]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/xtensa/xtensa.h
Turn CONSTANT_ALIGNMENT into a hook
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
CommitLineData
03984308 1/* Definitions of Tensilica's Xtensa target machine for GNU compiler.
cbe34bb5 2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
03984308
BW
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
2f83c7d6 9Software Foundation; either version 3, or (at your option) any later
03984308
BW
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
2f83c7d6
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
03984308
BW
20
21/* Get Xtensa configuration settings */
e677f70c 22#include "xtensa-config.h"
03984308 23
03984308
BW
24/* External variables defined in xtensa.c. */
25
6cedbe44
BW
26/* Macros used in the machine description to select various Xtensa
27 configuration options. */
327e3a03
BW
28#ifndef XCHAL_HAVE_MUL32_HIGH
29#define XCHAL_HAVE_MUL32_HIGH 0
30#endif
2a48b790
BW
31#ifndef XCHAL_HAVE_RELEASE_SYNC
32#define XCHAL_HAVE_RELEASE_SYNC 0
33#endif
34#ifndef XCHAL_HAVE_S32C1I
35#define XCHAL_HAVE_S32C1I 0
36#endif
6a7a462c
BW
37#ifndef XCHAL_HAVE_THREADPTR
38#define XCHAL_HAVE_THREADPTR 0
39#endif
f211daa3
MF
40#ifndef XCHAL_HAVE_FP_POSTINC
41#define XCHAL_HAVE_FP_POSTINC 0
42#endif
6cedbe44
BW
43#define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
44#define TARGET_DENSITY XCHAL_HAVE_DENSITY
45#define TARGET_MAC16 XCHAL_HAVE_MAC16
46#define TARGET_MUL16 XCHAL_HAVE_MUL16
47#define TARGET_MUL32 XCHAL_HAVE_MUL32
09fa8841 48#define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
6cedbe44
BW
49#define TARGET_DIV32 XCHAL_HAVE_DIV32
50#define TARGET_NSA XCHAL_HAVE_NSA
51#define TARGET_MINMAX XCHAL_HAVE_MINMAX
52#define TARGET_SEXT XCHAL_HAVE_SEXT
53#define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
54#define TARGET_HARD_FLOAT XCHAL_HAVE_FP
55#define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
56#define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
57#define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
58#define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
f211daa3 59#define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
6cedbe44
BW
60#define TARGET_ABS XCHAL_HAVE_ABS
61#define TARGET_ADDX XCHAL_HAVE_ADDX
2a48b790
BW
62#define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
63#define TARGET_S32C1I XCHAL_HAVE_S32C1I
7f0ee694 64#define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
6a7a462c 65#define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
6383386a 66#define TARGET_LOOPS XCHAL_HAVE_LOOPS
590e2636 67#define TARGET_WINDOWED_ABI (XSHAL_ABI == XTHAL_ABI_WINDOWED)
768b6664 68#define TARGET_DEBUG XCHAL_HAVE_DEBUG
1a711a0b 69#define TARGET_L32R XCHAL_HAVE_L32R
6cedbe44 70
1a711a0b 71#define TARGET_DEFAULT (MASK_SERIALIZE_VOLATILE)
03984308 72
6a7a462c
BW
73#ifndef HAVE_AS_TLS
74#define HAVE_AS_TLS 0
75#endif
76
624f0d60
BW
77\f
78/* Target CPU builtins. */
79#define TARGET_CPU_CPP_BUILTINS() \
80 do { \
81 builtin_assert ("cpu=xtensa"); \
82 builtin_assert ("machine=xtensa"); \
48c0150c 83 builtin_define ("__xtensa__"); \
624f0d60 84 builtin_define ("__XTENSA__"); \
590e2636
MF
85 builtin_define (TARGET_WINDOWED_ABI ? \
86 "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
624f0d60
BW
87 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
88 if (!TARGET_HARD_FLOAT) \
89 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
624f0d60 90 } while (0)
03984308 91
6a2b287f
BW
92#define CPP_SPEC " %(subtarget_cpp_spec) "
93
94#ifndef SUBTARGET_CPP_SPEC
95#define SUBTARGET_CPP_SPEC ""
96#endif
97
ab409f1b 98#define EXTRA_SPECS \
6a2b287f
BW
99 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
