = build (COMPONENT_REF, TREE_TYPE (f_reg), valist, f_reg, NULL_TREE);
2103 ndx = build (COMPONENT_REF, TREE_TYPE (f_ndx), valist, f_ndx, NULL_TREE);
03984308
BW
2104
2105 /* Call __builtin_saveregs; save the result in __va_reg */
03984308
BW
2106 u = make_tree (ptr_type_node, expand_builtin_saveregs ());
2107 t = build (MODIFY_EXPR, ptr_type_node, reg, u);
2108 TREE_SIDE_EFFECTS (t) = 1;
2109 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2110
822e895c 2111 /* Set the __va_stk member to ($arg_ptr - 32). */
03984308 2112 u = make_tree (ptr_type_node, virtual_incoming_args_rtx);
4a90aeeb 2113 u = fold (build (PLUS_EXPR, ptr_type_node, u,
7d60be94 2114 build_int_cst (NULL_TREE, -32)));
03984308
BW
2115 t = build (MODIFY_EXPR, ptr_type_node, stk, u);
2116 TREE_SIDE_EFFECTS (t) = 1;
2117 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2118
822e895c
BW
2119 /* Set the __va_ndx member. If the first variable argument is on
2120 the stack, adjust __va_ndx by 2 words to account for the extra
2121 alignment offset for __va_stk. */
2122 if (arg_words >= MAX_ARGS_IN_REGISTERS)
2123 arg_words += 2;
7d60be94 2124 u = build_int_cst (NULL_TREE, arg_words * UNITS_PER_WORD);
03984308
BW
2125 t = build (MODIFY_EXPR, integer_type_node, ndx, u);
2126 TREE_SIDE_EFFECTS (t) = 1;
2127 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2128}
2129
2130
2131/* Implement `va_arg'. */
2132
85d53c1d
RH
2133static tree
2134xtensa_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p,
2135 tree *post_p ATTRIBUTE_UNUSED)
03984308
BW
2136{
2137 tree f_stk, stk;
2138 tree f_reg, reg;
2139 tree f_ndx, ndx;
85d53c1d
RH
2140 tree type_size, array, orig_ndx, addr, size, va_size, t;
2141 tree lab_false, lab_over, lab_false2;
08b0dc1b
RH
2142 bool indirect;
2143
2144 indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
2145 if (indirect)
2146 type = build_pointer_type (type);
03984308 2147
3712281f
BW
2148 /* Handle complex values as separate real and imaginary parts. */
2149 if (TREE_CODE (type) == COMPLEX_TYPE)
2150 {
85d53c1d 2151 tree real_part, imag_part;
3712281f 2152
85d53c1d
RH
2153 real_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
2154 pre_p, NULL);
2155 real_part = get_initialized_tmp_var (real_part, pre_p, NULL);
3712281f 2156
85d53c1d
RH
2157 imag_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
2158 pre_p, NULL);
2159 imag_part = get_initialized_tmp_var (imag_part, pre_p, NULL);
3712281f 2160
85d53c1d 2161 return build (COMPLEX_EXPR, type, real_part, imag_part);
3712281f
BW
2162 }
2163
03984308
BW
2164 f_stk = TYPE_FIELDS (va_list_type_node);
2165 f_reg = TREE_CHAIN (f_stk);
2166 f_ndx = TREE_CHAIN (f_reg);
2167
44de5aeb
RK
2168 stk = build (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
2169 reg = build (COMPONENT_REF, TREE_TYPE (f_reg), valist, f_reg, NULL_TREE);
