]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/xtensa/xtensa.h
target.def (legitimate_constant_p): New hook.
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
CommitLineData
03984308 1/* Definitions of Tensilica's Xtensa target machine for GNU compiler.
dde8a3a4 2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
da1f39e4 3 Free Software Foundation, Inc.
03984308
BW
4 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
2f83c7d6 10Software Foundation; either version 3, or (at your option) any later
03984308
BW
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
2f83c7d6
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
03984308
BW
21
22/* Get Xtensa configuration settings */
e677f70c 23#include "xtensa-config.h"
03984308 24
03984308
BW
25/* External variables defined in xtensa.c. */
26
03984308
BW
27extern unsigned xtensa_current_frame_size;
28
6cedbe44
BW
29/* Macros used in the machine description to select various Xtensa
30 configuration options. */
327e3a03
BW
31#ifndef XCHAL_HAVE_MUL32_HIGH
32#define XCHAL_HAVE_MUL32_HIGH 0
33#endif
2a48b790
BW
34#ifndef XCHAL_HAVE_RELEASE_SYNC
35#define XCHAL_HAVE_RELEASE_SYNC 0
36#endif
37#ifndef XCHAL_HAVE_S32C1I
38#define XCHAL_HAVE_S32C1I 0
39#endif
6a7a462c
BW
40#ifndef XCHAL_HAVE_THREADPTR
41#define XCHAL_HAVE_THREADPTR 0
42#endif
6cedbe44
BW
43#define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
44#define TARGET_DENSITY XCHAL_HAVE_DENSITY
45#define TARGET_MAC16 XCHAL_HAVE_MAC16
46#define TARGET_MUL16 XCHAL_HAVE_MUL16
47#define TARGET_MUL32 XCHAL_HAVE_MUL32
09fa8841 48#define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
6cedbe44
BW
49#define TARGET_DIV32 XCHAL_HAVE_DIV32
50#define TARGET_NSA XCHAL_HAVE_NSA
51#define TARGET_MINMAX XCHAL_HAVE_MINMAX
52#define TARGET_SEXT XCHAL_HAVE_SEXT
53#define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
54#define TARGET_HARD_FLOAT XCHAL_HAVE_FP
55#define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
56#define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
57#define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
58#define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
59#define TARGET_ABS XCHAL_HAVE_ABS
60#define TARGET_ADDX XCHAL_HAVE_ADDX
2a48b790
BW
61#define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
62#define TARGET_S32C1I XCHAL_HAVE_S32C1I
7f0ee694 63#define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
6a7a462c 64#define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
6cedbe44 65
66e58b33
BW
66#define TARGET_DEFAULT \
67 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
68 MASK_SERIALIZE_VOLATILE)
03984308 69
6a7a462c
BW
70#ifndef HAVE_AS_TLS
71#define HAVE_AS_TLS 0
72#endif
73
624f0d60
BW
74\f
75/* Target CPU builtins. */
76#define TARGET_CPU_CPP_BUILTINS() \
77 do { \
78 builtin_assert ("cpu=xtensa"); \
79 builtin_assert ("machine=xtensa"); \
48c0150c 80 builtin_define ("__xtensa__"); \
624f0d60 81 builtin_define ("__XTENSA__"); \
c0b57a5a 82 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
624f0d60
BW
83 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
84 if (!TARGET_HARD_FLOAT) \
85 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
624f0d60 86 } while (0)
03984308 87
6a2b287f
BW
88#define CPP_SPEC " %(subtarget_cpp_spec) "
89
90#ifndef SUBTARGET_CPP_SPEC
91#define SUBTARGET_CPP_SPEC ""
92#endif
93
ab409f1b 94#define EXTRA_SPECS \
6a2b287f
BW
95 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
96
03984308
BW
97/* Target machine storage layout */
98
03984308
BW
99/* Define this if most significant bit is lowest numbered
100 in instructions that operate on numbered bit-fields. */
101#define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
102
3bbc2af6 103/* Define this if most significant byte of a word is the lowest numbered. */
03984308
BW
104#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
105
3bbc2af6 106/* Define this if most significant word of a multiword number is the lowest. */
03984308
BW
107#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