100
03984308
BW
101/* Target machine storage layout */
102
03984308
BW
103/* Define this if most significant bit is lowest numbered
104 in instructions that operate on numbered bit-fields. */
105#define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
106
3bbc2af6 107/* Define this if most significant byte of a word is the lowest numbered. */
03984308
BW
108#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
109
3bbc2af6 110/* Define this if most significant word of a multiword number is the lowest. */
03984308
BW
111#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
112
03984308
BW
113#define MAX_BITS_PER_WORD 32
114
115/* Width of a word, in units (bytes). */
116#define UNITS_PER_WORD 4
117#define MIN_UNITS_PER_WORD 4
118
119/* Width of a floating point register. */
120#define UNITS_PER_FPREG 4
121
122/* Size in bits of various types on the target machine. */
123#define INT_TYPE_SIZE 32
03984308
BW
124#define SHORT_TYPE_SIZE 16
125#define LONG_TYPE_SIZE 32
03984308 126#define LONG_LONG_TYPE_SIZE 64
03984308
BW
127#define FLOAT_TYPE_SIZE 32
128#define DOUBLE_TYPE_SIZE 64
129#define LONG_DOUBLE_TYPE_SIZE 64
03984308 130
03984308
BW
131/* Allocation boundary (in *bits*) for storing pointers in memory. */
132#define POINTER_BOUNDARY 32
133
134/* Allocation boundary (in *bits*) for storing arguments in argument list. */
135#define PARM_BOUNDARY 32
136
137/* Allocation boundary (in *bits*) for the code of a function. */
138#define FUNCTION_BOUNDARY 32
139
140/* Alignment of field after 'int : 0' in a structure. */
141#define EMPTY_FIELD_BOUNDARY 32
142
143/* Every structure's size must be a multiple of this. */
144#define STRUCTURE_SIZE_BOUNDARY 8
145
146/* There is no point aligning anything to a rounder boundary than this. */
147#define BIGGEST_ALIGNMENT 128
148
149/* Set this nonzero if move instructions will actually fail to work
150 when given unaligned data. */
151#define STRICT_ALIGNMENT 1
152
153/* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
154 for QImode, because there is no 8-bit load from memory with sign
155 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
156 loads both with and without sign extension. */
157#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
158 do { \
159 if (GET_MODE_CLASS (MODE) == MODE_INT \
160 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
161 { \
162 if ((MODE) == QImode) \
163 (UNSIGNEDP) = 1; \
164 (MODE) = SImode; \
165 } \
166 } while (0)
167
03984308
BW
168/* Imitate the way many other C compilers handle alignment of
169 bitfields and the structures that contain them. */
170#define PCC_BITFIELD_TYPE_MATTERS 1
171
03984308
BW
172/* Align arrays, unions and records to at least a word boundary.
173 One use of this macro is to increase alignment of medium-size
174 data to make it all fit in fewer cache lines. Another is to
175 cause character arrays to be word-aligned so that 'strcpy' calls
176 that copy constants to character arrays can be done inline. */
177#undef DATA_ALIGNMENT
178#define DATA_ALIGNMENT(TYPE, ALIGN) \
637ece3f 179 (!optimize_size && (((ALIGN) < BITS_PER_WORD) \
03984308
BW
180 && (TREE_CODE (TYPE) == ARRAY_TYPE \
181 || TREE_CODE (TYPE) == UNION_TYPE \
182 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
183
03984308
BW
184/* Operations between registers always perform the operation
185 on the full register even if a narrower mode is specified. */
9e11bfef 186#define WORD_REGISTER_OPERATIONS 1
03984308
BW
187
188/* Xtensa loads are zero-extended by default. */
189#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
190
191/* Standard register usage. */
192
193/* Number of actual hardware registers.