2170 ndx = build (COMPONENT_REF, TREE_TYPE (f_ndx), valist, f_ndx, NULL_TREE);
03984308 2171
85d53c1d
RH
2172 type_size = size_in_bytes (type);
2173 va_size = round_up (type_size, UNITS_PER_WORD);
2174 gimplify_expr (&va_size, pre_p, NULL, is_gimple_val, fb_rvalue);
8be56275 2175
03984308 2176
822e895c 2177 /* First align __va_ndx if necessary for this arg:
03984308 2178
85d53c1d 2179 orig_ndx = (AP).__va_ndx;
822e895c 2180 if (__alignof__ (TYPE) > 4 )
85d53c1d 2181 orig_ndx = ((orig_ndx + __alignof__ (TYPE) - 1)
822e895c 2182 & -__alignof__ (TYPE)); */
03984308 2183
85d53c1d
RH
2184 orig_ndx = get_initialized_tmp_var (ndx, pre_p, NULL);
2185
03984308
BW
2186 if (TYPE_ALIGN (type) > BITS_PER_WORD)
2187 {
822e895c 2188 int align = TYPE_ALIGN (type) / BITS_PER_UNIT;
85d53c1d
RH
2189
2190 t = build (PLUS_EXPR, integer_type_node, orig_ndx,
7d60be94 2191 build_int_cst (NULL_TREE, align - 1));
85d53c1d 2192 t = build (BIT_AND_EXPR, integer_type_node, t,
7d60be94 2193 build_int_cst (NULL_TREE, -align));
85d53c1d
RH
2194 t = build (MODIFY_EXPR, integer_type_node, orig_ndx, t);
2195 gimplify_and_add (t, pre_p);
03984308
BW
2196 }
2197
2198
2199 /* Increment __va_ndx to point past the argument:
2200
85d53c1d 2201 (AP).__va_ndx = orig_ndx + __va_size (TYPE); */
03984308 2202
85d53c1d
RH
2203 t = fold_convert (integer_type_node, va_size);
2204 t = build (PLUS_EXPR, integer_type_node, orig_ndx, t);
2205 t = build (MODIFY_EXPR, integer_type_node, ndx, t);
2206 gimplify_and_add (t, pre_p);
03984308
BW
2207
2208
2209 /* Check if the argument is in registers:
2210
bcf88f9b 2211 if ((AP).__va_ndx <= __MAX_ARGS_IN_REGISTERS * 4
fe984136 2212 && !must_pass_in_stack (type))
ffbc8796 2213 __array = (AP).__va_reg; */
03984308 2214
85d53c1d 2215 array = create_tmp_var (ptr_type_node, NULL);
03984308 2216
85d53c1d 2217 lab_over = NULL;
fe984136 2218 if (!targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
bcf88f9b 2219 {
85d53c1d
RH
2220 lab_false = create_artificial_label ();
2221 lab_over = create_artificial_label ();
2222
7d60be94 2223 t = build_int_cst (NULL_TREE, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD);
85d53c1d
RH
2224 t = build (GT_EXPR, boolean_type_node, ndx, t);
2225 t = build (COND_EXPR, void_type_node, t,
2226 build (GOTO_EXPR, void_type_node, lab_false),
2227 NULL);
2228 gimplify_and_add (t, pre_p);
2229
2230 t = build (MODIFY_EXPR, void_type_node, array, reg);
2231 gimplify_and_add (t, pre_p);
2232
2233 t = build (GOTO_EXPR, void_type_node, lab_over);
2234 gimplify_and_add (t, pre_p);
2235
2236 t = build (LABEL_EXPR, void_type_node, lab_false);
2237 gimplify_and_add (t, pre_p);
bcf88f9b 2238 }
03984308 2239
85d53c1d 2240
03984308
BW
2241 /* ...otherwise, the argument is on the stack (never split between