108
03984308
BW
109#define MAX_BITS_PER_WORD 32
110
111/* Width of a word, in units (bytes). */
112#define UNITS_PER_WORD 4
113#define MIN_UNITS_PER_WORD 4
114
115/* Width of a floating point register. */
116#define UNITS_PER_FPREG 4
117
118/* Size in bits of various types on the target machine. */
119#define INT_TYPE_SIZE 32
03984308
BW
120#define SHORT_TYPE_SIZE 16
121#define LONG_TYPE_SIZE 32
03984308 122#define LONG_LONG_TYPE_SIZE 64
03984308
BW
123#define FLOAT_TYPE_SIZE 32
124#define DOUBLE_TYPE_SIZE 64
125#define LONG_DOUBLE_TYPE_SIZE 64
03984308 126
03984308
BW
127/* Allocation boundary (in *bits*) for storing pointers in memory. */
128#define POINTER_BOUNDARY 32
129
130/* Allocation boundary (in *bits*) for storing arguments in argument list. */
131#define PARM_BOUNDARY 32
132
133/* Allocation boundary (in *bits*) for the code of a function. */
134#define FUNCTION_BOUNDARY 32
135
136/* Alignment of field after 'int : 0' in a structure. */
137#define EMPTY_FIELD_BOUNDARY 32
138
139/* Every structure's size must be a multiple of this. */
140#define STRUCTURE_SIZE_BOUNDARY 8
141
142/* There is no point aligning anything to a rounder boundary than this. */
143#define BIGGEST_ALIGNMENT 128
144
145/* Set this nonzero if move instructions will actually fail to work
146 when given unaligned data. */
147#define STRICT_ALIGNMENT 1
148
149/* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
150 for QImode, because there is no 8-bit load from memory with sign
151 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
152 loads both with and without sign extension. */
153#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
154 do { \
155 if (GET_MODE_CLASS (MODE) == MODE_INT \
156 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
157 { \
158 if ((MODE) == QImode) \
159 (UNSIGNEDP) = 1; \
160 (MODE) = SImode; \
161 } \
162 } while (0)
163
03984308
BW
164/* Imitate the way many other C compilers handle alignment of
165 bitfields and the structures that contain them. */
166#define PCC_BITFIELD_TYPE_MATTERS 1
167
9a7363b9
BW
168/* Disable the use of word-sized or smaller complex modes for structures,
169 and for function arguments in particular, where they cause problems with
170 register a7. The xtensa_copy_incoming_a7 function assumes that there is
171 a single reference to an argument in a7, but with small complex modes the
172 real and imaginary components may be extracted separately, leading to two
173 uses of the register, only one of which would be replaced. */
174#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
175 ((MODE) == CQImode || (MODE) == CHImode)
176
03984308
BW
177/* Align string constants and constructors to at least a word boundary.
178 The typical use of this macro is to increase alignment for string
179 constants to be word aligned so that 'strcpy' calls that copy
180 constants can be done inline. */
181#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
182 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
183 && (ALIGN) < BITS_PER_WORD \
184 ? BITS_PER_WORD \
185 : (ALIGN))
186
187/* Align arrays, unions and records to at least a word boundary.
188 One use of this macro is to increase alignment of medium-size
189 data to make it all fit in fewer cache lines. Another is to
190 cause character arrays to be word-aligned so that 'strcpy' calls
191 that copy constants to character arrays can be done inline. */
192#undef DATA_ALIGNMENT
193#define DATA_ALIGNMENT(TYPE, ALIGN) \
194 ((((ALIGN) < BITS_PER_WORD) \
195 && (TREE_CODE (TYPE) == ARRAY_TYPE \
196 || TREE_CODE (TYPE) == UNION_TYPE \
197 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
198
03984308
BW
199/* Operations between registers always perform the operation
200 on the full register even if a narrower mode is specified. */
201#define WORD_REGISTER_OPERATIONS
202
203/* Xtensa loads are zero-extended by default. */
204#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
205
206/* Standard register usage. */
207
208/* Number of actual hardware registers.