194 The hardware registers are assigned numbers for the compiler
195 from 0 to just below FIRST_PSEUDO_REGISTER.
196 All registers that the compiler knows about must be given numbers,
197 even those that are not normally considered general registers.
198
199 The fake frame pointer and argument pointer will never appear in
200 the generated code, since they will always be eliminated and replaced
201 by either the stack pointer or the hard frame pointer.
202
203 0 - 15 AR[0] - AR[15]
204 16 FRAME_POINTER (fake = initial sp)
205 17 ARG_POINTER (fake = initial sp + framesize)
03984308
BW
206 18 BR[0] for floating-point CC
207 19 - 34 FR[0] - FR[15]
208 35 MAC16 accumulator */
209
210#define FIRST_PSEUDO_REGISTER 36
211
3bbc2af6 212/* Return the stabs register number to use for REGNO. */
03984308
BW
213#define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
214
215/* 1 for registers that have pervasive standard uses
3bbc2af6 216 and are not available for the register allocator. */
03984308
BW
217#define FIXED_REGISTERS \
218{ \
219 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
220 1, 1, 0, \
221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
222 0, \
223}
224
225/* 1 for registers not available across function calls.
226 These must include the FIXED_REGISTERS and also any
227 registers that can be used without being saved.
228 The latter must include the registers where values are returned
229 and the register where structure-value addresses are passed.
590e2636
MF
230 Aside from that, you can include as many other registers as you like.
231
232 The value encoding is the following:
233 1: register is used by all ABIs;
234 bit 1 is set: register is used by windowed ABI;
235 bit 2 is set: register is used by call0 ABI.
236
237 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
238
03984308
BW
239#define CALL_USED_REGISTERS \
240{ \
590e2636 241 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, \
03984308
BW
242 1, 1, 1, \
243 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
244 1, \
245}
246
247/* For non-leaf procedures on Xtensa processors, the allocation order
248 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
249 want to use the lowest numbered registers first to minimize
250 register window overflows. However, local-alloc is not smart
251 enough to consider conflicts with incoming arguments. If an
252 incoming argument in a2 is live throughout the function and
253 local-alloc decides to use a2, then the incoming argument must
254 either be spilled or copied to another register. To get around
5a733826 255 this, we define ADJUST_REG_ALLOC_ORDER to redefine
03984308
BW
256 reg_alloc_order for leaf functions such that lowest numbered
257 registers are used first with the exception that the incoming
258 argument registers are not used until after other register choices
259 have been exhausted. */
260
261#define REG_ALLOC_ORDER \
985d0d50
BW
262{ 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
263 18, \
264 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
03984308 265 0, 1, 16, 17, \
985d0d50 266 35, \
03984308
BW
267}
268
5a733826 269#define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
03984308
BW
270
271/* For Xtensa, the only point of this is to prevent GCC from otherwise
272 giving preference to call-used registers. To minimize window
273 overflows for the AR registers, we want to give preference to the
274 lower-numbered AR registers. For other register files, which are
3bbc2af6 275 not windowed, we still prefer call-used registers, if there are any. */
03984308
BW
276extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
277#define LEAF_REGISTERS xtensa_leaf_regs
278
279/* For Xtensa, no remapping is necessary, but this macro must be
3bbc2af6 280 defined if LEAF_REGISTERS is defined. */
03984308
BW
281#define LEAF_REG_REMAP(REGNO) (REGNO)
282
3bbc2af6 283/* This must be declared if LEAF_REGISTERS is set. */
03984308
BW
284extern int leaf_function;
285
3bbc2af6 286/* Internal macros to classify a register number. */
03984308
BW
287
288/* 16 address registers + fake registers */
289#define GP_REG_FIRST 0
290#define GP_REG_LAST 17
291#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
292
03984308
BW
293/* Coprocessor registers */
294#define BR_REG_FIRST 18
295#define BR_REG_LAST 18
296#define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
297
298/* 16 floating-point registers */
299#define FP_REG_FIRST 19
300#define FP_REG_LAST 34
301#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
302
303/* MAC16 accumulator */
304#define ACC_REG_FIRST 35
305#define ACC_REG_LAST 35
306#define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
307
308#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
309#define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
310#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
311#define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
312
03984308
BW
313/* Register to use for pushing function arguments. */
314#define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
315
316/* Base register for access to local variables of the function. */
590e2636
MF
317#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + \
318 (TARGET_WINDOWED_ABI ? 7 : 15))
03984308
BW
319
320/* The register number of the frame pointer register, which is used to
321 access automatic variables in the stack frame. For Xtensa, this
322 register never appears in the output. It is always eliminated to
3bbc2af6 323 either the stack pointer or the hard frame pointer. */
03984308
BW
324#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
325
03984308
BW
326/* Base register for access to arguments of the function. */
327#define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
328
1a711a0b
MF
329/* Hard frame pointer is neither frame nor arg pointer.