2242 registers and the stack -- change __va_ndx if necessary):
2243
2244 else
2245 {
822e895c
BW
2246 if (orig_ndx <= __MAX_ARGS_IN_REGISTERS * 4)
2247 (AP).__va_ndx = 32 + __va_size (TYPE);
03984308 2248 __array = (AP).__va_stk;
ffbc8796 2249 } */
03984308 2250
85d53c1d 2251 lab_false2 = create_artificial_label ();
03984308 2252
7d60be94 2253 t = build_int_cst (NULL_TREE, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD);
85d53c1d
RH
2254 t = build (GT_EXPR, boolean_type_node, orig_ndx, t);
2255 t = build (COND_EXPR, void_type_node, t,
2256 build (GOTO_EXPR, void_type_node, lab_false2),
2257 NULL);
2258 gimplify_and_add (t, pre_p);
03984308 2259
85d53c1d
RH
2260 t = size_binop (PLUS_EXPR, va_size, size_int (32));
2261 t = fold_convert (integer_type_node, t);
2262 t = build (MODIFY_EXPR, integer_type_node, ndx, t);
2263 gimplify_and_add (t, pre_p);
03984308 2264
85d53c1d
RH
2265 t = build (LABEL_EXPR, void_type_node, lab_false2);
2266 gimplify_and_add (t, pre_p);
03984308 2267
85d53c1d
RH
2268 t = build (MODIFY_EXPR, void_type_node, array, stk);
2269 gimplify_and_add (t, pre_p);
2270
2271 if (lab_over)
2272 {
2273 t = build (LABEL_EXPR, void_type_node, lab_over);
2274 gimplify_and_add (t, pre_p);
2275 }
8be56275 2276
03984308
BW
2277
2278 /* Given the base array pointer (__array) and index to the subsequent
2279 argument (__va_ndx), find the address:
2280
8be56275
BW
2281 __array + (AP).__va_ndx - (BYTES_BIG_ENDIAN && sizeof (TYPE) < 4
2282 ? sizeof (TYPE)
2283 : __va_size (TYPE))
03984308
BW
2284
2285 The results are endian-dependent because values smaller than one word
ffbc8796 2286 are aligned differently. */
03984308 2287
633e4eb4 2288
85d91d5b 2289 if (BYTES_BIG_ENDIAN && TREE_CODE (type_size) == INTEGER_CST)
8be56275 2290 {
85d53c1d
RH
2291 t = size_int (PARM_BOUNDARY / BITS_PER_UNIT);
2292 t = fold (build (GE_EXPR, boolean_type_node, type_size, t));
e231737a 2293 t = fold (build (COND_EXPR, sizetype, t, va_size, type_size));
85d53c1d 2294 size = t;
8be56275 2295 }
85d53c1d
RH
2296 else
2297 size = va_size;
2298
2299 t = fold_convert (ptr_type_node, ndx);
2300 addr = build (PLUS_EXPR, ptr_type_node, array, t);
2301 t = fold_convert (ptr_type_node, size);
2302 addr = build (MINUS_EXPR, ptr_type_node, addr, t);
03984308 2303
85d53c1d 2304 addr = fold_convert (build_pointer_type (type), addr);
08b0dc1b 2305 if (indirect)
d6e9821f
RH
2306 addr = build_va_arg_indirect_ref (addr);
2307 return build_va_arg_indirect_ref (addr);
03984308
BW
2308}
2309
2310
a8cacfd2 2311enum reg_class
ffbc8796 2312xtensa_preferred_reload_class (rtx x, enum reg_class class, int isoutput)
a8cacfd2 2313{
89f6025d 2314 if (!isoutput && CONSTANT_P (x) && GET_CODE (x) == CONST_DOUBLE)
a8cacfd2
BW
2315 return NO_REGS;
2316
89f6025d
BW
2317 /* Don't use the stack pointer or hard frame pointer for reloads!