209 The hardware registers are assigned numbers for the compiler
210 from 0 to just below FIRST_PSEUDO_REGISTER.
211 All registers that the compiler knows about must be given numbers,
212 even those that are not normally considered general registers.
213
214 The fake frame pointer and argument pointer will never appear in
215 the generated code, since they will always be eliminated and replaced
216 by either the stack pointer or the hard frame pointer.
217
218 0 - 15 AR[0] - AR[15]
219 16 FRAME_POINTER (fake = initial sp)
220 17 ARG_POINTER (fake = initial sp + framesize)
03984308
BW
221 18 BR[0] for floating-point CC
222 19 - 34 FR[0] - FR[15]
223 35 MAC16 accumulator */
224
225#define FIRST_PSEUDO_REGISTER 36
226
3bbc2af6 227/* Return the stabs register number to use for REGNO. */
03984308
BW
228#define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
229
230/* 1 for registers that have pervasive standard uses
3bbc2af6 231 and are not available for the register allocator. */
03984308
BW
232#define FIXED_REGISTERS \
233{ \
234 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
235 1, 1, 0, \
236 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
237 0, \
238}
239
240/* 1 for registers not available across function calls.
241 These must include the FIXED_REGISTERS and also any
242 registers that can be used without being saved.
243 The latter must include the registers where values are returned
244 and the register where structure-value addresses are passed.
245 Aside from that, you can include as many other registers as you like. */
246#define CALL_USED_REGISTERS \
247{ \
248 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
249 1, 1, 1, \
250 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
251 1, \
252}
253
254/* For non-leaf procedures on Xtensa processors, the allocation order
255 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
256 want to use the lowest numbered registers first to minimize
257 register window overflows. However, local-alloc is not smart
258 enough to consider conflicts with incoming arguments. If an
259 incoming argument in a2 is live throughout the function and
260 local-alloc decides to use a2, then the incoming argument must
261 either be spilled or copied to another register. To get around
5a733826 262 this, we define ADJUST_REG_ALLOC_ORDER to redefine
03984308
BW
263 reg_alloc_order for leaf functions such that lowest numbered
264 registers are used first with the exception that the incoming
265 argument registers are not used until after other register choices
266 have been exhausted. */
267
268#define REG_ALLOC_ORDER \
985d0d50
BW
269{ 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
270 18, \
271 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
03984308 272 0, 1, 16, 17, \
985d0d50 273 35, \
03984308
BW
274}
275
5a733826 276#define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
03984308
BW
277
278/* For Xtensa, the only point of this is to prevent GCC from otherwise
279 giving preference to call-used registers. To minimize window
280 overflows for the AR registers, we want to give preference to the
281 lower-numbered AR registers. For other register files, which are
3bbc2af6 282 not windowed, we still prefer call-used registers, if there are any. */
03984308
BW
283extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
284#define LEAF_REGISTERS xtensa_leaf_regs
285
286/* For Xtensa, no remapping is necessary, but this macro must be
3bbc2af6 287 defined if LEAF_REGISTERS is defined. */
03984308
BW
288#define LEAF_REG_REMAP(REGNO) (REGNO)
289
3bbc2af6 290/* This must be declared if LEAF_REGISTERS is set. */
03984308
BW
291extern int leaf_function;
292
3bbc2af6 293/* Internal macros to classify a register number. */
03984308
BW
294
295/* 16 address registers + fake registers */
296#define GP_REG_FIRST 0
297#define GP_REG_LAST 17
298#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
299
03984308
BW
300/* Coprocessor registers */
301#define BR_REG_FIRST 18
302#define BR_REG_LAST 18
303#define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
304
305/* 16 floating-point registers */
306#define FP_REG_FIRST 19
307#define FP_REG_LAST 34
308#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
309
310/* MAC16 accumulator */
311#define ACC_REG_FIRST 35
312#define ACC_REG_LAST 35
313#define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
314
315#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
316#define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
317#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
318#define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
319
320/* Return number of consecutive hard regs needed starting at reg REGNO
321 to hold something of mode MODE. */
322#define HARD_REGNO_NREGS(REGNO, MODE) \
323 (FP_REG_P (REGNO) ? \
324 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
325 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
326
327/* Value is 1 if hard register REGNO can hold a value of machine-mode
3bbc2af6 328 MODE. */
03984308
BW
329extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
330
331#define HARD_REGNO_MODE_OK(REGNO, MODE) \
332 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
333
334/* Value is 1 if it is a good idea to tie two pseudo registers
335 when one has mode MODE1 and one has mode MODE2.