330 The definitions are here because actual hard frame pointer register
331 definition is not a preprocessor constant. */
332#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
333#define HARD_FRAME_POINTER_IS_ARG_POINTER 0
334
03984308
BW
335/* For now we don't try to use the full set of boolean registers. Without
336 software pipelining of FP operations, there's not much to gain and it's
337 a real pain to get them reloaded. */
338#define FPCC_REGNUM (BR_REG_FIRST + 0)
339
03984308
BW
340/* It is as good or better to call a constant function address than to
341 call an address kept in a register. */
342#define NO_FUNCTION_CSE 1
343
03984308
BW
344/* Xtensa processors have "register windows". GCC does not currently
345 take advantage of the possibility for variable-sized windows; instead,
346 we use a fixed window size of 8. */
347
348#define INCOMING_REGNO(OUT) \
590e2636
MF
349 (TARGET_WINDOWED_ABI ? \
350 ((GP_REG_P (OUT) && \
351 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
352 (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
03984308
BW
353
354#define OUTGOING_REGNO(IN) \
590e2636
MF
355 (TARGET_WINDOWED_ABI ? \
356 ((GP_REG_P (IN) && \
357 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
358 (IN) + WINDOW_SIZE : (IN)) : (IN))
03984308
BW
359
360
361/* Define the classes of registers for register constraints in the
362 machine description. */
363enum reg_class
364{
365 NO_REGS, /* no registers in set */
366 BR_REGS, /* coprocessor boolean registers */
367 FP_REGS, /* floating point registers */
368 ACC_REG, /* MAC16 accumulator */
369 SP_REG, /* sp register (aka a1) */
89f6025d 370 RL_REGS, /* preferred reload regs (not sp or fp) */
03984308
BW
371 GR_REGS, /* integer registers except sp */
372 AR_REGS, /* all integer registers */
373 ALL_REGS, /* all registers */
374 LIM_REG_CLASSES /* max value + 1 */
375};
376
377#define N_REG_CLASSES (int) LIM_REG_CLASSES
378
379#define GENERAL_REGS AR_REGS
380
381/* An initializer containing the names of the register classes as C
382 string constants. These names are used in writing some of the
383 debugging dumps. */
384#define REG_CLASS_NAMES \
385{ \
386 "NO_REGS", \
387 "BR_REGS", \
388 "FP_REGS", \
389 "ACC_REG", \
390 "SP_REG", \
89f6025d 391 "RL_REGS", \
03984308
BW
392 "GR_REGS", \
393 "AR_REGS", \
394 "ALL_REGS" \
395}
396
397/* Contents of the register classes. The Nth integer specifies the
398 contents of class N. The way the integer MASK is interpreted is
399 that register R is in the class if 'MASK & (1 << R)' is 1. */
400#define REG_CLASS_CONTENTS \
401{ \
402 { 0x00000000, 0x00000000 }, /* no registers */ \
403 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
404 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
405 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
406 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
590e2636 407 { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
03984308
BW
408 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
409 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
410 { 0xffffffff, 0x0000000f } /* all registers */ \
411}
412
413/* A C expression whose value is a register class containing hard
414 register REGNO. In general there is more that one such class;
415 choose a class which is "minimal", meaning that no smaller class
416 also contains the register. */
590e2636 417#define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
03984308
BW
418
419/* Use the Xtensa AR register file for base registers.