2318 The hard frame pointer would normally be OK except that it may
2319 briefly hold an incoming argument in the prologue, and reload
2320 won't know that it is live because the hard frame pointer is
2321 treated specially. */
2322
2323 if (class == AR_REGS || class == GR_REGS)
2324 return RL_REGS;
a8cacfd2
BW
2325
2326 return class;
2327}
2328
2329
03984308 2330enum reg_class
ffbc8796
BW
2331xtensa_secondary_reload_class (enum reg_class class,
2332 enum machine_mode mode ATTRIBUTE_UNUSED,
2333 rtx x, int isoutput)
03984308
BW
2334{
2335 int regno;
2336
2337 if (GET_CODE (x) == SIGN_EXTEND)
2338 x = XEXP (x, 0);
2339 regno = xt_true_regnum (x);
2340
2341 if (!isoutput)
2342 {
2343 if (class == FP_REGS && constantpool_mem_p (x))
89f6025d 2344 return RL_REGS;
03984308
BW
2345 }
2346
2347 if (ACC_REG_P (regno))
89f6025d 2348 return ((class == GR_REGS || class == RL_REGS) ? NO_REGS : RL_REGS);
03984308 2349 if (class == ACC_REG)
89f6025d 2350 return (GP_REG_P (regno) ? NO_REGS : RL_REGS);
03984308
BW
2351
2352 return NO_REGS;
2353}
2354
2355
2356void
ffbc8796 2357order_regs_for_local_alloc (void)
03984308
BW
2358{
2359 if (!leaf_function_p ())
2360 {
2361 memcpy (reg_alloc_order, reg_nonleaf_alloc_order,
2362 FIRST_PSEUDO_REGISTER * sizeof (int));
2363 }
2364 else
2365 {
2366 int i, num_arg_regs;
2367 int nxt = 0;
2368
3bbc2af6
KH
2369 /* Use the AR registers in increasing order (skipping a0 and a1)
2370 but save the incoming argument registers for a last resort. */
03984308
BW
2371 num_arg_regs = current_function_args_info.arg_words;
2372 if (num_arg_regs > MAX_ARGS_IN_REGISTERS)
2373 num_arg_regs = MAX_ARGS_IN_REGISTERS;
2374 for (i = GP_ARG_FIRST; i < 16 - num_arg_regs; i++)
2375 reg_alloc_order[nxt++] = i + num_arg_regs;
2376 for (i = 0; i < num_arg_regs; i++)
2377 reg_alloc_order[nxt++] = GP_ARG_FIRST + i;
2378
3bbc2af6 2379 /* List the coprocessor registers in order. */
985d0d50
BW
2380 for (i = 0; i < BR_REG_NUM; i++)
2381 reg_alloc_order[nxt++] = BR_REG_FIRST + i;
2382
3bbc2af6 2383 /* List the FP registers in order for now. */
03984308
BW
2384 for (i = 0; i < 16; i++)
2385 reg_alloc_order[nxt++] = FP_REG_FIRST + i;
2386
638db43e 2387 /* GCC requires that we list *all* the registers.... */
03984308
BW
2388 reg_alloc_order[nxt++] = 0; /* a0 = return address */
2389 reg_alloc_order[nxt++] = 1; /* a1 = stack pointer */
2390 reg_alloc_order[nxt++] = 16; /* pseudo frame pointer */
2391 reg_alloc_order[nxt++] = 17; /* pseudo arg pointer */
2392
03984308
BW
2393 reg_alloc_order[nxt++] = ACC_REG_FIRST; /* MAC16 accumulator */
2394 }
2395}
2396
2397
01abf342
BW
2398/* Some Xtensa targets support multiple bss sections. If the section
2399 name ends with ".bss", add SECTION_BSS to the flags. */
2400
2401static unsigned int
ffbc8796 2402xtensa_multibss_section_type_flags (tree decl, const char *name, int reloc)
01abf342
BW
2403{
2404 unsigned int flags = default_section_type_flags (decl, name, reloc);
2405 const char *suffix;
2406
2407 suffix = strrchr (name, '.');