336 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
337 for any hard reg, then this must be 0 for correct output. */
338#define MODES_TIEABLE_P(MODE1, MODE2) \
339 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
340 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
341 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
342 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
343
03984308
BW
344/* Register to use for pushing function arguments. */
345#define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
346
347/* Base register for access to local variables of the function. */
348#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
349
350/* The register number of the frame pointer register, which is used to
351 access automatic variables in the stack frame. For Xtensa, this
352 register never appears in the output. It is always eliminated to
3bbc2af6 353 either the stack pointer or the hard frame pointer. */
03984308
BW
354#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
355
03984308
BW
356/* Base register for access to arguments of the function. */
357#define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
358
03984308
BW
359/* For now we don't try to use the full set of boolean registers. Without
360 software pipelining of FP operations, there's not much to gain and it's
361 a real pain to get them reloaded. */
362#define FPCC_REGNUM (BR_REG_FIRST + 0)
363
03984308
BW
364/* It is as good or better to call a constant function address than to
365 call an address kept in a register. */
366#define NO_FUNCTION_CSE 1
367
03984308
BW
368/* Xtensa processors have "register windows". GCC does not currently
369 take advantage of the possibility for variable-sized windows; instead,
370 we use a fixed window size of 8. */
371
372#define INCOMING_REGNO(OUT) \
373 ((GP_REG_P (OUT) && \
374 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
375 (OUT) - WINDOW_SIZE : (OUT))
376
377#define OUTGOING_REGNO(IN) \
378 ((GP_REG_P (IN) && \
379 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
380 (IN) + WINDOW_SIZE : (IN))
381
382
383/* Define the classes of registers for register constraints in the
384 machine description. */
385enum reg_class
386{
387 NO_REGS, /* no registers in set */
388 BR_REGS, /* coprocessor boolean registers */
389 FP_REGS, /* floating point registers */
390 ACC_REG, /* MAC16 accumulator */
391 SP_REG, /* sp register (aka a1) */
89f6025d 392 RL_REGS, /* preferred reload regs (not sp or fp) */
03984308
BW
393 GR_REGS, /* integer registers except sp */
394 AR_REGS, /* all integer registers */
395 ALL_REGS, /* all registers */
396 LIM_REG_CLASSES /* max value + 1 */
397};
398
399#define N_REG_CLASSES (int) LIM_REG_CLASSES
400
401#define GENERAL_REGS AR_REGS
402
403/* An initializer containing the names of the register classes as C
404 string constants. These names are used in writing some of the
405 debugging dumps. */
406#define REG_CLASS_NAMES \
407{ \
408 "NO_REGS", \
409 "BR_REGS", \
410 "FP_REGS", \
411 "ACC_REG", \
412 "SP_REG", \
89f6025d 413 "RL_REGS", \
03984308
BW
414 "GR_REGS", \
415 "AR_REGS", \
416 "ALL_REGS" \
417}
418
419/* Contents of the register classes. The Nth integer specifies the
420 contents of class N. The way the integer MASK is interpreted is
421 that register R is in the class if 'MASK & (1 << R)' is 1. */
422#define REG_CLASS_CONTENTS \
423{ \
424 { 0x00000000, 0x00000000 }, /* no registers */ \
425 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
426 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
427 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
428 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
89f6025d 429 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
03984308
BW
430 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
431 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
432 { 0xffffffff, 0x0000000f } /* all registers */ \
433}
434
435/* A C expression whose value is a register class containing hard
436 register REGNO. In general there is more that one such class;
437 choose a class which is "minimal", meaning that no smaller class
438 also contains the register. */
439extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
440
441#define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
442
443/* Use the Xtensa AR register file for base registers.