420 No index registers. */
421#define BASE_REG_CLASS AR_REGS
422#define INDEX_REG_CLASS NO_REGS
423
42db504c
SB
424/* The small_register_classes_for_mode_p hook must always return true for
425 Xtrnase, because all of the 16 AR registers may be explicitly used in
426 the RTL, as either incoming or outgoing arguments. */
427#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
03984308 428
03984308
BW
429/* Stack layout; function entry, exit and calling. */
430
62f9f30b 431#define STACK_GROWS_DOWNWARD 1
03984308 432
5057f9e0
MF
433#define FRAME_GROWS_DOWNWARD flag_stack_protect
434
03984308
BW
435/* Offset within stack frame to start allocating local variables at. */
436#define STARTING_FRAME_OFFSET \
5057f9e0 437 (FRAME_GROWS_DOWNWARD ? 0 : crtl->outgoing_args_size)
03984308
BW
438
439/* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
440 they are eliminated to either the stack pointer or hard frame pointer. */
441#define ELIMINABLE_REGS \
442{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
443 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
444 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
445 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
446
03984308
BW
447/* Specify the initial difference between the specified pair of registers. */
448#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
5057f9e0 449 (OFFSET) = xtensa_initial_elimination_offset ((FROM), (TO))
03984308
BW
450
451/* If defined, the maximum amount of space required for outgoing
452 arguments will be computed and placed into the variable
38173d38 453 'crtl->outgoing_args_size'. No space will be pushed
03984308
BW
454 onto the stack for each call; instead, the function prologue
455 should increase the stack frame size by this amount. */
456#define ACCUMULATE_OUTGOING_ARGS 1
457
458/* Offset from the argument pointer register to the first argument's
459 address. On some machines it may depend on the data type of the
460 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
461 location above the first argument's address. */
462#define FIRST_PARM_OFFSET(FNDECL) 0
463
464/* Align stack frames on 128 bits for Xtensa. This is necessary for
465 128-bit datatypes defined in TIE (e.g., for Vectra). */
466#define STACK_BOUNDARY 128
467
03984308 468/* Use a fixed register window size of 8. */
590e2636 469#define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
03984308
BW
470
471/* Symbolic macros for the registers used to return integer, floating
472 point, and values of coprocessor and user-defined modes. */
473#define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
474#define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
475
476/* Symbolic macros for the first/last argument registers. */
477#define GP_ARG_FIRST (GP_REG_FIRST + 2)
478#define GP_ARG_LAST (GP_REG_FIRST + 7)
479#define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
480#define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
481
482#define MAX_ARGS_IN_REGISTERS 6
483
484/* Don't worry about compatibility with PCC. */
485#define DEFAULT_PCC_STRUCT_RETURN 0
486
03984308
BW
487/* A C expression that is nonzero if REGNO is the number of a hard
488 register in which function arguments are sometimes passed. This
489 does *not* include implicit arguments such as the static chain and
490 the structure-value address. On many machines, no registers can be
491 used for this purpose since all function arguments are pushed on
3bbc2af6 492 the stack. */
03984308
BW
493#define FUNCTION_ARG_REGNO_P(N) \
494 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
495
997b8b4d
BW
496/* Record the number of argument words seen so far, along with a flag to
497 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
498 is used for both incoming and outgoing args, so a separate flag is
499 needed. */
500typedef struct xtensa_args
501{
502 int arg_words;
503 int incoming;
03984308
BW
504} CUMULATIVE_ARGS;
505
0f6937fe 506#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
997b8b4d 507 init_cumulative_args (&CUM, 0)
03984308
BW
508
509#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
997b8b4d 510 init_cumulative_args (&CUM, 1)
03984308 511
5ee924c2
BW
512/* Profiling Xtensa code is typically done with the built-in profiling
513 feature of Tensilica's instruction set simulator, which does not
514 require any compiler support. Profiling code on a real (i.e.,
515 non-simulated) Xtensa processor is currently only supported by
516 GNU/Linux with glibc. The glibc version of _mcount doesn't require
517 counter variables. The _mcount function needs the current PC and
518 the current return address to identify an arc in the call graph.