2408 if (suffix && strcmp (suffix, ".bss") == 0)
2409 {
2410 if (!decl || (TREE_CODE (decl) == VAR_DECL
2411 && DECL_INITIAL (decl) == NULL_TREE))
2412 flags |= SECTION_BSS; /* @nobits */
2413 else
d4ee4d25 2414 warning (0, "only uninitialized variables can be placed in a "
01abf342
BW
2415 ".bss section");
2416 }
2417
2418 return flags;
2419}
2420
2421
b64a1b53
RH
2422/* The literal pool stays with the function. */
2423
2424static void
ffbc8796
BW
2425xtensa_select_rtx_section (enum machine_mode mode ATTRIBUTE_UNUSED,
2426 rtx x ATTRIBUTE_UNUSED,
2427 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
b64a1b53
RH
2428{
2429 function_section (current_function_decl);
2430}
fb49053f 2431
ffbc8796 2432
3c50106f
RH
2433/* Compute a (partial) cost for rtx X. Return true if the complete
2434 cost has been computed, and false if subexpressions should be
2435 scanned. In either case, *TOTAL contains the cost result. */
2436
2437static bool
ffbc8796 2438xtensa_rtx_costs (rtx x, int code, int outer_code, int *total)
3c50106f
RH
2439{
2440 switch (code)
2441 {
2442 case CONST_INT:
2443 switch (outer_code)
2444 {
2445 case SET:
2446 if (xtensa_simm12b (INTVAL (x)))
2447 {
2448 *total = 4;
2449 return true;
2450 }
2451 break;
2452 case PLUS:
2453 if (xtensa_simm8 (INTVAL (x))
2454 || xtensa_simm8x256 (INTVAL (x)))
2455 {
2456 *total = 0;
2457 return true;
2458 }
2459 break;
2460 case AND:
2461 if (xtensa_mask_immediate (INTVAL (x)))
2462 {
2463 *total = 0;
2464 return true;
2465 }
2466 break;
2467 case COMPARE:
2468 if ((INTVAL (x) == 0) || xtensa_b4const (INTVAL (x)))
2469 {
2470 *total = 0;
2471 return true;
2472 }
2473 break;
2474 case ASHIFT:
2475 case ASHIFTRT:
2476 case LSHIFTRT:
2477 case ROTATE:
2478 case ROTATERT:
3bbc2af6 2479 /* No way to tell if X is the 2nd operand so be conservative. */
3c50106f
RH
2480 default: break;
2481 }
2482 if (xtensa_simm12b (INTVAL (x)))
2483 *total = 5;
f42f5a1b
BW
2484 else if (TARGET_CONST16)
2485 *total = COSTS_N_INSNS (2);
3c50106f
RH
2486 else
2487 *total = 6;
2488 return true;
2489
2490 case CONST:
2491 case LABEL_REF:
2492 case SYMBOL_REF:
f42f5a1b
BW
2493 if (TARGET_CONST16)
2494 *total = COSTS_N_INSNS (2);
2495 else
2496 *total = 5;
3c50106f
RH
2497 return true;
2498
2499 case CONST_DOUBLE:
f42f5a1b
BW
2500 if (TARGET_CONST16)
2501 *total = COSTS_N_INSNS (4);
2502 else
2503 *total = 7;
3c50106f
RH
2504 return true;
2505
2506 case MEM:
2507 {
2508 int num_words =
2509 (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ? 2 : 1;
2510
2511 if (memory_address_p (GET_MODE (x), XEXP ((x), 0)))
2512 *total = COSTS_N_INSNS (num_words);
2513 else
2514 *total = COSTS_N_INSNS (2*num_words);
2515 return true;
2516 }
2517
2518 case FFS:
2519 *total = COSTS_N_INSNS (TARGET_NSA ? 5 : 50);
2520 return true;
2521
2522 case NOT:
2523 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 3 : 2);
2524 return true;
2525
2526 case AND:
2527 case IOR:
2528 case XOR:
2529 if (GET_MODE (x) == DImode)
2530 *total = COSTS_N_INSNS (2);
2531 else
2532 *total = COSTS_N_INSNS (1);