444 No index registers. */
445#define BASE_REG_CLASS AR_REGS
446#define INDEX_REG_CLASS NO_REGS
447
42db504c
SB
448/* The small_register_classes_for_mode_p hook must always return true for
449 Xtrnase, because all of the 16 AR registers may be explicitly used in
450 the RTL, as either incoming or outgoing arguments. */
451#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
03984308 452
03984308
BW
453/* Return the maximum number of consecutive registers
454 needed to represent mode MODE in a register of class CLASS. */
455#define CLASS_UNITS(mode, size) \
456 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
457
458#define CLASS_MAX_NREGS(CLASS, MODE) \
459 (CLASS_UNITS (MODE, UNITS_PER_WORD))
460
461
462/* Stack layout; function entry, exit and calling. */
463
464#define STACK_GROWS_DOWNWARD
465
466/* Offset within stack frame to start allocating local variables at. */
467#define STARTING_FRAME_OFFSET \
38173d38 468 crtl->outgoing_args_size
03984308
BW
469
470/* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
471 they are eliminated to either the stack pointer or hard frame pointer. */
472#define ELIMINABLE_REGS \
473{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
474 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
475 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
476 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
477
03984308
BW
478/* Specify the initial difference between the specified pair of registers. */
479#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
480 do { \
481 compute_frame_size (get_frame_size ()); \
177b6be0
NS
482 switch (FROM) \
483 { \
484 case FRAME_POINTER_REGNUM: \
485 (OFFSET) = 0; \
486 break; \
487 case ARG_POINTER_REGNUM: \
488 (OFFSET) = xtensa_current_frame_size; \
489 break; \
490 default: \
491 gcc_unreachable (); \
492 } \
03984308
BW
493 } while (0)
494
495/* If defined, the maximum amount of space required for outgoing
496 arguments will be computed and placed into the variable
38173d38 497 'crtl->outgoing_args_size'. No space will be pushed
03984308
BW
498 onto the stack for each call; instead, the function prologue
499 should increase the stack frame size by this amount. */
500#define ACCUMULATE_OUTGOING_ARGS 1
501
502/* Offset from the argument pointer register to the first argument's
503 address. On some machines it may depend on the data type of the
504 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
505 location above the first argument's address. */
506#define FIRST_PARM_OFFSET(FNDECL) 0
507
508/* Align stack frames on 128 bits for Xtensa. This is necessary for
509 128-bit datatypes defined in TIE (e.g., for Vectra). */
510#define STACK_BOUNDARY 128
511
03984308
BW
512/* Use a fixed register window size of 8. */
513#define WINDOW_SIZE 8
514
515/* Symbolic macros for the registers used to return integer, floating
516 point, and values of coprocessor and user-defined modes. */
517#define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
518#define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
519
520/* Symbolic macros for the first/last argument registers. */
521#define GP_ARG_FIRST (GP_REG_FIRST + 2)
522#define GP_ARG_LAST (GP_REG_FIRST + 7)
523#define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
524#define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
525
526#define MAX_ARGS_IN_REGISTERS 6
527
528/* Don't worry about compatibility with PCC. */
529#define DEFAULT_PCC_STRUCT_RETURN 0
530
03984308
BW
531/* A C expression that is nonzero if REGNO is the number of a hard
532 register in which function arguments are sometimes passed. This
533 does *not* include implicit arguments such as the static chain and
534 the structure-value address. On many machines, no registers can be
535 used for this purpose since all function arguments are pushed on
3bbc2af6 536 the stack. */
03984308
BW
537#define FUNCTION_ARG_REGNO_P(N) \
538 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
539
997b8b4d
BW
540/* Record the number of argument words seen so far, along with a flag to
541 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
542 is used for both incoming and outgoing args, so a separate flag is
543 needed. */
544typedef struct xtensa_args
545{
546 int arg_words;
547 int incoming;
03984308
BW
548} CUMULATIVE_ARGS;
549
0f6937fe 550#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
997b8b4d 551 init_cumulative_args (&CUM, 0)
03984308
BW
552
553#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
997b8b4d 554 init_cumulative_args (&CUM, 1)
03984308 555
5ee924c2
BW
556/* Profiling Xtensa code is typically done with the built-in profiling
557 feature of Tensilica's instruction set simulator, which does not
558 require any compiler support. Profiling code on a real (i.e.,
559 non-simulated) Xtensa processor is currently only supported by
560 GNU/Linux with glibc. The glibc version of _mcount doesn't require
561 counter variables. The _mcount function needs the current PC and
562 the current return address to identify an arc in the call graph.