519 Pass the current return address as the first argument; the current
520 PC is available as a0 in _mcount's register window. Both of these
521 values contain window size information in the two most significant
522 bits; we assume that _mcount will mask off those bits. The call to
523 _mcount uses a window size of 8 to make sure that it doesn't clobber
3bbc2af6 524 any incoming argument values. */
03984308 525
9739c90c 526#define NO_PROFILE_COUNTERS 1
5ee924c2
BW
527
528#define FUNCTION_PROFILER(FILE, LABELNO) \
03984308 529 do { \
5ee924c2
BW
530 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
531 if (flag_pic) \
532 { \
590e2636
MF
533 fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE); \
534 fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE); \
5ee924c2
BW
535 } \
536 else \
590e2636 537 fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE); \
5ee924c2 538 } while (0)
03984308
BW
539
540/* Stack pointer value doesn't matter at exit. */
541#define EXIT_IGNORE_STACK 1
542
85333688
BW
543/* Size in bytes of the trampoline, as an integer. Make sure this is
544 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
590e2636
MF
545#define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
546 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
547 60 : 52) : \
548 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
549 32 : 24))
03984308
BW
550
551/* Alignment required for trampolines, in bits. */
7f0ee694 552#define TRAMPOLINE_ALIGNMENT 32
03984308 553
03984308
BW
554/* If defined, a C expression that produces the machine-specific code
555 to setup the stack so that arbitrary frames can be accessed.
556
557 On Xtensa, a stack back-trace must always begin from the stack pointer,
558 so that the register overflow save area can be located. However, the
559 stack-walking code in GCC always begins from the hard_frame_pointer
560 register, not the stack pointer. The frame pointer is usually equal
561 to the stack pointer, but the __builtin_return_address and
562 __builtin_frame_address functions will not work if count > 0 and
563 they are called from a routine that uses alloca. These functions
564 are not guaranteed to work at all if count > 0 so maybe that is OK.
565
566 A nicer solution would be to allow the architecture-specific files to
567 specify whether to start from the stack pointer or frame pointer. That
568 would also allow us to skip the machine->accesses_prev_frame stuff that
569 we currently need to ensure that there is a frame pointer when these
3bbc2af6 570 builtin functions are used. */
03984308 571
0c14a54d 572#define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
03984308
BW
573
574/* A C expression whose value is RTL representing the address in a
575 stack frame where the pointer to the caller's frame is stored.
576 Assume that FRAMEADDR is an RTL expression for the address of the
577 stack frame itself.