2533 return true;
2534
2535 case ASHIFT:
2536 case ASHIFTRT:
2537 case LSHIFTRT:
2538 if (GET_MODE (x) == DImode)
2539 *total = COSTS_N_INSNS (50);
2540 else
2541 *total = COSTS_N_INSNS (1);
2542 return true;
2543
2544 case ABS:
2545 {
2546 enum machine_mode xmode = GET_MODE (x);
2547 if (xmode == SFmode)
2548 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
2549 else if (xmode == DFmode)
2550 *total = COSTS_N_INSNS (50);
2551 else
2552 *total = COSTS_N_INSNS (4);
2553 return true;
2554 }
2555
2556 case PLUS:
2557 case MINUS:
2558 {
2559 enum machine_mode xmode = GET_MODE (x);
2560 if (xmode == SFmode)
2561 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
2562 else if (xmode == DFmode || xmode == DImode)
2563 *total = COSTS_N_INSNS (50);
2564 else
2565 *total = COSTS_N_INSNS (1);
2566 return true;
2567 }
2568
2569 case NEG:
2570 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 4 : 2);
2571 return true;
2572
2573 case MULT:
2574 {
2575 enum machine_mode xmode = GET_MODE (x);
2576 if (xmode == SFmode)
2577 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 4 : 50);
2578 else if (xmode == DFmode || xmode == DImode)
2579 *total = COSTS_N_INSNS (50);
2580 else if (TARGET_MUL32)
2581 *total = COSTS_N_INSNS (4);
2582 else if (TARGET_MAC16)
2583 *total = COSTS_N_INSNS (16);
2584 else if (TARGET_MUL16)
2585 *total = COSTS_N_INSNS (12);
2586 else
2587 *total = COSTS_N_INSNS (50);
2588 return true;
2589 }
2590
2591 case DIV:
2592 case MOD:
2593 {
2594 enum machine_mode xmode = GET_MODE (x);
2595 if (xmode == SFmode)
2596 {
2597 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_DIV ? 8 : 50);
2598 return true;
2599 }
2600 else if (xmode == DFmode)
2601 {
2602 *total = COSTS_N_INSNS (50);
2603 return true;
2604 }
2605 }
3bbc2af6 2606 /* Fall through. */
3c50106f
RH
2607
2608 case UDIV:
2609 case UMOD:
2610 {
2611 enum machine_mode xmode = GET_MODE (x);
2612 if (xmode == DImode)
2613 *total = COSTS_N_INSNS (50);
2614 else if (TARGET_DIV32)
2615 *total = COSTS_N_INSNS (32);
2616 else
2617 *total = COSTS_N_INSNS (50);
2618 return true;
2619 }
2620
2621 case SQRT:
2622 if (GET_MODE (x) == SFmode)
2623 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_SQRT ? 8 : 50);
2624 else
2625 *total = COSTS_N_INSNS (50);
2626 return true;
2627
2628 case SMIN:
2629 case UMIN:
2630 case SMAX:
2631 case UMAX:
2632 *total = COSTS_N_INSNS (TARGET_MINMAX ? 1 : 50);
2633 return true;
2634
2635 case SIGN_EXTRACT:
2636 case SIGN_EXTEND:
2637 *total = COSTS_N_INSNS (TARGET_SEXT ? 1 : 2);
2638 return true;
2639
2640 case ZERO_EXTRACT:
2641 case ZERO_EXTEND:
2642 *total = COSTS_N_INSNS (1);
2643 return true;
2644
2645 default:
2646 return false;
2647 }
2648}
2649
bd5bd7ac
KH
2650/* Worker function for TARGET_RETURN_IN_MEMORY. */
2651
4c45af42
KH
2652static bool
2653xtensa_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
2654{
2655 return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)
2656 > 4 * UNITS_PER_WORD);
2657}
2658
e2500fed 2659#include "gt-xtensa.h"