563 Pass the current return address as the first argument; the current
564 PC is available as a0 in _mcount's register window. Both of these
565 values contain window size information in the two most significant
566 bits; we assume that _mcount will mask off those bits. The call to
567 _mcount uses a window size of 8 to make sure that it doesn't clobber
3bbc2af6 568 any incoming argument values. */
03984308 569
9739c90c 570#define NO_PROFILE_COUNTERS 1
5ee924c2
BW
571
572#define FUNCTION_PROFILER(FILE, LABELNO) \
03984308 573 do { \
5ee924c2
BW
574 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
575 if (flag_pic) \
576 { \
577 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
578 fprintf (FILE, "\tcallx8\ta8\n"); \
579 } \
580 else \
581 fprintf (FILE, "\tcall8\t_mcount\n"); \
582 } while (0)
03984308
BW
583
584/* Stack pointer value doesn't matter at exit. */
585#define EXIT_IGNORE_STACK 1
586
85333688
BW
587/* Size in bytes of the trampoline, as an integer. Make sure this is
588 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
7f0ee694 589#define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
03984308
BW
590
591/* Alignment required for trampolines, in bits. */
7f0ee694 592#define TRAMPOLINE_ALIGNMENT 32
03984308 593
03984308
BW
594/* If defined, a C expression that produces the machine-specific code
595 to setup the stack so that arbitrary frames can be accessed.
596
597 On Xtensa, a stack back-trace must always begin from the stack pointer,
598 so that the register overflow save area can be located. However, the
599 stack-walking code in GCC always begins from the hard_frame_pointer
600 register, not the stack pointer. The frame pointer is usually equal
601 to the stack pointer, but the __builtin_return_address and
602 __builtin_frame_address functions will not work if count > 0 and
603 they are called from a routine that uses alloca. These functions
604 are not guaranteed to work at all if count > 0 so maybe that is OK.
605
606 A nicer solution would be to allow the architecture-specific files to
607 specify whether to start from the stack pointer or frame pointer. That
608 would also allow us to skip the machine->accesses_prev_frame stuff that
609 we currently need to ensure that there is a frame pointer when these
3bbc2af6 610 builtin functions are used. */
03984308 611
0c14a54d 612#define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
03984308
BW
613
614/* A C expression whose value is RTL representing the address in a
615 stack frame where the pointer to the caller's frame is stored.
616 Assume that FRAMEADDR is an RTL expression for the address of the
617 stack frame itself.