578
579 For Xtensa, there is no easy way to get the frame pointer if it is
580 not equivalent to the stack pointer. Moreover, the result of this
581 macro is used for continuing to walk back up the stack, so it must
582 return the stack pointer address. Thus, there is some inconsistency
583 here in that __builtin_frame_address will return the frame pointer
3bbc2af6 584 when count == 0 and the stack pointer when count > 0. */
03984308
BW
585
586#define DYNAMIC_CHAIN_ADDRESS(frame) \
f1c25d3b 587 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
03984308
BW
588
589/* Define this if the return address of a particular stack frame is
3bbc2af6 590 accessed from the frame pointer of the previous stack frame. */
590e2636 591#define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
03984308
BW
592
593/* A C expression whose value is RTL representing the value of the
594 return address for the frame COUNT steps up from the current
0c14a54d
BW
595 frame, after the prologue. */
596#define RETURN_ADDR_RTX xtensa_return_addr
03984308
BW
597
598/* Addressing modes, and classification of registers for them. */
599
600/* C expressions which are nonzero if register number NUM is suitable
da1f39e4 601 for use as a base or index register in operand addresses. */
03984308 602
da1f39e4 603#define REGNO_OK_FOR_INDEX_P(NUM) 0
03984308
BW
604#define REGNO_OK_FOR_BASE_P(NUM) \
605 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
606
03984308 607/* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
da1f39e4 608 valid for use as a base or index register. */
03984308
BW
609
610#ifdef REG_OK_STRICT
da1f39e4
BW
611#define REG_OK_STRICT_FLAG 1
612#else
613#define REG_OK_STRICT_FLAG 0
614#endif
03984308 615
da1f39e4
BW
616#define BASE_REG_P(X, STRICT) \
617 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
618 || REGNO_OK_FOR_BASE_P (REGNO (X)))
03984308
BW
619
620#define REG_OK_FOR_INDEX_P(X) 0
da1f39e4 621#define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
03984308
BW
622
623/* Maximum number of registers that can appear in a valid memory address. */
624#define MAX_REGS_PER_ADDRESS 1
625
03984308
BW
626/* A C expression that is 1 if the RTX X is a constant which is a
627 valid address. This is defined to be the same as 'CONSTANT_P (X)',
628 but rejecting CONST_DOUBLE. */
629#define CONSTANT_ADDRESS_P(X) \
630 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
631 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
632 || (GET_CODE (X) == CONST)))
633
03984308
BW
634/* A C expression that is nonzero if X is a legitimate immediate
635 operand on the target machine when generating position independent
636 code. */
637#define LEGITIMATE_PIC_OPERAND_P(X) \
f1dfe704
BW
638 ((GET_CODE (X) != SYMBOL_REF \
639 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
03984308
BW
640 && GET_CODE (X) != LABEL_REF \
641 && GET_CODE (X) != CONST)
642
03984308
BW
643/* Specify the machine mode that this machine uses
644 for the index in the tablejump instruction. */
645#define CASE_VECTOR_MODE (SImode)
646
03984308
BW
647/* Define this as 1 if 'char' should by default be signed; else as 0. */
648#define DEFAULT_SIGNED_CHAR 0
649
650/* Max number of bytes we can move from memory to memory
651 in one reasonably fast instruction. */
652#define MOVE_MAX 4
653#define MAX_MOVE_MAX 4
654
655/* Prefer word-sized loads. */
656#define SLOW_BYTE_ACCESS 1
657
03984308
BW
658/* Shift instructions ignore all but the low-order few bits. */
659#define SHIFT_COUNT_TRUNCATED 1
660
09fa8841
BW
661#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
662#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
663
03984308
BW
664/* Specify the machine mode that pointers have.
665 After generation of rtl, the compiler makes no further distinction
666 between pointers and any other objects of this machine mode. */
667#define Pmode SImode
668
669/* A function address in a call instruction is a word address (for
670 indexing purposes) so give the MEM rtx a words's mode. */
671#define FUNCTION_MODE SImode
672
3a4fd356 673#define BRANCH_COST(speed_p, predictable_p) 3
03984308 674
03984308 675/* How to refer to registers in assembler output.
3bbc2af6 676 This sequence is indexed by compiler's hard-register-number (see above). */
03984308
BW
677#define REGISTER_NAMES \
678{ \
679 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
680 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
681 "fp", "argp", "b0", \
682 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
683 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
684 "acc" \
685}
686
687/* If defined, a C initializer for an array of structures containing a
688 name and a register number. This macro defines additional names
689 for hard registers, thus allowing the 'asm' option in declarations
3bbc2af6 690 to refer to registers using alternate names. */
03984308
BW
691#define ADDITIONAL_REGISTER_NAMES \
692{ \
693 { "a1", 1 + GP_REG_FIRST } \
694}
695
696#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
697#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
698
506a61b1
KG
699/* Globalizing directive for a label. */
700#define GLOBAL_ASM_OP "\t.global\t"
03984308 701
6a2b287f
BW
702/* Declare an uninitialized external linkage data object. */
703#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
704 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
03984308
BW
705
706/* This is how to output an element of a case-vector that is absolute. */
707#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
708 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
709 LOCAL_LABEL_PREFIX, VALUE)
710
711/* This is how to output an element of a case-vector that is relative.