618
619 For Xtensa, there is no easy way to get the frame pointer if it is
620 not equivalent to the stack pointer. Moreover, the result of this
621 macro is used for continuing to walk back up the stack, so it must
622 return the stack pointer address. Thus, there is some inconsistency
623 here in that __builtin_frame_address will return the frame pointer
3bbc2af6 624 when count == 0 and the stack pointer when count > 0. */
03984308
BW
625
626#define DYNAMIC_CHAIN_ADDRESS(frame) \
f1c25d3b 627 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
03984308
BW
628
629/* Define this if the return address of a particular stack frame is
3bbc2af6 630 accessed from the frame pointer of the previous stack frame. */
03984308
BW
631#define RETURN_ADDR_IN_PREVIOUS_FRAME
632
633/* A C expression whose value is RTL representing the value of the
634 return address for the frame COUNT steps up from the current
0c14a54d
BW
635 frame, after the prologue. */
636#define RETURN_ADDR_RTX xtensa_return_addr
03984308
BW
637
638/* Addressing modes, and classification of registers for them. */
639
640/* C expressions which are nonzero if register number NUM is suitable
da1f39e4 641 for use as a base or index register in operand addresses. */
03984308 642
da1f39e4 643#define REGNO_OK_FOR_INDEX_P(NUM) 0
03984308
BW
644#define REGNO_OK_FOR_BASE_P(NUM) \
645 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
646
03984308 647/* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
da1f39e4 648 valid for use as a base or index register. */
03984308
BW
649
650#ifdef REG_OK_STRICT
da1f39e4
BW
651#define REG_OK_STRICT_FLAG 1
652#else
653#define REG_OK_STRICT_FLAG 0
654#endif
03984308 655
da1f39e4
BW
656#define BASE_REG_P(X, STRICT) \
657 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
658 || REGNO_OK_FOR_BASE_P (REGNO (X)))
03984308
BW
659
660#define REG_OK_FOR_INDEX_P(X) 0
da1f39e4 661#define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
03984308
BW
662
663/* Maximum number of registers that can appear in a valid memory address. */
664#define MAX_REGS_PER_ADDRESS 1
665
03984308
BW
666/* A C expression that is 1 if the RTX X is a constant which is a
667 valid address. This is defined to be the same as 'CONSTANT_P (X)',
668 but rejecting CONST_DOUBLE. */
669#define CONSTANT_ADDRESS_P(X) \
670 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
671 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
672 || (GET_CODE (X) == CONST)))
673
03984308
BW
674/* A C expression that is nonzero if X is a legitimate immediate
675 operand on the target machine when generating position independent
676 code. */
677#define LEGITIMATE_PIC_OPERAND_P(X) \
f1dfe704
BW
678 ((GET_CODE (X) != SYMBOL_REF \
679 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
03984308
BW
680 && GET_CODE (X) != LABEL_REF \
681 && GET_CODE (X) != CONST)
682
03984308
BW
683/* Specify the machine mode that this machine uses
684 for the index in the tablejump instruction. */
685#define CASE_VECTOR_MODE (SImode)
686
03984308
BW
687/* Define this as 1 if 'char' should by default be signed; else as 0. */
688#define DEFAULT_SIGNED_CHAR 0
689
690/* Max number of bytes we can move from memory to memory
691 in one reasonably fast instruction. */
692#define MOVE_MAX 4
693#define MAX_MOVE_MAX 4
694
695/* Prefer word-sized loads. */
696#define SLOW_BYTE_ACCESS 1
697
03984308
BW
698/* Shift instructions ignore all but the low-order few bits. */
699#define SHIFT_COUNT_TRUNCATED 1
700
701/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3bbc2af6 702 is done just by pretending it is already truncated. */
03984308
BW
703#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
704
09fa8841
BW
705#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
706#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
707
03984308
BW
708/* Specify the machine mode that pointers have.
709 After generation of rtl, the compiler makes no further distinction
710 between pointers and any other objects of this machine mode. */
711#define Pmode SImode
712
713/* A function address in a call instruction is a word address (for
714 indexing purposes) so give the MEM rtx a words's mode. */
715#define FUNCTION_MODE SImode
716
3a4fd356 717#define BRANCH_COST(speed_p, predictable_p) 3
03984308 718
03984308 719/* How to refer to registers in assembler output.
3bbc2af6 720 This sequence is indexed by compiler's hard-register-number (see above). */
03984308
BW
721#define REGISTER_NAMES \
722{ \
723 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
724 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
725 "fp", "argp", "b0", \
726 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
727 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
728 "acc" \
729}
730
731/* If defined, a C initializer for an array of structures containing a
732 name and a register number. This macro defines additional names
733 for hard registers, thus allowing the 'asm' option in declarations
3bbc2af6 734 to refer to registers using alternate names. */
03984308
BW
735#define ADDITIONAL_REGISTER_NAMES \
736{ \
737 { "a1", 1 + GP_REG_FIRST } \
738}
739
740#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
741#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
742
506a61b1
KG
743/* Globalizing directive for a label. */
744#define GLOBAL_ASM_OP "\t.global\t"
03984308 745
6a2b287f
BW
746/* Declare an uninitialized external linkage data object. */
747#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
748 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
03984308
BW
749
750/* This is how to output an element of a case-vector that is absolute. */
751#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
752 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
753 LOCAL_LABEL_PREFIX, VALUE)
754
755/* This is how to output an element of a case-vector that is relative.
3bbc2af6 756 This is used for pc-relative code. */
03984308
BW
757#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
758 do { \
759 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
760 LOCAL_LABEL_PREFIX, (VALUE), \
761 LOCAL_LABEL_PREFIX, (REL)); \
762 } while (0)
763
764/* This is how to output an assembler line that says to advance the
765 location counter to a multiple of 2**LOG bytes. */
766#define ASM_OUTPUT_ALIGN(STREAM, LOG) \
767 do { \
768 if ((LOG) != 0) \
769 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
770 } while (0)
771
772/* Indicate that jump tables go in the text section. This is
773 necessary when compiling PIC code. */
774#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
775
776
03984308 777/* Define the strings to put out for each section in the object file. */
6a2b287f
BW
778#define TEXT_SECTION_ASM_OP "\t.text"
779#define DATA_SECTION_ASM_OP "\t.data"
780#define BSS_SECTION_ASM_OP "\t.section\t.bss"
03984308
BW
781
782
9eb8a531 783/* Define output to appear before the constant pool. */
03984308
BW
784#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
785 do { \
958c70ff 786 if ((SIZE) > 0) \
86d8c251 787 { \
9eb8a531 788 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
d6b5193b 789 switch_to_section (function_section (FUNDECL)); \
86d8c251
BW
790 fprintf (FILE, "\t.literal_position\n"); \
791 } \
03984308
BW
792 } while (0)
793
794
03984308
BW
795/* A C statement (with or without semicolon) to output a constant in
796 the constant pool, if it needs special treatment. */
797#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
798 do { \
799 xtensa_output_literal (FILE, X, MODE, LABELNO); \
800 goto JUMPTO; \
801 } while (0)
802
3bbc2af6 803/* How to start an assembler comment. */
03984308
BW
804#define ASM_COMMENT_START "#"
805
6eb065e6
SA
806/* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
807 machinery, but the variable size register window save areas are too
808 complicated to efficiently describe with CFI entries. The CFA must
809 still be specified in DWARF so that DW_AT_frame_base is set correctly
810 for debugging. */
4e6c2193
BW
811#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
812#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
6eb065e6
SA
813#define DWARF_FRAME_REGISTERS 16
814#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
24eaa34f
BW
815#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
816 (flag_pic \
817 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
818 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
819 : DW_EH_PE_absptr)
820
821/* Emit a PC-relative relocation. */
822#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
823 do { \
824 fputs (integer_asm_op (SIZE, FALSE), FILE); \
825 assemble_name (FILE, LABEL); \
826 fputs ("@pcrel", FILE); \
827 } while (0)
03984308 828
a7bda3d5
BW
829/* Xtensa constant pool breaks the devices in crtstuff.c to control
830 section in where code resides. We have to write it as asm code. Use
831 a MOVI and let the assembler relax it -- for the .init and .fini
832 sections, the assembler knows to put the literal in the right
833 place. */
834#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
835 asm (SECTION_OP "\n\
836 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
837 callx8\ta8\n" \
838 TEXT_SECTION_ASM_OP);