3bbc2af6 712 This is used for pc-relative code. */
03984308
BW
713#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
714 do { \
715 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
716 LOCAL_LABEL_PREFIX, (VALUE), \
717 LOCAL_LABEL_PREFIX, (REL)); \
718 } while (0)
719
720/* This is how to output an assembler line that says to advance the
721 location counter to a multiple of 2**LOG bytes. */
722#define ASM_OUTPUT_ALIGN(STREAM, LOG) \
723 do { \
724 if ((LOG) != 0) \
725 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
726 } while (0)
727
728/* Indicate that jump tables go in the text section. This is
729 necessary when compiling PIC code. */
730#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
731
732
03984308 733/* Define the strings to put out for each section in the object file. */
6a2b287f
BW
734#define TEXT_SECTION_ASM_OP "\t.text"
735#define DATA_SECTION_ASM_OP "\t.data"
736#define BSS_SECTION_ASM_OP "\t.section\t.bss"
03984308
BW
737
738
9eb8a531 739/* Define output to appear before the constant pool. */
03984308
BW
740#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
741 do { \
590e2636 742 if ((SIZE) > 0 || !TARGET_WINDOWED_ABI) \
86d8c251 743 { \
9eb8a531 744 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
d6b5193b 745 switch_to_section (function_section (FUNDECL)); \
86d8c251
BW
746 fprintf (FILE, "\t.literal_position\n"); \
747 } \
03984308
BW
748 } while (0)
749
750
03984308
BW
751/* A C statement (with or without semicolon) to output a constant in
752 the constant pool, if it needs special treatment. */
753#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
754 do { \
755 xtensa_output_literal (FILE, X, MODE, LABELNO); \
756 goto JUMPTO; \
757 } while (0)
758
3bbc2af6 759/* How to start an assembler comment. */
03984308
BW
760#define ASM_COMMENT_START "#"
761
6eb065e6
SA
762/* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
763 machinery, but the variable size register window save areas are too
764 complicated to efficiently describe with CFI entries. The CFA must
765 still be specified in DWARF so that DW_AT_frame_base is set correctly
766 for debugging. */
4e6c2193
BW
767#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
768#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
c8338173
MF
769#define DWARF_ALT_FRAME_RETURN_COLUMN 16
770#define DWARF_FRAME_REGISTERS (DWARF_ALT_FRAME_RETURN_COLUMN \
771 + (TARGET_WINDOWED_ABI ? 0 : 1))
6eb065e6 772#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
24eaa34f
BW
773#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
774 (flag_pic \
775 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
776 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
777 : DW_EH_PE_absptr)
778
590e2636
MF
779#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
780
24eaa34f
BW
781/* Emit a PC-relative relocation. */
782#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
783 do { \
784 fputs (integer_asm_op (SIZE, FALSE), FILE); \
785 assemble_name (FILE, LABEL); \
786 fputs ("@pcrel", FILE); \
787 } while (0)
03984308 788
a7bda3d5
BW
789/* Xtensa constant pool breaks the devices in crtstuff.c to control
790 section in where code resides. We have to write it as asm code. Use
791 a MOVI and let the assembler relax it -- for the .init and .fini
792 sections, the assembler knows to put the literal in the right
793 place. */
590e2636 794#if defined(__XTENSA_WINDOWED_ABI__)
a7bda3d5
BW
795#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
796 asm (SECTION_OP "\n\
797 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
798 callx8\ta8\n" \
799 TEXT_SECTION_ASM_OP);
590e2636
MF
800#elif defined(__XTENSA_CALL0_ABI__)
801#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
802 asm (SECTION_OP "\n\
803 movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
804 callx0\ta0\n" \
805 TEXT_SECTION_ASM_OP);
806#endif